Grid Algebra in Finite Difference Code

Heather K. Hardeman

&

Michael P. Lamoureux

December 2, 2016

Outline

- Motivation
- Grid representation of operators
- Linear algebra on a grid
- Factoring the Laplacian
- Numerics for the wave equation in grid form
- Conclusions

Motivation – computing on a grid

www.crewes.org

Motivation – big grids, and big operators

www.crewes.org

Department of Geoscience

- Finite difference methods are an effective, efficient method for solving many differential equations.
- PDEs in 2D and 3D lead to large, sparse matrices.
- Implicit methods require the solution of these large matrices.
- We want faster solution methods, built on the grid geometry.
- Speed of order O(#grid points), per time step.
- Grid algebra is linear algebra, directly represented on a 2D or 3D grid.

Matrix Ax = b. As an equation. As a graph. As a reduced graph.

www.crewes.org

Laplace operator on 4x4 grid

www.crewes.org

Laplace operator, as a 16x16 matrix

www.crewes.org

A grid operator, "lower triangular" form

www.crewes.org

UNIVERSITY OF CALGARY

Solving triangular form, by back substitution

www.crewes.org

Solved grid system

www.crewes.org

N

Linear algebra on a grid

- Nodes on grid index the rows and columns of a matrix
- Weights on arrows are matrix coefficients
- All arrows going towards one node is equivalent to a matrix row
- Matrix row operations correspond to operations on arrows
- Multiply row by a constant = multiply all arrow weights, pointing to one node
- Adding one row to another = add weights on arrows pointing to one node, to weights on arrows pointing to another node
- Exchanging rows = exchange arrows pointing to two nodes

Linear algebra on a grid

- Composing operators = chasing arrows, tails to heads, taking sum and products of weights
- Factoring operators = finding arrows, to give a composition
- Operators of special form are easy to invert, solve

Factoring the Laplacian

Analytic form:

$$\nabla^2 = (\frac{\partial}{\partial x})^2 + (\frac{\partial}{\partial y})^2 = (\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})$$

Discrete form:

$$\nabla^2 = \left[\frac{(R-I)}{\Delta x} - i\frac{(U-I)}{\Delta y}\right] \left[\frac{(I-L)}{\Delta x} + i\frac{(I-D)}{\Delta y}\right]$$

This factor has only right and up arrows.

This factor has only left and down arrows.

Both are solvable by back substitution.

www.crewes.org

UNIVERSITY OF CALGARY

Department of Geoscience

Grid factoring, Cholesky factorization

A better form: Cholesky factorization as bi-diagonal matrices in x, y directions.

www.crewes.org

Coding example – explicit FD solution, grid algebra

www.crewes.org

Coding example – implicit FD solution, grid algebra

www.crewes.org

Sanity check on implicit – move out the x,y boundary

www.crewes.org

- Large, sparse matrices are a challenge in FD implicit methods.
- Linear algebra can be done directly on grid representations.
- Efficient representation of operators in computer memory.
- Early tests indicate this works, and is fast, for numerical solution of the wave equation.

www.crewes.org

- Thank you to:
- CREWES sponsors
- CREWES staff and students
- NSERC funding through CRD and Discovery grants

For financial and moral support.

Erroneous coding in paper (note 10^6 power)

www.crewes.org

