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Efficient Explorer calculations

( ) exp( | |)n
nf sω ω ω= −

Assume that wavelet is of form

Then ω-integration can be analytic

( )22
Ricker 0( ) exp /f ω ω ω ω⎡ ⎤= −⎣ ⎦

This form is similar to Ricker wavelet

0( ) exp( | / |)n
nf nω ω ω ω= −

ω0 is the maximum frequency for both



Wavelet comparison
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Spherical RPP for Ormsby and n=4 wavelets



Representation of Ricker wavelet

(note range of axes)



Ursenbach, Haase, and Downton, 
“Improvements and verifications for 
the Spherical Zoeppritz Explorer”



Reflection of spherical waves in VTI media 
– Posters –

• Ursenbach & Haase
• Generalized reflections from point sources in a 

two-layer VTI medium: theory 

• Haase & Ursenbach
• Spherical-wave AVO-modelling in elastic VTI-

media 
• Anelasticity and spherical-wave AVO-modelling in 

VTI-media 
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Aki-Richards Approximation
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A further approximation

• Shuey (1985) also suggested substituting 
θ1 for θ  as an approximation.  

• What behavior does this give?



θ vs. θ1 approximations
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θ vs. θ1 approximations
RPP RPS



a) γ new = 0.3 b) Rβ
new = –Rβ c) Rβ

new = 0.1Rβ

θ vs. θ1 approximations



• True linear behavior: no critical point
• RPS more accurate in 0° < θ1 < 30 ° range
• RPP more accurate if 

o γ > .35
o |Rβ|>|Rα|, same sign

• RPP less accurate if 
o γ < .3
o |Rβ| small, or opposite sign to |Rα|

Effect of θ → θ1
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Why is θ1 better at low angles?
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• Differences disappear for Rα = 0  (θ = θ1)
• Used MAPLE to linearize RPP

exact, RPS
exact in Rβ, Rρ

• Find coefficient of sine-powers:



Alternate expression for B
• Used MAPLE to linearize RPP

exact in Rρ only
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A better expression?
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Note that

Substitute 1sin sin (1 )Rαθ θ= −
in the initial gradients of the sinθ1
expressions.  

This should give better behavior at low 
angles and a critical point.



New approximation
RPP RPS



New approximation



The Smith-Gidlow approximation
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Conclusions
• The Aki-Richards expression has been 

compared using both θ and θ1 as the 
dependent variable

• The expression in terms of θ is best near 
the critical point

• The expression in terms of θ1 is best at low 
angles for RPS and certain regions of RPP

• The quality of the θ1 expression has been 
justified by theoretical analysis



Conclusions
• A new version of the Aki-Richards 

approximation is given in which sinθ is 
multiplied by (1–Rα)

• An estimate of Rα is already required to 
obtain θ, so this requires no new 
information

• The new expression is more accurate for 
a wider range of low angles and has a 
correctly located critical point.  


