Minimum Phase Revisited

Jeff Grossman, Gary Margrave, and Michael Lamoureux

Introduction

- Minimum phase for digital systems
- Fourier synthesis: an example
- Tempered distributions
- Causality and the Hilbert transform
- Minimum phase for analog systems
- Examples
- Conclusions

Minimum phase for Digital systems

Minimum phase for Digital systems

A minimum phase digital signal...

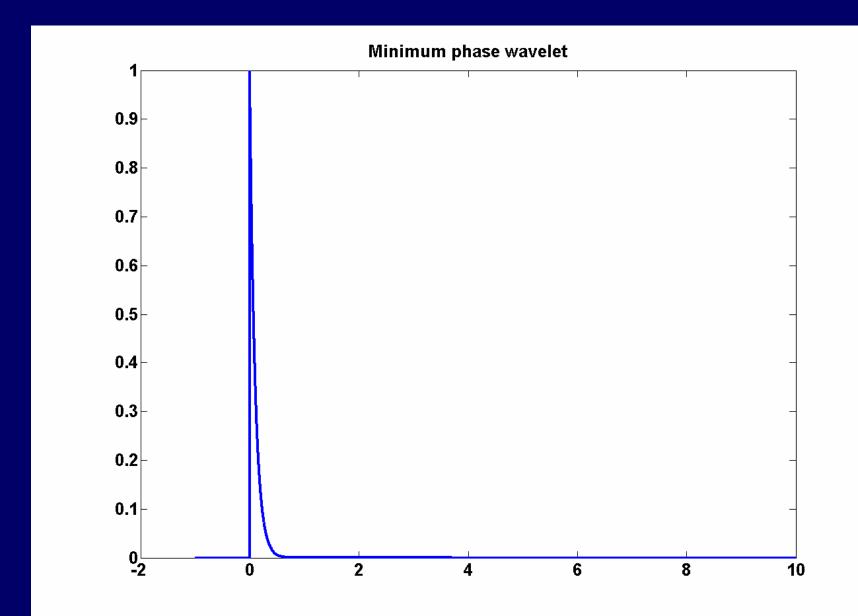
- has all the poles and zeros of its Z-transform inside the unit circle of the complex plane
- is causal, stable, and always has a minimum phase convolutional inverse
- has its energy concentrated toward time 0 more than any other causal signal having the same magnitude spectrum

