

An analytic approach to minimum phase signals

Michael P. Lamoureux and Gary F. Margrave

November 29, 2007

・ 同 ト ・ ヨ ト ・ ヨ ト

Michael P. Lamoureux and Gary F. Margrave An analytic approach to minimum phase signals

Introduction

Minimum phase introduction

- certain physical signals have energy concentrated at the front
 - impulsive seismic sources (hammers, dynamite, airgun blast)
 - signals traveling through lossy media

Introduction

Minimum phase introduction

- certain physical signals have energy concentrated at the front
 - impulsive seismic sources (hammers, dynamite, airgun blast)
 - signals traveling through lossy media
- traditionally called minimum phase

Introduction

Minimum phase introduction

- certain physical signals have energy concentrated at the front
 - impulsive seismic sources (hammers, dynamite, airgun blast)
 - signals traveling through lossy media
- traditionally called minimum phase
- such signals can be recovered from the amplitude spectrum alone; the phase is uniquely determined.

Introduction

Minimum phase introduction

- certain physical signals have energy concentrated at the front
 - impulsive seismic sources (hammers, dynamite, airgun blast)
 - signals traveling through lossy media
- traditionally called minimum phase
- such signals can be recovered from the amplitude spectrum alone; the phase is uniquely determined.
- useful in seismic processing.

Introduction

Minimum phase introduction

- certain physical signals have energy concentrated at the front
 - impulsive seismic sources (hammers, dynamite, airgun blast)
 - signals traveling through lossy media
- traditionally called minimum phase
- such signals can be recovered from the amplitude spectrum alone; the phase is uniquely determined.
- useful in seismic processing.
- Eg: in deconvolution, where the reflectivity and the wavelet are separated from the recorded seismic data.

・ロン ・回と ・ヨン・

Introduction

Difficulties Mathematical background A better definition Details Conclusions

Introduction

Filter background

terminology comes from filter theory.

イロン 不同と 不同と 不同と

Э

Introduction

Filter background

- terminology comes from filter theory.
- min phase filter has minimum group delay of all possible filters with a given amplitude spectrum (a misnomer).

Introduction

Filter background

- terminology comes from filter theory.
- min phase filter has minimum group delay of all possible filters with a given amplitude spectrum (a misnomer).
- impulse response has energy is maximally concentrated at the front.

Introduction

Filter background

- terminology comes from filter theory.
- min phase filter has minimum group delay of all possible filters with a given amplitude spectrum (a misnomer).
- impulse response has energy is maximally concentrated at the front.
- causal stable filter with causal stable inverse (def'n).

Introduction

Filter background

- terminology comes from filter theory.
- min phase filter has minimum group delay of all possible filters with a given amplitude spectrum (a misnomer).
- impulse response has energy is maximally concentrated at the front.
- causal stable filter with causal stable inverse (def'n).
- ▶ all poles and zeros of the filter lie inside the unit circle (def'n).

Introduction

Filter background

- terminology comes from filter theory.
- min phase filter has minimum group delay of all possible filters with a given amplitude spectrum (a misnomer).
- impulse response has energy is maximally concentrated at the front.
- causal stable filter with causal stable inverse (def'n).
- all poles and zeros of the filter lie inside the unit circle (def'n).
- ► FIR, IIR filter converted to min phase by reflecting poles, zeros across unit circle.

Introduction

Filter background

- terminology comes from filter theory.
- min phase filter has minimum group delay of all possible filters with a given amplitude spectrum (a misnomer).
- impulse response has energy is maximally concentrated at the front.
- causal stable filter with causal stable inverse (def'n).
- all poles and zeros of the filter lie inside the unit circle (def'n).
- ► FIR, IIR filter converted to min phase by reflecting poles, zeros across unit circle.
- or via Hilbert transform on log amplitude spectrum.

Introduction

Difficulties Mathematical background A better definition Details Conclusions

Introduction

Min phase vs zero phase

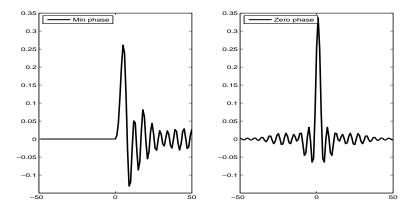


Figure: A minimum phase IIR filter response and zero phase equivalent.

