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ABSTRACT

Full-waveform inversion methods allow to provide high-resolution estimates of subsur-
face elastic properties, which are very important for reservoir characterization. However,
multi-parameter FWI suffers from parameter crosstalk artifacts arising from the inherent
ambiguities (or coupling effects) among different physical parameters, which significantly
increase the non-linearity of the inverse problems. For multi-parameter acoustic FWI, den-
sity is difficult to be inverted, which maybe caused by the strong parameter trade-off from
velocity. Different parameterizations have different resolving abilities. An appropriate pa-
rameterization in multi-parameter FWI can help avoid parameter crosstalk and reconstruct
the model parameters efficiently. Scattering patterns due to different physical parameters
have been employed to study the resolving abilities of different parameterizations. In this
research, we will illustrate the scattering patterns for different parameterizations in acous-
tic media. It has been proved that the second-order derivative (namely Hessian operator) is
capable to suppress the parameter crosstalk artifacts. The Hessian-free optimization meth-
ods are generally employed for avoiding construct the multi-parameter Hessian explicitly.
In this research, we compare the inversion efficiencies of different parameterizations with
different optimization methods for multi-parameter acoustic FWI.

INTRODUCTION

Full-waveform inversion (FWI) methods are promising techniques for providing high-
resolution estimates of subsurface elastic and anisotropic properties (Lailly, 1983; Taran-
tola, 1984; Pratt et al., 1998; Virieux and Operto, 2009). In recent decades, geophysicists
have devoted significant efforts for applying these methods to reconstruct subsurface mod-
els in oil and gas exploration. However, even the mono-parameter FWI, which only tries
to invert P-wave velocity, is difficult to be applied successfully because of cycle-skipping
problem arising from lack of low frequencies and inaccurate initial models. Researchers
have developed various strategies including joint travel time and waveform inversion meth-
ods (Ma and Hale, 2012), envelope misfit function, adaptive matching filtering and extrap-
olated frequencies (Li and Demanet, 2016; Pan et al., 2016c).

FWI methods should also be employed for recovering the subsurface elastic proper-
ties, which are essential for reservoir characterization. The parameter crosstalk artifacts
involved by the inherent ambiguities (or coupling effects) among different physical param-
eters significantly increase the non-linearity of the inverse problems (Operto et al., 2013;
Innanen, 2014a). Density is important fluid reservoir prediction. However, density is very
difficult to be reconstructed due to its insensitivity to travel time and parameter trade-offs
from P-wave and S-wave velocities. In elastic FWI, the strong mapping from S-wave ve-
locity perturbation to density make density difficult to be recovered. In acoustic FWI when
considering variable density, the strong parameter crosstalk between P-wave velocity and
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density make it difficult to invert density.

In multi-parameter FWI, different parameterizations have different resolving abilities.
An appropriate parameterization should have high parameter resolution, which is essential
for effective inversion. Parameter resolution issue based on scattering patterns have been
widely studied for selecting the optimal parameterization for avoiding parameter trade-off.
The scattering patterns represent the analytic solutions of the Fréchet derivative wavefields
due to different physical parameters. The overlapping of the scattering patterns due to dif-
ferent physical parameters indicates the appearance of the parameter crosstalk. In this re-
search, we will examine the efficiencies of different parameterizations for multi-parameter
acoustic FWI.

The second-order partial derivative of the misfit function (namely the Hessian operator)
carries crucial information in the reconstruction process (Santosa and Symes, 1988; Ficht-
ner and Trampert, 2011). The search direction can be significantly enhanced by multiplying
the gradient with the inverse Hessian matrix, which serves as a deconvolution operator for
compensating the geometrical spreading effects and de-blurring the gradient (Pratt et al.,
1998). For multi-parameter FWI, the multi-parameter Hessian is also expected to suppress
parameter crosstalk (or trade-off) (Operto et al., 2013; Innanen, 2014b; Pan et al., 2016b).
Furthermore, the second-order term in the Hessian matrix which accounts for non-linear
scattering effects, can help to remove the second-order scattering artifacts in the gradient
(Pratt et al., 1998; Métivier et al., 2013; Pan et al., 2016b). However, explicit calculation,
storage and inversion of the Hessian at each iteration is computationally impractical for
large-scale inverse problems. Hence, various approaches have been proposed for approx-
imating the Hessian (Shin et al., 2001; Plessix and Mulder, 2004; Tang, 2009; Jun et al.,
2015) or inverse Hessian (Nocedal and Wright, 2006; Nammour and Symes, 2009; De-
manet et al., 2012; Letourneau et al., 2012). In Gauss-Newton method, an approximate
Hessian is introduced by involving only the first-order term and ignoring the second-order
contributions (Pratt et al., 1998).