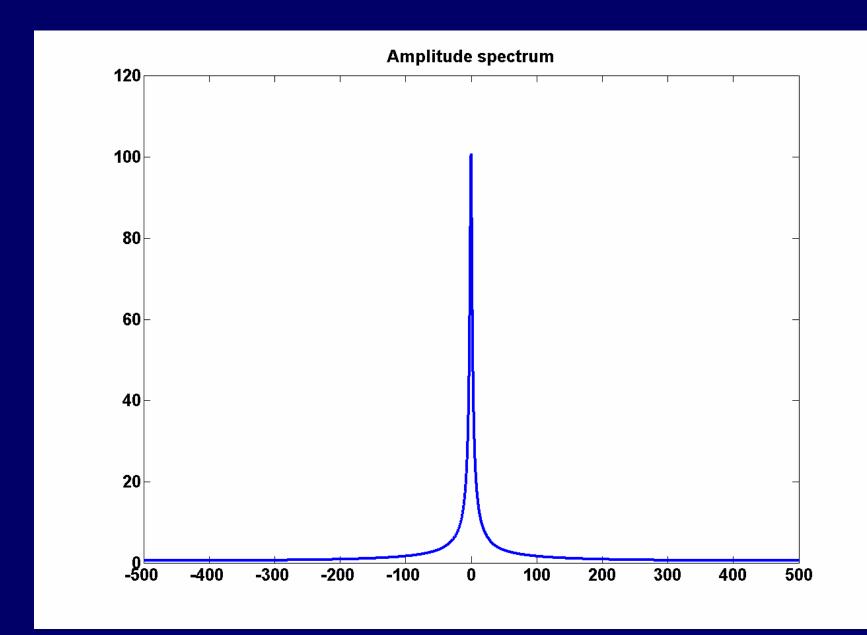
Minimum phase for Digital systems

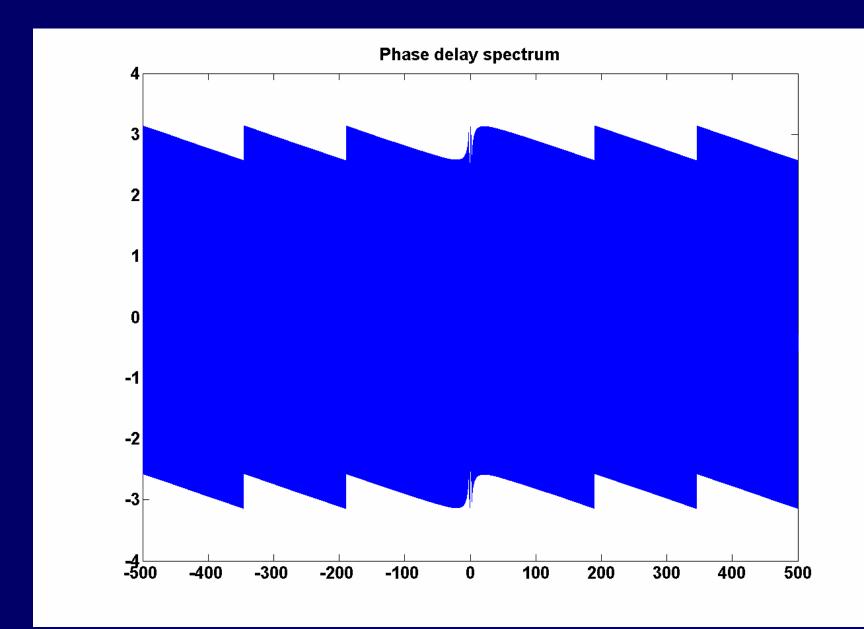
- Every causal, stable, all-pole digital filter is minimum phase
- Fermat's principle of least traveltime implies seismic wavelets are minimum phase
- Wiener and Gabor deconvolution assume that a constant-Q-attenuated seismic wavelet is minimum phase

