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Motivation

Assess and compare the 
different methods of applying 
inverse Q filter
Use Q filter as a reference to 
assess phase restoration in 
Gabor deconvolution
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Attenuation mechanisms 
(Margrave G. F., Methods of seismic data processing, 2002)

Geometric spreading
Absorption (Anelastic attenuation)
Transmission losses
Mode conversion
Scattering
Refraction at critical angles



Anelastic attenuation

In real materials wave energy is 
absorbed due to internal friction
Absorption is frequency dependent
Absorption effects: 

waveform change, 
amplitude decay 
phase delay

The macroscopic effect of the internal 
friction is summarized by Q



Constant Q theory (Kjartansson, 1979)

Q is independent of frequency in the 
seismic bandwidth
Absorption is linear (Q>10)
Dispersion: each plane wave travels 
at a different velocity
The Fourier transform of the impulse 
response is
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Impulse response (Q=10) 

(Aki and Richards, 2002)

With dispersion
Without dispersion
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Nonstationary convolutional model
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Q filter and spiking deconvolution

WQrs =

t

τ τ

τ t
t

W matrix                                      Q matrix          r                      s

sWQr 11 −−=Exact inversion

[ ]sWQsQWr 1111 , −−−− +=

sQWr 11 −−≈

Approximate inversion



Forward modeled traces
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Error estimation: Crosscorrelation



Error estimation: L2 norm of error 
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Inverting the Q matrix

A conventional matrix inversion algorithm gets unstable for Q<70
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Hale’s inversion matrix, Hale (1981)

PsPQWr 11 )( −−≈
Each column of P is the convolution 
inverse of the corresponding column 
of Q.
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Hale’s inversion matrix
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Downward continuation inverse Q filter, 
Wang (2001)
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Downward continuation inverse Q filter
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Inverse Q filtering by pseudo-
differential operators, Margrave (1998)
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In a stationary linear filter the 
output can be obtained by
convolving an arbitrary input
with the impulse response
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Stationary linear filter theory



Inverse Q filtering by
pseudodifferential operators
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Nonstationary linear filter theory
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Nonstationary convolution

Nonstationary combination

b(t-τ, τ)          h(τ)     s(t)



Inverse Q filtering by 
pseudodifferential operators

Nonstationary convolution and combination in the frequency domain

Nonstationary convolution

Nonstationary combination
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From Margrave (1998)

These integrals are the nonstationary 
extension of the convolution theorem



Inverse Q filtering by 
pseudodifferential operators

Nonstationary convolution 
in mixed domains

Nonstationary combination
in mixed domains
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Inverse Q filter:

Forward Q filter:

Generalized Fourier 
integral (direct)

Generalized Fourier 
integral (inverse)

Anti-standard 
pseudo-differential 

operator

Standard Pseudo-
differential operator 



Inverse Q filtering by using  
pseudodifferential operators
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Comparison for Q=50



Comparison for Q=20



Conclusions
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Future work

Consider as variables
Uncertainty in Q estimation
Variations of Q with depth
Noise

Improve amplitude recovery and 
efficiency in pseudodifferential
operator Q filtering
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