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ABSTRACT

In a recent paper, seismic amplitude-variation-with-offset (AVO) equations describing
P-to-P and P-to-S reflections from boundaries separating low-loss viscoelastic media, with
account taken for variation in attenuation angle, have been derived. We find that oppor-
tunities now present themselves to use these equations to expose a range of relationships
between measured amplitudes and subsurface elastic and anelastic properties. This has sig-
nificant applicability in quantitative interpretation of seismic data in, for instance, reservoir
characterization. To facilitate the analysis we decompose the equations into three parts:
elastic, homogeneous and inhomogeneous. We show that, for PP modes, the elastic part
is sensitive to changes across a reflecting boundary in density and P- and S-wave veloci-
ties; the homogeneous part is sensitive to changes in density, S-wave velocity and the P-
and S-wave quality factors; and the inhomogeneous part is sensitive to changes in density,
and P-and S-wave velocities. The latter term is seen to vanish when the attenuation angle
vanishes. Elastic and homogeneous terms are linear with respect to sin2 θP, where θP is
the P-wave incidence angle, however the inhomogeneous term is similarly linear only if
normalized by dividing by sin θP. For PS modes, the elastic part is sensitive to changes
in density and S-wave velocity; the homogeneous part is sensitive to changes in density,
S-wave velocity and the S-wave quality factor; and the inhomogeneous part is sensitive
to changes in density and S-wave velocity. This term also vanishes for zero attenuation
angle, i.e., in the homogenous limit. For PS modes, the inhomogeneous terms are linear
with respect to sin2 θP, however the elastic and homogeneous terms are first and third order
in sin θP. A further and key result of this expansion of the wave types allowable in AVO
analysis is that, for inhomogeneous PS scattering, the viscoelastic AVO equations predict
a non-zero reflectivity at normal incidence. This is a significant deviation from common
models of converted wave amplitude analysis.

INTRODUCTION

A primary aim of modern exploration and monitoring seismology is to determine geo-
logical and engineering-relevant properties of subsurface hydrocarbon reservoirs from the
travel time, phase and amplitude information in seismic reflections. Amplitude-variation-
with-offset (AVO) analysis and inversion, in its various forms (Castagna and Backus, 1993;
Foster et al., 2010), is a key driving technology in this effort. The problem of robustly an-
alyzing and inverting reflected seismic amplitudes is complex and incompletely solved, re-
quiring (1) integrated seismic acquisition, data processing, and image-forming techniques
to produce seismic amplitudes of appropriate fidelity, and (2) accurate, robust, and in-
telligible formulae and algorithms for modelling and inverting these amplitudes. In the
latter domain, research has been active in recent years to understand the limits of standard
approximate solutions for reflection amplitudes, connect them with auxiliary geological
information to infer increasingly specific reservoir engineering properties cite, and incor-
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porate more complete physics, for instance the anisotropy and/or viscosity arising from
the presence of fractures and fluids. In this paper we continue to address the problem of
accommodating a maximal amount of the complexity and richness of viscoelastic wave
propagation in AVO theory and practice.

Including wave physics beyond the elasticity and isotropy of standard AVO analysis
and inversion brings benefit and difficulty. The benefit is an increase in the information
derivable from the data. If, for instance, attenuation due to changes in reservoir viscosity
influences seismic observations, an extended model will permit that information to be used
and this extra rock/fluid property will be at least in principle inferrable. The difficulty is
that, for each additional parameter we ask the seismic data to constrain, the more stress is
placed on the acquisition-processing-imaging chain to provide accurate data over a wider
range of angles and azimuths. As more “difficult” elastic properties are sought, examples of
which are density and various anisotropic parameters, often the limits of our mathematical
models are reached, and the data variations needed to determine them increasingly tend to
occur near the limits of our experimental apertures.

Thus when we extend the reach of seismic amplitude analysis by including a more
complete model of wave physics, it is insufficient to simply write down new mathematics
and leave it at that. An extension of (say) the Zoeppritz equations cite to incorporate a
viscoelastic model, which is part of the work represented in this and the preceding papers,
is a starting point only. To activate new technologies wherein attenuative properties of
the subsurface can be inferred from seismic measurements requires (1) useable and inter-
pretable approximations in addition to the complex exact equations, (2) an understanding of
the behaviour and accuracy of approximations and exact solutions as the quantities related
to seismic acquisition reach their limits (e.g., incidence angle and/or maximum source-
receiver offset), (3) an understanding of regimes in which data variations caused by new
and/or additional parameters are prevalent, and (4) an understanding of if, and how, these
data variations can be used to determine simultaneous changes in all of the rock properties
as they generally occur in the Earth. The mathematics of the viscoelastic AVO equations,
exact and linearized, with attenuation angle incorporated, have been discussed in previous
work cite; here we report on developments of these secondary but critical parts of the full
problem.

Approximate reflection coefficients for weak contrast interfaces separating elastic isotropic
media are well-established. These equations linearly depend on the fractional changes in
density, P-wave and S-wave velocities weighted by trigonometric functions of incident an-
gle (Aki and Richards, 2002). In the presence of anelasticity, in which the polarization
vector and the ray parameter are complex-valued, reflection coefficients are complex func-
tions (Krebes, 1983, 1984; Ursin and Stovas, 2002; Moradi and Innanen, 2015a, 2016).
The corresponding linearized AVO equations not only depend on the changes in elastic
properties across the boundary but also depend on the changes in P- and S-wave quality
factors weighted by trigonometric functions of incident phase and attenuation angles. The
problem of determining exact and approximate reflection and transmission coefficients at
a plane interface between two viscoelastic media for homogenous waves was studied by
(Ursin and Stovas, 2002). The authors concluded that the approximate PP and PS reflectiv-
ities are very similar to the exact solutions of the associated Zoeppritz equations. The same
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authors generalized the problem to incorporate transversely isotropic viscoelastic problems
(Stovas and Ursin, 2003). The effects of attenuation on PP- and PS-wave reflection coeffi-
cients for anisotropic viscoelastic media with the main emphasis on transversely isotropic
models with a vertical symmetry axis has also been treated (Behura and Tsvankin, 2009a).
These authors allowed for inhomogeneity in the waves, assuming that the attenuation an-
gles across a reflecting boundary remain constant, but pointing out that the inhomogeneity
angle can make a substantial contribution to the AVO response for strongly attenuative
media (Behura and Tsvankin, 2009b).