Michael P. Lamoureux and Gary F. Margrave An analytic approach to minimum phase signals

イロト イヨト イヨト イヨト

æ

Difficulties

Fundamental difficulty: applying filter theory to signals

► Filter response is a poor model for general signals.

Difficulties

Fundamental difficulty: applying filter theory to signals

- Filter response is a poor model for general signals.
- Signals typically don't have zeros and poles.

Difficulties

Fundamental difficulty: applying filter theory to signals

- Filter response is a poor model for general signals.
- Signals typically don't have zeros and poles.
- ► Impossible to have a causal stable signal with causal stable inverse on ℝ.

Difficulties

Fundamental difficulty: applying filter theory to signals

- Filter response is a poor model for general signals.
- Signals typically don't have zeros and poles.
- ► Impossible to have a causal stable signal with causal stable inverse on ℝ.
- ► Hilbert transform not defined on arbitrary log spectrum.

Difficulties

Why no causal stable signal with causal stable inverse?

• Signal $f : \mathbb{R} \to \mathbb{R}$ with inverse g means

 $f * g = \delta_0$, the Dirac delta function.

イロン スポン イヨン イヨン

Difficulties

Why no causal stable signal with causal stable inverse?

• Signal $f : \mathbb{R} \to \mathbb{R}$ with inverse g means

 $f * g = \delta_0$, the Dirac delta function.

But, f, g nice functions, implies f * g also a function.
 NOT a distribution.

Difficulties

Why no causal stable signal with causal stable inverse?

• Signal $f : \mathbb{R} \to \mathbb{R}$ with inverse g means

 $f * g = \delta_0$, the Dirac delta function.

- But, f, g nice functions, implies f * g also a function.
 NOT a distribution.
- For instance, locally integrable ("stable") implies the convolution is locally integrable.

Difficulties

Why Hilbert transform a problem?

 For those in the know, we use the Hilbert transform to compute min phase.

・ロト ・回ト ・ヨト ・ヨト

Difficulties

Why Hilbert transform a problem?

- For those in the know, we use the Hilbert transform to compute min phase.
- ▶ For those not in the know, it is some integral formula.

・ロン ・回と ・ヨン ・ヨン

Difficulties

Why Hilbert transform a problem?

- For those in the know, we use the Hilbert transform to compute min phase.
- ▶ For those not in the know, it is some integral formula.
- Involves log(abs(Fourier transform)).

イロト イポト イヨト イヨト

Difficulties

Why Hilbert transform a problem?

- For those in the know, we use the Hilbert transform to compute min phase.
- ▶ For those not in the know, it is some integral formula.
- Involves log(abs(Fourier transform)).
- Log blows up at the zeros of the Fourier transform.

Difficulties

Why Hilbert transform a problem?

- For those in the know, we use the Hilbert transform to compute min phase.
- ▶ For those not in the know, it is some integral formula.
- Involves log(abs(Fourier transform)).
- Log blows up at the zeros of the Fourier transform.
- ► Try to fix by inserting a stability constant to remove zeros. log(abs(Fourier transform) + ϵ)

Difficulties

Why Hilbert transform a problem?

- For those in the know, we use the Hilbert transform to compute min phase.
- ▶ For those not in the know, it is some integral formula.
- Involves log(abs(Fourier transform)).
- Log blows up at the zeros of the Fourier transform.
- ► Try to fix by inserting a stability constant to remove zeros. log(abs(Fourier transform) + ϵ)
- Does that work?

Mathematical background

Analytic approach

• Given a causal, stable signal $\mathbf{f} = (f_0, f_1, f_2, \dots)$, define

$$F(z) = \sum_{n=0}^{\infty} f_n z^n$$
, for complex numbers z with $|z| < 1$.

イロン イヨン イヨン イヨン

Mathematical background

Analytic approach

• Given a causal, stable signal $\mathbf{f} = (f_0, f_1, f_2, \ldots)$, define

$$F(z) = \sum_{n=0}^{\infty} f_n z^n$$
, for complex numbers z with $|z| < 1$.

► F(e^{iω}) is just the usual Fourier transform. F(z) is an extension of the spectrum to the disk.

・ロン ・回 と ・ ヨ と ・ ヨ と

Mathematical background

Analytic approach

• Given a causal, stable signal $\mathbf{f} = (f_0, f_1, f_2, \ldots)$, define

$$F(z) = \sum_{n=0}^{\infty} f_n z^n$$
, for complex numbers z with $|z| < 1$.