Instead of constructing the Hessian explicitly, quasi-Newton methods approximate the
inverse Hessian iteratively by storing the model and gradient changes from previous it-
erations (Nocedal and Wright, 2006). One popular quasi-Newton method is the BFGS
method (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). However, the
storage requirement of the inverse Hessian approximation and computation cost of precon-
ditioning for large-scale inverse problems is still very high. To mitigate this difficulty, a
limited-memory BFGS (l-BFGS) method is developed by storing information from a lim-
ited number l (l < 10) of previous iterations (Nocedal, 1980; Byrd et al., 1995; Nocedal
and Wright, 2006). Compared to gradient-based methods, l-BFGS methods provide faster
convergence rates for large-scale inverse problems (Brossier et al., 2010; Ma and Hale,
2012). The convergence performance of l-BFGS method is closely related to the initial
guess of inverse Hessian approximation (Brossier et al., 2009; Guitton and Díaz, 2012).

Hessian-free optimization methods (truncated-Newton or inexact-Newton method) rep-
resent attractive alternatives to the above-described optimization methods (Nash, 1985;
Santosa and Symes, 1988; Nash, 2000; Akcelik et al., 2002; Erlangga and Herrmann, 2009;
Métivier et al., 2012; AlTheyab et al., 2013; Métivier et al., 2014). At each iteration,
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the search direction is computed by approximately solving the Newton equations using a
matrix-free fashion of the conjugate-gradient (CG) algorithm, which is an optimal method
for solving a positive definite system (Nash, 1985; Hu et al., 2009). This linear iterative
solver only requires the Hessian-vector products instead of forming the Hessian operator
explicitly (Fichtner and Trampert, 2011; Métivier et al., 2014; Li and Demanet, 2016). In
this research, the full Hessian is replaced with the Gauss-Newton Hessian, which is al-
ways symmetric and positive semi-definite. To accelerate the Hessian-free Gauss-Newton
method, a l-BFGS inverse Hessian approximation is used to precondition the conjugate-
gradient algorithm for improving the convergence rate and reduce the computational bur-
den (Nash, 2000; Sainath et al., 2013; Pan et al., 2016a).

In multi-parameter FWI, the multi-parameter Hessian has a block structure. The off-
diagonal blocks measure the parameter trade-offs between different physical parameters.
Applying the inverse of the multi-parameter Hessian to precondition the gradient can re-
duce the parameter crosstalk artifacts. Hence, it is very necessary to apply Newton-based
optimization methods for multi-parameter FWI.

In this paper, we first review the forward modelling problem in acoustic media with
variable density and the basic principle of full-waveform inversion. Then, we give the
sensitivity kernels for different parameterizations in multi-parameter acoustic FWI. The
optimization methods including Newton-based methods, gradient-based methods, Quasi-
Newton methods and Preconditioned Hessian-free optimization methods for FWI are ex-
plained. We also show how to construct the multi-parameter Hessian-vector products in
Hessian-free Gauss-Newton methods for different parameterizations. In the numerical
modelling section, we give numerical modelling results of the scattering patterns of dif-
ferent parameterizations in acoustic media. We also compare the inversion results of the
different parameterizations with different optimization methods.

THEORY AND METHODS

Forward modelling in acoustic media with variable density

In the frequency domain, the forward modelling problem in acoustic medium with vari-
able density is governed by the following equation (Marfurt, 1984):

∇ ·
(

1

ρ (x)
∇u(x, xs, ω)

)
+

ω2

κ (x)
u(x, xs, ω) = fs(ω)δ (x− xs) , (1)

where ω is the angular frequency, x = (x, y, z) denotes the subsurface location in Cartesian
coordinates, ∇ is the first order spatial derivative operator, κ = ρv2 is the bulk modulus,
ρ is the density, v is the velocity, u(x, xs, ω) denotes the pressure wavefield at position x,
δ (x− xs) is the Dirac delta function, and fs(ω) means the source signature at position
xs. In this software package, we develop 5-point and 9-point finite difference schemes to
discretize the model (Jo et al., 1996) and a first-order Engquist-Majda boundary condition
is implemented (Engquist and Majda, 1977). Equation (1) can be rewritten in a matrix form
after discretization:

L (m, ω) u(x, xs, ω) = fs(ω)δ (x− xs) , (2)
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where m is the model parameter vector, u(x, xs, ω) and fs(ω) are the discrete pressure
wavefield and source vectors. L (m, ω) is the discretized impedance matrix. The linear
equation (equation (2)) is solved with a direct solver based on multi-frontal Lower Upper
(LU) decomposition (Davis and Duff, 1997), which is efficient for a multi-source problem
with forward and backward substitutions (Hu et al., 2011). The solution of equation (1) can
be written as the convolution of source fs(ω) with Green’s function G (x, xs, ω):

u (x, xs, ω) = fs (ω)G (x, xs, ω) , (3)

where the Green’s function is defined as the solution of wave equation due to an impulse
source.

