1.5D internal multiple prediction on physical modeling data

Pan Pan Kris Innanen Joe Wong

Outline

- Introduction
- Physical modeling experiment
- Seismic data processing
- 1.5D internal multiple prediction
- Analysis of the three parameters chosen
- Conclusions
- Acknowledgements

Introduction

The problems with internal multiples:

- Events which can be misinterpreted as primaries;
- Events which can interfere with primaries;
- Events which can obscure the task of interpretation.

Two advantages of the inverse scattering series method:

- This method does not require any subsurface information.
- Internal multiples are predicted with accurate times and approximate amplitudes.

Motivation

- In many cases, internal multiples interfere with primaries, and removal of internal multiples without compromising primaries is very challenging.
- Reshef et al. (2003) pointed out that the prediction itself can be the final output, which is useful as an interpretation tool for identification only.
- Whether we decide to subtract internal multiples or not, the ability to identify them amongst primaries is still a technological necessity.

1.5D IM prediction algorithm

The formula for 1.5D internal multiple prediction (Weglein et al., 1997; 2003) is

$$PRED(k_{g}, \omega) = \int_{-\infty}^{\infty} dz e^{ik_{z}z} b_{1}(k_{g}, z) \int_{-\infty}^{z-\epsilon} dz' e^{-ik_{z}z'} b_{1}(k_{g}, z')$$

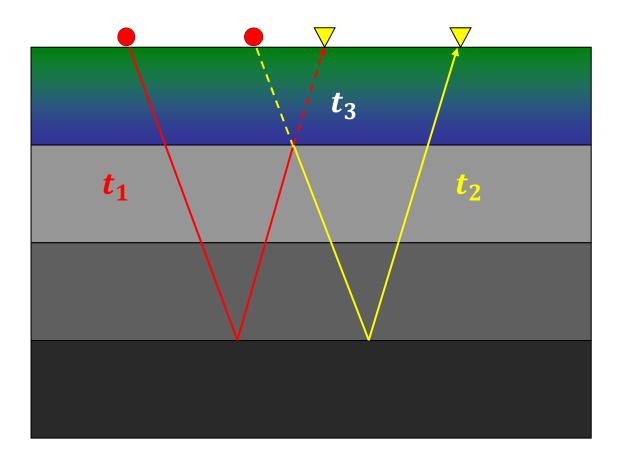
$$Temporal \qquad \times \int_{z'+\epsilon}^{\infty} dz'' e^{ik_{z}z''} b_{1}(k_{g}, z'')$$

$$tateral \qquad wavenumber$$

$$where k_{z} = 2q_{g} \text{ and } q_{g} = \frac{\omega}{c_{0}} \sqrt{1 - \frac{k_{g}^{2}c_{0}^{2}}{\omega^{2}}}.$$

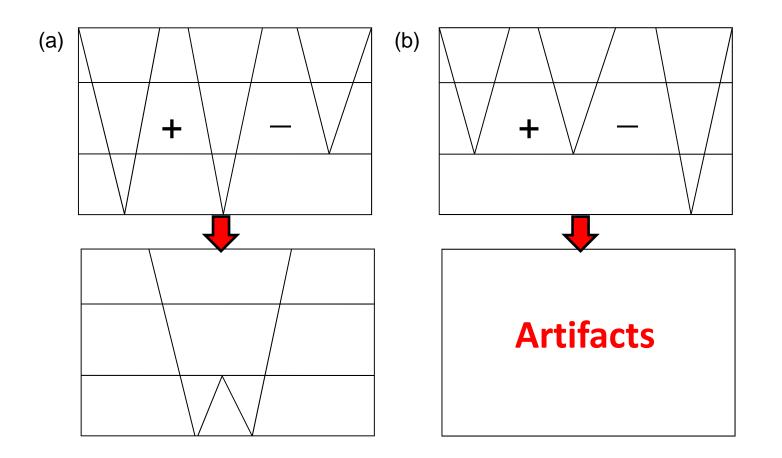
$$Vertical \qquad Vertical \qquad velocity$$

