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ABSTRACT

An analytic method relating incidence, reflection and transmission angles at an
interface between anisotropic media is presented. The method relies on the continuity
conditions relating tangential components of phase slowness across the interface, and on
the fact that the ray is perpendicular to the phase-slowness surface. The rather familiar
concepts of vector calculus are used in a template for calculating phase and group angles.
The angles involved in wave propagation through layered anisotropic media are, at times,
significantly different than their isotropic counterparts. Thus the trajectories derived in
raytracing by the isotropic versus the anisotropic approach differ significantly.

This template is used to derive analytic expressions for phase and group angles,
and to elaborate a raytracing scheme for qP, qSV and qSH waves using expressions for
phase velocities under the assumption of weak anisotropy. The raytracing method can be
used to calculate traveltimes for layered weakly anisotropic media composed of TI
materials.

The results of a physical laboratory experiment, which involved propagation in the
symmetry plane of an orthorhombic material with known characteristics, have been
compared with theoretical calculations. The comparison indicates that the anisotropic
approach predicts reasonably well the experimental results and yields a significantly
better prediction than an isotropic one. It also suggests that weak-anisotropy assumptions
can be useful in practical applications as long as one remains within the intended limits of
approximation.

The analytical approach is further extended to provide a traveltime inversion
scheme for the anisotropic parameter characterizing gSH waves. The inversion method
can be used in multi-layer media and accounts for raybending at interfaces. It is, however,
very sensitive to errors in input parameters.

The results of both theoretical and laboratory investigations indicate that ignoring

anisotropic effects can, in certain cases, lead to significant errors. This dissertation offers



an approach which might prove helpful in such circumstances. Also, | believe, the
usefulness of the present work to lie in clearly relating mathematical analytical
formulations to physical consequences, thus contributing to a more intuitive

understanding of phenomena exhibited by wave propagation in anisotropic media.

RESUME

Une méthode analytique liant les angles d’incidence, de réflexion et de réfraction
a linterface de deux milieux anisotropes est proposée. Cette méthode s’appuie sur les
conditions de continuité liant les composantes tangentielles ldatéur (inverse de la
vitesse) de phase a linterface d'une part et d’'autre part, sur le fait que le rai est
perpendiculaire a la surface de la lenteur de phase. Les concepts relativement familiers du
calcul vectoriel sont appliqués dans un modeéle de calcul des angles de phase et de groupe.
Les angles impligués dans la propagation des ondes au travers de milieux stratifiés
anisotropes sont parfois trés différents de leur homologues isotropes. Ainsi les trajectoires
déduites du tracage de rais suivant les approches isotrope et anisotrope peuvent différer
de maniere significative.

Le modele permet d’obtenir les expressions analytiques des angles de phase et de
groupe et d’élaborer un schéma de tracage de rai pour les ondes gP (quasi longitudinale),
gSV (quasi transversale verticale) et qSH (quasi transversale horizontale) en utilisant
pour les vitesses de phase, des expressions assumant une faible anisotropie. La méthode
de tracage de rai peut s’appliquer lors du calcul des temps de propagation lorsque le
milieu stratifié faiblement anisotrope est composé de matériaux IT (Isotrope Transverse).

Les résultats d’une expérience physique en laboratoire, impliquant la propagation
dans le plan de symetrie d’'un matériau orthorhombique aux caractéristiques connues, ont
eété comparés avec les solutions du calcul théorique. La comparaison indique que
I'approche anisotrope prédit de maniere raisonnable les résultats expérimentaux et
autorise une preédiction plus juste que I'approche isotrope. Il est également suggeré que la

condition de faible anisotropie assumée lors du calcul se révéle étre fort utile dans le cas



d’applications pratiques tant que l'on demeure dans les limites de validité de
I'approximation.

Enfin cette démarche analytique est étendue afin de proposer un moyen
d’inversion du temps de propagation pour les parametres anisotropes qui caractérisent les
ondes qSH. La méthode d’inversion peut ainsi étre appliquée dans un milieu multicouche
et prendre en compte la courbure du rai aux interfaces. Ce type de calcul est toutefois
extremement sensible aux erreurs dans les paramétres d’entrée.

En conclusion, les résultats des investigations théoriques et expérimentales
montrent qu’en certains cas, ignorer les effets de I'anisotropie peut conduire a des erreurs
significatives. Cette dissertation propose une approche applicable en pareilles
circonstances. Je crois également que l'utilité de ce travail réside en ce qu'il lie
clairement les formules mathématiques analytiques aux conséquences physiques. Ceci

contribue a une compréhension plus intuitive des phénoménes induits lors de la

propagation d’ondes au sein de milieux anisotropes.

Traduction: Marc Villéger
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CHAPTER

“Settle thy studies Faustus, and begin
To sound the depth of that thou wilt profess.
Having commenc’d, be a divine in show,
Yet level at the end of every art,
And live and die in Aristotle’s works.
Sweet Analytics, ‘tis thou hast ravish’d me:
Bene dissere est finis logices.
Is to dispute well logic’s chiefest end?
Afford this art no greater miracle?
Then read no more, thou hast attain’d the end.
A greater subject fitteth Faustus’ wit:

Christopher Marlow
“Doctor Faustus”

DEFINITION OF THE PROBLEM

1.0. INTRODUCTION

The Oxford English Dictionary on Historical Principles states that the term

isotropic derives from the Gree&oo (equal) andporoao (turn). It began to be used in

the modern vocabulary in 1864. The opposite of the isotropic is anisotropic or
aeolotropic. The former term is, at present, widely used, while the latter term was in
favour with earlier researchers, e.g., Love (1927). Winterstein (1990) restates the
definition of anisotropy as variation of one or more properties of a material with
direction. Within the scope of this dissertation, the anisotropic effects exhibited by
velocity are considered. This means that the speed of the ray propagating through a

medium depends on the direction of propagation and entails concepts of phase and group



velocities. Other interesting effect, e.g., amplitude, wavelet shape, etc., are not
considered.

A very brief introduction to several rudimentary concepts is given below. Certain
notions and definitions are stated, when necessary, throughout the dissertation. In
general, however, a reasonable familiarity of the reader with description of anisotropic
phenomena is assumed. Several textbooks provide an extensive and rigorous
introduction, e.g., Love, 1927, Chapter 13; Auld, 1973, Volume |, Chapter 7, and
Volume Il, Chapter 9; Helbig, 1994.

1.1. RUDIMENTARY CONCEPTS

In an anisotropic medium Hooke’s law can be written as:

O = G € » (1.1)

whereg, ande are the second-order stress and strain tensors, whidhe fourth-rank
tensor of elastic constants (stiffnesses) of the medium. The tensor can be “visualized” as
a 33x3x3 matrix in a 4-D space. In general, has eighty-one {3 components.

However, both stress and strain tensors are symmetric, resulting in:

Gk = G = Gu » (1.2)

and giving only thirty-six independent constants. Furthermore, due to strain energy

considerations::
G = Gaij » (1.3)
and the number of elastic constants is further reduced to twenty-one. This is the largest

number of elastic constants that one might need to uniquely describe an anisotropic

material. A material requiring all twenty-one elastic constants for a complete description



belongs to the triclinic symmetry class. Notably, the smallest number of elastic constants
necessary to describe a material is two. Materials requiring only two elastic constants for
a complete description are called isotropic, and the two elastic constants can be expressed
as the well known Lamé parametersandy.

For infinitesimal strains, appropriate in the geophysical context, the strain tensor

may be approximated by the Cauchy strain tensor:

1%+’MD (1.4)
g == — .

whereu denotes displacement, arddenotes position. Ignoring any body forces, e.g.,

gravity, the equation of linear momentum can be written as:

—L=p—", (1.5)

wheret is time, andp is the density of the medium. Combining the equations (1.1), (1.4)

and (1.5), one arrives at the wave equation (e.g., Daley and Hron, 1977):

- A =0. 1.6
P T O™ ax O 9

Consider the displacement, of the form
u, = Ap, exr{ iw(m % - l)] (1.7)

(e.g., Cheadle et al., 1991), whérés the amplitude factop corresponds to the particle

displacement or polarizatiory is the angular frequency, amd denotes the phase-



slowness vector defined in terms of the unit normal parallel to the wave diregtang

the phase velocity, That is,

m=". (1.8)

Combining equations (1.6), (1.7) and (1.8) yields:

(C|jkl nn- pV25ik ) R =0. (1.9)

Expression (1.9) constitutes a system of linear homogeneous equations. The
system has a non-trivial solution if and only if the determinant of the coefficient matrix is
identically zero, i.e.:

Cupn — pvzaik | =0. (1.10)

Introducing the Christoffel symbdT; = cjianjn;, the determinental equation (1.10)

can be written in a matrix form as a typical eigenvalue problem:

rll_pvz I_12 r13.
M I_zz_p\/2 [ =0. (1.11)
r31 r32 r33—pV2

The expressiopv? takes on values equal to the eigenvalues of the nfatrikhe
matrix, I', is symmetric and real because of the propertiegof Therefore, in general,
there are three distinct and real phase velocitie®©ne of them corresponds to the
compressional-wave speed and the remaining two, to the shear-wave speeds. In general,
the expressions for phase velocities for an arbitrary symmetry system and in an arbitrary

direction are very complicated. Much meaningful information, however, can be obtained



by limiting the solution to a particular symmetry system, and by confining the
propagation to specific symmetry planes or symmetry axes (e.g., Cheadle et al., 1991).

One must remember, however, that in confining oneself to considering anisotropic
propagation within particular symmetry planes one does not embrace the entire
complexity of the problem. The trade-off between complexity and generality of approach
or complexity and accuracy of description is constantly present in mathematical physics.
This dissertation is no exception to this rule. The author attempts, as much as possible, to
make the reader aware of limitations and approximations.

In a qualitative sense one could distinguish two methods of dealing with inherent
complexities while describing Nature. Firstly, one can use a simplified view of the
physical phenomenon in question, e.g., considering the motion along the inclined plane
ignoring effects of friction. Secondly, one could choose to use an approximate
mathematical description, e.g., truncation of higher-order terms in a series. Although in
most cases in this dissertation both simplifications are used, it is important, from the
philosophical stand-point, to distinguish between the two.

In some cases it might be more convenient to express the possible twenty-one

independent components of the tenspas a 6x6 symmetric matrix (e.g., Love 1927):

%:11 C, Cu Cu Cp Cu%
- Cn Cu G Cy Czq]
C= B . Cis Ca Gy Czea (1.12)
- . . C44 C45 C46D
0s Y M . il
5 Gs QGD
- Cos [

There exists a simple method of index translation between the tensor notation,

Cjk and the matrix notatioGyn(e.g., Winterstein, 1990):

Tensor | ij orkl 11 22 33 32=23| 31=13 21=1p

Matrix morn 1 2 3 4 5 6




1.2. TRANSVERSE ISOTROPY

As an illustration of possible simplification, used extensively in Chdpteand
subsequent chapters, one can considexagonal symmetry systerin the geophysical
context one can often limit the hexagonal symmetry system to the so ttatisderse
isotropy with an infinite-fold vertical symmetry axidV. The TIV system implies, in
terms of velocity anisotropy, equal velocity in the azimuthal sense. The velocity is
varying, however, with the angle of propagation, in the vertical plane. The angular
velocity dependence is the same in all vertical planes, i.e., a single vertical plane at any
azimuth is representative of the entire medium. One could also say that any vertical plane
is a symmetry plane.

This system is particularly applicable in the case of horizontally stratified media,
or in media with predominantly vertical stress direction, which in a geophysical study can
be associated with the weight of the overburden. A TIV medium is uniquely described in
terms of five independent elastic constants (e.g., Thomsen, 1986) and in matrix notation

one can write:

e}

11 C11 - 2C66 C13 0
13 0
33 0

e
00

O (1.13)

O
]
N B B
. U) . . .
<
<
O
N
(@)
O

The phase velocities for three waves with mutually orthogonal polarization
directions can be expressed in terms of the elastic constants (e.g., Thomsen, 1986). The

phase velocity of a compressional wave is expressed by:

JCas *+ Cyy +(Cyy + C) oS &+ DE)
20 '

Ve (8) = (1.14)



The phase velocity of a shear wave with the vertical polarization direction is expressed

by:

\/C33 + C44+(C11+ C33)CO§€_ DG)

V(&) = 2

(1.15)

The symboD(¢), used in expressions for phase velocitieB ahdSVwaves, denotes:

D(¢) = \/(C33 —C,) + 2[2((:13 +Cu) - (Cs- Gl E]co§ E+[ E-4 G+ (;,4)2] cod &
(1.16)

Another useful symbol is:

E=(C,+Cy,-2C,). (1.16a)

The phase velocity of a shear wave polarized in the horizontal direction is

expressed by:

\/Cﬁe cos &+ C,, sirf &

Vu(€) =
P

(1.17)

The angleé is the phase angle, measured with respect to the horizontal, i.e., the
phase-latitude angle. The convention, contrary to most geophysical descriptions where the
phase angle is measured with respect to the vertical, i.e., colatitude, was chosen in order
to facilitate the use of standard expressions of vector calculus in polar coordinates in
subsequent chapters of the dissertation. When, in this dissertation, the phase colatitude is

used it is clearly stated and denoted by a syribol



1.3. THE OBJECTIVE OF THE WORK

The objective of the work is to investigate several aspects of elastic-wave
propagation in anisotropic media. Since layered sedimentary rocks are of special interest
to a petroleum geophysicist, the investigation of phenomena at a planar horizontal
interface between two media is given particular attention. The primary goal of this
dissertation is to provide an approach offering a better understanding of physics of
anisotropic media as observed through elastic waves. For this reason a special effort is
made to express physical quantities in terms of analytical formulse. To remain within the
realm of analytical expression one must, at times, resort to some simplification. This
dissertation provides a thorough investigation of a very convemeak-anisotropy
approximation(Thomsen, 1986).

The investigation of the Earth’s interior through seismic studies is primarily based
on the measurement of traveltime of a wave travelling between a source and receiver.
Travelpath, traveltime and velocity of the ray are interrelated, in general, by an
underdetermined system of equations. One of the key problems for a geophysicist
performing the measurements on, or near, the surface of the Earth is to use the traveltime
information to deduce both the raypath and the velocities of the propagating ray in
various layers of the medium. This is an inverse problem for which, in general, no unique
solution exists, i.e., the observed data can be satisfied by numerous different models. The
problem is complicated further if the speed of the ray travelling through a medium varies
with direction, i.e., if the medium is anisotropic. In a series of anisotropic layers
separated by interfaces, the traveltime depends directly on the ray (group) velocity of the
medium. The travelpath is governed by Snell's law depending directly on phase
velocities.

The incorporation of anisotropic phenomena into geophysical investigation
provides two major benefits. Firstly, anisotropic characteristics of a material are
indicative of its composition and its state. For instance, a material composed of fine
laminae, much smaller in thickness than the wavelength of a propagating signal, exhibits a

particular anisotropic behaviour. Also, fracturing of a material with the particular



orientation of cracks due to stresses results in anisotropic effects. Secondly, since, in
general, anisotropy affects the traveltime, the accurate reconstruction of the subsurface
based on the traveltime observations requires the knowledge of anisotropic parameters.
Thus, in the geophysical context, the study of anisotropy is important for both lithology
information, and imaging of the subsurface.

Ray theory, derived originally from geometrical optics, is an elegant and powerful
method for investigating wave propagation. In this dissertation, prior to approaching an
inverse problem, a new forward method is considered. Given a medium composed of
anisotropic layers with known properties, a method of raytracing between a given source
and receiver is proposed. The result of this method is the computed traveltime and the
raypath. Once a reliable method of forward modelling has been elaborated and tested
both numerically and experimentally (Chapters Il - VII), an inverse solution is derived
(Chapter VIII). The result of this ntedad is the computation of anisotropic parameters of
a stratified medium based on the measured traveltime. A more detailed synopsis of the
dissertation is given below.

Firstly, a new formalism of Snell's law for anisotropic media in terms of vector
calculus is derived (Chapter 1l). The formalism is described, for the ease of vector
calculus operations, in terms of Cartesian coordinates. Based on this formalism several
key attributes of an elastic wave can be given in both incidence and transmission media.
The description includes phase and group angles, as well as magnitudes of phase and
group velocities. The relationship between various quantities constitutes an important
aspect of comprehending elements of anisotropic wave propagation.

This general formalism is adapted for use in raytracing based on approximate
(weak anisotropy) expressions for slowness surfaces in anisotropic media. Initially the
method is developed under the assumption that the incident ray propagates through an
isotropic layer (Chapter Ill). This assungstj which implies the equivalence of phase
and group velocities in the medium of incidence, allows an initialization of the process by
relating the direction of propagation of the group-velocity vector to the continuity
conditions expressed with respect to the phase-velocity vector. Also, in Chapter Il the

formalism developed in the previous chapter in terms of Cartesian coordinates is
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translated to polar coordinates. This allows for ease in expressing various quantities with
respect to the angle of propagation.

A raytracing scheme for a stack of horizontal anisotropic layers is developed in
Chapter IV, leading to the traveltime calculations (Chapter V). The relationship of
modelling results between the approach using the anisotropic formalism of Snell's law
and the direct approach using Fermat’s principle of stationary time is discussed. Snell's
law, of course, can be viewed as a consequence of Fermat’'s principle. In raytracing
through anisotropic media, the relative equivalence of two approaches forms an important
verification of the methods since the Snell approach relies directly on the concept of
phase velocity, while the Fermat approach relies on the concept of group velocity.

Chapter VI introduces the formalism of Snell's law with the angle of transmission
given in terms of the angle of incidence for a boundary between two anisotropic media.
This means that one does not benefit from the facility provided by the coincidence of
phase and group velocities in the medium of incidence. The results of this chapter, which
can be viewed as an extension of the treatment presented in Chapter lll, provide further
insight into the concept of Snell’s law and Fermat’s principle of stationary time, as well
as into consequences of approximations and linearizations.

Chapter VIl deals with the physical measurement performed in the laboratory with
a medium composed of an isotropic and an anisotropic layer separated by a planar
interface. The results of physical modelling provide a comparison of numerical forward
modelling and actual experimental measurements. The results of physical modelling are
also used in the inversion process (Chapter VIII).

Chapter VIII intoduces an innovative way of inverting traveltime information
from a seismic experiment to yield the anisotropic parameters of a stack of horizontal
layers through which the ray propagates. The method is explicitly derived for shear
waves with transverse direction of polarization, and for any other waves exhibiting an
elliptical velocity dependence.

In this dissertation, which aims at understanding certain aspects of

anisotropic wave propagation, many peripheral or esoteric concepts and investigations,
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delegated to appendices, constitute an important part of the whole work. Thus, the
reader, is asked not to ignore them.

Appendix 1 investigates a concept of a quartic equation relating, for
compressional (P) waves, ray parameter and phase angle under the weak-anisotropy
assumption. It is observed that the concept can be illustrated as an intersection of a curve
and a straight line. The curve remains constant for a given medium and hence is termed
the characteristic biquadratic The straight line always passes through the origin while
its slope depends on the angle of incidence.

Phase-slowness surfaces or curves form a kernel of anisotropic Snell’'s law and
therefore influence all subsequent calculations. The only major mathematical
simplification used in this dissertation consists of employing simplified expressions of
phase slowness curves under the assumption of weak anisotropy (Thomsen, 1986). In
Appendix 2 a comparison of slowness curves generated using exact and approximate
equations is illustrated.

Although the spirit of this dissertation is to remain within the realm of analytical
expressions, some exceptions could not be avoided. Calculation of roots of a polynomial
expression or of a take-off angle in raytracing between a source and receiver in a
multilayer medium are examples of such instances. Appendix 3 investigates the
numerical precision of such computation using the mathematical software Mathematica®.

Appendix 4 contains a mathematical proof based on the implicit function theorem.
The proof relates to the method of inversion described in Chafiter V/demonstrates
the necessity of existence of a physical solution at a unique point of a mathematical
solution space which forms the crux of the aforementioned inversion method.

The inversion method derived in Chaptdtl \applies only to SHvaves or other
waves with elliptical velocity dependence. Appendix 5 contains some attempts at
approximate estimation of anisotropic parameters for P and SV waves.

Equations derived under the concept of weak anisotropy can be simplified further
by full linearization (Thomsen, 1986). Appendix 6 illustrates that, although by using the
initial simplification, i.e., truncation of higher-order terms in expressions for phase

velocities (or slownesses), one does not lose fundamental physical attributes of
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anisotropic wave propagation, those attributes can be lost in subsequent steps by
employing linearized expressions. It is further demonstrated that the initial use of the
weak-anisotropy approximation, which greatly facilitates the application of the formalism
of anisotropic Snell's law, followed in subsequent steps by exact (or at least not fully
linearized) expressions for group velocity and group angles, constitutes a preferable
approach. It is not insinuated here that the initial loss of accuracy, however small, can be
recovered, but that no loss of physical attributes results.

Appendix 7 provides a starting point for developing an anisotropic form of Snell’s
law using the exact equations of Daley and Hron (1977). The exact equations for
slowness curves, analogous in meaning and equivalent in form to those used in the

dissertation, are also shown.
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CHAPTER

REFLECTION AND TRANSMISSION ANGLES IN
ANISOTROPIC MEDIA :

2.0. INTRODUCTION

The mathematical description of phenomena related to wave propagation in
anisotropic media is considerably more complicated than that for isotropic media. This
complexity stems from the many physical properties distinguishing the anisotropic from
the isotropic medium. This chapter presents a method of calculating the angles of
reflection and transmission for a ray impinging on a boundary between two anisotropic
media. The innovation of the method introduced in this chapter consists in providing a
rather general analytical formalism for calculating the ray (group) angles at
discontinuities between anisotropic media. This formalism is then used, in Chiapter
for a weakly anisotropic medium yielding several useful equations, and leading, through
the raytracing method, to an inversion scheme presented in Chapter VIII.

For an interface between two isotropic media the relationship among all the angles
is elegantly and concisely described by the classical form of Snell's law, i.e.,

sind; _ sind, _ sind,

A A v,

, (2.1)

1 This chapter is based on work published by Slawinski M.A., and Slawinski R.A. in CREWES Research
Report (1994).
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where 6's with, respectively, subscripisr andt, correspond to incident, reflected and
transmitted waves and, andv, are the velocities in the two media, 1 and 2, which are
separated by a planar interface.

In general, the inclusion of anisotropy renders the mathematical formulation quite
complicated. Snell's law is not an exception and the calculation of reflection and
transmission angles is not a trivial task graphical approach to calculating reflection
and transmission angles for anisotropic media is presented by Auld (1973) and Rokhlin et
al. (1986). Rokhlin et al. (1986) also outline a numerical scheme using tensor equations.
Daley and Hron (1977, 1979) derive Snell's law in the particular cases of transversely
isotropic and ellipsoidally anisotropic media. This chapter seeks to express the concept
of incidence, reflection and transmission angles using the intuitively clear mathematical
apparatus of vector calculus in a rather general case.

Although it lies beyond the scope of this chapter to provide a thorough overview
of numerous physical phenomena in anisotropic media, it can be stated that two aspects of
physical properties inherent in wave propagation in anisotropic media are responsible for
the more complicated formulation than in the isotropic case. Firstly, the velocity of the
ray depends on direction and thus, for instance, the velocity of the incident ray is, in
general, unequal to the velocity of the unconverted reflected ray, although both rays
propagate in the same medium. This means that, in general, the angle of incidence is not
equal to the angle of reflection, even when the wave type is unchanged. This consequence
is analogous to the phenomena observed in studying converted waves exhibiting different
velocities for incident and reflected rays. Secondly, both group and phase velacities,
andv, have to be considered in studying wave propagation in anisotropic media. The two

are related (e.g., Rokhlin et al., 1986) by the formula:

wik =|v|=v, (2.2)

2 Note that the “standard” form of Snell’s law still holds in anisotropic media for phase velocities and phase
angles.
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wherek is the wave normal, i.e., the unit vector perpendicular to lines of constant phase,
or in other words, pointing in the direction of the phase veloeity-rom the definition

of the dot product it follows immediately that:
\w|cog6-9) =|v| = v, (2.3)

where @ - 9) represents the difference between phase and group angles. i.e., the angle

betweerw andv.

2.1. IMPORTANT CONCEPTS

In formulating the method for calculating reflected and transmitted angles at an
interface between isotropic and anisotropic media, it is helpful to restate certain basic
concepts. The intention is not to present those concepts in a rigorous and complete way
but to invoke those aspects which are most useful for the task at hand. The concepts in
qguestion include: phase and group velocities, refraction/reflection laws and phase-

slowness surfaces.

2.1.1. Phase and group velocities

Phase velocity is defined as the velocity with which plane-wave crests and troughs
travel through a medium and is expressed as the ratio of the frequency of vibration and
the wave number (i.e., the number of wavelengths per unit distance normal to the
wavefronts). Group velocity, also known as energy or ray velocity, is defined as a
velocity with which the energy of a wave propagatBsrect measurements of traveltime
usually yield the group velocity.