Theory of full-waveform inversion: review

FWI allows to reconstruct high-resolution velocity models of the subsurface through
the extraction of the full information content of the seismic data. The inversion process
is implemented by minimizing a l-2 norm misfit function, which measures the difference
between the modelled data and observed data:

Φ (m) =
1

2

∑
xs

∑
xg

∑
ω

‖dobs (xs, xg, ω)− dsyn (m, xs, xg, ω) ‖2, (4)

where ω is the angular frequency, m indicates the model parameter vector, xs and xg are the
source and receiver positions, dobs and dsyn = Pu indicate the observed data and synthetic
data respectively, P is the sampling operator, and ‖ · ‖ means the l-2 norm. Here, we
consider to minimize the objective function associated with the source weight:

Φ̃ (m, s) =
1

2

∑
xs

∑
xg

∑
ω

‖dobs (xs, xg, ω)− s (xs, ω) dsyn (m, xs, xg, ω) ‖2, (5)

where s (xs, ω) indicates the source weight vector.

The variable projection method is implemented by minimizing the objective function
(equation (5)) with respect to both m and s. We suppose that dobs and dsyn are known, the
source weight s can be obtained through a least-square approach:

s (xs, ω) =

∑
xg dobs (xs, xg, ω) d∗syn (xs, xg, ω)∑
xg dsyn (xs, xg, ω) d∗syn (xs, xg, ω)

, (6)

where the symbol "*" means complex conjugate transpose. The Jacobian matrix is given
as:

J =
∂dsyn

∂m
= PA (m, ω)−1 Am (m, ω) u (7)

where Am (m, ω) = ∂A (m, ω) /∂m. The gradient for minimizing objective function in
equation (4) is obtained as:

g =
∂Φ (m)

∂m
=
∑

xs

∑
xg

∑
ω

u∗ (xs, xg, ω) A∗m (m, ω) A∗ (m, ω)−1P∗∆d (xs, xg, ω) , (8)
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The approximate Hessian used in Gauss-Newton method is expressible as:

Ha = J∗J = u∗A∗m (m, ω) A∗ (m, ω)−1P∗PA (m, ω)−1 Am (m, ω) u. (9)

The gradient and Gauss-Newton Hessian can also be expressed using Green’s functions.
Considering acoustic media with constant density, the corresponding sensitivity kernel for
the square of slowness can be expressed as:

K (x) = −
∑

xs

∑
xr

∫
ω

∫
Ω(x)

ω2u (xs, x, ω)G∗ (x, xr, ω) dxdω, (10)

The Gauss-Newton Hessian can be expressed as:

H̃ (x, x′) =
∑

xs

∑
xr

∫
ω

∫
Ω(x′)

∫
Ω(x)

G (xs, x, ω)G∗ (x, xr, ω)G (xs, x′, ω)G∗ (x′, xr, ω) dxdx′dω,

(11)
In this section, we will show how to derive the sensitivity kernels for different parameteri-
zations in acoustic media with variable density.

Sensitivity kernels of different parameterizations

We consider 4 parameterizations for acoustic media with variable density: (a) the
bulk modulus-density parameterization; (b) the velocity-density parameterization; (c) the
impedance-velocity parameterization; (d) the impedance-density parameterization. In this
section, we give the expressions for the sensitivity kernels for different parameterizations
in acoustic media. For bulk modulus-density parameterization, we define:

sκ (x) =
1

κ (x)
, sρ (x) =

1

ρ (x)
. (12)

Considering a model perturbation ∆sκ (x) at position x, with Born approximation, the per-
turbed pressure wavefield can be obtained as:

δu (xr, xs, ω) = −ω2

∫
Ω(x)

u (xs, x, ω) ∆sκ (x)G (x, xr, ω) dx, (13)

where u (xs, x, ω) andG (x, xr, ω) represent source-side wavefield and receiver-sides Green’s
function respectively. The corresponding sensitivity kernel can be written as:

