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SUMMARY 
The measurement of attenuation in seismic data is described and analyzed.  The 

measurement problem is defined as the estimation of the attenuation parameter 𝑄𝑄 or the 
estimation of the related quantity 𝐶𝐶𝐶𝐶 (cumulative attenuation) or both.  Two very different 
estimation techniques are described: the spectral-ratio method (SRM), which is well-
known, and the dominant-frequency method, which is mostly new here.  The strengths and 
weaknesses of both methods are discussed and the extension to 𝐶𝐶𝐶𝐶 is given.  It is 
demonstrated that 𝐶𝐶𝐶𝐶 estimates are more stable than 𝑄𝑄 estimates when attenuation is weak. 
The application of these techniques is demonstrated on a zero-offset VSP with a vibroseis 
source.  Using the shallowest receiver (2185ft) as a reference, attenuation estimates were 
obtained for all receivers at depths equal to or greater than 5000ft.  Consistent estimates 
were obtained from both the SRM and the DFM but it is demonstrated that any residual 
upcoming waves in the downgoing wave cause considerable error.  The possibility of 
extending these measurements to the earth’s surface by assuming the reference wave there 
is the Klauder wavelet is examined.  The results are plausible and seem appropriate to apply 
to surface recordings for bandwidth enhancement. 

INTRODUCTION 
Anelastic attenuation is arguably the single most important factor limiting the resolution 

of seismic images.  Since the earth is not a perfect elastic medium, seismic waves undergo 
progressive energy loss as they propagate.  This loss is usually thought of as a conversion 
of wave energy to heat as the seismic motion causes internal friction in the rock.  Calling 
this effect “intrinsic attenuation”, there is also a second effect, called “stratigraphic 
attenuation” that has nothing to do with anelasticity and everything to do with fine layering.  
Stratigraphic attenuation, first predicted and described by O’Doherty and Anstey (1971), 
is not an actual energy loss but is an interference effect resulting from the chaotic 
superposition of very sort-path multiples arising from fine layering with nearly random 
layer properties.  Even with perfectly elastic layers having no intrinsic attenuation, 
stratigraphic attenuation is still present in the analysis of any finite record length.  (The 
word “finite” is important here because the apparent energy loss from stratigraphic 
attenuation is really just an energy delay and, given an infinite record length, there would 
be energy conservation.)  Both theory are experiment agree that these two attenuation 
mechanisms are very similar in their effects and nearly impossible to distinguish 
(Margrave, 2014) such that any practical measure of attenuation will always estimate the 
combined effect. 

Commonly, attenuation measurement has been taken to be equivalent to measuring 𝑄𝑄, 
called the “quality factor” of an anelastic material.  Kjartansson (1979) provides a 
consistent theoretical description of scalar-wave propagation in a “constant 𝑄𝑄 medium” 
where the latter refers to a 𝑄𝑄 value that is independent of frequency but can vary arbitrarily 
with space.  Others (e.g. Aki and Richards (2000)) provide a similar description and there 
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is general agreement that the amplitude spectrum of a propagating seismic wave decays 
according to the attenuation law  

 |𝑤𝑤�t(𝑓𝑓)| =  |𝑤𝑤�0(𝑓𝑓)|𝑒𝑒−𝜋𝜋𝜋𝜋𝜋𝜋/𝑄𝑄 (1) 

where |𝑤𝑤�0(𝑓𝑓)| is the amplitude spectrum as emitted by the source (𝑓𝑓 is frequency), 𝑡𝑡 is 
traveltime, 𝑄𝑄 is the aforementioned quality factor, and |𝑤𝑤�t(𝑓𝑓)| is the wave’s amplitude 
spectrum after propagating for time 𝑡𝑡.  There are a variety of methods of measurement of 
𝑄𝑄 that are discussed in various places such as Cheng (2013) and Tonn (1991).  All known 
methods suffer some degree of instability on real (i.e. noisy) data due largely to the fact 
that 𝑄𝑄 appears in the denominator of the exponent of equation 1.  Attenuation becomes 
small when 𝑡𝑡/𝑄𝑄 is small which can happen when 𝑡𝑡 is small, or when 𝑄𝑄 is large, or some 
combination of both.  The ratio 𝑡𝑡/𝑄𝑄 has been called cumulative attenuation (Hauge, 1981) 
and here denoted 𝐶𝐶𝐶𝐶.  Thus, whenever 𝐶𝐶𝐶𝐶 is small, there will be little difference between 
the initial and attenuated spectra.  Suppose the spectrum is measured at two different times 
𝑡𝑡1 and 𝑡𝑡2 with 𝑡𝑡2 > 𝑡𝑡1, then it follows from equation 1 that  

 |𝑤𝑤�2(𝑓𝑓)| =  |𝑤𝑤�1(𝑓𝑓)|𝑒𝑒
−𝜋𝜋𝜋𝜋(𝑡𝑡2−𝑡𝑡1)

