### Footprint reduction by angle-weighted stacking after migration

Joanna K. Cooper, Gary F. Margrave, and Don C. Lawton November 21, 2008





### Outline

Review of 2007 footprint simulations
Description of method for angleweighted stacking
Application of method in 2D
Illustration of method in 3D
Conclusions and future work

### **Recap: 2D Footprint Simulations**

Modelled an exhaustive 2D dataset: shots and receivers spaced at 5 m intervals over a 400 m long model

- Created five shot decimations with shot spacings of 10 m, 25 m, 50 m, 100 m, and 200 m
- Applied Kirchhoff prestack migration and stacked migrated shot records

### Recap: 2D Simulation (after Cary, 2007)

#### Prestack migrated sections:



### **Recap: 3D Footprint Simulations**

Modelled an exhaustive dataset via Rayleigh-Sommerfeld and created one decimation

Migrated with 3 prestack migration algorithms



### **Recap: 3D Footprint Simulations**

Comparison: exhaustive vs. decimated on a featureless reflector



### **Recap: 3D Footprint Simulations**

Comparison of different migration algorithms for the decimated dataset:



### **Recap: '07 Footprint Simulations**

- 2D: Footprint manifests as residual migration wavefronts in decimated datasets
- 3D: Periodic amplitude variations appear in migrated depth slices
- 3D: Migration algorithms, in particular migration weights, make a big difference in observed footprint
  - → Can footprint reduction be achieved via prestack migration weights?

- Bleistein migration weights convert from uniform, infinite source and receiver coverage to uniform angular illumination of image point
- Still need to compensate for discrete, finite, irregular sampling (e.g. decimated dataset)
- Normalization may allow wavefronts to properly interfere

- Analogy: numerical integration
- $\int f(x) dx \approx \Delta x \sum_{j} f(x_{j})$ , only if samples are regular and infinite
- For irregular sampling, must compute a weighted sum:  $\sum_{i} f(x_i) \Delta x_i$
- Kirchhoff migration: multidimensional integral in space, approximated by a sum, and weighted in order to achieve uniform illumination of the image point

#### Concept: illumination of imaging hemisphere by delta angles





# Delta is also the normal to the migration impulse response





Consider illumination of imaging hemisphere by delta vectors

- Each source-receiver pair defines a delta angle for each image point
- Want to achieve uniform illumination by normalizing by delta hit counts

#### Delta bin hit counts vs. shot decimation



#### Fold weights: 1/decimated\_hits



#### Ratio weights: exh\_hits/dec\_hits



Migrate each shot record into deltalimited volumes and apply weights during stacking:

$$\operatorname{Im}(x_{i}, y_{i}, z_{i}) = \sum_{j \text{ shots}} \left[ \sum_{k \text{ bins}} W_{k} * \psi_{j}(x_{i}, y_{i}, z_{i}, \delta_{k}) \right]$$

 Or, precompute weights and apply during conventional migration, because weights are only a function of image point position and delta

#### Results: delta ratio weights



#### Results: delta fold weights



#### Comparison: ratio vs. fold weights

![](_page_19_Figure_2.jpeg)

#### Comparison: bin widths (ratio weights)

![](_page_20_Figure_2.jpeg)

#### Comparison: delta ratio vs. abs(delta)

![](_page_21_Figure_2.jpeg)

## **2D Observations**

- Delta ratio weights appear to reduce footprint artefacts
- Delta fold weights compensate for aperture but enhance edge artefacts
- Bin width affects results
- Considering the sign of delta produces better results than abs(delta)

### **3D Method**

Full simulations, similar to in 2D are currently being produced
Hit count maps for single shots show how the method will apply

# **3D Delta Hit Counts**

# Delta = 0° hit count is identical to CMP fold

![](_page_24_Figure_2.jpeg)

# **3D Delta Hit Counts**

#### Exhaustive survey non-zero deltas:

![](_page_25_Figure_2.jpeg)

# **3D Delta Hit Counts**

#### Decimated survey non-zero deltas:

![](_page_26_Figure_2.jpeg)

# **3D Observations**

Delta hit counts for single shots reflect differences in illumination between exhaustive and decimated datasets

Delta weights result from summing the hit count maps for all shots

# Conclusions

Delta weights attempt to compensate for irregular image point illumination

- In 2D simulations, footprint appears to be reduced when delta ratio weights are applied during stacking of migrated shot records
- The method is similarly applicable in 3D

### **Future work**

- More work determining optimal binning
- Implementation of Gaussian windowing
- Production of weighted stacks in 3D
- More work on theoretical weights

# Acknowledgements

Sponsors of CREWES
Sponsors of POTSI
NSERC
Alberta Ingenuity

![](_page_30_Picture_2.jpeg)

CREWES

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

![](_page_30_Picture_5.jpeg)