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ABSTRACT

Classical seismic imaging techniques assume an acoustic isotropic medium. In this

thesis, new methods are developed for isotropic and/or transversely isotropic (TI) elastic

media. These new assumptions facilitate the analysis of both mode-converted waves and

anisotropic parameters within the earth.

Processing mode-converted seismic data requires special binning techniques,

because the lateral position of the conversion point varies with depth. Previously

published algorithms for approximate common-conversion-point (CCP) trace sorting are

unsuitable for imaging multiple depth zones, and are sometimes prone to periodic binning

artifacts. In this thesis, a depth-variant CCP mapping technique is used to overcome these

difficulties. The mapping algorithm produces immigrated P-SV stacked images that are

directly comparable to common-midpoint (CMP) stacked sections obtained from

conventional (P-P) seismic data. An example of single-depth trace sorting for a strongly

anisotropic material with a vertical infinite-fold symmetry axis illustrates that, unlike

isotropic media, conversion-point shift toward the source is possible for qP-qSV arrivals.

The latter half of this thesis deals with migration and inversion of seismic data

based on a least-squares ray-Born formalism. The following assumptions are employed

to simplify the problem: the orientation of the infinite-fold anisotropic symmetry axis is

known, and coplanar with the sources and receivers; the medium and acquistion

geometry are two-dimensional; based on prior information, an accurate and smooth (ray-

m



valid) reference model can be defined; coherent noise has been removed from the data.

At least six parameters are required to characterize an elastic medium with TI symmetry.

Here, for convenience, the model-parameter set is chosen to be qP and qS velocities,

density, and the three Thomsen anisotropy parameters.

In order to implement the migration/inversion strategy, robust and efficient

methods for computing high-frequency background Green's functions are required. For

this purpose, an existing methodology for finite-difference traveltime and amplitude

computation for isotropic media is adapted for use with TI media. The traveltime

technique tracks seismic wavefronts by solving the sixth-order anisotropic eikonal

equation on a hexagonal mesh. Differentiation of the computed traveltime field yields

estimates of the slowness and polarization vectors. The initial ray parameters are

determined by perturbing the source location on the grid, and are then used to estimate

the 21/£-dimensional geometrical-spreading function. In numerical tests using a Sun

Sparcstation 2, accurate traveltimes were computed at a rate of about 50 per CPU second.

However, the computed amplitudes contain small oscillatory artifacts.

The migration/inversion problem is posed as a least-squares optimization, which

is solved by an iterative algorithm consisting of three steps: filtered backprojection

(migration) of the current data residual, application of an approximate inverse-Hessian

matrix to yield parameter perturbation estimates, and re-scattering from the new model

to update the data-residual vector. Application of this procedure to synthetic crosswell

data demonstrates that Thomson's e parameter can be resolved as well as, or better than,

any of the isotropic parameters. Migration/inversion of a ray-traced dataset produced

erroneous estimates of density and anisotropic parameters, but illustrates that superior

imaging of slope discontinuities in the subsurface is possible when all elastic wave types

(Le., qP-qP* qP-qSV, qSV-qSV, etc.) are used.
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Chapter 1

Introduction
1.1 Statement of the problem

Seismic migration and inversion are closely related processes for obtaining images

of the subsurface. Underlying principles and methods vary, but in essence both

techniques attempt to quantify the task of inferring petrophysical and structural

parameters from seismic data. Historically, the term inversion has been applied to the

problem of estimating intrinsic properties that characterize a physical system (Tarantola,

1987), whereas the term migration has been reserved for imaging of the structural

configuration of geologic discontinuities (Stolt and Benson, 1986). In both cases,

however, the mathematical link between observed data and the final image is the same:

a set of equations of motion that are derived from a constitutive model for the earth.

When a constitutive model is chosen such that properties of the earth at any point

are directionally dependent, it is said to be anisotropic. On a microscopic scale, virtually

all of the constituent minerals in the earth's crust have crystal structures that are

anisotropic (Musgrave, 1970). Anisotropy on a macroscopic scale can be caused by

preferred orientation of these minerals, as well as periodic-thin layering and stress-

aligned fracturing (Crampin et al., 1984). Fundamental differences exist between wave

propagation in an anisotropic and an isotropic solid (Duff, 1960; Crampin, 1981).

Previous studies of seismic imaging in anisotropic media (Meadows, 1985; Geoltrain and

Cohen, 1989; Uren et al., 1990; Tura, 1990) have stressed the importance of accounting

for anisotropic wave-propagation effects, but have dealt primarily with special cases, such
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as elliptical anisotropy or plane layering.

This thesis deals with seismic imaging and inversion in the presence of transverse

isotropy, a widely applicable form of anisotropy. The problem can be stated as follows:

based on observations of the scattered wavefield (i.e., that part of the observed seismic

wavefield that has undergone single reflection or diffraction from geologic

discontinuities), coupled with a number of assumptions given below, what is the

distribution and nature of elastic heterogeneities within some region of interest? The

main objectives of this study are to develop practical imaging techniques for this type

of medium and to assess the relative resolution of the various elastic parameters that are

characteristic of transverse isotropy. A linearized inverse-scattering approach is used to

achieve these goals. This strategy represents a natural synthesis of ray, Bom, and

general-inverse theories, and establishes an effective framework for continued study of

this problem.

1.1.1 Acquisition geometry

Fig. 1.1 illustrates basic geometrical features of the seismic-reflection method,

showing surface recording, vertical-seismic profiling (VSP) and crosswell acquisition

geometries. In the ideal case, all three of these methods are used in conjunction to

maximize the angular coverage of the zone of interest This situation is rare, however,

and more often only one type of survey is available at a given location. In this study, the

sources and receivers are confined to the jc-z plane, although in practice, 3-D surface

acquisition and non-coplanar crosswell surveys are not uncommon. Because of strong

near-surface heterogeneities, recordings at the surface are typically noisier, contain lower

frequencies, and have less reliable amplitude information than borehole recordings.

1.1.2 Assumptions

Several assumptions, such as the far-field, high-frequency and small-perturbation
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VSP Surface

Zone of interest

v Receivers
Sources

Data
peri/meter

y

Fig. 1.1. Schematic illustration of VSP, surface and crosswell acquisition geometries (not
all sources and receivers are shown). Raypaths indicate scattering of the seismic
wavefield from localized elastic heterogeneities within the zone of interest.

assumptions, are incorporated directly in the ray-Born modeling formalism, and will be

discussed in chapter 2. The following additional assumptions are employed here in order

to simplify the problem:

1) the medium is transversely isotropic (TI); the direction of the symmetry axis

is assumed to be known, and to be coplanar with the sources and receivers;

2) the medium and recording geometry are two-dimensional; medium parameters

are independent of the y coordinate;
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3) using prior information, it is possible to define elastic parameters for a

reference medium that are smoothly varying, and are a close approximation to the true

earth parameters;

4) preprocessing of the data has removed any part of the recorded signal that is

not accounted for in the modeling procedure, such as surface waves or multiple

reflections.

The first assumption asserts the layered nature of sedimentary rocks, since

transverse isotropy is the most natural symmetry system for laminated or fractured

materials (Backus, 1962; Hudson, 1981; Helbig, 1984). The additional degrees of

freedom provided by the adoption of the TI model are likely to provide valuable new

information, and to yield improved imaging potential in exploration applications,

particularly those involving shear waves. This conjecture is supported by mounting

theoretical and empirical evidence (Robertson and Corrigan, 1983; Melia and Carlson,

1984; Helbig, 1984; Crampin, 1985; 1987; Winterstein, 1986; Thomsen, 1986; Byun et

al., 1989; Gibson and Toksoz, 1990; Lynn and Thomsen, 1990; Winterstein and Paulsson,

1990; Zamora and Poirier, 1990; Byun and Corrigan, 1990; Carcione et al., 1991).

Although in some cases even less degenerate symmetry classes, such as orthorhombic

or monoclinic, may be appropriate (Winterstein and Meadows, 1990), there is a strong

motivation to determine the simplest elastic symmetry system that can adequately explain

observed phenomena.

It is also considered to be reasonable to assume that the orientation of the

symmetry axis is known. For the various causal mechanisms for transverse isotropy in

sedimentary rocks, discussed below, the direction of the symmetry axis with respect to

geologic dip and/or the regional stress field is well defined (either parallel or

perpendicular). Hence, the prior information necessary to define a background model
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should also be sufficient to ascertain the anisotropic orientation. Attempting to solve for

the direction of the symmetry axis in the inversion has been found to complicate the

procedure significantly.

The second assumption stems from the dimensionally constrained nature of the

observations. Inferences regarding a three-dimensional earth made using a two-

dimensional experiment can be facilitated by making some assumption about how

geologic parameters vary in the offline Cy) direction (Fig. 1.1). The simplest assumption

is that parameters are constant. Because the model is then two-dimensional (only two co-

ordinates are required to characterize a point) and wave propagation is inherently three-

dimensional, this scenario has sometimes been referred to as 2J/2-dimensional (see

Bleistein, 1986).

The third assumption is justified when additional sources of information, such as

well control, geologic models, tomographic and velocity inversion, etc., limit the range

of acceptable parameter values. In an exploration setting, this is normally the case. Thus,

the inversion algorithm seeks to resolve small-scale (relative to the dominant seismic

wavelength) perturbations to elastic parameters about a smooth, prior background model,

rather than the entire wavelength spectrum of the absolute medium parameters. This

strategy is in accord with the widely held view that the spectral resolution of seismic

data is limited to two bands, and that the inversion for the short-wavelength components

is nearly linear (Jananne et al., 1989; Claerbout, 1985). This assumption also leads

directly to the distorted-wave Born approximation (Newton, 1966), which accounts for

single scattering of seismic waves from weak elastic perturbations. Because multiple

scattering, surface waves, tube waves etc. are not accounted for, they must be removed

from the data by preprocessing prior to the migration/inversion step. As with any
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inversion scheme, coherent energy not accounted for by the forward model produces

inversion artifacts.

1.2 Review of transverse isotropy

Transverse isotropy is one of eight anisotropic symmetry systems in seismology

(Winterstein, 1990). The characteristic symmetry elements are a single, infinite-fold axis

of symmetry oriented perpendicular to an infinite set of 2-fold axes of symmetry, where

an /i-fold symmetry axis is defined to be a direction about which a rotation of 2n/n

radians produces a solid that is indistinguishable from the material prior to rotation

(Winterstein, 1990). Throughout this thesis, the term symmetry axis is used as a synonym

for the infinite-fold axis of symmetry in a TI medium. Wavefront properties in a TI solid

depend only on the angle between the direction of propagation and the symmetry axis.

Because of its suitability for modeling layered or fractured media, TI symmetry has been

studied extensively in the seismic literature (see Helbig, 1981; Crampin, 1986).

Three generally accepted (canonical) models for transverse isotropy in

sedimentary rocks are considered here, and discussed in Crampin et al. (1984). Intrinsic

anisotropy (Fig. 1.2a) is most commonly manifested in shales, and is attributed to parallel

alignment of platy mineral grains during deposition. The anisotropic behaviour is, for the

purposes of seismology, independent of wavelength. Hence this is the only form of

transverse isotropy that can be studied directly using laboratory rock samples. Periodic-

thin-layering (PTL) anisotropy (Fig. 1.2b) refers to a succession of thin layers (thickness

« dominant wavelength) with alternating properties. In the asymptotic limit, this type

of composite material can be replaced by an equivalent homogeneous, TI medium with

its axis of symmetry perpendicular to bedding (Backus, 1962). Finally, an originally
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\

\
c)

Fig. 1.2. Canonical models for transverse isotropy in sedimentary rocks, a) Intrinsic
anisotropy; b) Periodic-thin layering; c) Fracturing (extensive-dilatancy anisotropy).
Arrows show the direction of the infinite-fold axis of symmetry for each case.

isotropic solid containing parallel fractures also exhibits TI symmetry (Hudson, 1981;

Crampin, 1981). Extensive-dilatancy anisotropy is a term sometimes used for anisotropy

caused by stress-aligned, fluid-filled fractures (Crampin, 1987).

The stress-strain relationships for a TI solid can be described using a 6x6 matrix

of elastic stiffnesses (Musgrave, 1970). Referred to a co-ordinate system with the z-axis

aligned with the symmetry axis, this matrix has the form:
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Cn C12 C13 O O O

C12 C11 C13 O O O

l1J 0 0 0
(U)

O O O C44 O O

O O O O C44 O

O O O O O C66

where C12 = C11 - 2C66. The most obvious (although not necessarily the best)

parameterization for a TI medium makes use of the five independent stiffnesses and

density, plus the orientation of the symmetry axis, if necessary. Equivalent

parameterizations may suffice to characterize a medium, and it is often preferable to

work with parameters that have a more intuitive foundation. The reference set of

parameters in this study consists of P- and 5-wave velocity in the direction of the

symmetry axis, Thomsen's (1986) anisotropy parameters, and density. Defined in terms

of the elastic stiffnesses, the first five parameters may be written (Thomsen, 1986):

a = (C33P"1 )1/2 ,

p EE (C44P'1)172 ,

s
-CL'44 (1.2)

1C4*\s,44

8 = -(C33-^44)2

2C33(C33-C44)

and
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s

2C33

Note that for an isotropic medium, the parameters a and p defined above are simply the

P- and 5-wave velocity, respectively; for an anisotropic medium, a and P refer

specifically to the compressional and shear-wave phase velocity in the direction of the

symmetry axis. The dimensionless parameters y, 5 and e have also been defined in a

physically meaningful way. In the limit of weak anisotropy, e and y represent the factors

normally associated with qP- and SH- wave anisotropy (i.e., the fractional difference

between the fast and slow velocities). The remaining factor, 8, governs the behaviour of

qP and qSV wavefields for directions of propagation that are oblique with respect to the

symmetry axis. The notation qP and qSV (q for quasi) is used here to emphasize the

impure polarization of compressional and SV waves in a TI medium. However, the

polarization of SH waves in a TI medium is identical to that in an isotropic medium

(Thomsen, 1986). Therefore, the notation qSH is not used in this context.

The properties of the three canonical models are now considered in more detail

in order to seek criteria that could be used to distinguish between them based on

estimates of the seismic parameters, and to investigate the relationships between seismic

and physical parameters. In addition, possible interdependence between parameters will

be examined in an effort to further constrain seismic inversion results. The validity of

the elliptical approximation (Helbig, 1983), in which qP wavefronts are assumed to be

ellipsoids of revolution, will also be addressed for each of the three models.

1.2.1 Intrinsic anisotropy

To date, mathematical models to predict the intrinsic anisotropic properties of

sedimentary rocks based on mineralogy, lithology or stratigraphic setting, etc., have not
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been fully developed. Thus, empirical data provide the only available constraints. Several

years ago, Thomsen (1986) compiled results of laboratory studies available at that time.

In this study he showed that the condition for elliptical anisotropy is expressed by the

equality 8 = e. Fig. 1.3a shows a graph of 5 vs. e from this data compilation (see also

Fig. 4 in Thomsen, 1986), and clearly indicates that this condition is rarely met in nature,

based on the data Thomsen collected.

Fig. 1.3b compares another pair of anisotropic parameters (y vs. e) using this

dataset. A reasonably good linear relation between y and e appears to exist, for both

sandstone and shale lithologies. The equation of the best-fit line (by least-squares

regression) is
y = 1.5346e - 0.0277 .

The implications of this relationship for seismic modeling and inversion are similar to

Gardner's relation (Gardner et al., 1974) between P- wave velocity and density. When

insufficient information is available to estimate one of y or e directly, a reasonable value

could be obtained using (1.3). It may also be advantageous to apply equation (1.3) as an

additional constraint for seismic inversion, provided that the mechanism is known to be

intrinsic anisotropy.

1.2.2 Periodic-thin layering

PTL anisotropy is a term that is applicable to stratified media with layers that are

much thinner than the dominant seismic wavelength. Extensive theory concerning the

nature of the equivalent homogeneous, TI medium has been developed for such a

scenario (Postma, 1955; Krey and Helbig, 1956; Backus, 1962). Since this is a long-

wavelength phenomenon, the effects of PTL anisotropy are primarily relevant here for

the calculation of background Green's tensors.

Backus (1962) gave formulae for computing the effective elastic constants for a
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Anisotropy parameter e
-0.4 -0.2 O 0.2 0.4 0.6 0.8

Anisotropy parameter e

a) b)
Fig. 1.3. a) Graph of 8 vs. e for intrinsic anisotropy in sedimentary rocks (modified from
Thomsen, 1986). Squares represent sandstones and crosses indicate shales. The line
represents the ellipticity condition (8 = e). b) Graph of y vs. e, from the same set of
data. Here, the line shows the I2 best-fit line through the data points, given by y =

1.5346e - 0.0277.

Tl-equivalent medium, where each of the thin layers in the stratified model is

transversely isotropic or isotropic. In terms of stiffnesses, these formulae may be written

C11 =

(1.4)

r -("44 ~

and
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In these expressions, the overbar signifies the values that are associated with the

equivalent medium, and C^ is the jkth stiffness of the ith layer. The symbol < >

denotes a weighted averaging, so that, for a sequence of N layers,

E *,c»
<C«>=±1_ ——— , (LS)

£*,
where /i, is the thickness of the ith layer. Levin (1979) specialized these formulae to the

case where each layer is isotropic, and expressed them in terms of P- and 5-wave

velocities and density, rather than stiffnesses. Here these formulae are recast in terms of

the three anisotropic parameters, giving

- = <pp2>-<(pp2)-1>"1

P2 2 1 1 2 1 1 2 2 1 1 2 1 1 2 (L6)

__ O

5 CX= ——————————————————————————————— ,

and

*^ J*

[<4pp2(l-JL)> + <1-(2JL'r 2 2or orc = ————————————————
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for a sequence of isotropic layers with P- and S-wave interval velocities of a and (3, and

density p (the (O superscript has been dropped for clarity). Some order-of-magnitude

insight can be gained by doing a sample calculation for these quantities using actual layer

velocities. Sonic-log P-wave velocities (Fig. 1.4a) from a well in central Alberta (Mobil

Cynthian 4-22-53-12W5) have been used for this purpose. The interval considered

extends from 907 m to 1174 m depth, and represents the Upper Cretaceous Belly River

Formation, a sequence of fine- to medium-grained sandstones interbedded with

mudstones, siltstones and shales (Iwuagwu and Lerbekmo, 1982). Shear-wave velocities

for this interval were computed using an estimated o/p ratio of 1.93, based on correlation

of nearby P-P and P-SV surface seismic data (Harrison, 1989). Under the further

assumption that density is given by Gardner's relation (Gardner et al., 1974), the values

calculated by applying equations (1.6) to the point-by-point parameters illustrated in Fig.

1.4 are:

Y = 0.025 ;

8 = -0.005 ;

e = 0.015 .

Although the magnitudes of these anisotropic parameters are small, several important

observations can be made. First, computational savings are possible for this medium, at

least for kinematic modeling, when an equivalent homogeneous TI medium is used;

instead of storing parameters for each individual layer, only 5 parameters are required

to characterize the response of the entire sequence. Secondly, it is evident that elliptical

anisotropy is not well suited for the medium considered here, since 8 5* e. Moreover, it

is straightforward to show that when PTL anisotropy is due to a sequence of thin
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P-wave velocity S-wave velocity Density
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a) b) c)
Fig. 1.4. a) P-wave velocities for Upper Cretaceous sediments, from sonic log at 4-22-
53-12W5. Analysis zone is the Belly River Formation (907 m - 1174 m). b) S-wave
velocities, derived from a) using o/P = 1.93. c) Densities, derived from a) using

Gardner's relation (Gardner et al., 1974).

isotropic layers, elliptical anisotropy can occur only for unrealistically large values of

a/p.