𝑄𝑄1,2  (2) 

where |𝑤𝑤�1(𝑓𝑓)| and |𝑤𝑤�2(𝑓𝑓)| are the amplitude spectra at times 𝑡𝑡1 and 𝑡𝑡2, and where 𝑄𝑄1,2 
refers to the interval 𝑄𝑄 between the position of the wave at time 𝑡𝑡1 and its position at time 
𝑡𝑡2.  For example, suppose we have receivers in a vertical borehole and a source positioned 
at 𝑧𝑧 = 0 next to the borehole (Figure 1).  Then a receiver at depth 𝑧𝑧1 records 𝑤𝑤1(𝑡𝑡), 
enabling the estimation of |𝑤𝑤�1(𝑓𝑓)|, while a receiver at a deeper depth 𝑧𝑧2 records 𝑤𝑤2(𝑡𝑡), 
and 𝑄𝑄1,2, called an interval 𝑄𝑄, is a property of the interval 𝑧𝑧1 → 𝑧𝑧2.  A quantity fundamental 
to attenuation measurements is the “log-spectral ratio” defined as 𝑙𝑙𝑙𝑙𝑟𝑟1,2(𝑓𝑓) =
ln[|𝑤𝑤�2(𝑓𝑓)|/|𝑤𝑤�1(𝑓𝑓)|].  It follows from equation 2 that  

 𝑙𝑙𝑙𝑙𝑟𝑟1,2(𝑓𝑓) = ln[|𝑤𝑤�2(𝑓𝑓)|/|𝑤𝑤�1(𝑓𝑓)|] = −𝜋𝜋𝑓𝑓(𝑡𝑡2 − 𝑡𝑡1)/𝑄𝑄1,2 (3) 

or, upon re-arranging, 

 𝑄𝑄1,2 = −𝜋𝜋𝑓𝑓(𝑡𝑡2 − 𝑡𝑡1)/𝑙𝑙𝑙𝑙𝑟𝑟1,2(𝑓𝑓). (4) 

Equation 4 shows why 𝑄𝑄 measurement is unstable because whenever the attenuation is 
small then 𝑙𝑙𝑙𝑙𝑟𝑟 is very small (because |𝑤𝑤�2(𝑓𝑓)|~|𝑤𝑤�1(𝑓𝑓)| and ln 1 = 0) resulting in a very 
large 𝑄𝑄.  On noiseless synthetic data, this is not such a problem and a large 𝑄𝑄 is usually the 
correct result.  However, with real data the presence of noise and other uncontrolled effects 
means that 𝑙𝑙𝑙𝑙𝑟𝑟 can often be both small and wildly inaccurate resulting in large 𝑄𝑄 (even 
negative 𝑄𝑄 can happen) with very large errors. 

Hauge (1981) proposed estimation of 𝐶𝐶𝐶𝐶 instead of 𝑄𝑄 because it is more stable and 
because it is really 𝐶𝐶𝐶𝐶 that we need to know if the goal is to correct for the effects of 
attenuation.  In the same setting as before, 𝐶𝐶𝐶𝐶 is given by 

 𝐶𝐶𝐶𝐶 = (𝑡𝑡2 − 𝑡𝑡1)/𝑄𝑄1,2 = −𝑙𝑙𝑙𝑙𝑟𝑟1,2(𝑓𝑓)/𝜋𝜋𝑓𝑓 (5) 

where we should note that 𝑙𝑙𝑙𝑙𝑟𝑟1,2(𝑓𝑓) should usually be a negative number because it has 
been defined using the weaker spectrum (at time 𝑡𝑡2) divided by the stronger spectrum (time 
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𝑡𝑡1). Equation 5 now has the 𝑙𝑙𝑙𝑙𝑟𝑟 in the numerator and so 𝐶𝐶𝐶𝐶 goes smoothly to zero whenever 
𝑙𝑙𝑙𝑙𝑟𝑟 is small. 