Kκ (x) = −
∑

xs

∑
xr

∫
ω

∫
Ω(x)

ω2u (xs, x, ω) ∆sκ (x)u∗ (x, xr, ω) dxdω, (14)

where u∗ (x, xr, ω) indicates the backpropagated residual wavefield:

u∗ (x, xr, ω) =
∑

xs

G (x, xr, ω) ∆d∗ (xs, xr, ω) . (15)

Similarly, when considering perturbation of density ∆s, the corresponding sensitivity ker-
nel can be obtained as:

Kρ (x) =
∑

xs

∑
xr

∫
ω

∫
Ω(x)

∇u (xs, x, ω) · ∇u∗ (x, xr, ω) ∆sρ (x) dxdω, (16)
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For velocity-density parameterization, we define:

sα (x) =
1

α (x)
, s′ρ (x) =

1

ρ (x)
. (17)

To obtain the sensitivity kernels for velocity sα and density s′ρ in the velocity-density pa-
rameterization, we can employ the chain rule. First, we have:

sκ (x) = s′ρ (x) s2
α (x) , s′ρ (x) = sρ (x) . (18)

Hence, we can obtain the sensitivity kernel for sα by:

Kα (x) = Kρ (x)
∂sκ (x)

∂sα (x)
= 2s′ρ (x) sα (x)Kρ (x) =

= 2
∑

xs

∑
xr

∫
ω

∫
Ω(x)

s′ρ (x) sα (x)∇u (xs, x, ω) · ∇u∗ (x, xr, ω) ∆sρ (x) dxdω.

(19)

Similarly for the density sensitivity kernel, we have:

K ′ρ (x) = Kρ (x) +Kκ (x)
∂sκ (x)

∂sρ (x)
= Kρ (x) + s2

α (x)Kκ (x)

=
∑

xs

∑
xr

∫
ω

∫
Ω(x)

∇u (xs, x, ω) · ∇u∗ (x, xr, ω) ∆sρ (x) dxdω

−
∑

xs

∑
xr

∫
ω

∫
Ω(x)

ω2s2
α (x)u (xs, x, ω) ∆sκ (x)u∗ (x, xr, ω) dxdω

(20)

For impedance-density parameterization, we define:

sIP (x) =
1

IP (x)
, s′′ρ (x) =

1

ρ (x)
, (21)

where IP = αρ. We have:

sκ (x) =
s2
IP (x)

s′′ρ (x)
, s′′ρ (x) = sρ (x) . (22)

According to the chain rule, we can derive the sensitivity kernels for impedance and density
as:

KIP (x) =
∂sκ(x)

∂sIP (x)
Kκ (x) =

2sIP (x)

s′′ρ (x)
Kκ (x)

= −
∑

xs

∑
xr

∫
ω

∫
Ω(x)

2sIP (x)

s′′ρ (x)
ω2u (xs, x, ω) ∆sκ (x)u∗ (x, xr, ω) dxdω,

(23)

K ′′ρ (x) = Kρ (x) +
∂sκ (x)

∂s′′ρ (x)
Kκ (x) = Kρ (x)− s2

IP (x)(
s′′ρ
)2

(x)
Kκ (x)

= −
∑

xs

∑
xr

∫
ω

∫
Ω(x)

s2
IP (x)(
s′′ρ
)2

(x)
ω2u (xs, x, ω) ∆sκ (x)u∗ (x, xr, ω) dxdω

+
∑

xs

∑
xr

∫
ω

∫
Ω(x)

∇u (xs, x, ω) · ∇u∗ (x, xr, ω) ∆sρ (x) dxdω.

(24)
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For impedance-velocity parameterization, we define:

s′IP (x) =
1

IP (x)
, s′α (x) =

1

α (x)
. (25)

We have:

sκ (x) = s′IP (x) s′α (x) , sρ (x) =
s′IP (x)

s′α (x)
. (26)

The sensitivity kernels for impedance and velocity are given by:

K ′IP (x) =
∂sκ (x)

∂s′IP (x)
Kκ (x) +

∂sρ (x)

∂sIP (x)
Kρ (x) = s′α (x)Kκ (x) +

1

s′α (x)
Kρ (x)

= −
∑

xs

∑
xr

∫
ω

∫
Ω(x)

s′α (x)ω2u (xs, x, ω) ∆sκ (x)u∗ (x, xr, ω) dxdω

+
∑

xs

∑
xr

∫
ω

∫
Ω(x)

1

s′α (x)
∇u (xs, x, ω) · ∇u∗ (x, xr, ω) ∆sρ (x) dxdω,

(27)

