Nodal Galerkin Methods for Linear Elasticity

Matt McDonald University of Calgary

December 1, 2010

► Consider the following simplified elastic wave equation.

$$\begin{cases} \ddot{u}(\mathbf{x},t) = \nabla \cdot (c^2(\mathbf{x})\nabla u(\mathbf{x},t)) \\ u(\mathbf{x},t=0) = u_0(\mathbf{x}) \\ \dot{u}(\mathbf{x},t=0) = u_1(\mathbf{x}) \end{cases}, \mathbf{x} \in \Omega, t \geq 0.$$

► Consider the following simplified elastic wave equation.

$$\begin{cases} \ddot{u}(\mathbf{x},t) = \nabla \cdot (c^2(\mathbf{x})\nabla u(\mathbf{x},t)) \\ u(\mathbf{x},t=0) = u_0(\mathbf{x}) \\ \dot{u}(\mathbf{x},t=0) = u_1(\mathbf{x}) \end{cases}, \mathbf{x} \in \Omega, t \geq 0.$$

▶ Multiplying by $v(\mathbf{x})$, integrating and applying Green's theorem we obtain

$$\int_{\Omega} \ddot{u}v \, d\Omega + \int_{\Omega} c^2 \nabla u \cdot \nabla v \, d\Omega = \oint_{\Gamma} c^2 \nabla u \cdot \mathbf{n}v \, d\Gamma$$

► Consider the following simplified elastic wave equation.

$$\begin{cases} \ddot{u}(\mathbf{x},t) = \nabla \cdot (c^2(\mathbf{x})\nabla u(\mathbf{x},t)) \\ u(\mathbf{x},t=0) = u_0(\mathbf{x}) \\ \dot{u}(\mathbf{x},t=0) = u_1(\mathbf{x}) \end{cases}, \ \mathbf{x} \in \Omega, \ t \geq 0.$$

ightharpoonup Multiplying by $v(\mathbf{x})$, integrating and applying Green's theorem we obtain

$$\int_{\Omega} \ddot{u}v \, d\Omega + \int_{\Omega} c^2 \nabla u \cdot \nabla v \, d\Omega = \oint_{\Gamma} c^2 \nabla u \cdot \mathbf{n}v \, d\Gamma$$

▶ The term on the right hand side is what allows us to "talk" to the boundary Γ .

► First order absorbing boundary conditions

$$\dot{u} = c\nabla u \cdot \mathbf{n}$$

► First order absorbing boundary conditions

$$\dot{u} = c\nabla u \cdot \mathbf{n}$$

► Substitute into the boundary term

$$\oint_{\Gamma} c^2 \nabla u \cdot \mathbf{n} v \, d\Gamma \to \oint_{\Gamma} c \dot{u} v \, d\Gamma$$

Nodes

$$\dot{u} = c\nabla u \cdot \mathbf{n}$$

Substitute into the boundary term

$$\oint_{\Gamma} c^2 \nabla u \cdot \mathbf{n} v \, d\Gamma \to \oint_{\Gamma} c \dot{u} v \, d\Gamma$$

► The new problem reads

$$\int_{\Omega} \ddot{u}v \, d\Omega + \int_{\Omega} c^2 \nabla u \cdot \nabla v \, d\Omega = \oint_{\Gamma} c\dot{u}v \, d\Gamma$$

► Choose a set of functions $\{\phi(\mathbf{x})\}_{j=1}^N$ for u and v

$$u(\mathbf{x},t) = \sum_{i=1}^{N} \hat{u}_i(t)\phi_i(\mathbf{x})$$

$$v(\mathbf{x}) = \phi_j(\mathbf{x}), \text{ for all } j = 1, ..., N$$

► Choose a set of functions $\{\phi(\mathbf{x})\}_{j=1}^N$ for u and v

$$u(\mathbf{x}, t) = \sum_{i=1}^{N} \hat{u}_i(t)\phi_i(\mathbf{x})$$
$$v(\mathbf{x}) = \phi_j(\mathbf{x}), \text{ for all } j = 1, ..., N$$