Transition paragraph 

THE SPECTRAL RATIO METHOD OF Q OR CA ESTIMATION 
Consider again the experiment depicted in Figure 1 where a seismic source is positioned 

at the earth’s surface near a vertical borehole.  The source emits a waveform,  0w t , which 
is recorded at level 1 in the borehole and also at the deeper level 2.  Using constant Q theory 
and neglecting wavefront spreading, the first arrival at level 1 can be modelled in the 
frequency domain as 

 |𝑤𝑤�1(𝑓𝑓)| =  |𝑤𝑤�0(𝑓𝑓)|𝑇𝑇1𝑒𝑒−𝜋𝜋𝜋𝜋𝜋𝜋1/𝑄𝑄 . (6) 

Compared to equation 1, we now include 𝑇𝑇1 representing transmission effects between the 
source and level 1, and 𝑄𝑄1 is the average 𝑄𝑄 value between the source and level 1.  In a 
similar fashion, the first arrival waveform at level 2 can be represented as 

 |𝑤𝑤�2(𝑓𝑓)| =  |𝑤𝑤�0(𝑓𝑓)|𝑇𝑇2𝑒𝑒−𝜋𝜋𝜋𝜋𝜋𝜋2/𝑄𝑄. (7) 
Now divide equation 7 by equation 6 and take the natural logarithm to find 

 𝑙𝑙𝑙𝑙𝑟𝑟1,2(𝑓𝑓) = ln |𝑤𝑤�2(𝜋𝜋)|
|𝑤𝑤�1(𝜋𝜋)| = ln �𝑇𝑇2

𝑇𝑇1
� − 𝜋𝜋𝑓𝑓 �𝜋𝜋2

𝑄𝑄2
− 𝜋𝜋1

𝑄𝑄1
�. (8) 

Defining 𝑇𝑇 = 𝑇𝑇2/𝑇𝑇1, Δ𝑡𝑡 = 𝑡𝑡2 − 𝑡𝑡1, and  𝑄𝑄𝑖𝑖𝑖𝑖𝜋𝜋−1 = Δ𝑡𝑡−1(𝑡𝑡2/𝑄𝑄2 − 𝑡𝑡1/𝑄𝑄1), equation 8 becomes 

 𝑙𝑙𝑙𝑙𝑟𝑟(𝑓𝑓) = ln𝑇𝑇 − 𝜋𝜋𝑓𝑓 Δ𝜋𝜋
𝑄𝑄𝑖𝑖𝑖𝑖𝑡𝑡

= ln𝑇𝑇 − 𝜋𝜋𝑓𝑓𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝜋𝜋. (9) 

where 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝜋𝜋 = Δ𝑡𝑡/𝑄𝑄𝑖𝑖𝑖𝑖𝜋𝜋.  Equation 9 predicts that a least-squares fit of a straight line to the 
measured 𝑙𝑙𝑙𝑙𝑟𝑟 will have a slope of 𝑚𝑚 = −𝜋𝜋𝑓𝑓𝜋𝜋𝑡𝑡/𝑄𝑄𝑖𝑖𝑖𝑖𝜋𝜋 and an intercept of 𝑏𝑏 = ln𝑇𝑇.  Since 
we expect 𝑇𝑇2 < 𝑇𝑇1, both slope and intercept normally should be negative values. 

 
Figure 1:  A Seismic source at (a) emits a wave that is recorded in a borehole at level 1 and a 
deeper level 2.  The waveform recorded at level 1 is 𝑤𝑤1(𝑡𝑡) while at level 2 it is 𝑤𝑤2(𝑡𝑡). 

As described, the spectral-ratio method seems very straight forward but, in practice there 
difficulties.  Most important is the choice of frequency band over which to do the least-
squares fit.  In order to see the expected behaviour of equation 9, the amplitude spectra of 
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both 𝑤𝑤1(𝑡𝑡) and 𝑤𝑤2(𝑡𝑡) should significantly exceed noise levels over the range of the fit.  A 
frequency range satisfying this criterion can be difficult to determine, especially for real 
data with high and variable noise.  Even with synthetic data, the useful frequency range is 
limited by finite-precision computing which has a limited ability to model the strong 
exponential behaviour of attenuation.  Figure 2 shows a typical spectral-ratio calculation 
for synthetic data that conforms to this theory.  Notice that the least-squares fit over 10-60 
Hz give a very different linear estimate than a fit over 1-80 Hz. In this case, the 10-60 Hz 
estimate gives the correct result. 

 
Figure 2:  An illustration of a typical spectral-ratio calculation as realized on synthetic data.  A least-
squares fit over the 10-50 Hz range gives an approximately correct estimate for both Q  and T  
which expanding the frequency range to 1-80 Hz leads to incorrect results as indicated by T  
greater than 1.0 . 