In dispersive media, e.g., an anelastic medium exhibiting frequency dispersion or
an anisotropic medium exhibiting angular dispersion, phase and group velocities are

different; both in magnitude and direction. For an anisotropic medium, at the same point
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on the wavefront, the group velocity is higher than the phase velocity. The direction of the
group velocity is perpendicular to the phase-slowness surface, i.e., to the surface
representing the inverse of the phase-velocity surface (Rokhlin et al, 1986). Also, the
phase velocity is perpendicular to the wave surface (Helbig, 1994). As a matter of fact,

both above-mentioned statements are equivalent.

2.1.2. Snell's law
Snell's law is a direct consequence of Fermat's principle of stationary time. In
horizontally layered media, it can be conveniently restated as a requirement for the

horizontal component of the wave numbeyto be continuous across the boundary. As a

matter of fact, the horizontal component of the wave number remains constant for all
layers and is analogous to the ray parameter. This property must be preserved for both
isotropic and anisotropic media regardless of the type of the wave generated at the
boundary, e.g., longitudinal or transverse, and serves as a kernel for the strategy of
calculating reflected and transmitted angles. A description of physical principles involved
in Snell’s law with emphasis on anisotropic media is given by Helbig (1994) on pages 32
to 38.

2.1.3. Slowness surfaces

Phase-slowness is defined (e.g., Winterstein, 1990) as the reciprocal of the scalar
phase velocity, and therefore can be expressed as the ratio of wave kyuarzegngular
frequency,w. In an isotropic medium the phase-slowness surface is a sphere with radius
equal to the inverse of the phase velocity (which does not vary with direction). In such a
case, phase and group velocities are collinear since the normal to the surface of a sphere
is collinear with its radius vector. For an anisotropic medium the shape of the phase-
slowness surface can form a much more complicated figure including concave and
convex shapes. The number of symmetry planes decreases as the number of elastic

constants necessary to describe the material increases. An infinite number of symmetry

3 In dissipative, anisotropic media, i.e., media which are not perfectly elastic, the notions of group and
energy velocity do not coincide (Carcione, 1992). Other physical restrictions might also apply (e.g., Krebes
and Le, 1994)
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planes exist for an isotropic medium described by two elastic constants, e.g., Lamé
parameters; no symmetry planes exist for a triclinic medium which requires twenty-one
elastic constants to be uniquely characterized (see e.g., Crampin and Kirkwood, 1981).
There are, in general, three slowness surfaces, each corresponding to a given wave
type: one for quasi-compressional and two for quasi-shear waves. The quasi-shear-wave
slowness surfaces can touch or intersect, thus forming singularities, i.e., points
corresponding to orientations along which qS phase velocities become equal for two
wave types. Interesting phenomena relating to polarization occur in the neighbourhood of

those points (Crampin and Yedlin, 1981).

2.2. GEOMETRICAL FORMULATION

Snell's law can be illustrated using phase-slowness surfaces for both incident and
transmitted media (Auld, 1973). The geometrical construction is facilitated by the fact
that the phase-slowness vectors of the incident, reflected and refracted waves are
coplanar. Their being coplanar is guaranteed by the necessity to satisfy boundary
conditions at all times and at every point of the interface. Therefore, it is convenient to
choose a Cartesian coordinate system such that all the phase-slowness vectors lie in the
xz-plane. To familiarize the reader with the method, the familiar case of isotropic media is
considered below.

Invoking the continuity of the horizontal component of the wave numier,
across a boundary, and by applying simple trigonometry to Figure 2.1, it is easy to obtain
the usual form of Snell's law for an isotropic medium, i.e., equation (2.1). Other concepts,
such as total internal reflection, also have their geometrical interpretation. For a

sufficiently large incidence angle one Has wv,, in which case no transmitted ray is
possible. The equalitg=w/v, yields the angle at which this first occurs, i.e., the critical

angle. Note that if the radius of the phase-slowness sphere in the transmitted medium is
larger than in the incident medium, there is always a transmitted ray and total internal
reflection cannot occur. For anisotropic media, each phase-slowness surface is, in general,
described by a different function and the phase- and group-velocity angles do not

coincide. To deal with a more complex situation, a more complicated mathematical
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scheme has to be employed. Figure 2.1, without loss of generality, illustrates a generic
case, i.e., the wave type is not specified. Consideration of mode conversion would yield,
in an isotropic case, two concentric circles in both media, representing phase-slowness
surfaces for compressional and shear waves. In an anisotropic case three geometrical
figures would appear in each medium due to the birefringence of quasi-shear waves, i.e.,

due to different velocities of two types of quasi-shear waves.

Z‘G

6
medium :
of
incidence "k X
X |
ll\i 61| C)
\

interface N
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medium
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transmission \/Q X

Figure 2.1. The geometrical construction yielding reflection and transmission angles of
slowness vectors in an isotropic medium using the phase-slowness surface. The same
concept applies in an anisotropic medium except thak#mane cross-section of the
phase-slowness surface does not, in general, form a circle. The thin lines within the
circles (radii) are collinear with the phase-slowness vectors; the thick lines, normal to the
phase-slowness surface correspond to the group-slowness vbtidisand O are the

angles between phase-slowness vectors for incident, reflected and transmitted waves and
the normal to the interfaced,, 6, and®, are the angles between group-slowness vegctors

for incident, reflected and transmitted waves and the normal to the interface, l.e., ray
angles. In the isotropic casd,= 6, N= 6, O = 6,. The angular frequency is assurped

to be a unity.
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2.3. MATHEMATICAL FORMULATION

The geometrical approach described above for the isotropic case (i.e., spherical
slowness surfaces) is easily extended to include more general scenarios, where the
slowness surface is an arbitrary surface in slowness space. Although there exist more
efficient computational schemes, e.g., Keith and Crampin (1976), Rokhlin et al. (1986),
the following analytical description provides an intuitive insight which is lost in various
numerical methods.

Consider two anisotropic media separated by a planar, horizontal interface. Let
the phase-slowness surface in the upper medium be given bgviiesurfacé of a

functionf( x, y, 2, in a slowness space spanned by Cartesian coordmgiesdz

f(x,y,2= a (2.4)

Similarly, let the phase-slowness surface in the lower medium be given by the level

surface of a functiog( x, v, 2,
g(xy,2=h (2.5)

A ray is incident on the boundary from above. Since all phase-slowness vectors (for
incident, reflected and transmitted waves) must be coplanar, without loss of generality
we take them to lie in thezplane (see Figure 2.2). Denoting the phase-slowness vector

asm, the continuity conditions require that:

mX=m X=m [, (2.6)
where x is a unit vector in the-direction and subscripts r, andt refer to incident,

reflected and transmitted waves respectively. Recall that the group(ray)-slowness vector,

w, is normal to the phase-slowness surface at the corresponding phase-slowness point. A
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detailed description of geometrical relationships and their physical basis is given by

Helbig (1994) on pages 21 to 29.

medium
_ of
incidence

of
transmission

medium 9(x,y,z)=b _ﬁ 9
t .
\\ ‘ X

0 "
Figure 2.2. lllustration of ray angles for incident, reflected and transmitted rays in
anisotropic media separated by a horizontal, planar interface using phase-slowness
surfaces described by functiohandg. m's correspond to phase-slowness vectorg and
w's to group-slowness vectors af$ to the ray angles for incident, reflected [and
transmitted waves. Note thieltz 6, N# 6, and O # 6, cf. Figure 2.1.

Using properties of the gradient, i.e., its pointing in the direction along Wisch

increasing the fastest and its being normal to the surface onfwhicbnstant, gives:

w, || Of (x,y,2) (2.7)

(%,%.%) "

4 Thelevel set of valua is defined to be those points at whi¢k y, z) = a. For the case of three variables,
one speaks devel surfaceor equipotential surfaceFor the case of two variables, one speakie\ws|

curve(e.g., Marsden and Tromba, 1981).
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i.e., the ray vectory, is parallel to the gradient. Normalizing, and choosing the funttion
to have a minimum at the origin(0,0,0) and to be monotonically increasing outwards,

yields:

. Df 1 )
Wi = — (X y Z)|(Xiv)4'4) , (2.8)
|Df (%, Y, Z)”(x‘,y.,z)

where the negative sign ensures that the incident unitwayyector points towards the
boundary. The angle of incidence, i.e., the angle between the ray vector and the normal to

the interface is given by:

of
cosh =w;i [-z)= 2006 (% ¥ Dy = Py (2.9)
ot 2, ey,

wherez is the unit vector parallel to the z-axis.

Now by choice of the coordinate systeyn= 0; givenx;, z is determined by
equation (2.4). Thus equation (2.4) provides an expressiof &= a function of.
Typically 6 is taken as an independent parameter; however, it may not always be
possible to invert equation (2.4) to obtain a closed-form expressigraf®a function of
6. Thus, in the general case, as already emphasized the present approach is presented

chiefly for the intuitive understanding it provides, rather than for its computational
convenience. In specific cases, illustrated in subsequent chapters, it is always possible to
express reflected and transmitted angles as functions of the incidence angle.

Similarly, the normalized reflected ray vector can be expressed as:

— Of(xvy,
AL, T (2.10)
|0f (x, v, 2|

(% ¥%7)
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and the angle of reflection, i.e., the angle between the ray vector and the normal is given

by:

of
__ zOOf(x,y,Z 0z
COSer=WrQ:ZDf - )|(X”y“”: Of e . -
oty 2, , . o ey

In evaluating the above expression one uses the fact that by contjruity; vy,
is zero by the choice of the coordinate system,zantan be found by substituting into
equation (2.4). Recall thaty andz are components of slowness while subscriptsdr
refer to incidence and reflection.

Physically, we require that the reflected ray be directed back into the incident
medium; thus the physical solutions must havéz>0. Note that the reflected ray need
not be unique: given the slowness surface in Figure 2.3, for instance, we have two

physical reflected solutions and one non-physical solution.

Figure 2.3. lllustration of the mathematical solution giving three reflected ray vectors.
The one pointing towards the interface is not physically realizable.

The normalized transmitted ray vector is given by:
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— Og(x Y, 2)
Wt =
0g(x, ¥, 2)

(X %.3) , (212)

(%, %.%)

and thus the angle of the transmitted ray measured between the transmitted ray vector and

the normal is given by:

. )
_ —  zmg(x V.2 oz
cosf, = (~z ) = - S me B =
| a(x y, Z)”(xpypa) | 9(xy, Zj (% %.2)

Again, as in equation (2.11), in evaluating the above expression one uses the fact

thatx; = -Xj; Yt is zero by the choice of the coordinate systenzaoan be found by

substituting into equation (2.5). Similar comments to the ones discussed in the case of
reflected waves apply to physical realizability and uniqueness of transmitted rays; the
only difference in the latter case is that one requires the rays to be directed into the
transmitted medium, i.e., physical solutions must havg-z) = 0.

It must be emphasized that, although the phase-slowness vettarg coplanar
for the incident, reflected and transmitted waves, the ray veatprsged not lie in the
same plane. Their directions are determined by that of the normal to the plane tangent to
the phase-slowness surface. They will, however, remain in the same plane if the phase-
slowness surfaces are, for instance, rotationally symmetric aboxHathe. In all cases
the magnitude of the ray velocity is obtained from equation (2.2).

If the phase-slowness surface does not possess rotational symmetry, the incident,
reflected and transmitted group vectors need not be coplanar. In such a case the angle of
deviation,, from the sagittal plane assumed to coincide withx#@ane, containing all
phase vectorsn, can be found by considering the projectiag, of the ray vectomny, on

this plane:

w,, = [wx0wZ], (2.14)
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and thus from the definition of scalar (dot) product, it follows that:

Cosy = W W, : (2.15)
[wiw.|

The above formulation can be easily adapted to be used specifically for incident,
reflected, or transmitted rays. Other concepts, such as total internal reflection, also
emerge naturally from the present formulation. Although for complicated slowness
surfaces it may be impossible to characterize total internal reflection by a single critical

angle as in the isotropic case, the general approach remains as described above.

2.4. EXAMPLES
The approach described above can be illustrated by several examples. Some cases

allow simple analytical solutions leading to valuable physical insight.

2.4.1.General case of elliptical anisotropy
Consider the ellipsoidal case where the velocities are different x thandz
directions and wherez, xy-, andyzplanes constitute symmetry planes. Considering the

xz-plane, the two phase-slowness surfaces can be written as:

f(x,2)= (v R*+(y 3 =1, (2.16)
and

g(x )= (y R*+(y ¥ =1, (2.17)

for the media of incidence and transmission respectively. Again, without loss of
generality, one can treat a generic case, i.e., not specifying the type of conversion at the

interface.
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Using equation (2.8) one can write:

W - _ [Vf)ﬁ, VZZZ] 218
T e (V) (2:18)

and by equation (2.9):

cosO = V.2 : (2.19)
JOx)?+ (¥2)°

Solving forz in equation (2.16) yields:

V1= (v%)” (2.20)

V.

z

in the case of the incident ray. Substituting equation (2.20) into equation (2.19) gives:

cosh, Vo1 (V)" (2.21)

WL (v )T
which can be explicitly solved fo¢:

2_ V2(1-cos 6,)
X TV co2 6+ VAV (- co0, §

(2.22)

Analogous expressions can be derived for reflected and transmitted rays.

Furthermore, sinc&” = x” = x’, the three expressions can be equated, thus giving Snell's
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law for ellipsoidally anisotropic media. Upon some algebraic manipulation this can be

expressed as:

2 Vf 2 — y/2 Vf 2 —\/2 V;<2 2
vx[?cot 6 +1]—vx[?cot 0 +1=v, [?cot 6, +1, (2.23)

z z z

where primed quantities refer to the medium of transmission. Equivalent expressions for
Snell's law with elliptical velocity dependence were obtained by Dunoyer de Segonzac
and Laherrere (1959) directly from elliptical geometry, and successfully used in studying
anisotropy in well-bore seismic in the Sahara desert. For further discussion on
geophysical applications of elliptical anisotropy see Chapter IV. Examining equation

(2.23) we see thafl = 8. Also, the critical angle can be obtained by settpg 7/2.

After some algebraic manipulation one gets:

N

cotg, == |Yx 1, (2.24)
V.

X

<<

For isotropic media one can write:

V,=V,=\, (2.25)
and:

V.SV, =\, (2.26)
Equation (2.23) then reduces to equation (2.1), i.e., the standard form of Snell's law in

isotropic media and equation (2.24) to the standard expression for the critical angle in the

isotropic medium.
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2.4.2. A particular case of isotropic/anisotropic interface
Let us consider a planar boundary between the isotropic and elliptically

anisotropic media. Let the velocities be so chosen that:
V, =V, = V=V, (2.27)

i.e., the horizontal velocity in the anisotropic medium equals the velocity in the isotropic

medium. Using Equation (2.23) gives:

tané, = targ,. (2.28)
V

z

An interesting phenomenon can be observed by examining equation (2.28). To

observe the phenomenon more clearly we can write:

tang, _ v
tand, v,

z

(2.29)

Thus if v,>v, 6, >6, and the transmitted ray is bent towards the normal, which
is the opposite of what happens in the isotropic case. This phenomenon is related to the
complicated form Fermat's principle takes in the anisotropic case, as discussed below, and

more extensively in Chapter VI.

2.5. DISCUSSION

Numerous physical consequences can be described using the approach presented
above. First of all, however, mathematical solutions stemming from this formulation must
be examined in the light of physical realizability. The ray vector for an incident ray must

be pointing towards the boundary, while for reflected and transmitted rays must point
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away from it. This physically intuitive requirement is not satisfied naturally by the
mathematical formalism. Employing either the numerical approach stemming from tensor
analysis (Rokhlin et al., 1986) or the analytical approach described above, one must select
correct ray vectors and reject the ones which fail to satisfy the obvious physical
requirements.

As already mentioned above, an interesting phenomenon related to Fermat's
principle of stationary time can be particularily easily observed by applying the small-

angle approximation to equation (2.23):

N
N< -|N<

6, = 6. (2.30)

><<|\> |><< 5

This phenomenon is not restricted to small-angle cases and the approximation was used
only for clarity of notation.

In the isotropic case if, say, the velocity in the medium of transmission is greater
than in the medium of incidence, we obtain the familiar result that the transmitted ray is
bent away from the normal. However in the particular case of an isotropic/anisotropic
interface considered in equation (2.29), we obtain the opposite result. Equation (2.30)
gives the behaviour in the case of general ellipsoidal anisotropy.

The behaviour in the isotropic case may be intuitively understood as being the
consequence of Fermat's principle of stationary time; the behaviour in the particular
anisotropic case, considered in equation (2.29), appears counterintuitive when viewed
from this point of view. However, the form of Fermat's principle in the general

anisotropic case can be formulated as (Helbig, 1994):
JIm mwzéImWij:O (2.31)

wherem is the phase-slowness vector, is the ray-slowness vector add is a length
element along the ray. Thus in deriving Snell's law we are minimizing the traveltime
along the ray with respect to the group (ray) velocity, rather than the phase velocity. As a

consequence, the group- (ray-) slowness surface as well as the phase-slowness surface
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must be considered in order to understand the behaviour of the ray at the interface.
Therefore, in the general anisotropic case, ray bending does not lend itself to such an
intuitive understanding as in the isotropic case. In the latter case, the phase and group
velocities are collinear, and the ray bending away from the normal when it passes from a
slower to a faster medium is easily understood as a consequence of Fermat's principle
which favours shortening the distance travelled by the ray in the slower medium.

An elegant and rigorous proof of Fermat's principle in elastodynamics has been
established by Epstein and Sniatycki (1992). The authors elaborate the proof based on
Hamiltonian constraints and homogeneous Lagrangians. This proof, however, applies
only to convex slowness surfaces, since Fermat's principle can only by formulated for
such cases. For slowness surfaces with concave sections, the singularities of the inflection
point create insurmountable difficulties (A. Hanyga, pers. comm., 1996).

The usefulness of the above approach is extended in the next chapter where the
Snell's law formalism is expressed in polar coordinates and thus can be conveniently

related to slowness surfaces of various materials.
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CHAPTER

SNELL'S LAW 5 FOR WEAKLY ANISOTROPIC MEDIA 6

3.0. INTRODUCTION

In Chapter Il a Snell’'s law formalism for anisotropic media is presented. All
expressions are exact and can be applied in many circumstances. The fact that the phase
slowness surface is smooth and never has cusps (Winterstein, 1990) ensures the
applicability of vector calculus methods required by the formalism. The direct use of the
formalism presented in Chapter Il requires that the slowness surfaces be expressible in
slowness space as analytic functions of three Cartesian coordingtasdz. Slowness
surfaces are three-dimensional closed surfaces of various degrees of symmetry, reducing
in the isotropic case to the shape of a sphere. The choice of spherical coordinates for
description of slowness surface, or polar coordinates for description of slowness curve, is
natural. Thus, instead of directing one’s efforts towards developing a method of
expressing slowness surfaces or curves in Cartesian coordinates, or as parametric plots,
another method is adopted. The formalism developed in Chapter Il serves as a template
for linking, through the relation between Cartesian and polar coordinates, the analytical

method for calculating angle of transmission across an interface, with actual measures of

5 The term “Snell’s Law” is used, in this dissertation, to denote formulze dealing with incident, reflected and
transmitted angles in anisotropic media. Thus the scope of this notion goes beyond the initial formulation of
Snellius.

6 Parts of this chapter have been published by Slawinski, M.A., Slawinski, R..A., and Brown, R.J., in
CREWES Research Report (1995).
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anisotropy defining the materials. Most commonly they are expressed as elastic
constantsC;, the entries of ax® stiffness matrix relating stress and strain vectors, i.e.,
the anisotropic form of Hooke’s law. Thomsg®86) suggests particular combinations

of elastic constants as convenient measures of anisotropy. They are referred to, in this
dissertation, aanisotropic parametersand are denoted ky € andy. The velocities of

both compressional and shear waves can be expressed in terms of those parameters.

The formulee for phase velocities can be developed in a Taylor series and, if the
anisotropy is not very pronounced, higher-order terms ignored without significant loss of
accuracy (Thomsen, 1986); see Appendix 2. In the geophysical context, this process can
be justified by the fact that, although on a small scale many crystals are highly
anisotropic, the rocks they form exhibit, in general, only moderate anisotropy as
perceived by a wavelet of a relatively low frequency typical in seismic studies. The phase-
velocity formulee for three wave types in a weakly anisotropic medium provide the
expressions used in deriving the mathematically tractable, as well as easily coded, Snell’s
law, i.e., a set of equations for calculating incident, reflected and transmitted angles.

In principle, it is possible to use the exact formulee derived by Daley and Hron
(1977) and expressed in terms of anisotropic parameters by Thomsen (1986). The
significant loss of clarity of development caused by employing such complicated
equations has been avoided here by using, in their stead, the equations governing weak
anisotropy. Appendix 7, however, provides the initial steps necessary in developing exact
equations applicable to cases of strong anisotropy. Thomsen suggests further
simplifications aiding greatly in the intuitive understanding of the concept. In this
development, however, the minimal amount of approximation was introduced (see
Appendix 6), i.e., allowing one to obtain the slowness surface in a form clearly
manageable by the Snell's law formalism. As described in Chapter I, slowness surfaces
form the kernel of Snell's law. Since the formuleae for phase slowness can be elegantly
described in polar coordinates it is hecessary to translate the formalism described in the
previous chapter to this system.

The formulae below refer explicitly to the propagation within a transversely

isotropic system with a vertical symmetry axis (TIV), or within a symmetry plane of a



32

given medium (e.g., an orthorhombic medium was used in laboratory measurements
described in Chapter VII). Distinctive elastic properties of the transversely isotropic

symmetry system are an infinite-fold rotational axis of symmetry, and an infinite set of

two-fold axes perpendicular to it (Winterstein, 1990). It is described by five independent

elastic constants. Transverse isotropy with a vertical symmetry axis describes well the
intrinsic anisotropy found in a horizontally reposing sedimentary layer, e.g., a shale unit.
Also, a series of isotropic layers, each of thickness considerably smaller than the
wavelength, exhibits, as a whole, transverse isotropy with a vertical symmetry axis, e.g.,
Postma (1955), Levin (1979), Schoenberg (1994).

Weak anisotropy implies that for the compressional-wave solution, the divergence
of displacements is much larger than its rotation, while for the other two solutions i.e.,
shear waves, the rotation is much larger than the divergence (Helbig, 1994). Thus the
solutions are only weakly coupled and the particle displacement is almost parallel, in the
case of quasi-compressional waves, or almost orthogonal, in the case of quasi-shear
waves, to the direction of propagation. It can be shown that the wave equation for
transverse isotropy yields three independent solutions corresponding to mutually
orthogonal polarization directions. The solutions refer to one quasi-longitudinal wave
(gP), one quasi-transverse wave (qSV) and one exactly-transverse wave (SH) (e.g., Keith
and Crampin, 1977). Along the symmetry axis all polarizations become pure and all
expressions reduce to the isotropic form. An important consequence of weak anisotropy
in transversely isotropic media is that it is reasonable to consider two separate cases, i.e.,
the first case involving P and SV waves and the second case involving SH waves.

The simplification of expressions for phase velocities is achieved by developing
the original expressions in Taylor series and neglecting higher-order terms under the
assumption that the anisotropic parameters are much smaller than unity. The
simplification of expressions is very considerable (see Thomsen, 1986, or Appendix 2),
and, when remaining within the bounds of assumptions imposed by weak anisotropy, the
accuracy is high.

Thanks to the weak-anisotropy assumption and the entailing simplifications, the

entire mathematical treatment developed and used in this dissertation is tractable, and, in



33

almost all cases, leads to analytical expressions. This is not to say, however, that various
problems, particularly while considering the inversion process in multilayer media, do not
arise. Here again, however, the tractability allows for investigation and comprehension of
results of raytracing and inversion. It often permits one to visualize a solution
geometrically, a method favoured by Dr. Helbig, the author of an important text-book
dealing with anisotropy from an exploration seismologist’s point of view.

Thomsen (1986), the developer of the weak-anisotropy expressions, himself states
in his paper that, with today’s computers, there is little excuse for using the linearized
equations for computational purposebut that the linearized equations are useful
because their simplicity of form aids in the understanding of the physics. In this
dissertation the approximate, but not fully linearized, expressions for phase velocities
were used. Other quantities, although given in a linear approximation by Thomsen
(1986), were developed in this dissertation, based on exact relations, e.g., the relation
between the phase and group angles (see Appendix 6).

Furthermore, if any computational algorithm is to work for strong anisotropy it
must also work for weak anisotropy, as the concept of anisotropy (spanned by two end
members, namely, strong anisotropy and isotropy) forms a continuum (Helbig, 1994).
Thus, a mathematically tractable approach provides a potential verification for a machine-
intensive programme which would use the full form of equations for velocity anisotropy
(see Appendix 7). The innovative aspect of the approach presented in this chapter
consists of a clear analytical method for calculating propagation angles across an interface
in anisotropic media, with all quantities related to a measurable set of parameters
proposed by Thomsen (1986) and widely used by numerous researchers (e.g., Stewart,
1988; Cheadle et al., 1991; Brown et al., 1991). Except for using the weak-anisotropy
form of expression for phase velocity, the presented method makes no simplifications or
approximations in deriving the expressions of the generalized Snell’'s law in weakly
anisotropic media. Another approach of developing the relationship between incident and
refracted rays was proposed by Byun (1982, 1984). Byun's method is based on the

assumption of elliptical velocity dependence or its perturbation.
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3.1. QUASI-COMPRESSIONAL WAVES
3.1.1. Phase velocity

Dealing with weakly anisotropic media one often refers qoiasi-compressional
wave (gP) as aompressionalave (P). Such simplification of terminology is due to the
fact that the particle displacement is almost aligned with the direction of propagation.
Similarly, quasi-sheamwaves (gS) can be, for simplicity, referred tcshearwaves due
to the fact that in weakly anisotropic media the particle displacements are almost
perpendicular to the direction of propagation. Strictly, however, the distinction can be
omitted only for SH waves in transversely isotropic media, in which case the patrticle
displacement is exactly perpendicular to direction of propagation (Thomsen, 1986). In
this dissertation the prefiquast is sometimes omitted when no possible confusion with
isotropic propagation arises.

