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Introduction

" Today, most geoscientists have an array of tools available to perform
seismic reservoir characterization.

=" However, the complexity of these tools increases year by year, and can be
overwhelming at times.

" |n this talk, | want to discuss some visualization tools that improve the
user-friendliness of the reservoir characterization process.

=" These tools will include both statistical methods and deterministic
methods, and will combine both well log measurements and pre-stack
Inversion.

= | will illustrate the various methods with examples from a shallow gas sand
in Alberta.




Gas Sand well log
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* This figure shows the shallow gas sand used in this study.

* The P-wave sonic and density logs were recorded with wireline logs, the S-
wave log was created using the Castagna equation and Gassmann fluid
substitution.




Well log crossplot
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Automatic clustering

e The clusters on the e e e s s
crossplot have been i
identified using K-means
clustering with a statistical
distance algorithm.
 The key question is how to
interpret these five clusters. | i
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| will next discuss a rock
physics template method
which allows us to perform
such an interpretation.
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The rock physics template (RPT)

* @degaard and Avseth (2003) developed a
rock physics template in which the fluid
and mineralogical content of a reservoir
could be estimated on a cross-plot of V,/V

ratio against acoustic impedance.

* The elastic constants are computed as a
function of porosity, pressure and
saturation using Hertz-Mindlin theory, the
lower Hashin-Shtrikman bound and

Gassmann fluid substitution.

e This cross-plot allows us to identify
pressure, clay content, porosity, cement

and fluid trends.
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Interpreting the clusters

* The clusters from the
. Computed Vp/Vs vs Computed Impedance Color Key
previous plot can be o
interpreted as shown using
the @degaard and Avseth RPT
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e This is one use of the rock m
physics template. i _
* A second use, shown next, is = sEssies i s |

to draw a set if curves on the
cross-plot as a function of
saturation and porosity, or

any other two parameters.
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A porosity versus saturation template

=" The rock physics template
for the gas sand model is
shown here, as a function
of water saturation and
porosity.

= Note that the template fits
the gas sand well for low
S,y and high porosity.

= Later, | will show how to
colour-code this RPT and

display the results on the
seismic.
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The seismic dataset

coP 328 32 331 332
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Interactively picked zones

*= Three zones have been
picked on the section:
wet (blue), gas (red)
and consolidated
(green).

= We would hope that
these zones would
correspond to the RPT
Interpretation.

= The best way to test
this is on a V,/V, ratio

vs P-impedance X-plot.
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Interactive cross-plot

= Here are the three zones e —
picked on the previous \1
inverted section. m E“-_;: P Shales/wet sands Cemented

= The V,/V ratio and == ?ds
acoustic impedance : Gas Sand : —
histograms of the three ! / = = - e
zones are also displayed. . _._'."-,;:*_:3..- e >

= These zones show good e
correspondence to the e e —Ss= —
zones seen on the well "" i i
logs. ' e e —————




Superimposing a rock physics template

= This figure shows the
superposition of a rock
physics template of S, vs
Porosity on the seismic
cross-plot, optimized by
adjusting V.. and
pressure.

hale

= Note that the red points
from the gas sand show
high porosity and low
water saturation, as
expected.

Vp/Vs Ratio vs P-Impedance
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Colouring the rock physics template

= We can now fill in a
colour template for the
RPT.

= Note that each colour fills
in a grid cell delineated
by porosity and water
saturation increments.
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Superimposing the colours

Vp/Vs Ratio vs P-Impedance

= Here is the application

of the colour palette -
with opacity turned 7 -.EK‘

: ¥ =£
on so we can still see £
the points. %

= We can now : = EESESE
superimpose these o & T . T
colours on the seismic s T,
: ™ = -~ — _ogsize

data traces (wiggle i e
trace only). Ni===ccssess | | | - Porosity | | |

P-Impedance ({m/s}*(g/cc))
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the RPT colours on the seismic
shows up as the purple and
blue colours, the other
colours makes this display
too “busy” to easily
Interpret.

section.
can edit the colours.

