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ABSTRACT

In this paper, the order reduced velocity-displacement SH-wave equations in VTI me-
dia are first proposed. During SH-wave simulation, the spatial derivatives of the new SH-
wave equations are transformed into wavenumber domain and a staggered-grid Fourier
pseudospectral time-domain (PSTD) method is used to obtain discretized forms of these
wavenumber operators, which in turn, effectively eliminates the Gibbs phenomenon that
arises when Fourier transforming a discontinuous function in heterogeneous media. The
order reduced velocity-displacement SH-wave equations also make it possible to set hybrid
perfectly matched layers around computational boundaries to mitigate artificial reflections.
Finally, this new scheme is applied for wavefield modeling in two-layer heterogeneous me-
dia. Comparisons of simulation results with PSTD using second-order SH-wave equation
further verify its accuracy.

INTRODUCTION

The most popular numerical approach used to model the propagation of seismic waves
is probably the finite-difference (FD) method (Alterman and Karal, 1968; Alford et al.,
1974; Kelly and Iversen, 1976; Madariaga, 1976; Virieux, 1986). SH-wave modeling using
FD starts as early as Boore (1970a) applied it to SH-wave propagation in laterally inho-
mogeneous media. This FD representation, however, does not satisfy the equations of mo-
tion (Boore, 1970b). Kummer and Behle (1982) proposed a second-order finite-difference
modeling of SH-wave propagation in laterally inhomogeneous media. Virieux (1984) re-
arranged the second-order hyperbolic SH-wave equation into a first-order velocity-stress
hyperbolic system in a generaly heterogeneous medium. Nevertheless, he pointed out a
corner wave as sell as a head wave would appear, which could pose severe problems of in-
terpretation with migration methods. Moczo (1989) developed an explicit finite-difference
scheme using irregular rectangular grids for SH-waves in 2D media, which allows the re-
duction of staircase diffractions and the number of grid points. Igel and Weber (1995) im-
plemented an axisymmetric wave propagation for SH-waves in spherical coordinates with
a FD technique to calculate seismograms for global earth models. Slawinski and Krebes
(2002) used the homogeneous approach to derive a finite difference scheme for modeling
SH-wave propagation in fractured media. Fractures were modeled as internal interfaces
in nonwelded contact. The complexity and high computational cost as dense meshes are
required when dealing with non-planar fractures, or when the distances between fractures
are smaller than the seismic wave length, impede its practical implementation.

In spite of dramatic development of computer science and parallel computing technol-
ogy, FD methods still suffer from severe limitations regarding its huge computer memory
cost and computation time. The Fourier pseudo spectral method (PSM)(Kosloff et al.,
1984), as an attractive alternative method that uses an accurate differentiation scheme ap-
plying the fast Fourier transform (FFT) for calculating the spatial derivatives and uses finite
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difference to calculate the time derivatives in hyperbola equations, can achieve the same ac-
curacy as the FDM does with less grid points and hence requires less computer memory
and computation time (Fornberg, 1987; Daudt et al., 1989).

Unfortunately,the periodicity condition implied by the discrete Fourier transform causes
the periodically extended wavefield on either side of the computational domain to propa-
gate in from the sides, which in turn, results in numerical contamination of waves. This
phenomenon is called wraparound. To avoid this problem, Fornberg (1996) suggested to
use the Chebyshev pseudo spectral method, which inevitably increases the grid density
requirement to π nodes per minimum wavelength. Alternatively, absorbing boundaries
(Cerjan et al., 1985), or perfectly matched layers (Collino and Tsogka, 2001) can also be
used to damp the wraparound phases through a gradual reduction of the wavefield ampli-
tude in the vicinity of the grid boundary. Liu (1998) combines the conventional Fourier
pseudo spectral method with PML to effectively eliminate the wraparound effect. Furu-
mura and Takenaka (1995) pointed out improper selection of absorption parameters can
result in reflected waves of relatively large amplitude. He proposed an antiperidoic exten-
sion technique based on a simple modification of the wavefield to mitigate the wraparound,
however, this method does not completely eliminate wraparound.