K ′α (x) =
∂sκ (x)

∂s′α (x)
Kκ (x) +

∂sρ (x)

∂sα (x)
Kρ (x) = s′IP (x)Kκ (x)− s′IP (x)

(s′α)2 (x)
Kρ (x)

= −
∑

xs

∑
xr

∫
ω

∫
Ω(x)

s′IP (x)ω2u (xs, x, ω) ∆sκ (x)u∗ (x, xr, ω) dxdω

−
∑

xs

∑
xr

∫
ω

∫
Ω(x)

s′IP (x)

(s′α)2 (x)
∇u (xs, x, ω) · ∇u∗ (x, xr, ω) ∆sρ (x) dxdω.

(28)

Optimization methods

Full-Newton and Gauss-Newton methods

Newton-type optimization methods (e.g., full Newton (FN) and Gauss-Newton (GN)
methods) use the quadratic search direction and exhibit fast convergence given a limited
number of unknown parameters. The FN search direction is formed by preconditioning
the gradient with the full Hessian H: ∆mk = −H−1

k gk. The Gauss-Newton approximate
Hessian H̃ only accounts for the first-order scattering effects. The element H̃ (x, x′) is
formed by correlating two Fréchet derivative wavefields at the receivers’ locations due to
model perturbations at positions x and x′. Because of the band-limited signature of the
seismic data, the Gauss-Newton Hessian H̃ is diagonally dominant and banded (Pratt et al.,
1998; Valenciano, 2008; Tang, 2009; Pan et al., 2014). The diagonal elements compensate
for the geometrical spreading and the off-diagonal elements are responsible for de-blurring
the gradient (Pratt et al., 1998). In multi-parameter FWI, the Gauss-Newton Hessian can
mitigate the parameter crosstalk problem (Operto et al., 2013; Innanen, 2014a; Pan et al.,
2016b).
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For these Newton-type methods, explicit evaluation and inversion the Hessian matrix H
and Gauss-Newton Hessian H̃ at each iteration are required. Though Newton-type methods
benefit from fast convergence rate, the computation, storage and inversion of Hessian at
each iteration are prohibitively expensive, which limits their applications for large-scale
inverse problems in exploration geophysics.

Gradient-based methods

Gradient-based methods (e.g., steepest-descent (SD) and non-linear conjugate-gradient
(NCG) methods) approximate the Hessian matrix H as an identity matrix I and they are
computationally more attractive than the Newton-type ones when inverting a large number
of unknown model parameters. The SD method simply determines the search direction
to be the negative of the gradient. In NCG method, the search direction is just a linear
combination of current gradient and previous search direction. The gradient-based methods
are known to converge globally, but possibly very slowly. In most cases, preconditioning
is necessary to ensure the fast convergence of the CG method (Hu et al., 2011).

Quasi-Newton methods

Quasi-Newton methods provide an attractive alternative to Newton-type and gradient-
based methods by approximating the inversion Hessian iteratively instead of constructing
the Hessian matrix explicitly (Brossier et al., 2009; Ma and Hale, 2012). BFGS method,
named after Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970), is one
popular quasi-Newton strategy to approximate the inverse Hessian iteratively using the
changes of the model and gradient (Nocedal and Wright, 2006).

In the BFGS updating formula, we are given a symmetric and positive definite matrix
Hk that approximates the inverse of the Hessian, and a pair of vectors sk = mk+1−mk, and
yk = gk+1 − gk that indicates the model and gradient changes and satisfies the condition
s†kyk > 0. Using these vectors, we compute the inverse Hessian approximation Hk+1 by
the following formula:

Hk+1 = v†kHkvk + wksks†k, (29)

where wk = 1/y†ksk, vk = I−wkyks†k and I is the identity matrix. The initial inverse Hessian
approximation H0 is important to BFGS method and it is usually set as an identity matrix
to make sure that the updated matrix maintains positive definiteness (Wu et al., 2015). A
limited-memory BFGS (l-BFGS) method was developed by storing the model and gradient
changes from a limited number l of previous iterations (typically l < 10) (Nocedal, 1980).
The stored information is then used to construct an approximated inverse Hessian. A “two-
loop recursion" scheme is implemented in this research to obtain the search direction using
the information of previous updates (Nocedal and Wright, 2006; Métivier and Brossier,
2016).