The phase velocity of a quasi-compressional, gP, wave in a weakly anisotropic

medium is given by Thomsen (1986):

Ve (&) = o (1+8sin’ & cos § +& cobE ) (3.1)

In this dissertation the phase andleis the phase latitude, and a complement of

the angle, in Thomsen’s paper, which is equivalent to the phase colatitude, i.e.,
E=ml2-9, (3.2)

thus changing in some equations, the cosine function to the sine function. In this form,
one can take advantage of standard vector calculus expressions in polar coordinates,
where the argument is measured with respect to the horizontal axis. Thus the gradient

can be expressed as follows:

7 Interestingly, in spite of powerful computers employed in seismic data processing, the moveout velocity is
not commonly computed beyond its first term of the binomial expansion.
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N Y
Df(r,{)-rdr+_rdf , (3.3)

where the angle is measured with respect toxtteis. The symbor refers to the unit
vector parallel to the radius, ail is the azimuthal unit vector, i.e., the unit vector
perpendicular to the radius.

The anisotropic parameters used in the expression for phase velocity, are defined
in terms either of elastic constan(;, or measured velocities. The latter definition
proves very helpful in experimental studies, e.g., Cheadle et al. (1991). From the
experimental point of view it is easier to use group (ray) velocities since, to obtain
mathematically more convenient, phase velocities, one requires a plane-wave source. In
either case, it is important to be aware of how one can determine phase and group

velocities, separately, from laboratory measurements (Vestrum, 1994). Thus one can

write:
2 _ _ 2 D D
5= (Cis+C,) (_Qa Cus) ~ 4g/P(7T/ 4) ~1t NV, (11/ 2) -10, (3.4)
2C;;(C,—C,) 0 Ve (0) O O Ve ) U
and

Ci—Cy ~ Ve (11/2) =V, (0)
2C,, V. (0)

&

, (3.5)

where C; are entries in the stiffness matrix relating six components of stress to six
components of strain, i.e., Hooke’s law awd is associated with measured, i.e., group
velocities. For deriving anisotropic parameters from actual measurements, however, it is
advisable to use exact equations instead of their approximate counterparts. Paiicularly
is prone to the propagation of experimental errors in its approximate form (e.g., Brown et
al., 1991).

The symbola,, denotes the speed of a ray propagating vertically, along the

symmetry axis of the medium. It can be expressed in terms of the elastic constant or,
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similarly to the isotropic case, in terms of the Lamé parametemdy, and the density

of the mediump, that is:

aoz\/%:\/“z“_ (3.6)
p p

Notice that, for a ray propagating vertically or horizontally, the phase and group
velocities coincide, both in exact and approximate expressions. This is not the case in
any other direction of propagation and it is of considerable importance to distinguish

between the two concepts.

3.1.2. Transmission angle

The subsequent description follows the formalism developed by Slawinski and
Slawinski (1994) and described in Chapter Il. Firstly, one must formulate an expression
for a slowness surface. The phase slowness is the reciprocal of the phase velocity,
obtained by taking reciprocals at all points on the phase-velocity surface (e.g.,

Winterstein, 1990). L€f(r,&) be a function in slowness space defined by:
f(r,E):l—ao(ésinzfco§f+£ co&¢ ), (3.7)
r

wherer is the radius of the slowness surface, i.e., the magnitude of the slowness. For a
particular TI medium, slowness as a functionéok r(&) which is given by equation
(3.16). This set of points(¢),£] is also given by the intersectionféf, &) with the pland

=y, i.e., by the set of points, ) for which:

f(r,&)=a,. (3.8)

This set of points forms a slowness curve or, mathematically, a level curve. The

above description can be illustrated by Figure 3.1:
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Figure 3.1. Plots in the slowness space; the horizontal axes, i.e., length and width of the
box, have units of slowness, the vertical axis has units of speed. Picture (a) illustjates the

functionf(r,é). In picture (b) the functiof(r,§) is intersected by a plane illustrating
speed value afty. The line of intersection corresponds to the slowness curve as illu

the
strated

on the contour plot (c), whewe represents the unit vector perpendicular to the slowness

curve, i.e., the ray direction.

The propagation (ray, group) vector is always perpendicular to the slowness

surface, i.e., its direction is parallel to the gradient of the surface. Using calculus and

various trigonometric identities, the gradient can be written as follows:
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i 1o %—12@ EEorosin(zf)[a COSQE ) 2¢ co%f]a 9)

r H

whose length is:

|Df|:\/%§ +%g—£ﬁ :%\/r—%+(aosin(25)[6 COSQE )\ 2¢ coéf])z . (3.10)

The unit ray vectoryw, in the direction of the ray can then be determined from

equation (2.8):

of

The angle between the unit ray vecter,and the normal can be found using the

definition of the dot product. Using the vertical unit veczpgne may write:
cosf = z[w (3.12)

In polar coordinates, the Cartesian unit vectprcan be expressed through its
relation to the anglé, i.e., the argument. In the present context the argument corresponds

to the phase angle, i.e.,

z=rsiné + = co< . (3.13)
This form is used in the desired dot product. The group aégthat the group
slowness vector makes with the normal to the interface, can be expressed in terms of the

phase anglef, measured from the horizontal:
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a, COSE siné ia COSEE ¥ 26 cc?s{)—ﬁ
e ) (3.14)
\/12 +[a,SiN(2E)(5 cos@E )- 2¢ cod €&
[r(&)]

In relating the incidence group angle to the transmission group angle at a
horizontal interface, one uses the fact that the horizontal component of sloxwness,
the ray parameter, must be constant. If the medium of incidence is isbthegricphase
and group angles (and velocities) coincide. The horizontal component of slowness can be

calculated, given the angle of incidence, i.e.,

_sing; _

: = X,,
' v

(3.15)

where the angle of incidenc@, is measured from the vertical, ands the speed in the
isotropic medium.The symbolx, denotes the ray parameter. The radius of the cross-
section of the gRlowness surface in thgzplane of the anisotropic medium of

transmission is given by the inverse of the phase velocity:

1
a,(1+5sin*Ecod E+e codE )

r¢é) = (3.16)

Using standard relationships between the Cartesian and polar coordinates, one can

relate a given point on a slowness surface to its horizontal component through the phase

angle,é:

X(¢) =r($) cos¢ . (3.17)

8 The formalism can be extended to the case of an anisotropic/anisotropic interface (see Chapter VI) . The
clarity of presentation is enhanced by assuming the medium of incidence to be isotropic. Also the
experimental set-up (see Chapter VIl ) involves isotropic/anisotropic interface.
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Inserting the equation (3.15) into the equation (3.16) gives a relationship between

the horizontal component of slowness and the slowness surface for compressional waves:

_ cos
X(@)= a,(1+0sin’ Ecod & +e codé ) (3.18)

Equation (3.17) can be rewritten as a quartic irf emsl solved explicitly for the
phase angleé,, corresponding to a given ray paramesgr,Thus, given the incidence

angle,8, and thus the ray parametey;, one obtains:
a,X,(e—)cos &, +a  x,0 co5&, - cod, +a X, =0. (3.19)

The appropriate value @p can be inserted in the equation (3.19) and the angle of
transmission calculated. An insightful look into the solution of the quartic equation is
given in Appendix 1. Note that in the case of elliptical anisotropygi=e.9, the quartic
is reduced to a quadratic of the form analogous to the equation for SH waves (equation
(3.39)). Also note that, in all expressiortsjs the group (ray) angle measured with
respect to the normal to the interface, §rid the phase angle measured with respect to

the horizontal.

Method of Computation?: Snell’s Law for Isotropic/Anisotropic Interface: Angle of
Transmission of a gP wave.

Given a P or SV wave with speeth an anisotropic medium, incident at an ar@jle
upon a planar, horizontal interface separating it from an anisotropic medium with yertical

9 The inserts providing step-by-step calculations of various values appear throughout the dissertation and
are clearly distinguished from the mdiady of the text by including them in a shaded box. They can be
skipped without disturbing the continuity of presentation. Their purpose is to provide a convenient method
of calculation. To further enhance such usefulness, a brief code for a widely available mathematical

software, Mathematica, is also provided.
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speedapand anisotropic parameteande, the angle of transmissiof,, of qP can be
calculated by following the steps below.

Step 1
Calculate the ray parametgs, given the angle of incidencé;

_ sing,
v

Step 2
Calculate the phase angée,n the anisotropic medium by solving the quartic equation.

a,X,(e—0)cos &+a,x,0 co§&— cok+a,x, =0.
Choose the root which yields real value §orNote that although this equation can be
solved algebraically it is a very laborious process. An alternative approach is tojuse a

widely available software, e.g., Mathematic@Volfram, 1991) to solve the equation.| A
code is given below.

v =speed of P wave or SV wave in the isotropic medium, v.
A = vertical speed velocity in the anisotropic mediag),

e =anisotropic parametere.

d =anisotropic parameter.

m =incident angle (in degrees)

X = Sin[(m*180/Pi)]/v

FindRoot[ A*x*(e-d)*C"4+A*x*d*C"2-C+A*x==0,{C,0.5,0,1}]

Note that using the command “FindRoot” between 0 and 1 guarantees the programme
returning the desired real root, i.e., yielding the aAdgietween 0 and 90 If all four
roots of the quartic are of interest then use the code below.

NSolve[A*x*(e-d)*C N +A*X*d*CA2-C+A*x==0,C]

Also note that C stands for ¢oand thus the argument must be found using the inverse
trigonometric function.

Step 3
Calculate the length of the radius of the phase-slowness surface in the anisotrppic
medium corresponding to the calculated ray parameter,

1

€)= a,(1+0sin’ Ecod&+e codé )

Go to Variant A or to Variant B.
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Variant A
Step 4
Calculate the angle of transmissi®ré, of a gPwave in the anisotropic medium.

Daocosf Sing& |5 costé ¥ 2 cc?ss)—f":f E
8, = Arccog3 () 0
E\/[r(g)]z +[a,sin(2&)(0 cos@é )- 2= cosé ﬂg

Variant B

Step 4

Evaluate the derivative of phase-slowness radius using the phasefafigha, Step 2.

dr(§) _  siné)[0 cos@é )~ 2 codé ]
d¢  a,(1+dsin®Ecod&+e codE §

Step 5
Calculate the angle of transmissiéh,of agS\fwave in the anisotropic medium.

O (g tane g

6 = Arccotd % 5
. = rCCOt[dr(E) -
%tamﬂr({)é

N.B. Convenient MathematiCacode for equations above is given as parts of
programmes to calculate the traveltime of a ray in Chapter V which can be easily used
just for the purpose of calculated the angle of transmission.

3.2. QUASI-SHEAR WAVES (SV)

This section follows the development presented above for quasi-compressional

waves. Some details, therefore, are omitted.

10 Throughout the dissertation, inverse trigonometric functions are denoted by a\peefikis is to
indicate the principle value, i.e., a value corresponding to an acute angle.
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3.2.1. Phase velocity
The phase velocity of a quasi-shear, gS, wave in a weakly anisotropic medium is

given by Thomsen (1986):
Voo () = Bod+ 2 (e - 3) sin? € cod 1 (3.20)
0 Bo 0

Note that angleé, is a complement of the angig, in Thomsen’s paper. The anisotropic
parameterse and 9, are defined in section 3.1.1. The speed of a wave propagating

vertically through the medium is:
Bo=.—, (3.21)

wherep is the density of the medium.

3.2.2. Transmission angle

The slowness surface is associated with the function:
_1 ag " _
g(r,é)—?—ﬁ—(s—é)sm Ecosé=p, . (3.22)
0

Therefore the gradient is given by:

1 El—?(s—&sin(zq‘)cosef)%

0g(r,&) = r%r—2§+ =0 Fe : = (3.23)
[ [
U U

whose length is:
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|Dg|:_\/_1+é,'1(g 5)sin(2€)cosefg . (3.24)
ryr Bo O

The angle, 8, that the unit group-velocity vectow , of a transmitted ray makes

with the unit normal to the interface, is found following the generalized Snell’s law

formalism:

SINE , 90 s € - 5) singE ) costE )

cosf, = 2[W = r§) B,

(3.25)

\/[r(;)] %(e 5)S|n(25)cosefg

The above expression must be evaluated at a point on the slowness surface
corresponding to the horizontal component of slowngssge., the ray parameter. It can
be calculated from a given angle of incidence. Assuming the medium of incidence to be

isotropic yields:

X = S";ei =%, (3.26)

where the angle of incidencé, is measured from the vertical, ands the speed in the
isotropic medium. The radius of the cross-section of the qSV-slowness surfacezn the

plane is the inverse of the phase velocity, which can be written as:

r(&) = . 1 . (3.27)

L 00, a2 [
BOEJH 52 (e -0)sin {coéf%
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Using the standard relationships between Cartesian and polar coordinates, one can

relate the horizontal component to the slowness surface, namely:

X() = r(§)cos = ——— cost o (3.28)
BOEJHIB—S(e—é)sm Eco§f%

For a given angle of incidenc®,, the corresponding value x() can be denoted

by xo. The above expression can be rewritten as a quartic equatior o goge:

(XSXOI(;_(S) COS“f_aéxolgﬂcogf*_ cog — X,3,=0. (3.29)

Equation (3.29) has four roots. The required solution, i.e., the angle of

transmissiorg , must be real. In general, only one root is real and less than unity (in

absolute value), i.e., whose inverse cosine yields a real angle.

Method of Computation: Snell’'s Law for Isotropic/Anisotropic Interface: Angle of
Transmission of an SV wave.

Given a P or SV wave with speeth an anisotropic medium, incident at an ar@jle
upon a planar, horizontal interface separating it from an anisotropic medium with yertical
speed3 and anisotropic parameta¥snde, the angle of transmissio&,, of qSV can bg

calculated by following the steps below.

172

Step 1
Calculate the ray parametgs, given the angle of incidence;

_ sing,
v

Xo

Step 2
Calculate the phase angée,in the anisotropic medium by solving the quartic equation.
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wcogg_WCos%” Cog —X,B,=0

0 0

Choose the root which yields real value §orNote that although this equation can be

solved algebraically it is a very laborious process. An alternative approach is tojuse a

widely available software, e.g., Mathemaiica

v =speed of P wave or SV wave in the isotropic medium, v.

A = vertical speed of a compressional wave in the anisotropic medygim,

B =vertical speed of a shear wave in the anisotropic medsgm,

e =anisotropic parametels.

d =anisotropic parametero.

m =incident angle (in degrees)

X = Sin[(m*Pi/180)]/v
FindRoot[(A"2*x*(e-d)/B)*C"-(A"2*x*(e-d)/B)*C"*2+C-x*B==0,{C,0.5,0,1}]

Note that using the command “FindRoot” between 0 and 1 guarantees the programme

returning the desired real root, i.e., yielding the aédietween 0 and 90 If all four
roots of the quartic are of interest then use the code below.

NSolve[(Ar2*x*(e-d)/B)*C 4-(AN2*x*(e-d)/B)*C 2+C-x*B==0,C]

Also note that C stands for doand thus the argument must be found using the inverse

trigonometric function.

Step 3

Calculate the length of the radius of the phase-slowness surface in the anisotrppic

medium corresponding to the calculated ray parameter,

1

r(é) = )
¥ B EJHG—S(s—é)sin2 & cod E%
‘0 B2 O

Go to Variant A or to Variant B.

Variant A
Step 4

Calculate the angle of transmissi@éh, of a qSV wave in the anisotropic medium.
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o ) 0
siné «a .
E r(f‘)'z+[3°cosfe—6)smef ) cosPé )E
0, = Arccos+ g O
B \/ 1 + LE (e &sin(Z{)cosQfg B
o2 (e -

8 \Ir&1* DB 03

Variant B

Step 4

Evaluate the derivative of phase-slowness radius and evaluate using the phase aj
Step 2.

95 (¢ — 5 sin(2€) cose? )

ar(§) __ B
dé 2 '
%OEH gg(e - ) sin’ &£ cos E%
Step 5

Calculate the angle of transmissiéh,of a qSV wave in the anisotropic medium.

) —r@tan

6 = Arccotd 9 5
L = rCCOt[dr(E) -
élwtanfﬂ(f)g

N.B. Convenient MathematiCacode for the equations above are given as parts
programmes to calculate the traveltime of a ray in Chapters 5. They can be eas

just for the purpose of calculated the angle of transmission.

ngle from

ly used

3.3. SHEAR WAVES (SH)

Investigation of transverse shear waves provides the clearest illustration

method. Firstly, the expression for the phase velocity is simpler than for

of the

either

compressional or radial shear waves. Secondly, considering the propagation within the

symmetry planes, they are not subject to mode conversion. Furthermore, since even the
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exact expression for phase velocity is quite simple (Appendix 2), one can easily compare

the results of approximate and exact approaches (Appendix 6).

3.3.1. Phase velocity

The angular dependence of the phase velocity of a quasi-shear wave, SH, in a
weakly anisotropic medium can be expressed in terms of the speed of the wave travelling
vertically, [y, the anisotropic parametey, and the phase anglé, as described by
Thomsen (1986):

V(&) = Bo(1+ycos ). (3.30)

Again, as in gP and gSV cases, the anfjles the phase latitude. The anisotropic
parameter is defined in terms of elastic constallg, and can be measured
experimentally in terms of group velocitieéd, For vertical and horizontal propagation

phase and group velocitieasandV, coincide. Thus one can write:

Cee - C44 ~ VSH (IT/ 2) _V(O)
2C,, V(0)

y : (3.31)

where angles72 and Ocorrespond to horizontal and vertical propagation, respectively.
The speed of a wave propagating vertically, along a symmetry axis, through the medium
can be expressed in terms of the elastic constant or, as in the isotropic case, the Lameé

parametey, i.e., the shear modulus, and the density of the medaim ,

30:\/g:\/g_ (332)
p\p
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3.3.2. Transmission angle

The slowness surface is associated with the function:

h(r,&) = 2= Boy cod £ = ;. (3.33)

r
The gradient of the slowness surfalg, &), is equivalent to the direction of the

unit ray vectoryw, i.e., to the direction of energy propagation. It can be calculated using a

standard formula of vector calculus in polar coordinates:

Oh(r, &) = r%—%§+ E%M%‘ (3.34)

The magnitude of the gradient is calculated in order to normalize it.

R/ = %\/ri +[Boysin(2E)]” . (3.35)

The angle between the unit group slowness veegigrand the unit normal to the

interface,z, results directly from the definition of the dot product:

. 10
sm{%ﬁoy cod - @H

cosh, = z[W = (3.36)

1 . ,
\/[r(a]z +[(Boysin(2¢)]

Equation (3.36) must be evaluated at the point on the slowness surface
corresponding to the horizontal component of slowness, i.e., ray paraxgpetehich is

constant across the interface, i.e., the same for both incident and reflected waves. The
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radius of the cross-section of the qSH-slowness surface kefflane can be expressed

as the inverse of the phase velocity:

1
Bo(1+ycos &)

r(é) = (3.37)

The slowness surface and the ray parameter, for a horizontal interface, can be
related by a formula for coordinate transformation between the Cartesian and polar

systems:

cost

X(&) = r(§)cosg )= B.(l+ycog &)

(3.38)

The above expression can also be expressed as a quadratic equatién locas
given the incidence anglé, and thus a fixed ray parametag, one can calculate a

corresponding transmitted phase an§le,

X, B,y cog &, — cog, + X,B8,=0. (3.39)

The “zero” subscript iff is used to indicate a specific value corresponding to the
ray parametens. It will be dropped in further development but any given value€ of
functionally related to the ray parameter. The discriminant of the quadratic equation
(3.39) illustrates the limitation imposed on the physical solutions requiring it to be

positive:
A=1-(2x,8,)°y > 0. (3.40)
SinceXxo is, in general, smaller thanGy/ and y << 1 for weak anisotropy, the

discriminant is, normally, positive and the solutions, in terms of the cosine function, real.

There are two algebraic solutions to the quadratic, that is:
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1+ \/1_(2X0Bo)2y . (3.41)

2%,Boy

cost,, =

It is obvious from Figure 2.2.1, and can be determined from equation (3.37), that

for noncritical incidence one must require that:

1

Xo<r(5:0):m,

(3.42)

i.e., the horizontal components of slowness must be contained within the slowness curve
of the transmission medium. This insures that the afgtereal, i.e., the value of the
cosine is smaller than unity. For a standard solution one should choose the second root,
i.e., the subtraction in equation (3.41) The first root, i.e., the addition, gives the value
greater than unity and results in a complex angle. As a confirmation of this choice, one

can consider the limiting cage- 0, and use the de I'HGpital’s rule:

cost, = lime V(2R _ g (3.43)

y=>0 ZXOIBOV

which, solved fo, leads to the standard form of Snell’s law for isotropic niédia

11 Considering vertical incidence, i.e = 0, one has cds = 2/0 and co§ = 0/0. The first result is
physically meaningless, whereas the second case becomes, using limits and de I'HOpital'§raleDcos
i.e., vertical incidence causes vertical transmission, as expected.

12 The limiting, i.e., isotropic case results in an expression for Snell’s law:

sing, . cosé

0
Vi Bo



52

Method of Calculation: Snell’'s Law for Isotropic/Anisotropic Interface: Angle of
Transmission of an SH wave.

Given an SH wave with spe&dn an isotropic medium incident at an anglen the
planar, horizontal interface separating it from an anisotropic medium with vertical
Boand anisotropic parametgrthe angle of transmissio#,, of gSH can be calculated

following the steps below.

Method |

Step 1
Calculate the ray parametgs, given the angle of incidencé;

_ sing,
0 v ’

Note that for the noncritical incidence one must choose

0, < Arccot\/% (v +1)g -1

Step 2
Calculate the phase angée,n the anisotropic medium .

£ = Arccoit VL (ZaB)’y B
= 2X%oBoy =
Step 3

Calculate the length of the radius of the phase-slowness surface in the anisotr
medium corresponding to the calculated ray parameter,

1
Bo(1+ycos &)

r(é) =

Go to Variant A or to Variant B.

Variant A
Step 4
Calculate the angle of transmission of a gVe in the anisotropic medium.

speed

ppic
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O ad
DSinf%BOV cos & - r(];?)ﬁﬂ
0, = Arccos% E

H 1 . 5 D.
H\/ ey LAyl g

Mathematical code for Variant A is given below.

v =velocity of a shear-wave in the isotropic layer, v.
B =vertical shear-wave velocity in the anisotropic lagegr,
g =anisotropic parametery.

m =angle of incidence in degreds,

X = Sin[(m*Pi/180)]/v

z = ArcCos[(1-Sqrt[1-g*(2*x*B)"2])/(2*x*B*Q)]

dz = 2*z

r = 1/(B*(1+g*Cos[z]"2))

n = Sin[z]*(2*B*g*Cos[z]"2-1/r)

d = Sqrt[1/r2+(B*g*Sin[dz])"2]

N[ArcCos[Abs[n/d]]]

where the angle of transmissidh, is given in radians.

Variant B
Step 4
Evaluate the derivative of phase-slowness radius and evaluate using the phase aj
Step 2.
dr _ y sin(2¢)

dé  B,(1+ycogéY

Step 5
Calculate the angle of transmissiéh,of a qSHwave in the anisotropic medium.

Odr (&) (&) tanfD

6 = A H de H
[ = rCCOt[dr(E) 0.
ST

Mathematical Code for Variant B is given below.

ngle from
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v =velocity of a shear-wave in the isotropic layer, v.

B =vertical shear-wave velocity in the anisotropic lagegr,
g =anisotropic parametely.

m =angle of incidence in degreds,

X = Sin[m*Pi/180]/v

z = ArcCos[(1-Sqrt[1-(2*x*B)"2*q])/(2*x*B*Q)]

dz = 2*z

r = 1/(B*(1+g*Cos[z]"*2))

dr = g*Sin[dz]/(B*(1+g*Cos[z]*2)"2)
N[ArcCot[(dr-r*Tan[z])/(dr*Tan[z]+r)]]

where the angle of transmissidh, is given in radians.
Method I

Since the expression for SH wave slowness surface is equivalent to an ellipse one may
use, recalling the definition gf equation (2.23).

Ht:ArccotE L E Y csceig—lm.
2 + 1B (y +9) 0 g

3.4. ACOMMENT TO USERS AND PROGRAMMERS

The results of some formulae appearing in this development depart from intuitive
expectations based upon wave propagation in isotropic media. Several interesting
phenomena of this nature are illustrated in this dissertation, e.g., Chapter VI.
Consequently, the correctness of results is difficult to ascertain by inspection. A helpful
method to gain some insight is provided by various limiting cases and interrelations
between equations.