The related but more general problem of scattering of seismic waves from viscoelas-
tic inclusions in the context of Born approximation has also been recently investigated. A
comprehensive mathematical framework for scattering, building from Borcherdt’s layered-
medium formalism has been developed for the purposes of modeling, processing, and inver-
sion of seismic data exhibiting non-negligible intrinsic attenuation (Moradi and Innanen,
2015b). It was further shown that either independently or beginning from this scattering
theory, linearized forms of PP, PS, and SS reflection coefficients for low-contrast inter-
faces separating two arbitrary low-loss viscoelastic media for arbitrary incident angle are
derivable (Moradi and Innanen, 2016, 2015a). These equations relate the AVO response to
anelastic parameters. In that work it was shown how the reflectivity depends upon perturba-
tions in elastic properties and on perturbations in quality factors for P- and S-waves. These
equations are expected to be of practical importance in the characterization of viscosity
and viscosity changes in unconventional reservoirs (see e.g. David Gray, CSEG 2016).
One feature of our approach in deriving the linearized AVO equation is that Snell’s law
and its linearized form is properly accounted for in the linearization, which has typically
been assumed to be constant (Behura and Tsvankin, 2009a,b). AVO formulas of this kind
represent physically more complete versions of those which underlie anelastic inversion
procedures (Innanen, 2011, 2012). Updates to these inversion procedures making use of
these more complete expressions is in progress.

In this paper we are concerned with a certain decomposition of the approximate vis-
coelastic reflection coefficients, and a qualitative and quantitative analysis of the results.
Specifically, effects of the attenuation angle and the quality factors will be focused on.
We shall see that the attenuation angle has very significant qualitative effect on the AVO
responses, and we offer some ideas of the relative importance of the AVO equations for
homogeneous and inhomogeneous waves. Another result of this paper is that some in-
sight into common alternative forms for the AVO equations (e.g., the Shuey approximation
cite), adjusted for attenuative media, is provided. Again incorporating into these re-written
equations the change in attenuation angle across the boundary is unexplored territory. Be-
cause we develop results for P-to-S conversions as well as standard P-to-P reflections, our
analysis is applicable to linear and nonlinear inversion of multicomponent seismic data
(Margrave et al., 2001; Lehocki et al., 2014; Jerez, 2003).

This paper is organized as follows. In section 2 we briefly introduce notation for the
complex ray parameter and slowness vector for inhomogeneous waves in low-loss vis-
coelastic media. In section 3 we apply the Snell’s law to decompose the vertical slowness
for reflected and transmitted waves. It is shown that the vertical slowness for P- and S-
wave is a function of incident attenuation angle. In section 4 we apply the method that
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we developed in previous section to the decomposition of the exact solutions of the vis-
coelastic Zoeppritz equations. In section 5 we lay out the viscoelastic version of the Shuey
approximation for PP-reflection coefficients, and compare the decomposed exact reflectiv-
ities with the approximate ones for two reservoir rock models. Finally we produce some
useful approximations for converted PS-wave.

PRELIMINARIES

In viscoelastic media there are three types of waves: P, Type-I S, and Type-II S. These
may be homogeneous our inhomogeneous, depending on whether their propagation and
attenuation vectors are, respectively, parallel or not (Borcherdt, 2009). Polarization vectors
for inhomogeneous P and SI-waves are elliptical; for homogeneous waves they are linear.
The elliptical motion reduces to linear motion in the homogeneous limit. The SI-wave is
the generalization of the elastic SV wave, and the SII-wave is the generalization of the
elastic SH wave, with the former reducing to the latter as attenuation goes to zero. The SII-
wave involves linear particle motion perpendicular to the propagation-attenuation plane in
both homogeneous and inhomogeneous cases. In reflection problems, if the incident wave
is an inhomogeneous P-wave, the reflected wave can be an inhomogeneous P- or SI-wave.
For an inhomogeneous wave, the ray parameter and slowness vector not only depend to the
phase angle but also on the attenuation angle.

To properly compute linear solutions of the Zoeppritz equations, generalized to accom-
modate viscoelasticity, to facilitate AVO analysis in the presence of attenuation, we must
define polarization and slowness vectors with some care. In a viscoelastic medium, the
wavenumber vector is a complex vector whose real part characterizes the direction of wave
propagation and whose imaginary part characterizes the attenuation of the wave. This is
laid out by, e.g., Borcherdt (2009) who presents a complete theory for seismic waves prop-
agating in layered viscoelastic medium. Borcherdt’s formulation predicts a range of trans-
verse, inhomogeneous wave types unique to viscoelastic media (the Type I and II S waves
discussed above), including rules for conversion of one type to another during interactions
with planar boundaries. As a result of the complexity of the wavenumber vector, slowness
and polarization vectors are complex functions. The complex wave-number vector is given
by

K = P− iA, (1)
where the propagation vector P is perpendicular to the wavefront, and specifies the direc-
tion of propagation, and the attenuation vector A is perpendicular to the plane of constant
amplitude, and specifies the direction of maximum attenuation. The angle between these
two vectors is always less that 90◦ and is referred to as the attenuation angle (Fig.1). If
the attenuation and propagation vectors are parallel and δ = 0 the wave is homogenous;
otherwise it is inhomogeneous. In the case of low-loss viscoelastic media, in which the
quality factor Q−1 � 1, the propagation and attenuation vectors can be written (Borcherdt,
2009)

P =
ω

VE

(x sin θ + z cos θ),

A =
ω

VE

Q−1 sec δ [x sin(θ − δ) + z cos(θ − δ)] ,
(2)
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z

x

FIG. 1. Incident inhomogeneous wave (δ 6= 0). P is the propagation vector, A is the attenuation
vector, θ is the incident phase angle and δ is the incident attenuation angle.

where VE is either P-wave or S-wave velocity, θ is the phase angle and δ is the attenua-
tion angle. For an inhomogeneous wave, the ray parameter and the vertical slowness are
complex functions which depend on the quality factor and attenuation angles (Moradi and
Innanen, 2016). These quantities can be split into elastic, homogeneous and inhomoge-
neous parts

p = pE + ipH + ipIH,

q = qE + iqH + iqIH,
(3)

where the components are given by

pE =
sin θ

VE

, pH = −Q
−1

2
pE, pIH =

Q−1

2
qE tan δ

qE =
√
V −2

E − p2
E, qH = −Q

−1

2
qE, qIH = −Q

−1

2
pE tan δ

(4)

In the above relations the indexes E, H and IH respectively refer to the elastic, homo-
geneous and inhomogeneous parts. Reflected and transmitted angles can be obtained in
terms of the incident angle from Snell’s law. For a low-contrast, two layered medium, the
deviation of transmitted angle away from the incident angle is small. Consequently, we
can linearize Snell’s law to obtain a simple expression of the difference between the inci-
dent and transmitted wave in terms of changes in velocity between the layers. Snell’s law
for viscoelastic materials is discussed by Wennerberg (Wennerberg, 1985) and Borcherdt
(Borcherdt, 2009). Importantly for our purposes, since the attenuation angle changes across
the boundary, the linearized form of Snell’s law also gives us in a simple form the differ-
ence in attenuation angle in terms of changes in velocity and quality factor (Moradi and
Innanen, 2016).