An alternative estimation method that avoids the spectral division needed to form the 
𝑙𝑙𝑙𝑙𝑟𝑟 is the dominant-frequency method. This is a simple variant of the technique introduced 
by Quan and Harris (1997) who called it the frequency-shift method.  In this method, the 
spectra at levels 1 and 2 are measured and then, given a trial 𝑄𝑄 value called 𝑄𝑄𝑘𝑘, an estimate 
of the level 2 spectrum is constructed from that measured at level 1 by 

 �𝑤𝑤�2,𝑘𝑘(𝑓𝑓)� = 𝑇𝑇|𝑤𝑤�1(𝑓𝑓)|𝑒𝑒−𝜋𝜋𝜋𝜋(𝜋𝜋2−𝜋𝜋1)/𝑄𝑄𝑘𝑘. (10) 

This just says that we model the spectrum at level 2 by taking the spectrum at level 1 times 
a forward 𝑄𝑄 operator (the transmission coefficient 𝑇𝑇 in this expression will be seen to be 
irrelevant).  Define the dominant frequency for spectrum |𝑤𝑤�2(𝑓𝑓)| as 

 𝑓𝑓𝑑𝑑2 =
∑ |𝑤𝑤�2(𝜋𝜋)|2𝜋𝜋𝜋𝜋

∑ |𝑤𝑤�2(𝜋𝜋)|2𝜋𝜋
 (11) 

with 𝑓𝑓𝑑𝑑2,𝑘𝑘 being defined by a similar equation.  The use of the power spectrum (e.g. 
|𝑤𝑤�2(𝑓𝑓)|2) in equation 11 is one departure from the method of Quan and Harris (1997) who 
use the amplitude spectrum and called their frequency the centroid frequency.  Testing with 
noisy synthetics indicates that the amplitude spectrum gives too much weight to noisy 
higher frequencies and that the power spectrum gives better estimates for the dominant 
frequency. 
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So, an estimate of the appropriate 𝑄𝑄 value follows if we can find 𝑄𝑄𝑘𝑘 such that 𝑓𝑓𝑑𝑑2,𝑘𝑘 ≅
𝑓𝑓𝑑𝑑2.  In contrast Quan and Harris (1997) measure both 𝑓𝑓𝑑𝑑1 and 𝑓𝑓𝑑𝑑2 and develop an analytic 
formulae relating the frequency shift (𝑓𝑓𝑑𝑑2 − 𝑓𝑓𝑑𝑑1) to attenuation but assume the spectrum 
has a Gaussian shape.  In the present method, a scan over the range of reasonable 𝑄𝑄 values 
(confined to integer values), computing 𝑓𝑓𝑑𝑑2,𝑘𝑘 for each is a fast direct search that yields good 
results and makes no assumptions about spectral shape.  Note also that the transmission 
coefficient 𝑇𝑇 is of no consequence since it cancels out in computing 𝑓𝑓𝑑𝑑2,𝑘𝑘 by the analog to 
equation 11.  To accomplish this, assume meaningful 𝑄𝑄 values are expected to fall in the 
range 𝑄𝑄𝑚𝑚𝑖𝑖𝑖𝑖 < 𝑄𝑄 < 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 where 𝑄𝑄𝑚𝑚𝑖𝑖𝑖𝑖 = 5 and 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = 300 are convenient bounds, and 
define 

 𝑄𝑄𝑘𝑘 ∈ [𝑄𝑄𝑚𝑚𝑖𝑖𝑖𝑖,𝑄𝑄𝑚𝑚𝑖𝑖𝑖𝑖 + 1,𝑄𝑄𝑚𝑚𝑖𝑖𝑖𝑖 + 2,⋯𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚  ], (12) 

so that 𝑄𝑄𝑘𝑘 is one of the integer 𝑄𝑄 values falling between 𝑄𝑄𝑚𝑚𝑖𝑖𝑖𝑖 and 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚. Next define the 
objective function 

 𝑂𝑂𝜋𝜋,𝑘𝑘 = 𝑄𝑄𝑘𝑘�𝑓𝑓𝑑𝑑2 − 𝑓𝑓𝑑𝑑2,𝑘𝑘�
2
 (13) 

where the use of 𝑄𝑄𝑘𝑘 on the right-hand-side causes a more pronounced minimum.  
Experience has shown that better results follow if we modify the objective function to 
include a second term that matches the width of the spectra |𝑤𝑤�2(𝑓𝑓)| and �𝑤𝑤�2,𝑘𝑘(𝑓𝑓)�, where 
we define spectral width by 

 𝜎𝜎𝑑𝑑2 =
∑ |𝑤𝑤�2(𝜋𝜋)|2(𝜋𝜋−𝜋𝜋𝑑𝑑2)2𝜋𝜋

∑ |𝑤𝑤�2(𝜋𝜋)|2𝜋𝜋
 (14) 

and similarly for 𝜎𝜎𝑑𝑑2,𝑘𝑘. Then the second term will be 

 𝑂𝑂𝜎𝜎,𝑘𝑘 = 𝑄𝑄𝑘𝑘�𝜎𝜎𝑑𝑑2 − 𝜎𝜎𝑑𝑑2,𝑘𝑘�
2
 (15) 

and the final objective function is 

 𝑂𝑂𝑘𝑘 = 𝑂𝑂𝜋𝜋,𝑘𝑘

max (𝑂𝑂𝜋𝜋,𝑘𝑘)
+ 𝑂𝑂𝜎𝜎,𝑘𝑘

max (𝑂𝑂𝜎𝜎,𝑘𝑘)
. (16) 

So the estimated 𝑄𝑄 value will be that 𝑄𝑄𝑘𝑘 for which equation 16 is minimum. 