Firstly, setting the anisotropic parameters to zero leads to well known isotropic
equations. The form of the latter is very familiar, and, if desired, numerical examples can
easily be verified.

Secondly, the expressions for the three types of waves are related among
themselves. Setting = d results in elliptical velocity dependence for compressional
waves. Transverse shear (SH) waves always, even in the case of strong anisotropy,

exhibit elliptical dependence. Thus equating the two anisotropic parameters reduces the
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equations of compressional waves to the form displayed by those for transverse shear
waves. Therefore, both compressional and transverse-shear-waves results can be tested
against each other as well as against the elliptical form of Snell’s law described in details

in Chapter Il. Also, the setting @f= J results in no angular velocity dependence for
radial shear (SV) waves under the weak-anisotropy approximation. Hence, all formulae
for radial shear waves should reduce to the isotropic form. Physical validity of setting the
anisotropic parameters to be equal is limited (e.g., Daley and Hron, 1977, Thomsen,
1986) but provides a method for testing derived expressions.

Thirdly, for vertical and horizontal directions of propagation, phase and group
velocities coincide. Therefore all equations are reduced to isotropic forms.

In many cases, because of the form of the anisotropic equations the process of
reducing one form of equation to another might require some mathematical manipulation
and not just a straightforward substitution. For instance, the concept of limits, and
various methods related to it (e.g., de I'HOpital’s rule) might have to be used.

The interrelations stated above, although necessary for correctness of the derived
anisotropic equations, are not sufficient to prove it. It is quite possible that, in the
reduction process, a canceling of a term due to the peculiar combination of values
annihilates the error existing in the general form. To increase the confidence in
correctness of equations one can perform several calculations with increasing values of
anisotropic parameters. The results should depart smoothly and monotonically from the
easily calculated isotropic case.

Another point should not escape one’s consideration. As the anisotropy of the
medium increases, i.e., parameteys ¢, and y become larger, the adequacy of
formulations based on the weak-anisotropy assumption decreases. Appendix 2 illustrates
the discrepancy between slowness surfaces obtained using exact and approximate
approaches, while Appendix 7 provides a starting point for development of exact
expressions of Snell’s law applying also to strongly anisotropic media. The latter method
should be used if strong anisotropy is to be considered and/or an extremely high accuracy

is required.
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CHAPTER

RAYTRACING THROUGH A TWO-LAYER,
ISOTROPIC/ANISOTROPIC MEDIUM

4.0. INTRODUCTION

An important element of studying wave propagation consists of the ability of
predicting theoretically the results which one would obtain by measuring, at a given
receiver, various aspects (e.g., amplitude, phase, traveltime) of a signal emitted by a
distant source. A powerful and rather intuitive technique, for this purpose, is provided by
ray theory. It is an approximation to the full wave theory and it derives from the approach
used in geometrical optics. With the aid of Snell's law, using a raytracing theory, and
knowing all relevant parameters of the medium, one can calculate the trajectory of a ray
between the source and receiver, as well as the traveltime required. This is a, so called,
forward problem or forward modelling: one calculates the results knowing all parameters.
The, in principle, more difficult, inverse problem, in which one infers parameters of the
medium from the results is treated in Chapter VIII.

The crucial point of raytracing between a given source and receiver consists of
finding the incidence (take-off) angle which, in combination with transmission angles,
obeying Snell’s law at all interfaces, yields the raypath corresponding to a given source-
receiver distance. This is, as a matter of fact, a little inverse problem, here used in a
larger context of forward modelling. The required equation, for a two-layer case, can be

written as follows:
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X+ X, =X, (4.1)

i.e., the sum of horizontal distances travelled in the f¥gtand the second;, layer,
must equal the total horizontal distance between the source and reXeiveterms of
layer thicknesdhy; andh,, as well as angles of incidendg,and transmissiorg, it can be

written as:

h tang, + h, targ, = X, 4.2)

or in terms of angle of incidence:

h,tane, + h, tanp, 6, )= X, (4.3)

where the expression in square brackets denotes that the angle of transmission is a

function of the angle of incidence, i.e., Snell’s law.

4.1. MATHEMATICAL METHODS
4.1.1. General remarks

Even in isotropic layers, i.e., with no angular dependence of velocity, the above
equation has to be solved by iteration since one cannot expresglicitly in terms of
all other variables and parameters. The problem becomes still more computationally
intensive in anisotropic media. However, using the appropriate form of Snell's law
derived in previous chapters, one can iterate the above equation for different values of the
incident angle@, until the solution is found.

In parameterizing the problem by considering a traveltime between two given
points, one can also use a more straightforward and computationally efficient approach of
Fermat's principle of stationary time, described in section 4.1.3. Note, however, that
Fermat’s formulation requires a simplification of some expressions, namely the formulese

for phase and group velocities need to assume the same form. It entails a loss of some
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physical attributes, and thus it has to be used with caution. The problems arising from the

direct Fermat formulation are treated more fully in Chapter 6.

4.1.2. SH-wave raytracing based on the Snell’s law formalism

The computational method below is given for SH waves as an example of
raytracing using the Snell's law formalism. It is superior, for any given source-receiver
configuration, to the proposed computational method using the Fermat’s-principle
approach, as it reflects more accurately the relationship between phase and group speeds

(see Chapter VI and Appendix 6.).

Method of Computation: RayTracing for a Two-layer, Isotropic/Anisotropic
Medium Using Snell's Law Formalism

Given a medium composed of an isotropic layer of thickmgssd anisotropic layer of
thicknessh, separated by a planar horizontal interface, with a source situated at the
surface of the isotropic layer and the receiver on the bottom of the anisotropic layer,

separated by a horizontal distamxethe incidence anglé, corresponding to a given
source-receiver separation can be calculated by following the steps below.

Incident SH O Transmitted SH

X = horizontal distance between source and receiver, d.
ht =thickness of the isotropic layen.h

hb =thickness of the anisotropic layep, h

v =velocity of a shear-wave in the isotropic layer, v.

B =vertical shear-wave velocity in the anisotropic lagegr,
g =anisotropic parametery.

X = Sin[m]/v
z = ArcCos[(1-Sqrt[1-(2*x*B)"2*q])/(2*x*B*Q)]
dz = 2*z

r = 1/(B*(1+g*Cos[z]"*2))

t = Sin[z]*(2*B*g*Cos|[z]*2-1/r)

b = Sqrt[1/r2+(B*g*Sin[dz])"2]

s = ArcCos[Abs[t/b]]
FindRoot[ht*Tan[m]+hb*Tan[s]==X,{m,{0.1,0.3}}]

Note that the resulting incidence (take-off) angle is given in radians
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4.1.3. Fermat’'s-principle Approach

The operation of calculating the travelpath and travelbetereen aiven source
and receiver can be facilitated significantly by using Fermat’s principle of stationary time,
provided one is willing to limit the approach to the fully linearized approach and thus to
decrease somewhat the accuracy (see Appendix 6). At this point some clarification is
required.

Fermat’s principle of stationary time is, perhaps, the most fundamental concept of
raytracing theory. Therefore, the above statement, implying some loss of accuracy by
using the Fermat’s-principle approach, calls for some explanation, since, in principle, the
most accurate of solutions must obey Fermat’s principle of stationary time. The above-
mentioned loss of accuracy is a result of the method through which Fermat’s principle is
treated, not the essence of the principle itself. The difficulty of the method lies in the fact
that Fermat's principle relates to traveltime, which in turn, is intimately linked to the
concept of group angle and group velocity. In order to calculate the group angle and the
magnitude of group velocity properly, one needs the expression for phase velocity and a
given value of phase angle (see equation (6.3)). The given value of phase angle is
provided by the formalism of Snell’'s law. If one chooses to calculate group angles
directly by finding a stationary point of the traveltime, one must provide a function
describing group velocity with respect to a group angle. Applying Thomsen’s (1986)
linearization of weak-anisotropy equations implies the equivalence of expressions for
phasey, and groupyV, velocities with corresponding phas#3, and group,, angles,
that is:

V(6) OVd). (4.4)
Although the above expression does not imply a general equivalence of phase and

group velocities, it constitutes a departure from the exact expression of equation (6.3).

Consequently, both ray path and traveltime calculated using the Fermat’'s principle

13 Recall that the angl@ is the phase angle measured with respect to the vertical, i.e., phase colatitude; it is
the complement of the angfe
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approach suffer from (in the case of weak anisotropy) slight inaccuracy.

In considering various mathematical difficulties one must remember that,
physically speaking, Snell’'s law is a direct consequence of Fermat's principle and,
ideally, results obtained through either method must be identical. Fermat's principle states
that the path of the ray between two points is such that the first-order variation with
respect to all neighbouring paths is zero. In other words, it is the path of least or greatest
time. To gain a more intuitive understanding of this concept one can visualize rays
travelling through a multitude of paths. However, in the neighbourhood of a stationary
path the rays travel in phase and arrive at the receiver at the same time, while the rays
travelling along other paths arrive at the receiver with various delays. The former scenario
leads to constructive interference while the latter scenario results in destructive
interference. For a primary ray travelling in a stack of horizontal layers the path is a
minimum and the principle is often referred to as a principle of least time. For a P-P wave
in global geophysics (source and receiver at the surface, reflection at the surface in the
midpoint), for example, the path is one of maximum time with respect to lateral variation
of the position of the halfway reflection point.

As mentioned earlier, the approach based on Fermat's principle used in this
dissertation, relies solely on the concept of group velocity. The magnitude of the group
velocity, however, is a function of the phase velocity. Thus, without an explicit formula
for phase velocity one needs to assume the same form of equations between for both
phase and group velocities as proposed by Thomsen (1986). In the case of weak
anisotropy the accuracy of results is still very high, in spite of the simplifying assumption.
One has to be aware, however, of the assumptions made and their consequences.
Appendix 6 is devoted to an investigation of this matter, where from the point of view of
degree of approximation, the Fermat’s principle approach is equivalent to the linearized
approach.

In the context of raytracing between a given source and receiver, Fermat's
principle allows one to obtain results, which under assumptions of full linearization, are
equivalent to those reached via Snell's law while being simpler from the calculational

viewpoint. The approach using the calculation of Snell’s law, as described in Chapter I
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and Chapter Il is @cessary if one considers incidence, refraction and reflection of a ray
at an interface, without specifying two points between which the ray travels. Also, the
case of non-horizontal layers calls for the Snell’'s law formulation. It must be emphasized
that, the Snell’'s law formalism, involving both phase and group velocities, is more
general in all cases, even when the two points, most commonly source and receiver, are
specified, but Fermat's principle provides, algorithmically, a more straightforward
approach. In other words, one may say that by adding some constraints to the problem,
i.e., the locations of the two end-points of the trajectory of the ray, one can omit the
explicit use of the Snell’s law formalism and obtain a result directly from Fermat's
principle. Also, since, as shown in Appendix 6, it yields results very close to those
obtained through a more exact method, it provides an independent verification of
algorithms and coding. Furthermore, it forms the core of the inversion scheme developed
in Chapter VIII. Thus, taking advantage of the convenience of Fermat's approach, the
case of two anisotropic layers separated by an interface is considered. The problem
consists in determining the path of a ray shown in Figure 4.1.

For a given horizontal source-receiver separatigniayer thicknessesi;, H,
vertical wave speedé, V,, and anisotropic paramete¥s o, &, &, Oryi, Y2, the problem
reduces to that of finding the path of stationary traveltime. One can conveniently
parameterize the problem, denoting the distance between the refraction point and the
receiver as, see Figure 4.1. Both the distances travelled by a ray in a given medium and
the angles of propagation can be expressed in termsTdfis results in a general form of
a system of equations (4.5) to be solved:

E\/(X —r)? +H?2 N \/rz +H2 ()

] Vi(r) V,(r)

m (4.5)

Appropriate expressions for group velocitiggr) and Vo(r) can be inserted
depending on the types of waves considered. Namely, P-P, SV-SV, P-SV, SV-P, or SH

cases.
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Method of Computation: Raytracing for a Two-layer, Anisotropic/Anisotropic

X
HJ
HD
VJ
VD
GJ
GD

Medium Using Fermat’s Principle

Incident SH O Transmitted SH

horizontal distance between source and receiver
thickness of the upper layer

thickness of the lower layer

vertical wave speed in the upper layer

vertical wave speed in the lower layer
anisotropic parameter in the upper medium,
anisotropic parameter in the lower mediuy,

FindMinimum|
Sqri[ri2-2*X*r+X"2+HJ"2]/
(VI*(A+GI*((X-n)"2/((X-r)"2+HJI"2))))+
Sqrt[r*2+HD"2]/
(VD*(1+GD*r*2/(r"2+HD"2))),{r.{0,X}}]

&
<

soyrce r

A
. A

receiver

Figure 4.1. The illustration of a ray travelling through a
two-layer between a source and receiver separated by a
horizontal distanceX. The value ofr corresponds to the
horizontal distance between the refraction point and the
receiver.
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4.2. RAYTRACING THROUGH A STACK OF SEVERAL
HORIZONTAL LAYERS

4.2.1. Raytracing method based on the global minimization of traveltime

The parameterization of the traveltime function based on the horizontal distance
between the refraction point and the receivectan be used most conveniently for a two-
layer case, i.e., comprising only one interface at which refraction occurs. In the case of a
model comprising several layers, the same approach leads immediately to a rather
complicated system, for there are as many different values a$ there are interfaces.
One can, of course, minimize the traveltime function with respect to several varjables
where j corresponds to an interface number. Because of an extremely simple and
convenient way of programmeming such an approach in Mathematiba code is
given below. There are, however, some reservations concerning fine precision using this

method (see Appendix 3).

Computational Method: Raytracing through multiple anisotropic layers
using Fermat’s principle of stationary time formulation

Mathematical code for a three layer case. Note that the code can be very easily extended
for any desired number of layers. It suffices to add analogous modules in the
FindMinimum statement, and provide additional input information concerning thpse
layers.

X =horizontal source/receiver distance

HJ =thickness of the first layer

HD = thickness of the second layer

HT = thickness of the third layer

GJ =anisotropic parameter in the first layer

GD =anisotropic parameter in the second layer
GT =anisotropic parameter in the third layer
VJ =vertical speed in the first layer

VD = vertical speed in the second layer

VT = vertical speed in the third layer

FindMinimum[

traveltime in the first layer
HJ*Sec[ArcTan[(X-rj)/HJ]J/
(VI*(1+GJI*Sin[ArcTan[(X-rj)/HJ]]"2))+
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traveltime in the second layer
HD*Sec[ArcTan[(rj-rd)/HD]]/
(VD*(1+GD*Sin[ArcTan[(rj-rd)/HD]]"2))+
traveltime in the third layer
HT*Sec[ArcTan[(rd/HT)]}/
(VT*(1+GT*Sin[ArcTan[(rd/HT)]]"2)),

{rj,0,X},{rd,0,X}]

4.2.2. Raytracing method based on Snell’s law

One can also parameterize the raypath without direct use of the traveltime. Using
Snell’s law, the entire model can be parameterized with a single valug~of instance,
r can correspond to the horizontal distance between the refraction point and the receiver
for the first interface. Thus one defines the take-off angle in terms afd follows
through other interfaces, obeying Snell’s law for anisotropic media. In general the offset
equation can be written as a series of horizontal distances traveled in each layer (equation
(4.6)). The use of, as opposed to a take-off angle itsélf,or &, is introduced by

design, as it proves to be convenient in inverse calculations (Chapter VIII). Thus:

(X=r)+H,tanf,+...... +H, tad, = X. (4.6)

The value of9; is given immediately as a function gfand all subsequent values
of O are related to the previous one by Snell's law. Therefore, the entire raypath is
parameterized in terms of the horizontal distance between the refraction point and the

receiver/, for the first interface.

4.2.3. Raytracing through multiple layers (SH waves or any waves with elliptical
phase-velocity dependence).

Elliptical velocity dependence allows for many a valuable mathematical
demonstration. It is, from the mathematical point of view, the most convenient
formulation of anisotropy. Isotropy is a special case of this formulation, as a circle is a

particular ellipse, one for which the foci coincide. The elliptical velocity dependence can
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be defined with two parameters, e.g., horizontal and vertical speeds as used in section
2.4.1, or vertical speed and the anisotropic paranpeterin the case of weak-anisotropy
approximation for SH waves as illustrated by equation (3.30). Note that the phase
velocity of Pand SV waves, requires three parameters as illustrated by equations (3.1)
and (3.20) respectively.

There exists, however, a conflict between physical applicability and mathematical
elegance. Helbig (1994) states that elliptic anisotropy although it exists is so rare an
occurrence that it seems hardly worth an extended discussion. However, according to
Helbig, it is important for several reasons. In particiddiptical slowness curves, i.e.,
two dimensional cross-sections of slowness surfaces, are not as rare, bglfisadal

slowness surfaces. In other words, although a velocity surface might not be ellipsoidal,

various selected cross-sections might be elliptical. For transversely isotropic media, SH
waves exhibit elliptical slowness curves for all planes that contain the axis of syfmetry
The concepts of elliptical anisotropy, with all that it entails are perfectly applicable to the
propagation of SHwvaves in Tl media, as the wavefronts of SH waves are always
ellipsoids. In general, the wavefronts of P and SV waves are not ellipsoids, thus for
those waves, the concept of elliptical anisotropy can be, at best, an approximation.
Certain pieces of the wavefront may be represented with sufficient accuracy by ellipsoids
(Helbig, 1983). lllustrations of various slowness curves are shown in Appendix 2; it is
clear that although some of them could be very well approximated by ellipses, others
exhibit peculiarities of shapes which do not lend themselves to such an approximation.

A strict adherence to the mathematical formulation of elliptical velocity
dependence for compressional waves, in the context of transversely isotropic media,
implies thatd = € in the equations for phase velocities (Thomsen, 1986). This implies,
(see equation (3.20)) an isotropic SV wave, i.e., no angular dependence (e.g., Daley and
Hron, 1977). This according to Thomsen (1986) constitutes a nonphysical situation. In a
general case, it can, however, according to Helbig (1994), be a natural consequence of a

particular symmetry if the combination of elastic constants is such that:

14 Note that following the definition of transverse isotropy, in the plane perpendicular to the symmetry axis,
slowness curves for all waves are circular.
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(Ci1 = Co)(Ca3— Co9 = (Cyst CSQZ =0, (4.7)

in which case the qP wave possesses an elliptical slowness curve, while thegSV

has a circular one. Early field studies, e.g., of Dunoyer de Segonzac and Laherrere
(1959), who used elliptical velocity dependence to reconcile theory and observation from
vertical seismic profiles (VSP), indicate that the usefulness of elliptical formulation, goes
beyond an elegant expression of mathematically tractable equation. Dellinger (1991)
states appropriately in the conclusions of his doctoral dissertation “even elliptical
anisotropy is better than nothing”.

Firstly, in many cases, the velocity dependence resembles an elliptical shape, and
can, within the experimental context, e.g., in exploration geophysics, be approximated by
an ellipse. As Dellinger and Muir (1988) point out, geophysicists, for reasonable offsets,
find the hyperbolic move-out a good approximation, although it is not strictly true. They
conclude by remarking that the hyperbolic moveout assumption is equivalent to an
elliptical wavefront assumption, thus the elliptical model applies in any case where the
hyperbolic moveout approximation is appropriate.

Secondly, for an SH wave the elliptical velocity dependence holds true even in the
case of strong anisotropy. Thus, the formulation based on elliptical velocity dependence
provides an excellent basis for shear-wave exploration, and might be used as a reasonably
approximation for compressional waves in some circumstances.

Dellinger (1991) shows by visualizing an ellipse as a stretched circle that, in
general, only SH waves can undergo the stretching without losing the orthogonality of
polarization (particle motion) with respect to other wave types. The simple coordinate
stretching transforming a circle into an ellipse for either P- or SV- wavefronts entails the
loss of the orthogonality of particle motion which is intrinsically embedded in the
standard elastic-wave equation.

There also exists, introduced by Muir (see Michelena, Muir, and Harris, 1993), a
double elliptical approximation, which fits a wider range of P and SV wavefronts.

Particularly, it fits well some SV wavefronts which can be described as resulting from the
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superposition of two ellipses, with major axes perpendicular to each other, e.g.,

Figure

A2.1.(j). The double elliptical approximation is not, however, used in this dissertation.

Computational Method: Raytracing through multiple layers using Snell’s law
formulation for SH waves

A Mathematicalcode for calculating the raypath travelling across three layers.
surface layer is assumed to be isotropic while deeper layers are anisotropic. Note|
code can be very easily extended for any desired number of layers. It suffices t
analogous modules, and provide additional input information concerning those 14

X =horizontal source/receiver distance
HJ =thickness of the first layer
HD = thickness of the second layer
HT =thickness of the third layer
GD =anisotropic parameter in the second layer
GT =anisotropic parameter in the third layer
VJ =vertical speed in the first layer
VD = vertical speed in the second layer
VT = vertical speed in the third layer
(Calculation of the "take-off” angle and the ray paraméter
Qi = ArcTan[(X-r)/HJ]
X = Sin[Qil/VJ
(Calculation of phased and groupsdangle in the second layjer
zd = ArcCos[(1-Sqrt[1-(2*x*VD)"2*GD])/(2*x*VD*GD)]
dzd= 2*zd
rd = 1/(VD*(1+GD*Cos[zd]"2))
drd = GD*Sin[dzd]/(VD*(1+GD*Cos[zd]*2)"2)
sd = N[ArcCot[(drd-rd*Tan[zd])/(drd*Tan[zd]+rd)]]
(Calculation of phaset and groupstangle in the third layéer
zt = ArcCos[(1-Sqrt[1-(2*x*VT) 2*GT])/(2*x*VT*GT)]
dzt= 2*zt
rt = 1/(VT*(1+GT*Cos|[zt]*2))
drt = GT*Sin[dzt)/(VT*(1+GT*Cos[zt]*2)"2)
st = N[ArcCot[(drt-rt*Tan[zt])/(drt*Tan[zt]+rt)]]
(Iterative procedure of finding the appropriate value )of r

FindRoot[r+HD*Tan[sd]+HT*Tan[st]==0, {r,{0.5*X,0.99*X}}]

The

that the
D add
\yers.
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CHAPTER

TRAVELTIMES IN WEAKLY ANISOTROPIC MEDIA

5.0. INTRODUCTION

Dealing with wave phenomena in anisotropic media one must distinguish between
group and phase velocities. Field measurements of traveltime and distance often vyield
group velocity. Phase velocity is linked intimately with mathematical description of
reflection and transmission, e.g., Snell’'s law. Thus experimental testing of applicability
of a mathematical formalism would often require the establishment of a relationship
between group and phase velocities.

By definition (e.g., Winterstein, 1990), group velocity is the speed at which wave
energy travels in a given direction radially outward from a point source in a homogeneous
elastic anisotropic medium. In anisotropic media both group and phase velocities vary
with direction, just as they vary with frequency in attenuating media. The quotient of
distance between a point source and a point receiver, and elapsed traveltime, yields the
value of group velocity.

By definition (e.g., Crampin, 1989), phase velocity is the velocity in the direction
of the phase propagation vector, normal to the surface of constant phase. Phase velocity
appears naturally in most analytical and numerical expressions. The quotient of distance
between a source generating plane waves and a receiver, and the elapsed traveltime yields
the value of phase velocity. Such measurements can be performed in laboratory setting
(e.g., Dellinger and Vernik, 1994; Vestrum, 1994).
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In isotropic elastic media, group and phase velocities coincide. In anisotropic
media, group and phase velocities can coincide along particular trajectories. For instance,
in transversely isotropic media with a vertical symmetry axis (TIV) at vertical and
horizontal propagation, group velocity equals phase velocity. This property plays a key
réle in linking theoretical development with experimental verification of results. It
allows one to physically measure vertical sound spag@dsdf3,, for compressional and
shear waves, respectively, that are equivalent to phase velocities and appear throughout

the entire theoretical development.

5.1. MAGNITUDE OF GROUP VELOCITY
5.1.1. Magnitude of group velocity using the linearized method

Berryman (1979) gives the equation for the scalar magnitude of group velocity in
terms of phase velocity and phase angle. Employing the form used by, e.g., Thomsen
(1986) and Brown et al. (1991), and measuring phase ajjdi®m the horizontal for

consistency with development in this dissertation, yields:

(5.1)

VY| 9(5)]=V2(€)+3|;—Zﬁ2,

V=v ,l+vi%f|_:‘/§ (5.2)

whereV andv refer to group and phase velocities respectively.

or

Developing equation (5.2) into a Taylor series one obtains:

1 vid 1 oavd O
V= VEQ:HZTEH_H v Eh_fHJrE (5.3)

Based on equation (5.3), one can say that, correct to the first order:
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V[6(19)] =v(J). (5.4)

In some applications, within the realm of weak anisotropy, equation (5.4) can yield results
of sufficient accuracy.

Equation (5.4) is not to be understood as an equivalence of group and phase
velocities. Except for a spherical wavefront, i.e., perfect isotropy, and particular
symmetry directions where the normal to the wavefront (direction of phase velocity) is
parallel to the radius (direction of group velocity) the two velocities are not equivalent. In
this dissertation, equation (5.4) means that in weakly anisotropic media, for a given group
angle,6, the group velocity can be approximated using the form of equations (3.1), (3.20)
and (3.30).