► The nodal Galerkin method chooses the functions $\phi_j(\mathbf{x})$ from those that act like discrete delta functions on a set of nodes.

$$\phi_i(\mathbf{x}_j) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

► Choose a set of functions $\{\phi(\mathbf{x})\}_{j=1}^N$ for u and v

$$u(\mathbf{x}, t) = \sum_{i=1}^{N} \hat{u}_i(t)\phi_i(\mathbf{x})$$
$$v(\mathbf{x}) = \phi_j(\mathbf{x}), \text{ for all } j = 1, ..., N$$

► The nodal Galerkin method chooses the functions $\phi_j(\mathbf{x})$ from those that act like discrete delta functions on a set of nodes.

$$\phi_i(\mathbf{x}_j) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

► Appropriate choices are Lagrange polynomials or sinc functions.

Figure: 1D Lagrange Polynomial

Figure: 2D Lagrange Polynomial

Figure: 1D Sinc Function

Figure: 2D Sinc Function

► Sinc functions are defined on equispaced grids (mapped from Z).

- ► Sinc functions are defined on equispaced grids (mapped from ℤ).
- ► Lagrange polynomials can be defined for any grid but for high accuracy are defined on the zeros of *N*th degree polynomials (Legendre, Chebyshev, etc...).

- ► Sinc functions are defined on equispaced grids (mapped from Z).
- ► Lagrange polynomials can be defined for any grid but for high accuracy are defined on the zeros of *N*th degree polynomials (Legendre, Chebyshev, etc...).
- ► Associated with a set of nodes is a Differentiation matrix D and a set of weights $\{w_i\}_{i=1}^N$.

- ► Sinc functions are defined on equispaced grids (mapped from Z).
- ► Lagrange polynomials can be defined for any grid but for high accuracy are defined on the zeros of *N*th degree polynomials (Legendre, Chebyshev, etc...).
- ▶ Associated with a set of nodes is a Differentiation matrix D and a set of weights $\{w_i\}_{i=1}^N$.
- ► The *d*-dimensional version of these nodes, weights, and matrices are defined using the Kronecker-tensor product.

Figure: Legendre-Gauss-Lobatto Nodes mapped to [0,5000]x[0,2500]

Figure: 2D LGL Differentiation matrix $D_x = D \otimes I_N$ ($\approx 2.94\%$ populated).

Figure: 2D LGL Differentiation matrix $D_y = I_N \otimes D$ ($\approx 2.94\%$ populated).

Figure: 1D Legendre and Chebyshev Gauss-Lobatto weights

 Replace integration and differentiation by their nodal counterparts in

$$\int_{\Omega} \ddot{u}v \, d\Omega + \int_{\Omega} c^2 \nabla u \cdot \nabla v \, d\Omega = \oint_{\Gamma} c\dot{u}v \, d\Gamma$$

 Replace integration and differentiation by their nodal counterparts in

$$\int_{\Omega} \ddot{u}v \, d\Omega + \int_{\Omega} c^2 \nabla u \cdot \nabla v \, d\Omega = \oint_{\Gamma} c\dot{u}v \, d\Gamma$$

 System of ordinary differential equations for evolution in time

$$\begin{cases} M\ddot{\mathbf{U}}(t) + A\dot{\mathbf{U}}(t) + K\mathbf{U}(t) = 0\\ \mathbf{U}(0) = \mathbf{U}_0\\ \dot{\mathbf{U}}(0) = \mathbf{U}_1 \end{cases}$$

► Discretize using centered finite difference in time

$$\left[M + \frac{dt}{2}A\right]\mathbf{U}(t_{j+1}) + \left[dt^2K - 2M\right]\mathbf{U}(t_j) + \left[M - \frac{dt}{2}A\right]\mathbf{U}(t_{j-1}) = 0$$