1.2.3 Fractured media

Anisotropy due to the presence of steeply dipping subsurface joints and

microfractures is particularly relevant to both reservoir characterization and seismic

monitoring of enhanced-oil-recovery operations. In some oil and gas fields, primary

recovery is possible only because of the presence of fractures; elsewhere, the migration

of injected fluids is controlled by fracturing (Babcock, 1978).

As in PTL anisotropy, the calculation of effective elastic constants for a cracked

elastic solid involves averaging over a scale length that is large compared to the fracture

dimensions. Formulae for effective elastic stiffnesses in a cracked solid have been

derived by Garbin and Knopoff (1975) and Hudson (1981). An isotropic material



Chapter 1 : Introduction 15

permeated with circular, infinitely thin, fluid-filled microfractures normal to the z axis

will be considered here (steeply dipping fractures can be described by performing the

appropriate rotation to the stiffness tensor). In this case, the only stiffness parameter that

is affected by the fracturing is C44 (Hudson, 1981). Denoting the crack radius as a and

the crack density as O), the perturbation is given to first order in (Da3) by Hudson (1981)

as

where A, and u are the background Lame parameters. Thus, from equations (1.2) and (1.7)

and using the fact that velocities for the unfractured material are given by pa2 = X + 2p

and p P2 = p, the effective anisotropy parameters are

=

2(1 -DSC)
(1.8)

6 = -2£ J^
a2 cc2-p2(l-Da3C) a

and

e = 0 ,

with

L = —
T

a2

\3a?-2p
(1.9)

Note that in this case, the elliptical approximation is impossible, since E = O while 8 is

strictly less than zero.

Again it is worthwhile to use actual numbers in these expressions to develop a
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feel for their magnitude in sedimentary rocks. Babcock (1975) has presented measured

parameters for fracturing in the McMurray Formation, located in northeastern Alberta.

The mean length of fractures parallel to the outcrop face, taken here to be the diameter

under the assumption of circular fractures, is given as 0.57 m. The mean spacing between

fractures is 0.17 m. Assuming a spacing of 1 m between fractures in the strike direction

leads to an estimate of 5.9 m"3 for the fracture density. This set of parameters gives \>c?

« 0.109 « 1. Using a = 3000 m/s and p = 1500 m/s, the values of y and 8 from (1.7)

are:

y = 0.43 ;

8 = -0.20 .

These parameters imply a much greater degree of anisotropy for quasi-shear waves than

qP waves. For example, the minimum #P-wave phase velocity occurs at a phase angle

of 45° with respect to the fractures, and differs by 4.3% from the maximum, whereas the

minimum SH phase velocity (perpendicular to fracturing) is 36% smaller than the

maximum SH phase velocity (parallel to fracturing).

13 Summary

Based on a number of simplifying assumptions (e.g., two-dimensional medium,

adequate suppression of coherent noise, etc.) and a suitable choice of reference medium,

the goal of this study is to estimate the nature and distribution of localized elastic

perturbations, relative to a smooth prior background model. The anisotropic symmetry

system is assumed to be transverse isotropy, and for convenience, the anisotropic

parameters y, 8 and e suggested by Thomsen (1986) have been adopted, rather than

actual stiffness components. The use of different recording geometries, such as surface
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and crosswell, is also considered.

Transverse isotropy in sedimentary rocks is classified according to a set of three

canonical models. Long-wavelength averaging of medium properties plays a central role

in two of these models (PTL anisotropy and fracturing). Each mechanism for anisotropy

appears to be well separated from the others in parameter space. For example, PTL

anisotropy resulting from a sequence of isotropic layers for which o/p = 2.0 leads to the

condition 6 = 0, while fluid-filled fracturing, to first order in (O)O3) leads to the condition

e = O. There is ample evidence that the elliptical approximation is unsuitable for

modeling any of the three forms of anisotropy considered here, and should not be used.
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Chapter 2

Background Theory
2.1 Introduction

The intent of this chapter is to present a concise overview of the mathematical

principles underlying the migration/inversion (M/I) method. These principles are derived

from theoretical investigations of anisotropic-elastic wave propagation, the ray and Born

approximations and generalized least-squares inversion. By grouping this material

together and using a consistent set of notation, mathematical similarities between these

different theories are emphasized, and the discussion in subsequent chapters is free to

focus on more practical aspects of the procedure. Where possible, results are expressed

in general anisotropic form, and later are specialized to conform with the particular

assumptions used here (transversely isotropic and 2V£-dimensional).

2.2 Elastic wave propagation in a homogeneous anisotropic medium

My starting point is the law of conservation of linear momentum, or Newton's

second law, which may be written as

In this equation, a^x) is the stress field, p(x) is density, M,(x,r) is the second time

derivative of the particle displacement vector, u, and f(x,r) is the body force per unit

volume. For an elastic solid, stress is related to strain, £i;, by Hooke's law,
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(2.2)

where c^x) is the stiffness tensor. Symmetry of G1J and ew, along with energy

considerations, reduces the maximum number of independent components of the stiffness

tensor from 81 to 21. For a TI solid, symmetry conditions further reduce this number to

five, and for the isotropic case, only two elastic moduli are required. Because of this high

degree of symmetry, an alternative matrix notation for the stiffness tensor is often used

(see equation (1.1)). The relationship between matrix and tensor elements is summarized

in Table 2.1. While the tensor notation is more compact for mathematical formulae, the

matrix notation is also very useful.

Substituting (2.2) into (2.1) and using the definition for strain, ew = (ukl+ulJc)/2,

leads to the elastic equations of motion,

(cijkiuk,i\j ' P * i i s f i • (2'3)

Many of the derivations that follow are simpler in the frequency domain. Fourier

transforming (2.3) into the frequency domain gives

(2.4)

where

OO

M4-(X5CO) = f M-(x,r)e"" *dt (2.5)

I/ or kl

I OT J

11

1

22

2

33

3

32 or 23

4

31 or 13

5

12 or 21

6

Table 2.1. Convention for indicia! conversion between tensor notation, cty#, and matrix
notation, Q7, for elastic stiffnesses.
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For notational convenience, the ~ superscript is omitted below, where the context is

unambiguous. For a homogeneous medium, spatial derivatives of the stiffness tensor

vanish, and the equations of motion become

sfi • (2-6)

2.2.1 Plane-wave solutions: Slowness and wave surfaces

Valuable insight about the geometrical properties of elastic waves in anisotropic

solids can be gained by studying a number of surfaces in slowness and velocity space.

The definitions for these surfaces follow naturally from plane-wave solutions to equation

(2.6). I therefore consider particle displacements of the form

^(x,co) = AgJkeiG)(P*x) , (2.7)

where A is a scalar amplitude and g is a unit polarization vector. The slowness vector,

p, points in the direction of the wavefront normal, n, and has a magnitude of l/vpt where

Vp is the phase velocity (the ratio of frequency to wavenumber, co/fc). Substituting (2.7)

into the equations of motion, (2.6), leads to the set of equations

lcijkiPjPi -PS*]** = 0 , (2.8)

or, alternatively,

['«*»,•»/ - PV,\]** • ° - (2-9)

The latter are known as the Kelvin-Christoffel equations (Musgrave, 1970), and require,

for a non-trivial solution, that

det cijkinjni - = O . <2-10)

2The roles of pv and g are evident from the form of the Kelvin-Christoffel
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equation; (pVp2) are the eigenvalues of the matrix F^ = c^n^ and the g's are the

corresponding eigenvectors (Crampin, 1981). Allowing n to vary over the unit sphere and

solving for phase velocity generates a sixth-order surface of 3 sheets, called the normal

surface (AuId, 1973). Similarly, the function

S(p) = d e t c p p , - p8tt = O , (2.11)

defines another surface of fundamental importance, known as the slowness surface

(Synge, 1957). Intersections of different sheets of the slowness surface occur when two

of the eigenvalues of F^ are equal. These points on the slowness surface are called

singularities (Duff, 1960). In general, the geometrical properties of the slowness surface,

coupled with the distribution and nature of singularities, determines the behaviour of

body waves in an anisotropic solid (Musgrave, 1970; Crampin, 1981).

It is not necessary to solve equation (2.10) to evaluate phase velocity in a TI

medium. Explicit formulae for qP, qSV and SH waves in terms of the reference

parameters used here are given by Thomsen (1986):

V^(O) = cc2[l + ESm2O + D(O)]; (qP waves)

2 2
Vp = P2[l + -!LeSm2O - —D(G)]\ (qSV waves) , (2.12)

Vp = p2[l + 2ysin20], (SH waves)

where O is phase angle with respect to the symmetry axis, and the term D is defined as
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D, 1(1-1.)
2 rr2

1/2
2 • 45* . 20 2Q 4(1-P2Ax2+e)e+——————siirO cosz0 + _-:—————— -1

(l-p2/a2)2 (1-P2Ax2)2

(2.13)

and 5* & (1 - p2Ax2)(25 - e).

A quantity that has more direct physical significance than either phase velocity

or slowness is the group velocity,

V = v m , (2.14)g

which determines the rate of energy transport. Unless noted otherwise, the symbol v is

used below to denote group velocity rather than phase velocity. In an anisotropic

medium, the group velocity defines another surface, called the wave surface, which

represents the envelope at 1 s of plane waves that pass through the origin at time zero

(Musgrave, 1970) (Fig. 2.1). In terms of the slowness surface, 5(p), the group velocity

may be written (Synge, 1957),

v =
1

However, a more convenient expression for computational purposes is given by Kendall

and Thompson (1989),

v. = (2.16)

where Djk is a cof actor of [CyUpiPi/p - SjJ.

The slowness and wave surfaces are linked by an important geometrical

relationship, known as the principle of duality (Duff, 1960; Musgrave, 1970). For a given
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Normal
surface

Wave
surface

Fig. 2.1. Geometrical relationship between phase velocity, vp, and group velocity,
vg. The wave surface is the envelope of plane waves associated with the normal
surface, each passing through the origin at time zero (Musgrave, 1970).

slowness, the group velocity v(p) is normal to the slowness surface. Likewise, for a given

direction of propagation, the slowness vector is normal to the wave surface. Based on

this principle, it can be deduced that parabolic points (inflection points in two

dimensions) on the slowness surface map to cusps on the wave surface. Furthermore, it

can be shown that the maximum number of distinct body-wave arrivals from a point

dislocation in an anisotropic solid is 75, compared to 2 for the isotropic case.

Fortunately, the anisotropy associated with most TI sedimentary rocks is weak (Thomsen,

1986), and the total number of arrivals is likely to be much fewer than 75.

Many of the complexities associated with anisotropy are illustrated by the

slowness and wave surfaces for the Greenhorn shale, an intrinsically anisotropic rock of
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Cretaceous age located in the Williston basin. Parameters for this rock, based on

ultrasonic measurements made at large confining pressure (Jones and Wang, 1981) are:

a = 3377 m/s P = 1490 m/s p = 2420 kg/m3

7 = 0.510 8 = -0.075 e = 0.2

The three anisotropy parameters for the Greenhorn shale are larger in magnitude than

most other sedimentary rocks (Thomsen, 1986). Throughout the remainder of this thesis,

this material is used as a reference medium for testing algorithms under conditions of

extreme anisotropy.

Vertical cross-sections through the slowness and wave surfaces for the Greenhorn

shale are shown in Figure 2.2. Because the qSV slowness sheet contains parabolic points

(e.g., A and B in Fig. 2.2), cusps and triplications are evident in the corresponding wave

sheet. The SH wavefront has the simplest shape of the three, since SH wavefronts are

always elliptical in a TI medium (Thomsen, 1986).

2.2.2 The approximate elastodynamic Green's tensor

The elastodynamic Green's tensor for a homogeneous, anisotropic medium

satisfies the relation

^Gmu,. + PO)2G1n,. = -Sm,S(*-s) - (217)

where G^(SjX9CO) represents the ^-component of particle displacement at x due to a point

force in the m-direction at s, occurring at time zero. Buchwald (1959) and Ben-Menahem

and Sena (1990) have derived an asymptotic expression for Gn^ as the product (cor) tends

to infinity:
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a)

b)

B

—4x lO s/m

XlO m/s

Fig. 2.2. Slowness surface (a) and wave surface (b) for the Greenhorn shale.
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N

c.o(w) - E/•=1

In this expression, r = (x-y), r = I r I , g(p) is a unit eigenvector of F^ and the summation

is over the set of all points p on the slowness surface where the surface normal is

parallel to r. K(p) is the Gaussian curvature of the slowness surface, defined to be the

reciprocal of the product of the principle radii of curvature at any point on the surface

(Graustein, 1962). Buchwald (1959) gives the formula

, ,(2.19)

where S7- = dS/dpj and the summation is cyclical with respect to i, j and k. K has

dimensions of velocity squared, and in the isotropic limit K — » v2. Thus, for the isotropic

case equation (2.18) reduces to the well known far-field isotropic Green's tensor (Aki

and Richards, 1980), which may be written

QJ»*> - E

where the index Q. signifies the three wave types (P, 5V and 5//), and the dependence

on Q for g and v is understood.

The asymptotic expression for Gn^ in equation (2.18) is valid for K > O and K <

O. Points on the slowness surface that satisfy the first condition are said to be elliptical,

and represent the normal case of a convex surface. Points on the slowness surface where

K < O are called hyperbolic (e.g., between A and B in Fig. 2.2a). This occurs where the

two principle radii of curvature point in opposing directions. The waveform on the
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corresponding portions of the wavefront is the Hilbert transform of the source waveform

(Singh and Chapman, 1988). For both the elliptical and hyperbolic cases, amplitude

decay is proportional to r"1.

Two well known geometrical conditions cause the approximation in (2.18) to fail,

and are mentioned here briefly, for completeness. The first exception occurs when the

Gaussian curvature vanishes, at parabolic points on the slowness surface. The

corresponding points on the wave surface form cuspidal edges. The second condition

occurs when the set of points for the summation in (2.18) is infinite, i.e. a plane is

tangent to the slowness surface along a closed curve. The corresponding single point on

the wave surface is called a conical point. This is known to occur for some minerals with

hexagonal symmetry, such as apatite and zinc (Musgrave, 1970), but has not been

reported for sedimentary rocks. Buchwald (1959) showed that the rate of amplitude decay

on the wavefront at cuspidal edges and conical points is r'516 and r"1/2, respectively.

In order to visualize the dependence of amplitude on direction, it is convenient

to define an amplitude surface, given by

A(I) = [4npv2(l)K(l)l/2Yl , (2.21)

representing the amplitude function (with dimensions of mN"1) on the wavefront at a time

of 1 s, where (I1,12,13) are the direction cosines of v . Figure 2.3 shows this surface for

the Greenhorn shale, after normalization such that A = 1 on the qP wavefront travelling

in the direction (O, O, 1). For the isotropic case, this surface would be composed of two

spherical sheets, with a ratio between the S amplitude and P amplitude equal to (cx/p)3.

In this case, the SH amplitude sheet is approximately spherical, but the qP and qSV
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Fig. 2.3. Normalized amplitude surface for the Greenhorn shale.

amplitude sheets indicate a significant directional dependence. In particular, the failure

of equation (2.18) at the cusps on the wavefront is obvious. This shortcoming is

analogous to amplitude singularities along caustics in isotropic ray theory (Cerveny et

al., 1977).

2.3 Ray method

I will now consider the more realistic case of a medium that is not homogeneous.

The ray method seeks to find an approximate solution to the equations of motion (2.3),
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subject to certain validity conditions: medium parameters must vary slowly compared to

the dominant seismic wavelength, and the radius of curvature of interfaces must also be

large (Ben-Menahem and Beydoun, 1985). This technique is an extension of the WKBJ

method for ordinary differential equations (Bleistein, 1984), and is used in this thesis for

the computation of approximate background Green's functions. The derivation of the

basic ray equations is reviewed briefly below.

The application of the ray method to anisotropic media was first described

(outside the Soviet Union) by 6erveny (1972). A trial solution in the form of an

asymptotic ray series is assumed:

n , (2-22)
71=0

where the functions /n(\|/) are chosen so that

=/„(¥) -

The function T(X) is the traveltime function, or the time for a given type of wave to pass

from source to receiver. Equation (2.23) implies that the order of the discontinuity on a

wavefront (t = T) of each succeeding /„ is less than the preceeding one.

Substituting (2.22) into (2.3) leads to a recurrent series of equations of the form

N(U(fl)) - M(U^) + L(U<n-2)) = 0 n = O, 1, 2, ... (2.24)

with U("1} = U("2) = O (Cerveny, 1972; Cerveny et al., 1977). The vector operators N, M

and L are given by
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M1(V W ) - P-1C1J0Pj

L,.(U M)=P-1^X?),/ •

Setting n = O in (2.25) gives the first equation in the series,

['^p1-PWr-O , (2-26)

which is equivalent to equation (2.8). For a nontrivial solution to equation (2.26),

~ 6 = ° • (2'27)

Since PJ - 9r/3;cy-, equation (2.27) can be considered as a nonlinear partial-differential

equation governing the traveltime function, i. It is sometimes referred to by the

geometrical optics term, eikonal equation, stemming from the Greek word eikon for

image.

Cerveny (1972) showed that the higher-order principle-component amplitude

terms satisfy:

2A ̂ v. + p-U w(pv/)t/ =

where g is an eigenvector of F^ and

A («) = u <n>-g (2-29)

In seismology, it is customary to consider only the leading-order term in the ray

expansion (Cerveny et al., 1977). Noting that for n = O the right side in (2.28) vanishes,

the (first) transport equation may be written
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2A>4. . = O (2-30)

Insight regarding the nature of functions that satisfy equation (2.30) is provided by the

concept of an elementary ray tube. In three dimensions, a ray tube is bounded by three

rays (Fig. 2.4) with initial parameters (Yi ,Y2), (Yi+SYa) ̂ d (Yi »72+^2)» wnere Yi and Ya 3^

any two parameters that uniquely specify the direction of the ray at the source position.

In the zeroth-order approximation, the energy flux through the walls of the ray tube is

zero (Cerveny, 1972; Cerveny et al., 1977; Bleistein, 1984). Conservation of energy then

requires that the ratio between the amplitude terms A1 and A2 at traveltimes T1 and I2 be

given by

1/2

(2.31)

where 85 is the area of intersecton of the ray tube with the wavefront, and vp® is the

local phase velocity at time Ty (Fig. 2.4). In the ray-theoretical literature, this relation is

often expressed using the ray Jacobian, /, rather than the area, 85. / is defined by the

vector cross product:

(2.32)

where the derivatives are evaluated at constant T.

Combining the first term in equation (2.22) with the solutions of the eikonal and

transport equations, (2.27) and (2.30), the zeroth-order ray solution to equation (2.17) is

given by the superposition of terms of the form
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Fig. 2.4. Elementary ray tube bounded by three rays with initial parameters (Y1Ok)*

(Y1+5Y1 ,Y2) and (YiOk+^Yz)- *n ^16 zeroth-order ray approximation, energy flux
through the walls of the ray tube is zero.