HOMOGENEOUS AND INHOMOGENEOUS PARTS OF THE SLOWNESSES

To decompose the reflectivity into the contributions from inhomogeneity of wave, first
we need to split the slowness vector to elastic, homogeneous and inhomogeneous parts. Let
an inhomogeneous P-wave be incident in medium 1 on a horizontal interface. The P-wave
transmitted through the interface has vertical slowness

qP2 = qPE2 + iqPA2, (5)
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FIG. 2. Plots of the viscoelastic ray parameter p in the complex plane for Q = 10 over a range of
attenuation angles, ranging from 0◦ to 70◦.

where the elastic and anelastic parts, qPE2 and qPA2 respectively, are given by

qPE2 =
√
V −2

PE2 − p2
E, and (6)

qPA2 = −Q
−1
P2

2
(qPE2 + pE tan δP2). (7)

In equation (7), subscript A labels the anelastic part of the vertical slowness. In the same
way, for the reflected S-wave we have

qSE1 =
√
V −2

SE1 − p2
E (8)

qSA1 = −Q
−1
S1

2
(qSE1 + pE tan δS1), (9)

and for the transmitted S-wave

qSE2 =
√
V −2

SE2 − p2
E (10)

qSA2 = −Q
−1
S2

2
(qSE2 + pE tan δS2). (11)

To separate the homogeneous and inhomogeneous components of these relations we must
invoke Snell’s law, because the transmitted and reflected attenuation angles are functions
of the incident attenuation angle (see Appendix). We have

tan δP2 =
1

qPE2

[
pE −

QP2

QP1

(pE − qPE1 tan δP1)

]
, (12)

where δP2 is the attenuation angle for the transmitted P-wave, and δP1 is the attenuation
angle for the incident P-wave. For the reflected S-wave, the attenuation angle δS1 is

tan δS1 =
1

qSE1

[
pE −

QS1

QP1

(pE − qSE1 tan δP1)

]
, (13)

and for the transmitted S-wave the attenuation angle δS2 is

tan δS2 =
1

qSE2

[
pE −

QS2

QP1

(pE − qSE2 tan δP1)

]
. (14)
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By substituting equation (12) into (7), and (13) into (9), and finally (14) into (11) we can
decompose the transmitted P-wave slowness vector into homogenous and inhomogeneous
parts,

qPAH2 = −1

2
Q−1

P2

cos θP2

VP2

− 1

2

sin θP2

VP2

tan θP2(QP2 −QP1) (15)

qPAIH2 = −1

2
Q−1

P1

cos θP1

VP1

tan θP2 tan δP1 (16)

respectively. Similarly for the reflected S-wave we obtain

qSAH1 = −1

2
Q−1

S1

cos θS1

VS1

− 1

2

sin θS1

VS1

tan θS1(QS1 −QP1) (17)

qSAIH1 = −1

2
Q−1

P1

cos θP1

VP1

tan θS1 tan δP1, (18)

and for the transmitted S-wave

qSAH2 = −1

2
Q−1

S2

cos θS2

VS2

− 1

2

sin θS2

VP2

tan θS2(QS2 −QP1) (19)

qPAIH2 = −1

2
Q−1

P1

cos θP1

VP1

tan θS2 tan δP1. (20)

These relations separate the homogeneous from the inhomogeneous components of the
slownesses, in the sense that for a purely homogeneous P-wave, with zero attenuation an-
gle δP1 = 0, the components labelled inhomogeneous vanish. Let us next use this complex
Snell’s law decomposition procedure for viscoelastic ray parameters and vertical slow-
nesses to analyze the viscoelastic reflectivity.

DECOMPOSITION OF SOLUTIONS OF THE VISCOELASTIC ZOEPPRITZ
EQUATIONS

Our interest is to be able to separately analyze and predict behaviour of the homo-
geneous versus inhomogeneous components of viscoelastic waves having reflected from
and transmitted through a planar boundary. Consider two homogeneous viscoelastic half-
spaces, in which the upper half-space is characterized by the density ρ1, P-wave velocity
VPE, S-wave velocity VSE, P-wave quality factor QP and S-wave quality factor QS. Each of
these experiences a jump in transitioning to the lower half-space, where the parameters are
labelled with the subscript 2. A plane P-wave incident on the boundary between the two
half-spaces generates reflected and transmitted P- and S-waves. Solutions of the purely
elastic-isotropic Zoeppritz equations can be straightforwardly extended to correspond to
exact PP and PS reflection coefficients in this viscoelastic case. This is done by substitut-
ing the complex ray parameter, slowness vector and velocities discussed in the previous
section.

These solutions are complicated nonlinear functions of the changes in both elastic and
anelastic parameters (Aki and Richards, 2002; Ikelle and Amundsen, 2005; Moradi and
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Shale Salt Limestone Limestone(gas)
VPE(km/s) 3.811 4.537 5.335 5.043
VSE(km/s) 2.263 2.729 2.957 2.957
ρ(gm/cm3) 2.40 2.005 2.65 2.49

Table 1. Density, P and S-wave velocity used in the numerical tests for shale, salt, limestone and
limestone(gas). For all models we assumed the P- and S-wave quality factors as QS1 = 5, QS2 = 7,
QP1 = 9 and QP2 = 11.

Innanen, 2016):

RPP =
c1d2 − c3d4

d1d2 + d3d4

, (21)

RPS = −
(
VP1

VS1

)
c3d1 + c1d3

d1d2 + d3d4

(22)

where

d1 = −2p2∆M(qP1 − qP2) + (ρ1qP2 + ρ2qP1), (23)

d3 = −p
[
2∆M(qP1qS2 + p2)−∆ρ

]
, (24)

and where d2 = d1 (but with qP → qS), d4 = d3 (with qP ↔ qS), c1 = d1 (with qP2 →
−qP2), c2 = d2 (with qS2 → −qS2), c3 = d3 (with qP1 → −qP1), and c4 = d4 (with
qS1 → −qS1). In above equations ∆ρ = ρ2 − ρ1 is the difference between the density in
lower and upper media and ∆M = ∆µ + i∆µA is the change in the complex modulus
across the boundary:

∆µE = ρ2V
2
SE2 − ρ1V

2
SE1 = µE2 − µE1, (25)

and
∆µA = ρ2V

2
SE2Q

−1
S2 − ρ1V

2
SE1Q

−1
S1 = Q−1

S2µE2 −Q−1
S1µE1. (26)

In Figure 3 the real parts of reflection coefficients for PP and PS modes at boundaries be-
tween two viscoelastic half-spaces, with quality factors near and below 10, are plotted.
The elastic properties are selected to correspond with natural geological boundaries as dis-
cussed below. The coefficients are plotted three times each, with attenuation angle varying
from 0◦, to 45◦, and to 70◦; and angles of incidence up to 40◦ are included. The solid line
refers to the homogeneous wave with zero attenuation angle; the dotted line is the inhomo-
geneous wave with moderate incident attenuation angle δP = 45◦ and the dashed line is the
highly attenuative wave with δP = 70◦. The reflectivity curves in the homogeneous and
moderate attenuation cases approach each other near normal incidence, but in general the
attenuation angle can be seen to have a significant impact on reflection amplitudes. For the
PP-reflection coefficients and shale/salt and shale/limestone models, the attenuation angle
has its largest influence for angles greater than 20◦.