The dominant-frequency method (DFM) offers a robust alternative to the spectral-ratio 
method (SRM) and is related to but significantly different from the frequency-shift method 
(FSM) (Quan and Harris, 1997).  Compared to the SRM, the DFM is insensitive to 
amplitude imbalances because these cancel out in the calculation of dominant frequency 
and spectral width.  The DFM is also much less sensitive to the choice of frequency band 
although it is not completely insensitive.  Compared to the FSM, both methods use a 
dominant-frequency calculation but the former uses the amplitude spectrum while the latter 
uses the power spectrum.  Also, the DFM makes no assumptions about the spectral shape 
(the FSM does) and finds the 𝑄𝑄 estimate by direct search over possible integer values. 
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DATA ANALYSIS 
This work was done on a VSP recorded in the southern United States.  This was a zero-

offset VSP using a vibroseis source with an 8-96Hz linear sweep.  The receivers were three 
component geophones spaced at 50 ft and extending from 2185ft to 13803ft.  Processing 
of the VSP was done by a third party and a 300ms ribbon of the separated, flattened, 
downgoing wave is shown in Figure 2a) while Figure 2b) shows the same data after a depth 
averaging process using and averaging window of ±400ft.  Essentially each trace of 2b) is 
the average of all the traces in an 800ft window centered on the corresponding trace of 
panel 2a).  The slight differences are due to residual upgoing waves that have survived the 
wavefield separation process.  As will be seen, much better attenuation estimates arise from 
the data of 2b) than from 2a). 

 
Figure 2: a) A ribbon of data taken from Figure 2 from a window approximately 0.3 sec wide and 
beginning just before the first breaks.  b) The result of spatial averaging of the ribbon in panel a) 
using an averaging half-width of 400ft.  Each trace of panel b) is an average of the traces of panel 
a) over the depth range ±400ft relative to the trace position. 

Figure 3 shows the amplitude spectra of the traces in Figure 2.  These are the data than 
will directly determine the attenuation estimates.  Both panels of this figure show clear 
evidence of attenuation as the high frequencies are clearly decaying with depth.  The 
shallowest receiver is at a depth of 2185ft and shows a bandwidth of roughly 10-80Hz 
while the deepest receiver, at a depth of 13803ft, shows a bandwidth of about 10-55Hz.  
Despite the high similarity between these panels, the data of Figure 3b) will be shown to 
give much better attenuation estimates than those of 3a). 
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Figure 3: The amplitude spectra of the traces in Figure 2 are shown.  The decay of high frequencies 
with increasing depth is evident in both panels. 

Figure 4 is designed to illustrate the SRM (spectral-ratio method) while Figure 5 does a 
similar thing for the DFM (dominant-frequency method).  The figures depict the estimation 
of 𝑄𝑄 for three different trace pairs (the same pairs are in both figures).  In each case, the 
reference trace, 𝑤𝑤1, is the data from Figure 2a) at the shallowest receiver.  For the shallow 
case (left column of Figures 4 and 5), 𝑤𝑤2, was chosen to be a receiver at 5000ft, while for 
the intermediate case  𝑤𝑤2 was at 9474ft and for the deep case  𝑤𝑤2 was at 13803ft.  These 
traces are shown in the first row of graphs on each figure.  The amplitude spectra |𝑤𝑤�1| and 
|𝑤𝑤�2| are in the second row, additionally, Figure 5 gives the measured values of dominant 
frequency 𝑓𝑓𝑑𝑑1 and 𝑓𝑓𝑑𝑑2 for both spectra.  The computation of these frequencies used 
equation 11 where the summation range was restricted to the band 8-90Hz.  𝑓𝑓𝑑𝑑1 is the same 
in each case because the reference trace is fixed, but 𝑓𝑓𝑑𝑑2 shows clear, progressive decay.  
The bottom row of both plots shows the actual 𝑄𝑄 estimate being made.  In Figure 4, the 𝑙𝑙𝑙𝑙𝑟𝑟 
is shown in blue together with the least-squares fit of a straight line to a selected frequency 
range (8-90 Hz) and the estimated 𝑄𝑄 value.  It is clear from these plots that the 𝑙𝑙𝑙𝑙𝑟𝑟 only 
shows the expected linear decrease over a limited frequency range.  Also clear is the chaotic 
nature of the 𝑙𝑙𝑙𝑙𝑟𝑟 which, even in the selected range, is rapidly fluctuating.  These 
fluctuations are caused by spectral notches due to the reflectivity and short-path multiples.  
The corresponding row in Figure 5 shows the objective function for FDM and the estimated 
𝑄𝑄 value.  There is a reasonable correspondence between these two estimates and, given the 
very different algorithms, this increases confidence in the results. 
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Figure 4: Examples of the spectral-ratio calculation for three different depths: shallow, intermediate, 
and deep.  In each case the reference trace, 𝑤𝑤1, is the same while the comparison trace, 𝑤𝑤2, is 
moved progressively deeper.  These traces are shown in the top panel labelled “wavelets”.  In the 
middle panel are the spectra of the traces and in the bottom panel are the resulting 𝑙𝑙𝑙𝑙𝑟𝑟 (log-spectral 
ratio) plots with a red line showing the fitted range (8-90Hz in this case). 

