Numerical analysis of scattering in a viscoelastic medium

Shahpoor Moradi, Kristopher Innanen

and Hassan Khaniani

Outline

Motivation

Introduction to viscoelatic medium

- Elastic versus Viscoelastic
- Viscoelastic models
- Viscoelastic waves
- Scattering theory
 - Perturbation theory
 - Born approximation
- ➢Numerical study
- ➤Conclusion

Motivation

- Characterize seismic wave propagation and scattering in viscoelastic media in the context of multicomponent survey data.
- Direct inverse scattering, Q estimation (AVF/AVA analysis), Q compensation.
- Inverse scattering and full waveform inversion in attenuating media.

Elastic versus Viscoelastic

➢ Reciprocal of the quality factor (fractional energy loss): $Q^{-1} = -\frac{\Delta E}{2\pi E}$

Elastic model: undamped motion

Viscoelastic model: damped motion

Spring dashpot system

Viscoelastic models

Viscoelastic waves*

* Borcherdt, R. D., 2009, Viscoelastic waves in layered media: Cambridge University Press.

Scattering theory

- *ρ* Density
- α P-wave velocity
- β P-wave velocity
- **Q**_P P-wave quality factor
- Q_S S-wave quality factor

ρ_1	α ₁	β ₁	Q _{P1}	Q _{S1}
ρ2	α2	β 2	Q _{P2}	Q _{S2}

Scattering theory

- Perturbation in P-wave velocity
- Perturbation in S-wave velocity
- Perturbation in density

- Perturbation in P-wave quality factor
- Perturbation in S-wave quality factor

$$\frac{\delta\rho}{\overline{\rho}} = 2\left(\frac{\rho_2 - \rho_1}{\rho_2 + \rho_1}\right) \ll 1$$

Born series

Max Born (1882-1970) German physicist Nobel prize in 1954

Born approximation: single scattering

- Source and receiver located in background medium.
- Only primaries.

Recorded wave = Direct wave + Scattered wave

Shahpoor Moradi and Kris Innanen

Scattering of homogeneous and inhomogeneous viscoelastic waves from arbitrary heterogeneities *CREWES Research Report-Volume 26 (2014)*

Shahpoor Moradi,Kris Innanen Hassan Khaniani Numerical analysis of scattering in a

viscoelastic medium CREWES Research Report-Volume 26 (2014)

Numerical study of scattering using FDTD

Finite Difference Time Domain (FDTD), eighth-order accurate in space and second-order accurate in time, 45 Hz zero phase wavelet *****

* Martin, R., and Komatitsch, D., 2009, Geophysical Journal International, 179, No. 1,333–344. http://komatitsch.free.fr/README_seismic_cpml.html

Contrast in density (theory)

$$P_{P} \mathbb{V}_{visco} = \left({}_{P}^{P} \mathbb{V}_{e}^{\rho} + i_{P}^{P} \mathbb{V}_{ane}^{\rho} \right) A_{\rho} \quad \text{P-to-P}$$

$$P_{P} \mathbb{V}_{visco} = \left({}_{P}^{SI} \mathbb{V}_{e}^{\rho} + i_{P}^{SI} \mathbb{V}_{ane}^{\rho} \right) A_{\rho} \quad \text{S-to-P}$$

$$P_{SI} \mathbb{V}_{visco} = \left({}_{SI}^{P} \mathbb{V}_{e}^{\rho} + i_{SI}^{P} \mathbb{V}_{ane}^{\rho} \right) A_{\rho} \quad \text{P-to-S}$$

$$Born approximation$$

$$S_{I}^{SI} \mathbb{V}_{visco} = \left({}_{SI}^{SI} \mathbb{V}_{e}^{\rho} + i_{SI}^{SI} \mathbb{V}_{ane}^{\rho} \right) A_{\rho} \quad \text{S-to-S}$$

••••

Reflection related to the anelastic properties

Contrast in density (numeric)

Contrast in P-wave velocity (theory)

$${}_{P}^{P}\mathbb{V}_{visco} = \left({}_{P}^{P}\mathbb{V}_{e}^{\alpha}\right)A_{\alpha}$$

Born approximation

Contrast in P-wave velocity (numeric)

Contrast in S-wave velocity (theory)

$$P_{P}^{P} \mathbb{V}_{visco} = \left({}_{P}^{P} \mathbb{V}_{e}^{\beta} + i_{P}^{P} \mathbb{V}_{ane}^{\beta} \right) A_{\beta}$$

$$P_{P}^{SI} \mathbb{V}_{visco} = \left({}_{P}^{SI} \mathbb{V}_{e}^{\beta} + i_{P}^{SI} \mathbb{V}_{ane}^{\beta} \right) A_{\beta}$$

$$P_{SI}^{N} \mathbb{V}_{visco} = \left({}_{SI}^{P} \mathbb{V}_{e}^{\beta} + i_{SI}^{P} \mathbb{V}_{ane}^{\beta} \right) A_{\beta}$$

$$SI_{SI}^{I} \mathbb{V}_{visco} = \left({}_{SI}^{SI} \mathbb{V}_{e}^{\beta} + i_{SI}^{SI} \mathbb{V}_{ane}^{\beta} \right) A_{\beta}$$

$$Born approximation$$

Contrast in S-wave velocity (numeric)

Contrast in P-wave quality factor

$${}_{P}^{P}\mathbb{V}_{visco} = i\left({}_{P}^{P}\mathbb{V}_{ane}^{Q_{p}}\right)A_{Q_{p}}$$
 Born approximation

Contrast in P-wave quality factor

Contrast in S-wave quality factor

$$P_{P}^{P} \mathbb{V}_{visco} = i \left({}_{P}^{P} \mathbb{V}_{ane}^{Q_{hs}} \right) A_{Q_{s}}$$

$$S_{P}^{I} \mathbb{V}_{visco} = i \left({}_{P}^{SI} \mathbb{V}_{ane}^{Q_{hs}} \right) A_{Q_{s}}$$

$$P_{SI}^{P} \mathbb{V}_{visco} = i \left({}_{SI}^{P} \mathbb{V}_{ane}^{Q_{hs}} \right) A_{Q_{s}}$$

$$S_{I}^{SI} \mathbb{V}_{visco} = i \left({}_{SI}^{SI} \mathbb{V}_{ane}^{Q_{hs}} \right) A_{Q_{s}}$$

Contrast in S-wave quality factor

Summary and conclusion

- Contributions of perturbations in elastic and anelastic properties to the scattered waves are numerically examined.
- Scattering potential is a complex function in which the real part is elastic scattering potential and imaginary part corresponds to anelasticity in medium.
- Perturbation in quality factor for P-wave generates only P-to-P reflection.
- Comparing to the elastic case we expect the changes not only in amplitude of scattered wave but also in the phase behaviour.
- This research will feed directly into ongoing CREWES efforts to formulate FWI for multicomponent land data and determine petrophysically important parameters". Qp and Qs are definitely in that class.

Thank you

□ All CREWES sponsors and NSERC