Lower-higher-lower relationship



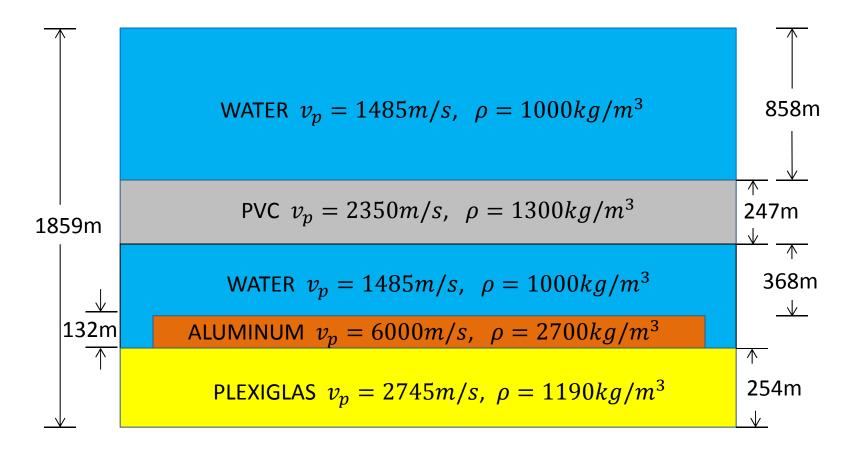
Construction of the travel time of an internal multiple.

Lower-higher-lower relationship



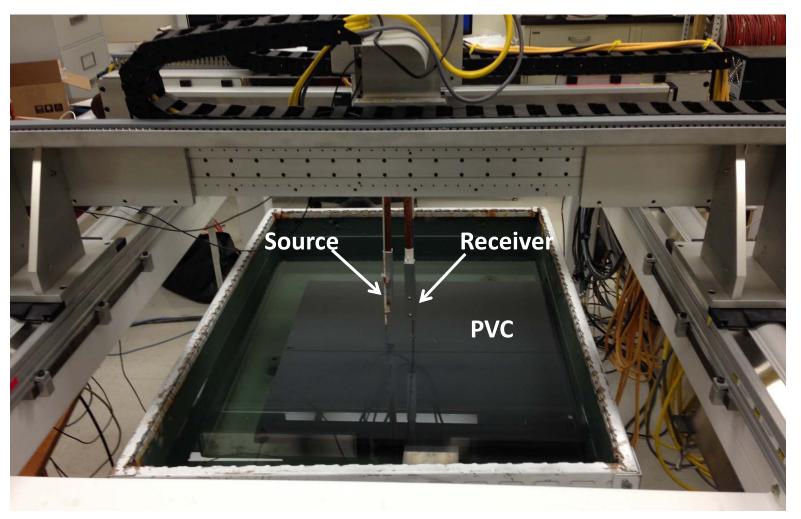
Two combinations of sums and differences.

Physical modeling experiment



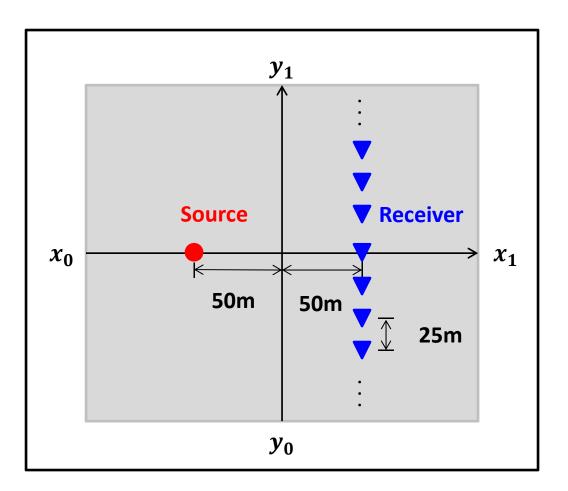
Schematic diagram of the physical modeling experiment. All lengths are in scaled units, the standard model scale factor is $1:10^4$.

Physical modeling experiment



The 3D positioning system.