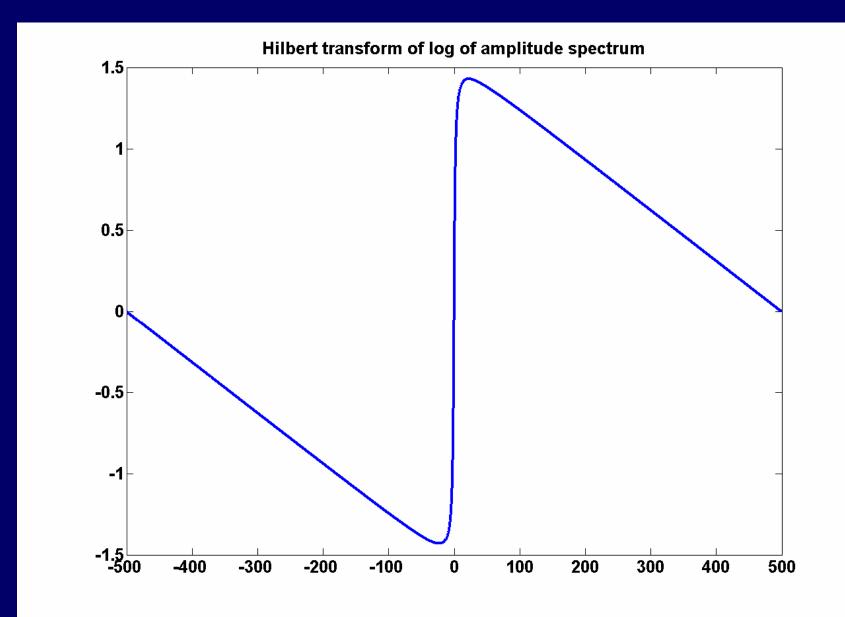
Fourier synthesis

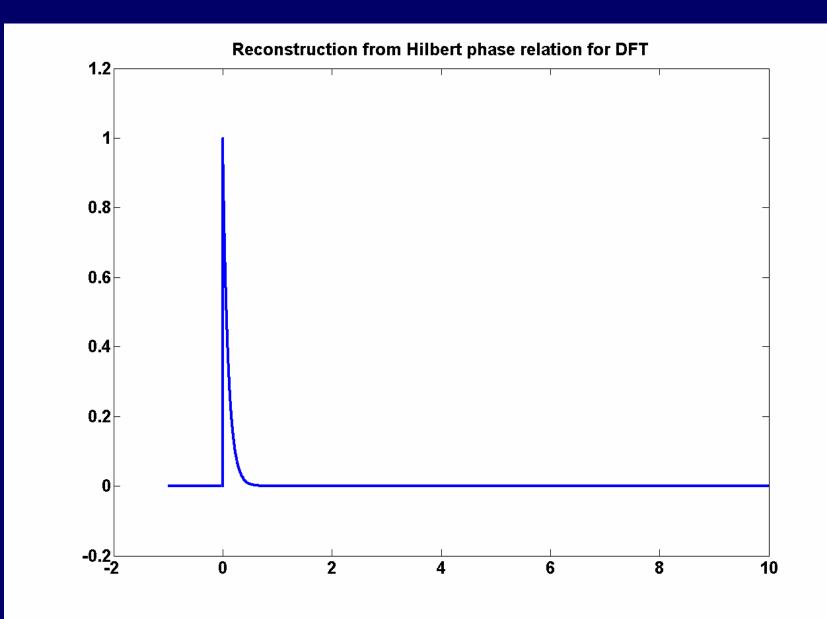
an example

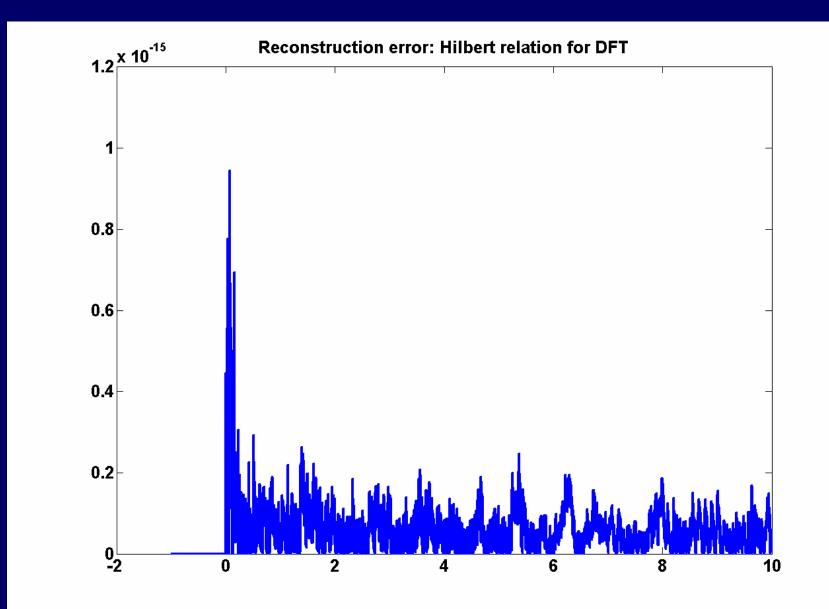


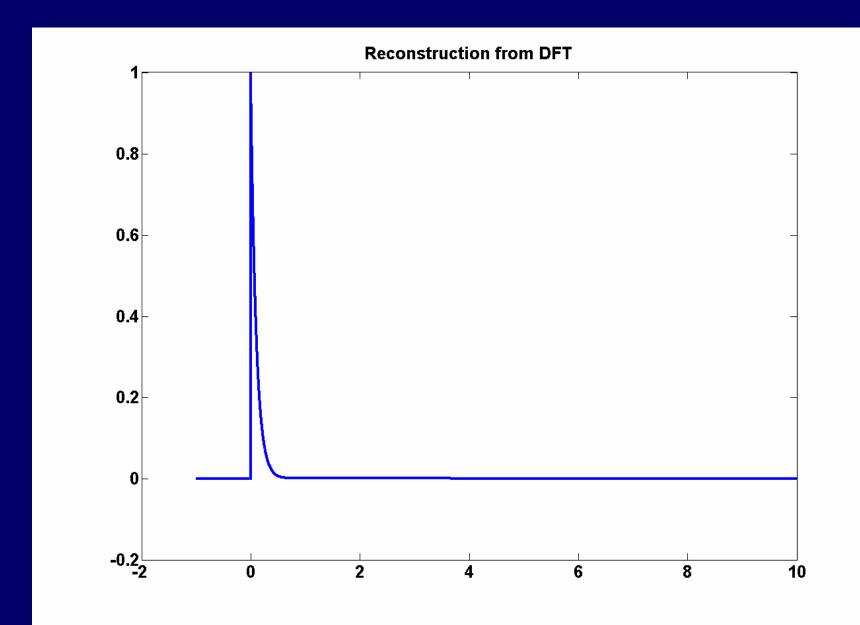


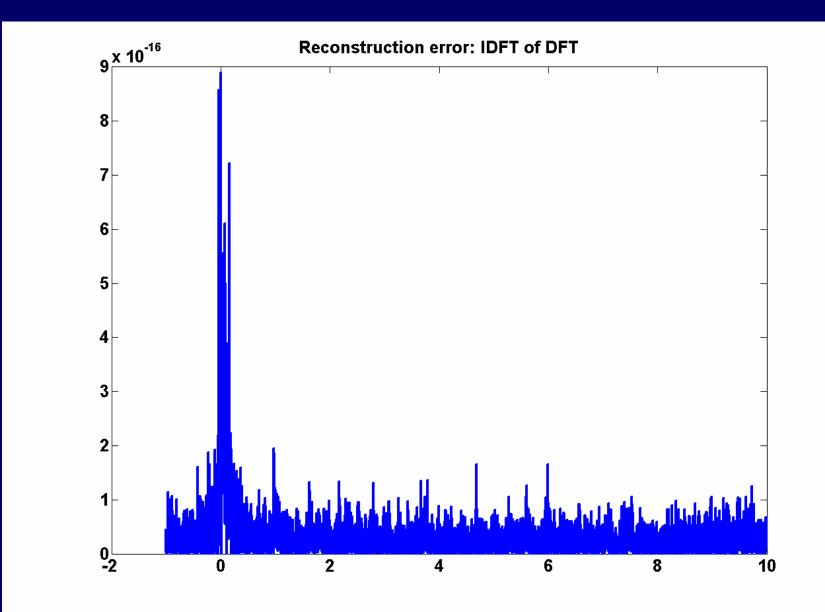






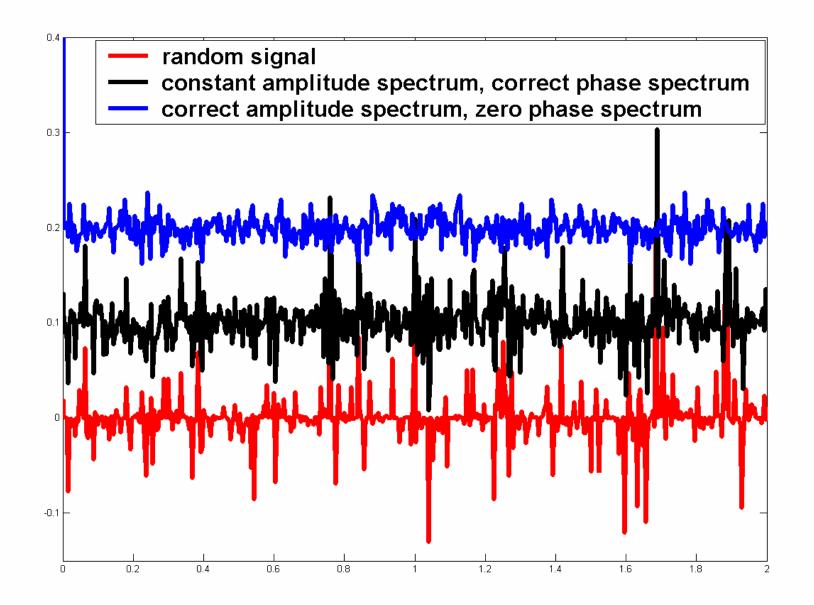




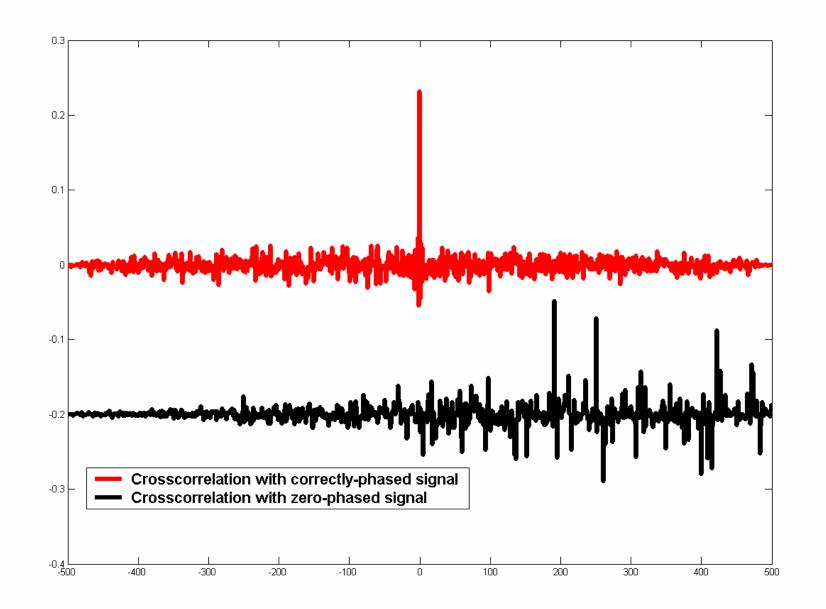


Fourier synthesis for a Random spike series

Fourier synthesized signals



Crosscorrelations with original signal



Fourier Synthesis

• So, it seems phase accuracy is more important than amplitude spectrum accuracy...

• But, in Gabor/Wiener deconvolution, a phase spectrum is computed from an estimate of the amplitude spectrum

Tempered distributions

a class of generalized functions

Tempered distributions

- A way to make sense of divergent integrals
- A way to make sense of Dirac's delta "function"
- A tempered distribution is a continuous linear mapping $T : S(\mathbf{R}) \rightarrow \mathbf{C}$
- S(R) is the Schwartz space of smooth, rapidly decreasing functions, e.g., Gaussians

Tempered distributions, some examples

Given a nice enough function *f* that doesn't grow too quickly,

$$T_f(\varphi) = \int_{-\infty}^{\infty} f(x)\varphi(x)dx$$

defines a tempered distribution.

Tempered distributions, some examples