Another problem suffering PSM is the non-causal ringing artifacts (Gibbs phenomenon),
particularly in the presence of large abrupt changes in the medium.This occurs because the
Fourier transform is a global rather than a local operator: each wavenumber contributes to
all space. A smooth technique is recommended by Pan and Wang (2000) to alleviate the
problem caused by the discontinuities, and a similar technique is also used in Mast et al.
(2001) and Tabei et al. (2002), but we note that the physical nature of the interfaces at the
media discontinuities is changed by such a smooth process. Alternatively, a variable grid
density pseudospectral method (Liu, 1999; Liu et al., 2000), has been proposed in which
higher resolution is achieved across the interfaces of media discontinuities. However, the
efficiency and the accuracy of the pseudospectral method will degrade due to the inter-
polation processes needed by the use of the nonuniform fast Fourier transform (NUFFT)
algorithm. A rather simplified and efficient technique of using a mapping method to ob-
tain spatial derivatives appeared in (Bayliss and Turkel, 1992; Gao et al., 2004) established
a general procedure to construct mapping curves. A drawback of the procedure is found
in the choice of initial grid points, although some rules in deciding the positions of grid
points were proposed. A good solution was introduced by Witte et al. (1987), which in-
volves pseudo-spectral calculation on a staggered grid to overcome the Nyquist error prob-
lem (Özdenvar and McMechan, 1996). Bale (2002) applied a staggering scheme for 3D
pseudospectral modelling in fully anisotropic media, which is based on decomposing the
anisotropy into orthorhombic and non-orthorhombic stiffnesses. Yet, the ringing artifacts
were not completely mitigated.

Besides the wraparound and Gibbs phenomenon, the classical finite difference schemes
to calculate the time derivatives are inevitably subjected to numerical dispersion. Alter-
natively, the rapid expansion method proposed by Kosloff et al. (1989) can be used to
obtain a more accurate time integration for the second-order wave equation. Similarly to
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TAL-EZER et al. (1987), Bessel functions and modified Chebyshev polynomials are incor-
porated in the method to expand the involved cosine operator so that it is highly accurate
and numerically stable with large time steps. However, most of them are constructed for
the second-order acoustic wave equation, which impedes direct use of PML boundary con-
ditions. Long et al. (2013) proposed a temporal fourth-order scheme for solving the 2-D
first-order acoustic wave equations with perfectly matched layers in time domain.

In this paper, we extend this temporal fourth-order scheme proposed by Long et al.
(2013) to 3D SH-wavefield simulation in heterogeneous VTI media. The Hybird-PML (Li
et al., 2016) is combined with PSTD method to eliminate wraparound effect. The PSM
based on staggered-grid schemes is applied to spatial derivatives to eliminate the Gibbs
phenomenon. To make a comparison, this paper also proposed SH-wavefield simulation
based on second order PSTD with a sponge absorbing boundary condition (Israeli and
Orszag, 1981).

FIRST-ORDER SH WAVE EQUATIONS IN VTI MEDIA

In VTI media, the stress-strain relationship in matrix form can be described as

c
V TI

=


c11 c11 − 2c66 c13 0 0 0

c11 − 2c66 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 . (1)

And the stress-displacement relationship is

εij =
ui,j + uj,i

2
. (2)

Substitute equation(2) into equation(1), according to the equations of motion,

ρ∂
2ux
∂t2

= ∂σxx
∂x

+ ∂σxy
∂y

+ ∂σxz
∂z

ρ∂
2uy
∂t2

= ∂σxy
∂x

+ ∂σyy
∂y

+ ∂σyz
∂z

ρ∂
2uz
∂t2

= ∂σxz
∂x

+ ∂σyz
∂y

+ ∂σzz
∂z

. (3)

We get the wave equations in VTI media,

c11
∂∇2·u2

∂x
+ c13

∂2uz
∂x∂z

+ c66
∂
∂y

∂ux
∂y
− ∂uy

∂x

+ c44
∂
∂z

∂ux
∂z
− ∂uz

∂x

+ ρω2ux = 0

c11
∂∇2·u2

∂y
+ c13

∂2uz
∂y∂z

+ c66
∂
∂x

∂uy
∂x
− ∂ux

∂y

+ c44
∂
∂z

∂uy
∂z
− ∂uz

∂y

+ ρω2uy = 0

(c13 + c44)∂∇2·u2

∂z
+ c33

∂2uz
∂z2

+ c44∇2
2uz + ρω2uz = 0

, (4)
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where, ∇2 is an operator in xy plane and satisfies ∇2 = x̂ ∂
∂x

+ ŷ ∂
∂y

; u2 is the projection of
u in xy plane and has u2 = x̂ux + ŷuy. The displacement of elastic wave equation u can be
described as

u = ∇ϕ+∇× (χẑ) +∇×∇× (ηẑ), (5)

where, ϕ, η and χ are the scalar displacement potentials. Extend equation (5) such that

ux = ∂ϕ
∂x

+ ∂χ
∂y

+ ∂2η
∂x∂z

uy = ∂ϕ
∂y
− ∂χ

∂x
+ ∂2η

∂y∂z

uz = ∂ϕ
∂z
− ∂2η

∂x2
+ ∂2η

∂y2

. (6)