T) . (2.33)

Commonly, the frequency-domain ansatz/n = eian(i(d)'n is used, in which case each term

in the zeroth-order solution has the form

/COT (2.34)

2.4 The ray-Born approximation

The ray method is suitable for modeling high-frequency body-wave arrivals in a

slowly varying medium; however, it does not account for diffractions and elastic

scattering from localized heterogeneities. For this purpose, it is useful to combine the ray

method with the Born approximation.
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Following Beylkin and Burridge (1990), the first step in the derivation of the ray-

Born approximation is to write the stiffnesses, density and Green's function as the sum

of two parts,

% - 4/ + Ac//*/ • (2<35)
p = p° 4. Ap ,

and

such that G0^(S5X1G)) satisfies the background equations

(4-O^ P°<^,°= -8Ji(x -s) - (237)

Un^ , the difference between the exact Green's function and the reference Green's

function, is often referred to as the scattered wavefield. Substituting (2.32) and (2.33)

into the equations of motion (2.17) and making the assumption that, to a first approxi-

mation, G^foXjG)) « G^(s,x,co), the scattered wavefield may be written:

« ft
D (2-38)

<w,ti) 1 dx .

where Ap = Ac^w = O outside of the domain D. The tilde (~) and caret (A) superscripts

are used to distinguish quantities associated with the incident and scattered background

Green's tensors. Equation (2.38) is the Born, or single- scattering, approximation for a

general elastic medium, and is valid for I ̂ cijkl/cijkl\ « 1 and |Ap/p| « 1 (i.e., small

perturbations). Physically, elastic waves propagate through the background (unperturbed)

medium, and diffract independently from each point in D ; Umn is the superposition of
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all such scattered arrivals. The interaction of the wavefield with each point in D is

equivalent to the Rayleigh mode of scattering, where elastic waves are diffracted from

a spherical heterogeneity whose radius is much smaller than the dominant seismic

wavelength, and whose properties differ only slightly from the background material

(Newton, 1966; Wu and Aki, 1985).

Next, I consider the approximate Green's tensors given in equations (2.18) and

(2.34). For each wave type (or ray code), Q, one can associate a term of the form

The leading singular terms of the spatial derivatives of the Green's tensor may be written

Combining (2.38), (2.39) and (2.40), the ray-Born representation for the scattered

wavefield is obtained (Beylkin and Burridge, 1990):

n(r) J[Ap0* + ^P1Pj] Agfa*" dx , (2.41)

where

A = AA ,

and (2.42)
T = ? + £v "~ b ~ v .

The term [Ap8^ + Ac4^ P1 Pj]gk g, represents the elastic scattering radiation

patterns, and can be simplified for the case of a TI medium. In Appendix A, it is shown

that this term may be written as S-Am0, where Am0 = A(Cll5C335C13,C445C66,p)T is the

model-parameter vector in terms of stiffnesses. The scattering vector, s, may be written
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P3P3S3S3* PiP3SiS3

P\P3838i +P3PiSiSy O, -f * ^
(2.43)

for qP and <?SV waves, and

s =(0 ,0 , 0, , -1) (2.44)

for SH waves. These formulae apply also to the isotropic case, but can be simplified

since g is always either parallel or perpendicular to p (see Beylkin and Burridge, 1990).

For a different parameterization, one can write the scattering term as sLAm,

where Am is the new model parameter vector and L^ = [3m°/3my]. For the reference

parameterization of this study, the matrix L may be written

L =

2pa(2e + 1
2pa

C1

O

O
O

) o
O

C2

2pP

2pp(2y+l)
O

O
O
O %

O

2pP2

O

O

O
ip2a2(a2-p2

O

O
O

2pa2

O

) o
O

O
O

a2(2e + l)~
a2

C3

P2

P2(2y+D
1

(2.45)

(2.46)

where:

-4p2p2a5 +4p2a(a2 -p2) ;

C2PS+4p2p(a2-p2) ;

C3 = ^[4pa26(a2-p2)+2p(a2-p2)] - P2 ;

\ = [2p2a2(a2-p2)5 + P2(a2-p2)2]1/2 .

The parameters in (2.45) and (2.46) refer to the background medium; hence, for an

isotropic background, y, 8 and e are all zero.
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Elastic scattering radiation patterns for a homogeneous, isotropic reference

medium have been computed using equations (2.43) - (2.46), and are shown in Figs. 2.5

to 2.8. The plots are organized so that for each parameter there are nine scattering

patterns, corresponding to incident and scattered wave types given in Table 2.2. The

same format was used by Tarantola (1986). The incident wavefield propagates in the

positive Xj-direction (downwards), and the amplitude of the scattered wavefield is plotted

using polar coordinates in the Jt1-Jt3 plane. The direction of first particle displacement for

the scattered waves is indicated by arrows. Each parameter has a unique scattering

pattern; it is the differences between these patterns that enables the inversion algorithm

to distinguish between different types of scatterers (Tarantola, 1986).

Figure 2.5 shows scattering from isotropic perturbations, Aa, AP and Ap. These

plots are essentially the same as Fig. 4 of Tarantola (1986). Parameter perturbations do

not affect all wave types. For example, changes to the P-wave velocity have no effect

P-P I

P-SV J

P-SH J

SV-P

SV-SV

SV-SH

SH -P Q

SH-SvQ

SH-SHQ

Table 2.2. Wave types corresponding to the diffraction patterns shown in Figs. 2.5
to 2.8. The incident wave propagates vertically downwards; arrows indicate the
corresponding sense of the first particle motion. The first and last wave types in
each pair denote the incident and scattered wave types, respectively.
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Aa

\
-OO-

\

tY7

Fig. 2.5. Rayleigh scattering patterns in the X1-X3 plane for perturbations to isotropic

parameters. Incident and scattered wave types are discussed in Table 2.2. Arrows
indicate sense of first motion for the scattered wave.
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Ay

-OO-

A5

Ae

Fig. 2.6. Rayleigh scattering patterns in the ^1-JC3 plane for perturbations to aniso-
tropic parameters, with a vertical symmetry axis. Wave types follow the same

scheme as in Fig. 2.5 and arrows show sense of first motion for the scattered wave.
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Ay

o

0 / \

A8

\

Ae

Fig. 2.7. Rayleigh scattering patterns in the Jt1-Jt3 plane for perturbations to aniso-

tropic parameters, with a symmetry axis inclined at 45°. Wave types follow the same
scheme as in Fig. 2.5, and arrows show sense of first motion for the scattered wave.
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-co-

A8

Fig. 2.8. Rayleigh scattering patterns in the X1-X3 plane for perturbations to aniso-

tropic parameters, for a horizontal symmetry axis. Wave types follow the same
scheme as in Fig. 2.5, and arrows show sense of first motion for the scattered wave.
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on shear-wave or converted-wave scattering. For near normal-incidence recording using

P waves only, it is difficult to distinguish between scattering from a density perturbation

and scattering from a P-wave velocity perturbation. This ambiguity leads to parameter

coupling in the inversion problem (Beydoun et al.f 1989).

Unlike the parameters a, p and p, scattering from the anisotropic parameters is

sensitive to the orientation of the symmetry axis. To illustrate this, Fig. 2.6 shows

scattering from perturbations to y, 8 and e, where the axis of symmetry is vertical, and

Figs. 2.7 and 2.8 show the same radiation patterns, for an axis of symmetry inclined at

angles of 45° and 90°, respectively. Note that the same diffraction patterns would be

produced by keeping the symmetry direction fixed and varying the incidence angle. In

Fig. 2.6, there is only scattering from the 8 parameter. Maximum scattering occurs for

a symmetry-axis direction of 45°. Note also that it is possible to have qP-qSV or qSV-qP

backscattering at zero offset, due to a perturbation to the e parameter (see Fig. 2.7).

For the isotropic case, changes to the parameters of the reference medium only

scale the diffraction patterns. However, for anisotropic media the precise shape of the

Rayleigh scattering patterns depends on the parameters of the background. To illustrate

this point, Fig. 2.9 shows vertical-incidence diffraction patterns for qP-qP scattering due

to a small perturbation to the parameter a, for three different reference media. The

density and vertical phase velocities are the same in all three cases, and the symmetry

axis is taken to be vertical. In Fig. 2.9a, the reference medium is isotropic; in Fig. 2.9c,

the reference medium has the parameters of the Greenhorn shale (p. 23); in Fig. 2.9b, the

magnitude of the anisotropy parameters (y, 8 and e) for the Greenhorn shale have been

divided by two. As the level of anisotropy increases (from left to right), the scattering

pattern deviates more from circular. Similar effects have been observed for scattering due

to perturbations to other elastic parameters.
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a) b) c)

Fig. 2.9. a) Circular amplitude radiation pattern in the JC1-JC3 plane for Rayleigh

scattering from a perturbation to the parameter a. The background medium is
isotropic, with parameters a = 3377 m/s, p = 1490 m/s and p = 2420 kg/m3. The
incident wavefield propagates vertically downwards, b) Same as a), but the
background medium is moderately anisotropic and has a vertical symmetry axis, a,
P and p are the same as in a), but in this case y = 0.255, 8 = -0.0375 and e = 0.1.
These are 50% of the magnitudes of the anisotropic parameters for the Greenhorn
shale. The scattering pattern is no longer exactly circular, c) Same as b), but the
background medium is strongly anisotropic and has the same parameters as the
Greenhorn shale (y = 0.51, 8 = -0.075, e = 0.2). The deviation of the scattering
pattern from circular is now more evident.

2.4.1 Stationary-phase correction for out-of-plane scattering

The assumptions made about the symmetry of the medium (section 1.1.3) make

it possible to correct analytically for out-of-plane scattering effects. This permits

calculations to be performed more economically, in two dimensions rather than three. I

begin by rewriting (2.38) to make the Jc2 dependence explicit:
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X2 Y2 Z2

) J J J[Ap8* + Acrffi] Agfa *« dx,dx2dx3 .
X1 Y1 Z1

(2.47)

For (COT) large, the stationary-phase approximation (Bender and Orszag, 1978) can be

used to obtain:

^fw) = co3/2e*4gm(s)«»J[Ap8tt H- AcrfWtjj-MABJf*' dx ,

(2.48)

where A is the area of intersection of the Jt1-JC3 plane with the domain D, and T>22 is

evaluated at X2 = O. The scattering integral has thus been reduced from a volume integral

to a surface integral, in which the out-of-plane scattering is represented by filtering of

the response by the operator Of112J*14, and inclusion of the term (T22)"172 in the integral

kernel.

Finally, combining (2.48) with (2.45), one can express the 2V£-dimensional ray-

Born scattering integral for an arbitrary parameterization as:

J/£(x,y,co) - aPeH'gJIMJir) ] (T ̂ '"2Ae*"* . (2.49)

For discrete problems, this expression may be written symbolically as

U = BAm , (2-5°)

to emphasize the linear relationship between data and model parameters implied by

equation (2.49).
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2.5 Least-squares inversion

Although a linearized framework for forward modeling has been presented, the

large dimensions of B (typically ~ 1O5XlO4) preclude the use of standard matrix methods

for solving the inverse problem. Moreover, uncertainties in the data (e.g., noise) and

constraints on the model should be accounted for. These features can be incorporated

using a generalized least-squares formalism (Tarantola and Valette, 1982; Tarantola,

1987). To this end, a generalized least-squares objective function can be defined as

E = 1(Au *WuAu +Am *WmAm) , (2.51)

where W11"1 and W1n"1 are covariance operators associated with the data and model,

respectively, Au = uobs - U, and the * superscript denotes the conjugate transpose

operator. The strategy for inversion is to determine an estimates for earth parameters

such that E is minimized. Following Beydoun and Mendes (1989), an iterative

conditioned-gradient technique is employed that makes use of the first and second

derivatives of E with respect to the model parameters. Assuming that the initial model

is a close approximation to the actual earth, minimization is performed by requiring that

the gradient function, g = VE, go to zero. Using equation (2.50), g may be written:

g = -B *WuAu + WmAm .

In the Gauss-Newton approximation (Adby and Dempster, 1974), the Hessian operator

(H = Vg) is approximated by
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H = B *WUB + Wm , (2-53)

and the model update is given by

Am - -H ~lg . <2-54>

The full Hessian operator and its inverse are difficult to compute. Various strategies have

been employed to estimate H"1 for acoustic problems in an iterative fashion (Lebras and

Clayton, 1988). Using a different approach, Beydoun and Mendes (1989) give an analytic

form for an approximate Hessian operator that neglects the off-diagonal terms, but is

easily inverted. The same form for the approximate Hessian is used here, adapted to the

TI elastic case. Details of this operator are given in chapter 5. The function of the

approximate Hessian is to condition the gradient estimate by partially removing

parameter coupling effects (Beydoun and Mendes, 1989).

In equation (2.50), the matrix B incorporates the effects of both forward wave-

propagation and scattering. Conversely, B* filters the data residual, and maps each point

into the model image (filtered backprojection). Thus, as pointed out by Tarantola (1984),

the first step in the linearized inversion scheme is functionally equivalent to seismic

migration. Viewing migration as the calculation of a model gradient with respect to a

least-squares objective function is significantly different from the conventional perception

of migration as a downward continuation of the wavefield from sources and receivers

until an imaging principle is satisfied (see Claerbout, 1985).

2.6 Summary

In this chapter, the principles of elastic wave propagation, anisotropy, the ray and

Born approximations and a specific least-squares inversion technique have been
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reviewed. These form the mathematical foundation for the elastic migration/inversion

algorithm, as well as other techniques employed in this study. A common element in the

discussion of the forward problem is the use of asymptotic techniques for studying the

behaviour of seismic wavefields at high frequencies and in the far field. This has led to

a description of suitable asymptotic form of the elastodynamic Green's tensors that

comprises a set of discrete arrivals, corresponding to the different elastic wave types.

Each arrival has a characteristic amplitude, traveltime and polarization vector.

In the ray-Born scattering approximation, no multiple scattering events are

considered, and perturbations to each of the model parameters from the set {a,p,y,8,e,p}

leads to a unique scattering radiation pattern.

Inverse scattering is posed here as a least-squares optimization problem. Provided

that the initial model satisfies the ray validity conditions and is a close approximation

to the true earth, and that the observations cover a sufficiently wide aperture range, this

method is capable, in principle, of producing high-resolution images of the individual

parameter variations in the subsurface.
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Chapter 3

Converted-wave binning techniques
3.1 Introduction

Effective data-preprocessing techniques are often critical to the success of seismic

migration and inversion (M/I). The choice of the processing algorithms that are applied

prior to M/I is guided by several considerations. For example, it is essential to ensure

that coherent energy not accounted for by ray-Born scattering (e.g., multiples, direct

arrivals or surface waves) is removed from the data in a manner that preserves the

relative amplitudes of primary-scattered events. Moreover, rapid methods for obtaining

unmigrated images of the subsurface facilitate correlation of events between different

wave types (e.g., Geis et al., 1990), estimation of background velocities, and verification

of M/I results. Preprocessing algorithms are also frequently required to handle much

larger volumes of data than can be practically accommodated using fully elastic prestack

imaging techniques.

A number of these issues have been previously examined in the context of elastic

migration and inversion (Mora, 1988; Beydoun et al., 1990; Pratt and Goulty, 1991). In

many cases, conventional seismic processing techniques can be adapted without difficulty

to process elastic-wavefield (multicomponent) data. However, special attention must be

given to mode-converted events, which can convey considerable information about the

elastic properties of scattering bodies (see Figs. 2.5 to 2.8). In particular, the standard

industry practice of common-midpoint (CMP) data stacking is not valid for converted

waves. A number of alternative methods for binning and stacking mode-converted
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reflections have been suggested recently (Tessmer and Behle, 1988; Tessmer et al., 1990;

Stewart, 1991). These methods provide a means of generating images using converted

waves that are approximately equivalent to unmigrated CMP- or VSPCDP- stacked data.

This chapter begins with a discussion of the raypath geometry for converted

reflections in vertically inhomogeneous media. Several existing methods for performing

isotropic, common-conversion point (CCP) binning in this type of medium are then

reviewed. The main emphasis is on surface, rather than borehole, measurements,

reflecting the more important role of unmigrated, stacked displays for the low signal-to-

noise ratio, surface-recording environment. In order to analyze the inherent periodicity

of CCP binning, a method for constructing P-SV surface stacking charts is discussed.

Finally, several new methods for CCP binning are discussed, for both isotropic and

anisotropic media.

3.2 Raypath geometry for converted waves: Isotropic case

Reflection (and transmission) of elastic waves at an interface between different

elastic layers can be reconciled with ray-Born theory by viewing the reflected energy as

an integrated point-scattering response over the entire boundary. The region on the inter-

face that contributes most to this integration is known as the Fresnel zone (Sheriff, 1980).

For converted waves in an isotropic medium, the radius of the Fresnel zone is given by

where cm is the migration velocity necessary to collapse a converted-diffraction into a

point, t0 is the zero-offset traveltime and T is the dominant period of the seismic wavelet

(Eaton et al., 1991). The reflection or conversion "point" (P) is then defined to be at the
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X

Fig. 3.1. Converted-wave raypath geometry in a horizontally stratified medium.

centre of this zone, such that the reflection raypath S-P-R (Fig. 3.1) satisfies Fermat's

principle (Aki and Richards, 1980).

Consider a layered medium, where the parameters depend only on depth, z. In this

type of medium, Snell's Law implies that the ray parameter, or the horizontal component

of the slowness (P1), is conserved along the raypath, for both the isotropic and

anisotropic cases (Gajewski and PsenCik, 1987). For a reflected ray passing through N

layers prior to reflection/conversion, and M layers subsequently, the total horizontal

distance travelled can be expressed as the sum of the downgoing and upgoing parts,
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M

In equation (3.2), /i, is the thickness and 0, is the ray angle with respect to the z axis for

the Jth layer. As in the previous chapter, quantities with the (~) and (A) superscripts are

associated with the incident and reflected rays, respectively. By symmetry, the ray angles

in each layer for the upgoing and downgoing ray segments are the same for unconverted

primary events (qP-qP, qSV-qSV, SH-SH), provided that the symmetry axis is horizontal

or vertical, or the medium is isotropic. Hence, for a source and receiver at the same

elevation, the lateral position of the reflection point always occurs at the midpoint. This

is not the case for converted reflections (qP-qSV and qSV-qP); in general, the ray angle

is different in each layer, for the downgoing and upgoing segments of the ray.

If each layer is isotropic, then

where v, is the velocity of the ith layer, and equation (3.2) may be written

(34)

(1 - * , ) » « (1 - O i ) 1 0

The horizontal distance from the source to the conversion point, Jc, is given by the first

sum in equation (3.4). I will consider first the asymptotic behaviour of x as x — > O and

as x — » oo. In the first limiting case, the raypath approaches vertical incidence and the

horizontal slowness vanishes, implying that
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N
(3.5)

and

M

/ N
M

Ev,-
AT

Ev.
(3.6)

If the source and receiver are at the same level (i.e., M-N) then for P-SV events,

x - jc(l4JV5) , (3.7)

or

x ~
1+P/a

(3.8)

where a and p are the average P- and S-wave velocities along the raypath. Similarly,

(3.9)
l+5/p

for SV-P events. Equations (3.8) and (3.9) are referred to here as asymptotic conversion-

point approximations.

Conversely, for very long offsets, the horizontal slowness becomes progressively

larger. As it approaches the P-wave slowness of the first layer, x/x —> <» (Le., conversion

at the receiver) for the P-SV case, andx/x -» O (i.e., conversion at the source) for the SV-

P case. This result also represents the raypath with the minimum traveltime, in agreement

with Fermat's Principle.

