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ABSTRACT 
An inverse scattering series approach to internal multiple prediction was developed by 

Weglein et al. in the late 1990’s. Their method exploited the idea that all multiples can be 
constructed from a combination of primary events and other multiples, in a fully data driven 
manner (Weglein et al., 1997). Innanen (2015) presented the mathematics behind the 
inverse scattering series approach in the time domain. Sun and Innanen (2014) show the 
prediction algorithm in the planewave domain, while Pan and Innanen (2013) explore the 
prediction in the frequency-wavenumber domain. This paper is meant as a companion to 
the 2016 CREWES MatLab toolbox release, it will summarize the key ideas behind an 
inverse scattering series approach to internal multiple prediction in each domain listed 
above. The implementation of each algorithm will be reviewed and synthetic examples will 
be provided. Adaptive subtraction is also reviewed with synthetic examples.        

INTRODUCTION 
In the late 1990’s Weglein et al. presented a fully data driven method for attenuating 

internal multiples. Their idea focuses around the fact that the traveltime of any multiple is 
simply a combination of traveltimes from the primaries that make up the multiple. The 
original algorithm derived by Weglein et al., (1997) predicted multiples in the frequency-
wavenumber domain. Their algorithm searches for combinations of subevents containing 
reflections that obey a deeper-shallower-deeper relationship and then combines these 
events to predict internal multiples.  

Although it is required that the algorithm searches for subevents in time or depth, the 
domains in which the prediction occurs can vary widely. In recent years it has been a 
budding research interest of CREWES to explore internal multiple prediction in various 
domains to optimize the environment in which multiples are predicted.  

Pan and Innanen (2013) explored internal multiple prediction in the frequency-
wavenumber domain. Sun and Innanen (2014) adapted the algorithm for the planewave 
domain, while Innanen (2015) examined a time domain version of internal multiple 
prediction. As will be discussed later, while internal multiple prediction is well tuned to 
predicting the traveltime of multiples, the raw predictions contain phase and amplitude 
errors. Keating et al., (2015) presented a method of adaptive subtraction to deal with these 
errors. Their method creates a filter based on the optimization of a hybrid L1/L2 norm, 
when this filter is convolved with the internal multiple trace the phase and amplitude errors 
are corrected for in a least squares approach.   

This paper will begin with a review of the algorithm presented by Weglein et al., and 
show how it can be reduced to the 1.5D wavenumber-frequency and 1D frequency domain 
versions of the algorithm. Adaption of the algorithm to other domains will also be 
discussed. Finally, a review of adaptive subtraction will be given, along with a discussion 
of how to implement each in MatLab.   
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        REVIEW: INTERNAL MULTIPLES PREDICTION 
The inverse scattering series approach at its core is a data driven method of combining 

subevents in the data in a such a way that internal multiples are predicted. In one dimension 
it is easy to show that any first order internal multiple will arrive at the same time as the 
sum of the traveltimes of two primaries, minus the traveltime of a third primary. By 
combining traveltimes in this way, internal multiples can be predicted.  

In two dimensions the prediction algorithm (Weglein et al., 1997) is:  

 𝑏𝑏3�𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝜔𝜔� = 1
(2𝜋𝜋)2 ∬ 𝑑𝑑𝑘𝑘1𝑒𝑒−𝑖𝑖𝑞𝑞1(𝜖𝜖𝑔𝑔−𝜖𝜖𝑠𝑠)𝑑𝑑𝑘𝑘2𝑒𝑒𝑖𝑖𝑞𝑞2(𝜖𝜖𝑔𝑔−𝜖𝜖𝑠𝑠)∞

−∞ × 𝜑𝜑 (1) 

where  

 𝜑𝜑�𝑘𝑘𝑔𝑔,𝑘𝑘1,𝑘𝑘2,𝑘𝑘𝑠𝑠�𝜖𝜖� = ∫ 𝑑𝑑𝑑𝑑∞
−∞ 𝑒𝑒𝑖𝑖�𝑞𝑞𝑔𝑔+𝑞𝑞1�𝑧𝑧𝑏𝑏1�𝑘𝑘𝑔𝑔,−𝑘𝑘1, 𝑑𝑑� 

 × ∫ 𝑑𝑑𝑑𝑑′𝑧𝑧−𝜖𝜖
−∞ 𝑒𝑒−𝑖𝑖(𝑞𝑞1+𝑞𝑞2)𝑧𝑧′𝑏𝑏1(𝑘𝑘1,−𝑘𝑘2, 𝑑𝑑′)∫ 𝑑𝑑𝑑𝑑′′∞

𝑧𝑧′+𝜖𝜖 𝑒𝑒𝑖𝑖(𝑞𝑞2+𝑞𝑞𝑠𝑠)𝑧𝑧′′𝑏𝑏1(𝑘𝑘2,−𝑘𝑘𝑠𝑠, 𝑑𝑑′′) (2) 

and where  

 𝑞𝑞𝑥𝑥 = 𝜔𝜔
𝑐𝑐𝑜𝑜
�1 − 𝑘𝑘𝑥𝑥2𝑐𝑐𝑜𝑜2

𝜔𝜔2  (3) 

Equation (3) represents the lateral wavenumbers pertaining to the vertical wavenumbers 
and the reference velocity, 𝑐𝑐𝑜𝑜.  

Preparation of data 
Equation (2) shows that the inputs to the integration is a prepared form of the data and 

not the acquired data itself. In the case of the wavenumber-frequency prediction, the data 
is prepared in the following manner. First, the data is Fourier transformed over all three 
variables.  

 𝑑𝑑(𝑥𝑥𝑔𝑔, 𝑥𝑥𝑠𝑠, 𝑡𝑡) → 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝜔𝜔) (4) 

Next, a change of variables is made from 𝜔𝜔 to 𝑘𝑘𝑧𝑧.  

 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝜔𝜔) → 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝑘𝑘𝑧𝑧) (5)  

where 𝑘𝑘𝑧𝑧 = 𝑞𝑞𝑔𝑔 + 𝑞𝑞𝑠𝑠 and  

 𝑞𝑞𝑔𝑔 = 𝜔𝜔
𝑐𝑐𝑜𝑜
�1 −

𝑘𝑘𝑔𝑔2𝑐𝑐𝑜𝑜2

𝜔𝜔2 ,  𝑞𝑞𝑠𝑠 = 𝜔𝜔
𝑐𝑐𝑜𝑜
�1 − 𝑘𝑘𝑠𝑠2𝑐𝑐𝑜𝑜2

𝜔𝜔2  (6) 

the data is then scaled by an obliquity factor (Weglein et al., 2003).  

 𝐵𝐵1�𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠, 𝑘𝑘𝑧𝑧� = −𝑖𝑖2 𝑞𝑞𝑠𝑠 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝑘𝑘𝑧𝑧) (7) 

Finally, the data is inverse Fourier transformed over the 𝑘𝑘𝑧𝑧 variable 
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  𝐵𝐵1�𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠, 𝑘𝑘𝑧𝑧� → 𝑏𝑏1�𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,ω� (8) 

Equation (8) represents the input to equation (2), where the data has been prepared for 
use in the wavenumber-frequency domain prediction. While the data is prepared in a 
different manner for each prediction domain, the data preparation steps are fairly similar 
in each domain. A brief description of data preparation will be given for each algorithm.  