Any function *f* for which

 $\int_{-\infty}^{\infty} |f(x)|^p dx < \infty, \quad \text{for some } p \in [1,\infty)$

defines a tempered distribution, T_f .

Tempered distributions, some examples

Dirac's delta function,

 $\delta(\varphi) = \varphi(0)$

is a tempered distribution that doesn't correspond to any function.

Causality and the Hilbert transform

Causality and the Hilbert transform

Given a tempered distribution, *T*, write it as a sum of its causal and anti-causal parts:

$$T = T_+ + T_-,$$

Causality and the Hilbert transform

It turns out that the Hilbert transform is given simply as:

$$H\hat{T} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} \hat{T}_{+} \\ \hat{T}_{-} \end{bmatrix} = i\hat{T}_{+} - i\hat{T}_{-}$$

Minimum phase for Analog systems

Minimum phase for Analog systems

A tempered distribution T is minimum phase if

 \hat{T} , $1/\hat{T}$

correspond to analytic functions in the lower half of the complex plane,

 $C_{-} = \{z \in C : imag(z) < 0\}.$

 δ is minimum phase: $\hat{\delta} = 1$, which is analytic everywhere. Also, $H(\ln \hat{\delta}) = 0$, which happens to correspond to the phase spectrum

Examples

$$f(x) = h(x)e^{-ax}, \text{ for any } a > 0:$$
$$\hat{f}(\xi) = \frac{1}{a+i\xi}, \quad \frac{1}{\hat{f}(\xi)} = a+i\xi,$$