Substitute equation (6) into equation (4), we have,

c11∇2
2ϕ+ (c13 + 2c44)∂

2ϕ
∂z2

+ ρω2ϕ+ ∂
∂z

[
(c11 − c13 − c44)∇2

2η + c44
∂2η
∂z2

+ ρω2η
]

= 0

∂
∂z

[
(c13 + 2c44)∇2

2ϕ+ c33
∂2ϕ
∂z2

+ ρω2ϕ
]
−∇2

2

[
c44∇2

2η + (c33 − c13 − c44)∂
2η
∂z2

+ ρω2η
]

= 0

c66∇2
2χ+ c44

∂2χ
∂z2

+ ρω2χ = 0

.

(7)

The first two equations of equation (7) are the coupled equations of ϕ and η (P- and
SV-wave respectively). The exact dispersion relation of the P and SV waves for VTI media
is derived by Tsvankin (1996):

v2(θ)

v2
po

= 1 + ε sin2 θ − f

2
± f

2

[
1 +

2ε sin2 θ

f

][
1− 2(ε− δ) sin2 2θ

f(1 + 2ε sin2 θ
f

)2

]1/2

, (8)

where θ is the phase angle measured from the symmetry axis, v(θ) is the phase velocity of
the coupled wave modes; ε, δ, and γ(which will be discussed later) denote the Thomsen
(1986) parameters, which are defined as

ε = c11−c33
2c33

; γ = c66−c44
2c44

;

δ = (c13+c44)2−(c33−c44)2

2c33(c33−c44)

. (9)

And f = 1 −
(
vso
vpo

)2

, where vpo and vso denote P- and SV-wave velocities along the

symmetry axis, where vpo =
√
c33/ρ and vso =

√
c44/ρ in VTI medium. The plus and

minus signs correspond to the P and SV-wave, respectively.

The last term of equation (7) is SH-wave equation in VTI medium. Let vector v (v =
(vx, vy, vz)

T ) be the particle velocity and X (X = (χx, χy, χz)
T ) based on the split-field
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technique (Chew and Weedon, 1994; Collino and Tsogka, 2001), the SH-wave equation
can be described as the following first-order system

∂vx
∂t

= − c66
ρ

(∂χx

∂x
+ ∂χy

∂x
+ ∂χz

∂x
)

∂vy
∂t

= − c66
ρ

(∂χx

∂y
+ ∂χy

∂y
+ ∂χz

∂y
)

∂vz
∂t

= − c44
ρ

(∂χx

∂z
+ ∂χy

∂z
+ ∂χz

∂z
)

∂χx

∂t
= −∂vx

∂x

∂χy

∂t
= −∂vy

∂y

∂χz

∂t
= −∂vz

∂z

. (10)

The above first-order system can then be expressed as a matrix form

∂v
∂t

= AX

∂X
∂t

= Bv . (11)

where A and B are expressed as

A =

− c66
ρ

∂
∂x
− c66

ρ
∂
∂x
− c66

ρ
∂
∂x

− c66
ρ

∂
∂y
− c66

ρ
∂
∂y
− c66

ρ
∂
∂y

− c44
ρ

∂
∂z
− c44

ρ
∂
∂z
− c44

ρ
∂
∂z

 , (12)

and,

B =

− ∂
∂x

0 0
0 − ∂

∂y
0

0 0 − ∂
∂z

 . (13)

STAGGERED-GRID FOURIER PSEUDOSPECTORAL DERIVATIVES

According to Witte and Richards (1990), the first-order Fourier derivative of a function
u(x) can be discretized over a finite grid of N points by

Dxu(xi) = DFT −1 [−jkxDFT (u(xi))] . (14)

where j =
√
−1, and xi = i4 x, i = 1, ..., N − 1, with 4x being the sampling interval.

kx, given by kx = 2nπ/(N 4 x) is the discrete wavenumber in x direction. For an even
N, n should be chosen as −N/2 ≤ n ≤ N/2, where n = −N/2 corresponds to the
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Nyquist wavenumber. For an odd N, we can choose −N/2 < n < N/2, and in this case
the Nyquist wavenumber does not correspond to one of the grid points. The abbreviations
DFT and DFT −1 corresponding to the forward and inverse discrete Fourier transforms,
respectively. In homogeneous medium, the conventional Fourier derivative of equation
(14) can provide satisfactory results. However, as Özdenvar and McMechan (1996) points
out that the ringing effects or more specifically, the Gibbs phenomenon will emerge if the
waveform propagates in heterogeneous media. Compared with the conventional Fourier
transforms, the staggered-grid Fourier pseudospectral differentiation has an advantage of
reducing ripple errors caused by phase jumps at the Nyquist wavenumber. The staggered-
grid version of the first-order derivative of u(x) can be described in terms of the half-grid-
spacing phase-shift of the standard Fourier derivative as