Reduction to 1D and 1.5D  
The original algorithm presented by Weglein et al., reduces to its one dimensional form 

when:  

 𝑘𝑘𝑔𝑔 = 𝑘𝑘𝑠𝑠 = 0 (9) 

Equation (9) represents a condition of normal incidence, equation (1) then reduces to,  

 𝑏𝑏3(𝜔𝜔) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ 𝑒𝑒𝑖𝑖2

𝜔𝜔
𝑐𝑐𝑜𝑜
𝑧𝑧𝑏𝑏1(𝑑𝑑)∫ 𝑑𝑑𝑑𝑑′𝑧𝑧−𝜖𝜖

−∞ 𝑒𝑒−𝑖𝑖2
𝜔𝜔
𝑐𝑐𝑜𝑜
𝑧𝑧′𝑏𝑏1(𝑑𝑑′) 

 × ∫ 𝑑𝑑𝑑𝑑∞
𝑧𝑧′+𝜖𝜖 ′′𝑒𝑒𝑖𝑖2

𝜔𝜔
𝑐𝑐𝑜𝑜
𝑧𝑧′′𝑏𝑏1(𝑑𝑑′′)  (10)  

Comparing (10) to (1) it is obvious that the computational difficulty has greatly decreased. 
In (1) 𝜑𝜑�𝑘𝑘𝑔𝑔,𝑘𝑘1,𝑘𝑘2,𝑘𝑘𝑠𝑠�𝜖𝜖� is computed for every 𝑘𝑘1,𝑘𝑘2 and summed, then this is repeated 
for every pair of 𝑘𝑘𝑔𝑔 and 𝑘𝑘𝑠𝑠. In (10) the integration is carried out for every depth and then 
repeated for every frequency. Equation (10) represents the 1D frequency form of the 
inverse scattering internal multiple algorithm.    

Equation (1) reduces to a 1.5D algorithm when,  

 𝑘𝑘𝑔𝑔 = 𝑘𝑘𝑠𝑠 (11)  

Equation (11) represents the case of horizontally layered strata. When the condition of 
(11) is met, then (1) becomes,  

𝑏𝑏3�𝑘𝑘𝑔𝑔,𝜔𝜔� = � 𝑑𝑑𝑑𝑑
∞

−∞

𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑑𝑑� � 𝑑𝑑𝑑𝑑′
𝑧𝑧−𝜖𝜖

−∞

𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧′𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑑𝑑′� 

 × ∫ 𝑑𝑑𝑑𝑑∞
𝑧𝑧′+𝜖𝜖 ′′𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧′′𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑑𝑑′′� (12) 

Equation (12) is similar to equation (10), however, it is repeated for every value of 𝑘𝑘𝑔𝑔 
(trace).  

1D FREQUENCY DOMAIN PREDICTION IN MATLAB 
Input Data  

For 1D internal multiple prediction it is assumed that a single normal incidence trace is 
available from a one-dimensional earth. It is important when performing internal multiple 
prediction that the data has been deghosted, that free surface multiples (FSM) have been 
removed and that the direct arrivals have been muted. Since internal multiple prediction is 
achieved by combining the traveltimes of subevents, if the data is not prepared in this way, 
then the algorithm will predict artifacts arriving with traveltimes that are combinations of 
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the traveltime of the undesired events (ghosts, FSM, and direct arrivals), and the internal 
multiples and primaries.    

Preparation of input data  
The preparation of data for the 1D frequency domain prediction is quite trivial. The first 

step is to Fourier transform the normal incidence trace.  

 𝑑𝑑�𝑥𝑥𝑔𝑔, 𝑡𝑡� = 𝐷𝐷(𝑘𝑘𝑔𝑔,𝜔𝜔)  (13) 

However, in the case of normal incidence 𝑘𝑘𝑔𝑔 = 0 and (13) reduces to 𝐷𝐷(𝜔𝜔). The 
conversion is then made from frequency to wavenumber.  

 𝑘𝑘𝑧𝑧 = 2𝜔𝜔
𝑐𝑐0

 (14) 

Time must also be converted to psuedodepth in order to acquire the Fourier conjugate to 
𝑘𝑘𝑧𝑧.  

 𝑑𝑑 = 𝑐𝑐0𝑡𝑡
2

 (15)  

where 𝑐𝑐0 is the reference velocity, which is 1500 m/s for marine surveys, and should be 
taken as the velocity around the geophones in land applications.  

Prediction of internal multiples  
The role of the Heaviside step function  

Although the 1D frequency domain prediction is already computationally efficient, the 
algorithm can be improved through the use of an identity that makes use of the Heaviside 
step function.  

 � 𝑑𝑑𝑡𝑡𝑑𝑑(𝑡𝑡)∫ 𝑑𝑑𝑡𝑡′𝑔𝑔(𝑡𝑡′)𝑡𝑡
−∞

∞

−∞
= ∫ 𝑑𝑑𝑡𝑡𝑑𝑑(𝑡𝑡)∞

−∞ ∫ 𝑑𝑑𝑡𝑡′𝐻𝐻[𝑡𝑡 − 𝑡𝑡′]𝑔𝑔(𝑡𝑡′)∞
−∞  (16)  

where  

 𝐻𝐻[𝑡𝑡 − 𝑡𝑡′] = �1, 𝑡𝑡 > 𝑡𝑡′
0, 𝑡𝑡′ > 𝑡𝑡 (17)  

is the Heaviside step function, and works to replace the integration limits of (16).  

 ∫ 𝑑𝑑𝑡𝑡𝑑𝑑(𝑡𝑡)∞
−∞ ∫ 𝑑𝑑𝑡𝑡′𝐻𝐻[𝑡𝑡 − 𝑡𝑡′]𝑔𝑔(𝑡𝑡′)∞

−∞ = ∬ 𝑑𝑑𝑡𝑡𝑑𝑑(𝑡𝑡)𝑑𝑑𝑡𝑡′𝐻𝐻[𝑡𝑡 − 𝑡𝑡′]𝑔𝑔(𝑡𝑡′)∞
−∞  (18) 

 

  ∬ 𝑑𝑑𝑡𝑡𝑑𝑑(𝑡𝑡)𝑑𝑑𝑡𝑡′𝐻𝐻[𝑡𝑡 − 𝑡𝑡′]𝑔𝑔(𝑡𝑡′) = ∫ 𝑑𝑑𝑡𝑡′𝑔𝑔(𝑡𝑡′)∞
−∞

∞
−∞ ∫ 𝑑𝑑𝑡𝑡𝐻𝐻[𝑡𝑡 − 𝑡𝑡′]𝑑𝑑(𝑡𝑡)∞

−∞  (19) 

 

 ∫ 𝑑𝑑𝑡𝑡′𝑔𝑔(𝑡𝑡′)∞
−∞ ∫ 𝑑𝑑𝑡𝑡𝐻𝐻[𝑡𝑡 − 𝑡𝑡′]𝑑𝑑(𝑡𝑡)∞

−∞ = ∫ 𝑑𝑑𝑡𝑡′𝑔𝑔(𝑡𝑡′)∞
−∞ ∫ 𝑑𝑑𝑡𝑡𝑑𝑑(𝑡𝑡)∞

𝑡𝑡′  (20) 

By using the proof in equations (16-20), equation (10) reduces accordingly.  
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 𝑏𝑏3(𝜔𝜔) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ 𝑒𝑒𝑖𝑖2

𝜔𝜔
𝑐𝑐𝑜𝑜
𝑧𝑧𝑏𝑏1(𝑑𝑑) �∫ 𝑑𝑑𝑑𝑑∞

𝑧𝑧′+𝜖𝜖 ′′𝑒𝑒𝑖𝑖2
𝜔𝜔
𝑐𝑐𝑜𝑜
𝑧𝑧′′𝑏𝑏1(𝑑𝑑′′)�

2
 (21)  

In equation (21), one of the three integrals has effectively been removed. Now only two 
integrals have to be computed for every frequency, where the second integral is now 
squared. The computational problem has now been greatly reduced. This will be especially 
useful when the algorithms are expanded to 1.5 dimensions.  

