

and in the second se

Case study: measurement of Q and cumulative attenuation from VSP data

Gary Margrave, Devon Canada Corporation

1.46

NYSE: **DVN** devonenergy.com

Downgoing wave

Extracted analysis ribbon A 300ms window flattened on the first break.

Analysis ribbon

Amp: independent

Extracted analysis ribbon, spatially averaged with delz=400

After a spatial mix. Essentially each trace is the average of neighboring traces over +/- 400m

Analysis ribbon after spatial mix

f-x amplitude spectrum of analysis ribbon

CREWES

devon

f-x amplitude spectrum of analysis ribbon, delz=400

After a spatial mix. Essentially each trace is the average of neighboring traces over +/- 400m

Analysis ribbon after spatial mix: f-x amplitude spectrum

Spectral-ratio method of Q estimation This is the most commonly used method

devon

Predicted values for Q and T depend on the frequency range of the fit.

Dominant frequency method of Q estimation This is new. It has the virtue of not needing a division.

Strategy: Find the forward Q filter that when applied to w_1 reduces the dominant frequency to that of w_2 .

Related to Quan and Harris, 1997, but significantly different.

Spectral-ratio analysis plots

CREWES

Dominant-frequency analysis plots

CREWES

devon

Cumulative attenuation or CA after Hauge (1981)

CREWES

devon

Attenuation (Q^{-1}) consists of intrinsic and stratigraphic parts which combine to give total attenuation:

$$CA = \frac{\pi(t_2 - t_1)}{Q_{eff}} = \frac{\pi(t_2 - t_1)}{Q_{intrinsic}} + \frac{\pi(t_2 - t_1)}{Q_{strat}} \}$$

1. Effective attenuation is what is always measured.

2. Intrinsic attenuation is a rock or reservoir property. Monotonic.

3. Stratigraphic attenuation is an interference effect from short-path multiples (O'Doherty and Anstey 1971).

With time in the numerator,

this is called *cumulative*

attenuation or CA.

Q versus *CA A test on a noise-free synthetic*

------ SRM (spectral ratio) —— DFM (dominant frequency) **CREWES**

Q and CA estimates on raw data Reference level 2185 ft

Q and CA estimates on spatially averaged data delz=100 *Reference level 2185 ft*

Q and CA estimates on spatially averaged data delz=200 *Reference level 2185 ft*

Q and CA estimates on spatially averaged data delz=300 *Reference level 2185 ft*

Q and CA estimates on spatially averaged data delz=400 *Reference level 2185 ft*

Q and CA estimates on spatially averaged data delz=500 *Reference level 2185 ft*

Extending the estimates to the surface

Going from reference level 2185 ft. to reference level 0 ft.

- Attenuation measurements require the comparison of two signals.
- Measurements thus far compare the "shallowest" receiver to deeper receivers. Therefore all attenuation measures are relative to the depth of the shallowest receiver.
- Extending measurements to z = 0 requires knowledge of the signal at that depth.
- We have no receiver there, but, in theory we know the amplitude spectrum of the source wavelet.
- Two source options:
 - 1) Source wavelet is Klauder wavelet
 - 2) Source wavelet is time-derivative of Klauder wavelet

CREWES

devon

The wavelets

CREWES

Modified analysis ribbon, with Klauder wavelet in column 1

After a spatial mix. Essentially each trace is the average of neighboring traces over +/- 500m

devon

Analysis ribbon with Klauder wavelet

f-x amplitude spectrum, with Klauder wavelet in column 1

Q and CA estimates on spatially averaged data delz=500 **CREWES**

Reference level 0 ft, Source wavelet: Klauder 8-96Hz

Q and CA estimates on spatially averaged data delz=500 *Reference level 0 ft, Source wavelet: Time derivative Klauder 8-96Hz*

Conclusions

- Measurement of attenuation can be considered either as *Q* or as *CA*. The latter is more stable when attenuation is low.
- Two measurement algorithms were presented:
 - 1) Spectral-ratio method: very sensitive to amplitude balancing and frequency range
 - 2) Dominant-frequency method: insensitive to amplitudes and less sensitive to frequency range.
- When applied to real VSP data, very small residual upgoing waves cause instability.
- Both methods gave similar results on spatially averaged data.
- Extension to the surface assuming a known source was investigated.
- Overall average Q values seem quite low when referenced to the surface.
 - Relative to 2185 ft, Q ranged from 60 to 110.
 - Relative to 0 ft, Q ranged from less than 20 to 55.
- This study was conducted with software in the CREWES Matlab toolbox.

I think the sponsors of CREWES, especially Devon Canada, for their support.

- Devon USA made the VSP data available.
- Colleagues at Devon provided valuable commentary and insight.

Spectral-ratio analysis plots

CREWES

devon