In the case of two layers separated by a planar interface, in the anisotropic
medium of transmission the group speed of a given ray can be calculated using the group

angle,8, derived from the phase angfgeand the ray parametey

Method of Computation: Group Speed for a gP wave, SV wave or gSH wave

Transmitted Across an Isotropic/Anisotropic Interface assuming Full Linearization.

Given a planar, horizontal interface between an isotropic medium with an incident P

wave, SV wave or SH wave with speedt an angle of incidencé, and an anisotropi¢

medium with the vertical group/phase speed of a compressionabyevad the vertica
group/phase speed of a shear w@lyeanisotropic parameteds € andy, as well as the

angle of transmissior§, calculated using the Snell’s law formalism, the group spée

=

can be calculated using the steps below.

Incident P or SV O Transmitted gP
Step 1
Calculate the angle of transmissiéh,using Snell’s law for isotropic/anisotropic

interface

Step 2
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Calculate the group speed8).
V(6,) = ay(1+dsin’ 6, cos b, +¢ sirtb, )

Incident P or SV Transmitted SV
Step 1
Calculate the angle of transmissiéh,using Snell’s law for isotropic/anisotropic

interface

Step 2
Calculate the group speed8).

V(6,)|= Bod+ 22 (e - 8)sin? 6, cod 6,
0O Bs 0

Incident SH O Transmitted SH
Step 1
Calculate the angle of transmissiéh,using Snell’s law for isotropic/anisotropic

interface

Step 2
Calculate the group speed8).

V(8,) = Bo(1+ysin°6,).

Note: The anglep, is the transmitted group angle, usually referred to, e.g., Thom

(1986), Brown et al (1991), a5

sen
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5.1..2. Magnitude of group velocity using the approximate method
More accurate and, above all, physically more interesting results reflecting the
distinction between phase and group velocities are obtained using the exact expression

provided by Berryman (1979):

v2[a(9)] = v3(9) + %g (5.5)

whereV andv refer to group and phase velocities respectively. Using the expressions for
phase velocities of P, SV, and SH waves, in terms of the phase @ngleasured with

respect to the normal to the interface, shown below (Thomsen, 1986):

Vep (8) = (14 8in’ 9 cod 9 +& sif9 ) (5.6)

Veoy(9) = B,d+92 (e-8)sin’ 8 cod 95, (5.7)
0 Bo 0

and

Veu(9) = By(L+y ST ), (5.8)

one can obtain expressions for group velocities:

Vo [6(9)] = a[L+ Scos 9 sirt 9 +e sifi 8] + sin(20)[e +(5-¢) cq@d)]

(5.9)
Vqsv[e(ﬁ)] _ B\/%ﬁ az(e—é)si?zﬁ co§z9§ .\ a’(e-0o) 2siﬁ(4z9) . (5.10)
O B 0 4p
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and

Voo 009)] = By[L+ ysin® 8] +[y sin(29)]] . (5.11)

In order to use equations (5.9), (5.10) and (5.11) one must first express ray angle,
6, as a function of the corresponding phase adyjleNote that one could also apply
equation (5.5) to exact expressions for phase velocities (equations (A2.1), (A2.2), and
(A2.3)). However, the resulting expressions for gP and qSV waves become very
complicated, and, in the case of weak anisotropy, a very small increase in accuracy is paid
for by a very large increase in complexity (see Appendix 6). Nevertheless, should one
desire to derive the Snell's law for strong anisotropy there appear to be no fundamental

difficulties (see Appendix 7).

Method of Computation: Group Speed for a gP wave, gSWave or gSH wave

Transmitted Across an Isotropic/Anisotropic Interface using weak-anisotropy

formulation.

Given a planar, horizontal interface between an isotropic medium with an incident P

wave, SV wave or SH wave with speedt an angle of incidencé, and an anisotropi¢

medium with the vertical group/phase speed of a compressionabyavad the vertica
group/phase speed of a shear w@lyeanisotropic parameteds € andy, as well as the
angle of transmissior, calculated using the Snell’s law formalism, the group spéed,

can be calculated using the steps below.

Incident P or SV O Transmitted gP
Step 1
Calculate the angle of transmissiéh,using Snell’s law for isotropic/anisotropic
interface, while retaining the corresponding phase-angle colatitudesasured with

respect to the normal to the interface
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Step 2
Calculate the group speed 6(3)], i.e., the group speed of a ray propagating at a g

angle,6, associated with the phase andle,

qu[e(ﬁ)] = a\/[1+ dcos 9 sifd +¢ sir‘i{9]2 + siﬁ(219)[£+(6—£) C((§z9)]2

Incident P or SVO Transmitted SV
Step 1
Calculate the angle of transmissiéh,using Snell’s law for isotropic/anisotropic
interface, while retaining the corresponding phase-angle colatitudesasured with
respect to the normal to the interface
Step 2
Calculate the group speed 6(39)], i.e., the group speed of a ray propagating at a g

angle,6, associated with the phase andle,

Vqsv[9(19)] _ B\/%’f a’(e-0o)sin’ 9 coéﬁg[ . a(e-o)" sif(49)

0 B’ 0 4p*

Incident SH O Transmitted SH
Step 1
Calculate the angle of transmissiéh,using Snell’s law for isotropic/anisotropic
interface, while retaining the corresponding phase-angle colatitudesasured with
respect to the normal to the interface
Step 2
Calculate the group speed 8(39)], i.e., the group speed of a ray propagating at a g

angle,6, associated with the phase andle,

VqSH[B(ﬁ)] = ,B\/[l+ y sin? 19]2 + [y sir(ZzS’)]2 :

roup

roup

roup




5.2. TRAVELTIME CALCULATIONS

As mentioned above, the measured traveltime is the function of the group

velocity. Thus having an expression for group velocity one can compute the time taken

by a signal to travel between a given source and receiver. For a medium composed of an

isotropic and an anisotropic layer such calculations can be performed with the aid of

Snell's law derived in Chapters Il and Ill. The Mathematicaodes to perform

traveltime calculations using nonlinearized expressions for group velocity (equations

(5.9), (5.10), and (5.11)) are given below.

Computational Method: Traveltime Between a Source and Receiver Across a Tw

Layer Isotropic/Anisotropic Medium.

Incident P or SV Transmitted qP

N.B. The programme below takes, as a starting point, the incident &ngled, for given

layer thicknesses$y andh,, as well as other model parameters, calculates the traveltime
and the horizontal source-receiver distance. I.e., it does not search for the take-qgff angle

corresponding to a given source receiver separation.

m =angle of incidence (in radians)

ht =thickness of the isotropic layen.h

hb =thickness of the anisotropic layep, h

v =wave speed in the isotropic layer, v.

A =vertical compressional wave speed in the anisotropic layger,

d = anisotropic parameter .

e = anisotropic parameter..

X = Sin[m]/v

FindRoot[A*x*(e-d)*C"4+A*x*d*C"2-C+A*x==0,{C,0.5,0,1}]

z = ArcCos[C/.%]

dz = 2*z

r = 1/(A*(1+d*Sin[z]*2*Cos|[z]"2+e*Cos[z]"4))

dr = (Sin[dz]*Abs[d*Cos[dz]-

2*e*Cos|[z]*2])/(A*(1+d*Sin[z]*2*Cos[z]*2+e*Cos[z]*4)"2)

s =ArcCot[Abs[(dr-r*Tan[z])/(dr*Tan[z]+1)]]

phi = Pi/2-z

N[ht/(Cos[m]*v)+

hb/(Cos|s]*

A*Sqrt[(1+d*Sin[phi]*2*Cos[s]*2+e*Sin[phi]*4)"2
+Sin[2*phi]"2*(e+(d-e)*Cos[2*phi])"2])]
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N[ht*Tan[m]+hb*Tan[s]]

Incident P or SV O Transmitted qSV

N.B. The programme below takes, as a starting point, the incident &ngled, for given

layer thicknesses$y andh,, as well as other model parameters, calculates the trave
and the horizontal source-receiver distance. I.e., it does not search for the take-g
corresponding to a given source receiver separation.

m =angle of incidence (in radians)

ht =thickness of the isotropic layen.h

hb =thickness of the anisotropic layep, h

v =wave speed in the isotropic layer, v.

A =vertical compressional wave speed in the anisotropic layer,

B =vertical shear wave speed in the anisotropic lager,

d = anisotropic parameter .

e = anisotropic parameter..

X = Sin[m]/v

FindRoot[(A"2*x*(e-d)/B)*C"4-(A"2*x*(e-d)/B)C"2+C-x*B==0,{C,0.5,0,1}]

z = ArcCos[C/.%]

dz = 2*z

r = 1/(B*(1+(A/B)"2*(e-d)*Sin[z]*2*Cos[z]"2))

t = Sin[z]/r+(A"2/B)*Cos|z]*(e-d)*Sin[dz]*Cos[dz]

b = Sqrt[1/r2+((A"2/B)*(e-d)*Sin[dz]*Cos[dz])"2]

s =ArcCos[Abs[t/b]]

N[ht/(Cos[m]*v)+

hb/(Cos|s]*

(B*Sqrt[ (1+(A/B)*2*(e-d)*Sin[phi]*2*Cos[phi]*2)"2
+(AM*(e-d)"2*Sin[4*phi]*2)/(4*B"2)]))]

N[ht*Tan[m]+hb*Tan[s]]

Incident SH O Transmitted qSH

N.B. The programme below calculates the traveltime given the horizontal source-r
separation, X, and other model parameters. l.e., it does search for the take-off
corresponding to a given source-receiver separation.

X = horizontal distance between the source and receiver
ht =thickness of the isotropic layer,.h

hb =thickness of the anisotropic layep, h

v = shear wave speed in the isotropic medium, v.

B = vertical shear wave speed in the anisotropic medfm,

Itime
ff angle

eceiver
angle

g = anisotropic parametery.
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X = Sin[m]/v
z = ArcCos[(1-Sqrt[1-(2*x*B)"2*q])/(2*x*B*Q)]
dz = 2*z

r = 1/(B*(1+g*Cos[z]*2))

t = Sin[z]*(2*B*g*Cos|[z]*2-1/r)

b = Sqrt[1/r2+(B*g*Sin[dz])"2]

s = ArcCos[Abs[t/b]]

Cr = N[ArcCot[Sqrt[((B/v)*(g+1))*2-1]]]
FindRoot[ht*Tan[m]+hb*Tan[s]==X,{m,{0.000001,0.5}}]

mf = m/.%

sf = ArcTan[(X-ht*Tan[mf])/hb]

xf = Sin[mf]/v

zf = ArcCos[(1-Sqrt[1-(2*xf*B)"2*q])/(2*xf*B*Q)]
phi = Pi/2-zf

N[ht/(Cos[mf]*v)+hb/

(Cos[sf]*B*Sqrt[(1+g*Sin[phi]*2)*2+(g*Sin[2*phi])"2])]

Appendix 6 provides a study, based on SH waves, involving traveltime
calculations using exact, approximate, and linearized expressions for velocity. All in all,
within the realm of weak anisotropy, the discrepancies between numerical values yielded
by the three approaches are relatively small. More importantly, however, certain physical
attributes are obscured by the process of linearization. For instance, the distinction
between the phase and group angle becomes less clear in the raytracing process. The

importance of this distinction, particularly in relation to SV waves, is demonstrated in

Chapter VI.




78

CHAPTER

ANISOTROPIC/ANISOTROPIC INTERFACE

6.0. INTRODUCTION

Chapter Il provided a rather general formalism for calculating reflection and
transmission angles (Snell's law) at an interface between two anisotropic media. The two
media were characterized by phase slowness surfaces expressed in terms of Cartesian
components, y, andz. Chapter Ill used the rather general, but less directly applicable
template provided in Chapter Il to express the relation between incidence and
transmission angles for compressional and shear waves under the assumption and
approximations of weak anisotropy. The explicit formulee were derived for a case of
isotropic/anisotropic interface. This scenario allows a more straightforward initiation of
the process of raytracing (Chapter IV and Chapter V), and, above all, is perfectly
applicable to the prediction and analysis of results of physical modelling (Chapter VII). If
the medium of incidence is anisotropic the ray paramggecannot be found directly
from the angle of incidence because, in general, the group and phase angles are not equal.
In this chapter, the basic formulae relating incident and transmitted angles for shear and
compressional waves are derived, under the assumptions of weak anisotropy for a case of
an interface between two anisotropic media.

In the transversely isotropic (Tl) medium there are, similarly to the isotropic case,
three distinct and independent solutions. They correspond to the quasi-longitudinal,
guasi-transverse and transverse waves. The directions of polarization are mutually

orthogonal. The purely transverse wave, denoted as SH, has a direction of particle



79

displacement, i.e., polarization, perpendicular to the direction of propagation. Its
slowness curves in the plane of the symmetry axis are always elliptical, even in the case
of strong anisotropy (e.g., Helbig 1994). The polarization of the remaining waves is not
pure. In the case of compressional (P) wave, the particle displacement is not perfectly
aligned with the direction of propagation. In the case of shear (SV) wave, the particle
displacement is not perfectly perpendicular to the direction of propagation. For this
reason those two waves should be referred to as quasi-longitudinal and quasi-shear. In
some cases of extreme anisotropy it is conceivable for the polarization to be so impure
that the description of a wave as quasi-compressional or quasi-shear becomes impossible.
As remarked by Winterstein (1990), theory allows for phenomena that are not observed
from data in real rocks. There seems to be no experimental evidence that such impure
polarizations exist in sedimentary rocks (Winterstein, 1990).

Therefore, it appears reasonable and useful to derive refraction formulae for two
principal scenarios. The first one consisting of the incidence and transmission of a
perfectly transverse (SH) wave, and the second one of the incidence and transmission of
guasi-compressional (gP) and quasi-shear (SV) wave. Those two cases result from the
Christoffel equation in the transversely isotropic medium which is separated into two
decoupled systems (e.g., Dellinger, 1991). Assuming, without any loss of generality, that
the propagation occurs in the-plane, the particle displacement of an SH wave is
perfectly parallel with thg-axis. In the case of propagation in the TIV-medium, where
any azimuth constitutes a symmetry plane, the polarizations of quasi-compressional (gP)
and quasi-shear (QSV) waves are contained in the plane of propagatiotzplane.
Probably, in the case of weak anisotropy, as encountered in sedimentary rocks, the off-
plane component of polarization, in any symmetry system, is small. Thus considering the
two distinct cases (SH and V) mentioned above should constitute a valid approach. It
is important to realize, however, that since the polarization of quasi-compressional and
guasi-shear waves, in a general case, contains all three Cartesian components an incident
wave of one type will generate all three reflected and transmitted waves.

Since, in the present case, there is no danger of confusion one can refer,

particularly under the assumption of weak anisotropy, to the aforementioned waves as P



80

and SV thus omitting the prefguasi Such notation is strictly correct with respecttd

waves.

6.1. THE APPROACH

In the generalized formalism dealing with the interface between two anisotropic
media, derived in Chapter Il, the angles of incidence and refraction are related through the
continuity conditions across the boundary, i.e., through the ray parargeté€hus, in the
general method, one does not necessarily express the angle of transmission as a function
of the angle of incidence, but both are expressed as functions of the ray parameter. In
many cases it is possible to express the angle of transmission as a function of the angle of
incidence, e.g., in the case of the elliptical velocity dependence illustrated in Chapter II.
In other cases such an expression can be very complicated or outright impossible. In such
a case one needs to resort to some numerical scheme. In Chapter lll, the difficulty was
overcome by assuming the medium of incidence to be isotropic. This implies that the ray
(group) and phase angles coincide and the ray parameter can be very easily related to the

angle of incidenceg, and the wave speed in the isotropic mediymamely:

sing.
Xy = y L (6.1)

In an anisotropic medium, i.e., with a nonspherical phase-slowness surface, one
first needs to find a point on the phase-slowness surface at which the direction of the
normal is the same as that of the desired incideft rahe horizontal component of the
slowness curve at this point yields the desired ray paramegterhis requires finding the
phase angleé, as a function of a group anglé, i.e., the opposite of the procedure
illustrated in Chapter III.

A considerable simplification of the process could be provided by considering the

linearized expressions for the relationships between phase and group angles (Thomsen,

15 Note that for a sufficiently complex slowness surface there may be several points exhibiting the same
direction of the normal to the surface.
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1986). For instance, in the case of P waves the gupnd phaseyg, angles are

expressed as follows:
tand = targ[1+ 25+ 4 € -5 )sid 9], (6.2)

wheree and d denote the anisotropic parameters. Similar formulee are given for SV and
SH waves (Thomsen, 1986) They all stem from simplifying assumptions which are a
further consequence of the notion of weak anisotropy. Using the basic equations of weak
anisotropy, which allow for mathematically manageable manipulations without all the
entailing simplifications, leads to more accurate results as shown in the Appendix 6. This
dissertation, attempts to avoid, wherever possible, the use of approximate formulee and
thus the more complicated route is taken. The repeated use of approximate formuleae, for
instance in a multi-layer case, can lead to a significant numerical errors about which a

geophysicist should be aware (e.g., Brown, 1988).

6.2. SPECIFIC CASES

In the remainder of this chapter the algorithms for several cases are developed and
described. Firstly, a distinct case of a purely polarized shear (SH) wave is treated.
Secondly, the most common case in exploration seismology of incident and transmitted
compressional waves (P-P) is shown. Thirdly, an interesting case of a converted wave is
considered; namely, the incident compressional and reflected shear wave (P-SV). The
remaining two cases (SV-P and SV-SV) are not shown explicitly but their treatment is

analogous to the ones shown.

16 The results obtained using the linearized relationship between phase and group angles for SV waves
seems to yield incorrect results (see Figures 6.10 and 6.12). For this particular reason, as well as to increase
the accuracy of the approach the non-linearized expressions are used.
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6.2.1. SH-SH case

The case of the incident SH wave and the transmitted SH wave has several
appealing features. Above all it stands on its own as a physical phenomenon occurring in
a transversely isotropic medium. Mathematically, the expressions related to SH waves
exhibit greater simplicity than either P or SV waves. Also, since it is known (e.g.,
Helbig, 1994) that the slowness curves of SH waves in any vertical plane of a transversely
isotropic (TIV) medium are always elliptical, one can compare the results obtained under
the weak-anisotropy assumption with the results obtained using elliptical geometry in the
general scheme as described in Chapter Il. Such a comparison is equivalent to the

comparison between the exact and an approximate solutions (see Appendix 6).

Computation Method: Incidence and transmission Angles at an
Anisotropic/Anisotropic Interface

Incident SH O Transmitted SH
Step 1

Solve for the phase anglg, in the medium of incidence, given the incidenge
angle,8.

[dr (&)

0, = Arccot% do

uf
E%tanfﬂ(f)é

—r(§)tané E

where

1
Bo(1+ycos &)

r(é) =

and

dr __ ysiné)
d¢  B,(1+ycos &y
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The equation can be written as a double cubic i, @xl thus, in principle, can be
solved analytically.

Step 2

Calculate the ray parametgs, using the equation below. Choose the valu&which
corresponds to the quadrant of the incidence angle.

= cos
" Bo(+ycos €)

Note that for a ray incident to the left of the normal, i.e., the second quagraX,
Step 3

Using the ray parameteg, constant for all interfaces, calculate the phase afiglethe
medium of transmission

El_\/l_(zxoﬁo)z)/%
B

& = Arccos
= 2X,BoY

Step 4
Calculate the angle of transmissiéh,

0 0
Esinfﬁzﬁoy co$ & - r(lf)ﬁm
6, = ArccosH E

o 1 - 2 [
Ok +[Boysin(24)] =

where:
1

Bo(1+ ycos &)

r(é) =

The Mathematida code is given below.

Qi =angle of incidenced, in radians.

VJ =vertical speed in the medium of incidence

VD = vertical speed in the medium of transmission

GJ =anisotropic parametery, for SH-waves 0d = &, for elliptical P-waves, in
the medium of incidence.
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GD =anisotropic parametery, for SH-waves 0d = ¢, for elliptical P-waves, in

the medium of transmission.

R =Qi

ri = 1/(VJI*(1+GJ*Cos[zi]"2))

dri = 2*GJ*Sin[zi]*Cos][zi]/(VI*(1+GJ*Cos[zi]*2)"2)

FindRoot[Cot[Qi]==

(dri-ri*Tan[zi])/(dri*Tan][zi]+ri), {zi,R,-Pi,Pi}]

zif = Abs|[zi/.%]

X = N[Abs[Cos|zif]/(VI*(1+GJI*Cos|[zif]*2))]]

zt = ArcCos[(1-Sqrt[1-(2*x*VD)"2*GD])/(2*x*VD*GD)]

dzt= 2*zt

rt = 1/(VD*(1+GD*Cos|[zt]*2))

phi = N[Abs[Pi/2 - zif]]

Vpi = VJI*(1+GJ*Cos|zif]*2)

Vgi = N[VI*Sqrt[(1+GJ*Sin[phi]*2)"2+
(GJI*Sin[2*phi])*2]]

s = N[ArcCos|
Abs[Sin[zt]*(2*VD*GD*Cos|zt]"2-1/rt)/
Sqrt[1/rt"2+(VD*GD*Sin[dzt])*2]]]]

pht = N[Abs[Pi/2 - zt]]

Vpt = VD*(1+GD*Cos[zt]*2)

Vgt = N[VD*Sqrt[(1+GD*Sin[pht]*2)"2+
(GD*Sin[2*pht])*2]]

Note that the resulting value &fappears in radians.

To completely describe the phenomena occurring at the boundary one needs to

vertical. This notation is consistent throughout the entire dissertation.
The group velocity is obtained from a well known relationship (see Chapter V

and Appendix 6),

V2[6(9)] = V() + é‘%@z,

provide both phase}, and group,6, angles as well as phaseand groupy, velocities.
The phase velocity is the inverse of already obtained phase slowf@ssNote that
while the symboE, denotes the phase latitude, i.e., the angle measured from the

horizontal, the symbol, denotes the phase colatitude, i.e., the angle measured from the
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and for SH waves, under the assumption of weak anisotropy, is given by:

V[o(®)] 0By (a+ysin® 8)" +[y sir(29)] . (6.4)
Note that a fully linearized consequence of weak anisotropy implies:
V[a(9)] = v®) O B(L+ysin9), (6.5)

i.e., the second additive term under the square root which exists in equation (6.4)
disappears in equation (6.5). The linearization increases the discrepancy between the
exact and the approximate solutions and therefore is not used in this development. For a
more thorough investigation of various degrees of approximation, the reader is referred

to the Appendix 6.

6.2.1.1 Numerical example

Consider a planar horizontal interface between two anisotropic media. The upper
medium has the vertical wave speBd;, 2000 m/s, and the anisotropic paramegter
- 0.15. The lower medium has the vertical wave sg@ed3000 m/s, and the anisotropic
parametery =+ 0.2. The ray strikes the interface from above at the ahgi€2(’.

Using the graphical illustration one can, to facilitate the construction, superpose
two slowness curves (Figure 6.1). Since the phase velocity in the medium of
transmission is significantly higher than the phase velocity in the medium of incidence,
the entire slowness curve of the lower medium lies inside the slowness curve of the upper
medium. Since the anisotropic parameters for either medium are of the opposite signs the
major and minor axes of either curve coincide with different coordinate axes. A positive
anisotropic parametey,> 0, means that the horizontal speed is greater than the vertical
speed, which  entails flattening on the equator of the slowness surface. Negative

anisotropic parametey,< 0, means that the vertical speed is greater than the horizontal
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speed, which entails flattening on the poles of the slowness surface. Using the fact that
the ray parameter, in this case measured along the horizontal axis, i.e., parallel to the
interface, is equal for both incident and transmitted waves one can construct

corresponding angles.

-0.0qQ06 -0.0004 I0:.0002 0.0004 0.9006

Figure 6.1. Slowness curves of SH waves in slowness space, i.e., cross-se¢tions of
corresponding slowness surfaces in a vertical plane, for media of incidence (outer) and
transmission (inner). The units are those of slowness, i.e., s/m. The ray (group) angles are
denoted a¥? and 6 for incidence and transmission respectively. The wave (ghase)
angles are denoted &sandd; for incidence and transmission respectively. Symvols
andm with respective subscripts denote to the ray and phase vectors in the ugper and
lower medium. Note that the shape of slowness surfaces is consistent with thg sign of
anisotropic parameterg< 0 0 v <V, 0 slowness curve flattened along thaxis, y >
00 v v, [0 slowness curve flattened along #axis.

Using the derived algorithm one can calculate all the quantities illustrated above.

The examination of results shows a clear distinction between phase and group
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phenomena, which form an intrinsic element of wave propagation in anisotropic media.

Several important relations between those quantities are described in section 6.3.

Medium of Incidence, Medium of Transmission,

SH wave SH wave

Group angle, 6, [deg.] 20 62.57915511

Phase angle}, [deg.] 27.17059411 52.83375609
Group velocity, V, [m/s] 1952.72 3430.02
Phase velocityy, [m/s] 1937.44 3381.02

Ray parameter,Xoq, [S/m] 0.000235694 0.000235694

(horizontal slowness)

Table 6.1. Computational results for an SH-SH case. (N.B. All digits returned by the
computer programme were kept in order to compare various approaches and algorithms
used within Mathematica.)