The prediction Integrals  
Prediction of internal multiples in the 1D frequency domain case can be realized through 

the use of two nested loops. The first loops over every positive 𝑘𝑘𝑧𝑧(𝑖𝑖𝑖𝑖) value, at every value 
of 𝑘𝑘𝑧𝑧 the algorithm searches for subevents to combine, by searching through every depth 
𝑑𝑑(𝑗𝑗𝑗𝑗). 

Table 1. 1D Frequency domain prediction integral pseudocode  

 

The first for loop loops through every wavenumber, for every wavenumber, the inner 
for loop calculates the prediction integrals of (21) at every depth. The variables 𝑘𝑘𝑧𝑧𝐵𝐵 and 
𝑘𝑘𝑧𝑧𝐸𝐸 represent the minimum and maximum wavenumbers respectively, while 𝑑𝑑𝐵𝐵 and 𝑑𝑑𝐸𝐸 
represent the minimum and maximum depths to search through.    

Synthetic example 
Figure 1a shows the three interface velocity model used to create a zero offset, normal 

incidence trace for use in the 1D frequency domain prediction algorithm. In figure 1b, the 
reflectivity series containing all primaries and first order internal multiples for this velocity 
model is illustrated. Note that the bottom layer has been treated as a basal half space. The 
reflectivity series was created using the CREWES function makeTraceWithIm.m, this 
function takes in the velocity model and then calculates, with transmission loses, the 
reflectivity series and trace with all primaries and first order internal multiples.   

For ii = kzB:kzE 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = exp (𝑖𝑖 ∗ 𝑘𝑘𝑑𝑑𝑘𝑘𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖) ∗ 𝑑𝑑; 
𝐼𝐼𝐼𝐼𝑒𝑒𝑔𝑔 = exp (−𝑖𝑖 ∗ 𝑘𝑘𝑑𝑑𝑘𝑘𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖) ∗ 𝑑𝑑; 

𝑖𝑖𝐼𝐼𝑡𝑡𝑘𝑘𝐼𝐼𝐼𝐼 = 𝑏𝑏1𝑑𝑑.∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼; 
𝑖𝑖𝐼𝐼𝑡𝑡𝐼𝐼𝑒𝑒𝑔𝑔 = 𝑏𝑏1𝑑𝑑.∗ 𝐼𝐼𝐼𝐼𝑒𝑒𝑔𝑔; 

 
 

 𝐹𝐹𝐼𝐼𝐹𝐹 𝑗𝑗𝑗𝑗 = 𝑑𝑑𝐵𝐵: 𝑑𝑑𝐸𝐸 − 𝜖𝜖 
𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐹𝐹 = 𝐼𝐼𝑠𝑠𝑠𝑠�𝑖𝑖𝐼𝐼𝑡𝑡𝑘𝑘𝐼𝐼𝐼𝐼(𝑘𝑘𝑘𝑘 + 𝜖𝜖: 𝑑𝑑𝐸𝐸)�; 

𝐼𝐼𝐹𝐹𝑒𝑒𝑑𝑑𝑘𝑘 = 𝐼𝐼𝐹𝐹𝑒𝑒𝑑𝑑𝑘𝑘 + 𝑖𝑖𝐼𝐼𝑡𝑡𝑖𝑖𝑒𝑒𝑔𝑔(𝑘𝑘𝑘𝑘) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐹𝐹2; 
END 

 

END  
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FIG. 1. Velocity model (left), normal incidence trace containing primaries and first order internal 
multiples (right).   

 

FIG. 2. Trace created by convolving reflectivity series with a 40 Hz minimum phase wavelet (top) 
result of the 1D frequency domain internal multiple prediction (bottom). Red circles show arrival 
time of primaries, while blue crosses show arrival time of first order internal multiples.  

Figure 2a shows the trace created by convolving the reflectivity series with a 40 Hz 
minimum phase wavelet. Figure 2b illustrates the result of the internal multiple prediction 
using (21). Note that the red circles and blue crosses of 2a, and 2b illustrate the arrival 
times of the primaries and first order internal multiples respectively.  
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The results of this synthetic example show that the internal multiple prediction scheme 
of equation (21) is a very robust algorithm for the prediction of internal multiples on a 
single normal incidence trace. Figure 2b shows that the internal multiples have been 
predicted with correct traveltime but with erroneous amplitudes, in addition, none of the 
primary energy has been predicted. These erroneous amplitudes are corrected through 
adaptive subtraction, which will be discussed in a following section. The algorithm has 
also predicted some ‘extra’ energy where no events appear to be. This is due to the fact that 
the algorithm predicts multiples by combining subevents because the input data contained 
primaries and first order internal multiples, these two types of events were combined and 
second order internal multiples were predicted. Some of the energy predicted in figure 2b, 
that does not align with a blue cross, can be interpreted to second order internal multiples.     

1D TIME DOMAIN PREDICTION IN MATLAB 
The requirements of the input data for time domain prediction are similar to those of the 

frequency domain prediction. The major difference is that in the time domain prediction 
algorithm there is not data preparation step, the prediction can simply be carried out on an 
input trace, provided that trace is a normal incidence trace.  

Internal multiple prediction in the time domain  
It can be shown that the prediction algorithm used in free surface multiple elimination 

(SRME), can be achieved through simple auto-convolution of the data. In order to extend 
SRME to internal multiple prediction an autocorrelation step is introduced, in fact, equation 
(10) can be visualized as partial auto-convolution, followed by an autocorrelation. Innanen 
(2015) presents a formula for time domain internal multiple prediction with artifacts.    

 𝐼𝐼𝐼𝐼(𝑡𝑡) + 𝑎𝑎𝐹𝐹𝑡𝑡𝑖𝑖𝑑𝑑𝑎𝑎𝑐𝑐𝑡𝑡𝐼𝐼 = ∫ 𝑑𝑑𝑡𝑡′∞
−∞ 𝐼𝐼(𝑡𝑡′ − 𝑡𝑡)∫ 𝑑𝑑𝑡𝑡′′∞

−∞ 𝐼𝐼(𝑡𝑡′ − 𝑡𝑡′′)𝐼𝐼(𝑡𝑡′′) (22) 

   The artifacts are a result of the fact that equation (22) contains a full convolution 
followed by a correlation. In order to correctly predict the artifact free, internal multiples, 
the convolution must be transformed into a partial convolution. Innanen (2015) shows that 
this can be achieved through the use of a masking function.  