Physical modeling experiment

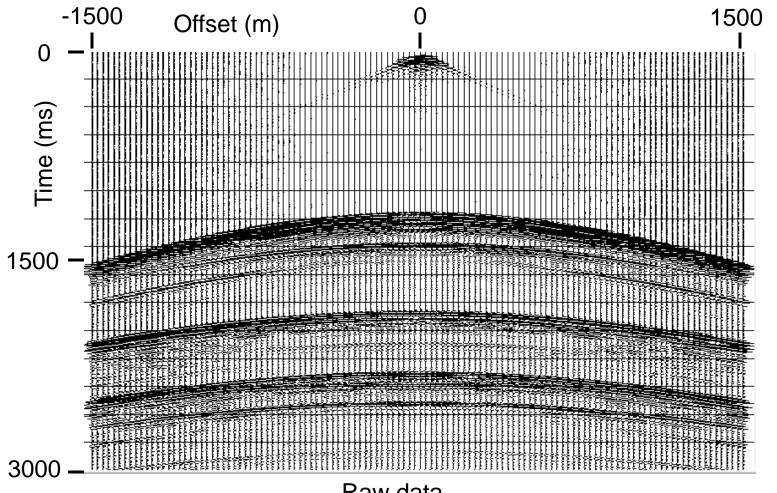


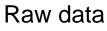
- The source and receiver are 1.36mm-diameter piezoelectric pin transducers.
- The source and receiver are separated by 100m in the x direction.
- The source has been fixed.
- The receiver was moved from y₀ to y₁ direction in 25m increments.
- The sampling rate was 2ms.

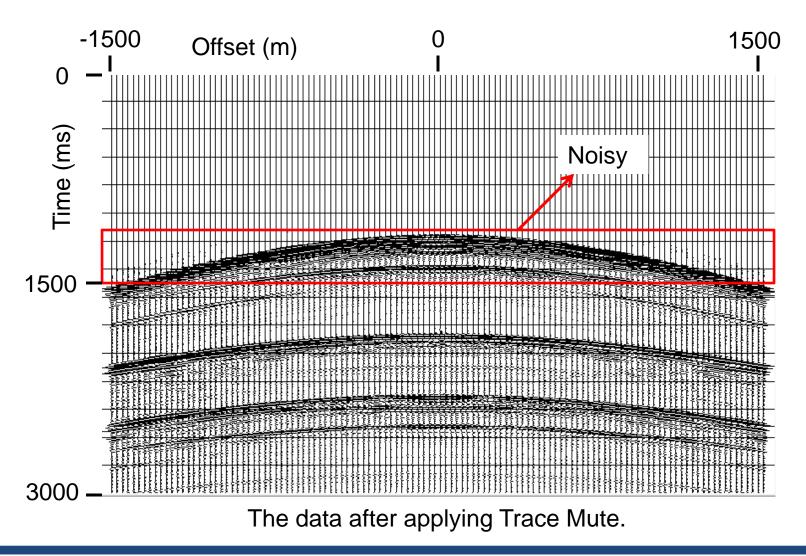
Plan view of the physical modeling data acquisition.

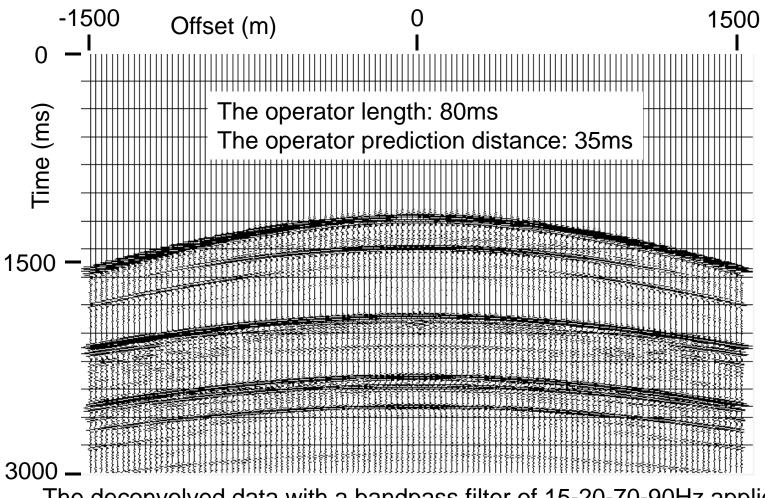
Table 1: A processing flow

	PROCESSING FLOW
1	Trace Header Math
2	Top Mute
3	Spiking Deconvolution
4	Bandpass Filter

