

Surface Wave Analysis for Estimating S-wave Velocity

Khaled Al Dulaijan Robert R. Stewart November 30, 2007

Outline

Introduction Background Location Well Data Analysis Surface Wave Analysis: Acquisition Parameters Dispersion Curves Inversion Conclusion •Future Work Acknowledgment

Introduction

- Priddis Survey: Data collected by University of Calgary 2007 Field School and used here includes:
 - Well Data (125m deep)
 - 2-D Seismic Data
- Objective: S-Wave velocity model of the near surface
- Motivation: Static corrections for S-waves

Background

- Significant portion (2/3 according to Park et al. 1999) of seismic energy is imparted into Rayleigh waves when using a compressional source
- Dispersion of Rayleigh waves:
 - Isotropic Homogenous Half Space
 - Layered Earth
 - Phase velocity and group velocity:

$$c = v \left[1 - \frac{f}{c} \frac{dc}{df} \right]$$

c: phase velocity v: group velocity f: frequency

- Normal Dispersion
- Phase velocity: function of frequency and 4 earth parameters (P-wave velocity, S-wave velocity, density, and thickness)

Background

- Surface wave methods developed for geotechnical engineering and seismology purposes
- Current surface wave methods
- Multichannel Analysis of Surface Waves (MASW) method (Park et al., 1999)

PALEOCENE

58. Sandstone, shale, conglomerate; ash beds; coal; includes COALSPUR BEDS; 58a, may include some Upper Cretaceous beds 59.PASICAPOO FORMATION: sandstone, shale, conglomerate; bentonitic shale; siliceous limestone; thin coal 60.PORCUPINE HILLS FORMATION: buff weathering sandstone; grey shale, carbonaceous shale, conglomerate; thin coal 61.RAVENSCRAG FORMATION: sandstone and shale

MONTANA

43. BELLY RIVER FORMATION: grey and green sandstone and shale; bentonitic, carbonaceous, and concretionary shales; congiomerste; coal 44. BRAZEAU FORMATION: sandstone, shale, congiomerste; ash beds; coal; 44a, includes some WAPIABI FORMATION 45. ALLISON FORMATION: light-coloured sandstone and shale; may include some post-Montana beds

COLORADO (Mainly): 35-39

37.SMOKY GROUP (Includes KASKAPAU and BAD HEART FORMATIONS); dark grey shale and carbonaceous shale; reddish brown weathering sandstone. Marine

38. ALBERTA (Benton) GROUP comprising BLACKSTONE (Lower Alberta), BIGHORN (Cardium), and WAPIABI (Lipper Alberta). FORMATIONS: dark shale, sandy shale; sandstone and pebble- conglomerate. Marine 39. LA BICHE FORMATION: grey and dark grey shale; some sand. Marine

32. McMURRAY FORMATION: (Includes 'Tar Sands'): mostly sandstone; minor shale and conglomenta: Parts impregnated with bitumen 33. BLAIRMORE GROUP (CADOMIN, LUSCAR, and MOUNTAIN PARK FORMATIONS): basel, hard conglomentae, sandstone and sandy shale, conglomentae, carbonaceous shale, coal; green and brown weathering grey shale and sandstone, thin coal; 33a, includes some SPRAY RIVER and FERNIE beds; 33b, includes some FERNIE and KOOTENAY beds; 33c, includes some NIKANASSIN and KOOTENAY beds; 33c, includes some NIKANASSIN and KOOTENAY beds; 33c, includes some FORMATION and CROWSNEST volcenic rocks

CARBONIFEROUS AND (?) PERMIAN MISSISSIPPIAN AND LATER

BANFF and RUNDLE FORMATIONS (undivided); 22a, includes some ROCKY MOUNTAIN FORMATION (quartzite and aandatone, in part phosphatic; arenaceous dolornite and limestone) and/or SPRAY RIVER FORMATION; 22A, BANFF FORMATION: banded, cherty; grey limestone; platy and calcareous shales; crimoidal and crystalline limestones; chert; 22B, RUNDLE FORMATION: cherty; crystalline and crimoidal limestones; arenaceous dolornite; calcareous shale

Priddis Site

Well Data

Depth (m)	P-wave velocity (m/s)
0-3.9	600
3.9-17.6	1900
17.6-28.3	2080
28.3-39.3	2250

Surface Wave Analysis Workflow

Acquisition Parameters

- A 5-pound sledgehammer source
- 10 Hz vertical geophones
- Receiver spacing~ 2.5 m
- Shot interval~ 12.5 m
- Near offset~ between 0 and 37.5 m
- Record length~ 600 ms
- Sample rate~ 0.125 ms

Shot Gather

Dispersion Curve Calculation

(After McMechan & Yedlin, 1981)

(1) A shot gather: u(x,t)

(2) Fourier Transform: $U(x,\omega) = \int u(x,t)e^{i\omega t} dt$

 $U(x,\omega)$ is expressed as the multiplication of the phase spectrum, $P(x,\omega)$, and the amplitude spectrum, $A(x,\omega)$

$$U(x,\omega) = A(x,\omega)P(x,\omega) = A(x,\omega)e^{-i\phi x}$$

where $\phi = \frac{\omega}{c_{\omega}}$, and c_{ω} is the phase velocity.

(3) Transformation:

$$E(\omega,\theta) = \int e^{i\theta x} \Big[U(x,\omega) / |U(x,\omega)| \Big] dx = \int e^{-i(\phi-\theta)x} \Big[A(x,\omega) / |A(x,\omega)| \Big] dx$$

where θ is an offset-dependent phase shift.

This will have a maximum at $\phi = \theta = \frac{\omega}{c_{\omega}}$. c_{ω} can be estimated where peak of E occurs.

(Park et al., 1998)

Dispersion Curve

The cutoff frequency,
$$f_{cn}$$
, of the nth mode:

$$f_{cn} = \frac{V_s(n+\frac{1}{2})}{2h}$$

, where *h* is the thickness of the layer

Inversion

• Initial model:

- P-wave velocity and depth from well data
- Constant Poisson's ratio~
 0.405

Layer	Bottom	Thickness	S-Vel (Vs)	P-Vel (Vp)	POS Ratio
1	3.900	3.900	240	600	0.405
2	17.600	13.700	760	1900	0.405
3	28.300	10.700	832	2080	0.405
4	39.300	11.000	900	2250	0.405
5	Half Space	Infinity	980	2450	0.405

Inversion using SurfSeis

Inverted S-wave Velocity vs. Initial Model

2-D S-wave Velocity Profile

Conclusion

- In a real layered earth, surface waves are dispersive with multiple modes.
- Different modes can be imaged using dispersion curves.
- Dispersion curves can be inverted for S-wave velocity model of the near surface.
- Well data of the near surface were analyzed for Priddis site, and showed good correlation with the surface wave inversion results.

Future Work

- Re-acquiring the seismic data with longer record length, and using a 3 component land streamer.
- Calculate S-wave static correction using surface wave methods.

Acknowledgments

- Kevin Hall, Joe Wang, Henry Bland, and the students of 2007 field school class.
- Saudi Aramco: Timothy Keho, Thierry-Laurent Tonellot, and Christopher Liner.
- Kansas Geological Survey for the use of SurfSeis 2.05 software.
- CREWES industrial sponsors.