D±x u(xi± 1
2
) = DFT −1

[
−jkxexp

(
∓jkx4 x

2

)
DFT (u(xi))

]
. (15)

in which ′±′ denotes the forward and backward differentiations. Similarly,the high-order
derivatives at mid-points xi± 1

2
can be described as

D±xmu(xi± 1
2
) = DFT −1

[
(−jkx)mexp

(
∓jkx4 x

2

)
DFT (u(xi))

]
, (16)

for an odd m. When m is even, the mth derivatives at point xi should be

Dxmu(xi) = DFT −1 [(−jkx)mDFT (u(xi))] . (17)

Equation (11) can be expanded as

v
(
t+ 1

2
4 t
)
− v

(
t− 1

2
4 t
)
≈ (4tA + 1

24
4t3ABA)X(t)

X(t+4t)− X(t) ≈
(
4tB + 1

24
4t3BAB

)
v(t+ 1

2
4 t)

. (18)

The spatial derivatives of above equations can be approximated by the Fourier derivatives
as
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Pseudospectral method for SH wave simulation

v
t+ 1

2
4t

x = v
t− 1

2
4t

x −
[
4t c66

ρ
D+
x + 1

24
4t3 c

2
66

ρ2

[
D+
x3 +D+

xDy2 +D+
xDz2

]]
(χx + χy + χz)

v
t+ 1

2
4t

y = v
t− 1

2
4t

y −
[
4t c66

ρ
D+
y + 1

24
4t3 c

2
66

ρ2

[
D+
y3 +D+

y Dx2 +D+
y Dz2

]]
(χx + χy + χz)

v
t+ 1

2
4t

z = v
t− 1

2
4t

z −
[
4t c44

ρ
D+
z + 1

24
4t3 c

2
44

ρ2

[
D+
z3 +D+

z Dx2 +D+
z Dy2

]]
(χx + χy + χz)

χt+4tx = χtx −
[(
4tD−x + c66

ρ
1
24
4t3D−x3

)
+ c66

ρ
1
24
4t3Dx2D−y + c66

ρ
1
24
4t3Dx2D−z

]
v
t+ 1

2
4t

x

χt+4ty = χty −
[(
4tD−y + c66

ρ
1
24
4t3D−y3

)
+ c66

ρ
1
24
4t3Dy2D−x + c66

ρ
1
24
4t3Dy2D−z

]
v
t+ 1

2
4t

y

χt+4tz = χtz −
[(
4tD−z + c44

ρ
1
24
4t3D−z3

)
+ c44

ρ
1
24
4t3Dz2D+

x
c44
ρ

1
24
4t3Dz2D−y

]
v
t+ 1

2
4t

z

.

(19)
where χx, χy and χz are components of scalar displacement potential χ with respect to
different directions and χ = χx + χy + χz.

For the stability and dispersion relation of the above equations, by summing up the split
displacement potentials we can get

χ(t+4t) = χ(t)−
[(
4t ∂

∂x
+

1

24
4t3 c66

ρ

(
∂3

∂x3
+

∂2

∂x2

∂

∂y
+

∂2

∂x2

∂

∂z

))
vx

(
t+

1

2
4t
)]

−
[(
4t ∂

∂y
+

1

24
4t3 c66

ρ

(
∂3

∂y3
+

∂2

∂y2

∂

∂x
+

∂2

∂y2

∂

∂z

))
vy

(
t+

1

2
4t
)]

−
[(
4t ∂

∂z
+

1

24
4t3 c44

ρ

(
∂3

∂z3
+

∂2

∂z2

∂

∂x
+

∂2

∂z2

∂

∂y

))
vz

(
t+

1

2
4t
)] .