 𝑂𝑂(𝑡𝑡, 𝑡𝑡′, 𝑡𝑡′′) = 𝐻𝐻[𝑡𝑡′′ − 𝛼𝛼(𝑡𝑡, 𝑡𝑡′)]𝐻𝐻[𝛽𝛽(𝑡𝑡) − 𝑡𝑡′′] (23) 
where,  

 𝛼𝛼(𝑡𝑡, 𝑡𝑡′) = 𝑡𝑡′ − (𝑡𝑡 − 𝜖𝜖2) 
 𝛽𝛽(𝑡𝑡) = 𝑡𝑡 − 𝜖𝜖1 (24) 
The mask function invokes limits on the convolution that force the algorithm to combine 

events obeying the lower-higher-lower relationship required for internal multiple 
prediction. With this in mind the matrix form of the 1D time domain prediction (Innanen, 
2015) becomes:  

 𝐼𝐼𝐼𝐼�𝑡𝑡𝑗𝑗� = 𝐼𝐼𝑅𝑅(𝑗𝑗, : )�𝑂𝑂�𝑡𝑡𝑗𝑗 , 𝜖𝜖� ∙ 𝐼𝐼𝐶𝐶�𝐼𝐼 (25) 

The masking function “O” is effectively blocking a portion of the convolution matrix 
from being involved in the prediction. The portion of the convolution matrix included in 
the prediction increases with time.    
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1D time domain prediction in MatLab 
Step 1: Create time vectors  

We start with the assumption that the input to the 1D time domain prediction is taken to 
be a trace in the form of an (n x 1) column vector. This trace is then padded to include 
negative times to create a (2n x 1) column vector. Thus the convolution and mask matrices 
must have a size that is (2n-1 x n) and the correlation matrix must have a size that is (3n-2 
x 2n-1). The output of the prediction algorithm will, therefore, be a (3n-2 x 1) column 
vector. With this in mind, the first step is to create time vectors to aid in the initialization 
of the correlation and convolution matrices. Three time vectors need to be created, one that 
is twice the length of the input time, and is to be padded with negative times (𝑡𝑡𝑝𝑝1), the 
second will have a size (2𝑡𝑡𝑝𝑝1 − 1) and will be used to create the trace used in the 
convolution (𝑡𝑡𝑝𝑝2). The third time vector will have a size (3𝑡𝑡𝑝𝑝1 − 2), this vector will be 
used to initialize the trace in the correlation matrix (𝑡𝑡𝑜𝑜).  

Step 2: Initialize convolution and correlation matrices  

The first step is to create a trace that is the same length as 𝑡𝑡𝑝𝑝1 that is padded with zeros 
for negative times (𝑡𝑡𝐹𝐹𝑎𝑎𝑐𝑐𝑒𝑒𝑝𝑝1), and a time reversed version of this trace (𝑡𝑡𝐹𝐹𝑎𝑎𝑐𝑐𝑒𝑒𝑝𝑝1𝑅𝑅). These 
two traces (𝑡𝑡𝐹𝐹𝑎𝑎𝑐𝑐𝑒𝑒𝑝𝑝1, 𝑡𝑡𝐹𝐹𝑎𝑎𝑐𝑐𝑒𝑒𝑝𝑝1𝑅𝑅) will be used as the input to build the convolution and 
correlation matrices respectively. Figure 3 shows a schematic of how steps 1 and 2 are 
realized in practice. It is important to note that in figure 3, the mask matrix and the 
convolution matrix (CNV) are multiplied together element wise. In the three middle 
matrices, the white areas indicate regions of zeros, whereas the gray areas indicate areas of 
non-zero data. The convolution matrix is built to have a number of columns equal to the 
length of 𝑡𝑡𝑝𝑝1, while the correlation matrix has a number of columns equal to the length of 
𝑡𝑡𝑝𝑝2. 

 

FIG. 3. Schematic of matrix multiplication for 1D time domain prediction 
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Step 3: The masking matrix      
The masking matrix enforces the limits on the integration such that the lower-higher-

lower relationship is satisfied. If the x coordinate of the mask matrix is taken to be t” then 
the limit invoked by the second step function of (23) becomes a vertical straight line. When 
the y coordinate is taken to be t’, then the limit invoked by the first step function of (23) 
becomes a sloped straight line.  

    

FIG. 4. Masking operator growth with time 

In figure 4 the section shown in black is a region of unity, while the section in white 
indicates a region of zeros. When multiplied by the convolution matrix the masking 
operator restricts the portion of the convolution that contributes to the prediction, which is 
the portion obeying a lower-higher-lower relationship. Figure 4 shows how the masking 
operator grows with increasing time.  

The masking operator is created using the CREWES function makeMask.m, as its input 
it takes in a tIndex and the length of the 𝑡𝑡𝑝𝑝1 time vector Nt. The first input tIndex is 
equivalent to t(j) of figure 4, tIndex starts at a value equal to the length of the input trace 
minus the value of epsilon, and increases by 1 for each time step. The second input Nt is 
equivalent to the length of 𝑡𝑡𝑝𝑝1. Construction of the masking operator takes place within a 
for loop, for the first column of the mask matrix every value from the first row up until the 
row defined by tIndex is initialized to one. Then with every iteration of the for loop, the 
range of ones is extended by one row, and one column, creating a slanted line with a slope 
of one. This step is forming the condition of 𝑡𝑡" = 𝑡𝑡′ − (𝑡𝑡(𝑗𝑗) − 𝜖𝜖) shown in figure 4. Outside 
of the for loop, every value to the right of tIndex is then set to zero, creating the vertical 
line limit.  

Step 4: Prediction of internal multiples 
As discussed previously internal multiple prediction in the time domain can be viewed 

as partial convolution followed by correlation. In order to invoke a partial convolution, a 
full convolution matrix of the zero padded trace is created, the Hadamard product of this 
convolution matrix with the masking matrix creates the partial convolution matrix. The  
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Table 2. Pseudocode for creation of mask matrix 

 

 

 

 

 

zero padded trace is then time reversed and used to create the cross correlation matrix. 
Each row of the correlation matrix is then multiplied by the masked convolution matrix, 
the result of which is multiplied by the input trace. 

 𝐼𝐼𝐹𝐹𝑒𝑒𝑑𝑑𝑡𝑡(𝑖𝑖𝑖𝑖) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖, : )[𝑠𝑠𝑎𝑎𝐼𝐼𝑘𝑘 ⊙ 𝐶𝐶𝑂𝑂𝑖𝑖𝐶𝐶](𝑡𝑡𝐹𝐹𝑎𝑎𝑐𝑐𝑒𝑒𝑝𝑝1) (26) 

Where (⨀) represents the Hadamard product. The prediction vector will have a length 
of (3𝑡𝑡𝑝𝑝1 − 2), therefore it is important to set the final prediction to be equal to 
𝐼𝐼𝐹𝐹𝑒𝑒𝑑𝑑𝑡𝑡(3𝑖𝑖𝑡𝑡: 3𝑖𝑖𝑡𝑡 + 𝑖𝑖𝑡𝑡 − 1). 

