Effects of attenuation and anisotropy on AVO and FWI sensitivities

Shahpoor Moradi, Kristopher Innanen University of Calgary

28th Annual CREWES Sponsor's Meeting

Outline

>Introduction and motivation

Viscoelastic VTI(Vertically Transversely Isotropic) media

- Stiffness tensor
- Model parameterization
- Viscoelastic waves
- ➢Volume scattering vs low contrast reflection
- Scattering potentials and AVO equations
- Numerical examples: FWI sensitivities

Conclusion

Introduction and motivation

- Study the effects of both attenuation and anisotropy on linearized reflection coefficients
- Taking into account the inhomogeneity of the incident wave on the AVO equations
- Choosing a suitable set of parameters to describe the model and designing an effective inversion strategy
- Establish a framework for viscoelastic full wave form inversion

Viscoelastic VTI media: stiffness tensor

Viscoelastic VTI media: model parameterization

Model 3	
V_P	Q _P
V_S	Qs
Е	ε _Q
δ	δ_{Q}
γ	γ _Q
-	$\frac{V_P}{V_S}$

Thomsen, 1983

Yaping & Tsvankin 2006

Viscoelastic VTI media: viscoelastic waves

Borcherdt, 2009

Viscoelastic VTI media: viscoelastic waves

Borcherdt, R. D., 2009. Viscoelastic waves in layered media, Cambridge University Press

Born approximation

Volume scattering vs low contrast reflection

Volume scattering(Born approximation)

Volume scattering vs low contrast reflection

Low contrast reflection(Zoeppritz equation)

- Isotropic Elastic (IE): sensitive to the changes in density P-and S-wave velocity. This terms
 is the scattering potential for scattering of seismic wave in an isotropic elastic reference
 media (Aki & Richards).
- Anisotropic Elastic (AE): sensitive to the changes in Thomsen parameters. (IE+AE)-term is the scattering potential for scattering of elastic wave in an anisotropic-elastic reference medium (Thomsen 1986; Rüger, 1997; Shaw & Sen, 2004).
- Isotropic Viscoelastic (IV): sensitive to the changes in density, P-and S-wave velocities and P- and S-wave quality factors. (IE+IV)-term is the scattering potential for scattering of viscoelastic wave in an isotropic viscoelastic reference media (Moradi & Inannen, 2015).
- Anisotropic Viscoelastic (AV): sensitive to the changes in Q-dependent Thomsen parameters. In the case that media is either isotropic or elastic this term is zero.

Viscoelastic VTI model

Viscoelastic Orthorhombic

 $[PP] = [PP]_{IE} + [PP]_{AE} + i [PP]_{IV} + i [PP]_{AV}$

Isotropic Elastic $[PP]_{IE} = ([PP]_{IE}^{\rho}) \frac{\Delta \rho}{\rho} + ([PP]_{IE}^{Vp}) \frac{\Delta V_P}{V_{\rho}} + ([PP]_{IE}^{Vs}) \frac{\Delta V_S}{V_S}$ **Anisotropic Elastic** $[PP]_{AE} = ([PP]_{AE}^{\varepsilon})\Delta\varepsilon + ([PP]_{AE}^{\delta})\Delta\delta$ **Isotropic Viscoelastic** $[PP]_{IV} = (PP]_{IV}^{\rho} \frac{\Delta \rho}{\rho} + (PP]_{IV}^{Vs} \frac{\Delta V_S}{V_C} + (PP]_{IV}^{Qp} \frac{\Delta Q_P}{Q_P} + (PP]_{IV}^{Qs} \frac{\Delta Q_S}{Q_S}$ **Anisotropic Viscoelastic**

 $([PP]_{AV}^{\varepsilon}\Delta\varepsilon + ([PP]_{AV}^{\delta}\Delta\delta + ([PP]_{AV}^{\varepsilon_{Q}}\Delta\varepsilon_{Q} + ([PP]_{AV}^{\delta_{Q}}\Delta\delta_{Q}$ $\left[\mathrm{PP}\right]_{\mathrm{AV}} =$

NSERC CRSNG

$$\begin{split} \mathbf{R}_{\mathrm{PP}} = & \hat{\mathbf{A}}_{\mathrm{PP}} + \hat{\mathbf{B}}_{\mathrm{PP}} \sin^2 \theta_{\mathrm{P}} + \hat{\mathbf{C}}_{\mathrm{PP}} \sin^2 \theta_{\mathrm{P}} \tan^2 \theta_{\mathrm{P}} \\ & \frac{1}{2} \left(\frac{\Delta \rho}{\rho} + \frac{\Delta V_P}{V_P} \right) - \frac{i}{4} Q_{\mathrm{P0}}^{-1} \frac{\Delta Q_{\mathrm{P0}}}{Q_{\mathrm{P0}}} \\ & \frac{1}{2} \left[\frac{\Delta V_P}{V_P} + \Delta \varepsilon \right] - \frac{i}{4} Q_{\mathrm{P0}}^{-1} \frac{\Delta Q_P}{Q_P} + \frac{i}{4} Q_{\mathrm{P0}}^{-1} \Delta \varepsilon_Q \\ & \frac{1}{2} \left[\frac{\Delta V_P}{V_P} - 4V_{\mathrm{SP}}^2 \left(\frac{\Delta \rho}{\rho} + 2\frac{\Delta V_S}{V_S} \right) + \Delta \delta \right] - i \left[\frac{1}{4} Q_{\mathrm{P0}}^{-1} \frac{\Delta Q_P}{Q_P} - 2V_{\mathrm{SP}}^2 Q_{\mathrm{S0}}^{-1} \frac{\Delta Q_S}{Q_S} \right] \\ & - i \left[2V_{\mathrm{SP}}^2 (Q_{\mathrm{S0}}^{-1} - Q_{\mathrm{P0}}^{-1}) \left(\frac{\Delta \rho}{\rho} + 2\frac{\Delta V_S}{V_S} \right) - \frac{1}{4} Q_{\mathrm{P0}}^{-1} \Delta \delta_Q \right] \end{split}$$

PP-wave(density scatter point)

PP-wave(P-wave velocity scatter point)

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

PP-wave(S-wave velocity scatter point)

PP-wave(Qp scatter point)

PP-wave(Qs scatter point)

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

- Scattering potentials and linearized reflection confidents are derived in anisotropic viscoelastic media
- Inhomogeneity of the wave does not have any influence on the reflection coefficient for vertically incident waves.
- The consistency of our theoretical/scattering treatment with the numerical results obtained is a significant step towards the development of several processing and inversion applications for data with nonneglible P and S wave attenuation and anisotropy.

Acknowledgments

CREWES sponsors and staff NSERC (CRDPJ 461179-13) Dr. Hassan Khaniani

Thank you