For the single-layer case (M = N = 1), equation (3.4) may be written:
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zvp.
x - Jc + ———-1—— , (3.10)

where f is the depth of the reflector below the receiver. Analytic solutions to equation

(3.10) have been obtained by several authors (Tessmer and Behle, 1988; Taylor, 1989).

The derivation is outlined below. Substituting

p, - * , (3.11)1 vCc^i2)1*

into (3.10) leads to the expression

x = JE+ . (3.12)
[G2(x2+£2)-;c2]1/2

where z is the depth of the reflector below the source and

G = I , (3.13)
v

for the single layer velocities v and tf . Equation (3.12) can be rearranged to give the

quartic polynomial

V - O ,7-0, ...,4 , (3.14)

where:
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Tl0 = -

Ti1 = 2G2*f2 ,
(3.15)

= z2-G2(*2+z2)+;t2 ,

Ti3 = 2*(G2-1) ,

and

Equation (3.15) can be solved by factorization into two quadratic polynomials (Tessmer

and Behle, 1988; Taylor, 1989). Of the four possible solutions to equation (3.15), two

are imaginary and one is unphysical, leaving a single solution. This solution is referred

to here as the straight-ray approximation. Although it has been derived for the single-

layer case, this approximation is also useful for multiple layers, bearing in mind that G

is then an average velocity ratio.

The asymptotic and straight-ray approximations are compared in Fig. 3.2. The P-

wave layer velocities were determined using a conventional sonic log from a well at

4-22-53-12W5, in central Alberta (Fig. 3.3). The velocity ratio o/p as a function of P-

wave reflection time has been calculated by correlation of P-P and P-SV reflections

observed on a nearby 3-component seismic line (Harrison, 1989). This function was used

to compute the 5-wave velocities shown in Fig. 3.2a. The zone of interest in this case

is the Cardium Zone (CZ), at a depth of about 1.5 km. The average value of oc/(3 to this

depth is 1.95 (Harrison, 1989). Using this ratio, the straight-ray method gives a good

approximation to the ray-traced conversion point locations for all depths. On the other

hand, the error for the asymptotic approximation is > 100 m for depths less than about

120Om.
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Fig. 3.2. a) P-wave and estimated 5-wave layer velocities, for a well at 4-22-53-12
W5. The zone of interest is the Cardium Zone (CZ), at a depth of about 1500 m.

b) Conversion point location (Jc) versus depth for a source and receiver offset by

1500 m. Dashed line is asymptotic approximation, solid line is straight-ray

approximation, and squares show ray-traced conversion-point locations.

3.3 Review of common-conversion-point trace-sorting techniques

In order to position mode-converted reflections close to their actual conversion-

point location, some method of common-conversion-point (CCP) binning is essential.

CCP trace sorting using the asymptotic and straight-ray approximations has been

discussed previously in the literature (Fromm et al., 1985; Tessmer and Behle, 1988;

Tessmer et al., 1990). In both cases, seismic traces are gathered and stacked with other
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traces according to an approximate CCP criterion (equations (3.8), (3.9) and (3.14)).

A synthetic dataset was generated in order to compare the results of CCP binning

using these two approximations. The dataset consists of 21 end-on shot records, each

containing 80 traces. The acquisition geometry is summarized in Table 3.1, and is

patterned after line CC-SW-02 (Fig. 3.3). P-SV reflections from four horizons have been

generated, using a homogeneous background model with a = 3000 m/s and P = 1500

m/s. All four horizons are offset by a vertical normal fault with 50 m of throw (Fig. 3.4).

The data have been computed by convolving a unit impulse, delayed by the P-SV

reflection time, with a zero-phase wavelet containing frequencies between 8 and 60 Hz.

Phase and amplitude changes with offset, as well as diffractions from the fault, have been

neglected. An example shot record from this survey is shown in Fig. 3.5.

After trace sorting, the data were corrected for moveout using a time-shifted

hyperbolic formula given by:

(3.16)

where v is the P-SV RMS velocity (Tessmer and Behle, 1988). Equation (3.13) provides

a better estimate of converted- wave moveout than the standard hyperbolic NMO formula

(Slotboom, 1990). A time-shifted hyperbolic moveout formula for converted waves that

provides slightly better accuracy than equation (3.13) is derived in Appendix B. To

achieve a far assessment of the CCP binning as it applies to real data, the dataset was

muted after NMO. The mute profile consisted of a straight line defined by the (x,t) pairs

(O, O) and (2550, 1800), where x is in m and t is in ms.

Different versions of the stacked data are shown in Figs. 3.6 to 3.8. Fig. 3.6

shows the results of applying the asymptotic method of binning (with a/p = 2). In
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a) b)

Fig. 3.4. a) Map view of synthetic survey, showing shot numbers, b) Cross-section

view of synthetic survey. Throw on vertical fault is 50 m.

20 40 60

8 11

J, 1000
O)

2000

3000

80 Trace

Shotpoint

Fig. 3.5. Shot record 6 from the synthetic dataset (every second trace shown). Note
that the apparent position of the fault shifts to the right for deeper events.

Spread
type

end on

Number
of

channels
(n)

80

Near
offset

18Om

Far
offset

255Om

Group
interval

(Ar)

30m

Source
interval

(As)

12Om

Table 3.1. Acquisition geometry for synthetic dataset.
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Fig. 3.6. a) Stacked data gathered using the asymptotic approximation. Data window
is 900 m across. Note that there is an empty CCP bin every fourth trace, b)
Enlarged view of two shallow events near the fault, c) Enlarged view of two deep
events near the fault.
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Fig. 3.7. a) Stacked data gathered using the straight-ray approximation, for a target

depth of 500 m. Data window is 900 m across, b) Enlarged view of two shallow
events near the fault. Note that the location of the fault is well resolved for the
shallowest event, c) Enlarged view of two deep events near the fault.
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events near the fault, c) Enlarged view of two deep events near the fault. In this
case, note that the location of the fault has been well imaged for the deepest event.
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general, resolution of the fault improves with depth, as expected. Suprisingly, however,

the location of the fault appears to be well reconstructed for the shallowest depth. The

reason for this is that the application of the mute has removed incorrectly binned data

that would otherwise have corrupted the stack. Binning artifacts are most severe for the

intermediate depth zones at 1000 m and 1500 m. Note also that the stacking fold exhibits

a strong periodicity, and is zero for every fourth trace. An explanation of this

phenomenon is given in the next section.

Converted-wave trace sorting using the straight-ray approximation is illustrated

in Figs. 3.7 and 3.8. In Fig. 3.7, CCP gathers have been constructed to create an optimal

stack for the shallowest event, by assigning CCP numbers that have been calculated for

a depth of 500 m. Fig. 3.8 shows data that have been optimized for the deepest event.

In this manner, P-SV stacked sections can be generated selectively to enhance specific

depth zones (Tessmer and Behle, 1988; Tessmer et al., 1990). However, in order to

image correctly multiple depth zones in the same display, it is necessary to combine

several different stacked sections. This problem can be avoided by mapping individual

data samples to their correct CCP position, rather than sorting entire traces. An

implementation of this technique is discussed below, after an analysis of P-SV binning

periodicity.

3.4 P-SV stacking charts and binning periodicity

The oscillatory fold pattern observed in Figs. 3.6-3.8 is manifested in the stacked

data as a periodic change in event character and amplitude, as well as numerous zero

traces. This phenonenon results from spatial resampling that occurs due to CCP binning;

i.e., CCP gathers are normally separated by half of a group interval (Ar/2), but in the
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asymptotic approximation, for example, each CCP is separated in the subsurface by the

Ar/(l+p/cc). The intrinsic fold (and offset) patterns that are imposed by certain choices

of acquisition and sorting parameters can be studied using a surface stacking chart

overlay technique.

A surface stacking chart (Sheriff and Geldart, 1982; Yilmaz, 1987) is a

convenient graphical representation, in source-receiver space, of the trace geometry for

a seismic survey. Typically, a horizontal axis is used to denote receiver position and a

vertical axis is used to denote source position (Fig. 3.9), so that each seismic trace is

specified by a pair of coordinates (r,s). Collections of traces corresponding to common-

receiver, common-source, common-offset and common-midpoint (CMP) gathers are

aligned along vertical, horizontal, 45° and 135° azimuths, respectively. If the source

spacing (As) is an integral multiple of the group interval (Ar) then traces are exactly

aligned along these directions (neglecting skids, detours, etc.). The subsurface multiplicity

(fold) along lines of constant CMP is then given by the well known expression:

where Ar is the group interval, As is the source interval and the number of recording

channels (n) is even.

Here we will consider a P-SV stacking-chart representation for the asymptotic

approximation only (Eaton and Lawton, 1991). Although this approximation has certain

shortcomings, this approach provides useful insight that can also be applied to the

analysis of more sophisticated binning techniques. Rewriting equation (3.8) in terms of

the co-ordinates r and 5, we have
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r
(Receiver)

B FOLD
4 8 4 8I

Fig. 3.9. P-SV stacking chart, constructed by projecting the boundaries for
asymptotic-CCP bins onto a conventional surface-stacking chart (modified from
Yilmaz, 1987).

JC = S +
r-s

1+B/a
(3.18)

Therefore, s and r are linearly related, in the asymptotic approximation, by the formula

s = -(«/P)r + (1+5/p)* . (3.19)

Lines of constant CCP position, thus, have slopes equal to -o/p in (r,s) space, as noted
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by Frasier and Winterstein (1990). However, traces are aligned exactly along lines given

by equation (3.19) only if a is an integral multiple of p. For the more general case,

lines of equal CCP position will not necessary pass through the trace locations on a

stacking chart. It then becomes necessary to sort traces into bins of finite width, similar

in principle to processing 3-D or crooked-line 2-D conventional (P-P) data.

This gathering procedure can be represented graphically by projecting lines

corresponding to the boundaries of a given CCP bin onto the stacking chart, and

collecting traces that fall within the two lines (Fig. 3.9). For bins of width w in the s-

direction, the equations of the boundary lines for a bin centred at xh are

s = -(o/Py + (l+5/p)(x,±w/2) . <3-2°)

The corresponding bin width in the r-direction is given by

w' = (1+p/6c)w . (3-21)

Fig. 3.9 illustrates CCP bin overlays for a 12-trace spread, with a source point at every

station. A velocity ratio of a/ p = 2.0 and the normal convention of w = Ar/2 have

been employed. Note that the fold oscillates between 4 and 8, giving a mean fold of 6,

as predicted by equation (3.17). This periodicity in fold becomes more problematic if As

= 2Ar, in which case every 4th bin contains no live traces (for a/ p = 2.0). In general,

empty CCP bins will occur whenever As/Ar is an integral multiple of a/ P (Eaton and

Lawton, 1991).

A number of methods can be used to achieve a more equitable distribution of

traces into CCP bins. If a is an integer multiple of p, then it is sometimes possible

to choose a natural bin interval (Axfc) such that the fold is constant. For example, if As

= Ar as in Fig. 3.9, a choice of
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w = Ax = , (3.22)b 2(1 +p/o)

leads to bins having a multiplicity given by:

fp sv = n . (3.23)Jp-sv (1

However, this is an inconvenient stacking interval and results in low stacking fold.

Furthermore, comparison between stacked P-P and P-SV data becomes more difficult

because of the different trace spacing.

A more general approach that appears to give satisfactory results is to set w = Ar

(i.e., twice the normal bin width) while retaining the normal value for the bin spacing

(half of a group interval). This choice of w results in overlapping bins, and thus leads to

a mild trace-mixing effect; however, the loss in spatial resolution is small relative to the

P-SV Fresnel radius. A stacked section produced from the synthetic dataset after

gathering by this method is shown in Fig. 3.10. Note that the fold is approximately

double the fold shown in Fig. 3.6, and that the problem of empty CCP bins has been

eliminated. The character of the events is also much more continuous.

3.5 Depth-variant CCP mapping

3.5.1 Description of the algorithm

It has already been demonstrated that CCP binning by trace sorting fails to image

correctly more than one depth at a time. This limitation hinders interpretation of

converted-wave sections, and makes comparison with conventional data somewhat

cumbersome. As an alternative to trace sorting, it is preferable to map each data sample

from unstacked, NMO-corrected gathers directly into the stacked image. This procedure
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Fig. 3.10. a) Stacked data gathered using the asymptotic approximation, using a bin

width of Ar = 30 m. Note that fold is approximately double that in Fig. 3.6. Data
window is 900 m across, b) Enlarged view of two shallow events near the fault, c)
Enlarged view of two deep events near the fault.
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is analogous to VSPCDP mapping, used to process offset-VSP data (Wyatt and Wyatt,

1984; Dillon and Thompson, 1984), and has been proposed for use with surface data by

Chung and Coirigan (1985), Stewart (1988; 1991) and Slotboom and Stewart (1989). The

mapped images are directly comparable to conventional, CMP-stacked data.

A P-SV mapping algorithm for surface data has been implemented using a

variable-velocity model. P- and S-wave RMS velocity versus depth are used as input, and

straight raypaths are assumed. This assumption makes it possible to use the exact single-

layer formula for the calculation of x (Tessmer and Behle, 1988; Taylor, 1989) rather

than ray tracing. The conversion-point location calculated using straight raypaths is a

good approximation to the ray-traced position (Fig. 3.2) and requires a small fraction of

the computational effort needed for ray tracing.

The following algorithm is used to process each data sample:

1) P- and 5-wave velocities are found by interpolation between control points.

2) The straight-ray conversion-point location is determined for each time (depth).

3) The data sample is weighted and summed into the two nearest CCP bins.

Weighting is inversely proportional to distance from the bin centre.

4) A corresponding normalization (fold) array is updated with the correct weights.

Once all of the traces have been mapped, the final image is produced by dividing each

mapped/stacked data value by the corresponding normalization factor.

This technique has the disadvantage that the rebinned data are not available for

subsequent prestack processing. It therefore should be reserved for later stages of the

preprocessing flow, after velocity analysis, residual-statics estimation, etc.

3.5.2 Examples

As a first example, the P-SV mapping technique has been applied to the

previously described synthetic dataset (see Fig. 3.4 and Table 3.1). The results are shown
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in Fig. 3.11. This method has simultaneously imaged the fault at all four depth levels.

The corresponding normalization values vary between 10 and 40 (Fig. 3.12). These

values reflect the density of mapped points, and provide a useful quality-control tool. The

fold exhibits some spatial oscillation near the surface, but remains relatively constant at

greater depths. Generally speaking, the fold increases downwards and in the upline

direction, or the direction of the end-on spread.

Data from line CC-SW-02 (Fig. 3.3) are used in the second example. These data

were acquired using Vibroseis sources with the same spread parameters given in Table

3.2, except that the source interval is 2 groups rather than 4, and some split-spread

records are present. The prestack processing included trace reversals for the trailing part

of the spread, application of P-wave source statics, hand receiver statics, spiking

deconvolution, gain, velocity analysis, surface-consistent residual statics, NMO, mute and

CCP binning. The target zone here is the Cardium Formation (Fig. 3.2).

Fig. 3.13 shows a portion of the stacked data where the seismic line is known to

cross a Cardium bar. A pronounced increase in the amplitude of the P-SV reflection is

associated with the presence of an increase in the thickness of a porous Cardium

conglomerate interval (Nazar, 1991). The data that were binned using the mapping

technique (Fig. 3.13b) exhibit a more consistent amplitude and character across the

Cardium anomaly than the same data binned using the asymptotic approximation

(Fig.3.13a), permitting the edge of this feature to be delineated with greater confidence.

The wavelet-character variation in Fig. 3.13a has a period of 4 traces, and most likely

correlates with the stacking fold.
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Fig. 3.11. a) Stacked data generated using the P-SV mapping technique. Data

window is 900 m across, b) Enlarged view of two shallow events near the fault, c)
Enlarged view of two deep events near the fault. Note that the fault location is now

well imaged for all events, simultaneously.
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O

Fig. 3.12. Normalization array corresponding to mapped data shown in Fig. 3.11.

3.7 Anisotropic CCP trace sorting

All of the methods discussed thus far have been restricted to isotropic media. The

ramifications of transverse isotropy for converted-wave binning will now be briefly

considered. The goal is to evaluate the potential significance of anisotropy, as it applies

to this approach to unmigrated converted-wave imaging. As for the isotropic case, the

straight-ray approximation is employed. For an incident plane wave at a welded interface

separating two homogeneous, anisotropic media, the reflection/transmission angles are

governed by the generalized form of SnelFs Law (e.g., Thomsen, 1988),

sincb sind) (3.23)

where vp is phase velocity, and (J) is the phase angle with respect to the normal to the

interface. Thus, for a vertically inhomogeneous medium, equation (3.20) is simply a
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restatement of the conservation of horizontal slowness. This condition stems from the

requirement that displacement and stress be continuous across the interface.

For an isotropic medium, the phase angle, <J>, and the ray angle (energy flux

direction), 0, are equivalent. This is not the case for an anisotropic medium, where it is

necessary to first match horizontal slowness components for the incident and reflected

rays, and then solve for the reflected ray angle (Gajewski and PsenCik, 1987). Matching

the horizontal components of slowness leads to a sixth-order polynomial equation (see

Appendix C), which can be solved numerically. As an illustrative example for significant

anisotropy, the conversion point has been calculated for a layer of Greenhorn shale of

thickness z = 1000 m, for a series of offsets ranging from O to 2500 m. The axis of

symmetry was taken to be vertical.

A graph of x versus x for this scenario is plotted in Fig. 3.14a. The conversion-

point position for the isotropic case is also shown, using the vertical P- and S-wave

velocities (3377 and 1490 m/s). Observe that, for the anisotropic case, the conversion

point occurs closer to the source than the receiver for x/z < 2. This situation is not

possible for isotropic media. The explanation for this unusual behaviour lies in the

geometry of the qP and qSV wave sheets (Fig. 2.2b). Recall that the slowness vector is

always normal to the wave surface, and note from Fig. 2.2b that the curvature of the qP

wave sheet is much greater than the curvature of the qSV wave sheet for near-vertical

propagation. In order to match the horizontal component of the two slownesses, the qSV

ray angle must be further from vertical than the qP ray angle, although the magnitude

of the qSV slowness vector is greater. Because the qSV ray angle is larger, the conversion

point moves closer to the source. Note that multiple mode-converted arrivals are not

possible for this example, because the horizontal component of slowness on two of the

branches of the qSV triplication zone is greater than the maximum magnitude of the qP
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slowness.

The traveltime curve for this experiment is shown in Fig. 3.14b, along with the

traveltime for the isotropic case. The hyperbolic stacking velocity for the anisotropic

curve is ~ 3050 m/s. This compares to a vertical P-SV RMS velocity of 2243 m/s, and

is a clear indication of the anisotropic nature of the medium.

As a test of anisotropic converted-wave binning, a second synthetic dataset has

been generated, using the same acquisition geometry as in the first example (Fig. 3.4,

Table 3.1). In this case, however, the stiffnesses and density for the Greenhorn shale

were used to represent the background medium. Again, angle-dependent reflectivity and

diffractions from the fault have been neglected. An example shot record (shot 6) from

the anisotropic dataset is shown in Fig. 3.15. Comparing this to the same shot record

from the first dataset (Fig. 3.5), we see that the fault appears on relatively farther offset

traces, as a consequence of the conversion-point shift toward the source.