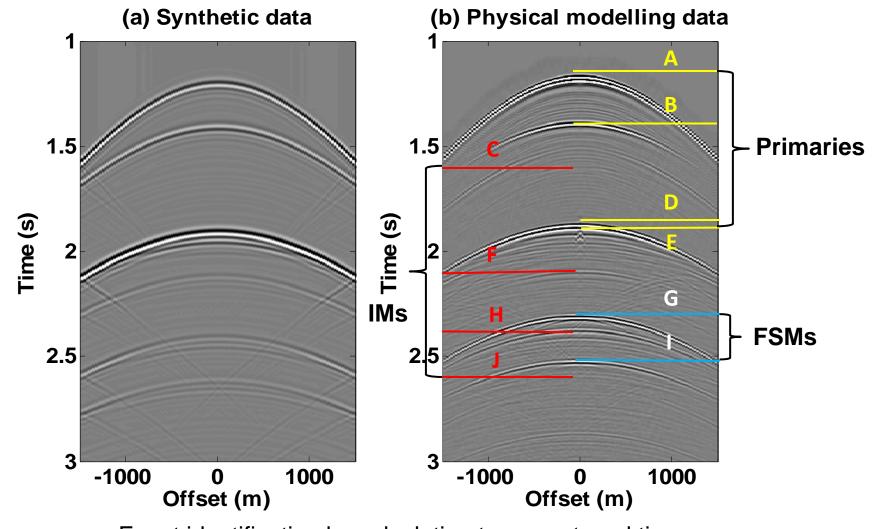








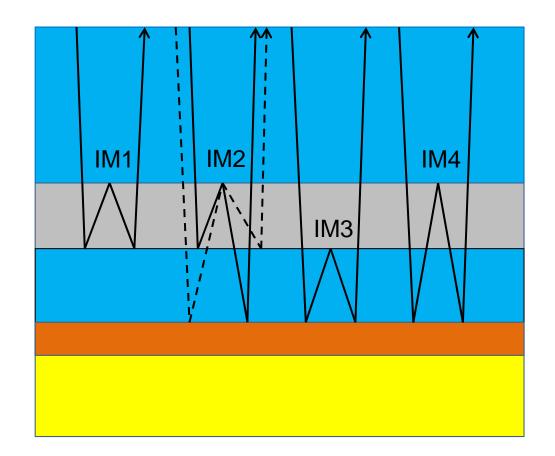
The deconvolved data with a bandpass filter of 15-20-70-90Hz applied.



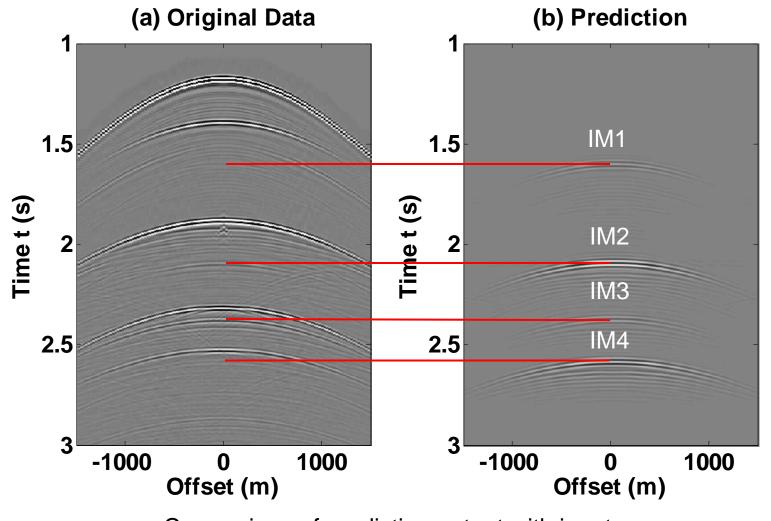
Event identification by calculating two-way travel times.