Synthetic Example 
The requirements for the 1D time domain prediction are the same as for the 1D 

frequency domain prediction. That is a single normal incidence trace is assumed as the 
input to the algorithm. For consistency and simplicity, the same velocity model and input 
of figure 1 will be utilized.  

 

FIG. 5. Trace created by convolving reflectivity series with a 40 Hz minimum phase wavelet (top), 
the result of the 1D time domain internal multiple prediction (bottom). Red circles show arrival time 
of primaries, while blue crosses show arrival time of first order internal multiples.  

For ii = 1:length(𝑡𝑡𝑝𝑝1) 
mask(1:tIndex+ii-1,ii) = 1; 

 

 
 

END  

 mask(:,tIndex:length(𝑡𝑡𝑝𝑝1)) = 0; 
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Comparing figure 5 to figure 2 the 1D time and frequency domain predictions produce 
comparable results. One noticeable difference is that the time domain prediction has 
predicted much smaller amplitudes than the frequency domain prediction.  

 1.5D FREQUENCY WAVENUMBER PREDICTION IN MATLAB 
Internal multiple prediction in the frequency wavenumber domain  

 Equation (12) above represents the 1.5D equation for the prediction of multiples in the 
wavenumber-frequency domain. By letting 𝑘𝑘𝑧𝑧 = 2𝑞𝑞𝑔𝑔 and making use of the identity in 
(20), equation (12) is transformed.  

 𝑏𝑏3�𝑘𝑘𝑔𝑔,𝜔𝜔� = ∫ 𝑑𝑑𝑑𝑑′∞
−∞ 𝑒𝑒−𝑖𝑖2𝑞𝑞𝑔𝑔𝑧𝑧′𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑑𝑑′��∫ 𝑑𝑑𝑑𝑑′′∞

𝑧𝑧′+𝜖𝜖 𝑒𝑒𝑖𝑖2𝑞𝑞𝑔𝑔𝑧𝑧′′𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑑𝑑′′��
2
 (27) 

where,  

 𝑞𝑞𝑔𝑔 = 𝜔𝜔
𝑐𝑐𝑜𝑜
�1 −

𝑘𝑘𝑔𝑔2𝑐𝑐𝑜𝑜2

𝜔𝜔2  (28)  

Input Data 
For 1.5D internal multiple prediction algorithms, the input data is assumed to be a split 

spread shot record, over a horizontally stratified geology. It is also assumed that the shot 
record has been deghosted, and has had free surface multiples and direct arrivals removed. 
Although not imperative for synthetic datasets, the application of deconvolution prior to 
prediction is a helpful step, in this case, deconvolution was not applied.  

 

FIG. 6. Velocity model (left) and split spread shot record (right). 

Figure 6 shows the velocity model that will be used for the 1.5D predictions and the 
resulting shot record created by the CREWES finite difference algorithm.  
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Data preparation 
Step 1: 2D Fourier Transform  

The input data as seen by figure 6 is acquired with the coordinates of horizontal 
geophone location (𝑥𝑥𝑔𝑔) and the vertical coordinate of time. Equation (12) shows that we 
require the data in the (𝑘𝑘𝑔𝑔, 𝑑𝑑) domain, thus the first step in the data preparation phase is to 
perform a two dimensional Fourier transform taking the data to the wavenumber-frequency 
domain.  

 𝑑𝑑�𝑥𝑥𝑔𝑔, 𝑡𝑡� → 𝐷𝐷(𝑘𝑘𝑔𝑔,𝜔𝜔) (29) 

Step 2: Change of variables 𝜔𝜔 → 𝑘𝑘𝑧𝑧  

The next step that is performed is to make a change of variables from 𝜔𝜔 to 𝑘𝑘𝑧𝑧.  

 𝐷𝐷(𝑘𝑘𝑔𝑔,𝜔𝜔) → 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) (30) 

Step 2a: Resampling  

Since 𝑘𝑘𝑧𝑧 is equal to twice 𝑞𝑞𝑔𝑔, it is easy to see through equation (28) that this change of 
variables is not a linear operation. Since this change of variables is non-linear, a simple 
swap of variables would result in an irregularly sampled (𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) grid. To overcome this 
hurdle, a regular (𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) grid is computed, and then the irregular frequency values that 
adhere to this new grid are computed. The data is then linearly interpolated to fit the regular 
(𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) grid. 

Starting with,  

 𝑘𝑘𝑧𝑧 = 2𝑞𝑞𝑔𝑔 = 2𝜔𝜔
𝑐𝑐𝑜𝑜
�1 −

𝑘𝑘𝑔𝑔2𝑐𝑐𝑜𝑜2

𝜔𝜔2  (31) 

solving for 𝜔𝜔 and making the conversion to frequency, the irregular frequency values are,  

 𝑑𝑑 = 𝑐𝑐𝑜𝑜𝑘𝑘𝑧𝑧
2𝜋𝜋

�1 +
𝑘𝑘𝑔𝑔2

𝑘𝑘𝑧𝑧2
 (32) 

Using these irregular frequency values, the data on the irregular (𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) grid, is linearly 
interpolated onto a regular (𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) grid. 

 𝑦𝑦−𝑦𝑦𝐿𝐿
𝑥𝑥−𝑥𝑥𝐿𝐿

= 𝑦𝑦𝐻𝐻−𝑦𝑦𝐿𝐿
𝑥𝑥𝐻𝐻−𝑥𝑥𝐿𝐿

 (33) 

Equation (33) represents the standard linear interpolation formula, changing the 
placeholder variables to the variables of interest,  

 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑−𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝐿𝐿
𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞−𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝐿𝐿

= 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝐻𝐻−𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝐿𝐿
𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝐻𝐻−𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝐿𝐿

 (34) 

Solving for the interpolated data,  
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 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 = (𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞 − 𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞𝐿𝐿) �𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝐻𝐻−𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝐿𝐿
𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝐻𝐻−𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝐿𝐿

� + 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎𝐿𝐿 (35) 

Equation (35) is carried out for every (𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧), the term to the left of the addition must be 
computed for both the real and imaginary portions of the data.   

Table 3. Pseudocode for the resampling of data to a regular grid. 

 

Step 3: Data Scaling  

The data are then scaled by the obliquity factor −𝑖𝑖2𝑞𝑞𝑠𝑠 due to the fact that the 1.5D 
internal multiple prediction is basically an un-collapsed Stolt migration (Weglein et al., 
2003).  

 𝐷𝐷�𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧� = −2𝑖𝑖𝑞𝑞𝑠𝑠𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) (36) 

Step 4: Inverse Fourier transform  
The last step in the data preparation phase is to inverse Fourier transform the data over 

the 𝑘𝑘𝑧𝑧 variable.  

 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) → 𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑑𝑑� (37) 

Figure 7 below shows the result of performing the four data preparation steps on the data 
in figure 6 (right).  

Internal multiple prediction  
Internal multiple prediction in 1.5 dimensions is very similar to the prediction in 1 

dimension, except the prediction integral is repeated over a given variable. In this case, the 
prediction is carried out for every positive lateral wavenumber.  