 
Figure 5: Similar to Figure 4 except that the dominant-frequency method is illustrated.  The top 
panel is identical to Figure 4 and the curves in the middle panel are the same.  Also shown in the 
middle panel are the results of the dominant frequency calculations.  In the bottom panel, the 
objective function is shown together with the estimated 𝑄𝑄 value.  For example, in the intermediate 
panel, the dominant frequency has decreased from 37 to 34 Hz and a forward 𝑄𝑄 operator with 𝑄𝑄 =
111, when applied to |𝑤𝑤�1|, reduces its dominant frequency from 37 to 34 as observed with |𝑤𝑤�2|. 

Turning now to the presentation of complete 𝑄𝑄 and 𝐶𝐶𝐶𝐶 profiles from the VSP data, first 
it is useful to examine such profiles computed from a realistic synthetic VSP.  For this 
purpose, well logs (from a different area) were used to synthesize a zero-offset VSP that 
included very detailed reflectivity, all possible multiples, and a detailed 𝑄𝑄 model. The 𝑄𝑄 
and 𝐶𝐶𝐶𝐶 results are shown in Figure 6.  Also of note, the synthetic VSP was computed with 
exactly separated upgoing and downgoing fields.  The 𝑄𝑄 estimates are all average values 
references to the most shallow receiver (at 65m) and the 𝐶𝐶𝐶𝐶 estimates were computed from 
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the 𝑄𝑄 estimates using the first break times (see equation 5).  The SRM has great difficulty 
for the receivers above about 130m because the attenuation is small and it is difficult to get 
a meaningful 𝑙𝑙𝑙𝑙𝑟𝑟 and subsequent least-squares fit.  In contrast the DFM is much more stable 
in this interval and gives more realistic estimates.  For the deeper receivers, the estimates 
settle down and become much more similar.  Despite these difficulties, the corresponding 
𝐶𝐶𝐶𝐶 estimates are similar and stable at all depths.   

The reason for the relative accuracies of 𝑄𝑄 and 𝐶𝐶𝐶𝐶 via the SRM can be seen by a simple 
error analysis.  For simplicity, assume that least-squares fit to the 𝑙𝑙𝑙𝑙𝑟𝑟 has resulted in a zero 
intercept and a slope with value 𝑙𝑙.  Then, from equation 9 we have 

 𝑄𝑄 = 𝑎𝑎Δ𝑡𝑡/𝑙𝑙 (16) 
and 

 𝐶𝐶𝐶𝐶 = s/𝑎𝑎, (17) 

where 𝑎𝑎 = −𝜋𝜋𝑓𝑓 and the “int” subscript has been dropped.  Now suppose that 𝑙𝑙 is in error 
by 𝛿𝛿𝑙𝑙 which is much smaller than 𝑙𝑙.  Then standard error analysis predicts the 
corresponding errors in 𝑄𝑄 and 𝐶𝐶𝐶𝐶 to be 

 𝛿𝛿𝑄𝑄 = −𝑎𝑎Δ𝑡𝑡𝛿𝛿𝑙𝑙/𝑙𝑙2  (18) 
and 

 𝐶𝐶𝐶𝐶 = 𝛿𝛿s/𝑎𝑎. (19) 

So the error in 𝑄𝑄 is proportional to the error in 𝑙𝑙 divided by 𝑙𝑙2 whereas the error in 𝐶𝐶𝐶𝐶 is 
just directly proportional.  When attenuation is low then |𝑙𝑙| is very small and division by 
𝑙𝑙2 is a huge amplification of error.  A similar analysis for DFM is not attempted here but 
empirical observation suggests that it does not have this problem. 