= Here is the superposition of
= To improve this display, we

= Although the gas sand
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Re-colouring the rock physics template

= All the colours are initially
set to white and then
slowly filled in with red.

= Note that a region with
moderate porosity and

gas saturation has been
highlighted.
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Superimposing the colours

= Here is the application e e i
of the new colour 1
palette with opacity J E'S
turned on so we can R
still see the points. %
" We can now u :
superimpose these
new colours on the =
seismic data traces .
(wiggle trace only). {ISEEE= = Horostty




on the seismic volume,
clearly showing the gas

scheme superimposed N
sand.
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= Although thisisa 2D
line, in a 3D volume
the colour would be
mapped throughout
the entire volume.



Bayesian Classification

= Now that we have identified the clusters associated with gas, wet and
cemented sands on the crossplot, we can assign a Bayesian probability
classification scheme to the three clusters.

= For K clusters, the k" cluster, or class, can be defined by the Gaussian
pdf f(x|c,).

= Note that X can be a single variable, in which case the pdf is a Gaussian
curve, or a two-dimensional vector, in which case the pdf is an ellipse.

= We then compute the separation between the ith and ji" clusters using
the following Bayesian decision boundary:

f(xle)p(c) = f(x]|c,)p(c;), where p(c;) and p(c;) arethepriors.




Bayesian Classification

= The Bayesian priors are computed by adding the total number of points for all classes
and dividing the number of points in each class by the total number of points.

= |f the priors are set to equal values, the result is called maximum likelihood (ML)
classification, rather than Bayesian classification.

= Here is an example from a 1D data set, where the figure on the left shows ML
classification, and the one on the right shows Bayesian classification:
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Vp/Vs =1.93 |l Vprvs = 1.85

0N\ X

M Cl 1 [ Cl 2

o N ,Vil Ifi(\ T : \ "r\ Class 2
N N{lln |

1 Class 1 /'

LA :

Probability

/__,.--"'"F \
Probability
b
I |




Two-Dimensional Classification

" Here are the statistics for the classification of the three 2D clusters seen
on the previous inversion result and crossplot.

Parameters | Value Parameters | Value Parameters | Value

X mean o658 m/s

¥y mean 1.87

X variance 29341
y variance  0.0091

covariance 9.316

Cluster 1 (Red)

X mean 0322 m/s

y mean 2.77

X variance 4825
y variance  0.043

covariance -33.93

Cluster 2 (Blue)

X mean 7288 m/s

¥y mean 2.148

X variance 627481
y variance  0.011

covariance 5.402

Cluster 3 (Green)




Bayesian Classification

" Hereis the result of LS o

Data wolume: Model_Baged_lmwirsion

Bayesian classification of
the three zones, with
Gaussian PDFs.

= Since these zones were
picked by the user,
automatic clustering is not
needed.

Vp Vs Ratio (unitess)

.

wodnun

= Note that the univariate

.

PDFs have been =
superimposed on the | T

histograms.




Classification Results

= Classification results |~ o
are then projected  |°  sumaas ki fen b
back onto the seismic T e R iy e el oot g
ot il oo dagina 22 agRyaieg T R,

= The colour intensity
indicates distance
below the peak of the
distribution.

= Now the gas sand and
other lithologies are
each assigned a
probability.




Mixture Model Classification

= Next, we will extend our Bayesian analysis using the mixture model
approach with Gaussian pdfs.

= |n this approach, each cluster is modeled as the sum of J Gaussian pdf
functions with weights w;, given by:

plxle) =3 w, fix]j), where:

J

Zw. =1.0 and ”f(x | /)dxdy =1.0.

J
J=1

= That is, the sum of the weights and the area of the final pdf function both
equal 1.0.




Mixture model classification

= Here are the statistics and weights for the first cluster (the other two
clusters have a similar look):

Mixture 1 Mixture 2 Mixture 3 "

Mixture weight 0.3298 0.3319 0.3382
X mean 9972 95695 2832
y mean 1.827 1.869 1.918
X variance 28195 3197 31002
yvariance 0.0056 0.0098 0.0073

covariance 4.347 2.350 8.551




Mixture model classification

" Here is the result of T

Data vodume: Model_Based_krversion

mixture model
classification of the
three zones.