l-BFGS preconditioned Hessian-free optimization methods

Instead of constructing Hessian or inverse Hessian approximations, the Hessian-free
(HF) optimization method, also known as truncated-Newton or inexact-Newton method,
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obtains the search direction by solving the Newton linear system (equation (??)) approx-
imately using a conjugate-gradient (CG) method with matrix-free scheme (Saad, 2003;
Anagaw and Sacchi, 2012; Métivier et al., 2014). The CG method is an optimal algorithm
for solving a symmetric positive definite system Wx=b and it only requires computing the
Hessian-vector products Hυ instead of forming the Hessian matrix explicitly, where υ is an
arbitrary vector in model space. The Hessian-vector products can be calculated via finite-
difference method (Nocedal and Wright, 2006) or the second-order adjoint-state method
(Fichtner and Trampert, 2011; Métivier et al., 2014; Métivier and Brossier, 2016). In this
paper, the second method is employed for the calculation of the Hessian-vector products.

The full Hessian H arising from the second-order partial derivative is not guaranteed to
be positive definite (Nash, 2000). Thus, CG method is no longer appropriate for solving
an indefinite linear system. In this paper, instead of using the Hessian H , we choose
Gauss-Newton Hessian H̃, which is always symmetric and positive semi-definite:(

H̃k + εÂk

)
∆mk = −gk, (30)

where εÂk is the damping term ensuring that H̃k + εÂ is positive definite, ε is a small
constant value and Âk indicates a diagonal matrix consisting of the diagonal elements of the
Gauss-Newton Hessian. The resulting algorithm becomes a Levenberg-Marquardt method
(Levenberg, 1944; Marquardt, 1963). The HF Gauss-Newton FWI is implemented in a
double-iterative scheme: the outer loop is to iteratively update the model parameters for the
non-linear optimization problem, and the inner loop is to solve the linear system iteratively
with the CG algorithm. The inner iteration is typically stopped or “truncated" before the
solution of the Newton equation is obtained. A Hessian-free optimization method can be
made more competitive with further enhancements, such as, an effective preconditioner for
the linear system and appropriate stopping criteria for the inner iterative algorithm. With
these enhancements, Hessian-free optimization method is a powerful tool for large-scale
inverse problems.

The CG iterative algorithm requires many iterations to obtain the approximate solution
of a linear system Wx = b. The convergence rate of the CG method depends on the spec-
tral properties (e.g., its eigenvalues) of the coefficient matrix W (Nash, 2000). It is often
convenient to transform the equation system into one which has the same solution but more
favorable spectral properties. This can be achieved by applying a suitable preconditioner
M on the linear system: M−1Wx =M−1b. Thus, the preconditioned Newton system for
the HF Gauss-Newton FWI is given by:

M−1
k

(
H̃k + εÂk

)
∆mk = −M−1

k gk. (31)

The solution of equation (31) can be obtained by the preconditioned conjugate-gradient
(PCG) method. The preconditioner for the CG method is always devised to approximate
the Hessian or the inverse Hessian. In this research, we develop an l-BFGS preconditioning
scheme for the HF optimization method (Nash, 1985, 2000; Métivier et al., 2012; Sainath
et al., 2013), namely l-BFGS-GN method for H0 = I. The l-BFGS approximated inverse
HessianH can also be used as a preconditioner for the CG iterative method:

Hk

(
H̃k + εÂk

)
∆mk = −Hkgk. (32)
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Traditionally, an identity matrix I is usually set as the initial guessH0.

Multi-parameter Gauss-Newton Hessian for different parameterizations

The role of the single-parameter Hessian has been discussed and analyzed in the previ-
ous section. Multi-parameter Hessian in multi-parameter FWI has a block structure and it
carries more information than the single-parameter Hessian. Considering a 2D subsurface
model withNxNz nodes andNp physical parameters are assigned to describe the properties
of each node. The multi-parameter Hessian is a NxNzNp ×NxNzNp square and symmet-
ric matrix with Np diagonal blocks and Np (Np − 1) off-diagonal blocks. Each block is a
NxNz × NxNz square matrix. The multi-parameter Hessian H can be written as the sum-
mation of the first-order term H̃ and second-order term H̄. The first-order term H̃ is also
known as multi-parameter approximate Hessian used in Gauss-Newton method. The ele-
ments in H̃ measure the correlations of two Fréchet derivative wavefields. For example, the
element H̃m1m2 (x, x′) can be expressed as:

H̃m1m2 (x, x′) =
∑

xs

∑
xg

∑
ω

<
(
∂u† (xg, xs, ω)

∂m1 (x)

∂u∗ (xg, xs, ω)

∂m2 (x′)