(20)

with vx
(
t+ 1

2
4t
)
,vy
(
t+ 1

2
4t
)
, vz
(
t+ 1

2
4t
)

expressed as
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vx(t+ 1
2
4 t) = vx(t− 1

2
4 t)−

[
4t c66

ρ
∂
∂x

+ 1
24
4t3 c

2
66

ρ2

[
∂3

∂x3
+ ∂

∂x
∂2

∂y2
+ ∂

∂x
∂2

∂z2

]]
χ

vy(t+ 1
2
4 t) = vy(t− 1

2
4 t)−

[
4t c66

ρ
∂
∂y

+ 1
24
4t3 c

2
66

ρ2

[
∂3

∂y3
+ ∂

∂y
∂2

∂x2
+ ∂

∂y
∂2

∂z2

]]
χ

vz(t+ 1
2
4 t) = vz(t− 1

2
4 t)−

[
4t c44

ρ
∂
∂z

+ 1
24
4t3 c

2
44

ρ2

[
∂3

∂z3
+ ∂

∂z
∂2

∂y2
+ ∂

∂z
∂2

∂x2

]]
χ

.

(21)
By eliminating the velocity components in equation (20), the scalar displacement potential
equation with temporal fourth-order accuracy can be expressed as

χ(t+4t)− 2χ(t) + χ(t−4t) = (r1s1 + r2s2 + r3s3)χ(t) (22)

where, r1, r2, r3 and s1, s2, s3 are expressed as

r1 = 4t ∂
∂x

+ 1
24
4t3 c66

ρ

(
∂3

∂x3
+ ∂2

∂x2
∂
∂y

+ ∂2

∂x2
∂
∂z

)
r2 = 4t ∂

∂y
+ 1

24
4t3 c66

ρ

(
∂3

∂y3
+ ∂2

∂y2
∂
∂x

+ ∂2

∂y2
∂
∂z

)
r3 = 4t ∂

∂z
+ 1

24
4t3 c44

ρ

(
∂3

∂z3
+ ∂2

∂z2
∂
∂x

+ ∂2

∂z2
∂
∂y

)
s1 = 4t c66

ρ
∂
∂x

+ 1
24
4t3 c

2
66

ρ2

[
∂3

∂x3
+ ∂

∂x
∂2

∂y2
+ ∂

∂x
∂2

∂z2

]
s2 = 4t c66

ρ
∂
∂y

+ 1
24
4t3 c

2
66

ρ2

[
∂3

∂y3
+ ∂

∂y
∂2

∂x2
+ ∂

∂y
∂2

∂z2

]
s3 = 4t c44

ρ
∂
∂z

+ 1
24
4t3 c

2
44

ρ2

[
∂3

∂z3
+ ∂

∂z
∂2

∂y2
+ ∂

∂z
∂2

∂x2

]

. (23)

Based on th plan wave solution, the dispersion relation of equation (22) is,

−4sin2

(
ω4t

2

)
= R1S1 +R2S2 +R3S3. (24)
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with r1, r2, r3 and s1, s2, s3 in k-space as

R1 = ikx4t
(
1− 1

24
4t2k2

)
R2 = iky4t

(
1− 1

24
4t2k2

)
R3 = ikz4t

(
1− 1

24
4t2k2

)
S1 = i4t c66

ρ
kx(1− 1

24
4t2 c66

ρ
k2)

S2 = i4t c66
ρ
ky(1− 1

24
4t2 c66

ρ
k2)

S3 = i4t c44
ρ
kz(1− 1

24
4t2 c44

ρ
k2)

, (25)

where, k =
√
k2
x + k2

y + k2
z . Further manipulate equations (24) and (25), the dispersion

equation can be expressed as

0 ≤ sin2

(
ω4t

2

)
=

1

4
k2
r4t2

c66

ρ

[
1− 1

12
k24t2

(
1 +

c66

ρ

)
+

(
1

24

)2

k44t4 c66

ρ

]

+
1

4
k2
z4t2

c44

ρ

[
1− 1

12
k24t2

(
1 +

c44

ρ

)
+

(
1

24

)2

k44t4 c44

ρ

]
≤ 1

.

(26)

For a model with a uniform grid spacing in each direction(∆x = ∆y = ∆z), the Nyquist
wave numbers for each k-space satisfy kx = ky = kz = π

∆x
. Define horizontal S-wave ve-

locity vsh that satisfies vso =
√
c66/ρ and recall the S-wave velocities along the symmetry

axis vsh =
√
c44/ρ. The two S-wave velocities satisfy

v2
sh = v2

so(1 + 2γ) (27)

According to Wang (2001, SEG), γ < 0.2 in weak anisotropic media and we may safely
assume that anisotropy in sedimentary rocks are weak. Based on his study, the highest γ
appears in shales (γmax=0.553). Let γ ≤ 0.5 in this work, therefore, the stability condition
can be obtained by solving the inequality,

