Adaptive Partitioning for Gabor Wavefield Extrapolation

> Yongwang Ma Gary F. Margrave

December 1, 2006

Outline

- Forming an adaptive partition of unity (POU) using the lateral position error criterion
 2D imaging examples of the Marmousi dataset
 3D Impulse test in a homogeneous medium
 Conclusions
- Acknowledgements

Gabor Wavefield Extrapolation Key concepts

- Spatial windows are used to localize the wavefield to regions of roughly constant velocity.
- Within each window a constant-velocity extrapolation phase shift, with a spilt step Fourier correction, is applied.

Phase shift in window ''j" (Ω_j) is given by:

$$\phi_{j}(x,k_{x},\omega) = \omega \Delta z \left(\frac{1}{v(x)} - \frac{1}{v_{j}}\right) + \Delta z \sqrt{\frac{\omega^{2}}{v_{j}} - k_{x}^{2}}$$

Adaptive Partitioning Criteria

- Lateral velocity gradient exceeds threshold (Grossman et al., 2003)
- Extrapolator phase error with respect to the GPSPI approximation (Ma and Margrave, 2005)
- Lateral position error with respect to the GPSPI approximation

We have tested all three of these methods; We introduce the third one here.

Estimate Lateral Position Errors

 \mathcal{X} ray path kz Δz $x = \Delta z \tan \theta$ $\delta x = \Delta z \sec^2 \theta \frac{\partial \theta}{\partial v} \delta v$ Lateral Position Error

$$\delta v = \frac{\cos^3 \theta}{\sin \theta} \frac{\delta x}{\Delta z} v, \quad \theta \in [0, 90]$$

Choose the Reference Velocities

Build Indicator Functions

For each reference velocity define an indicator function:

$$I_{j}(x) = \begin{cases} 1, |v(x) - v_{j}| = \min \\ 0, \text{ otherwise} \end{cases}$$

Build Indicator Functions

For each reference velocity define an indicator function:

$$I_{j}(x) = \begin{cases} 1, |v(x) - v_{j}| = \min \\ 0, \text{ otherwise} \end{cases}$$

$$\sum_{j\in\mathbb{Z}}I_{j}\left(x\right)=1$$

•	I_1	0	0	• • •	0	0	0	0
	I_2	0	0	• • •	0	1	0	0
	<i>I</i> ₃	0	1	• • •	-0-	0	1	1
	I_4	0	0	• • •	1	0	0	0
	<i>I</i> ₅	1	0	•••	0	0	0	0

Create Partitions

Define a smallest "atomic window"
 Build the POU by a normalized convolution:
 Ω_j(x) = (I_j • Θ)(x)
 Θ = atomic window

The POU is satisfied automatically works in any number of dimensions;

2D: $\Omega_{j}(x) = (I_{j} \bullet \Theta)(x)$ Partitioning in 1D 3D: $\Omega_{ij}(x, y) = (I_{ij} \bullet \Theta)(x, y)$ Partitioning in 2D

Atomic Windows in 1D and 2D

1D Position-error Partitioning for 2D Gabor Imaging

Example: v(x) is a step bump function and two partitions are chosen.

1D Position-error Partitioning for 2D Gabor Imaging

Example: v(x) is a complex velocity profile and seven partitions are chosen.

2D Position-error Partitioning for 3D Gabor Imaging

Marmousi Synthetic Data Sets

Pre-stack depth migration on shot records
Number of shots: 240
Each shot record is imaged with deconvolution Imaging condition

Gabor Imaging Enlargement

FOCI Imaging Enlargement

(Margrave et al, 2006)

3D Impulse Response Test

3D Visualization of the Impulse Response

Conclusions

- Gabor imaging method is an effective depth migration tool for complex velocity structures
 Adaptive partitioning scheme enhances Gabor imaging method and allows it have a trade-off between accuracy and runtime
- Gabor method easily extends to 3D

Acknowledgements

CREWES and the sponsors
POTSI, PIMS, MITACS and CSEG
David Henley, Chad Hogan
Kevin Hall

Slides in the Following Reserved for Possible Questions

Approximation of GPSPI – Gabor Wavefield Extrapolation

$$\psi_P(x,\Delta z,\omega) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{\psi}(k_x,0,\omega) \, \hat{W}\left(k = \frac{\omega}{v(x)}, k_x, \Delta z\right) \exp(-ik_x x) dk_x$$

$$\hat{W}\left(k = \frac{\omega}{v(x)}, k_x, \Delta z\right) \approx \sum_{j \in \mathbb{Z}} \Omega_j(x) S_j(x) \hat{W}\left(k_j = \frac{\omega}{v_j}, k_x, \Delta z\right)$$

Partitioning Windows Fourier Split-step Operator $\psi_{p}(x,\Delta z,\omega) \approx \sum_{j\in\mathbb{Z}} \Omega_{j}(x) S_{j}(x)$ Locally Constant Extrapolator $\times \frac{1}{2\pi} \int_{x} \hat{\psi}(k_{x},0,\omega) \hat{W}\left(k_{j} = \frac{\omega}{v_{z}}, k_{x},\Delta z\right) \exp(-ik_{x}x) dk_{x}$

Marmousi Velocity Model

Gabor Imaging Result using Lateral Position Error of 2.5 m