)
, (33)

where when m1 = m2, it indicates the element in diagonal block, and when m1 6= m2, it
indicates the element in off-diagonal block. The multi-parameter approximate Hessian H̃
is essential in overcoming the crosstalk difficulty in multi-parameter FWI (Operto et al.,
2013; Pan et al., 2015). As we discussed in the previous section, the similarity of the
Fréchet derivative wavefields with respect to different physical parameters gives rise to the
crosstalk problem. The off-diagonal blocks in multi-parameter approximate Hessian pre-
dict the coupling effects and applying its inverse to the gradient can remove or mitigate the
parameter crosstalk. The space-type multi-parameter Hessian approximation H̃s given by
Innanen (2014a) neglects the contributions of the off-diagonal blocks and stresses the cor-
relation of Fréchet derivative wavefields with respect to the same physical parameter. This
approximation can scale the amplitudes of the gradient and de-blur the gradient, but can not
suppress parameter crosstalk. The parameter-type multi-parameter Hessian approximation
H̃p only keeps the diagonal elements of the blocks, which is also capable of mitigating
parameter crosstalk but limited in resolving the gradient.

Here, we give the multi-parameter Gauss-Newton Hessian expressions for different pa-
rameterizations in acoustic media. First, considering the velocity-density parameterization,
the multi-parameter Gauss-Newton Hessian are correlation of two Fréchet derivative wave-

10 CREWES Research Report — Volume 28 (2016)



Acoustic FWI

fields:

H̃vel (x, x′) =

 Kα (x)

Kρ (x)

[ K†α (x′) K†ρ (x′)

]

=

 Kα (x)K†α (x′) Kα (x)K†ρ (x′)

Kρ (x)K†α (x′) Kρ (x)K†ρ (x′)



=

 H̃αα (x, x′) H̃αρ (x, x′)

H̃ρα (x, x′) H̃ρρ (x, x′)

 ,

(34)

Similarly, for impedance-velocity and impedance-density parameterizations, the multi-
parameter Gauss-Newton Hessian can be written as:

H̃imp (x, x′) =

 KIP (x)

K ′ρ (x)

[ K†IP (x′) (K ′)†ρ (x′)

]

=

 KIP (x)K†IP (x′) KIP (x) (K ′)†ρ (x′)

(K ′)ρ (x)K†IP (x′) K ′ρ (x) (K ′)†ρ (x′)



=

 H̃IPIP (x, x′) H̃IPρ (x, x′)

H̃ρIP (x, x′) H̃ρρ (x, x′)

 ,

(35)

H̃imp (x, x′) =

 K ′IP (x)

K ′α (x)

[ (K ′)†IP (x′) (K ′)†α (x′)

]

=

 (K ′)IP (x) (K ′)†IP (x′) (K ′)IP (x) (K ′)†ρ (x′)

(K ′)ρ (x) (K ′)†IP (x′) K ′ρ (x) (K ′)†alpha (x′)



=

 H̃IPIP (x, x′) H̃IPα (x, x′)

H̃αIP (x, x′) H̃αα (x, x′)

 .

(36)
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NUMERICAL EXPERIMENTS

In this section, we first show the numerical modelling results of the scattering patterns
of different parameterizations are examined. Figures 1a and 1b show the scattering pat-
terns of velocity and density for velocity-density parameterization. Figures 1c and 1d show
the scattering patterns of impedance and density for impedance-density parameterization.
Figures 1e and 1f show the scattering patterns of impedance and density for impedance-
velocity parameterization. As we can see, different parameterizations give different scat-
tering patterns indicating different resolving abilities of these parameterizations.

FIG. 1. (a) and (b) show the scattering patterns of velocity and density for the velocity-density
parameterization; (c) and (d) show the scattering patterns of impedance and density for the
impedance-density parameterization; (e) and (f) show the scattering patterns of impedance and
velocity for the impedance-velocity parameterization.

In theory, we find that for the velocity-density parameterization with reflection survey,
these two parameters will be difficult to reconstruct at short apertures. However, with
transmission survey, the mapping from P-wave velocity to density will be very strong and
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the mapping form density to velocity will be very weak. This means that for transmission
survey, it will be easier to recover velocity but more difficult to recover density due to the
strong crosstalk from velocity. Similarly, for impedance-density and impedance-velocity
parameterizations, we predict that it will

There are other problems when employing impedance-velocity or impedance-density
parameterization. Because the magnitudes velocity and density are much smaller than the
magnitude of impedance. It will not be appropriate to reconstruct impedance and density
or impedance and velocity simultaneously when using the same step length to scale the
updates. A hierarchical strategy is better to be used