- ► F(e^{iω}) is just the usual Fourier transform. F(z) is an extension of the spectrum to the disk.
- ► F(z) is a power series, differentiable everywhere on the unit disk. An analytic function. A function in Hardy space H¹(D).

Mathematical background

Amazing facts in Hardy spaces

An analytic function can't be zero on an interval (or curve) in the disk, unless it is zero everywhere.

Mathematical background

Amazing facts in Hardy spaces

- An analytic function can't be zero on an interval (or curve) in the disk, unless it is zero everywhere.
- Similarly, a causal signal can't have an interval of zeros in its spectrum.

Mathematical background

Amazing facts in Hardy spaces

- An analytic function can't be zero on an interval (or curve) in the disk, unless it is zero everywhere.
- Similarly, a causal signal can't have an interval of zeros in its spectrum.
- There are no band limited, causal signals.

Mathematical background

Amazing facts in Hardy spaces

- An analytic function can't be zero on an interval (or curve) in the disk, unless it is zero everywhere.
- Similarly, a causal signal can't have an interval of zeros in its spectrum.
- There are no band limited, causal signals.
- There are no band limited, minimum phase signals.

Mathematical background

No min phase, band limited spike

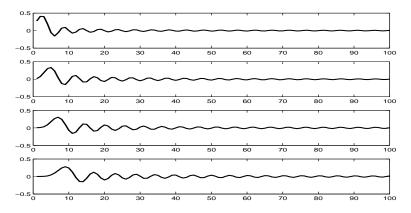


Figure: Trying to compute a min phase signal that does not exist. Stability factor ϵ goes to zero....

Michael P. Lamoureux and Gary F. Margrave

An analytic approach to minimum phase signals

Mathematical background

Existence conditions

Theorem: An amplitude spectrum $|F(e^{i\omega})|$ is the spectrum of a causal signal if and only if

- $\int |F(e^{i\omega})| d\omega < \infty$, and
- $\int \log |F(e^{i\omega})| d\omega$ is finite.

Thus, the spectrum can not have an interval of zeros, since $\log 0 = -\infty.$

Theorem: Any causal signal has a minimum phase equivalent.

Mathematical background

More facts about Hardy spaces.

► Each function F(z) can be factored as F(z) = G(z) H(z), where G is an outer function, H is an inner function.

イロト イポト イヨト イヨト

Mathematical background

More facts about Hardy spaces.

- Each function F(z) can be factored as F(z) = G(z) H(z), where G is an outer function, H is an inner function.
- Outer functions are like minimum phase filters.

イロト イポト イヨト イヨト

Mathematical background

More facts about Hardy spaces.

- Each function F(z) can be factored as F(z) = G(z) H(z), where G is an outer function, H is an inner function.
- Outer functions are like minimum phase filters.
- Inner functions are like all pass filters.

・ロン ・回と ・ヨン ・ヨン

Mathematical background

More facts about Hardy spaces.

- ► Each function F(z) can be factored as F(z) = G(z) H(z), where G is an outer function, H is an inner function.
- Outer functions are like minimum phase filters.
- Inner functions are like all pass filters.
- The inner, outer definitions (complicated) apply to general signals, not just filters.

イロト イポト イヨト イヨト

A better definition

A better definition for "min phase" signals.

▶ **Definition:** A causal signal $\mathbf{f} = (f_0, f_1, f_2, ...)$ is *front-loaded* if its partial energies are maximized, relative to any other causal signal with the sample amplitude spectrum. That is,

$$\sum_{n=0}^{N} |g_n|^2 \leq \sum_{n=0}^{N} |f_n|^2,$$
 for each $N = 0, 1, 2, \dots$

A better definition

A better definition for "min phase" signals.

▶ **Definition:** A causal signal $\mathbf{f} = (f_0, f_1, f_2, ...)$ is *front-loaded* if its partial energies are maximized, relative to any other causal signal with the sample amplitude spectrum. That is,

$$\sum_{n=0}^{N} |g_n|^2 \le \sum_{n=0}^{N} |f_n|^2, \quad \text{for each } N = 0, 1, 2, \dots$$

▶ **Theorem:** A discrete signal $\mathbf{f} = (f_0, f_1, f_2, ...)$ is front-loaded if and only if F(z) is an outer function.