0 ≤ 1

4

π2

4x2
4t2v2

so

[
3− π2

4x2
4t2v2

so +
27

242

π4

4x4
4t4v2

so

]
. (28)

Further manipulate the above equation by neglecting the third term in the bracket,

4tvso/4x ≤
√

3/π. (29)

CREWES Research Report — Volume 28 (2016) 9



Li et. al

H-PML BOUNDARY CONDITIONS

When PSM ia applied to wavefield simulation, computational boundaries tend to pro-
duce wraparound which must be suppressed or absorbed. The perfectly matched layer
(PML) approach to boundary absorption, introduced by Berenger (1994), has been proven
to be very efficient. Taking the x direction as an example, a damping profile dx(x) is cre-
ated, with dx = 0 in the physical domain and dx > 0 in the defined PML layer. The new
operator∇x̃ = [ ∂

∂x̃
, ∂
∂y
, ∂
∂z

] is thus introduced, where ∂
∂x̃

= 1
sx

∂
∂x

, sx = 1 + dx
iω

.

The convolutional PML (or C-PML) method (Kuzuoglu and Mittra, 1996) or the com-
plex frequency shifted-PML (CFS-PML) method (Bérenger, 2002) introduces a frequency-
dependent term which eliminates the requirement that the velocity-stress equation be split
into separate terms. The C-PML scheme involves adding not only the damping profile, but
two other real variables, such that:

sx = κx + dx
αx+iω

. (30)

When κx = 1 and αx = 0, the C-PML degenerates to the classic PML case.

The multiaxial perfectly matched layer (M-PML) method has been found to be stable
even for media exhibiting very large degrees of anisotropy (Meza-Fajardo and Papageor-
giou, 2008). In an M-PML application, in contrast to equation (30), the sx term is

sx = κx +
dx +mx/ydy +mx/zdz

iω
, (31)

where mx/ydy and mx/z are weighting factors.

To maximize both accuracy and stability we construct a hybrid PML (H-PML) method,
that combines the advantages of both the C-PML and the M-PML through the optimization
of the damping profile. Because the C-PML and M-PML are independent of one another,
the two can be straightforwardly hybridized by introducing

sx = κx +
dx+mx/ydy+mx/zdz

αx+iω
. (32)

Therefore the new differential operator in x direction can thus be expressed as

∂x̃ = s̄x(t) ∗ ∂x. (33)

where s̄x(t) is the inverse Fourier transform of 1/sx and ∗ denotes convolution. According
to (Roden and Gedney, 2000; Komatitsch and Martin, 2007),

s̄x(t) = δt
κx
− dx

κ2x
e−(dx/κx+αx)tH(t) = δt

κx
+ ζx(t). (34)

The convolution in (33) now becomes

∂x̃ = 1
κx
∂x + ζx(t) ∗ ∂x. (35)
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Komatitsch and Martin (2007) replace the above equation by

∂x̃ = 1
κx
∂x + ψx. (36)

where ψx is the memory variable updated at each time step n according to

ψnx = bxψ
n−1
x + cx(∂x)

n−1/2, (37)

in which
bx = e−((dx+mx/ydy+mx/zdz)/κx+αx)4t

cx =
(dx+mx/ydy+mx/zdz)

κx((dx+mx/ydy+mx/zdz)+κxαx)
(bx − 1)

. (38)

Therefore, the coefficient matrix in (12) and (13) are expressed as

A =

− c66
ρ
− c66

ρ
− c66

ρ

− c66
ρ
− c66

ρ
− c66

ρ

− c44
ρ
− c44

ρ
− c44

ρ

 1
κx
∂x + ψx

1
κy
∂y + ψy

1
κz
∂z + ψz

 , (39)

and,

B =


(

1
κx
∂x + ψx

)
0 0

0 −
(

1
κy
∂y + ψy

)
0

0 0
(

1
κz
∂z + ψz

)
 . (40)

For the above equations, if the elastic parameters and the density do not depend on
space (e.g. the medium is homogeneous), they can be directly calculated in each Fourier
derivative without losing accuracies. However, when these parameters vary in heteroge-
neous media (e.g. in layered media), they have to be calculated in the space domain, to
avoid the Gibbs phenomenon.

NUMERICAL EXPERIMENTS

Bilayered medium model

In this section, a numerical example of two layer heterogeneous media will be presented
to verify the accuracy of the new scheme. The computational grid is 191 × 241 × 291
including a H-PML layer of 20 grids outside each computational boundary, with the grid
spacings 4x = 4y = 4z = 0.04m. A dipole source composed of two Ricker wavelets
with central frequency f0 = 4000Hz is used for the simulation. Based on the stability
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FIG. 1: 3D layered model and displacement component snapshots for each direction

condition in (29), we choose the time step to be4t = 1× 10−5s. Figure (1) (a) shows the
two-layer model.