It was found that constant-velocity NMO using either of the hyperbolic or shifted-

hyperbolic formulas produced unsatisfactory results. Therefore, a (hyperbolic) velocity

analysis was undertaken. The velocities that were picked are given in Table 3.2. The

traces were then sorted into anisotropic CCP bins with a bin width equal to Ar and a

target depth of 1000 m, NMO corrected, muted and stacked. The resulting section is

shown in Fig. 3.16. As in the isotropic case, additional stack sections must be created to

achieve optimal binning for other depths.

The same dataset was also binned using the (isotropic) asymptotic formula, with

o/P = 3377/1490 = 2.27. The stacked results are shown in Fig. 3.17. Observe that the

apparent position of the fault has been shifted by approximately 300 m from its true

location, indicative of the magnitude of the binning error possible if strong anisotropic
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Fig. 3.14. a) Graph of conversion-point offset (Jc) versus source-receiver offset (x)
for a 1000 m thick layer of Greenhorn shale. The isotropic conversion-point curve

was computed using o/p = 2.27. b) Traveltime curves for the example shown in a).
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Fig. 3.15. Shot record 6 from the anisotropic dataset (every second trace shown).

Time (ms) |

Velocity (m/s) ||

O

3450

970

3050

2000

2990

Table 3.2. Empirical velocity function used to NMO correct the anisotropic dataset.
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Fig. 3.16. a) Anisotropic data gathered for a target depth of 1000 m. Data window
is 900 m across, b) Enlarged view of two shallow events near the fault. The fault

has been correctly imaged at the target depth, c) Enlarged view of two deep events
near the fault.
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Fig. 3.17. a) Stacked data generated by applying the (isotropic) asymptotic gathering

technique (o/p = 2.27) to the anisotropic dataset. The fault has been badly mis-

placed, because of the failure to account for anisotropic effects, b) Enlarged image
of the two shallow events, c) Enlarged image of the two deep events.
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effects are not accounted for.

3.8 Summary

Methods for obtaining immigrated, stacked images of the subsurface are extremely

valuable prior to migration/inversion. In order to stack mode-converted reflections

properly, a common-conversion point technique must be employed. Here, only vertically

inhomogeneous media have been considered. The asymptotic and straight-ray methods

for trace sorting have been reviewed and compared. The inherent problem of binning

periodicity due to spatial resampling has been analyzed by means of a stacking-chart

overlay technique. When asymptotic binning is used and the source interval/group

interval ratio is an integer multiple of o/p, a larger bin width should be used to avoid

empty bins.

A new P-SV mapping technique has also been described. The algorithm is

analagous to VSPCDP mapping techniques used to process offset-VSP dataset. By

stacking converted-wave data in this manner, all depth zones are correctly binned in a

single stacked image.

For anisotropic media, the determination of the conversion-point position is more

complex, and depends critically on the precise shape of the qP and qSV wave sheets. It

has been demonstrated by means of an example that for anisotropic media the conversion

point can be shifted closer to the source than the receiver for qP-qSV events. A synthetic-

data example has been used to show that, for a strongly anisotropic medium, the effects

of anisotropy are sufficiently large that they must be accounted for in the CCP binning

procedure.
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Chapter 4

Finite-difference calculation of ray-
Green's functions
4.1 Introduction

In the ray-Born formalism, the incident and scattered wavefields are propagated

independently through a background medium. Born-scattering, in this approximation, is

most accurate when perturbations to the background medium are small. However, elastic

parameters in the earth often exhibit strong, systematic changes. Thus, to satisfy the

small-perturbation condition, a practical requirement for the migration/inversion algorithm

considered here is the ability to compute high-frequency (ray) Green's functions

corresponding to a relatively general class of inhomogeneous, transversely isotropic

elastic media. Specifically, at each point in the model space, the traveltime, particle-

motion vector, initial slowness, out-of-plane spreading factor (T 22) and geometrical

spreading function must be known. This information is required for all wave types and

source/receiver locations. Collectively, these quantities are referred to here as the ray-

Green's parameters. Experience has shown that calculation of these parameters

constitutes a major computational bottleneck, particularly for an inhomogeneous,

anisotropic reference model.

The traveltime and geometrical-spreading functions are governed by the eikonal

and transport equations (2.27 and 2.29), respectively. Typically, these are solved

numerically along rays (characteristics), thereby reducing the partial differential equations

to systems of ordinary differential equations (Cerveny et al., 1977; Bleistein, 1986). For
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imaging applications, subsequent interpolation of the computed ray-Green's parameters

is necessary, e.g., by the paraxial ray method (Beydoun and Mendes, 1989).

Alternatively, numerical solutions can be obtained using a finite-difference approach

(Smith, 1985). The ray-Green's parameters are then directly available on a grid, in a

form that is well suited to migration/inversion. Previous implementations of this

technique for isotropic traveltime and amplitude calculations (Vidale, 1988; 1990; Vidale

and Houston, 1990; Van Trier and Symes, 1991) have demonstrated that this method is

potentially much faster than ray tracing, or finite-difference methods based directly on

the equations of motion.

In this chapter, techniques for computing the ray-Green's parameters for 2Vi-

dimensional transversely isotropic elastic media are presented. The first step in the

procedure is the calculation of traveltimes by solving the eikonal equation using an

explicit, second-order finite-difference method. The traveltimes are differentiated to yield

the vector components of slowness, which are then used to compute the corresponding

eigenvectors. The initial slowness at the source is determined using an adaptation of a

method suggested by Vidale and Houston (1990). Next, ray tracing is used to determine

the out-of-plane spreading factor, T^2. Finally, amplitudes are computed using a ray-

Jacobian technique. Each component of the algorithm is considered in sequence, below.

Five models, summarized in Table 4.1, are employed to illustrate the advantages

and limitations of this methodology. The first model is a homogeneous isotropic solid,

and has been included to demonstrate that anisotropic artifacts of the algorithm used here

are relatively minor. The second example is a homogeneous, strongly anisotropic material

(the Greenhorn shale). This example is used for quantitative assessment of the accuracy

of these techniques in the presence of strong anisotropy, relative to analytic, far-field

high-frequency Green's functions (see equation 2.18). The first two examples are
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Model

4.1

4.2

4.3

4.4

4.5

Description

Homogeneous, isotropic
a = 3000 m/s, (5 = 1500 m/s
p = 2400 kg/m3

Strongly anisotropic, homogeneous
(Greenhorn shale)
Linear velocity gradient, fractured

Anisotropic block

Anticline model

See also

p. 23

Table 4.2

Fig. 4.1

Fig. 4.2

Table 4.1. Summary of models used to test the finite-difference algorithms.

included for illustrative purposes; in practice, the analytic form of the asymptotic Green's

function would be used in the migration/inversion procedure.

The third model represents a medium characterized by vertical fracturing, coupled

with a linear velocity gradient versus depth. For this model, finite-difference traveltimes

are compared to ray-traced traveltimes. The final two models are used for a more

qualitative assessment of the procedure. The fourth example (Fig. 4.1) contains a block

of anisotropic material in one quadrant, and is used to determine how well the algorithm

handles sharp corners in the model, as well as head-waves traveling along an anisotropic/

isotropic interface. Finally, a complex model containing an anticline structure is

considered (Fig. 4.2). This model illustrates the numerical stability of the algorithm in

the presence of caustics, and demonstrates the feasibility of these techniques for a

complex scenario.



Chapter 4: Ray-Green's functions 81

O0

300OnVs
Po

1500 m/s
*a

1.0 s'1
*P

0.5 s'1
VO*

0.05

Table 4.2. Parameters for model 4.3, representing an initially isotropic medium with
a vertical velocity gradient, that has subsequently been fractured. The velocity

gradient (prior to fracturing) is given by a = Ot0 + kaz and p = P0 + &pz, where z is
depth in metres. The effects of thin, fluid-filled vertical fractures have been
computed using formulae from Hudson (1981), where a is the fracture radius and
D is the crack density.

Source pt.

Anisotropic
block

Fig. 4.1. Configuration for model 4.4. The source is located in an isotropic layer
with a = 2887 m/s and (i = 1443 m/s. The anisotropic block has the same
parameters as the Greenhorn shale. Dimensions of the model are 1330 m in width

by 831 m in height.
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Source

Transition
layer

Fractured
reservoir

Fig. 4.2. Layer configuration for model 4.5. The first layer is a TI composite
material consisting of thin sand and shale layers in equal proportion (Levin, 1979).
The anisotropic symmetry axis is everywhere normal to the layer boundary. The
second and third layers are partially anisotropic, but with a symmetry axis parallel

to the layer boundary (to represent fracturing). Both layers are nearly isotropic at
the sides of the model, but become progressively more anisotropic toward the core
of the anticline. In addition, the transition layer is isotropic at the top, with a
gradual increase in anisotropy toward the base of the unit. The underlying basement
unit is isotropic, but with a linear velocity gradient normal to the layer boundary.

The area shown is 1275 m across and 1000 m deep. Smoothed elastic parameters

used for the calculation of Green's functions are displayed in Fig. 4.3.





Chapter 4: Ray-Green's Junctions 84

4.2 Traveltime calculation

The traveltime function, T, is the most fundamental component of the ray-Green's

parameter set. From a forward-modeling perspective, calculation of traveltimes simulates

the propagation of wavefronts throughout a medium. The migration/inverson viewpoint

is complementary; the traveltime information is used to "focus" diffracted energy into the

spatial position where the scattering originated. In both cases, errors in the traveltime

function are critical; they lead to incorrect focusing of scattered energy during M/I, and

adversely affect all subsequent forward-modeled ray-Green's parameters.

4.2.1 Description of the algorithm

Traveltime calculation by finite-difference solution of the eikonal equation was

introduced by Vidale (1988), who demonstrated that this approach correctly treats head

waves and shadow zones, and is also computationally efficient compared to ray tracing.

However, in his algorithm the traveltime function is constrained to be single-valued; thus,

this technique is primarily suited to modeling first arrival traveltimes. Modifications to

Vidale's method are discussed by Qin et al. (1990) and Van Trier and Symes (1991). In

particular, Qin et al. (1990) showed that in the presence of moderate to strong parameter

contrasts, Vidale's algorithm fails to honour the principle of causality. Qin et al.

proposed an expanding wavefront methodology to deal with this problem. Here, the basic

philosophies underlying the Vidale (1988) and Qin et al. (1990) algorithms have been

used to design a technique for solving the anisotropic eikonal equation.

Rather than a conventional Cartesian grid, a hexagonal mesh of points is used

(Fig. 4.4), similar to grids employed in modeling studies involving cellular automata

(Rothman, 1988). One reason for this choice is that qSV wavefronts in many anisotropic

solids (with a vertical or horizontal axis of symmetry) tend to posses triplication zones

along 45° azimuths (Musgrave, 1970). These directions coincide with corners of the
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Fig. 4.4. Hexagonal mesh used for finite-difference calculations. Inset: Example of
a four-point finite-difference stencil.

computational front used in Vidale's (1988) Cartesian implementation, where the errors

are largest. In addition, the hexagonal grid permits the use of finite-difference stencils

with a denser angular coverage than the Cartesian grid. This feature is particularly

important when phase velocity varies rapidly with direction.

For the general three-dimensional, anisotropic case, solving the eikonal equation

requires the solution of a sixth-order polynomial (Appendix C). In essence, the strategy

is to use estimates of two components of the slowness vector, p, to deduce the value of

the third component. The problem is simplified for 2Vi-dimensional propagation in the
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plane of symmetry, since p2 (the component of slowness normal to the symmetry plane)

vanishes. Suppose, then, that for a given four-point stencil, the traveltime is known at

points A, B and D (Fig. 4.4). This stencil defines a local co-ordinate system, with the X3-

axis pointing from A to C. Because this direction may not coincide with the anisotropic

symmetry axis, it is generally necessary to rotate the stiffness tensor into the correct

orientation. Using the approximation

" , (4.D
h

the traveltime at point C is approximated by

In equation (4.2), p3 is chosen to satisfy the eikonal equation,

fct\cijkiPjPrpSik\ = ° *

at the centre of the stencil. Substituting equation (4.1) into (4.3) leads to a sixth-order

polynomial equation for /?3,

The coefficients of equation (4.4) are given in Appendix C.

Fixing P1 and p2 in equation (4.4) leads to six possible solutions for /?3,

corresponding to three different wave types, propagating either away from or toward the

source. Degeneracies occur for the following cases:

1) at a shear- wave singularity (or if the medium is isotropic), in which case the

two shear-wave solutions have the same value;

2) if P1 is zero, in which case the function /(p3) = ^pJ reduces to a cubic
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polynomial in p3 .

With the exception of these special cases, all seven of the coefficients are nonzero.

Graphs of f(p3) are shown in Fig. 4.5, calculated using stiffness parameters for the

Greenhorn shale. Fig. 4.5a shows f(p3) with the local jc3-axis orientated at an angle of 5°

with respect to the symmetry axis. Because this is very close to a shear-wave singularity,

the qSV and SH solutions are nearly the same, and become equal for propagation in the

direction of the singularity. Fig. 4.5b shows /(p3) with the local ^-axis normal to the

symmetry axis. The two shear-wave solutions are now easily distinguished.

In this thesis, an iterative technique is used to solve /(P3). First, the direction of

propagation with respect to the local axis of symmetry is estimated. Using this, along

with knowledge of the wave type (i.e., qP, qSV or SH], an initial guess of the phase

velocity can be obtained using equation (2.12), which in turn can be used to give an

estimate of p3, knowingP1. Starting with this initial guess, Newton's method is employed

to refine the solution. For most cases, this approach converges rapidly (in approximately

1 to 8 iterations, depending on the degree of anisotropy). The algorithm has the most

difficulty near a shear-wave singularity because of the locally nonlinear nature of/(p3)

(Fig. 4.5a).

Following Vidale (1988), the initial step in the overall procedure is to time the

points in the immediate vicinity of the source point (the source is given a traveltime of

zero). For the type of grid considered here, there are six grid nodes that neighbour the

source point (Fig. 4.6a), forming a hexagon. The traveltime to each neighbouring point

is simply

T = Ax/v , <4-5)

where Ax is the distance between each node on the grid and v is the group velocity given



Chapter 4: Ray-Green's functions

1.6e+10

88

-1.66+10
-0.0008 0.0008

a)

l.le+ll

-2.Oc+10 4
-0.0008 0.0008

b)
Fig. 4.5. a) Plot of Rp3) = ̂ p for the Greenhorn shale (Pi=P2 = O), with the X3-
axis of the finite-difference stencil oriented 5° from the axis of symmetry. Because
this is close to a shear-wave singularity, the qSV and SH solutions are nearly the
same (see inset), b) Plot of/(p3) when the local jc3-axis is normal to the axis of
symmetry.

by equation (2.15). This set of six points comprises the initial computational front. After

each subsequent iteration, the new computational front is taken to be the set of points

that have been timed, but are not completely surrounded by a timed point (circles in Fig.

4.6). This set of points will roughly approximate the true wavefront at each iteration. The

algorithm proceeds by determining the node that has the minimum traveltime on the

computational front. The traveltime to all nodes bordering the minimum are then

computed by solving equation (4.4) as described above. By rigorously working away

from traveltime minima, this method honours the principle of causality, even in the

presence of large parameter contrasts (Qin et al., 1990). The procedure is repeated until

all points on the grid within some prespecified zone of interest have been timed.

In many cases, ambiguities can still exist. That is, there may be several ways to
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Fig. 4.6. a) The first step in the algorithm is the calculation of times for the six
neighbouring points around the source point (square). The current wavefront is

represented by circles. The solid circle indicates the point with the minimum i on

the current wavefront. b) Timed points after several more iterations. Squares
represent points that are timed, but not on the current wavefront. c) Timed points
one iteration after b).

construct a finite-difference stencil connecting an untimed node to three neighbouring

timed points, each giving a slightly different answer. Vidale (1988) handled this case by

choosing the configuration that produces the minimum traveltime. However, applying this

strategy to anisotropic media produces incorrect results. The criterion used here to select

the correct stencil configuration, where ambiguities exist, is to minimize the tangential

slowness term. This is equivalent to finding the stencil that extrapolates the traveltime

most nearly normal to the wavefront. Note that this approach implicitly minimizes the

traveltime for the isotropic case.

4.2.2 Examples

The first example represents a homogeneous isotropic medium. The source in

located in the centre of the grid, which spans an area of 1000 m by 623 m. A grid
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Fig. 4.7. Finite-difference P-wave traveltimes for model 4.1.

interval of 10 m was used, giving approximately 7200 grid nodes. Fig. 4.7 shows the

computed P-wave traveltimes for this model. In the grey-scale scheme used to display

these data, the light areas represent small traveltimes (close to the source) and the dark

areas represent large traveltimes. Since a wavefront is a surface of constant traveltime

(Aki and Richards, 1980), the shapes of the wavefronts are defined by the boundary

between different shades of grey. In this case, the wavefronts do not exhibit any visible

anisotropic artifacts, and the maximum traveltime error on the grid is 0.8 ms (0.7%).

The second example illustrates the behaviour of the algorithm for a homogeneous,

strongly anisotropic medium. Fig. 4.8 shows the traveltime field computed in the

Greenhorn shale for all three wave types. Overall, the wavefronts have the correct

geometry for this material (see Fig. 2.2). However, since the traveltime field computed

using this method is single-valued, the behaviour of the qSV wavefront in the triplication

zone cannot be replicated. Instead, the calculated wavefronts possess an abrupt corner in

this region, approximating the first arrival.

The traveltime error (ifi^l^ffcKnce - ̂ 60) is displayed in Fig. 4.9. For the qSV
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Fig. 4.8. Finite-difference traveltimes computed for model 4.2.
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Fig. 4.9. Finite-difference traveltime error for model 4.2.
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wavefront, the "analytic" traveltime in the triplication zone is taken to be the first

arriving branch. For qP waves, the error is less than 0.15 ms, or 0.1% error at the edge

of the grid. The magnitude of the error is similar for SH waves, except near singularities.

The maximum error in this case is about 1 ms, or 0.25% error at the edge of the grid.

The error is significantly larger for qSV waves, particularly within the triplication zone

and close to the symmetry axis. In the latter case, the large errors are due to numerical

difficulties associated with solving the eikonal equation near a shear-wave singularity.

The third example represents a medium characterized by an increase in velocity

with depth, coupled with vertical fracturing. In the absence of fracturing, raypaths for this

type of medium fall along the arcs of circles. Computed traveltimes for a source located

at a depth of 744 m are shown in Fig. 4.10. Note again the unusual shape of the qSV

wavefronts. For this model, ray-traced traveltimes have also been calculated in order to

verify the accuracy of the finite-difference results. Kinematic ray tracing calculations

were performed by solution of the anisotropic ray-tracing system (Cerveny, 1972)

(4.6)

aijkl ~ Cijkl'P

using a fourth-order Runge-Kutta technique (Press et al., 1990). A complete discussion

of the numerical implementation of anisotropic ray tracing is given by Gajewski and

PsenSik (1987). Fig. 4.11 shows a comparison between ray-traced and finite-difference

traveltimes at the top of the model. The agreement between the two techniques in this

case is excellent.

The fourth example tests the algorithm in the presence of a boundary separating
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Fig. 4.10. Finite-difference traveltimes for model 4.3.
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Fig 4.11. Ray-traced (+'s) and finite-difference (lines) traveltimes at top of model 4.3.
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Fig. 4.12. Finite-difference qP traveltimes for model 4.4.

an anisotropic region from an isotropic region. At the interface, the wavefronts exhibit

anoticeable change in shape (Fig. 4.12). A refracted head wave travelling along the top

of the isotropic/anisotropic boundary is also evident. However, interpretation of the

wavefield immediately to the right of the anisotropic block (within the isotropic material)

is uncertain. Possible interpretations are:

1) diffraction from the corner of the anisotropic block;

2) diffracted head wave along the vertical boundary;

3) a refracted wave through the anisotropic material.