 
Figure 6: An example of computing 𝑄𝑄 (left) and 𝐶𝐶𝐶𝐶 (right) on a realistic synthetic VSP which included 
the effects of all multiples, detailed (well log) reflectivity, and a detailed Q model.  The geometry of 
computation was similar to that used on the real data in this paper.  The first receiver (at z=65m) 
was compared to each deeper receiver to deduce an average 𝑄𝑄 for each depth.  The corresponding 
𝐶𝐶𝐶𝐶 measures were then computed using the first break times and the measured 𝑄𝑄. 



Margrave 

10 CREWES Research Report — Volume 26 (2014)  

 
Figure 7:  𝑄𝑄 and 𝐶𝐶𝐶𝐶 estimated from the data of Figure 2a by both the SRM and the DFM. The 
harmonic mean refers to 𝑄𝑄ℎ𝑚𝑚−1 = 𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆−1 + 𝑄𝑄𝐷𝐷𝐷𝐷𝑆𝑆−1 . 

 
Figure 8:  Similar to Figure 7 except that the data were run through a depth averaging process 
before measurements were made.  Each trace was replaced by the average of all adjacent traces 
within ±100ft. 
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Figure 9:  Similar to Figure 7 except that the data were run through a depth averaging process 
before measurements were made.  Each trace was replaced by the average of all adjacent traces 
within ±400ft.  The data resulting from this averaging are shown in Figure 2b. 

Figure 7 shows the results of 𝑄𝑄 and 𝐶𝐶𝐶𝐶 for the data of Figure 2a.  The shallowest receiver 
(2185ft) was taken as the reference 𝑤𝑤1 and the 𝑤𝑤2 traces were selected starting at 5000ft 
and continuing to the deepest receiver.  The 𝑄𝑄 estimates are therefore all average values 
representing the average effect from 2185ft to the depth noted on the vertical axis.  The 
results from both SRM and DFM track one another quite well but show a lot of fluctuation 
and the SRM estimates are mostly higher than those from DFM.  Shown between the two 
estimates is the harmonic average (e.g. 𝑄𝑄ℎ𝑚𝑚−1 = 𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆−1 + 𝑄𝑄𝐷𝐷𝐷𝐷𝑆𝑆−1 ) which may be a reasonable 
compromise1.  The 𝐶𝐶𝐶𝐶 estimates of Figure 7 were computed from the estimated 𝑄𝑄 values 
and the first break traveltimes, while the intermediate curve is the arithmetic average of the 
two estimates.  The rapid fluctuations in these estimates are mostly caused by residual 
upgoing waves that have survived the wavefield separation process.  These can be 
suppressed by lateral averaging of the data of Figure 2a before the estimation process.  
Figure 8 shows the results after a very slight averaging where each trace was replace by 
the average of those within ±100ft. Given the nominal receiver spacing of 50ft, this is 
roughly a 5:1 averaging.  The dramatic reduction of the oscillations is evidence that this is 
a positive step.  Figure 9 shows the results with a larger averaging window of ±400ft and 
the curves are both smoother and the two estimates are in better agreement.  This is clearly 
a judgement call since the true values are unknown but the preference is for consistency 
between the two methods and smoothness of the result.  Larger averaging windows were 
investigated but the result shown in Figure 9 was preferred. 

While the estimates of Figure 9 seem self-consistent and reasonable, they are all 
referenced to the shallowest receiver at 2185ft and hence are not quite what is needed for 
seismic data processing.  For this purpose, estimated relative to z=0 are desired however 
shallow receivers are generally unreliable, and usually not even attempted, in conventional 

                                                 
1 The harmonic average was chosen simply because this is the wave that interval 𝑄𝑄 values “add” to give 
and average 𝑄𝑄. 
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VSP recording.  However, while there was no receiver at the earth’s surface, the source 
was a vibrator with precisely controlled hydraulics designed to radiate a known spectrum.  
So, it seems that we do know something about the downgoing wave at the earth’s surface 
and a simple assumption is that it is the Klauder wavelet, or autocorrelation, of the sweep. 
Of course this is ignores the spectral modifications due to the vibrator-earth interaction.  
Baseplate accelerometer recordings or ground-force estimates would be useful to 
investigate that approach but were not available in this case. A final consideration is that, 
in theory, a source that emits a wavelet 𝑤𝑤0(𝑡𝑡) when placed within a homogeneous medium 
will emit 𝑤𝑤0

′(𝑡𝑡) (the time derivative of 𝑤𝑤0(𝑡𝑡)) when placed on a free surface.  This can be 
understood as the limiting case of a surface ghost from a buried source in the limit as the 
depth of burial goes to zero.  Figure 10 compares the Klauder wavelet for the 8-96Hz linear 
sweep used in this experiment to its time derivative.  In using either of these wavelets as 
the reference trace, the upper 2185ft of the subsurface will be assigned the attenuation 
necessary to convert the wavelet’s spectrum into the spectrum of the first trace in Figure 
3b.  So an overall lowering of the 𝑄𝑄 estimates is to be expected and the estimates should 
be lower for the time-derivative wavelet than for the Klauder wavelet. 