𝐹𝐹𝐼𝐼𝐹𝐹 𝑖𝑖𝑖𝑖 =  𝑖𝑖𝑥𝑥/2 + 2:𝑖𝑖𝑥𝑥 − 1  

 𝐹𝐹𝐼𝐼𝐹𝐹 𝑗𝑗𝑗𝑗 = 𝑖𝑖𝑧𝑧 2⁄ + 2:𝑖𝑖𝑧𝑧 − 1 
𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞 = 𝑖𝑖𝐹𝐹𝐹𝐹𝑒𝑒𝑔𝑔𝐹𝐹𝐹𝐹𝑒𝑒𝑞𝑞(𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖) 

𝑖𝑖𝐼𝐼𝑑𝑑𝑒𝑒𝑥𝑥 =  𝑑𝑑𝑖𝑖𝐼𝐼𝑑𝑑((𝑑𝑑 < 𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞 + 𝑑𝑑𝑑𝑑)&((𝑑𝑑 > 𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞 − 𝑑𝑑𝑑𝑑)) 
indexLow = index(1); 

indexHigh = max(index) 
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎𝐿𝐿 = 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎(𝑖𝑖𝐼𝐼𝑑𝑑𝑖𝑖𝐼𝐼𝑖𝑖, 𝑖𝑖𝑖𝑖) 
𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎𝐻𝐻 = 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎(𝑖𝑖𝐼𝐼𝑑𝑑𝐻𝐻𝑖𝑖𝑔𝑔ℎ, 𝑖𝑖𝑖𝑖) 
𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞𝐿𝐿 = 𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞(𝑖𝑖𝐼𝐼𝑑𝑑𝑖𝑖𝐼𝐼𝑖𝑖) 
𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞𝐻𝐻 = 𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞(𝑖𝑖𝐼𝐼𝑑𝑑𝐻𝐻𝑖𝑖𝑔𝑔ℎ) 

data(jj,ii) =(𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞 − 𝑑𝑑𝐹𝐹𝑒𝑒𝑞𝑞𝐿𝐿) �𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝐻𝐻−𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝐿𝐿
𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝐻𝐻−𝑓𝑓𝑓𝑓𝑓𝑓𝑞𝑞𝐿𝐿

� + 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎𝐿𝐿 
END 

 

END  
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FIG. 7. Prepared input data 𝑏𝑏1(𝑘𝑘𝑔𝑔, 𝑑𝑑) to be used in the 1.5D wavenumber frequency internal multiple 
prediction algorithm (left), same data plotted against vector index (right).  

Table 4. Frequency wavenumber prediction in pseudocode 

𝐹𝐹𝐼𝐼𝐹𝐹 𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑥𝑥𝐵𝐵: 𝑘𝑘𝑥𝑥𝐸𝐸 
𝐹𝐹 = 𝑘𝑘𝑥𝑥(𝑖𝑖𝑖𝑖)2𝑐𝑐𝑜𝑜2./𝜔𝜔.2 
𝑞𝑞𝑔𝑔 = (𝜔𝜔/𝑐𝑐𝑜𝑜).∗ 𝐼𝐼𝑞𝑞𝐹𝐹𝑡𝑡(1 − 𝐹𝐹) 

  

 𝐹𝐹𝐼𝐼𝐹𝐹 𝑗𝑗𝑗𝑗 =  𝜔𝜔𝐵𝐵:𝜔𝜔𝐸𝐸 
𝐼𝐼𝑘𝑘 = 𝑖𝑖 ∗ 2𝑞𝑞𝑔𝑔(𝑗𝑗𝑗𝑗) ∗ 𝑑𝑑; 
𝐼𝐼𝑖𝑖 = −𝑖𝑖 ∗ 2𝑞𝑞𝑔𝑔(𝑗𝑗𝑗𝑗) ∗ 𝑑𝑑; 
𝐼𝐼1 = b1(: , ii) ∗ exp (𝐼𝐼𝑘𝑘); 
𝐼𝐼2 = b1(: , ii) ∗ exp (𝐼𝐼𝑖𝑖); 

 

  𝐹𝐹𝐼𝐼𝐹𝐹 𝑘𝑘𝑘𝑘 = 𝑑𝑑𝐵𝐵: 𝑑𝑑𝐸𝐸 
𝑆𝑆 = 𝐼𝐼𝑠𝑠𝑠𝑠�𝐼𝐼1(𝑘𝑘𝑘𝑘 + 𝜖𝜖: 𝑑𝑑𝐸𝐸)�; 
𝑆𝑆 = 𝑑𝑑𝑑𝑑 ∗ 𝑆𝑆; 
𝑘𝑘 = 𝑘𝑘 + 𝐼𝐼2(𝑘𝑘𝑘𝑘) ∗ 𝑆𝑆 ∗ 𝑆𝑆; 
END 

 𝑘𝑘 = 𝑘𝑘 ∗ 𝑑𝑑𝑑𝑑; 
END 

 

END   
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Table 4 shows the prediction algorithm in pseudocode, 𝑘𝑘𝑥𝑥𝐵𝐵,𝑘𝑘𝑥𝑥𝐸𝐸,𝜔𝜔𝐵𝐵,𝜔𝜔𝐸𝐸, 𝑑𝑑𝐵𝐵,𝑎𝑎𝐼𝐼𝑑𝑑 𝑑𝑑𝐸𝐸, 
represent the integration limits for the wavenumber, angular frequency and depth 
respectively. As seen in figure 7, it is only necessary to integrate over depths and 
wavenumbers where meaningful data exists, thus by carefully selecting 
𝑘𝑘𝑥𝑥𝐵𝐵,𝑘𝑘𝑥𝑥𝐸𝐸, 𝑑𝑑𝐵𝐵, 𝑎𝑎𝐼𝐼𝑑𝑑 𝑑𝑑𝐸𝐸 computational efficiency can be improved.  In table 4, “S” takes 
care of the integral inside the square brackets of equation 27, while I2 takes care of the 
second integral.  

 

FIG. 8. Input data (left), the result of the prediction using pseudocode in table 4 (right). The blue 
dashed lines indicate the zero offset travel time of the two primary events. The red dashed lines 
indicate the zero offset travel time of a first order internal multiple, and a second order internal 
multiple.  

Table 4 above shows the pseudocode representation of the 1.5D internal multiple 
prediction algorithm in the wavenumber frequency domain. Figure 8 shows the results of 
applying this pseudo code to the prepared data of figure 7. The algorithm has predicted the 
multiples at the correct traveltimes, again the amplitudes can be corrected by employing 
adaptive subtraction to the prediction results. 