The influence of anelastic parameters and attenuation angles on the reflection coeffi-
cients in equations (21) and (22) is not easy to analyze in this unaltered form. To address
this we decompose the reflectivity into three components, elastic, anelastic homogeneous
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FIG. 3. Comparing the real part of the exact viscoelastic PP-reflectivity for δP = 0◦, 45◦, 70◦ for four
selected models from table 1.

and anelastic inhomogeneous. We insert the decomposed ray and slowness parameters
calculated in previous section into di and ci, obtaining

dj = dEj + idHj + idIHj, (27)
cj = cEj + icH4 + icIHj, j = 1, 2, 3, 4. (28)

The detailed form of d1, for instance, is

dE
1 =− 2p2

E∆µE(qE
P1 − qE

P2) + (ρ2q
E
P1 + ρ1q

E
P2)

dH
1 =− 2p2

E∆µE(qH
P1 − qH

P2)− 2(p2
E∆µA + 2pEpH∆µE)(qE

P1 − qE
P2) + ρ2q

H
P1 + ρ1q

H
P2

dIH
1 =− 2p2

E∆µE(qIH
P1 − qIH

P2)− 4pEpIH∆µE(qE
P1 − qE

P2) + ρ2q
IH
P1 + ρ1q

IH
P2.

More detail of dependency of this parameters to the medium properties can be found in
Appendix A. To compute the decomposed reflectivity we note that in low-loss viscoelas-
tic media all terms involving the product of homogeneous and inhomogeneous terms are
negligible (for instance, dHdIH ≈ (dH)2 ≈ (dIH)2 ≈ 0). Taking into account the low-loss
aspect of the media, and inserting (27) to (28) into the (21) and (22), we arrive at

RPP = RE
PP + iRH

PP + iRIH
PP, (29)

RPS = RE
PS + iRH

PS + iRIH
PS, (30)

where RE
PP is the elastic reflectivity, i.e., the reflectivity in the absence of attenuation:

RE
PP =

cE1dE2 − cE3dE4

dE1dE2 + dE3dE4

,
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RH
PP is the homogeneous anelastic term, i.e., the term which remains when the attenuation

angle is zero,

RH
PP =− RE

PP

dE2dH1 + dE1dH2 + dE3dH4 + dE4dH3

dE1dE2 + dE3dE4

− cE3dH4 + cH3dE4 − cH1dE2 − cE1dH2

dE1dE2 + dE3dE4

and finally RIH
PP, the inhomogeneous term which appears with non-zero attenuation angle,

RIH
PP =− RE

PP

dE2dIH1 + dE1dIH2 + dE3dIH4 + dE4dIH3

dE1dE2 + dE3dE4

− cE3dIH4 + cIH3dE4 − cIH1dE2 − cE1dIH2

dE1dE2 + dE3dE4

.

In the same way three components of PS-reflectivity are

RE
PS = −

(
VPE1

VSE1

)
cE3dE1 + cE1dE3

dE1dE2 + dE3dE4

RH
PS =

1

2

(
Q−1
P1 −Q

−1
S1

)
RE

PS

− RE
PS

dE1dH2 + dE3dH4 + dH1dE2 + dH3dE4

dE1dE2 + dE3dE4

−
(
VPE1

VSE1

)
cE3dH1 + cE1dH3 + cH3dE1 + cH1dE3

dE1dE2 + dE3dE4

RIH
PS = −RE

PS

dE1dIH2 + dE3dIH4 + dIH1dE2 + dIH3dE4

dE1dE2 + dE3dE4

−
(
VPE1

VSE1

)
cE3dIH1 + cE1dIH3 + cIH3dE1 + cIH1dE3

dE1dE2 + dE3dE4

.

In summary, the viscoelastic reflection coefficients have real and imaginary parts, with
the real part being identical to the solutions of the elastic Zoeppritz equations, and the
imaginary part with a more complicated structure, depending on the elastic, anelastic terms
as well as the attenuation angle.

THE VISCOELASTIC SHUEY APPROXIMATION

Linearized approximate forms of the solutions to the Zoeppritz equations are typically
used in AVO analysis and inversion (Aki and Richards, 2002; Castagna and Backus, 1993;
Foster et al., 2010). A range of linearized forms are available, distinguished by their treat-
ment of the plane wave incidence angle and their parameterization of elastic properties
and their variation across the reflecting interface; amongst these the Shuey approximation
(Shuey, 1985) is one of the most frequently used. Ideally a linearized form (1) only differs
from the exact solution by a small amount in the regions (e.g., angle-range) it is employed,
(2) provides an intuitive interpretability, (3) leads to stable inversion algorithms, and (4)
correctly predicts the main reflection phenomena observed in seismic data. In this section
we review and decompose the viscoelastic version of this approximation.
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There are two main assumptions made in deriving the equations of linear AVO analysis,
firstly, that the relative changes in properties (elastic or anelastic) across the interface are
small, and secondly, that the incident angle is well below the critical angle. The small-
offset linearized P-to-P reflection coefficient for an inhomogeneous seismic wave reflected
from boundary of two isotropic viscoelastic media under the assumption of small contrast
interface is given by (Moradi and Innanen, 2016)

RPPL = RE
PPL + iRH

PPL + iRIH
PPL, (31)

where the real part is

RE
PPL =

1

2

(
∆ρ

ρ
+

1

cos2 θP

∆VP

VP

)
− 2 sin2 θP

(
VS

VP

)2(
∆ρ

ρ
+ 2

∆VS

VS

)
(32)

the homogeneous-imaginary part RH
PP is

RH
PPL =− 2

(
VS

VP

)2

(Q−1
S −Q

−1
P ) sin2 θP

(
∆ρ

ρ
+ 2

∆VS

VS

)
(33)

− 1

4 cos2 θP

Q−1
P

∆QP

QP

+ 2 sin2 θP

(
VS

VP

)2

Q−1
S

∆QS

QS

. (34)

and the inhomogeneous-imaginary part RIH
PP is

RIH
PPL =−Q−1

P tan δP

[
sin 2θP

(
VS

VP

)2(
∆ρ

ρ
+ 2

∆VS

VS

)
− tan θP

2 cos2 θP

∆VP

VP

]
. (35)