イロト イポト イヨト イヨト

A better definition

Compare with old definition

Old definition works:

► For causal, stable filters: min phase implies front-loaded.

New definition more general:

A better definition

Compare with old definition

Old definition works:

- ▶ For causal, stable filters: min phase implies front-loaded.
- ► For causal stable signals: min phase implies front-loaded.

New definition more general:

A better definition

Compare with old definition

Old definition works:

- ▶ For causal, stable filters: min phase implies front-loaded.
- ► For causal stable signals: min phase implies front-loaded.
- Extra conditions: then front-loaded implies min phase.

New definition more general:

A better definition

Compare with old definition

Old definition works:

- ► For causal, stable filters: min phase implies front-loaded.
- ► For causal stable signals: min phase implies front-loaded.
- Extra conditions: then front-loaded implies min phase.

New definition more general:

Signal $\mathbf{f} = (1, r, 0, 0, \ldots)$ is min phase, front-loaded. (|r| < 1).

A better definition

Compare with old definition

Old definition works:

- ► For causal, stable filters: min phase implies front-loaded.
- ► For causal stable signals: min phase implies front-loaded.
- Extra conditions: then front-loaded implies min phase.

New definition more general:

- Signal $\mathbf{f} = (1, r, 0, 0, \ldots)$ is min phase, front-loaded. (|r| < 1).
- Signal $\mathbf{f} = (1, 1, 0, 0, \ldots)$ is not min phase, but is front-loaded.

A better definition

Compare with old definition

Old definition works:

- ► For causal, stable filters: min phase implies front-loaded.
- ► For causal stable signals: min phase implies front-loaded.
- Extra conditions: then front-loaded implies min phase.

New definition more general:

- Signal $\mathbf{f} = (1, r, 0, 0, \ldots)$ is min phase, front-loaded. (|r| < 1).
- Signal $\mathbf{f} = (1, 1, 0, 0, \ldots)$ is not min phase, but is front-loaded.
- ► Signal f = (1, 1, 1, 1, 1, 1, 1, 0, ...) is not min phase, but is front-loaded.

Details

Technical details

We divide up signals into outer and inner parts. Outers have the energy concentration.

イロン イヨン イヨン イヨン

æ

Details

Technical details

- We divide up signals into outer and inner parts. Outers have the energy concentration.
- A function F(z) is outer if

$$F(z) = \lambda \exp\left(\int_0^1 \frac{e^{2\pi i \theta} + z}{e^{2\pi i \theta} - z} u(e^{2\pi i \theta}) d\theta\right)$$

where u is a real-valued integrable function on the unit circle, and λ is a complex number of modulus one.

イロト イポト イヨト イヨト

Details

Technical details

- We divide up signals into outer and inner parts. Outers have the energy concentration.
- A function F(z) is outer if

$$F(z) = \lambda \exp\left(\int_0^1 \frac{e^{2\pi i\theta} + z}{e^{2\pi i\theta} - z} u(e^{2\pi i\theta}) d\theta\right)$$

where u is a real-valued integrable function on the unit circle, and λ is a complex number of modulus one.

• A function F(z) is *inner* if $|F| \equiv 1$ on the unit circle.

Details

Technical details

- We divide up signals into outer and inner parts. Outers have the energy concentration.
- A function F(z) is outer if

$$F(z) = \lambda \exp\left(\int_0^1 \frac{e^{2\pi i\theta} + z}{e^{2\pi i\theta} - z} u(e^{2\pi i\theta}) d\theta\right)$$

where u is a real-valued integrable function on the unit circle, and λ is a complex number of modulus one.

- A function F(z) is *inner* if $|F| \equiv 1$ on the unit circle.
- Every function can be written as outer times inner.

・ロン ・回と ・ヨン ・ヨン

Details

Non singular formula for discrete, min phase signal.

From Hardy theory, we get alternate formulas for min phase signals. Signal coefficients from the outer function:

$$f_n=rac{1}{r^n}\int_0^1 F(re^{2\pi i\phi})e^{-2\pi in\phi}\,d\phi,\qquad ext{any }r<1\;.$$

Signal coefficients from the amplitude spectrum:

$$f_n = \frac{1}{r^n} \int_0^1 \exp\left(\int_0^1 \frac{e^{2\pi i\theta} + re^{2\pi i\phi}}{e^{2\pi i\theta} - re^{2\pi i\phi}} \log|F(e^{2\pi i\theta})| \, d\theta\right) e^{-2\pi in\theta} \, d\phi.$$

Details

Signals on the real line.

