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Cumulative attenuation from synthetic VSP

Estimating intrinsic attenuation: Cumulative attenuation
Attenuation ( ିଵ) consists of intrinsic and stratigraphic parts which combine 
to give total attenuation:

2. Intrinsic attenuation is a rock or 
reservoir property. Monotonic.

1. Effective attenuation is what is 
always measured.

3. Stratigraphic attenuation is a 
interference effect from short-path 
multiples (O’Doherty and Anstey 
1971).

With time in the numerator, 
this is called cumulative 
attenuation or ࡭࡯.

ଶݐ)ߨ − ଵ)ܳ௘௙௙ݐ = ଶݐ)ߨ − ଵ)ܳ௜௡௧௥௜௡௦௜௖ݐ + ଶݐ)ߨ − ଵ)ܳ௦௧௥௔௧ݐ



Estimating intrinsic attenuation: Previously 
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Previously (Margrave, CREWES, 2014):

• A highly accurate 1-D VSP modelling 
code for acoustic waves with Q was 
released.

• Using this code, synthetic VSP’s with 
both intrinsic and stratigraphic 
attenuation can be constructed from 
well logs.

• ܳ measurement then allows the 
stratigraphic attenuation to be 
quantified.

• A series of measurements were shown 
for different blocking sizes.

• Define ܳ௕௜௔௦ = ܳ௘௙௙ −	ܳ௜௡௧௥௜௡௦௜௖ then



Estimating intrinsic attenuation: The Question
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Given a VSP in a well with a good set of logs, can we use the 
logs to estimate the stratigraphic effect and then use this to 
correct VSP attenuation measures for stratigraphy?



Estimating intrinsic attenuation:   Suncor logs and VSP
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from density 
log

P-wave velocity Density VSP (Gained) 1m geophone spacing



Estimating intrinsic attenuation: Synthetic VSPs
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ࡽ ࢖࢜ ࣋

ࢠ∆ = ૙. ૜૙૝ૡm
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Estimating intrinsic attenuation: Single traces from synthetic VSPs
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Traces at deepest receiver for different blocking sizes Spectra of the traces with vertical shifts applied
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Estimating intrinsic attenuation: Dominant frequency (synthetics)
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Estimating intrinsic attenuation: CA estimates (synthetics)

www.crewes.org

Comparing attenuation 
estimates from the spectral ratio 

method (10-200Hz) and the 
dominant frequency method.



Estimating intrinsic attenuation: vs estimates (synthetics)
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Two different ࡽ measures Two different ࡭࡯ measures

Comparing ࡽ versus ࡭࡯



Estimating intrinsic attenuation: Synthetic versus real VSP
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Real VSP (gained) Synthetic VSP



Estimating intrinsic attenuation: Synthetic versus real downgoing fields
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Reference receiver

Real downgoing field (gained) Synthetic downgoing field



Estimating intrinsic attenuation: Intrinsic estimates
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Estimating intrinsic attenuation: Intrinsic estimates
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Estimating intrinsic attenuation: Dominant frequency real VSP
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Estimating intrinsic attenuation: Conclusions
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• Estimation of intrinsic attenuation requires correcting measurements for 
stratigraphic attenuation.

• Stratigraphic attenuation can be estimated from well logs.

• The stratigraphic attenuation estimates made here seem too small.

• The intrinsic attenuation estimates fail to be monotonic

• Possible causes:

1. Imperfect wavefield separation

2. Inadequate well logs (do we need finer sampling?)

3. Visco-acoustic approximation may be insufficient



Post-stack IMMI:  Introduction
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The idea: 

• IMMI, iterated modelling, migration, 
and inversion, has been proposed as 
a generalization of FWI.

• Post-stack processes require far less 
computation than prestack.

• We know how to do post-stack depth 
migration and inversion.

• Can the exploding reflector concept 
be used to model the CMP stack and 
make a viable post-stack IMMI?