Here ∆ρ/ρ is fractional change in density, with ∆ρ = ρ2−ρ1 and ρ = (ρ2+ρ1)/2; ∆VP/VP

is fractional change in P-wave velocity, with ∆VP = VP2 − VP1 and VP = (VP2 + VP1)/2;
∆VS/VS is fractional change in S-wave velocity, with ∆VS = VS2 − VS1 and VS = (VS2 +
VS1)/2; ∆QP/QP is fractional change in P-wave quality factor, with ∆QP = QP2 − QP1

and QP = (QP2 + QP1)/2; ∆QS/QS is fractional change in S-wave quality factor, with
∆QS = QS2−QS1 and QS = (QS2 +QS1)/2. In addition θP = (θP2 + θP1)/2 where θP1 is
the incident phase angle and θP2 is the transmitted phase angle; δP = (δP2 + δP1)/2 where
δP1 is the incident attenuation angle and δP2 is the transmitted attenuation angle. Subscript
1 refers to the upper layer and subscript 2 refers to the lower layer. It can be seen that
the anelastic-inhomogeneous term is a function of the fractional changes in density, P- and
S-wave velocities.

Equations (31-35) can be rearranged in powers of sin θP and tan θP:

RPPL(θP, δP) = RE
PP(θP) + iRH

PPL(θP) + iRIH
PPL(θP, δP), (36)

with elastic, anelastic-homogenous and anelastic-inhomogeneous terms given by

RE
PPL(θP) = AE

PP +BE
PP sin2 θP + CE

PP(tan2 θP − sin2 θP ), (37)

RH
PPL(θP) = AH

PP +BH
PP sin2 θP + AH

PP(tan2 θP − sin2 θP ), (38)

RIH
PPL(θP, δP) = AIH

PP tan θP +BIH
PP tan θP sin2 θP + CIH

PP tan θP(tan2 θP − sin2 θP), (39)
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FIG. 4. Comparing the two and three term AVO responses for the decomposed PP reflectivity.
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where the elastic constants are

AE
PP =

1

2

[
∆ρ

ρ
+

∆VP

VP

]
BE

PP =
1

2

∆VP

VP

− 2

(
VS

VP

)2 [
∆ρ

ρ
+ 2

∆VS

VS

]
CE

PP =
1

2

∆VP

VP

,

the homogeneous constants are

AH
PP = −1

4
Q−1

P

∆QP

QP

BH
PP = −2

(
VS

VP

)2 [
(Q−1

P −Q
−1
S )

(
∆ρ

ρ
+ 2

∆VS

VS

)
+Q−1

S

∆QS

QS

]
− 1

4
Q−1

P

∆QP

QP

,

and the inhomogeneous constants are

AIH
PP = Q−1

P tan δP

[
1

2

∆VP

VP

− 2

(
VS

VP

)2(
∆ρ

ρ
+ 2

∆VS

VS

)]

BIH
PP = Q−1

P tan δP

[
1

2

∆VP

VP

+ 2

(
VS

VP

)2(
∆ρ

ρ
+ 2

∆VS

VS

)]

CIH
PP = Q−1

P tan δP
1

2

[
∆VP

VP

]
.

Equations (37)-(39) are arranged in such a way that successive terms grow in importance as
the angle of incidence grows. These equations are the generalization of the Shuey approx-
imation to viscoelastic media. For each of the elastic, homogeneous and inhomogeneous
parts, the first term corresponds to reflection coefficient at normal incidence. The second
term is called the AVO gradient, and the third term, which becomes important for wide
angles of incidence (roughly θP > 30◦) is called the curvature. We note that the inhomoge-
neous term at normal incidence is zero, indicating that to leading order contributions from
the attenuation angle should not be expected in the PP-reflectivity at normal incidence.

The linearized forms also make qualitatively clear aspects of the dependence of the re-
flection strengths on the physical properties above and below the interface. The elastic part
of the reflectivity is sensitive to changes in density, P- and S-wave velocities and has a non
zero value for waves at normal incidence. The anelastic-homogeneous term is sensitive
to changes in density, S-wave velocity, P-wave quality factor and S-wave quality factor.
At normal incidence this term is not zero, but, only a change in P-wave quality factor in-
fluences it. The inhomogeneous term is nonzero and sensitive to changes in density, P-
and S-wave velocities; it is zero at normal incidence. We show later that the inhomoge-
neous term is a function of incidence angle, a property shared by the elastic and anelastic
converted P-wave.
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In Figure (4) we compare the relative importance of the three terms in the AVO re-
sponses expressed in equations (37) – (39). For elastic and homogeneous terms the contri-
butions of the curvature at angles θP < 20◦ is negligible. Increasing the incidence angle,
this term becomes relevant beyond θP > 30◦. The three components of the PP-reflection
coefficient are illustrated in Figure (6). The elastic component shows a significant increase
in accuracy moving from the two-term approximation (intercept and gradient) to the three-
term approximation (including the curvature). The homogeneous component in isolation
deviates only slightly from the exact solution for angles up to 20◦ except in the case of the
limestone/salt model. In Figure (6c), we observe that the approximate form of the inhomo-
geneous component of the reflection coefficient deviates significantly from the exact result
for all but the shale/salt model with incidence angles up to 20◦.

In Figure 7a, b, and c, we plot the exact versus linearized P-to-P reflectivity for the three
single-interface models in Table 1. For elastic and homogeneous parts of the reflectivity,
the linearity with respect to sin2 θP can be seen explicitly. The inhomogeneous term RIH

PP

is not a linear function of sin2 θP, but linearity can be enforced through the normalization

RIH
PPN =

RIH
PP

tan θP

, θP 6= 0. (40)

The exact and approximate inhomogeneous reflectivities, introduced in equation (40), are
plotted in Figure 7d. The RIH

PPN term is evidently linear with respect to sin2 θP in the range
0 ≤ θP ≤ 25◦. Using the decomposition defined in equation (5), and the terms plotted in
Figure 8, we can obtain the zero offset coefficients A and gradient terms B from the exact
reflectivity. Contour maps, illustrating the variability of the inhomogeneous component of
the P-to-P reflectivity versus phase and attenuation angles, are plotted in Figure 5.