Discretize using centered finite difference in time

$$\left[M + \frac{dt}{2}A\right]\mathbf{U}(t_{j+1}) + \left[dt^2K - 2M\right]\mathbf{U}(t_j)$$
$$+ \left[M - \frac{dt}{2}A\right]\mathbf{U}(t_{j-1}) = 0$$

ightharpoonup Or let $V = \hat{U}$ and write as first order system

$$\left[\begin{array}{cc} I & 0 \\ 0 & M \end{array}\right] \left[\begin{array}{c} \dot{\mathbf{U}} \\ \dot{\mathbf{V}} \end{array}\right] (t) + \left[\begin{array}{cc} 0 & I \\ K & A \end{array}\right] \left[\begin{array}{c} \mathbf{U} \\ \mathbf{V} \end{array}\right] (t) = 0$$

► To test this, consider the problem with

- ► To test this, consider the problem with
- ► Initial conditions

$$u(\mathbf{x}, t = 0) = e^{-r||\mathbf{x} - \mathbf{x}_0||^2}$$
$$\dot{u}(\mathbf{x}, t = 0) = 0$$

- ► To test this, consider the problem with
- ► Initial conditions

$$u(\mathbf{x}, t = 0) = e^{-r||\mathbf{x} - \mathbf{x}_0||^2}$$
$$\dot{u}(\mathbf{x}, t = 0) = 0$$

► In square tripartite medium with speeds c = 2, 3, 4.

Figure: Numerical simulation of P-wave propagation with first-order ABC's.

► We can also formulate an equivelent problem for the full elastic wave equation

- ► We can also formulate an equivelent problem for the full elastic wave equation
- ► To test this, consider a forcing term with Ricker wavelet time-component

$$f(t) = \frac{2}{\sqrt{3\sigma}\pi^{\frac{1}{4}}} \left(1 - \frac{t^2}{\sigma^2}\right) e^{\frac{-t^2}{2\sigma^2}}$$

- ► We can also formulate an equivelent problem for the full elastic wave equation
- ► To test this, consider a forcing term with Ricker wavelet time-component

$$f(t) = \frac{2}{\sqrt{3\sigma}\pi^{\frac{1}{4}}} \left(1 - \frac{t^2}{\sigma^2}\right) e^{\frac{-t^2}{2\sigma^2}}$$

► Conservative spatial component

$$[u_1(\mathbf{x}), w_1(\mathbf{x})] = -\nabla e^{-r\|\mathbf{x} - \mathbf{x_0}\|^2}$$

- ► We can also formulate an equivelent problem for the full elastic wave equation
- ► To test this, consider a forcing term with Ricker wavelet time-component

$$f(t) = \frac{2}{\sqrt{3\sigma}\pi^{\frac{1}{4}}} \left(1 - \frac{t^2}{\sigma^2}\right) e^{\frac{-t^2}{2\sigma^2}}$$

► Conservative spatial component

$$[u_1(\mathbf{x}), w_1(\mathbf{x})] = -\nabla e^{-r\|\mathbf{x} - \mathbf{x_0}\|^2}$$

► In square bipartite medium with properties.

Region	ρ	V_p	V_s
1	2.064	2305	997
2	2.14	4500	2600

Figure: Numerical simulation of elastic wave propagation with periodic boundary conditions.

► Computation times for comparison with 2,4,6,8 order finite differences on 401 by 401 node grid.

N	Method	CFD2	CFD4	CFD6	CFD8	Sinc
Τ	ime(sec)	17	21	24	27	52

Model Properties

	Region	ρ	V_p	V_s
ĺ	1	2.064	2305	997
ĺ	2	2.14	4500	2600

Figure: Elastic wave propogated to $t=1\,\mathrm{sec.}$ White line indicates receivers.

Figure: Centerline of the vertical component in presence of a jump in the velocity model.

Thank you!

- CREWES
- ► Michael Lamoureux
- ► Gary Margrave
- ► Laura Baird
- ► Kevin Hall
- ► All of our Sponsors
- ▶ U of C, POTSI, MITACS, NSERC