It is most likely that the computed wavefield, ideally representing the first arrival,

contains elements of more than one of these possibilities. Note that the critical angle and

velocity of propagation for head waves along this type of boundary are functions of the

angle between the interface and the anisotropic symmetry axis.
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The final example considered in this chapter is intended to illustrate the behaviour

of these algorithms for a complex background model, representing an anticline structure.

The shallowest layer is modeled using a transversely isotropic medium composed of

alternating thin layers of sandstone and shale (Levin, 1979). The two layers beneath this

zone are also anisotropic, with the intensity of anisotropy increasing toward the core of

the anticline (see Fig. 4.3), where structural deformation is the greatest. Beneath this is

a basement unit, characterized by a linear velocity gradient, with the largest velocities

in the core of the anticline. The source is positioned on one side of the anticline, to

simulate the scenario of a downhole source in a well that missed the crest of the

structure. The computed qP traveltimes are illustrated in Fig. 4.13. The traveltime fields

for shear waves are not shown, but are very similar in appearance. The wavefield

distortion due to anisotropy in the core of the anticline is easily visible, as are larger

scale effects attributable to the overall velocity increase toward the core of the structure.

4.3 Calculation of eigenvectors

In a transversely isotropic medium, the particle motion associated with qP and

qSV waves can deviate from the purely longitudinal and transverse directions which

characterize an isotropic medium. Thus, it is necessary to determine the direction of

particle motion by computing normalized eigenvectors of the matrix F^ = C^PJ P1. In

principle, this task is relatively straightforward since the slowness p is readily computed

by differentiating the known traveltimes. In practice, some care must be exercised since

the computed slownesses are approximate, so that F^ is generally nonsingular. Also, at

a shear-wave singularity the qSV eigenvector possesses, in theory, an additional degree

of freedom. The added constraint is that qSV waves are polarized in the acquisition plane.
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Fig. 4.13. Finite-difference qP traveltimes for model 4.5.

4.3.1 Description of the algorithm

The program for computing eigenvectors is split into two parts. The first sub-

routine attempts to extract two rows from F that represent independent equations. Two

empirical criteria are used to reject a row:

1) if the power (sum of squares of each coefficient) of the row is less than the

threshold value of

2) if, after normalization to unit power, the row vector makes an angle of less

than 5° with a preceding row.

Once two independent rows have been determined, the eigenvector is found by simply

solving the system of two equations. Geometrically, each row is the equation of a plane
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in which particle motion is permitted, and the eigenvector lies along the intersection of

these two planes.

4.3.2 Examples

Only two of the five examples are considered in this section. Fig. 4.14 shows the

angular difference between the particle motion vector computed from the finite-difference

traveltimes (Fig. 4.8) and the analytic solution. For qP waves, the computed eigenvalues

are very accurate, with errors less than ~ 0.01 radians, except in the near field. For qSV

waves, small irregularities in the computed traveltimes result in large errors in the

calculated polarization directions, since the latter depend on derivatives of T. The

computed eigenvectors are most accurate for directions of propagation that make a large

angle with respect to the axis of symmetry. Within the triplication zones and near

singularities, the errors are very large ( > 0.25 radians).

The absolute eigenvector directions (with respect to the positive *3-axis) for

model 4.5 are shown in Fig. 4.15. For the most part, the particle-motion direction appears

to fan out parallel to the raypaths emanating from the source point, since the anisotropy

is weak at the sides of the model. However, significant distortion is visible in the centre

of the structure.

4.4 Initial-slowness calculation

Two initial ray parameters, denoted Y1 and y2, are required in general to uniquely

specify (in three dimensions) a ray at the source. Y1 and y2
 can be computed from the

initial slowness, and may be, for example, initial phase angle with respect to the X2 and

*3 axes (0 and (J)). Knowledge of the initial ray parameters is required to compute the

source amplitude radiation pattern, and can also be used to estimate the geometrical-
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Fig. 4.14. Angular difference between the eigenvector (polarization vector) computed

using the finite-difference traveltimes and the analytic solution, for model 4.2. SH waves
are not shown, since the corresponding particle motion is always in the ̂ -direction.
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Fig. 4.15. qP polarization direction with respect to the j^-axis for model 4.5.

spreading function. In conventional ray tracing, the initial parameters are readily

available (they must be, in order to trace rays). However, determination of these

parameters is less straightforward using a finite-difference approach, since in a general

2V£-dimensional medium both the P1 and p3 components of slowness can vary along a

ray. Recently, Vidale and Houston (1990) suggested a method for computing the initial

slowness, that exploits the finite-difference approach for traveltime calculation. Their

technique was cast in terms of an isotropic model and a Cartesian coordinate system, but

is equally valid for anisotropic media, and is easily adapted to the hexagonal grid system

employed here.

4.4.1 Description of the algorithm

The method of Vidale and Houston (1990) derives from the principle of reci-
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Fig. 4.16. Sketch of the raypaths joining four closely spaced source points (S1, S2,
S3 and S4) to a point P on the grid (modified from Vidale and Houston, 1990).
Differentiating the traveltimes computed from the four neighbouring source points
yields the initial slowness for the ray from S0 to P.

procity (Aki and Richards, 1980), which implies that the source and receiver can be

interchanged with no effect on the total traveltime. In their approach, the traveltime is

recomputed using four perturbed source positions, arranged around the actual source

position, S0. Fig. 4.16 shows the configuration for the four perturbed source positions,

S1, ..., S4 on the hexagonal grid. By reciprocity, the perturbed traveltimes are the same

as those that would have been received at S1, ..., S4 using point P as the source. Based

on this observation, it is easily shown that final value of the slowness vector on the ray

from P to S0 and the initial slowness on the ray from S0 to P have the same magnitude,

but are in the opposite direction. Hence, the initial slowness at S0 is given approximately

by
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OPl = 2Ax
(4.7)

O
Pl =

2v/3Ax

where ty is the traveltime from Sj to P, and Ax is the spacing between grid points. Instead

of storing the initial slowness components, it is more efficient to store in memory the

initial phase angle,

60 = tan-V/ft") - (4'8)

It is often necessary to smooth the computed values of 60 to remove erroneous fine-scale

variations. This is accomplished here by low-pass filtering the data, with a cutoff

wavenumber equal to one quarter of the Nyquist. Note also that for the isotropic case,

G0 is equivalent to the ray takeoff angle, but for the anisotropic case the two are not

exactly equivalent.

4.4.2 Example

Fig. 4.17 illustrates the qP initial phase angle calculated for model 4.5. The

regular pattern of rays fanning out near the source becomes disrupted due to

inhomogeneity/ anisotropy in the centre of the model. Note the rapid change in phase

angle roughly along the arc SA. This behaviour is indicative of a caustic, and will be

discussed in the section on amplitude calculation, below.

4.5 Out-of-plane spreading function
The matrix of partial derivatives of the traveltime field, N, has the structure
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Fig. 4.17. qP initial phase angle (60) for model 4.5. 90 changes rapidly along the arc
SA1 indicating the likely presence of a caustic.

N =

L11 O T513

O T,22 O
T'31 O T'33

(4.9)

for the assumed 2V£-dimensional symmetry of this study. This matrix expresses the

curvature of the wavefront. Here, the "out-of-plane spreading function" is understood to

be T 22 » since it is the only wavefront-curvature parameter that cannot be estimated

directly from the in-plane traveltime values. T<22
 3^80 distinguishes two-dimensional

spreading from 2V£-dimensional spreading, and is required in the inversion procedure to

account for out-of-plane scattering effects.
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4.5.1 Description of the algorithm

The value of T 22 f°r eac^ point on the grid is estimated as follows. First, a suite

of rays are traced away from the source in 1° increments of G0. The initial slowness of

each ray is given a small positive p2 component that remains constant as the ray

propagates. At every point P along a ray, let P ' be its projection onto the plane X2 = O.

At the point P', using the fact that/?2 = O and has mirror symmetry across the acquisition

plane, we have

» P2 (4.10)22 _ ,

where y is the ̂ -component at P. The parameters XO0^) and P2(^o) m ̂ 50 required for

later use during the calculation of seismic amplitudes. The values of T 22 are then

extrapolated from each ray to neighbouring points on the grid. This set of 360 rays is

usually sufficient to give T ̂ 22 for most points on the grid. Holes in the coverage are filled

by tracing additional rays, using the computed initial slowness values from the previous

step as a guide.

A potential shortcoming of this approach, when used in conjunction with the

finite-difference traveltime method, is the possibility that the raypaths determined by

raytracing will not match the first-arriving wavefronts propagated by the in-plane

traveltime calculation (e.g., for head waves, diffractions, etc.). At present, no automatic

method has been devised to ensure that this scenario does not occur. However,

experience has indicated that T >22 tends to be very smooth and continuous. Thus, errors

introduced in the amplitude calculations and in the inversion procedure by using a value

for T 22 corresponding to a later arrival are likely to be relatively small.



Chapter 4: Ray-Green's functions 106

S
CO

O

Fig. 4.18. qP out-of-plane spreading factor (!22) f°r model 4.5.

4.5.2 Example

Fig. 4.18 illustrates !22 for <P waves in model 4.5. The out-of-plane spreading

function in this (and other) model(s) is generally quite smooth, and decays approximately

as r'1, where r is distance from the source. The grey shading is opposite to the traveltime

plot (Fig. 4.13), in the sense that the maximum values of T22 (<&& regions) occur close

to the source rather than in the far field.

4.6 Estimation of seismic amplitudes

Knowledge of the initial-ray parameters at all points on the grid can be employed

to obtain a useful estimate of the geometrical-spreading function. The ray-Jacobian, /,

is related to a differential surface element on the wavefront via the relation da =



Chapter 4: Ray-Green's functions 107

i.e., the ratio /0// (/ * O) is equivalent to the surface-element ratio, L = da0/da,

contained within a ray tube (section 2.3). Thus, expansion and contraction of the ray

tube, or an increase or decrease in the value of L"1, corresponds to a geometrical

amplitude decrease or increase, respectively.

4.6.1 Description of the algorithm

Vidale and Houston (1990) have presented a method for approximate amplitude

calculation based on these geometrical concepts. Here again, their basic technique is

modified to suit the present algorithm. The initial assumption is that the length of

intersection of the wavefront at a point P with the circular region containing the six

points surrounding P (Fig. 4.19) is constant (roughly equal to 2Ax). The accuracy of this

assumption depends on the in-plane radius of curvature of the wavefront, which should

be large. The change in the first ray parameter, 90, corresponding to this arc length, ds,

is approximated by

Ay1 = AG0 = max (G0)-HUn(G0) , (4.11)

where max (G0) and min{60} are the maximum and minimum initial phase angle from

the set of six points surrounding P. Since ds is taken to be constant, the total area of the

far-field surface element, do, is then proportional to the quantity y(60,T). The

corresponding near-field surface element, da0, belonging to the respective ray tube can

be estimated numerically for some arbitrary small traveltime, given G0, Ay1, P2(^o) ^d

knowledge of the geometry of the wavefront in a homogeneous region in the vicinity of

the source. The amplitude function is then computed to within a scale factor that is

independent of wave type and source position using the formula:
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Fig. 4.19. Method for calculating Ay1. The total change in the initial phase angle

corresponding to the line element ds on the wavefront is approximated by the
difference max{00) - min{60} from the set of six points neighbouring P.

A =
1/2

(4.12)

where A0 is determined using equation (2.21).

The amplitude function obtained in this manner usually contains artifacts, due to

the approximations made here, and small errors in the quantities computed from previous

steps. As a general rule, a mild low-pass filter is applied to remove some of these

artifacts. Another general limitation of this treatment of seismic amplitudes is the use of

geometrical spreading only; amplitude variations related to reflection/ transmission at

interfaces, attenuation, etc., are not accounted for.
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4.6.2 Examples

Fig. 4.2Oa shows the relative amplitude function computed for model 4.1. The

data have been scaled by an empirical constant, in order to bring a significant portion

into the range 0.1 to 1.0 for display purposes. Overall, the computed values are a

reasonable approximation to the theoretical 1/r amplitude decay. However, certain

undesirable artifacts are also clearly visible. These artifacts are caused by erroneous

estimates of Ay1 arising from the method described above. The computed amplitudes are

somewhat higher for rays that make an angle with the vertical that is an integral multiple

of 30°. A similar phenomenon was reported by Vidale and Houston, except that on a

Cartesian grid the amplitudes are higher for rays every 45°. Fig. 4.2Ob shows a plot of

the computed amplitudes along two horizontal cross-sections through the data in Fig.

4.2Oa, at z = 312 m (the depth of the source) and z = 35 m. The profile at z = 312 m

matches almost exactly the (scaled) 1/r function (the two can barely be distinguished in

Fig. 4.2Ob), whereas in the second case the fit is not as good, with a maximum error of

about 7%. This degree of error does not seem as bad, however, when one considers that

the amplitude function varies over nearly two orders of magnitude.

Figs. 4.21 and 4.22 show the computed and theoretical amplitude functions for

the Greenhorn shale (model 4.2). Comparison of the two sets of plots reveals the

presence of the aforementioned grid-related artifacts. In addition, certain artifacts visible

in the shear wave plots can be correlated with errors in the traveltime field (Fig. 4.9).

Nonetheless, the distinctive overall shapes of the amplitude contours are approximately

represented for all three wave types, as is the ratio of about 4:1 between the shear wave

amplitudes and the qP amplitude. The qSV amplitude plot also exhibits apparent caustics

along the 45° directions with respect to the vertical. These are due to the presence of

corners in the computed wavefronts (Fig. 4.8).
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Fig. 4.20. a) Normalized amplitude values computed for model 4.1. b) Plot of
normalized amplitudes near the top of the grid, and at the same depth as the source.
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Fig. 4.21. Normah'zed amph'tudes computed for model 4.2.
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Fig. 4.22. Theoretical amplitude function (normalized) for model 4.2.
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Figs. 4.23 and 4.24 show the calculated qP amplitudes for models 4.3 and 4.5.

Fig. 4.24, in particular, is interesting because it clearly shows the presence of two

caustics, one of which was apparent from the plot of initial phase angle (Fig. 4.17).

These caustics are produced by focusing of rays in the velocity gradient zones. It is

significant that the procedures used here for seismic modeling are tolerant of this type

of anomalous feature, and behave in a numerically stable manner.

4.7 Concluding remarks

A new methodology has been presented for computing approximate ray-Green's

tensors for 2V£-dimensional, transversely isotropic, elastic media. The procedure is based

primarily on finite-difference solution of the anisotropic eikonal equation, and a ray-

Jacobian approach for computing seismic amplitudes from a point source. All of the ray-

Green's parameters are directly available on a grid, in a form that is well suited to

imaging applications. Although the particular implementation described here is restricted

to transversely isotropic media, the numerical methods used are easily generalizable to

any anisotropic symmetry system. Due to the inability of these techniques to model

triplication zones and other pathologic features of wavefronts in strongly anisotropic

solids correctly, this method is ultimately restricted to use with moderately or weakly

anisotropic media.

Another practical consideration here is program execution time. Running on a Sun

Sparcstation 2, computation of the full Green's functions required about 20 minutes of

CPU (on average) for the models described in this chapter. The traveltime component

of the calculation represented about 2 to 3 minutes. The bulk of the execution time was

shared between the computation of initial slowness and the out-of-plane spreading factor.

For each trace in a multicomponeat dataset, three or more ray-Green's functions must
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Fig. 4.23. Normalized amplitudes computed for model 4.3.
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Fig. 4.24. Normalized amplitudes computed for model 4.5. The linear amplitude
anomalies represent caustics.
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be determined. Without a much faster computer, this effectively limits these techniques

to small datasets, or to models with a homogeneous background.
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Chapter 5

Least-squares migration/inversion
5.1 Introduction

In this chapter, the techniques developed in previous chapters will be brought to

bear on the problem of seismic migration/inversion, using a linearized least-squares

approach. The /2-objective (cost) function (equation 2.47) incorporates data and model

parameter information in the form of covariance operators, and is minimized using an

iterative three-step conditioned-gradient procedure. The first step of each iteration

resembles prestack Kirchhoff depth migration, and comprises filtered backprojection of

the data residual to yield a set of gradient subimages. An approximate inverse-Hessian

operator is then applied to these images, giving new parameter perturbation estimates

throughout the model. The effect of this operator is to scale the gradient images, and also

to compensate somewhat for parameter-coupling effects. Following this, the predicted

wavefield is generated by scattering from the current model, and is used to compute a

new data-residual vector. Iterations continue (ideally) until convergence is achieved.

This methodology possesses certain inherent advantages over many other seismic

imaging and inversion techniques. Unlike seismic migration, the close association

between forward and inverse modeling can be exploited to permit some simple posterior

analysis of the inversion results. Furthermore, this approach is intended to image intrinsic

properties of a medium, rather than its angle-dependent reflectivity (which is also a

function of the geometry and aperture of the acquisition experiment). The use of

approximate ray-Green's tensors allows almost arbitrary configuration of the sources and
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receivers, as well as a very general form for the background model. The least-squares

inversion method is flexible enough to accommodate prior information, in addition to

insufficient (e.g., single- component) and inaccurate (noisy) observations. Finally,

linearization of the problem guarantees that the Green's functions, governing propagation

of the wavefield through the background medium, need to be computed only once. More

general nonlinear techniques (e.g., Tarantola, 1986; Mora, 1987) require very time-

consuming repropagation of the wavefield for each iteration.

The geophysical literature contains numerous examples of similar ray-Bom

imaging techniques applied to seismic data, predicated upon various assumptions about

the nature of the background medium. In order of increasing complexity (and ill-

posedness of the inverse problem), these assumptions range from constant-density

acoustic media (e.g., Cohen and Bleistein, 1979; Beylkin, 1985; Miller et al., 1987) and

variable-density acoustic media (e.g., Raz, 1981; Clayton and Stolt, 1981; Weglein et al.,

1986; Lebras and Clayton, 1988) to isotropic-elastic media (Beydoun and Mendes, 1989;

Beydoun et al., 1989, 1990; Beylkin and Burridge, 1990) and fractured media (Tura,

1990). The methodology employed here is based primarily on an elastic ray-Born

migration/inversion technique introduced by Beydoun and Mendes (1989). However,

Beydoun and Mendes (1989) considered 2-D isotropic-elastic media, whereas here the

problem is assumed to be !^-dimensional and the medium to be transversely isotropic.

The principle aim of this chapter is to employ ray-Born imaging to explore the

short-wavelength resolving power of seismic data for each of the six medium parameters

(a, p, Y, 8, e, p) used in this study. The influences of surface versus crosswell acquisition

geometries, horizontal versus vertical direction of the anisotropic symmetry axis, and the

presence of background anisotropy are also investigated by means of a series of simple

synthetic-data examples generated within the Born approximation. An inversion example
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based on a structurally deformed geological model will illustrate the feasibility of these

techniques for a complex imaging problem. Finally, a ray-traced synthetic-data example

computed using the reflection properties of plane waves at a welded interface (rather than

the Born approximation) is used to test the properties of this algorithm for a non-Bom

dataset. To facilitate a description of the computer algorithm, the mathematical theory

for the continuous case outlined in chapter 2 will be recast in discrete form.

