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ii(x,t) = V- (c2(x)Vu(x, t))
u(x,t =
u(x,t =

,xeQ, t>0.

» Multiplying by v(x) , integrating and applying Green’s
theorem we obtain
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» Consider the following simplified elastic wave equation.

ii(x,t) = V- (c2(x)Vu(x, t))
u(x,t =0) = up(x) ,x€eN, t>0.
u(x,t =0) =uy(x)

» Multiplying by v(x) , integrating and applying Green’s
theorem we obtain

/i’tde+/CZVu-Vde:}{CZVu-deF
Q Q r

» The term on the right hand side is what allows us to “talk”
to the boundary I'.
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» First order absorbing boundary conditions

'
u=cVu-n

» Substitute into the boundary term

?{C2Vu -nvdll — y{ cuvdl
r r

» The new problem reads

/ilde+/c2Vu-Vde:fciwdF
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u(x,t) = > iti(t)di(x)
i=1

v(x) = ¢j(x), forallj=1,..,N
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» Choose a set of functions {¢(x) }]Ii , foruand v
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N

u(x,t) = Z ui(t)¢i(x)

i=1

v(x) = ¢j(x), forallj=1,..,N

» The nodal Galerkin method chooses the functions ¢;(x)
from those that act like discrete delta functions on a set of
nodes.

1izi
di(xj) = 6ij = {0 i;éj'
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» Choose a set of functions {¢(x) }]Ii , foruand v

N

u(x,t) = Z ui(t)¢i(x)

i=1

v(x) = ¢j(x), forallj=1,..,N

» The nodal Galerkin method chooses the functions ¢;(x)
from those that act like discrete delta functions on a set of
nodes.

1,i=j

bi(xj) = ;i = {0 it

» Appropriate choices are Lagrange polynomials or sinc
functions.
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Figure: 1D Lagrange Polynomial
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Figure: 2D Lagrange Polynomial
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Figure: 1D Sinc Function
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Figure: 2D Sinc Function
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» Sinc functions are defined on equispaced grids (mapped
from Z).

» Lagrange polynomials can be defined for any grid but for
high accuracy are defined on the zeros of N degree
polynomials (Legendre, Chebyshev, etc...).
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from Z).

» Lagrange polynomials can be defined for any grid but for
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» Associated with a set of nodes is a Differentiation matrix D
and a set of weights {w; ]-111.
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» Sinc functions are defined on equispaced grids (mapped
from Z).

» Lagrange polynomials can be defined for any grid but for
high accuracy are defined on the zeros of N degree
polynomials (Legendre, Chebyshev, etc...).

» Associated with a set of nodes is a Differentiation matrix D
and a set of weights {w; ]-111.

» The d-dimensional version of these nodes, weights, and
matrices are defined using the Kronecker-tensor product.
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Figure: Legendre-Gauss-Lobatto Nodes mapped to [0,5000]x[0,2500]
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Figure: 2D LGL Differentiation matrix Dy = D ® Iy (~ 2.94%
populated).
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Figure: 2D LGL Differentiation matrix D, = Iy ® D (~ 2.94%
populated).
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Figure: 1D Legendre and Chebyshev Gauss-Lobatto weights
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» Replace integration and differentiation by their nodal
counterparts in
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» Replace integration and differentiation by their nodal
counterparts in

/ilde—i—/czVu-Vde:%cide‘
Q Q r

» System of ordinary differential equations for evolution in
time ) ]
MU(t) + AU(t) + KU(t) =0
U(0) =Up
U(0) =1,
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» Discretize using centered finite difference in time

dt
[M + EA

:| U(t]‘_H) + [dtZK — ZM] U(tj)

+ [M - %A] Ut 1) =0
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» Discretize using centered finite difference in time

[M + itA:| U(t]‘+1) + [dtZK — ZM] U(tj)
+ [M - %A

:|U(t]‘1)=0

» Orlet V = U and write as first order system

I 0][U 0 I][U
o] [V]wele al[v]o=

\"
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» Initial conditions
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» To test this, consider the problem with
» Initial conditions

u(x,t =0) ¢TIl
u(x,t=0)=0

» In square tripartite medium with speeds ¢ = 2,3, 4.




Derivations ABC’s Discretization Nodes Numerical Scheme P-Wave Elastic Comparison Thank you

t=0.01 sec.
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Figure: Numerical simulation of P-wave propagation with first-order
ABC'’s.
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» We can also formulate an equivelent problem for the full

elastic wave equation
» To test this, consider a forcing term with Ricker wavelet

time-component

[l ——— (1_ (i) ez
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» We can also formulate an equivelent problem for the full
elastic wave equation

» To test this, consider a forcing term with Ricker wavelet
time-component

» Conservative spatial component

[uq(x), w1 (x)] = e ol
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elastic wave equation

v

time-component

f= 2 (1-5) e

1
3oms

v

Conservative spatial component

[uq(x), w1 (x)] = e ol

v

In square bipartite medium with properties.

Region p Vy Vs

1 2.064 | 2305 | 997

2 2.14 | 4500 | 2600

We can also formulate an equivelent problem for the full

To test this, consider a forcing term with Ricker wavelet
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0 1000 2000 3000 4000

Figure: Numerical simulation of elastic wave propagation with
periodic boundary conditions.
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» Computation times for comparison with 2,4,6,8 order finite
differences on 401 by 401 node grid.

Method | CFD2 | CFD4 | CFD6 | CFDS8 | Sinc
Time(sec) 17 21 24 27 52
Model Properties
Region p Vy Vs
1 2.064 | 2305 | 997
2 2.14 | 4500 | 2600
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0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure: Elastic wave propogated to t = 1 sec. White line indicates
receivers.
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Figure: Centerline of the vertical component in presence of a jump in
the velocity model.
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15H =—Sinc 4
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15H=——Sinc |
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