 

 1.5D TAU-P PREDICTION IN MATLAB 
Internal multiple prediction in the tau-p domain  

 Coates and Weglein (1996) presented a planewave (tau-p) domain version of the 
internal multiple prediction algorithm.  
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 𝑏𝑏3(𝐼𝐼, 𝜏𝜏) = ∫ 𝑑𝑑𝜏𝜏∞
−∞ 𝑒𝑒𝑖𝑖𝜔𝜔𝑖𝑖𝑏𝑏1(𝐼𝐼, 𝜏𝜏)∫ 𝑑𝑑𝜏𝜏′𝑖𝑖−𝜖𝜖

−∞ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑖𝑖′𝑏𝑏1(𝐼𝐼, 𝜏𝜏′) 

 × ∫ 𝑑𝑑𝜏𝜏′∞
𝑖𝑖′+𝜖𝜖 ′𝑒𝑒𝑖𝑖𝜔𝜔𝑖𝑖′′𝑏𝑏1(𝐼𝐼, 𝜏𝜏′′) (38) 

Making use of the Heaviside step identity, (38) becomes, 

 𝑏𝑏3(𝐼𝐼, 𝜏𝜏) = ∫ 𝑑𝑑𝜏𝜏′∞
−∞ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑖𝑖′𝑏𝑏1(𝐼𝐼, 𝜏𝜏′)�∫ 𝑑𝑑𝜏𝜏′′∞

𝑖𝑖′+𝜖𝜖 𝑒𝑒𝑖𝑖𝜔𝜔𝑖𝑖′′𝑏𝑏1(𝐼𝐼, 𝜏𝜏′′)�
2
 (39) 

The input data for the 1.5D tau-p prediction maintains the same assumptions as the 
wavenumber-frequency prediction. The data in figure 6, will also serve as the input data in 
the tau-p internal multiple prediction algorithm.  

Data preparation 
Step 1: Tau-p transform  

The first step in preparing the data is performing a tau-p transform on the data. In this 
study, the CREWES tool box MatLab function tptran.m is used, which performs the 
transform in the frequency domain through a linear phase shift. 

 𝑑𝑑(𝑥𝑥𝑔𝑔, 𝑡𝑡) → 𝐷𝐷(𝐼𝐼, 𝜏𝜏) (40) 

Step 2: Fourier transform  

The next step is to Fourier transform the data over the “𝜏𝜏” variable so that the data may 
be scaled in a following step.  

 𝐷𝐷(𝐼𝐼, 𝜏𝜏) → 𝐷𝐷(𝐼𝐼,𝜔𝜔) (41) 
Step 3: Data scaling  

The data is then scaled by an obliquity factor (Weglein et al., 2003),  

 𝐷𝐷(𝐼𝐼,𝜔𝜔) = −𝑖𝑖2𝑞𝑞𝑠𝑠𝐷𝐷(𝐼𝐼,𝜔𝜔) (42) 
Step 4: Inverse tau-p transform  

The final step is to take the data back to the tau-p domain through the use of an inverse 
tau-p transform. The CREWES toolbox function iptran.m is used to accomplish this.  

 𝐷𝐷(𝐼𝐼,𝜔𝜔) → 𝑏𝑏1(𝐼𝐼, 𝜏𝜏) (43) 
Figure 9 below shows the result of carrying out equations (40-43) on the shot record in 

figure 6. It is important to note that in both figures 7 and 9 that only the positive horizontal 
slowness and wavenumbers are used. In 1.5 dimensions the algorithms only need to be 
calculated for positive values, the negative values can be filled in by conjugate symmetry, 
greatly increasing the computational efficiency of the algorithm.  
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FIG. 9. Prepared input data 𝑏𝑏1(𝐼𝐼, 𝜏𝜏) to be used in the 1.5D tau-p internal multiple prediction 
algorithm. 

Internal multiple prediction  
Internal multiple prediction in 1.5 dimensions is very similar to the prediction in 1 

dimension, except the prediction integral is repeated over a given variable. In this case, the 
prediction is carried out for every positive value of the horizontal slowness.   

Table 5. Tau-p prediction in pseudocode 

𝐹𝐹𝐼𝐼𝐹𝐹 𝑖𝑖𝑖𝑖 = 𝐼𝐼𝐵𝐵:𝐼𝐼𝐸𝐸   

 𝐹𝐹𝐼𝐼𝐹𝐹 𝑗𝑗𝑗𝑗 =  𝜔𝜔𝐵𝐵:𝜔𝜔𝐸𝐸 
𝐼𝐼𝑘𝑘 = 𝑖𝑖 ∗ 𝜔𝜔(𝑗𝑗𝑗𝑗) ∗ 𝜏𝜏; 
𝐼𝐼𝑖𝑖 = −𝑖𝑖 ∗ 𝜔𝜔(𝑗𝑗𝑗𝑗) ∗ 𝜏𝜏; 
𝐼𝐼1 = b1(: , ii) ∗ exp (𝐼𝐼𝑘𝑘); 
𝐼𝐼2 = b1(: , ii) ∗ exp (𝐼𝐼𝑖𝑖); 

 

  𝐹𝐹𝐼𝐼𝐹𝐹 𝑘𝑘𝑘𝑘 = 𝜏𝜏𝐵𝐵: 𝜏𝜏𝐸𝐸 
𝑆𝑆 = 𝐼𝐼𝑠𝑠𝑠𝑠�𝐼𝐼1(𝑘𝑘𝑘𝑘 + 𝜖𝜖: 𝜏𝜏𝐸𝐸)�; 
𝑆𝑆 = 𝑑𝑑𝜏𝜏 ∗ 𝑆𝑆; 
𝑘𝑘 = 𝑘𝑘 + 𝐼𝐼2(𝑘𝑘𝑘𝑘) ∗ 𝑆𝑆 ∗ 𝑆𝑆; 
END 

 𝑘𝑘 = 𝑘𝑘 ∗ 𝑑𝑑𝜏𝜏; 
END 

 

END   

 

Table 5 shows the prediction algorithm in pseudocode, 𝐼𝐼𝐵𝐵,𝐼𝐼𝐸𝐸,𝜔𝜔𝐵𝐵,𝜔𝜔𝐸𝐸, 𝜏𝜏𝐵𝐵, 𝜏𝜏𝐸𝐸, 
represent the integration limits for the horizontal slowness, angular frequency and 
traveltime respectively. Once again 𝐼𝐼𝐵𝐵,𝐼𝐼𝐸𝐸, 𝜏𝜏𝐵𝐵,𝑎𝑎𝐼𝐼𝑑𝑑 𝜏𝜏𝐸𝐸 can be selected to improve the 
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computational efficiency.  In table 5, “S” takes care of the integral inside the square 
brackets of equation 39, while I2 takes care of the second integral.  

Figure 10 shows the results of applying this pseudo code to the prepared data of figure 
9. The algorithm has predicted the multiples at the correct traveltimes, again the amplitudes 
can be corrected by employing adaptive subtraction to the prediction results.  

 

FIG. 10. Input data (left), the result of the prediction using pseudocode in table 5 (right). The blue 
dashed lines indicate the zero offset travel time of the two primary events. The red dashed lines 
indicate the zero offset travel time of a first order internal multiple, and a second order internal 
multiple.  

ADAPTIVE SUBTRACTION  
Inverse scattering series internal multiple prediction is a very robust algorithm for 

accurately predicting the travel times of internal multiples. However, as seen in the 
previous examples the prediction suffers from both amplitude and phase differences. Series 
truncation, incomplete deconvolution of the source wavelet, noise, and residual ghosts all 
contribute to the erroneous results. Adaptive subtraction methods work to correct this by 
more accurately matching the prediction to the measured data. This hurdle is typically 
overcome by convolving a filter with the prediction, which allows for corrections in both 
phase and amplitude (Abma et al. (2005), Wang (2003), Verschuur et al. (1992). The result 
of this adaptive subtraction is,  

 𝑎𝑎 = 𝑑𝑑 −𝐼𝐼𝑑𝑑 (44)  

Where (𝑑𝑑,𝐼𝐼,𝑑𝑑) are the data, a convolution matrix of the multiple prediction, and the 
filter respectively, the goal being to solve for this filter. Verschuur et al. (1992) suggest 
accomplishing this by minimizing the L2 norm, and thus minimizing the energy. Their idea 
is that if multiples and primaries do not overlap, then the filter which acts to completely 
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remove the multiples will have less energy than any other prediction where the multiples 
are not completely removed. The L2 norm for equation (44) is as follows.  