To better visualize the events at the interface the ray diagram at the interface is
illustrated by Figure 6.2. The energy propagates in the direction of the ray, while the

wavefronts propagate in the direction of the wave vektor,

B = 2000 m/s
y=-0.15

wav
fron

B=3000 m/s
y=+0.20

Figure 6.2. A ray diagram of an SH wave at a horizontal
interface between two anisotropic layers. Note that the
wavefronts are not perpendicular to the direction of the
propagation of the ray.
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6.2.2. P-P case

In spite of growing interest in shear waves, compressional waves are still the most
commonly recorded waves in seismic exploration. Shear waves are difficult to generate
and record at the surface due to the unconsolidated surficial material which poorly
support shear stresses. In the case explicitly considered in this chapter, namely
propagation within a symmetry plane, or equivalently, within any plane of a TIV medium
containing the symmetry axis, the incidence of a P wave entails, apart from the generation
of transmitted P wave, generation of a transmitted SV wave. Such mode conversion is
treated in section 6.2.3, while below only incident and transmitted P waves are
considered. One should note that although neglecting the mode conversion in the
calculation of the reflection and transmission coefficients leads to erroneous results, the
calculation of reflection and transmission angles, on the other hand, can be considered

separately for each case.

Computation Method: Incidence and transmission Angles at an
Anisotropic/Anisotropic Interface

Incident P O Transmitted P

Step 1
Solve for the phase anglg, in the medium of incidence, given the incident

angle,8.

odr(s) _ r(§)tané g

o - H d¢ =

= ArCCOt[dr(f) 0,
0=  tané +r € )
g d¢ =

where
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1

") = a,(1+0sin’ Ecod & +& codé )

and

dr _ sin(2€)[s—5co£2€)+£ 00625)]

dé  a,(1+dsin”Ecod &+ codé §

Step 2

Calculate the ray parametgs, using the equation below. Choose the valu&which
corresponds to the quadrant of the incidence angle.

cosé
a,(1+0sin’ Ecod & +& codé )

X(&) =

Note that for a ray incident to the left of the normal, i.e., the second quagkalt,
Step 3

Using the ray parameteg, constant for all interfaces, calculate the phase afglethe
medium of transmission

a,X,(e—d)cos &, +a  x,0 cos&, - cod, +a X, =0
This is a quartic equation yielding a unique real angle.

Step 4
Calculate the angle of transmissiéh,

Baoco&? SinRé {6 CoSPE ¥ 2¢ C&Sf)—ﬁ B
8, = Arccos% r¢) E
E\/[r(;lz +[ar, SIN(E)(5 COSQE )~ 2¢ COBE 15

where:

(&) = !

a,(l+0sin*&cos & +¢& coS¢ )

The Mathematica code is given below.
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Qi =angle of incidence in radians

VJ =vertical speed in the medium of incidence

VD =vertical speed in the medium of transmission

EJ =anisotropic parameter in the medium of inciderece,
DJ =anisotropic parameter in the medium of inciderece,
ED =anisotropic parameter in the medium of transmissén,
DD =anisotropic parameter in the medium of transmissén,
R =Qi

ri = 1/(VJ*(1+DJ*Sin[zi]"2*Cos|zi]|"2+EJ*Cos|zi]"4))

dri = Sin[2*zi]*(EJ-DJ*Cos[2*zi|+EJ*Cos[2*zi])/
(VI*(1+EJ*Cos[zi]*4+DJ*Cos|zi]"2*Sin[zi]*2)"2)

FindRoot[Cot[Qi]==
(dri-ri*Tan[zi])/(dri*Tan([zi]+ri), {zi,R,-Pi,Pi}]

zif = Abs|[zi/.%]

X = N[Abs[Cos|zif]/
(VI*(1+DJ*Sin[zif|*2*Cos|zif|[*2+EJ*Cos|[zif]*4))]]

FindRoot[VD*x*(ED-DD)*C"4+VD*x*DD*C"2-C+VD*x==0,{C,0.5,0,1.5}]

z = ArcCos|[C/.%)]

dz = 2*z

r = 1/(VD*(1+DD*Sin[z]"2*Cos[z]"2+ED*Cos[z]"4))

t = VD*Cos|z]*Sin[dz]*(Abs[DD*Cos[dz]-2*ED*Cos|[z]"*2])-Sin[z]/r

b = Sqgrt[1/r2+(VD*Sin[dz]*(DD*Cos|[dz]-2*ED*Cos[z]*2))"2]

m = Qi

phj = N[(Pi/2-zif)]

Vpj = VI*(1+DJ*Sin[phj]*2*Cos[phj]*2+EJ*Sin[phj]*4)

Vgj = Sqrt[(VJI*(1+DJ*Sin[phj]*2*Cos[phj]*2+EJ*Sin[phj]*4))"2+
(VI*Sin[2*phj]*(EJ+DJ*Cos[2*phj]-EJ*Cos[2*phj]))"2]

s = ArcCos[Abs[t/b]]

phd=N][(Pi/2-2)]

Vpd = VD*(1+DD*Sin[phd]*2*Cos[phd]*2+ED*Sin[phd]*4)

Vgd = Sqrt[(VD*(1+DD*Sin[phd]*2*Cos[phd]*2+ED*Sin[phd]*4))"2+
(VD*Sin[2*phd]*(ED+DD*Cos[2*phd]-ED*Cos[2*phd]))"2]

6.2.2.1. Numerical example

Consider a planar horizontal interface between two anisotropic media. In the
upper medium, the vertical wave speeag,= 3000 m/sg= - 0.2 andd, = 0.1. In the
lower medium, the vertical wave speed,= 4000 m/s, and; = + 0.15 andj, = -0.2.

The ray strikes the interface from above at an incidence anéle 6fF.
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= 4000 m/s, & =

corresponds to the “slower” medium of incidence.
corresponds to the “faster” medium of transmission.
various symbols is described in Figure 6.1.

Figure 6.3. Compressional (P) wave slowness curves, i.e., cross-gections
of corresponding slowness surfaces in a vertical planes 3000 m/sa-
-0.2,& = 0.15 ,6,= 0.1, % = -0.2. The outer curye

The inner ¢urve
The meaning of

Medium of Incidence,

Medium of Transmission,

P waves P wave
Group angle, 6, [deg.] 30 64.00912599
Phase angle?, [deg.] 35.57282955 51.53445969
Group velocity,V, [m/s] 3012.69 4133.32
Phase velocityy, [m/s] 2998.45 4035.73

Ray parameter,xo, [s/m]
(horizontal slowness)

0.000194013

0.000194013

Table 6.2. Computational results for a P-P case.
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Using the algorithm presented above for incident and transmitted compressional
waves one can calculate all the quantities illustrated above. Several important relations
between those quantities are described in section 6.3.

To better visualize the events at the interface the ray diagram at the interface is
illustrated by Figure 6.4. The energy propagates in the direction of the ray, while the

wavefronts propagate in the direction of the wave vektor,

a = 3000 m/s
e=-0.2

k 5=+0.1
wav
fron

a= 4000 m/s
&= +0.15 | |
5=-0.2 K

Figure 6.4. A ray diagram of a P wave at a horizontal
interface between two anisotropic layers.

6.2.3. P-SV case

As already mentioned above, P and SV waves are coupled, i.e., an incident P
wave generates an SV wave and vice-versa. As an interesting case, a converted P-SV
propagation is illustrated. Clearly, one can easily combine several approaches to also

obtain refraction laws for SV-SV and SV-P cases.

Computation Method: Incidence and transmission Angles at an
Anisotropic/Anisotropic Interface

Incident P O Transmitted SV
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Step 1

Solve for the phase anglg, in the medium of incidence, given the incideng
angle,8.

[dr (&)

6, = Arccot% do

t,
é‘d;—(;)tanéﬂ(f)é

(&) tanég

where

1
a,(1+0sin’ Ecod & +& codé )

r(§) =

and

dr _ sin(2€)[s—5co£2€)+s 00625)]

dé  a,(1+dsin”Ecod &+ codé §

Step 2

Calculate the ray parametgs, using the equation below. Choose the valu&which
corresponds to the quadrant of the incidence angle.

cosé

X(€) = a,(1+0sin’ Ecod & +& codé )

Note that for a ray incident to the left of the normal, i.e., the second quagrat,
Step 3

Using the ray parameteg, constant for all interfaces, calculate the phase afglethe
medium of transmission

Wcos“g_aox‘}gﬂco§f+ cog ~ X8, =0

This is a quartic equation yielding a unique real angle.

e
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Step 4
Calculate the angle of transmissiéh,

o . , O
E SINE | %o cost 6 - &) singé ) coste )E
0, = Arccost &) B 0
D T yeinee)cose 1
=+ (e-
5\ B, 0H
where:
1
r =
¥ B EJHa—g(e—cS)sinzfcoéE%
‘0 B O
The Mathematica code is given below.
Qi =angle of incidence in radians
VJ =vertical speed of the compressional wave in the medium of incidence

VPD  =vertical speed of the compressional wave in the medium of transmission
VSD  =vertical speed of the shear wave in the medium of transmission

EJ =anisotropic parameter in the medium of inciderece,
DJ =anisotropic parameter in the medium of incideree,
ED =anisotropic parameter in the medium of transmissén,
DD =anisotropic parameter in the medium of transmissén,
R =Qi

ri = 1/(VJI*(1+DJ*Sin[zi]*2*Cos[zi]*2+EJ*Cos][zi]"4))
dri = Sin[2*zi]*(EJ-DJ*Cos[2*zi]+EJ*Cos[2*zi])/
(VI*(1+EJ*Cos[zi]*4+DJ*Cos|zi]"2*Sin[zi]*2)"2)
FindRoot[Cot[Qi]==
(dri-ri*Tan[zi])/(dri*Tan][zi]+ri), {zi,R,-Pi,Pi}]
zif = Abs[zi/.%)]
X = N[Abs[Cos|zif]/
(VI*(1+DJ*Sin[zif|*2*Cos|zif|*2+EJ*Cos[zif]*4))]]
FindRoot[(VPD"2*x*(ED-DD)/VSD)*C"4-
(VPD"2*x*(ED-DD)/VSD)C"2+C-x*VSD==0,{C,0.5,0,1}]
z = ArcCos[C/.%]
dz = 2*z
r =1/(VSD*(1+(VPD/VSD)"2*(ED-DD)*Sin[z]*2*Cos[z]"2))
t = Sin[z]/r+(VPD"2/VSD)*Cos|z]*(ED-DD)*Sin[dz]*Cos[dz]
b = Sqrt[1/r2+((VPD"2/VSD)*(ED-DD)*Sin[dz]*Cos[dz])"2]
m = Qi
phj = N[(Pi/2-zif)]
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Vpj = VI*(1+DJ*Sin[phj]*2*Cos[phj]*2+EJ*Sin[phj]*4)

Vgj = Sqrt[(VJI*(1+DJ*Sin[phj]*2*Cos[phj]*2+EJ*Sin[phj]*4))"2+
(VI*Sin[2*phj]*(EJ+DJ*Cos[2*phj]-EJ*Cos[2*phj]))"2]

s = ArcCos[Abs[t/b]]

phd=N][(Pi/2-2)]

Vp = VSD*(1+(VPD/VSD)"2*(ED-DD)*Sin[phd]*2*Cos[phd]*2)

Vg = Sqrt|

(VSD*(1+(VPD/VSD)"2*(ED-DD)*Sin[phd]*2*Cos[phd]*2)) 2+

((ED-DD)*VPDA"2*Sin[4*phd]/(2*VSD))"2]

6.2.3.1. Numerical example

Consider a planar horizontal interface between two anisotropic media. In the
upper medium, the vertical P-wave spegd= 3000 m/s, and;= - 0.2 andd, = 0.1. In
the lower medium, the vertical P-wave speed: 4000 m/s, the vertical SV-wave speed,

B> = 2000 m/sg; = + 0.15 and®, = -0.2. The ray strikes the interface from above at an
angle of6= 3¢.

Incidentally, one notices that the SV slowness curve of the for the chosen
anisotropic parameteid and € would be difficult to approximate by an ellipse for the
entire range of angles. One could, however, use the elliptical approximation in the
neighbourhood of the vertical and horizontal axes, or use the double-elliptical
approximation for the entire slowness curve (see Michelena et al., 1993). In this case

Thomsen’s (1986) equations were used.

Medium of Incidence, Medium of Transmission,
P wave SV wave

Group angle, 6, [deg.] 30 55.68662754

Phase angle}, [deg.] 35.57282955 29.08058748

Group velocity,V, [m/s] 3012.69 2801.9

Phase velocityy, [m/s] 2998.45 2505.2

Ray parameter,Xo, [s/m] 0.000194013 0.000194013

(horizontal slowness)

Table 6.3. Computational results for a P-SV case.
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0.4004  -0.0002 0.0002 0.0

Figure 6.5. P- and SV- slowness curves.= 3000 m/sa, = 4000 m/sf;,

= 2000 m/s. & = -0.2,& = 0.15 ,6= 0.1, 4, = -0.2. The meaning of
various symbols is described in Figure 6.1.

Using the algorithm presented above for incident compressional wave and
transmitted shear wave, one can calculate all the quantities illustrated in Figure 6.5.
Several important relations between those quantities are described in section 6.3.1.

To better visualize the events at the interface the ray diagram at the interface is
illustrated by Figure 6.6. The energy propagates in the direction of the ray, while the

wavefronts propagate in the direction of the wave vektor,
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a = 3000 m/s
e=-0.2
0=+0.1

Figure 6.6. A ray diagram of an P wave incident at a
horizontal interface between two anisotropic layers|and
generating a transmitted SV wave.

6.3.PHYSICAL IMPLICATIONS
6.3.1. Points of verification

There are several ways which allow to confirm the correctness of the solution, i.e.,
to verify that the results obtained from the proposed algorithm are in agreement with
certain fundamental requirements. The fulfillment of those requirements constitutes
necessary conditions for the validity of the method.

Firstly, the phaseg, and groupf, angles, as well as the magnitudes of phase,

and groupy, velocities must satisfy the following equation in either medium:

coff-9)= Mﬁ)

V)

(6.6)

Secondly, the phase angles and phase velocities must satisfy the following

equation across the interface:
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sind,) sind,
vln((z‘} 1)) - vzréﬁz)) ’ ©7)

where the subscripts 1 and 2 correspond to the upper and lower medium respectively.
This, of course, is the most standard form of Snell's law, which is always valid for phase
angles and phase velocities.

Thirdly, Fermat's principle of stationary time must be satisfied. This is not
obvious from a quick inspection. As a matter of fact, if one observes the P-SV case with
“isotropic” intuition, one might suspect a contradictory result. Namely, if the energy of
the signal travels at the group velocity, why is the transmitted ray, going from the “faster”
to the “slower” medium bent away from the normal? In other words, isotropic intuition

would dictate the following relationship:
Vi[> V| = 6,>8,, (6.8)

where subscripts 1 and 2 correspond to quantities in the medium of incidence and
transmission respectively. No such relation can be formulated in anisotropic media, as
illustrated, for instance, by comparing the P-P and the P-SV cases. Nevertheless,
Fermat’s principle of stationary time is satisfied, although in a less intuitive way due to

the complexity of the slowness surfaces. By calculating traveltimes for various

neighbouring paths one could convince oneself that Fermat's principle implies a
stationary traveltime path. An analogous procedure is performed in Chaptemy

gain deeper understanding of phenomena related to wave propagation in anisotropic
media, it is important to investigate further this “nonintuitive” behaviour in the context

presented above.

6.3.2. Refraction angle and Fermat’s principle
Considering primary rays in horizontal layers one assumes that Fermat’s principle

of stationary time is equivalent to the principle of least time. In other words, one expects
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the chosen path to be such as to minimize the traveltime with respect to all the
neighbouring paths. Since the “unusual” occurrence of a ray bending away from the
normal upon the transmission into the slower medium originates in the complicated
appearance of the slowness curve in the medium of transmission, one can assume the
upper medium to be isotropic and focus one’s investigation on the lower, anisotropic
medium.

To demonstrate that the phenomenon of “unusual” ray bending occurs even if the
medium of incidence is isotropic one can use the developed algorithm while setting the
anisotropic parameters in the upper medium to zero. The results are displayed in Table
6.4.

Medium of Incidence, Medium of Transmission,

P wave SV wave
Ray (group) angle,6, 30 53.80320067
[deg ]
Phase (wave) angle, 30 23.24799172
3, [deg.]
Ray (group) velocity 3000 2750.16
[m/s]
Phase (wave) velocity 3000 2368.27
[m/s]
Ray parameter,Xxq, [s/m] 0.000166667 0.000166667
(horizontal slowness)

Table 6.4. Computational results for an isotropic/anisotropic model.

Quick verification of results in Table 6.4 shows that the continuity conditions, and
the relationship between the magnitudes of phase and group velocities, as described in
section 6.3.1, are satisfied. The ray bends away from the normal in spite of the fact that
the group velocity decreases across the interface. The purpose of this section is to
develop a more intuitive understanding of this phenomenon which is not immediately
obvious using intuition derived from the realm of isotropy.

To visualize more clearly the way in which Fermat’s principle of stationary time is
satisfied one has to recall that it minimizes the time between two fixed points on the

trajectory of the ray. Inspecting the behaviour of relationship between incident and
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transmitted angles without a clear understanding of the consequences of this condition
can lead one’s intuition astray.

Preparatory to considering two fixed points and propagation from one to the other,
let us first consider a plot of phase.and groupy, velocities as a function of the phase
angle,d, (Figure 6.7). Note two local maxima of group velocitys 2801.9 m/s, af =
29.2, and at9 = 60.8. Note that the magnitudes of phageand groupy, velocities are
equal to each other &t= 0, 174, 172, i.e., points where phase and group angles are equal
to each other, as can be seen from the slowness surface illustrated in Figure 6.5, or the
plot of group versus phase angle shown in Figure 6.10. The minimization of traveltime
creates an optimal compromise between the distance travelled by the ray and angle at

which the group speed is high.

Velocity [m/s]
2800 |

2600

24001

22001

20 40 60 80
Phase angle (degrees)
Figure 6.7. Phase, and groupy, velocities as function of phase angig,

for an SV wave with following parameters= 4000 m/s,3 = 2000 m/sp
=-0.2,6=0.15.
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Consider now a suite of angles of incidence and observe the behaviour of the
phase and group angles. Examining Figure 6.8 and Table 6.5 one notices that the phase
angle in medium 2 is always smaller than the incident phase angle, i.e., the phase vector
always bends towards the normal upon the refraction. The ray vector, on the other hand,
bends away from the normal for smaller angles of incidence and towards the normal for
larger angles of incidence. It is the trajectory of the ray that is directly related to Fermat’s
principle of stationary time. Note that since the medium of incidence is assumed to be

isotropic, both wave and ray vectors coincide in medium 1.

angle of group angle| phase angle| phase velocity| group velocity
incidence [deg.] [deg.] [m/s] [m/s]
[deg.] transmission|transmission| transmission | transmission
0 0 0 2000 2000
10 24.1519 6.77613 2038.44 2135.91
20 42.7885 14.2521 2159.42 2458.04
30 53.8032 23.248 2368.27 2750.16
40 54.5711 33.8401 2599.04 2778.97
50 46.5519 43.5496 2698.21 2701.92
60 39.3765 50.5321 2674.22 2725.72
70 35.9959 55.0618 2617.14 2769.04
80 34.8479 57.622 2572.68 2790.21
89 34.6118 58.4451 2556.81 2795.17

Table 6.5. Group and phase angles and velocities of an SV wave in an anisotropic
medium of transmissiona(= 4000 m/s, 3 = 2000 m/sgp = -0.2,& = 0.15) related to the

set of angles of incidence in an isotropic medians (3000 m/s). Note that although the
phase angle in the medium of transmission grows monotonically with increasing angle of
incidence, the behaviour of the group angle is more complicated.
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PHASE and GROUP ANGLES vs. ANGLE OF INCIDENCE

90 .

80 1 —e—gr.ang

—m— ph.ang

70 4

—=— inc=trans

60 +

50 +

40 4

ANGLES (degrees)

30 +

20 +

10 +

0 10 20 30 40 50 60 70 80 89
ANGLE OF INCIDENCE (degrees)

Figure 6.8. Phase and group angles as functions of the incidence angle for SV waves with
the following parametersr = 4000 m/s3 = 2000 m/sp = -0.2,6 = 0.15. The velocity in

the isotropic medium of incidencevs= 3000 m/s. The line with the slope equal to unity,

i.e., group and phase angle in medium 1, allows one to see clearly that, although the phase
angle in the medium of transmission is always smaller than either phase or group angle in
the medium of incidence, the behaviour of the group angle in the medium of incidence is
more complicated.



103

PHASE and GROUP VELOCITIES vs. ANGLE OF
INCIDENCE

2800

2700 +

2600 +

2500 +

2400 +

2300 +

VELOCITY (m/s)

2200 +

2100 +

2000 ! ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 89
ANGLE OF INCIDENCE (degrees)

Figure 6.9. Phase and group velocities as a function of the incidence angle for SV waves
with following parametersa = 4000 m/sf3 = 2000 m/sp = -0.2,6 = 0.15. The velocity
in the isotropic medium of incidenge= 3000 m/s.

Let us now consider two trajectories of rays between points A-B, and A-C,
respectively. Point A is located in the upper, incidence medium, at a vertical distance of
1000 metres from the horizontal, planar interface separating the isotropic and anisotropic
layers. Points B and C are located in the lower, transmission medium, at a vertical
distance of 1000 metres from the horizontal, planar interface. The horizontal distance
(offset) between points A and B is 2163.99 metres, and between points A and C is
6367.54 metres.

OFFSET ANGLE OF PHASE GROUP GROUP

INCIDENCE ANGLE ANGLE VELOCITY
2163.99 =15 28.44198746 | 55.66067255 2801.25
6367.54 85 57.62198311 | 34.84792335 2790.21

Table 6.6. Computational results for two source-receiver offsets (see also Table 6.7).
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GROUP ANGLE vs. PHASE ANGLE

90

80 +

70 4

60 +

50 +

40 +

30 +

GROUP ANGLE (degrees)

20 +

10 +

0 12.2408 30.4592 52.6803 68.4886 90

PHASE ANGLE (degrees)

Figure 6.10. Group angle as a function of phase angle for an SV wave with
following parametersa = 4000 m/s, 8 = 2000 m/s,0 = -0.2,¢ = 0.15.
Notice the triplication of the group angle, i.e., the same value of the group
angle corresponds to three distinct values of phase angle.

In the first case, A - B, the ray bends away from the normal upon
transmission into the slower medium. In the second case, A - C, the ray bends towards the
normal upon transmission into the slower medium. Notice that the highest speed in the
medium of transmission/ = 2801.9 m/s, is always smaller than the isotropic speed in
the medium of incidence/ = 3000 m/s. One observes that in either case the group
velocity in medium 2 is close to its maximum. In the first case, the group velocity is close
to the local maximum corresponding to the phase afige29.2, and in the second case
the group velocity is close to the local maximum corresponding to the phasengle,
60.8%; see Figure 6.7.
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A

v = 3000 m/s
1000 m |

E v =2790.21

= 2000 m/s
B £ = +0.155 = -0.2

2163.99 m
6367.54 m

Figure 6.11. lllustration of consequences of Fermat’s principle of stationary time. To
minimize the traveltime for two different offsets in the same medium, the ray bends away
from the normal travelling between points A and B, and towards the normal trayvelling
between points A and C, in spite of the fact that the group speed in the medium of
transmission is always lower than in the medium of incidence. Such phenomenon cannot
occur in isotropic media.

The traveltimes for a signal travelling from point A to B, and from A to C are
1.08681 s and 2.38543 s, respectively. No other trajectory for either pair of points can
yield a shorter traveltime. Consider the signal between points A and B. Shortening of the
raypath in the slower medium of transmission entails a smaller group angle in this
medium. At a smaller group angle, the group velocity, within the range allowed by the
two end-points A and B, is lesser than at larger group angles (at smaller values, group
angle is monotonically increasing with the phase angle as illustrated by Figure 6.7). Thus
the optimization requires a larger propagation angle in medium 2, entailing a longer
raypath in the slow, anisotropic medium of transmission in order to approach the relative
maximum of propagation speed. The local maximum available within the constraint of
two fixed points A and B is the one located at the phase ahgie9.2. For travelling
between points A and C, which because of the larger distance separating the two points

allows a wider range of incidence and transmission group angles, both local maxima are
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available and the maximization of group velocity can be achieved together with
shortening the raypath in the slow medium of transmission.

Thus one can conclude that incidence and transmission angles result, just like in
the isotropic case, from an optimal compromise between the distance traveled and speed
at which the signal travels. In the anisotropic case there is an additional degree of
freedom, stemming from the very concept of velocity anisotropy, and provided by the
variation of speed with the propagation angle. This introduces an additional complication
rendering the intuitive understanding more difficult, yet not impossible. “Anisotropy is
not hopeless” (Dellinger, 1991).