The left layer of the model is a VTI medium, in which the elastic constants matrix is

c =


26.37 10.57 9.57 0 0 0
10.57 26.37 9.57 0 0 0
9.57 9.57 36.73 0 0 0

0 0 0 12.45 0 0
0 0 0 0 12.45 0
0 0 0 0 0 8.08

× 109. (41)

The right layer of this model is an isotropic medium, whose P- and S- wave velocities are
2300 m/s and 1000 m/s. The density of each layer is 2500kg/m3 and 2000kg/m3, respec-
tively. The other three figures in Figure (1) show the displacement component snapshots for
each direction. The dipole source is directed in X direction and the SH wave is polarized
in the horizontal plane, the amplitude is strongest in x direction.

Figure (2) shows the corresponding snapshots for SH propagation in x-y lateral and x-z
vertical sections. To make a comparison, Figure (3) shows snapshots for SH propagation in
x-y lateral and x-z vertical sections using second order PSTD method with a sponge absorb-
ing boundary. When time=0.001 (s), both snapshots in x-y and x-z plane obtained by the
new developed method show clear waveforms without any wraparound at computational
boundaries; snapshots developed by the second order PSTD method when time=0.001 (s)
illustrated in (3) suffer severely from the wraparound. When time=0.003 (s), the snapshots
obtained by second order PSTD method are also contaminated by the boundary reflections.
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FIG. 2: Snapshots for SH propagation in x-y lateral and x-z vertical sections using PSTD
staggered-grid method with H-PML
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FIG. 3: Snapshots for SH propagation in x-y lateral and x-z vertical sections using second
order PSTD method with a sponge absorbing boundary

When time=0.002 (s), the Gibbs phenomenon can be detected around reflection mode when
second order PSTD method is used. On the contrary, neither the wraparound effect nor the
Gibbs phenomenon occurs with the increasing of recoding time when the new method is
used.

Figure (5) shows the recorded waveform differences between the conventional and new
proposed PSTD method from four recorded receivers (receiver A to D), whose distribution
in the model is shown in Figure (4), where, the blue surface is the interface, blue and
red circle denote the dipole source emitting energy towards x direction. Receiver pairs A,
B and C, D are symmetrically located on each side of dipole, as a result, they have the
same arrival time yet opposite amplitudes. As is shown, the Rick wavelet shape event is
the direct arrival, the two methods match quite well for the direct arrivals expect some
trivial differences at each side of the jump, and oscillations die down abruptly for the direct
arrivals. The next event occurs at about 1.8 ms, which is the reflected wave signal from
the interface, the amplitude of the reflected signals acquired by the conventional PSTD
is smaller than that obtained by the staggered-grid PSTD. And the oscillations or Gibbs
phenomenon keep present for quite a long period, which can be detected in the dashed
squares. This in turn, leads to non-negligible errors even far from the jump. On the other
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FIG. 4: Source and receiver distribution for the 2-layered model
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FIG. 5: Waveform comparisons between conventional and new proposed PSTD recorded
by four different location
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FIG. 6: Waveform comparisons between staggered-grid FD and new proposed PSTD
recorded by four different location

hand, the conventional PSTD method also suffers severely from the boundary reflection
artifacts, which is apparently displayed in the ecliptic areas in Figure (5).

Figure (6) shows the recorded waveform differences between the staggered-grid FD
and new proposed PSTD method from four recorded receivers (receiver A to D).

According to the similarity between equation (10) and the first order velocity-stress
wave equation, ∂vx

∂t
can be equivalently treaded as ∂τxx

∂t
. Therefore, the comparisons be-

tween normal stress component τxx obtained by staggered grid FD and vx calculated by
our new PSTD for receiver A and B are illustrated. The peak event is the direct arrival,
the two methods match quite well for the direct arrivals expect some trivial differences at
side lobes. However, the oscillations for the FD method lingers out to till almost 2 ms
when reflection signals arrive, which may be the reason why the reflection peak for FD can
hardly be detected for receiver A and B. On the contrary, oscillations die down abruptly for
the new proposed PSTD method and the reflection signals can be found at about 1.8 ms.
For receiver C and D, according to equation (19), ∂χi

∂t
equals to vi (i=x,y,z), we therefore

illustrate the waveforms of vx obtained by staggered grid FD and ∂χi

∂t
calculated by our new

PSTD. The two methods match quite well for the direct arrivals for receiver D, however,
the direct signal obtained by staggered FD for receiver C is followed by strong side lobes,
whereas oscillations stop rapidly for the staggered-grid PSTD method. Reflection signals
for both methods overlap at about 1.8 ms.

