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Minimum phase for Digital systems

A minimum phase digital signal...

 has all the poles and zeros of its Z-transform
Inside the unit circle of the complex plane

e Is causal, stable, and always has a minimum
nhase convolutional inverse

 has Its energy concentrated toward time O
more than any other causal signal having
the same magnitude spectrum




Minimum phase for Digital systems

e Every causal, stable, all-pole digital filter is
minimum phase

* Fermat’s principle of least traveltime
Implies seismic wavelets are minimum

phase
 \Wiener and Gabor deconvolution assume

that a constant-Q-attenuated seismic
wavelet Is minimum phase



Fourier synthesis

an example



Minimum phase wavelet




Amplitude spectrum
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Hilbert transform of log of amplitude spectrum
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Reconstruction from Hilbert phase relation for DFT




Reconstruction error: Hilbert relation for DFT
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Reconstruction from DFT




Reconstruction error: IDFT of DFT




Fourier synthesis for a
Random spike series



Fourier synthesized signals

— random siQnaI
— constant amplitude spectrum, correct phase spectrum
— correct amplitude spectrum, zero phase spectrum
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Crosscorrelations with original signal

== Crosscorrelation with correctly-phased signal
= Crosscorrelation with zero-phased signal




Fourier Synthesis

e S0, It seems phase accuracy IS more important
than amplitude spectrum accuracy...

e But, In Gabor/Wiener deconvolution, a phase
spectrum Is computed from an estimate of the
amplitude spectrum



Tempered distributions

a class of generalized functions



Tempered distributions

A way to make sense of divergent integrals

A way to make sense of Dirac’s delta
“function”

A tempered distribution Is a continuous
linear mapping T : S(R) 2 C

S(R) 1s the Schwartz space of smooth,
rapidly decreasing functions, e.g.,
Gaussians



Tempered distributions,
some examples

Given a nice enough function f that
doesn’t grow too quickly,

T (9)=]_ f(X)p(x)dx

defines a tempered distribution.



Tempered distributions,
some examples

Any function f for which
[ |F )| dx <o, for some p e[1,)

defines a tempered distribution, T, .



Tempered distributions,
some examples

Dirac’s delta function,

o(¢) = @(0)

IS a tempered distribution that doesn’t
correspond to any function.



Causality and the Hilbert
transform



Causality and the Hilbert transform

Given a tempered distribution, T,
write It as a sum of Its causal and
anti-causal parts:

T=T +T,



Causality and the Hilbert transform

It turns out that the Hilbert transform
IS given simply as:
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Minimum phase
for Analog systems



Minimum phase
for Analog systems

A tempered distribution 7’ 1s minimuin
phase 1f

Eal

r. 1T

correspond to analytic functions in the
lower half of the complex plane,

C_= {z e C: 1mmag(z) < O}.



Examples

0 1s minmimum phase:

5=1,
which 1s analytic everywhere.
Also, H(lnd)=0,

which happens to correspond to the phase spectrum




Examples

f(x)=h(x)e ™, foranya>0:
. | |
JE)=——7, =
atic  f(£)
analytic everywhere except at & = ai.
The phase spectrum 1s NOT given by

=a+ié,
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the Hilbert transform of In| /




Why not?

It turns out that for 77 minimum phase,

0. =H(n|T|)

only 1f
In7 — 0

along cvery ray in C_.



Examples

~

If s 1s a causal Schwartz function, so 1s s, and

e’ corresponds to a minimum phase

tempered distribution.

The phase spectrum agrees with the Hilbert

transform relationship since s is causal.



Summary

N\

 Inthe analog examples, f was invertible,
but 1/ f was not “stable” (not integrable, or
It had Infinite energy).

e |n each case, a convolution could reduce the
original distribution to a spike, by division

In the Fourier domain:
]
f

which iIs the Fourier transform of 6.



Summary

e Sometimes the Hilbert transform relation
fails for analog minimum phase signals, but
It works very well on bandlimited versions.

e \We computed a simpler min phase spectrum
than the original ringy one, yet
reconstructed the minimum phase signal
with very high fidelity.
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