6.4.REMARKS ON THE METHOD

The treatment shown above illustrates another instance of considerations
described in detail in Appendix 6. The development of exact expressions for phase
velocities for P, SV and SH waves in Taylor series, and subsequent truncation of higher-
order terms under the assumption of weak anisotropy (Thomsen, 1986) allows for a very
accurate analytical treatment of physical phenomena occurring at the interface between
anisotropic media. Distinction between phase and group angles is preserved, and ray
bending according to Snell's law is consistent with Fermat’s principle. One might argue,
therefore, that compromise between mathematical simplification and physical
consideration is acceptable, i.e., no major physical phenomenon is lost in the process of
simplification.

This is not the case under full linearization, i.e., while carrying out the
simplification process further in all equations, e.g., the relationship between phase and
group velocity or the relationship between the phase and group angles. The linearized

expression between the groépand phasé,, angles is given by Thomsen (1986):

O [
tanf = tand 1+ 1 L dv

dv 6.9
=" sing cow? v(8) d9 5 (6.9)
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The plot using relationship (6.9) yields, in the case of SV waves, the graph of
group vs. phase angles displayed in Figure 6.12.

6 (radians)
1

0.5

0.25 0.50 0.75 0 125 15

-0.5 9 (radians)

-1.9

-1.5(

Figure 6.12. Group angl#, as a function of phase angle,

J, based on the linear approximation. Note, by comparing
to Figure 6.10, that for phase angles larger than about 0.5
radian, i.e., 28 degrees, the approximation fails.

Furthermore, the fully linearized expression for group velocity uses only the first
term on the right-hand side of equation (6.3), ignoring the derivative term (Thomsen,
1986). This implies that the group velociw, as a function of the group angk,is
identical to the phase velocity, as a function of phase angt, illustrated in Figure
6.7. The two local maxima are lost in the process of linearization. Also, the highest
value of group velocity obtained through a linearized scheme is lower than the value
obtained based on the assumption of weak anisotropy without full linearization.
Considering Fermat’s principle of stationary time and minimizing the traveltime using a
fully linearized scheme yields results shown in Table 6.7.

The traveltimes are 1.03522 s and 2.3379 s for A-B and A-C cases respectively.
One might, at first, be disturbed by the fact that in the fully linearized case the
traveltimes are smaller than in the more complete approach. Is Fermat's principle
violated in the more complete approach? The answer to this question is negative. The

linearized method, by ignoring a physically more realistic description, provides a
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mathematical minimum of a traveltime function. The linearized method does not take

into account some consequences of angular dispersion.

OFFSET ANGLE OF GROUP GROUP
INCIDENCE ANGLE IN VELOCITY
MEDIUM OF IN MEDIUM
TRANSM. OF TRANSM.
2163.99 49.77104235 | 44.47564370 2699.77
6367.54 79.07536780 | 49.87792552 2679.90

Table 6.7. Computational results using linearized scheme (see also Table 6.6).

The interesting concept of bending away or towards the normal in order
to optimize the propagation speed is lost in the linearized approach. Nevertheless, the
traveltimes obtained by either approach are within a few percent of each other whereas
the traveltime calculation ignoring anisotropy altogether leads to a much larger
discrepancy ( 1.20111 s and 2.52532 s for A-B and A-C cases respectively).

It has been observed through many modelling results involving various
“anisotropic” approaches that, regardless of the method used, the values of resulting
traveltime are relatively close to each other and, most importantly, to experimental
results (Chapter VII). It is the values of phase and group angles, rather than traveltimes,
which vary much more significantly. Such a state of affairs is not surprising. All
approaches attempt to minimize the traveltime within given constraints. Therefore, the
final result, i.e., the values of traveltime are rather similar, although the means by which
the minimization is achieved, i.e., various degrees of ray-bending, differ significantly.
One should not forget that, after all, the concept of a single raypath corresponding to the
path of least time constitutes an approximation to the result that one would obtain by the
full-wave treatment, rather than the physical entity.

Concluding this chapter one may state that the truncation of the Taylor
expansion under the weak-anisotropy assumption provides a considerable mathematical
simplification without a loss of physical attributes. The essence of physics of
anisotropic wave propagation is preserved in the “weak-anisotropy approximation”, and

numerical answers are quite close to the exact approach (see Appendix 2 and Appendix
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6 for a more complete discussion). In the case of linearized approach, on the other
hand, certain fundamental problems arise (see Figure 6.12), several physical attributes
of anisotropic wave propagation are lost, but the traveltime calculations yield very
reasonable results. The confirmation of the latter statement can be found in Chapter VI
dealing with physical laboratory measurements of wave propagation in anisotropic
media.

It seems appropriate to close this chapter with a quote from Dellinger’s doctoral
dissertation (1991): “Approximations are useful if you know what you are losing”. As
demonstrated in Chapter VII both approximate and linearized methods yield results
which are much closer to the experimentally measured values than the approach

ignoring anisotropy altogether.
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CHAPTER

PHYSICAL MODELLING

7.0. INTRODUCTION

Physical modelling provides result of controlled experiments, which can be
compared with numerically obtained predictions. A reliable comparison requires some
consideration of experimental apparatus, most notably, the size of ultrasonic source and
receiver transducers (Vestrum, 1994). If the size of transducer is sufficiently large in
comparison with the sample size, the generated waves have an appearance of plane waves
over some area of wavefront, and the velocity calculated as a ratio of distance and
traveltime yields the phase velocity. If, on the other hand, the size of transducers is
sufficiently small compared with the sample size, they can be viewed as point sources and
point receivers vyielding the group velocity as a ratio of distance and traveltime.
Obviously, the latter case resembles much more closely the geophysical field acquisition.
Denoting the transducer diameteaand the shortest raypath considereti agestrum

(1994) uses a simple Pythagorean formula to determine,

e= D’ +H> - H, (7.2)
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a quantity used to decide whether or not one can consider the experimental results to yield
the value of group velocity. When the valueea$ very small, a group traveltime will be
measured, without serious concerns of transducer effects. The maximum error in raypath
length for the experimental geometry used in this study is even smaller than the one
considered as negligible in of Vestrum’s (1994) investigation, naraety).0007 m,

sinceD = 0.014 m andH = 0.1400 m.

7.1. MATERIALS

The medium through which the signal is transmitted is composed of two layers.
Scaled dimensions and parameters of this physical model were also used for numerical
calculations in several chapters of this dissertation. The model with its anisotropic
parameters in the 31-plane were considered as a standard model.

The top, isotropic layer consists of PVC and the lower, anisotropic layer consists
of Phenolic CE. The CE-grade phenolic laminate is composed of layers of a woven
canvas fabric saturated and bonded with phenolic resin (e.g., Cheadle et al, 1991). The
woven pattern results in anisotropic behaviour. Former studies (e.g., Cheadle et al, 1991,
Brown et al, 1991, Vestrum, 1994) show that Phenolic CE can be classified as belonging
to the orthorhombic symmetry class. The experiments were conducted in the plane
parallel to the Face 3 along the 31-axis and 32-axis.

Principal dimensiorig and quantities are shown in Tables 7.1, 7.2 and 7.3.

Layer # Material Thickness (m) Symmetry Class
1 PVC 0.0355m isotropic
2 Phenolic CE 0.1045 m orthorhombic

Table 7.1. The principal dimensions and characteristics of the physical model.

17 A series of measurements performed with high-precision calipers yielded the following thickness values
(0.03518, 0.03565, 0.03545, 0.03550, 0.03540, 0.08537)0355 m for PVC, and (0.1045, 0.1045,
0.1043, 0.1046)1 0.1045 m for Phenolic CE. The manufacturing process of PVC slabs renders their
thickness less uniform, E.V. Gallant ( pers. comm., 1995).
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Since the sagittal planes, i.e., the planes containing sources, receivers and all the
rays, coincide with symmetry planes (the 31- and 32-planes) which are perpendicular to
each other, the shear-wave vertical speeds for SH-type and SV-type polarizations are
reversed for either case. Notice, however, that different anisotropic parameters govern
the angular velocity dependence for SH and SV waves. As a result the shapes of slowness
curves encompassing all angles of propagation in the 31- and 32-planes, as well as other

entailing quantities, cannot be obtained by simple reversal of labels.

Layer #/ Vertical P wave Vertical SV wave | Vertical SH wave
Symmetry plane speed (m/s) speed (m/s) speed (m/s)
1 2250 1030 1030
2 [ 31-plane 2925 1609 1516
2 / 32-plane 2925 1516 1609

Table 7.2. Vertical speeds in the physical model.

The value of anisotropic parameters results from experimental measurements on
the very same material performed in the same laboratory setting and reported by Cheadle

et al. (1991). The results were confirmed by subsequent study of Vestrum (1994).

Layer # / Fo) £ %
Symmetry plane
1 0 0 0
2/ 31-plane 0.183 0.224 0.096
2 / 32-plane 0.081 0.150 0.035

Table 7.3. Anisotropic parameters of the physical model.

A useful illustration for familiarization with the anisotropic materials is provided
by the phase slowness curves in the 31-plane and in the 32-plane (Figure 7.1). Equivalent

information to that contained in the slowness curves which are represented by polar plots,
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can be provided by plots of phase velocity versus phase angle in Cartesian coordinates

(Figure 7.2).
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Figure 7.1. Phase slowness curves for Phenolic CE laminate. The picture on
corresponds to propagation in the 31-plane. The picture on the right corresp
propagation in the 32-plane. The innermost curve corresponds to the P-wave s
whereas the two outer curves represent shear waves. The outer shear-wave
curves cross at points known as shear-wave singularities where phase slowneg
velocity) is the same for both polarizations.
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Figure 7.2. Phase velocity plots. The picture on the left corresponds to propagatia
31-plane. The picture on the right corresponds to propagation in the 32-plane. Hg
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axes depict the phase angle, and vertical axes show phase velocity.
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From Figure 7.2 one observes that while in either symmetry plane the P-wave
velocity is significantly different from either SH or SV velocity, both shear wave are
relatively close to each other. In the 32-plane the SH and SV velocities actually coincide

at points referred to as singularities. At those points one can write:
VqSH (E) = VqSV(E) ’ (72)

or using equations (3.20) and (3.30), one can express the angle at which the singularity

occurs, in terms of the parameters of the medium, that is:

¢ = ArccosEﬁ‘/LE. (7.3)
o Ve-dQ

An application of equation (7.3) assumes a single value of speed for vertically
propagating shear waves. This occurs for all azimuths in transverse isotropy with a
vertical symmetry axis. Since for Phenolic CE the speed of vertical propagation of the
SH wave is only slightly different in the 31- or 32-planes, the average value was used in
equation (7.3). Thus obtained approximate values are ab8un8568, in the first
guadrant, for the 31- and 32-planes, respectively, as illustrated in Figure 7.2. Note that
although in the 31-plane, velocity values approach one another there is no actual
singularity. The use of an average value for vertical sp&eith, the algebraic solution
using equation (7.3) yields only a very approximate result.

There is a good agreement between the plots displayed in Figure 7.2 and the
results of Vestrum (1994), in particular Figure 4.2. (b) and (c). This confirms the
reasonable reliability of the approximation based on the assumption of weak anisotropy.
Furthermore, examining plots shown in Appendix 2, it can be inferred that the
discrepancy between results of the exact and approximate approaches are very small for

the case of the elastic constants measured for Phenolic CE.



115

7.2. EXPERIMENTAL SET-UP

The data were recorded using two transducers of 1-MHz frequency, one being a
transmitter the other a receiver. The transmitter was fixed in one location, while the The
readings were taken at every millimetre between horizontal distances of 0 mm and 300
mm. The readings were performed for P-P, P-SV (i.e., transmitted P wave and received
SV wave), SV-P, SV-SV, and SH-SH waves for both symmetry planes. Two types of
transducers were used: compressional-wave, and shear-wave. The shear-wave transducer
was used in two different positions (rotated bf) 20 create SV- or SH-type waves. The
sample interval was 10s, i.e., the sampling frequency was an order of magnitude higher
than the frequency of the signal; thus avoiding aliasing in the range of interest. The time
delay between the sending and receiving of the signal for the two transducers placed face-
to-face in contact with each other was measured, on the oscilloscope, xb0Fes Xor
the P-P combination andxB0° s for S-S. This is viewed as negligible in the present
experimental setting as the traveltimes were of the ordef1df’ls.

The apparatus used in data acquisition was a converted high-precision plotter

(Figure 7.3) The entire acquisition process was performed automatically.

X (source-receiver distance )

&
< »

transmitter
[ ]

PVC :
0.0355

Phenolic CE . 0/1045/m

receiver

Figure 7.3. A schematic diagram of the experimental set-up.
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7.3. DATA ANALYSIS

Recorded signals were plotted as a standard seismic display. In order to use
standard plotting devices, as well as to render the results more immediately applicable to
a geophysical context, the distances and traveltimes were scaled by a factor of 10,000.
Scaling both distance and time by the same factor preserves original velocity, i.e., the
ratio of distance and time remains constant. Selected results are presented in different
parts of this dissertation. The data were not processed and all displays illustrate raw
records. This implies that no wavelet processing was applied and the traveltime for a
given signal corresponds to the initial deflection. Two selected data sets for P-P and SH-

SH cases are described below.

7.3.1. P-P case

The case of transmitted and received compressional waves resulting from using
vertical-component (“P”) transducers, served as a test for the predictive power of
raytracing procedures described in this dissertation. This case was selected as giving the
cleanest first arrivals, i.e., “first breaks” because of compressional waves being the first
ones to arrive at the receiver. Numerous interesting phenomena can be observed from the
seismic records (Figure 7.4 and Figure 7.5). The traveltime at zero offset, and hence the
vertical velocity is the same in both symmetry planes considered. This observation is
consistent with the theoretical predictions since the particle displacement remains within
the symmetry axis for both cases. Progressing down the seismic record one notices a
“peg-leg” multiple crossing a 1.0 s time line at about trace # 80. Further down a shear
wave (SV) appears, exhibiting higher amplitude for traces in the neighbourhood of # 60;
compare the arrival traveltime in Figure 7.4 and Figure 7.5 for 31-plane and 32-planes
respectively and notice a slight difference in traveltime, even for zero-offset traces
(faintly visible). The existence of the shear wave is explained by the fact that a normally-
polarized transducer, used as a P-wave source, generates some shear-wave energy, while
the normally-polarized transducer, used d@\waave receiver, is sensitive to the normal

component thereof. For a limited set of offsets (# 50 - # 75) one can also observe the
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The

event exhibiting a reasonably high amplitude (below 1.5 s) at the bottom of the seismic

aforementioned higher amplitude zone due, most likely, to a converted P-SV wave.

record is a compressional-wave multiple travelling in a waveguide created by two free

The traveltime of this event is thrice the

surfaces at the top and the bottom of the model.

Considering all events observed on the P-P seismic

traveltime of direct transmission.

150

OFFSET (TRACES) 100

(S) INILL AI'TVOS

records, however, it is clear that the main event, i.e., P-P transmission exhibits the highest

amplitude, as expected.

Figure 7.4. A seismic record obtained in the 31-plane using vertically polarized

transducers as both sources and receivers.

The results show, as expected, that the raytracing incorporating the anisotropic

effects predicts better the experimental results than an equivalent procedure which
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“isotropic approach” which assumes that the vertical

P-wave velocity applies in all directions. (see Tables 7.4 and 7.5). The calculation based
5o OFFSET (TRACES) |,

on the anisotropic approach using the values of anisotropic parameters published for the
block of Phenolic CE, by Cheadle et al. (1991) approximates the measured times (see
Table 7.4) much more closely than the calculation based on the isotropic approach (see
Table 7.5). This indicates strongly that the anisotropic approach reflects better the reality

of the experiment (see Figure 7.6). In the context of exploration geophysics, it implies
that in certain areas one might consider the analysis of the data which takes anisotropy

ignores the anisotropic effects, i.e.,

into account.

e —————— \

H

|
|

|
|

(s) ANLL A9 1VOS

Figure 7.5. A seismic record obtained in the 32-plane using vertically polarized

transducers as both sources and receivers.
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In the presented case, for the propagation along the 31-plane, the match is very
good. For the propagation along the 32-plane, the match is slightly less good. The

possible reasons for this difference are discussed in Section 7.4.

Scaled offset Traveltime in 31-plane (Ss) Traveltime in 32-plane (s)
(m) calculated measured calculated measured
(anisotropic) (anisotropic)
ao= 2925 m/s ao= 2925 m/s
0=0.183 0=0.081
£=0.224 £=0.150
0 0.515(385 0.516 0.515(385 0.514
190 0.518(585 0.519 0.519(414 0.518
390 0.528(745 0.528 0.532(018 0.527
590 0.545(512 0.544 0.552(287 0.543
790 0.568(328 0.569 0.579(075 0.565
990 0.596(497 0.601 0.611(289 0.597
1190 0.629(263 0.635 0.647(990 0.624

Table 7.4. Comparison of measured and calculated traveltimes for P waves; the
calculations are based on anisotropic approach using values of anisotropic parameters
published by Cheadle et al, 1991. In the present comparison, the values of vertical wave
speed are taken to be exact since, for P waves, they were repeatable to 0.5% (Cheadle et
al, 1991). The same assumption is made for anisotropic parameters. A large number of
decimal points is provided for various comparisons of performance of the algorithm.

Scaled offset Traveltime (s)
(m) calculated (isotropic)

a= 2925 mls
0 0.5150(43)
190 0.5197(02)
390 0.5343(88)
590 0.5582(83)
790 0.5902(14)
990 0.6288(89)
1190 0.6730(73)

Table 7.5. Traveltimes for P waves calculated based on isotropic approach.
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P-P waves in 31-plane

0.7

—&— calculated
—l— measured
—&— isotropic

0.65 +

0.6 +
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traveltime (s)

0.5 +
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0 190 390 590 790 990 1190

offset (m)

Figure 7.6. A graphical comparison of results for compressional |(P-P)
waves in the 31-plane.

7.3.2. SH-SHcase

The comparison of results of SH-SH waves is analyzed in the same manner as the
P-P waves. Numerous interesting phenomena can be observed from the seismic records
(Figure 7.7 and Figure 7.8).

Firstly one notices, that the traveltime at zero offset, and hence the vertical
velocities, are different for propagation in the 31- and 32-planes. This observation is
consistent with theoretical prediction, the particle displacements for the two case being
perpendicular to each other. In a TI medium the zero-offset SH traveltimes, and hence the
vertical SH velocities are the same for all azimuths. In the present case, however,

propagation occurs in symmetry planes of an orthorhombic medium.
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150

OFFSET (TRACES) 100

(8) ANLL AA'TVOS

Figure 7.7. A seismic record obtained in the 31-plane using transversally paqlarized

transducers as both sources and receivers.

The first energy arrival that one notices is the transmitted P-P wave (compare the

traveltime in Figure 7.4 and 7.5). The appearance of the compressional wave is explained
by the fact that the SH-wave-source transducer generates some compressional energy,

The three-leg shear-wave

while the SH-wave-receiver transducer is sensitive to it.

multiple was not recorded since it occurs at multiples of thrice the traveltime of the direct

SH seismic records, however, it is clear

wave. Considering all events observed on the SH

Tables 7.6, 7.7, and Figure 7.9 summarize the results for SH waves. One notices that a

that the main event, i.e., SH-SH transmission exhibits the highest amplitude, as expected
better match between experimental and computational data is obtained using the proposed

anisotropic raytracing than using an isotropic approach.
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Figure 7.8. A seismic record obtained in the 32-plane using transversally palarized

transducers as both sources and receivers.

SH waves, due to their being characterized by only one anisotropic paraymetere

selected as corresponding to the analytical algorithm for inversion. They are described in

more detail in Chapter VIII.
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Scaled offset Traveltime in 31-plane (S) Traveltime in 32-plane (s)
(m) calculated measured calculated measured
(anisotropic) (anisotropic)
Bo =1609 m/s Bo=1516 m/s

y=0.096 y=0.035

0| 0.994(132) 0.994 1.033(97) 1.034
0.994(132) 1.033(97)
0.994(132) 1.033(97)

190 1.001(67) 1.001 1.042(68) 1.040
1.001(71) 1.042(69)
1.001(48) 1.042(66)

390 1.025(44) 1.024 1.070(14) 1.064
1.025(63) 1.070(17)
1.024(75) 1.070(04)

590 1.064(20) 1.052 1.114(83) 1.102
1.064(59) 1.114(89)
1.062(86) 1.114(63)

790 1.116(14) 1.108 1.174(56) 1.156
1.116(73) 1.174(65)
1.114(19) 1.174(27)

990 1.179(22) 1.182 1.246(92) 1.223
1.179(98) 1.247(04)
1.176(78) 1.246(55)

Table 7.6. Comparison of measured and calculated traveltimes for SH waves; the
calculated values are based on anisotropic approach using values anisotropic values
published by Cheadle et al, 1991. The three values for the calculated traveltime,
correspond to the method using the exact, approximate and linearized schemes,
respectively (see Appendix 6, for a fuller treatment). Note that any of the “anisotropic”
approaches yields a significantly better match with the observed data than the approach
ignoring the effects of anisotropy (see Table 7.7). In the present comparison, the values of
vertical wave speed are taken to be exact since, for S waves, they were repeatable to
0.25% (Cheadle et al, 1991). The same assumption is made for the anisotropic parameter.
A large number of decimal points is provided for various comparisons of performance of
the algorithm.
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Scaled offset Traveltime in 31-plane (s)| Traveltime in 32-plane (s)
(m) calculated (isotropic) calculated (isotropic)
B=1609 m/s B=1516 m/s
0 0.994(132) 1.033(97)
190 1.002(91) 1.043(18)
390 1.030(53) 1.072(19)
590 1.075(40) 1.119(34)
790 1.135(20) 1.182(24)
990 1.207(42) 1.258(27)

Table 7.7. Traveltimes for SH waves calculated based on isotropic approach. Note that
the vertical SH speed, or so-called, isotropic SH velocity, having polarization vector

perpendicular to the symmetry plane of propagation yields, for Phenolic CE, different
traveltimes for 31- and 32-planes.

SH-SH waves in 31-plane
1.25

12 ¢

—&— calculated
1.15 + —l— measured
—&— isotropic

11+

traveltime (s)

1.05 +

0.95

0 190 390 590 790 990

offset (m)
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Figure 7.9. A graphical comparison of results for SH-SH waves ip 31-
plane

7.4. EXPERIMENTAL ERRORS

of error which can account for discrepancy between traveltimes calculated using the
anisotropic approach and the measured values. The qualitative description of those

sources is presented below.

7.4.1. Measurement errors

Firstly, the dimensions of the PVC and Phenolic CE blocks are subject both to
measurement errors and inconsistencies of actual thickness of the material within one
slab. Those errors, however, compared to other measurements, can be considered very
small (see Footnote 17).

Secondly, the measurements of spacing between the source and receiver
transducers are subject to error. All the measurements, however, were performed with
automatic moving of the receiver transducer by an arm of a device converted specially for
this purpose from a high-quality plotter. Thus, the precision and accuracy can be
considered very high.

Thirdly, the uncertainties due to the finite dimensions of transducers causing
raypath problems and a mixture of phase and group velocity measurements, has to be
considered. In view of Vestrum’s (1994) criterion, discussed above, and considering the
weak anisotropy of the material, the errors originating from the size of the transducers are

negligible.

7.4.2. Computational errors
Two main sources of possible computational errors have to be considered in this
category. Itis assumed that errors due to computer precision are negligible (Appendix 3).
Firstly, the values of anisotropic parameteisg, and as well as the values of
vertical speedg and 3, are subject to various errors (see Brown et al, 1991, Vestrum,
1994). Especially, the anisotropic parameters calculated from inversion of traveltimes on

the phenolic CE block can be burdened with a significant error.
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Secondly, there is some imperfection due to the raytracing being done with
simplified equations, under the assumption of weak anisotropy. Considering, however,
that the assumptions seem to be fully honoured, as well as considering the fact that the
angle of propagation for all cases is not very large, thus rendering the approximate
equations even more accurate than if the entire range of propagation angles were

involved, one can confidently rely on results obtained through those equations.

7.4.3. Interpretation errors

The results obtained through numerical and physical modelling are compared
based on traveltime values. In the case of physical modelling of compressional waves,
the traveltime was obtained from the raw record, as the first deflection of the trace
corresponding to the arrival of the P wave. The data are very clean and the first arrivals
are very well defined. For SH or SV waves, appearing later in the record, the initial
arrival is slightly less obvious. The process of establishing the time of arrival for all traces
and wave types was performed using the ProfMaxocessing software allowing a
display of traces in great magnification, so as to time the selected point with considerable
precision.

The difficulty, however, is of an interpretive nature, namely, where to select the
point which corresponds to the onset of energy, i.e., to the first arrival time, with a high
enough accuracy. It is this interpretive nature of picking the arrival time that appears to
be responsible for most of the discrepancy. The degree of difficulty is also offset-
dependent. At larger offsets, the effect of anisotropic propagation becomes more
pronounced, thus easier to detect, but the wavelet becomes more stretched due to
frequency dispersion, and the picking of first arrivals becomes less reliable.