The IMMI/FWI cycle (Margrave et al., 2012)
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Post-stack IMMI: Exploding Reflector model

Velocity model

de
pt

h 
(m

)

distance (m)
>> thrust_explode
>> save thrust vel seisf x z t dx dt
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Post-stack IMMI: Exploding Reflector Model
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Post-stack IMMI: Exploding Reflector Model
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Post-stack IMMI: Exploding Reflector Model
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Post-stack IMMI: Exploding Reflector Model
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Post-stack IMMI: Exploding Reflector Model
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Post-stack IMMI: Exploding Reflector Model
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Post-stack IMMI: Exploding Reflector Model
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Post-stack IMMI: Exploding Reflector Model
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Post-stack IMMI: Exploding Reflector Model



Post-stack IMMI: Hussar sonic log section

Anomaly

Three Hussar sonic logs plus a subset of the formation tops linked as horizons.



Anomaly

Post-stack IMMI: Hussar sonic log section
An interpolated log is shown every 100m.

Interpolation is guided by formation tops (blue).



Post-stack IMMI: Overburden and underburden



Post-stack IMMI: Final velocity model

Sampled on a 2.5m square grid



Post-stack IMMI: Example shot record

Sampled on a 2.5m square grid

௫



Post-stack IMMI: CMP stack



Post-stack IMMI: Exploding reflector section



Post-stack IMMI: Matching to well

Well Well

Stack, phs=૙ܗ
cc(1)=0.93016, cc(2)=0

Explode, phs=૛ܗ
cc(1)=0.89984, cc(2)=-0.1



Post-stack IMMI: Stack and Explode after matching

Well



Post-stack IMMI: Post-stack IMMI process
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for this iteration
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Post-stack IMMI: Converting reflectivity to velocity (impedance)

Conventional migrations estimate reflectivity. Using ܴ௞ = ௩ೖశభି௩ೖ௩ೖశభି௩ೖ ≈ ∆௩ೖଶ௩ೖ, it follows that ݒ௞ାଵ = ௞ݒ + ௞ݒ∆ = ௞ݒ + 2ܴ௞ݒ௞. Assuming the migrated data are proportional to 
reflectivity we then haveݒ௞ାଵ = ௞ݒ + ௞ݒ௞ܩ2ܽ = ௞ݒ 1 + ௞ܩ2ܽ (icond=1)

Using either formulation, the scalar ܽ can be determined at a well. Formulae in report.

Conventional FWI (steepest descent) uses ݒ௞ାଵ = ௞ݒ + ௞ܩܽ (icond=2)
where ݒ௞ is the velocity model for iteration ݇, ௞ܩ is the “gradient” or migrated data 
residual, and ܽ is a scalar called the “step length”. This is appropriate if the migration 
process estimates a velocity or impedance perturbation. 



Post-stack IMMI: Starting Model

The overburden (0-
200m) is assumed 
known through 
tomography.  The 
initial model then uses 
a simple linear gradient 
from the base of the 
overburden to a value 
of 4500m/s at 2000m 



Post-stack IMMI: Best result (icond=1), expanding frequency band
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Post-stack IMMI: Result (icond=2), expanding frequency band
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Post-stack IMMI: Result (icond=1), 10 Hz moving frequency band
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Post-stack IMMI: Result (icond=1), 15 Hz moving frequency band
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Post-stack IMMI: Blimp (Band-limited impedance inversion)

3 Hz cutoff 
frequency



Post-stack IMMI: Best result (icond=1), expanding frequency band
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Post-stack IMMI: Best result (icond=1), expanding frequency band
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Evolution of the velocity model with iteration



Post-stack IMMI: Conclusions

• Post-stack IMMI appears to be possible at least for P-P reflectivity.

• The present method appears to stop improving after only a few iterations.

• Resolution should be better.

• Simplicity of the approach suggests this may be a good way to study IMMI (or 
FWI).

• This also reveals the underlying simplicity of IMMI/FWI.

• If successful, the result would be an initial prestack depth migration model.
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