analytic everywhere except at $\xi = \alpha i$. The phase spectrum is NOT given by the Hilbert transform of $\ln |\hat{f}|$.

Why not?

It turns out that for T minimum phase, $\varphi_{T} = H(\ln |\hat{T}|)$ only if $\ln \hat{T} \rightarrow 0$ along every ray in C_.

Examples

If *s* is a causal Schwartz function, so is \hat{s} , and $e^{\hat{s}}$ corresponds to a minimum phase tempered distribution.

The phase spectrum agrees with the Hilbert transform relationship since \hat{s} is causal.

Summary

- In the analog examples, f̂ was invertible, but 1/f̂ was not "stable" (not integrable, or it had infinite energy).
- In each case, a convolution could reduce the original distribution to a spike, by division in the Fourier domain:

$$\hat{f} \frac{1}{\hat{f}} = 1,$$

which is the Fourier transform of δ .

Summary

- Sometimes the Hilbert transform relation fails for analog minimum phase signals, but it works very well on bandlimited versions.
- We computed a simpler min phase spectrum than the original ringy one, yet reconstructed the minimum phase signal with very high fidelity.

Acknowledgements

- The CREWES Project and its sponsors
- The POTSI Project and MITACS
- My co-authors/supervisors
- My energetic son, for waking me up at night so I could think about wavelets.