Table 2: Summary of approximate travel times of the identified events

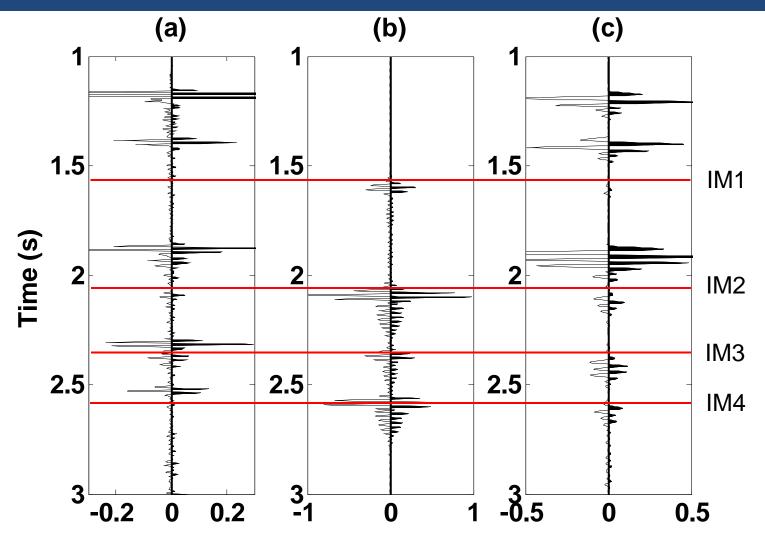
LABEL	EVENT	APPROXIMATE TRAVEL TIME		
А	Top of PVC slab	1.155s		
В	Bottom of PVC slab	1.365s		
С	Internal multiple 1	1.575s		
D	Top of aluminum slab	1.861s 44ms		
E	Bottom of aluminum slab	1.905s		
F	Internal multiple 2	2.071s		
G	Free-surface multiple	2.310s		
Н	Internal multiple 3	2.357s		
I	Free-surface multiple	2.520s		
J	Internal multiple 4	2.567s		



The ray paths of the four dominant internal multiples.



Comparison of prediction output with input



(a) Physical modeling trace; (b) prediction output; (c) synthetic data trace.

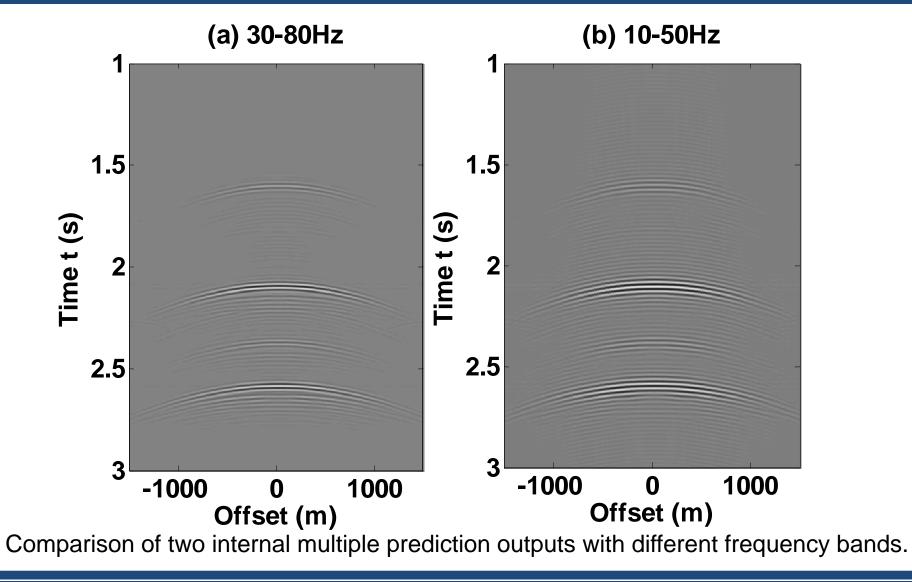
A discussion of the ϵ value

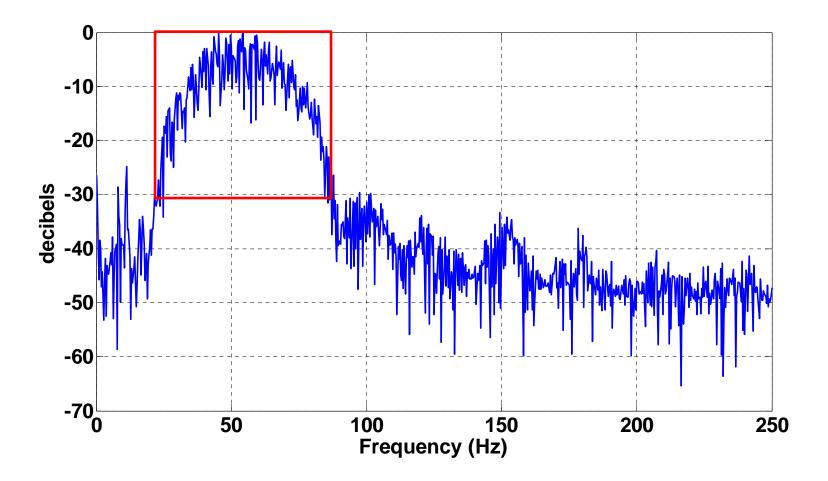
- Effects of various ϵ value have been described in Pan and Innanen (2014). Here we determine the optimal ϵ value to be 80 sample points.
- An important issue is raised by the notable absence in the prediction of internal multiples generated within the aluminum slab.
- The internal multiple prediction algorithm is designed assuming free-surface multiples have been removed. The presence of residual and/or unsuppressed FSMs will in principle affect internal multiple prediction; wherever possible they should be removed.