 
Figure 10:  The Klauder wavelet for an 8-96Hz linear sweep (10 seconds long with 0.5 sec taper) 
is compared with its time derivative in the time domain (left) and the frequency domain (right).  The 
wavelets have been balanced on overall amplitude.  The Klauder wavelet has a flat amplitude 
spectrum over the swept band while the time derivative has more power in the higher frequencies. 

Figure 11 shows the resulting attenuation analysis when the reference trace, 𝑤𝑤1, is taken 
to be the Klauder wavelet at 𝑧𝑧 = 0.  Not only are the 𝑄𝑄 values now lower, but the range of 
estimation has been extended upwards from 500ft to 2185ft.  These values are now 
referenced to 𝑧𝑧 = 0 and, in theory, could be suitable input for an inverse 𝑄𝑄 filter to be 
applied to surface seismic data.  The maximum 𝑄𝑄 has decreased from about 115 to about 
55.  It may well be that these values are too low because there are many potential 
mechanisms that could cause the actual radiated spectrum to lose strength at high 
frequencies.  Figure 12 shows a similar calculation where now the reference trace is the 
time-derivative Klauder wavelet.  The result is 𝑄𝑄 estimates that are lower still and seem 
unacceptably so. 
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Figure 11:  The result of an attenuation analysis where the reference signal, 𝑤𝑤1, is taken to be the 
Klauder wavelet of Figure 10 at depth 𝑧𝑧 = 0.  The input data were those of Figure 2b so this result 
should be compared to Figure 9.  Note the change in the depth axis which now extends to 2185ft. 
The stair-stepping on the 𝑄𝑄 curve from the DFM happens because that method estimates 𝑄𝑄 to the 
nearest integer only.  The resulting 𝐶𝐶𝐶𝐶 estimate shows saw teeth. 

 
Figure 12: Similar to Figure 11 except that now the reference trace, 𝑤𝑤1(𝑡𝑡), is taken to be the time-
derivative Klauder wavelet (Figure 10).  Compare to Figures 11 and 9. 

 

SUMMARY AND CONCLUSIONS 
The theory and application of seismic attenuation analysis have been discussed as 

manifest in the estimation of both 𝑄𝑄 and 𝐶𝐶𝐶𝐶 (cumulative attenuation).  Two computational 
methods were described: the spectral-ratio method (SRM) and the dominant-frequency 
method (DFM).  The SRM is well established and frequency used while the DFM is 
introduced here.  The SRM requires the computation of the log-spectral ratio, 𝑙𝑙𝑙𝑙𝑟𝑟, which 
is the logarithm of the ratio of the amplitude spectra of two wavelets with different 
propagation times.  Theory predicts that the 𝑙𝑙𝑙𝑙𝑟𝑟 should be a linear function of frequency; 
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however, this behaviour is only found over a very limited frequency range.  Properly 
specifying this frequency range is the critical decision for a successful result.  𝑄𝑄 is 
estimated from the slope of a best-fit line to the linear trend.  In contrast, the DFM avoids 
the spectral division by applying a suite of different forward 𝑄𝑄 filters to the spectrum of 
the wavelet with smaller traveltime and 𝑄𝑄 is predicted by finding the filtered result that 
best matched the wavelet with longer traveltime.  Once a 𝑄𝑄 estimate is obtained, a 𝐶𝐶𝐶𝐶 
estimate is then found as the differential traveltime divided by 𝑄𝑄.  It was demonstrated, and 
explained theoretically, that, when attenuation is low, 𝐶𝐶𝐶𝐶 estimates are much more stable 
and accurate than 𝑄𝑄 estimates.  These techniques were then demonstrated by application to 
a zero-offset VSP.  Data processing was done to isolate the downgoing wave and 300ms 
data ribbon beginning at the first breaks was used.  Using the shallowest receiver at 2185f 
as a reference, and attenuation estimated was obtained for all receivers at 5000ft and 
deeper. It was demonstrated that consistent results were obtained from both estimation 
methods and, it was argued, this lends credibility to the results.  It was also demonstrated 
that even very small residual upgoing waves in the downgoing field cause considerable 
instability in the estimates.  In a final analysis, the possibility of extending the reference 
depth to the earth’s surface by using the Klauder wavelet, or its time derivative, was 
examined.  This extension resulted in lower 𝑄𝑄 values as expected but the time-derivative 
wavelet was considered too extreme.  In future work, it would be beneficial to repeat this 
analysis on other wells and to apply the estimated attenuation values to surface seismic 
data. 
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