CONVERTED WAVE APPROXIMATIONS

By solving the Zoeppritz equation for two half-spaces involving low-loss viscoelastic
media, we can obtain exact expressions for the PP- and PS-reflection coefficients (Moradi
and Innanen, 2015a, 2016). To linearize the reflectivities in terms of changes in elastic and
anelastic properties, we assume the incidence angle to be smaller that 30◦, and also that the
relative change in all elastic/anelastic properties are much less than one. In this paper, to
treat the case of the converted wave, we use the appropriate version of Snell’s law to obtain
an expression for the S-wave attenuation angle, appropriate for small angles of incidence,
which is written as a function of the incident phase and attenuation angles (Appendix ).
The weak-contrast converted-wave reflectivity is then given by

RPS = RE
PS + iRH

PS + iRIH
PS, (41)

where the real part is

RE
PS =− tan θS

1

2

VP

VS

∆ρ

ρ
− tan θS cos(θP + θS)

(
∆ρ

ρ
+ 2

∆VS

VS

)
, (42)

the homogeneous-imaginary part RH
PP is

RH
PS =− 1

4
tan θS(Q−1

P −Q
−1
S )

VP
VS

∆ρ

ρ
+Q−1

S tan θS cos(θP + θS)
∆QS

QS

, (43)
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FIG. 8. Components of the PS-reflection coefficients versus incident angle and sin2 θP for three two
layer mineral models introduced in table 1. Solid line represent the exact reflectivity calculated from
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and the inhomogeneous-imaginary part RIH
PP is

RIH
PS =− 1

4
Q−1
S tan δS

1

cos2 θS

VP
VS

∆ρ

ρ
(44)

− 1

2
Q−1
S tan δS

cos(θP + θS)

cos2 θS

(
∆ρ

ρ
+ 2

∆VS

VS

)
(45)

+
1

2
tan θS sin(θP + θS)(Q−1

S tan δS +Q−1
P tan δP )

(
∆ρ

ρ
+ 2

∆VS

VS

)
. (46)

This approximate PS-reflectivity is a function of density, S-wave velocity and S-wave qual-
ity factors. Snell’s law relates the reflected and transmitted phase and attenuation angles
to the incident phase and attenuation angles. In order to analyze the converted-wave re-
flection coefficient properly in the lowest order, using the Snell’s law the average S-wave
attenuation angle for small angles of incidence is written as a function of incident phase
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and attenuation angles:

Q−1
S tan δS =

VS
VP
Q−1
P tan δP (47)

+
VS
VP

(Q−1
S −Q

−1
P ) sin θP (48)

− 1

2

VS
VP

[
1−

(
VS
VP

)2
]
Q−1
P tan δP sin2 θP (49)

+
1

2

(
VS
VP

)3

(Q−1
S −Q

−1
P ) sin3 θP . (50)

Then, using standard approximations for trigonometric functions for small angles, and col-
lecting the powers of sin θP, we obtain

RPS(θP, δP) = RE
PS(θP) + iRH

PS(θP) + iRIH
PS(θP, δP), (51)

where the elastic, homogenous and inhomogeneous terms are given by

RE
PS(θP) = AE

PS sin θP +BE
PS sin3 θP,

RH
PS(θP) = AH

PS sin θP +BH
PS sin3 θP,

RIH
PS(θP, δP) = AIH

PS +BIH
PS sin2 θP ,

with elastic constants

AE
PS =−

(
1

2
+
VS

VP

)
∆ρ

ρ
− 2

VS

VP

∆VS

VS

,

BE
PS =

VS

VP

[(
1

2
+

3

4

VS

VP

)
∆ρ

ρ
+ 2

[
1

2
+
VS

VP

]
∆VS

VS

]
,

homogeneous constants

AH
PS =

VS

VP

{
Q−1
S

∆QS

QS

− 1

2
(Q−1

S −Q
−1
P )

(
∆ρ

ρ
+ 2

∆VS

VS

)}
,

BH
PS =− VS

VP

[
1

2
+
VS

VP

]
Q−1
S

∆QS

QS

− 1

4

(
VS

VP

)2

(Q−1
S −Q

−1
P )

∆ρ

ρ

+
1

4

VS
VP

(
1 + 4

VS

VP

)
(Q−1

S −Q
−1
P )

(
∆ρ

ρ
+ 2

∆VS

VS

)
,
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and inhomogeneous constants

AIH
PS =− 1

2

VS
VP

[(
1 +

1

2

VP
VS

)
∆ρ

ρ
+ 2

∆VS

VS

]
Q−1
P tan δP ,

BIH
PS =

1

8

[
1− 3

(
VS
VP

)2
]

∆ρ

ρ
Q−1
P tan δP

+
VS
VP

(
1 +

3

2

VS

VP

)(
∆ρ

ρ
+ 2

∆VS

VS

)
Q−1
P tan δP .

The elastic term is seen to be sensitive to changes in density and S-wave velocity. The
anelastic-homogeneous term is likewise seen to be sensitive to changes in density, S-wave
velocity and its quality factor. These two terms are zero at normal incidence. The anelastic-
inhomogeneous term is affected only by changes in density and S-wave velocity. This term
also depends on the incident attenuation angle and is non zero at the normal incidence case;
we note that this makes it quite singular in the standard converted wave AVO problem,
wherein no contribution at normal incidence is ever predicted.

In Figure 8, we plot the exact versus linearized elastic, anelastic homogeneous and
anelastic inhomogeneous terms for the three models in Table 1. We observe that the elastic
and homogenous terms are not linear in sin2 θP , and the inhomogeneous terms is. Thus we
also define normalized elastic and homogeneous reflectivities as

RE
PSN(θP) =

RE
PS(θP)

sin θP

, RH
PSN(θP) =

RH
PS(θP)

sin θP

. (52)

CONCLUSIONS

The formulation of the amplitude-versus-offset equations for viscoelastic media is of
increasing interest and importance, with quantitative interpretation of seismic data being
deployed to characterize fluid presence, type, and viscosity in hydrocarbon reservoirs, CO2

injection sites, and other exploration and monitoring settings. Properly formulated, these
equations also provide insights into the character of eventual viscoelastic full waveform
inversion algorithms. To date, investigations and analysis of anelastic reflection coefficients
have been constructed on the assumption that the attenuation angle is unchanged across the
boundary, which cannot be generally justified. We believe that a more fruitful approach
approach is to apply an appropriate version of Snell’s law in such way that transmitted
and reflected attenuation angles are expressed in terms of the incident attenuation angle.
This approach allows changes in attenuation angle to be expressed in terms of changes in
velocity and quality factors, leading to new terms in the relevant AVO equations with a
wider capture of anelastic reflection and transmission phenomena incorporated.

We show how Snell’s law can be put to work in order to learn about the homogeneous
and inhomogeneous components of complex vertical slowness. We have presented a de-
composition of the exact and approximate viscoelastic reflection coefficients to expose the
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above discussed of the attenuation angle, demonstrating the possibly significant errors re-
sulting from its neglect, in particular in cases of for highly attenuative media.

Linearization of reflection coefficients in viscoelastic media is more complicated than
in elastic media in two ways. First, because of seismic amplitude damping, the polarization
and slowness vectors are complex, and therefore so is the reflectivity. Second, we have
as discussed the perturbation of the attenuation angle across the boundary, as predicted by
the viscoelastic Snell’s law. Taking into account these facts, the linearized AVO equations
include the terms related to the changes in S-wave quality factors and the attenuation angle.