One of the advantages that should be affirmed is the displacement components as well
as the velocity component are measured by the new proposed method, which can be directly
used for full waveform inversion. The derivative of displacement with respect to time ∂χi

∂t
is

the velocity component vi in i direction (i=x,y,z), which can be acquired during the updating
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FIG. 7: Snapshots for SH propagation in thrust fault model with ∆t = 10µs, The dipole
source is located at (0.96 m, 3.84 m, 5.42 m) and (1.04 m, 3.84 m, 5.42 m)

of displacement components. Whereas, the velocity components are not available through
conventional PSTD method, and the displacement components for each direction can not
be directly updated through staggered-grid FD method neither. As is discussed in our other
paper (Gradient calculation for anisotropic FWI), the source implementing with different
components in both forward simulation and time reversing procedure plays an important
role in the gradient calculation, which in turn, influences the FWI results. Based on our
results, different sources are sensitive to different formation parameters.

3D thrust fault anisotropic model

In this section, a heterogeneous anisotropic model with complicated thrust faults is used
to test the stability of the new scheme. The model is based on part of the thrust fault model,
we duplicate the 2D thrust fault model(set as x-z plane) towards y direction into a 3D model.
The first layer of this model is isotropic, with Vp- and Vs- velocities as 2400 m/s and 1280
m/s respectively. The virtical P- wave velocity of the model ranges from 2400 m/s in first
layer to 6000 m/s in bottom layer. The model size is 12m× 9.6m× 16.8m and a total grid
number of 200× 160× 280. The source used in this model is a dipole x-directional source
with a Ricker wavelet whose dominant frequency is 3 kHz. The space and time interval
used in this model are 0.04 m and 10 µs. For the same model, the maximum space and
time interval for the second order in time and forth-order in space finite difference method
is 0.03 m and 4.5 µs. Figure (7) shows the wavefield propagation with different recording
times. The Ricker wavelet is located at (1 m, 3.84 m, 5.42 m) and (1 m, 3.84 m, 5.42 m).

Figure (8) and (9) show the SH wavefield propagation with different recording times in
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FIG. 8: Snapshots for SH propagation in thrust fault model (x-z plane)

x-z plane and x-y plane. With the increase of recording time, the SH wave travels from the
isotropic media through anisotropic layered medium without any wraparound effect, and
the there’s also no evidence of the Gibbs phenomenon that interferes the snapshots.

CONCLUSION AND DISCUSSION

In this paper, a temporal fourth-order scheme for solving the SH- wave equations in
VTI media has been proposed to solve the wraparound effect and Gibbs phenomenon due
to the heterogeneity of the formation especially when large abrupt changes in the medium
are present. The efficiency of new method is hindered to a certain degree because of the
calculation of Fourier derivatives using high-order staggerer-grid method, compared with
the conventional PSTD using second order centered-grid Fourier derivatives. Nevertheless,
the H-PML can be successfully added after the SH wave equation has been reduced into a
first-order equation, which in turn eliminates the wraparound effect. The numerical result
for a bilayered model shows the accuracy of this scheme. The conventional second-order
scheme result is also shown, which suffers from both the wraparound effect and Gibbs
artifacts. Experiments for the 3D anisotropic thrust fault model have also demonstrated the
efficiency and accuracy of the proposed scheme.
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FIG. 9: Snapshots for SH propagation in thrust fault model (x-y plane)
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The stability condition for this scheme is also discussed in this paper, for a specific
space interval that meets the requirement for the PSTD, the maximum time step for stabil-
ity is calculated. Compared with second-order in time and fourth order in space staggered
grid finite difference method, larger space and time interval can be selected, thus the com-
putational cost is greatly reduced as a result.

However, for further validation of this method, a benchmark with the analytical solution
is needed. Although the computational cost can be greatly reduced compared with the FD
methods, its efficiency is geared down in terms of the calculation of the first-order Fourier
derivatives instead of computing the second order Fourier derivatives directly. This new
scheme is inspired by previous study on the SH amplitude in borehole environment, a
more detailed study on migration and full waveform inversion using this new scheme will
be our further work after some benchmarks. Nevertheless, it should also be noticed that
the displacement components as well as the velocity component are measured by the new
proposed method, which can be directly used for full waveform inversion.
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