5.2 Description of the algorithm

5.2.1 Overview

A flow chart summarizing the FORTRAN program MFTI (migration/inversion for

transversely isotropic media) is given in Fig. 5.1. The program utilizes two primary

inputs: the observed seismic dataset(s), and a description of the background model in

terms of the parameters (a, p, y, 8, £, p). In principle, a better first input to the program

would be an initial estimate of the data residual (i.e., the difference between the observed

data and modeled data obtained by some other means). However, the inversion results

in this case are often dominated by artifacts arising from the modeling procedure (Pratt

and Goulty, 1991).

The migration/inversion algorithm attempts to minimize the /2-objective function

(Tarantola and Valette, 1982)

E = 1 (Au * W11Au +Am * W1nAm) , (5.1)

where Au = uobs - BAm is the data residual, Am are the model-parameter perturbations

and B is the Born operator defined by equation (2.45). For simplicity, the covariance

operators W11"1 and Wn,"1 are assumed to be equal to a constant (W11'1 and wm";, respect-
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Fig. 5.1. Row chart for MITI program (migration/inversion for transversely isotropic
media).
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ively) times an identity matrix. Each iteration of the algorithm consists of an inversion

step followed by a forward-modeling procedure. Linearization of the problem decouples

the background (propagation) model from the perturbation (scattering) model. Therefore,

the Green's functions do not need to be recomputed after the first migration pass. This

feature is potentially of great significance for an inhomogeneous model, for which

calculation of the Green's functions requires a much greater amount of computational

effort than the other steps.

The output from the program includes the calculated wavefield, scattered from

the current model, in addition to the inversion results. This information can be compared

directly to the input seismic dataset to evaluate the success of the migration/inversion

process.

5.2.2 Filtered backprojection of the data residual

In symbolic notation, the gradient function gk = dE/dmk (not to be confused with

the unit eigenvectors g and g) may be written (Beydoun and Mendes, 1989)

g = -B "W11Au +W1nAm . (5.2)

In the algorithm used here, the gradient is computed in the r-x, rather than the co-x,

domain, for computational efficiency. Assuming, for sake of illustration, that the source

wavelet is a delta function, this transformation collapses a summation (for each data

sample) over the entire image zone to a weighted backprojection along the corresponding

path of constant traveltime. This procedure closely resembles prestack Kirchhoff depth

migration, but with a weighting function derived from the Born approximation rather

than the Kirchhoff integral equation (Schneider, 1978; Kuo and Dai, 1984). Prior to

backprojection, the data-residual traces are filtered by the co3/27i/4 factor (see equation
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2.44), corrected for the phase function of the source (if known), and operated on by the

data-covariance operator. Written explicitly, the £th component of g for the yth iteration

may be expressed in terms of the filtered data residual, Au®srmn(i), via the summation

(53)

where s and r are the set of all sources and receivers, m and n are the set of source and

receiver orientations, M and v are the source and receiver ray codes (qP, qSV and 5//),

S^1nXx) is the scattering amplitude radiation pattern (see equations (2.39) - (2.42) and

Figs. 2.4 - 2.7) and Amw(x) is the model-perturbation vector (after application of the

model covariance operator) for they'th iteration. Symbols for the ray-Green's parameters

correspond to those used in chapter 4.

Conventional Kirchhoff migration and acoustic ray-Born imaging techniques map

individual data points to traveltime isochrons in the model coordinates (Schneider, 1978;

Miller et al., 1987). Elastic migration/inversion is fundamentally different: data points are

mapped to several isochrons (Fig. 5.2), corresponding to the relevant subset from the set

of ray codes { qP-qP, qP-qSV, qSV-qP, qSV-qSV, SH-SH }. For unconverted scattered

events in a homogeneous-isotropic medium, these curves are elliptical, with foci at the

source and receiver. The radius of curvature of the isochron is the largest for qP-qP

scattering, because of the generally higher velocity of qP waves. For the same reason,

isochron curves for converted events are normally shifted away from the source/geophone

that is radiating/receiving qP waves.

Valuable insight into the nature of the elastic-migration procedure implied by

equation (5.3) can be gained by studying its impulse response. Figs. 5.3 to 5.6 show plots
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SV-SV or SH-SH

• Source

o Receiver

Fig. 5.2. Sketch of traveltime isochrons in a homogeneous isotropic medium.
Typically, the target zone will include only a portion of the isochrons shown here.
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of the impulse-response function for various source and receiver orientations. A single

trace containing a band-limited zero-phase pulse at a time of 500 ms was used to

generate these plots, which show the steepest-descent direction for the objective function,

E, with respect to the individual model parameters. The source and receiver are assumed

to be located within an infinite, isotropic-homogeneous medium with parameters a =

3000 m/s, p = 1500 m/s and p = 2400 kg/m3. Note that, by including the source and

receiver in the image zone, these examples violate the far-field assumption. In practice,

a target zone would include only portions of the impulse-response functions illustrated

here.

Observe that the number of imaged parameters depends on the wave types

radiated from the source, and received at the geophone. In Fig. 5.6, where both the

source and receiver are oriented in the X2 (transverse) direction, only SH waves are

scattered, and three of the six possible parameters are imaged (P, y, and p). The other

three plots involve P-SV scattering, and image five of the six parameters. The number

of parameters imaged remains the same even in the presence of background anisotropy

(although the impulse response can be much different), provided that the symmetry axis

lies in the plane of acquisition. Hence, in order to resolve all six of the parameters, a

complete nine-component (i.e., 3-component sources and receivers) experiment is a

practical requirement (otherwise sources and receivers would have to be oriented out of

the plane such that all three wave types are radiated). However, it may be possible to

invoke a statistical relationship between 7 and e, as noted in chapter 1 (Fig. 1.3), to

reduce the number of parameters and thus avoid this complication.

Variation in amplitude along a single isochron in Figs. 5.3 to 5.6 can be attributed

to both the elastic radiation patterns at the source and receiver, and the scattering

radiation patterns for individual parameters (Figs. 2.4-2.7). Larger variations in the
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Fig. 5.3. Impulse response of the elastic-migration operator, for source (rightmost arrow)

and receiver (leftmost arrow) in the ;q-direction. Note relative plot amplitudes.
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Fig. 5.4. Impulse response of the elastic-migration operator for vertical source (right-most
arrow) and vertical receiver (leftmost arrow). Note relative plot amplitudes.
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Fig. 5.5. Impulse response of the elastic-migration operator for a source (right-most
arrow) and receiver (leftmost arrow) oriented as shown. Note relative plot amplitudes.
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Fig. 5.6. Impulse response of the elastic-migration operator for source and receiver
oriented in the Xj-direction. Only SH waves are radiated.
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magnitude of the gradient function between different isochrons (note the relative plot

scales used) are mainly due to differences in the geometrical spreading (A) and out-of-

plane spreading (T 22) factors for different wave types. For example, at a given traveltime

in a homogeneous-isotropic medium, the geometrical spreading factor is inversely

proportional to the cube of velocity (Aki and Richards, 1980), and T>22 *s inversely

proportional to the square of velocity. Considering that the amplitude term Asruv and the

out-of-plane spreading term T 22^™^ in equation (5.3) are the product and sum of two

such quantities, respectively, the gradient for P-P events is, on average, smaller than the

gradient for SV-SV or SH-SH scattering by a factor of (p/a)5, or approximately 1/32.

5.23 The approximate Hessian

The negative gradient function, -g, establishes a steepest-descent direction in the

model space, with respect to the cost function, E. Rather than performing an incremental

search in this direction, faster convergence can usually be achieved using the second-

order model update

provided that an estimate of H ~ is available. Beydoun and Mendes (1989) introduced

an approximate elastic Hessian operator, based on the Gauss-Newton approximation as

well as the assumption that the Hessian matrix is diagonal. Because the neglected off-

diagonal elements of the Hessian operator represent interaction between spatially

separated points, the second assumption is similar to the single-scatter assumption

implicit in the Born approximation. These simplifications lead to a small (up to 6x6)

matrix for each model pixel, that can be inverted analytically. In the notation used here,

this matrix may be written:
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rfigM = *.E EE *

The matrix H(x) can be computed during the first pass of migration, at the same

A
time as the gradient is computed. However, since H is independent of the data, it only

A

needs to be computed once, like the Green's functions. Furthermore, since His sym-

metric, only half of the matrix needs to be retained in memory.

The parameter variance, W1'1, has the role of a "prewhitening" term on the

diagonal of the approximate Hessian matrix. Experience has shown that H is often

almost singular (i.e., the problem is ill-posed) unless this term is included. However, in

practice, it is difficult to estimate the magnitude that the W1 terms should have. In this

implementation, relative weights are used as input. After the first migration pass, the

program MITI computes the average value on the diagonal of the Hessian for each

parameter, in order to convert the relative weights to absolute numbers. Small relative

values (e.g., 10% of the average or less) have been found, empirically, as sufficient to

guarantee the stability of the matrix inversion.

5.2.4 Computing the step size

Once the migration step has been completed and the approximate Hessian is

known, the model update is then given approximately by equation (5.4), and can be used

to compute a new scattered wavefield. The explicit formula for forward modeling in the

ray-Born approximation is very similar to equation (5.3). However, the magnitude of the
A J

parameter change implied by H is typically too large, because of the neglected off-
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diagonal terms. Therefore, the approximate model update given by equation (5.4) should

be treated as a conditioned gradient estimate, rather than an absolute model update.

An optimal model-update step size can easily be computed by exploiting the

linear nature of the Born approximation. I begin by defining the total model perturbation

after / iterations as the sum of incremental model perturbations,

/
Am/(x) = Y, Smf (x) , (5-6)

7=1
where the incremental model-parameter perturbation vector for the yth iteration is

8m 0 ' > = J^H-V' , (5*7)

and A^ is a damping factor applied to the update given in (5.4). Defining usc°) as

it can be easily demonstrated that the data residual after the /th iteration may be written

SC

can then be chosen to minimize

, (s.10)
d t

by setting

(5.11)
(A««(r))2

d t

The secondary cost function, Ex, expresses the /2-norm of the misfit between the previous

data residual vector, and the current scattered wavefield. In equations (5.10) and (5.11),

the sum over d represents the sum over all of the data traces (i.e., the first four

summations in (5.3)), to reduce the number of subscripts used. Equation (5.11) simply

states that A^ is taken to be the zeroth lag of the cross-correlation of the scattered
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wavefield, usc^, with the previous data residual, Au^"1 \ divided by the zeroth lag of the

autocorrelation of usc
w, taken over all traces.

5.3 Examples

5.3.1 Surface-data examples

The first series of synthetic-data examples have been computed using the model

geometry shown in Fig. 5.7. The parameters of the background medium for the examples

that follow are the same as those used previously for the impulse-response calculation

(see Table 5.1). Six of the scatterers shown in Fig. 5.7 represent small positive

perturbations to the individual parameters. The isotropic parameters (a, p and p) are

perturbed by 10% relative to the background medium. The anisotropic perturbations (y,

8, and e) have a magnitude of 0.1. The central point represents a 10% perturbation to all

parameters. In this section, I will consider the migration/inversion of three Born-synthetic

surface shot records generated by scattering from these 7 points, using a 12-trace end-on

spread geometry, with a group interval and near-offset of 50 m. These records have been

modeled as pure-mode synthetics using a P-wave source. That is, P-P events and P-SV

events are treated separately, and the source and receiver radiation patterns have been

neglected. This simplification is valid in the presence of a low-velocity near-surface

layer, which, coupled with the effect of the free surface, tends effectively to separate P

and SV waves onto the vertical and radial recording channels, respectively (Eaton, 1989).

Fig. 5.8a shows the scattered P-P and P-SV events calculated for model 5.1a,

where the anisotropic symmetry axis is taken to be vertical. The source function is zero

phase, with a 5-15-55-90 Hz trapezoidal amplitude spectrum. These are the best possible
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r r r
133

Target zone

JL, Borehole
source

• Borehole
receiver
Surface

Fig. 5.7. Model geometry used for the first three examples. Inset shows the

distribution and type of scatterers, each representing a line segment extending into
and out of the page.

data for the migration/inversion algorithm, because they are noise-free, satisfy all of the

assumptions (e.g., far-field), and have been computed using the ray-Born approximation.

The migration/inversion results for this input dataset after three iterations are shown in

Fig. 5.9.

The limited aperture of the recording geometry used for this example severely

restricts the range of scattering angles. Artifacts that result from this restriction include

smearing of the images, and parameter cross-coupling. Nevertheless, some of the

essential features of the input model have been recovered within the bandwidth of the

source function. In particular, the isotropic parameters appear to be much better resolved

than the anisotropic parameters in this example. Some leakage of the p scattering point
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onto the a and 3 images suggests that perhaps P- and 5-wave impedance would be a

better parameterization for surface reflection data than a and p, as suggested by

Tarantola (1986). No leakage of the anisotropic parameters onto the a, (3 and p images

is apparent. Note that the anisotropic perturbations are not imaged as points, but as a

criss-crossing linear feature. This artifact is interpreted as preferential alignment of

gradient maxima due to the anisotropic nature of the scattering radiation patterns (see

Figs. 2.5 to 2.7).

Fig. 5.8b shows seismograms computed by scattering from the perturbation

models shown in 5.9. The frequency content of the output traces appears to be slightly

lower than the frequency content of the input traces, due to the spatial smearing of the

scattering points. The data residual, found by taking the difference between the traces in

Fig. 5.8a and 5.8b, is about 19% of the energy of the input traces. At first glance, the

magnitude of the inversion results, expressed here as a percentage of the actual scattering

strength, appears to be too small. However, in the Born approximation each point scatters

energy independently. Thus, scattering from a collection of closely spaced, weak

scatterers can produce results nearly identical to scattering from a single, large

perturbation. Integrating the scattering response over a rectangular area of 40 m by 20

m, centred over the true position of the a perturbation, for example, gives a net

scattering strength of 109% of the true perturbation. Prior to application of the damping

factor, X, the maximum scattering strength computed using equation (5.4) at the true

position of the a perturbation was about 50%, very similar to results reported by

Beydoun and Mendes (1989). A summary of the integrated scattering strengths for this

model over 40 m by 20 m rectangles appropriately positioned for each parameter is given

in Table 5.2.

Fig. 5.10 shows the migration/inversion results for the case in which the
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a

-10.0 %

-8.0 % 8.0 -15.0 % 15.0

m 200

-5.0 % 5.0

Fig. 5.9. Results of three iterations of migration/inversion for model 5. la.
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a

-2.0 % 2.0 -1.5 % 1.5

3.0 -5.0 % 5.0

m 200

-1.0 % 1.0

Fig. 5.10. Results of three iterations of migration/inversion for model 5.1b.



Chapter 5: l2-migrationl inversion 138

anisotropic symmetry axis is horizontal (model 5.Ib). The results are similar to the

previous case, except that some leakage of the e parameter onto the other images is now

visible. The total energy in the data-residual traces in this case was 77% of the energy

of the input traces. The parameter recovery statistics, found by integrating the inversion

results over a 40 m by 20 m area, are also given in Table 5.2. The smaller integrated

values for model 5.1b relative to model 5.1a (ideally, the values should be close to

100%) suggest that for the surface recording geometry used here parameter cross-

coupling is a more serious problem when the anisotropic symmetry axis is horizontal,

rather than vertical.

Parameter a P 8 e P

Model 5. Ia
Individual
parameter

Centre of
target zone

109%

175%

45 %

79%

58%

134%

40%

202%

48 %

87 %

Model S.lb
Individual
parameter

Centre of
target zone

18%

44%

9 %

17 %

18 %

38%

16%

35 %

7 %

17 %

Table 5.2. Summary of integrated M/I perturbation values for models 5. Ia and 5.1b,

over a rectangular area 40 m by 20 m in size. A value of 100% would signify that
the true perturbation amplitude has been estimated, but the perturbations have been
smeared over a finite area, rather than concentrated in a point.
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5.3.2 Crosswell examples for an isotropic background model

Numerical experiments similar to the previous example have been conducted for

a crosswell acquisition geometry, using the same isotropic background model and set of

scattering points. The model includes two boreholes that are equidistant from the target

zone, and separated by 2000 m. Two sources were modeled, at depths of O m and 2000

m, with 21 receivers in the opposite well. Each source consisted of a single impulse in

the Jc1-direction. However, both the X1- and ^-components of particle motion were

calculated at each receiver position. The calculated X1 -component traces are displayed in

Fig. 5.11a, for the case of a vertical axis of symmetry (model 5.2a). The (trapezoidal)

source amplitude spectrum in this case is 10-40-80-200 Hz.

The results after three iterations of migration/inversion are shown in Fig. 5.12.

The images of perturbations to a, p and e are the most satisfactory. Arguably, the best

inversion image for this example is e, rather than any of the isotropic parameters. The

re-scattered results are displayed in Fig. 5.11b, for comparison with the input data. The

residual energy in this case was only 8%. The algorithm seems to have the most

difficulty matching the converted-wave response (middle panel in Fig. 5.11).

Two other models were conducted using this acquisition geometry. Model 5.2b

used a horizontal axis of symmetry, but was otherwise the same as model 5.2a. Migrat-

ion/inversion results are plotted in Fig. 5.13, and tabulated in Table 5.3. The change from

a vertical to a horizontal axis of symmetry seems to have had much less effect on

parameter resolution for the crosswell geometry than the surface geometry considered in

model 5.1.

The final example from this set used sources and receivers in the ^-direction,

generating only SH-waves. The migration/inversion results for this case (model 5.2c) are

plotted in Fig. 5.14, and summarized in Table 5.3. The y parameter, which can only be
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700

P-P
(1)

140

1000

1000

P-SV,
SV-P

1400

1450

,.." ''•'
•'•

SV-SV
(0.05)

1900
a) b)

Fig. 5.11. a) Ray-Born synthetic data for model 5.2a fc-component). Flags indicate the
first trace in a shot record. Time is in ms, and bracketed number is the plot amplitude
(lower plot amplitude implies larger amplitude for trace data), b) Seismograms computed
by scattering from the perturbation models shown in Fig. 5.12.
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a

-6.0 % 6.0

3.0 -3.0 % 3.0

m 200

-6.0 % 6.0

Fig. 5.12. Results of three iterations of migration/inversion for model 5.2a.



Chapter 5: l2-migrationl inversion 142

-6.0 % 6.0 3.0

-3.0 % 3.0 -2.0 % 2.0

-6.0 % 6.0

0 m 200

Fig. 5.13. Results of three iterations of migration/inversion for model 5.2b.
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Y

-8.0 % 8.0 -5.0 % 5.0

-8.0 % 8.0

m 200

Fig. 5.14. Results after three iterations of migration/inversion for model 5.2c.
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Parameter a P 6(Y f) E P

Model 5.2a
Individual
parameter

Centre of
target zone

81 %

90%

54%

41 %

55%

50%

29%

39%

62%

152%

Model 5.2b
Individual
parameter

Centre of
target zone

76%

87 %

56%

51 %

57%

61 %

15 %

21 %

65 %

160%

Model 5.2c
Individual
parameter

Centre of
target zone

-

-

170%

209%

48%

55 %

-

-

71 %

173 %

Model 5.3

Individual
parameter

Centre of
target zone

-

-

8.3%

7.9%

5.5%

5.7%

-

-

2.8%

3.8%

* This parameter is taken to be 8 for models 5.2a and 5.2b, and y for models 5.2c
and 5.3.