To to understand quantitatively and qualitatively the importance and influence of the
attenuation angle, we decompose the reflectivity into three terms, elastic, homogeneous
and inhomogeneous. Linearity of the elastic and homogeneous parts are visible; the inho-
mogeneous part must be normalized to share this feature. In terms of powers of sin θP, the
converted PS-wave has four contributions, from zeroth to third order. The extra terms are
due to the inhomogeneity of the waves. We examine our AVO equation with three two-half
space models. Numerically, we find that the elastic and homogeneous terms are not linear
with respect to sin2 θP, however the inhomogeneous term for small angles (θP < 30◦) is
perfectly linear for both exact and approximate cases. The most striking feature of this
model of reflections from viscoelastic targets is that a non-zero converted wave at normal
incidence is predicted, connected to the attenuation angle.

The result presented in this research indicate that linearized reflection coefficients for
inhomogeneous PP-wave match for most inverse schemes the exact reflection coefficients
with adequate accuracy. More important, the new approximations and the decomposition
of reflectivity into three terms indicate that intercepts and gradients can be used in future
research to determine the quality factor and attenuation angle in an appropriate inversion
strategy.
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COMPLEX COEFFICIENTS

Decomposition of the complex coefficients in reflection functions (21) and (22) are
given by

d1 =dE
1 + idH

1 + idIH
1 ,

where

dE
1 =− 2p2

E∆µE(qE
P1 − qE

P2) + (ρ2q
E
P1 + ρ1q

E
P2)

dH
1 =− 2p2

E∆µE(qH
P1 − qH

P2)− 2(p2
E∆µA + 2pEpH∆µE)(qE

P1 − qE
P2) + ρ2q

H
P1 + ρ1q

H
P2

dIH
1 =− 2p2

E∆µE(qIH
P1 − qIH

P2)− 4pEpIH∆µE(qE
P1 − qE

P2) + ρ2q
IH
P1 + ρ1q

IH
P2
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also

d2 =dE
2 + idH

2 + idIH
2 ,

where

dE
2 =− 2p2

E∆µE(qE
S − qE

S2) + (ρ2q
E
S1 + ρ1q

E
S2)

dH
2 =− 2p2

E∆µE(qH
P1 − qH
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E∆µA + 2pEpH∆µE)(qE
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S2) + ρ2q

H
S1 + ρ1q

H
S2

dIH
2 =− 2p2

E∆µE(qIH
S1 − qIH

S2 )− 4pEpIH∆µE(qE
S1 − qE

S2) + ρ2q
IH
S1 + ρ1q

IH
S2

also

d3 =dE
3 + idH

3 + idIH
3 ,

where

dE
3 =− pE

[
2∆µE(qE

P1q
E
S2 + p2)−∆ρ

]
dH

3 =− 2(pE∆µA + pH∆µE)(qE
P1q

E
S2 + p2

E)− 2pE∆µE(2pEpH + qH
P1q

E
S2 + qE

P1q
H
S2) + pH∆ρ

dIH
3 =− 2pIH∆µE(qE

P1q
E
S2 + p2

E)− 2pE∆µE(qIH
P1q

E
S2 + qE

P1q
IH
S2 ) + pIH∆ρ

also

d4 =dE
4 + idH

4 + idIH
4 ,

where

dE
4 =− pE

[
2∆µE(qE

P2q
E
S1 + p2)−∆ρ

]
dH

4 =− 2(pE∆µA + pH∆µE)(qE
P2q

E
S1 + p2

E)− 2pE∆µE(2pEpH + qH
P2q

E
S1 + qE

P2q
H
S1) + pH∆ρ

dIH
4 =− 2pIH∆µE(qE

P2q
E
S1 + p2

E)− 2pE∆µE(qIH
P2q

E
S1 + qE

P2q
IH
S1 ) + pIH∆ρ

also

c1 =cE
1 + icH

1 + icIH
1 ,

where

cE
1 =− 2p2

E∆µE(qE
P1 + qE

P2) + (ρ2q
E
P1 − ρ1q

E
P2)

cH
1 =− 2p2

E∆µE(qH
P1 + qH

P2)− 2(p2
E∆µA + 2pEpH∆µE)(qE

P1 + qE
P2) + ρ2q

H
P1 − ρ1q

H
P2

cIH
1 =− 2p2

E∆µE(qIH
P1 + qIH

P2)− 4pEpIH∆µE(qE
P1 + qE

P2) + ρ2q
IH
P1 − ρ1q

IH
P2

also

c2 =cE
2 + icH

2 + icIH
2 ,
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where

cE
2 =− 2p2

E∆µE(qE
S + qE

S2) + (ρ2q
E
S1 − ρ1q

E
S2)

cH
2 =− 2p2

E∆µE(qH
P1 + qH

P2)− 2(p2
E∆µA + 2pEpH∆µE)(qE

S1 + qE
S2) + ρ2q

H
S1 − ρ1q

H
S2

cIH
2 =− 2p2

E∆µE(qIH
S1 + qIH

S2 )− 4pEpIH∆µE(qE
S1 + qE

S2) + ρ2q
IH
S1 − ρ1q

IH
S2

also

c3 =cE
3 + icH

3 + icIH
3 ,

where

cE
3 =pE

[
2∆µE(qE

P1q
E
S2 − p2) + ∆ρ

]
cH

3 =2(pE∆µA + pH∆µE)(qE
P1q

E
S2 − p2

E)− 2pE∆µE(2pEpH − qH
P1q

E
S2 − qE

P1q
H
S2) + pH∆ρ

cIH
3 =2pIH∆µE(qE

P1q
E
S2 − p2

E) + 2pE∆µE(qIH
P1q

E
S2 + qE

P1q
IH
S2 ) + pIH∆ρ

also

c4 =cE
4 + icH

4 + icIH
4 ,

where

cE
4 =pE

[
2∆µE(qE

P2q
E
S1 + p2) + ∆ρ

]
cH

4 =2(pE∆µA + pH∆µE)(qE
P2q

E
S1 − p2

E)− 2pE∆µE(2pEpH − qH
P2q

E
S1 − qE

P2q
H
S1) + pH∆ρ

cIH
4 =2pIH∆µE(qE

P2q
E
S1 − p2

E) + 2pE∆µE(qIH
P2q

E
S1 + qE

P2q
IH
S1 ) + pIH∆ρ

TRIGONOMETRIC FUNCTIONS FOR SMALL ANGLES

For small angle of incident θP we can write

1

cos2 θP

≈ 1 + sin2 θP (53)

cos θP ≈ 1− 1

2
sin2 θP (54)

1

cos θP

≈ 1 +
1

2
sin2 θP (55)

tan θP ≈ sin θP +
1

2
sin3 θP (56)

sin 2θP ≈ 2 sin θP − sin3 θP (57)
tan θP

cos2 θP

≈ sin θP +
3

2
sin3 θP (58)
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sin θS =
VS

VP

sin θP (59)

cos θS ≈ 1− 1

2

(
VS

VP

)2

sin2 θP (60)