48 &% 3 31 34
e | | Rl e |

= Again, the univariate
PDFs have been
superimposed on
the histograms.

= Note that the fit to
the points is much . o 5
tighter than in the
single Gaussian
approach.




Mixture model classification results

= Th ixt del
e miXture mode ey
L . Inserted C - 0[; [;a G msiF;I dance P e
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here.

= Again, the colour
intensity indicates
distance below the
distribution peak.

= The gas sand extent
has been decreased
from the single
Gaussian results.




Conclusions

* In this talk, | discussed two separate approaches to linking rock physics models to
inverted seismic data: a deterministic and a statistical approach.

e In the deterministic approach, we built petro-elastic models and displayed the
resulting rock physics templates (RPTs) on V,/V. versus P-impedance cross-plots.

e By connecting the RPT grid lines and assigning colours to the resulting grid cells,
we then visualized the results on the seismic display.

e QOur first statistical approach performed automatic clustering on the cross-plot
and correlation with the deterministic RPT results.

e Our second statistical approach used Bayesian classification with single Gaussian
pdfs.

* Finally, this was extended to a mixture model approach, in which multiple
Gaussian pdfs were used to model each cluster.
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The @degaard/Avseth equations for the dry modul

" (degaard and Avseth (2003) compute K ;,,, and ,,, as a function of porosity and
pressure using Hertz-Mindlin theory and the lower Hashin-Shtrikman bound:

Kd,y{ olg. . 1-9lg, } 4

Ko + (419, K, + (819, | 37

-1
u, :|: ¢/¢c +1_¢/¢c:| _ Wherez:ﬂHM [QKHM+8IUHMJ
" My T2 U, TZ Ky + 24y,
1 1

| A0y p P A, |39
1872(1-v ) | 7™ 52-v )| 27*@1-v, )? |’

HM

P =confining pressure, K, , 1, = mineral bulk and shear modulus, » = contacts
per grain, v, = mineral Poisson'sratio, ¢ = porosity,and ¢. = critical porosity.




Fluid substitution with the Gassmann equation

The Gassmann (1951) equation is then used for fluid substitution for
the saturated bulk modulus:

K K K

Yy /_, where: K, =saturated bulk modulus,
Km o Ksat Km o Kdry ¢(Km o Kf)
1 1- .
25 + o , K, =fluid bulk modulus, K, = water bulk modulus,
K, K, K,

= hydrocarbon bulk modulus,and S, = water saturation.

Note that Gassmann shows that there is no change in the shear
modulus, meaning that:

ﬂsat — ﬂdry




Bayesian Classification

= For a single variable with K clusters, the k" cluster, or class, can be
defined by the following Gaussian pdf:

2
flx|e,)= L exp—l[x_ﬂ"] , where

Gk@ 2\ o,
U :ifx andazzii(x —u )
k Nk — ki? k Nk — ki k) "

We then compute the separation between the it" and j' clusters using
the following Bayesian decision boundary:

f(xle)p(c)=f(x]|c;)p(c;), where p(c;) and p(c;) arethepriors.




Two-Dimensional Classification

= For an two-dimensional variable with K clusters, the k" cluster can be
defined by the following two-dimensional Gaussian pdf:

1 1 _
fzle, ) = 1/2 exp[——(z — Yy )Tzkl(z — Uy )}
27[‘2,(‘ 2
x| 0, | 0. O |
where: z = U = e 2, = o o ,O'kxx=0'f,
|V My | Oky Oy |

)

kyyzgyz and Oty = = i_k:[(xi_ﬂkx)( i_luky)]'




Mixture Model Classification

= We can extend our Bayesian analysis using the mixture model
approach with Gaussian pdfs.

" |n this approach, each cluster is modeled as the sum of J Gaussian
pdf functions with weights wi, given by:

plle) = Dow, fizlj), where:

J

> w; =10 and ([ f(z],)dxdy =10.
J=1 X,y

= Note that the sum of the weights and the area of the final pdf function
both equal 1.0.