Table 5.3. Summary of integrated M/I perturbation values for models 5.2 and 5.3, over
a rectangular area 40 m by 20 m in size.
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resolved by the SH-SH mode of scattering, is moderately well resolved in Fig. 5.14 but

exhibits some cross-coupling with the p parameter.

5.3.3 Crosswell example for an anisotropic background

An example similar to model 5.2c was computed using a homogeneous, aniso-

tropic background medium having the same parameters as the Greenhorn shale. Experi-

mentation with qP-qSV datasets (not shown) revealed that all perturbations except y were

sensitive to qSV converted and unconverted scattering. Thus, inversion results for sources

and receivers oriented in the X1- or ^-directions were dominated by artifacts related to

the anomalous seismic amplitudes on the cusps of the qSV wavefront (see Fig. 2.3).

The results of migration/inversion applied to the SH-SH response of the

anisotropic model (model 5.3) are shown in Fig. 5.15. The results are essentially the

same as for model 5.2c, except the inversion images exhibit a noticeable bulk shift

toward negative values, and are characterized by much smaller magnitudes, for reasons

that are as yet uncertain.

5.3.4 Crosswell example for a complex geological model

The preceding examples have all featured a homogeneous background model. In

practice it is unlikely that a homogeneous model will be a sufficiently good approxi-

mation to the true earth. The next example makes use of the anticline model from the

previous chapter (see Figs. 4.2 and 4.3). Green's functions for the source and receivers

were computed using the finite-difference technique described in the previous chapter.

In this case, a crosswell-recording geometry, similar to a VSP, is employed (Fig. 5.16),

consisting of 14 receivers at an interval of 50 m. However, there are no receivers within

the transition layer because of severe amplitude anomalies associated with the strong

heterogeneity in this zone. Three scattering points, each representing a 10% perturbation

to a, p and p were used to generate the input ray-Born dataset (Fig. 5.17a). The target
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-0.3 % 0.3

y

-0.2 % 0.2

m 200

-0.2 % 0.2

Fig. 5.15. Results after three iterations of migration/inversion for model 5.3.
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Source

O m 200

Receivers

Fig. 5.16. Acquisition geometry used for model 5.4. See Figs. 4.2 and 4.3 for a more

complete description of the background model.

zone was not positioned around the fractured reservoir to avoid complications associated

with the caustics near the zone.

M/I results for model 5.4 after ten iterations are shown in Fig. 5.18. Only the

isotropic parameters arc shown; the anisotropic parameters were effectively decoupled

from the inversion procedure by assigning very large values for the corresponding inverse

variances. Thus, propagation through an anisotropic background medium was modeled,

although the scattering itself is modeled as being isotropic. Cross coupling is evident for

all three parameters, but is the most problematic for p. The tilted "bow tie" appearance

of the M/I images is typical for this type of recording geometry (e.g., Beydoun et al.,
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Fig. 5.17. a) Input data for model 5.4. Time is in ms, and bracketed number shows plot

amplitude (see Fig. 5.11). b) Predicted data, generated by scattering from migration/
inversion results (Fig. 5.18).
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a
3.5

-3.5

5.0

-5.0

17.0

-7.0

Fig. 5.18. Migration/inversion results (10 iterations) for isotropic parameters, model 5.4.
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1990). The horizontal component of the re-scattered traces is displayed in Fig. 5.17b for

comparison with the input datset (Fig. 5.17a).

Fig. 5.19 shows the M/I results for p after 1, 2 and 10 iterations. Differences

between each of these images are not dramatic, but do illustrate two important features.

First, the bow tie smearing artifacts are gradually reduced as the iterations proceed, as

the estimated perturbation amplitude becomes more concentrated into a point. Secondly,

cross coupling effects, particularly with the p parameter, diminish somewhat from 1 to

10 iterations. In Fig. 5.20 the data-residual energy, as a percentage of the energy in the

input dataset, is plotted versus iteration number. The data-residual energy shows a

systematic decrease, from about 51% to about 19% over the 10 iterations. Note that the

CPU time on a SUN Sparcstation 2 for the first iteration was approximately 4.5 hours,

and was devoted mainly to the computation of the background Green's functions.

Subsequent iterations required only 20 minutes, because the Green's functions did not

need to be recomputed.

5.3.5 Migration/inversion using a non-Born dataset

A final example is used here to demonstrate the behaviour of the algorithm using

a non-Born input dataset The input data were generated using the Uniseis raytracing

program, and are based on the reflection properties of plane waves at a smooth interface.

The source wavelet is the same as in the previous crosswell examples. The background

model is shown in Fig. 5.21, and includes a sloping interface that becomes horizontal.

The JC1-component traces from the ray-traced input dataset, after subtraction of the

P-wave and S-wave direct arrivals, are shown in Fig. 5.22. This dataset includes P-P, P-

SV, SV-P and SV-SV reflections from the interface, but no diffractions. Migration/

inversion results are shown in Fig. 5.23. Unfortunately, parameter coupling effects as

well as the non-Born nature of the modeled data have resulted in erroneous inversion
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1 iteration

2 iterations

3.5

-3.5

15.0

-5.0

10 iterations

17.0

-7.0

Fig. 5.19. Migration/inversion images for density after 1, 2 and 10 iterations.
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3 5 7
Iteration number

Fig. 5.20. Graph of data-residual energy as a function of iteration number for model
5.4.

results. For example, no change in 8, e, or p exists at the interface, but these are all

indicated in the inversion. However, the images do correctly show both the sloping and

horizontal parts of the interface.

Note that because only P-P scattering is used in the inversion, the perturbation

image for a has an appearance that is somewhat different from the other images. The

same image, roughly speaking, would be produced by applying conventional depth

migration techniques to the P-P reflection data. The different appearance is partially due
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a = 4000 m/s
P = 2000 m/s .
p = 2400 kg/m:

a - 3000 m/s
p = 1500 m/s
p = 2400 kg/m3

190Om

Receiver

Source
Target
zone

Interface

Fig. 5.21. Geological model and acquisition geometry used for example 5.5. Every

second geophone position is shown in the receiver well.

to the longer wavelength (and thus lower resolution) of P-waves than SV-waves, since

the bandwidth of the source function is the same in both cases. More significant,

however, is the fact that the segments of the interface illuminated by unconverted

reflections are shorter than the segments illuminated when both unconverted and

converted reflections are considered. Fig. 5.24 illustrates this concept schematically by

showing the reflection raypaths connecting one of the sources to the first and last

receivers. This result illustrates an important advantage of this migration/inversion

approach compared to conventional migration; by using all of the scattered wavetypes
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simultaneously, angular coverage of the target zone is improved, thus giving improved

resolution of geological features.

5.4 Conclusions

In this chapter, a migration/inversion technique has been described, that is suitable

for two-dimensional, transversely isotropic elastic media. The technique is based on a

ray-Born method introduced by Beydoun and Mendes (1989). Notable differences from

the algorithm of Beydoun and Mendes are:

1) the incorporation of anisotropy;

2) explicit IVi-dimensional corrections;

3) the use of a finite-difference approach for computing the ray-Green's

parameters, instead of the paraxial-ray method (Beydoun and Keho, 1987);

4) the use of iteration.

This method attempts to resolve, within some zone of interest, short-wavelength elastic

perturbations, relative to a prior background model. High-frequency, far-field, two-

dimensional and small-perturbation assumptions are incorporated in the theory. It is also

assumed that the direction of the anisotropic symmetry axis lies in the plane of

acquisition, and is known. Unlike conventional migration, it is possible to generate a new

scattered wavefield from the migration/inversion results, which can be visually compared

to the input dataset for quality-control purposes.

The set of synthetic-modeling experiments described here suggest that, given an

adequate angular coverage of the target zone and a dataset that satisfies the ray-Born

approximation, it is possible to resolve approximately the location and relative magnitude

of anisotropic scattering bodies by this technique. In some cases, the anisotropic

parameter e appears to be resolved as well as, or better than, any of the isotropic
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Fig. 5.22. a) Ray-traced input data for model 5.5. Flags indicate the first trace in each

shot record. Time is in ms, the bracketed number is the plot amplitude (see Fig. 5.11).
b) Seismograms computed by scattering from the perturbation models shown in Fig. 5.23.
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-14.0 14.0 -0.08 0.08

-0.06 0.06 -0.1 0.1

O m 1000

-0.28 0.28

Fig. 5.23. Single-iteration migrationAnversion results for model 5.5.
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a)

b)
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Fig. 5.24. Schematic illustration comparing the segments of the interface in model
5.5 illuminated by P-P reflection (a) with the segments illuminated by all of P-P,
P-SV, SV-P and SV-SV reflections (b).
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parameters (a, p and p). However, parameter cross-coupling is a more serious problem

than for the isotropic case. To achieve the necessary angular coverage, combinations of

various acquisition methods may be required (e.g., surface + crosswell). In addition, the

resolution of both isotropic and anisotropic parameters, as well as cross-coupling effects,

depend on the orientation of the anisotropic symmetry axis.

The simultaneous use of all scattered wave types (qP-qP, qP-qSV, qSV-qP, SV-SV

and SH-SH) by this technique has important implications regarding the ability to image

accurately slope discontinuities in the subsurface. A ray-traced example has been used

to demonstrate the merits of this elastic imaging approach compared to conventional

depth migration. The techniques described in this chapter are feasible, at least for small

datasets, using present-day workstation technology.
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Chapter 6

Conclusions
6.1 Thesis summary

For each of the topics discussed in this thesis, the underlying theme has been the

construction of useful images of the subsurface using multicomponent seismic-reflection

data, based on a transversely isotropic, elastic model for wave propagation in the earth.

Achieving this objective requires an understanding of the physical basis for anisotropy

in sedimentary rocks, basic tools for data preprocessing that correctly handle mode-

converted events, and the ability to compute forward models efficiently.

One specific data preprocessing issue, the problem of common-conversion-point

data binning, has been considered in some detail. This technique is necessary for the

accurate construction of unmigrated, stacked con verted-wave images, comparable to the

conventional CMP stacked sections that are the workhorse of the seismic industry.

Factors that can contribute to undesirable periodic binning behaviour have been analyzed

by means of surface stacking charts. A numerical example has been used to illustrate that

the presence of anisotropy can potentially have a profound effect on the spatial position

of the mode-conversion point.

A new finite-difference methodology has been introduced for the calculation of

ray-Green's functions, for TI elastic media. The method stems from a previous finite-

difference technique for traveltime calculation (Vidale, 1988; 1990) and a ray-Jacobian

technique for computing geometrical-spreading amplitudes (Vidale and Houston, 1990).

This approach permits ray-Green's functions to be computed rapidly for complex
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inhomogeneous and weakly anisotropic media. However, amplitudes computed in this

manner often exhibit oscillatory spatial artifacts to some degree.

Finally, a least-squares elastic migration/inversion technique introduced by

Beydoun and Mendes (1989) has been extended to include the case of a TI background

model, and TI perturbations to the background. This is a flexible and relatively cost-

efficient technique for generating high-resolution elastic images of the subsurface.

Testing of this algorithm using synthetic data indicates that, provided a sufficient angular

coverage of the target zone is available using qP and qSV wavefields, the anisotropic

parameter e may be resolved as well as, or better than, the velocity parameters, a and

p. By performing migration/inversion using all wave types simultaneously, resolution of

slope discontinuities in the subsurface can be improved, relative to conventional

migration. The method has been developed in a fully iterative form; however, the rate

of convergence after the first iteration has been found to be very slow, suggesting that

a single iteration is probably sufficient for most cases.

6.2 Future work

The depth-variant CCP binning method for P-SV data is, to date, the only seismic

imaging technique developed in this thesis that has been applied to real data. The

anisotropic ray-Born imaging techniques have only been tested, so far, using synthetic

data. Application of these methods to field observations is an important future goal, but

will probably require a dataset with good signal-to-noise characteristics and a broad

angular coverage of the target zone.

Beydoun and Mendes (1989) compiled an extensive list of practical and theo-

retical considerations for this M/I approach. Several of these theoretical considerations
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are particularly relevant for studies of anisotropic media, and should be incorporated into

future investigations:

1) In practice, it may be difficult to establish prior model covariance operators.

This problem is compounded by the general scarcity of independent sources of empirical

or statistical information concerning anisotropy. For the simple case of an identity matrix

scaled by a constant, the magnitude of model variances appropriate to the problem can

be estimated during the computation of the Hessian operator, as described in the last

chapter.

2) Data-covariance operators, expressing the relative importance of individual

observations, have not been considered here. A potential automated approach for

weighting the input data would be to use some local measure of coherence, such as

semblance (e.g., Milkereit, 1987).

3) The use of other linearizations of the wave equation (e.g., Rytov, Kirchhoff)

and other inversion norms (e.g., I19 Z00) may prove to be more suitable for inverting

seismic-reflection data.

4) The three anisotropic parameters (y, 8 and e) were originally defined in order

to simplify the expressions for phase velocity in weakly anisotropic materials (Thomsen,

1986). These parameters are used here for convenience, and it is unlikely that these

particular functions of elastic stiffnesses are optimal for the inversion problem. Thus,

some additional testing to determine a better parameterization would be beneficial.

5) The compatibility between the use of effective elastic parameters, arising from

the long-wavelength equivalent theories for TI media, and the Bom approximation may

require additional justification.

6) Investigation of other anisotropic symmetry classes, such as cubic or ortho-

rhombic, may be attempted in the future. While forward modeling of these types of
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anisotropic media poses no particular problem using the finite-difference techniques

presented here (at least, for wave propagation in symmetry planes), it is uncertain,

ultimately, how many independent parameters can be resolved from scattered seismic

data. The most general possible anisotropic-elastic inversion scheme would attempt to

solve for 24 parameters at each model pixel (i.e., 21 elastic stiffnesses for the triclinic

case, density and two direction cosines specifying the orientation of the anisotropic

symmetry system). Including anelastic effects would increase the total from 24. It seems

highly probable that the actual number of parameters that can be resolved independently

is much lower. However, the results from this thesis provide initial evidence that at least

one (or more) anisotropic parameters can be obtained from observations of the scattered

seismic wavefield. This information should complement velocity and density images, to

permit a more complete understanding of geologic structures within the earth.
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Appendix A

Elastic-scattering radiation patterns
A.I Stiffness components and vector constraints

Scattering radiation patterns due to small perturbations to the elastic stiffnesses

(Rayleigh scattering) are considered here, for a transversely isotropic medium. With no

loss of generality, the elastic stiffnesses, the slowness vectors and eigenvectors are

referred to a coordinate system with the *3-axis aligned with the anisotropic symmetry

axis, and the jcraxis in the acquisition plane. Perturbation to the stiffness matrix

elements, C11, C33, C13, C44 and C66 affect the following tensor components (see Table

2.1):

Qj3: C3333'

1̂3: C1133» C3311' (A.I)

4̂4* C3232> C3223> C2332> C2323> C3131> C3113> C1331' C1313'

Q6: C2121» C2112> C1221' C1212-

Because the source, receivers and anisotropic symmetry axis are assumed to be coplanar

(section 1.1.2),

P2 = p2 = o . (A.2)

As before, all quantities with the ~ and A superscripts are associated with the source and

receiver Green's functions, respectively. For qP and qSV waves, we also have
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I2 = S2 = O . (A3)

whereas for SH waves,

«2 -

A.2 The scattering vector

Rayleigh scattering for general anisotropic elastic media may be written as the dot

product between a scattering vector, s, and a model perturbation vector, Am0 = (C11, C33,

C13, C44, C66, p) via the relation (see Beylkin and Burridge, 1990, equation 2.12)

s-Am° = A a A c J . . . (A.5)

Using (A.I), (A.2) and (A.3), the scattering vector, s, for qP and qSV waves may be

written

(A.6)
AftAA

For SH waves, s may be written

s =(0,0, 0,P3P3̂ 1P1, -1)T , (A.7)

using (A.1), (A.2) and (A.4).
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Appendix B

Time-shifted hyperbolic moveout for
converted waves
B.I Derivation of the formula

Castle (1988) developed a time-shifted hyperbolic formula for estimating the

moveout for P-P reflections in an isotropic, horizontally layered medium. This formula

is exact to the fourth power of offset, and is easily adapted to the case of mode-

converted (P-SV) reflections. Castle's (1988) NMO formula may be written

c2+i! . (B-1)
° v2

In equation (B.I), x is offset, t(x) is two-way traveltime and U7 is the y'th weighted

moment of the velocity distribution, given by

u. = ±1 ____ (B.2)rJ N

J=I

where Aiy is the vertical traveltime and Vj is the velocity (P or S) in the jth layer. S is

defined as:

S = . . (B.3)
P2
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In addition,

(B.4)

* o = ^0 s
v2 = Sp2 .

For converted waves, Castle's (1988) definitions (equations B.2 - B.4) remain the same,

except that the weighted moments of the velocity distributions are summed twice for

each layer, once each for P-wave velocity (a) and S-wave velocity ((3). For the simple

case of a single layer with (3/oc = G,

P2 = CC2G
(B.5)

. OC4G(I +G3)
P 4 ~ (I +G) '

giving

c = . (B.6)
G(I +G)

Making the assumptions that G = 0.5, equation (B.6) reduces to

/• ——M>

3
(B.7)

9 3V2

where Vn^2 = p2- Equation (B.7) is a useful approximation for estimating P-SV moveout.

For other estimates of G, (B.7) can be modified accordingly.
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B.2 Comparison with other formulas

Tessmer and Behle (1988) and Slotboom (1990) have presented different formulas

for estimating P-SV moveout. Tessmer and Behle (1988) wrote an even-ordered power

series expressing the total moveout exacdy, and truncated after two terms to give the

hyperbolic formula

(B.8)

Slotboom (1990) used an empirical argument to arrive at the shifted hyperbolic formula,

(B.9)

Observe that (B.9) is equivalent to (B.7) for G = 1 (i.e. a = p). The relative traveltime

error, Ar = rexact - rformula versus offset-to-depth ratio, x/h, is plotted in Fig. B.I for these

three formulas for the single layer case.
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Fig. B.I. Comparison of moveout formulas for converted waves, for the single-layer
case.
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Appendix C

The eikonal equation as a sixth-order
polynomial
C.I Derivation

I begin by writing the eikonal equation for anisotropic media in its determinant

form,

tet\CyuPjPrfiik\ = 0 • (C1)

For wave propagation in the plane X2 = O, we have p2 = O based on the assumptions

given in section 1.1.2. The finite-difference stencils are always chosen so that an estimate

of P1 is available, based on existing knowledge of the traveltime field. Thus, the method

of solution here is to substitute known values for P1 andp2 into equation (C.I) and solve

for p3. Substituting P1 andp2
 mto equation (C.I) and collecting equal powers of p3 leads

to a sixth-order polynomial equation. Defining

A — r*\k ~ Cz3*3

, (C.2)

Cik = Ci\k\P\ -

equation (C.I) may be rewritten as

ty = 0 ,;=0,...,6

The coefficients, I;-, of equation (C.3) are given by



Appendix C 180

(C.4)
= |ABC| +\ACB\ +\BAC\ +\BCA\ +\CAB\ +\CBA\

^5 =\BCC\+\CBC\+\CCB\

and

In equation (C.4), the notation [ABC] is used to represent a matrix whose first row comes

from A, the second from B and the third from C. Thus, the coefficients of the

polynomial equation are found using the determinants of matrices that are row-

permutations of the matrices defined in (C.2). The solution of equation (C.3) can also be

used for calculating reflection/transmission angles at a welded interface, in agreement

with the anisotropic form of SnelFs Law (equation 3.20).