Similarly, we have

Definition: A causal signal $\mathbf{f} : \mathbb{R}^+ \to \mathbb{R}$ is *front-loaded* if its partial energies are maximized, relative to any other causal signal with the sample amplitude spectrum. That is,

$$\int_0^T |g(t)|^2 \, dt \leq \int_0^T |f(t)|^2 \, dt \qquad ext{for each } T>0.$$

イロン イヨン イヨン イヨン

Details

Signals on the real line.

Similarly, we have

Definition: A causal signal $\mathbf{f} : \mathbb{R}^+ \to \mathbb{R}$ is *front-loaded* if its partial energies are maximized, relative to any other causal signal with the sample amplitude spectrum. That is,

$$\int_0^T |g(t)|^2\,dt \leq \int_0^T |f(t)|^2\,dt \qquad ext{for each } T>0.$$

▶ **Theorem:** A causal signal $f : \mathbb{R}^+ \to \mathbb{R}$ with spectrum F(z) an outer function, is front-loaded.

Details

Signals on the real line.

Similarly, we have

Definition: A causal signal $\mathbf{f} : \mathbb{R}^+ \to \mathbb{R}$ is *front-loaded* if its partial energies are maximized, relative to any other causal signal with the sample amplitude spectrum. That is,

$$\int_0^T |g(t)|^2\,dt \leq \int_0^T |f(t)|^2\,dt \qquad ext{for each } T>0.$$

- ▶ **Theorem:** A causal signal $f : \mathbb{R}^+ \to \mathbb{R}$ with spectrum F(z) an outer function, is front-loaded.
- **Conjecture:** This is if and only if.

Details

Computing approximately band-limited min phase signals.

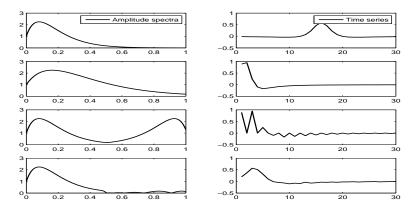


Figure: Step by step construction, using spectrum wrapping.

イロト イヨト イヨト イヨト

æ

Conclusion

Conclusions

 Mathematical difficulties in applying minimum phase definition to signals.

・ロン ・回と ・ヨン ・ヨン

Э

Conclusion

Conclusions

- Mathematical difficulties in applying minimum phase definition to signals.
- Front-loaded, energy concentration a useful alternative definition.

イロン イヨン イヨン イヨン

æ

Conclusion

Conclusions

- Mathematical difficulties in applying minimum phase definition to signals.
- Front-loaded, energy concentration a useful alternative definition.
- Front-load signals equivalent to outer functions in Hardy space.

<ロ> (日) (日) (日) (日) (日)

Conclusion

Conclusions

- Mathematical difficulties in applying minimum phase definition to signals.
- Front-loaded, energy concentration a useful alternative definition.
- Front-load signals equivalent to outer functions in Hardy space.
- No band-limited causal signals, no band-limited min phase signals.

イロト イポト イヨト イヨト

Conclusion

Conclusions

- Mathematical difficulties in applying minimum phase definition to signals.
- Front-loaded, energy concentration a useful alternative definition.
- Front-load signals equivalent to outer functions in Hardy space.
- No band-limited causal signals, no band-limited min phase signals.
- Hardy space theory gives useful formulations for computing min phase signals.

イロン イヨン イヨン イヨン

End matters

- ▶ Helson, H., 1995, Harmonic Analysis.
- ▶ Hoffman, K., 1962, Banach Spaces of Analytic Functions.
- ▶ Karl, J., 1989, An Introduction to Digital Signal Processing.
- Körner, T., Fourier Analysis.
- Openheim, A. V. and Schafer, R. W., 1998, Discrete-time Signal Processing.

イロト イポト イヨト イヨト

End matters

Acknowledgements

This research is supported by

- the industrial sponsors of CREWES and POTSI
- the funding agencies NSERC and MITACS.

- 4 回 ト 4 ヨ ト 4 ヨ ト