For
$$ii = kxB : kxE$$

 $F = kx(ii)^2 c_0^2 / w.^2$
 $q_g = (w/c_0). * sqrt(1 - F)$
For $jj = wB : wE$
 $A1 = i * 2 * qg(jj) * z;$
 $A2 = -i * 2 * qg(jj) * z;$
 $A2 = -i * 2 * qg(jj) * z;$
 $A2 = -i * 2 * qg(jj) * z;$
 $I1 = b1(:, ii). * exp(A1);$
 $I2 = b1(:, ii). * exp(A2);$
For $kk = zB : zE$
 $Pseudo depth$
For $kk = zB : zE$
 $S = sum(I1(kk + \epsilon : zE));$
 $P = P + I2(kk) * S^2;$
End
End
End

Prediction algorithm in the code (from Innanen, 2012).





Fourier amplitude spectrum of the zero-offset trace using a decibel scale.

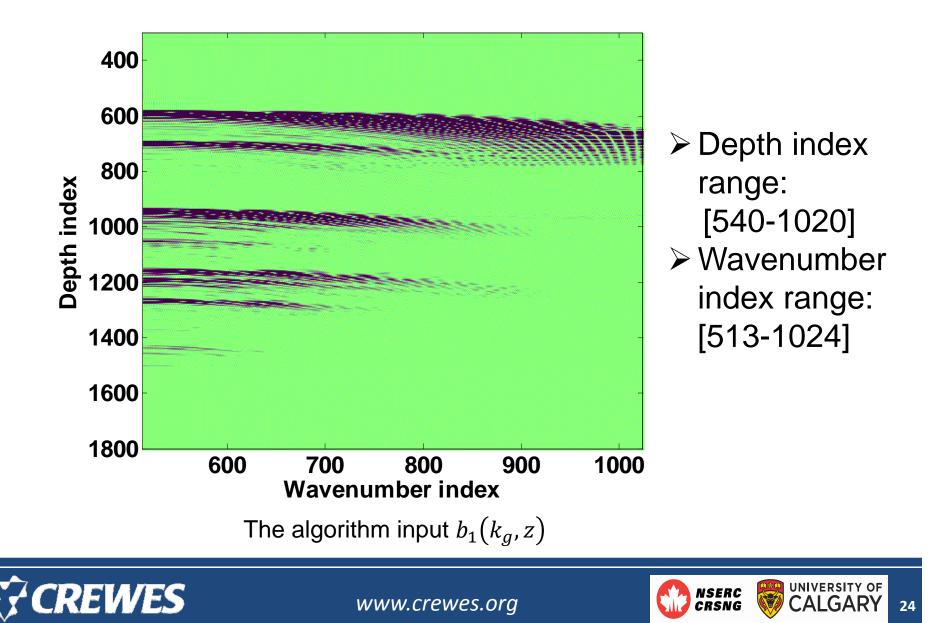


Table 3: Time costs with different parameters chosen

Exp #	freBEG (Hz)	freEND (Hz)	zBEG	zEND	kxBEG	kxEND	Time (s)
1	25	80	540	1020	513	1024	1256.96
2	25	80	560	1015	513	1024	1189.85
3	25	80	560	1015	513	900	856.57
4	25	80	560	1015	513	800	636.24
5	30	80	560	1015	513	800	588.51

Comparing experiments 5 and 1, which shows a time cost savings of 114%.

Conclusions

- Prediction results show good agreement with both synthetic data and physical modeling data.
- Even if subtraction is problematic, prediction results can lead us to obtain an "internal multiple probability map".
- Choosing the beginning and ending integration points in the nested integrals optimally leads to considerable computational savings.

Acknowledgements

- Sponsors of CREWES
- NSERC
- Kevin Bertram
- David Henley
- All the students and staff in CREWES