 ‖𝑎𝑎‖2 = ‖𝑑𝑑 −𝐼𝐼𝑑𝑑‖2 = � 𝑎𝑎𝑛𝑛2
𝑁𝑁
𝑛𝑛=1  (45) 

The least squares solution for f is,  

 𝑑𝑑 = (𝐼𝐼𝑇𝑇𝐼𝐼)−1𝐼𝐼𝑇𝑇𝑑𝑑 (46)  
If the assumption that multiples and primaries do not overlap is violated, as it often is 

with land data, then the minimization of the L2 norm is no longer appropriate. When 
multiples overlap with primaries, the filter which minimizes the energy will also remove 
primary energy. In fact, because primaries contain more energy than multiples, the 
attenuation of primaries is actually given precedence.  

To overcome this problem Verschuur et al. (2004) suggested instead minimizing the L1 
norm, which works to minimize amplitude instead of energy.  

 ‖𝑎𝑎‖1 = ‖𝑑𝑑 −𝐼𝐼𝑑𝑑‖1 = ∑ |𝑎𝑎𝑛𝑛|𝑁𝑁
𝑛𝑛=1  (47) 

 Finding the filter from the L1 norm requires solving the normal equations given by (Bube 
and Langan (1997)).  

 𝐼𝐼𝑇𝑇𝑊𝑊𝐼𝐼𝑑𝑑 = 𝐼𝐼𝑇𝑇𝑊𝑊𝑑𝑑 (48)  

Where W is a diagonal matrix with entries 𝑊𝑊𝑖𝑖𝑖𝑖 related to the residual at time “i” by:  

 𝑊𝑊𝑖𝑖𝑖𝑖 = |𝐹𝐹𝑖𝑖|−1 (49) 
The residuals are the given by,  

 𝐹𝐹 = 𝐼𝐼𝑑𝑑 − 𝑑𝑑 (50) 
While the L1 norm works to correct for the short comings of the L2 norm it is often hard 

to calculate in practice, whenever the residuals are zero, the elements of W become singular 
and the norm becomes difficult to calculate. (Keating et al., 2015). Keating et al. (2015) 
proposed the idea of a hybrid L1/L2 norm, a norm that acts like the L1 norm when residuals 
are large but acts more like an L2 norm when the residuals approach zero. To accomplish 
this (48) is solved for “f”.  

 𝑑𝑑 = (𝐼𝐼𝑇𝑇𝑊𝑊𝐼𝐼)−1𝐼𝐼𝑇𝑇𝑊𝑊𝑑𝑑 (51) 
Where the weighting matrix takes the form.  

 𝑊𝑊 = � 1

1+�
𝑟𝑟𝑖𝑖
𝜎𝜎�
�
1/2

 (52) 

Adaptive subtraction in MatLab 
Equation 51 cannot be solved in a linear fashion, instead, it must be solved iteratively. 

To begin, the convolution matrix of the multiple prediction is calculated having the same 
number of rows as the length of the prediction, and having the same number of columns as 
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the filter length. Next, the first iteration of (51) is calculated with the weighting matrix set 
to an identify matrix with the MatLab function eye() having the same size as the length of 
the trace. After the first iteration is complete the residuals are calculated according to (50), 
and then the weight matrix is recalculated according to (52). The user of the function 
adaptiveSubtraction.m provides as an input the number of iterations to be performed. In 
addition, they also alter the filter length, smoother length, and norm type. Based on the 
selection of the norm type, sigma is chosen to more heavily weight either the L1 or the L2 
norm.  

Synthetic Example  
In the previous section a 1D adaptive subtraction algorithm was reviewed, as such the 

input to the prediction algorithm will be assumed to be a normal incidence trace. 

 

FIG. 11. Velocity model (left) and the reflectivity series used to create the input trace for the adaptive 
subtraction algorithm (right).  

Figure 11 shows the velocity model and the resulting reflectivity series with first order 
internal multiples. The reflectivity series is convolved with a 45 Hz ricker wavelet to create 
the trace that will be used as an input to the prediction algorithm. The reflectivity series 
was once again created using makeTraceWithIM.m, the prediction, in this case, was carried 
out in the frequency domain.  
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FIG. 12. The input trace (blue) and scaled prediction with no adaptive subtraction filter applied 
(red). 

 

FIG. 13. Input trace (blue), and prediction with a filter dominated by the L2 norm (red). 
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FIG. 14. Input trace (blue), and prediction with a filter dominated by the L1 norm (red). 

Figures 12-14 show the results of the raw prediction, the prediction convolved with a 
filter dominated by the L2 norm, and the prediction convolved with a filter dominated by 
the L1 norm. It is evident from figure 13 that the L2 norm filter has improved the prediction 
but is struggling to match multiples in the more complicated middle portion of the trace. 
The L1 dominated filter has matched the multiples better in all regions of the trace.  

Changing the filter length and smoother length causes the prediction to become more 
aggressive or less aggressive. A shorter filter matches less of the data in the least squares 
solution, where as a filter that is long enough will perfectly match and signal. 

   

FIG. 15 The result of using a shorter smoother in the L1 norm solution  
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FIG. 16. The result of using a longer filter in the L1 norm solution 

Figures 15 and 16 show the results of applying a shorter smoother, and longer filter 
respectively. Comparing both figures to figure 14, it is evident in this case that applying a 
shorter smoother, and the longer filter has provided a poorer match to the data. In both 
cases, the multiple that interacts with the third primary are poorly matched. In addition, 
poorer matches to other multiples are also evident.  

DISCUSSION 
This paper has served to review four domains of internal multiple prediction, as well as 

1D adaptive subtraction. Throughout this paper the prediction equation has been reviewed 
for the 1D frequency, 1D time, 1.5D tau-p, and the 1.5D wavenumber-frequency domains. 
In each section both the equation used to predict the internal multiples is reviewed, as well 
as the steps needed to prepare the dataset for the prediction step. Synthetic examples of 
each prediction type are shown to emphasize the robustness of inverse scattering series 
internal multiple prediction. Internal multiple prediction produces accurate traveltime 
estimates of internal multiples but contains phase and amplitude errors due to series 
truncation, noise, and incomplete deconvolution. Adaptive subtraction has been shown to 
be a promising method for correcting for phase and amplitude errors.  An L1/L2 hybrid 
adaptive subtraction algorithm (Keating et al., 2015) was reviewed, and then a description 
of its MatLab implementation is given. The work presented here is intended to be a 
companion paper to the internal multiple toolbox contained in the 2016 CREWES software 
release. It will work to aid the user in a better understanding of the algorithms contained in 
the internal multiple toolbox and their applications.  
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