We next give an example to show that the multi-parameter Hessian can help to reduce
the parameter crosstalk difficulty in multi-parameter FWI. Figures 2a and 2b show the true
P-wave velocity and density model parameters. The true model consists of two uncorrelated
Gaussian anomalies. Figures 3a and 3b show the gradient updates for P-wave velocity
and density respectively. As we can see, the mapping from density to P-wave velocity
is very weak. While the mapping from P-wave velocity to density is very strong, which
make density difficult to reconstruct for transmission survey. Figure Figures 4a and 4b
show the Gauss-Newton updates for P-wave velocity and density with 5 inner conjugate-
gradient iterations. We observe that the spatial resolution of the model updates have been
improved. Furthermore, in the density update, the crosstalk artifacts are suppressed and
the true update for density has been enhanced, which indicates that the Hessian can help to
reduce the parameter crosstalk for multi-parameter FWI.

Figures 5a and 5b show the inverted P-wave velocity and density models using steepest
descent (SD) method after 10 iterations. It can be seen that inverted models are far from
the true models because of the slow convergency rate of SD method. Figures 6a and 6b
show the inverted P-wave velocity and density models using l-BFGS method after 10 iter-
ations. As we can see, the inverted models have been enhanced obviously. However, the
parameter crosstalk artifacts in the inverted density model is still very strong. Figures 7a
and 7b show the inverted P-wave velocity and density models using non-preconditioned
Hessian-free Gauss-Newton method after 10 iterations. We see that the parameter crosstalk
artifacts in the inverted density model has been obviously suppressed. Figures 8a and
8b show the inverted P-wave velocity and density models using l-BFGS preconditioned
Hessian-free Gauss-Newton method after 10 iterations. With preconditioning, we see that
the parameter crosstalk artifacts are suppressed further. Figure 9 shows the convergence
history, P-wave velocity errors, and density errors. The l-BFGS preconditioned Hessian-
free Gauss-Newton method can reconstruct the models better than gradient-based and l-
BFGS methods.

In the next example, we illustrate the inverted models using different optimization meth-
ods with a more complex model. Figures 11a and 11c show the true P-wave velocity and
density models. Figure 11c and 11d show the initial P-wave velocity and density models.
A transmission survey is employed for inversion. Figures 11a and 11b show the inverted
velocity and density models using SD method. Figures 11c and 11d show the inverted
velocity and density models using NCG method. Figures 11e and 11f show the inverted
velocity and density models using l-BFGS method. Figures 11g and 11h show the inverted
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FIG. 2. (a) and (b) show the true velocity and density models.

FIG. 3. (a) and (b) show the gradient updates for P-wave velocity and density.

FIG. 4. (a) and (b) show the Gauss-Newton updates for P-wave velocity and density.

FIG. 5. (a) and (b) show the inverted P-wave velocity and density models with SD method.

velocity and density models using non-preconditioned HFGN method. Figures 11i and
11j show the inverted velocity and density models using l-BFGS preconditioned HFGN
method. We see that the preconditioned HFGN method gives best inverted models.
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FIG. 6. (a) and (b) show the inverted P-wave velocity and density models with LBFGS method.

FIG. 7. (a) and (b) show the inverted P-wave velocity and density models with non-preconditioned
Hessian-free Gauss-Newton method.

FIG. 8. (a) and (b) show the inverted P-wave velocity and density models with l-BFGS precondi-
tioned Hessian-free Gauss-Newton method.

FIG. 9. The left, middle and right figures show the convergency history, P-wave velocity errors, and
density errors as iteration proceeds.

CONCLUSION

In this research, we give the expressions of the sensitivity kernels for different param-
eterizations in multi-parameter acoustic FWI. We also examine the scattering patterns for
different parameterizations. Numerical example is given to show the effectiveness of the
multi-parameter Hessian in suppressing the parameter crosstalk artifacts. Different opti-
mizations are also compared for reconstructing velocity and density simultaneously.

CREWES Research Report — Volume 28 (2016) 15



Pan et. al

FIG. 10. (a) and (b) show the true velocity and density models. (c) and (d) show the initial velocity
and density models.
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FIG. 11. (a) and (b) show the inverted velocity and density models using SD method; (c) and (d)
show the inverted velocity and density models using NCG method; (e) and (f) show the inverted
velocity and density models using l-BFGS method. (g) and (h) show the inverted velocity and
density models using non-preconditioned HFGN method. (i) and (j) show the inverted velocity and
density models using preconditioned HFGN method.
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