1

cos θS

≈ 1 +
1

2

(
VS

VP

)2

sin2 θP (61)

1

cos2 θS

≈ 1 +

(
VS

VP

)2

sin2 θP (62)

tan θS ≈
VS

VP

sin θP

(
1 +

1

2

(
VS

VP

)2

sin2 θP

)
(63)

cos(θS + θP) ≈ 1− 1

2
sin2 θP

[
1 +

VS

VP

]2

(64)

sin(θS + θP) ≈
[
1 +

VS

VP

]
sin θP

(
1 +

1

2

VS

VP

sin2 θP

)
(65)

tan θS cos(θS + θP) ≈ VS

VP

sin θP

(
1−

[
1

2
+
VS

VP

]
sin2 θP

)
(66)

cos(θS + θP)

cos2 θS

≈ VS

VP

[
1 +

VS

VP

]
sin2 θP (67)

LINEARIZATION PROCEDURE IN VISCOELASTIC MEDIA

First consider to the perturbations in elastic and anelastic properties. Subscript 1 refers
to the upper layer(medium 1) and subscribe 2 refers to the lower layer (medium 2). ∆
means difference between the properties in medium 2 and medium 1 and superscript L
denotes the linearized form. In the linearization procedure ∆2 = 0. Properties without
index means the average in properties.

Property Layer 1 Layer2
Density ρ− ∆ρ

2
ρ+ ∆ρ

2

P-wave velocity VPE − ∆VPE

2
VPE + ∆VPE

2

S-wave velocity VSE − ∆VSE
2

VSE + ∆VSE
2

P-wave quality factor QP − ∆QP

2
QP + ∆QP

2

S-wave quality factor QS − ∆QS

2
QS + ∆QS

2

P-wave phase angle θP − ∆θP
2

θP + ∆θP
2

S-wave phase angle θS − ∆θS
2

θS + ∆θS
2

P-wave attenuation angle δP − ∆δP
2

δP + ∆δP
2

S-wave attenuation angle δS − ∆δS
2

δS + ∆δS
2
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Trigonometric functions in this procedures for attenuation angle are given by

cos δn = cos δP

(
1 + (−)n+1 tan δ

∆δ

2

)
, (68)

sin δn = sin δP

(
1− (−)n+1 1

tan δ

∆δ

2

)
, (69)

tan δn = tan δP

(
1− (−)n+1 1

tan δ
∆δ

)
, n = 1, 2 (70)

(71)

The real part of the Snell’s law for P-wave results

sin θP1

VP1

=
sin θP2

VP2

, (72)

where θP1 is incident angle and θP2 is transmitted phase angle, using the perturbed term in
table () we obtain the change in P-wave phase angle across the boundary in terms of change
in the P-wave velocity

∆θP =
∆VP

VP

tan θP, (73)

Imaginary part of the Snell’s law for P-wave is given by

Q−1
P1

VP1

(sin θP1 − cos θP1 tan δP1) =
Q−1

P2

VP2

(sin θP2 − cos θP2 tan δP2) (74)

Using the perturbation terms in table (), we obtain the changes in P-wave attenuation angle
across the boundary in terms of changes in phase angle, P-wave velocity and P-wave quality
factor

∆δP =
1

2
sin 2δP

{
∆VP

VP

1

cos2 θP

+

(
1− tan θP

tan δP

)
∆QP

QP

}
, (75)

Let us consider to the linearization of the vertical slowness

qP = qPE + iqPAH + iqPAIH,

where

qPE =
cos θP

VP

qPAH = −Q
−1
P

2

cos θP

VP

qPAIH = −1

2
Q−1

P tan δP
sin θP

VP

To obtain the linearized form of vertical slownesses we note that we have to linearize the
summation of homogeneous and inhomogeneous term

qPAH1 + qPAIH1 −→ qL
PAH1 + qL

PAIH1 (76)
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In other words

qPAH1 6= qL
PAH1

qPAIH1 6= qL
PAIH1

Now the vertical slowness for incident P-wave is given by

qP1 = qPE1 + iqPAH1 + iqPAIH1,

where

qPE1 =
cos θP1

VP1

qPAH1 = −Q
−1
P1

2

cos θP1

VP1

qPAIH1 = −1

2
Q−1

P1 tan δP1
sin θP1

VP1

Using the linearized form of the angles and P-wave velocity and P-wave quality factor we
have

qL
PE1 = qPE

(
1 +

1

2 cos2 θP

∆VP

VP

)
qL

PAH1 = qPAH

(
1 +

1

2 cos2 θP

[
∆VP

VP

+
∆QP

QP

])
qL

PAIH1 = qPAIH

(
1− 1

2 cos2 θP

∆VP

VP

)

Transmitted P-wave

qL
PE2 = qPE

(
1− 1

2 cos2 θP

∆VP

VP

)
qL

PAH2 = qPAH

(
1− 1

2 cos2 θP

[
∆VP

VP

+
∆QP

QP

])
qL

PAIH2 = qPAIH

(
1 +

1

2 cos2 θP

∆VP

VP

)

Incident S-wave

qL
SE1 = qSE

(
1 +

1

2 cos2 θS

∆VS

VS

)
qL

SAH1 = qSAH

(
1 +

1

2 cos2 θS

[
∆VS

VS

+
∆QS

QS

])
qL

SAIH1 = qSAIH

(
1− 1

2 cos2 θS

∆VS

VS

)
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Transmitted S-wave

qL
SE2 = qSE

(
1− 1

2 cos2 θS

∆VS

VS

)
qL

SAH2 = qSAH

(
1− 1

2 cos2 θS

[
∆VS

VS

+
∆QS

QS

])
qL

SAIH2 = qSAIH

(
1 +

1

2 cos2 θS

∆VS

VS

)

The complex shear modulus can be written as a real and imaginary part

µ = µE + iµA, (77)

where µE = ρV 2
S and µA = ρ QSV

2
S . Now we linearized the shear modulus

µ1 =µE1 + iµA1

µ2 =µE2 + iµA2

where

µE1 =µE

(
1− 1

2

[
∆ρ

ρ
+ 2

∆VS

VS

])
µE2 =µE

(
1 +

1

2

[
∆ρ

ρ
+ 2

∆VS

VS

])
µA1 =µA

(
1− 1

2

[
∆ρ

ρ
+ 2

∆VS

VS

− ∆QS

QS

])
µA2 =µA

(
1 +

1

2

[
∆ρ

ρ
+ 2

∆VS

VS

− ∆QS

QS

])

Now we have

∆µE =µE

[
∆ρ

ρ
+ 2

∆VS

VS

]
∆µA =µA

[
∆ρ

ρ
+ 2

∆VS

VS

− ∆QS

QS

]
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