If the method is to be used repeatedly, a calibration scheme or a criterion can be
developed for a process of automatic picking. Furthermore, one can deconvolve the data
in an attempt to collapse the wavelet and phase-shift to a zero-phase wavelet in order to

facilitate the picking.
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CHAPTERVI I I

INVERSION FOR ANISOTROPIC PARAMETER IN
LAYERED MEDIA

8.0. INTRODUCTION

In previous chapters various solutions of forward problems were developed and
verified. They allow, given all parameters of the medium, to calculate expected physical
consequences. In many physical sciences, notably in geophysics, one would like to infer
the characteristics of the medium from the observation of consequences. This is the
inverse problem. This chapter presents the solution of such an inverse problem in an
anisotropic medium.

Numerous inversion methods for multilayer anisotropic media have been
proposed by various researchers. Stewart (1988) proposed a modification of an algebraic
reconstruction technique (ART). It attempts to estimate anisotropic velocity using only
straight rays in a discretized weakly anisotropic medium. Michelena, Muir and Harris
(1993) propose an inversion which is a simple extension of an isotropic scheme for
traveltime tomography. Their approach does not consider ray-bending at interfaces, an
omission that can introduce errors into the estimation of velocity anisotropy if the
velocity contrasts are large. Recently, an interesting inversion scheme using genetic

algorithms (originally developed for biological sciences) was suggested by Horne and
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MacBeth (1994). It can be viewed as a variation of the Monte Carlo method. Kebaili and
Schmitt (1986) presented an inversion technique operating in the intercept time-ray
parameter-p) domain.

The method described in this chapter allows one to obtain, based on the
measurements made at the surface, a unique value for the SH-wave anisotropic
parametery, in an anisotropic layer at depth, i.e., separated from the surface by another
layer. In other words, one inverts the traveltime information to obtain crucial information
about anisotropic characteristics of a layer at depth. The innovative aspect of the method
consists of the analytical approach for obtaining the solution, particularly since it applies
in the context of more than one layer, incorporating the concept of an anisotropic
generalization of Snell’s law discussed in Chapter Ill and ChapteiThus the method
incorporates the effects of ray-bending at an interface under anisotropic conditions. The
analytical aspect, illustrated by geometrical representation of solution spaces retains an
immediacy of physical significance and provides an insight so often difficult to maintain
in numerical approaches. Furthermore, the method is free of wanderings of solutions and
criteria for various search patterns which are of great concern in various numerical
methods.

The treatment is described explicitly in terms of SH waves in a Tl (transversely
isotropic) medium. It can, however, be applied without any modification to any waves
exhibiting elliptical velocity dependence, and in any symmetry class, as long as the
sagittal plane coincides with a symmetry plane. The consequences of the method provide

stepping stones to more complicated cases.

8.1. FORMULATION OF THE PROBLEM
Consider a layered medium consisting of an isotropic layer of thickAess
superposed on an anisotropic layer of thickneks,The SH-wave speed, in the
upper, isotropic medium and vertical SH-wave spgeih the lower anisotropic medium,
are assumed to be known. The SH-wave anisotropic parametethe lower medium is
to be determined, based on the measurements performed on the surface of the isotropic

layer.
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In the subsequent development, the upper-case letters correspond to known, or
measured quantities, whereas lower-case letters are the unknown quantities, or variables

in the equations.

8.2. GENERAL MATHEMATICAL FORMULATION

Consider propagation through the medium between the source and receiver
separated by a horizontal distanie,see Figure 8.1. (In the present case, since the
method is based on traveltime measurements, there is no loss of generality in such
recording geometry (transmission study), as compared to both source and receiver
situated on the surface (reflection study). In the latter case one must make a couple of
straightforward substitutions, namely: 0 2T and X O 2X.) The ray undergoes
refraction at the interface separating the isotropic and the anisotropic layers. For a given
source-receiver configuration, a set of three independent equations in three unknowns has
to be satisfied.

The unknowns in the system of equations are the incidence angle (take-off) angle,
6., in the upper medium and the transmission argjleand the anisotropic parametgr,
in the lower medium. The angles of incidence and transmission are related by the phase
angle,é, here given explicitly for SH waves, and involving the value of the ray parameter,
Xo. The first equation in (8.1) describes the measured traveTimEje second equation
in (8.1) describes the known lateral, source-receiver separdtiamich must be solved
by a numerical method, as we cannot solve for the take-off angle explicitly. The third,
fourth and fifth equations in (8.1) embody the expression of a generalized Snell’s law at
the isotropic/anisotropic interface. The angle of transmiséiois a function of botl®;
andy.

The conditions stated above would require a rather special algorithm. A direct
input of system of equations (8.1) into Mathemalfic#ails to yield satisfactory results

because of the non-algebraic form of equations.
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8.3. FORMULATION IN TERMS OF PARAMETERIZED
FERMAT'S PRINCIPLE

Fermat’s principle of stationary time plays an important role in raytracing theory.
It states that the path of the ray between two points is such that the first-order traveltime
variation with respect to all infinitesimally perturbed neighbouring paths is zero. In other
words, it is the path of least or greatest time. One of general expressions of Fermat's
principle in anisotropic media requires a functional derivative involving both phase and

group slownesses; see equation (2.31).
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Figure 8.1 The illustration of a ray travelling through [the

model M between a source and receiver separated| by a
horizontal distanceX. The value ofr corresponds to the
horizontal distance between the refraction point and the
receiver.

If, however, the physical problem is parameterized by a specific case as illustrated
in Figure 8.1, the solution is reduced to minimization of the traveltime in terms of choice
of trajectory. Under the linearizing assumption (first-order theory) following the weak-
anisotropy concept, one makes use of the fact that the expressions for both phase and
group speeds are identical to first order for a given phase or group angle.

Referring to the lateral distance between the refraction point and receiyands
expressing the trigonometric function as ratios of appropriate segments, one
parameterizes the entire choice of trajectory as a function ©his leads to a system of
two equations with two unknowns, and y. The two equations are the traveltime

equation and the mathematical statement of Fermat’s principle of stationary time:
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E v = Hry)

E PRY ez

0 (8.2)
tn _ g

[ dr

0

H

In spite of the apparent simplicity, these equations are highly nonlinear and their
general solution is not a trivial matter. They can, however, be simplified further with an

insight gained through geometrical visualization of solution spaces.

8.4. VISUALIZATION OF SOLUTION SPACES

For given X, Hi, Hy, V and, one can construct a surfage=1t(r;)), i.e., a three-
dimensional representation of the first equation in (8.2) wiimd y as horizontal axes
andt(r;)) as the vertical one. The surface is smooth, and the curve corresponding to the
vertical cross-section through the surface for a given valug bés a single extremum;
see Figures 8.2 and 8.4. This extremum is always a minimum yielding the shortest
traveltime corresponding to soméor a given value ofy.

Having a measurement of traveltime T, one can consider the horizontal plane,
P, =T, in the spacet|r, y). The intersection of the surfageand plane’; forms a curve,
€1, e.g., any one of the contours in Figure 8.2. This curve is a set of mathematical

solutions to the equation:

tr;y)=T. (8.3)
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[llustration of the traveltime surface

Figure 8.2. The surfack representing the traveltime ag a

function ofr andy, as a 3-D visualization and as a contour
plot. Notice that the contour plot spans the entire domain
of r, whereas the 3-D plot magnifies the interval in|the
vicinity of the expected solution. The values mofare
normalized as/X; the values ofrange -0.2 and 0.2.

In other words, it is a set of combinationsroéndy, for whicht(r,))=T. There is
however, only one physical solution. To find it one must not forget/tisaan unknown
constant parameter and not a variable. It is thrayghot y, that one minimizes the
traveltime;y is an unknown but it is a constant. For all combinationsamofdy; it is only
the nadir of the intersection curve which satisfies Fermat’'s principle, i.e., minimizes
with respect ta. This becomes obvious by imagining several vertical cross-sections of

the diagram in Figure 8.3, for different valueg/afe., along the-axis.



134

Traveltime Surface and Mathematical Solutions

Figure 8.3. Two, almost opposite, views of the surface
representing the traveltime as a functiorr@ndy, cut by a
planep; corresponding to the given traveltime valueAll
mathematical solutions are given by the cundg,
corresponding to the intersection of the surface with the
plane. Only the nadir @f, as seen particularly well on the
lower plot, corresponds to the local minimumt@) for &
given anisotropic parametey, This point represents the
unique physical solution. The horizontal axes correspond to
r andy, with the latter quantity varying between -0.2 gnd
0.2.

The consequences of Fermat’s principle lead to a convenient method of solution.

In the planery, the curve of mathematical solutiorig,can be viewed as an expression of

yin terms ofr at a constant value of =T, i.e.,C1: ¥y = Wr;T). The physical solution
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corresponds to the extremumygf;T). It can, therefore, be easily found as a solution to

the condition below:

dly)] _,

- (8.4)

where )(r) is obtaining by solving the traveltime equation, i.e., the first equation in (8.2)

with t(r, ) = T. Thus,

3
V(r2+Hz2)2 r2+H2
y(r) =— ( 2)2 - (8.5)
V- (X-r)+H
Br g (X=r) =
and its derivative with respectitaecan be set to zero:
3
dy __2, AH;+r?) V(H: + ) (x - 1) .
=-= - -
ar .t ' [3r21/H12+(X—r)zgrv—1/H12+(x—r)2%2
(8.6)
3
3V HZ +r? 2\/(H22+r2)E

+ - =0
BrETV - H +(X-r)H BV - H +(X-1)E

The resulting real value af corresponds to the minimum ofr;T). This is
guaranteed by the fact that the plot of is always concave-up within the physically
meaningful domain of O (0, X); see Figure 8.5. It can be visualized as a consequence

of the traveltime surface;, sloping down towards higher valuesyoflhe sloping results
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from the denominator in the traveltime equation (8.2), increasing monotoHiweitly

increasingy.

Derivative Surface and Fermatian Solutions

r

Figure 8.4. The inclined surface corresponding to| the
derivativedt(y;r)/dr as obtained from equation (8.2) and|the
horizontal plane representing tdg (y;r)]/dr = 0. The line
of intersection between the surface and the plane is a|set of
points obeying Fermat's principle. This is the *“zero”
contour marked with an arrow. Notice that the contour| plot
spans the entire domain of whereas the 3-D plpt
magnifies the interval in the vicinity of the expedted
solution. The horizontal axes correspondr tand y, with
the latter quantity varying between -0.2 and 0.2.

The resulting real value ofis unique. This can be visualized by plotting, for

given X, Hi, Hy, V and B, the derivative surface of the traveltime equation, be~

d 00O r _ .
18 Note that— B+ y —————[[> 0, for physically meaningful values nfand.
dygtd " r°+H;



137

dit(r,)/dr. The curvef,, formed by intersection of the surfageand the plané&, =
dit(r,y]/dr = 0 is a set of solutions satisfying Fermat’s principle of stationary time for
various combinations ofr and y. The only physical solution of the entire problem
corresponds to the intersection point of the projection of the two cuivasdc,, on the
ry-plane (see Figure 8.5). There is only one such a point and it always occurs at the
minimum of the curvet; = (r;T); i.e., at the point wherg/ is minimum. The
mathematical proof of this appears in Appendix 4.

Having thus calculated the value mpfusing equation (8.6), one can easily obtain
the correspondingy, by substituting it into equation (8.5). Thus the traveltime equation,

i.e., the first equation in (8.2) is the only one necessary for computational purposes.

y(r;T) and d[t(r; Y]/dr Curves inyr-space and the
Physical Solutions

BN /

tr; ) k

ot YT ]
V /
-0.1
ot/or=0
-0.2
0.0%7 0.075 0.03 0.035 0.09 0.095
r{m]

Figure 8.5. The projections of the curves dt/dr = 0 ang
€1 = Wr,T) on theryplane. The two chosen values Tof
correspond to the results of forward modelling obtained
with y= 0, andy = 0.2. There is a good agreement in [this
illustration of the inverse solution.
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One can calculate tig#/dr = O contour, i.e., the steeply rising curve in Figure 8.5

for an experiment knowing the horizontal source-receiver separatjothe vertical

speedsyY and g, and layer thicknesseld; andH,. The position of the other curve, i.e.,

t(r;))=T, on the other hand, depends on the result of the experiment, namely, the

measured traveltime]. Thus with all model and recording parameters fixed,

traveltime is a function of the anisotropic paramegewhose value corresponds to

intersection of these two curves.

the
the

Method of Computation: Anisotropic parameter, y. from traveltime measurements
in the isotropic/anisotropic case

Step 1
Expressyas a function of, and known parameters:
3
V(r®+HZ)? 2 12
y=y(r;T,X,V,B,H,H,)= ( ) r 2H2
Br? EV - - r + H? D r
=
Step 2

Calculate the local extremum gfby setting the derivative of w.r.t. r to zero, and

solving forr. The process, although analytic, is very laborious and the use of sopme

mathematical software is recommended in order to ease the task. In searchin
solution one may use the fact that, the solution of interest is situated betw8eandr
=X.

3
dy __ 2, 2AHZ+r%) _ V(HZ +r7)2(X - 7)

3

3

VA HZ +1? 2\/(H2+r)
%rv—le2 X—r % BV - HE + (X - %
Step 3

Insert the value of, calculated in Step 2, into the expressionyfon Step 1.

) the
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A Mathematical code for the entire calculation is given below.

X = horizontal distance between the source and receiver
HJ = thickness of the upper, isotropic layer
HD = thickness of the lower anisotropic layer

V = wave speed in the upper, isotropic layer

B = vertical wave speed in the lower, anisotropic layer

TT = traveltime between the source and receiver (one way)
DI

V(r2+HDA2)*Sqrt[r"2+HDA2]/(B*r 2(TT*V-Sqrt[(X-r)"2+HJ"2]))
-(r"2+HD2)/r"2,1]

FindRoot[% == 0, {r, 0.01*X, X/2, 0.99*X}]

N[

V*((r].%)"2+HD"2)*Sqrt[(r/.%)"2+HD"2]

I(B*(1]. %) 2*(TT*V-Sqrt[(X-(1.%))2+HJ"2]))
-((r1.9%)"2+HD"2)/(r].%)"2]

8.5. EXAMPLE OF INVERSION APPLICATION

8.5.1. Numerical modelling

Consider a model composed of two layers. The upper, isotropic layer has an SH-
wave velocity of 1030 m/s and a thickness of 355 m. In the lower, anisotropic (TI) layer,
the SH-wave velocity for vertical propagation is 1609 m/s and the thickness is 1045 m.
The anisotropic parameter in the Tl layey#0.096. The results of forward modelling

and inversion are summarized in Table 8.1.

8.5.2. Physical modelling

The elastic modelling method described in more detail in Chapter V was used to
test the usefulness of the inversion algorithm. A traveltime for an SH wave was recorded
through an isotropic PVC, and anisotropic Phenolic CE, at a range of offset, between 0
mm and 300 mm at 1 mm increments. Because of the significant decrease of amplitude
for offsets greater than about 120 mm, due to variation of transmission coefficients with

offset, i.e., the angle of incidence (see Daley and Hron, 1979), the offsets selected for
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inversion lie between 0 mm and 120 mm. The speed of vertical propagation of SH waves
in the 31-plane, calculated at the zero offset, using independent knowledge of speed in the
isotropic layer and thicknesses of both layers, is 1609 m/s. This result agrees closely with
direct laboratory measurements on the Phenolic CE by Cheadle at al. (1991), where the
range of SH velocity for measurements in the 31-plane is 1602 m/s - 1610 m/s. The
expected value of the anisotropic parameter#0.096 The inversion results are

shown in Table 8.2.

Offset | Traveltime Inverted y Inverted y Inverted y
(m) (s) (perfect (1% error in (up to 1%
information 19) vertical speed) | random error in
(1626 m/s) traveltime)
0 1.25 N/A N/A N/A

90 1.25104 0.0959772 * -0.734978
190 1.27558 0.0961738 -0.437334 -0.232223
290 1.3484 0.0958288 -0.116718 -0.0170171
390 1.02475 0.0959165 -0.0227692 0.0755439
490 1.04204 0.0959752 0.0178276 0.117534
590 1.06286 0.0959918 0.0390921 0.110076
690 1.08699 0.0959842 0.051623 0.0843938
790 1.11419 0.0959669 0.0596263 0.0830911
890 1.1442 0.0959865 0.065086 0.0816758
990 1.17678 0.0959947 0.068952 0.117695

Table 8.1. The results of forward numerical modelling and inversion.

8.5.3. Discussion of inversion applications

The numerical example, on noise-free data, shows that the inversion works very
well in ideal circumstances. Both numerical and physical modelling examples indicate,
however, that the method is very sensitive to errors in the input information.
Geometrically, the sensitivity of inversion can be visualized by observing the gentle

slope of the traveltime function in Figure 8.2. This implies that a slight variation in the

19 As mentioned in Section 8.4, the inversion relies on the linearized, i.e., first-order approximation of
expression for group velocity. Thus, “perfect information” implies that the traveltime is also computed
using the same approach. If a higher-order approximation for group velocity is used in forward modelling, a
slight discrepancy between actual and inverted valugsesults. For instance, for offsets of 490 and 990
metres, a higher-order approximation of group velocity yields traveltimes of 1.04305 and 1.7922 seconds,
respectively, which, in turn, gives corresponding values of 0.0852466 and 0.0882206 for
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vertical position of the plane depicting the measured traveltime will result in a
considerable lateral shift of the cur¢g and hence the value of the anisotropic
parametery. In principle, however, using modern measuring devices, it is possible, to

measure the traveltime with high enough precision to obtain good inversion results.

Scaled offset (m) Scaled time (s) Inverted y
0 0.994 N/A

90 0.997 -0.304444
190 1.001 0.127213
290 1.010 0.129247
390 1.024 0.108049
490 1.036 0.159402
590 1.052 0.177814
690 1.076 0.159333
790 1.108 0.124404
890 1.145 0.0929694
990 1.182 0.0794125

Table 8.2. Measured traveltimes and inverted anisotropic parameiar,SH waves in
31-plane.

8.6. ANISOTROPIC/ANISOTROPIC CASE

The logic described above can be extended to cases where both layers are
anisotropic. The anisotropic parametgrs I', as well as the vertical wave spegd,of
the first or surface layer, are assumed to be known. In such a case, the set of equations
has a slightly more complicated appearance but no additional unknowns. The only
difference is the substitution of an angle-dependent formula for the velocity in the upper

medium, that is:

0 [rve — 2 2 2 2

0 — 4 r()x+H)12 2t it -=t(r)

O - r
aA+r-———= +y———0O

Eﬁlm (X-r)?+H? O & Vvt enzo

0 (8.7)
) _,

™
Q.
=
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Method of Computation: Anisotropic parameter,y, from traveltime measurements

in the anisotropic/anisotropic case

Step 1
Expressyas a function of, and known parameters:

y=y(rT,X,B,,B,, \H,H,)=

N (X_r)z [l 2 2 5
A+l -—————[r°+H,;)?
_ﬁlD (X—r)2+HfE( 2) _r?+H;
B [TV = (X =)+ 1 "
Step 2

Calculate the local extremum gfby setting the derivative of w.r.t. r to zero, and
solving forr. The process is very laborious and it might be recommended to us
mathematical software. In searching for a solution one may use the fact that the
of interest is situated betweer 0 andr =X .

dy 2, 2
dr r re

N (X_r)z 2 2 2 _
BlE]'+r()(—'*)2.|-|-|f§H2 +r ) (X I’)

S (X-r? 0O 2|:f
r2HZ+(X =r)’OB,a+r-—> 2 g-JH2+(X-r)’0
BZ 1 ( )Dﬁllj (X_r)2+H12D 1 ( )D

+

U (X—I’)Z [ 2 2
3B, A+~ 2 OH
N BlD (X-n?+H2D" ° _
0 [] (X_r)2 2 [
rkrg,aA+r -————[-+H; +(X-r) 0O

+r

2

O (X_r)z ﬁ 2 2E
2B+ ———"——[0OH; +r°)?
PiH (X-1)?+H D ? )

(X-r> 0O
(X=ny +pzp VR ()
1

=0
2

Br"H’B EJLH‘ E
0D O

ea
solution
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Step 3
Insert the value of, calculated in Step 2, to the expressionyfon Step 1.

A Mathematical programme for the entire calculation is given below.

X = horizontal distance between the source and receiver
HJ = thickness of the upper anisotropic layer
HD = thickness of the lower anisotropic layer

V = verticalwave speed in the upper, anisotropic layer

B = vertical wave speed in the lower, anisotropic layer

G = anisotropic layer in the upper medium, i.e., medium of incidence
TT = traveltime between the source and receiver (one way)

DI

(VH(L+GH(X-1)"2/((X-1)"2+HI"2)))*(r"2+HD"2)

*Sqrt[r2+HDA2J/(B*r 2% (TT*(V*(1+G*(X-r)"2/((X-1"2+HJ"2)))
-Sqrt[(X-r)*2+HJ*2]))

-(r"2+HD2)/r"2,1]
FindRoot[%==0,{r,0.5*X,0.001*X,0.99*X}]

N[

(V*(L+G*(X-11. %) 2/ ((X-11.%)"2+HI2)))*((]. %) 2+HD2)*
Sqrt[(r/.%)"2+HD"2]

I(B*(r]. %) " 2*(TT*(V*(L+G*(X-11.%)"2/((X-1|.%)"2+HJI*2)))
-Sqrt[(X-(1/.%))*2+HI"2]))

-((1.9%)"2+HD"2)/(1].%)"2]

8.7. MULTI-LAYER CASE

In this section the usefulness of the inversion scheme is enhanced by deriving an
algorithm applicable to propagation of SH waves in multiple layers. In exploration
geophysics the proposed scheme appears to be particularly applicable in vertical seismic
profiling (VSP).

It is assumed that the surface layer is isotropic. The assumption of an isotropic
surface layer, besides facilitating the mathematics of inversion, is not unreasonable in the
geophysical context. One might argue that the unconsolidated material composing the
near-surface layer consists, in general, of a rather random arrangement of particles and
does not exhibit any directionality and hence is quite isotropic, even if strongly

inhomogeneous. Also, the velocity of wave propagation in the surface layer is, in



144

general, significantly smaller than that in the deeper layers. This entails, particularly in

the multilayer case, a near-vertical direction of propagation of the ray in the surface layer.
Therefore, even if the surface layer exhibits some anisotropy, the velocity of propagation
would be very well approximated by the vertical wave speed. Thus, the above assumption
does not limit considerably the practical application of the method.

It is further assumed that all interval vertical speeds are known. Particularly if one
considers vertical seismic profiling, this information is provided by the velocity survey
from the zero-offsetVSP, and thus the above assumption does not constitute any
significant practical limitation of the method.

Moreover, it is assumed that anisotropic parameters for all layers above the layer
in question are known. Considering, however, that, in the case of VSP recording, one
could have the traveltime information from receivers in the entire well-bore, one can
perform the inversion for each layer starting at the first subsurface layer and repeating it
sequentially for all subsequent layers. In this manner, the anisotropic parameters of the
overlying layers are always known, and this assumption does not, therefore, constitute
any major practical limitation of the method.

The extension of the inversion scheme results from combining the inversion
scheme proposed above, for a two-layer medium, with the anisotropic formulation of
Snell's law derived in Chapters Il and Ill. The Snell's-law formalism allows for the
parameterization of the travelpath in terms of a single valudenoting the distance
between the refraction point at the first interface and the receiver. One considers a model
containingN horizontal layers. The surface laygr= 1) is assumed to be isotropic
entailing the equivalence of phase and group velocities. Thus to initialize the raytracing
process, the ray parametegs, can be calculated directly from the valuer pofrom the

expression:

X=r
X, = sing, _ (X B r)z +H;
° B B

(8.8)
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The traveltime in the first layer is given in termst, and the vertical SH wave speed,

B1, in the first layer as:

X-=r
[(r) = ) 8.9

Then, the raytracing follows through a series of horizontal lajyerg, through =N - 1,

with known anisotropic parameters obeying the conditions imposed by the anisotropic
form of Snell's law, until theNth layer with the unknown anisotropic parameter is
reached. The total horizontal distandetravelled through the stack Nf- 2 horizontal,
anisotropic layers is calculated based on the knowledge of layer thickndssasd

propagation angle$}, from Snell’s law:

d='Y H,tang, . (8.10)

j=N-1
i=2

The traveltime in theN — 2 layers, i.e., all layers without the surface and the
deepest layer in question, is calculated as a sum of traveltimes in each layer. The
traveltime in terms of the propagation angl,the vertical speed3, and the known

anisotropic parametelr;, is given as:

Rt H, e H, (8.11)
5 COQJ[V]-] - =2 Cofj[ﬁj(lﬂ_j Siﬁ@j )] )

The expression in square brackets in equation (8.11) represents the group velocity in the
jth layer,V;.

The total horizontal distanc®), travelled prior to reaching thth layer, for
which the anisotropic parameter is to be found, is the distance travelled in the first layer,
i.e., X-r, and the distance travelled through a stack of horizontal anisotropic ldyers,
Thus:
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j=N-1

D=(X-r)+ ijtanQj : (8.12)
=2

The angle of incidence in tiNth layer with the unknown anisotropic parameter is
chosen in such a way that the ray arrives at the receiver, i.e., the horizontal distance,

travelled in this layer is given by:
A=|X-D/=|r-d|. (8.13)

The absolute value is important if the initialization of raypathr iy such that
horizontal distance travelled in the fifdt- 1 layers is greater than the horizontal source-
receiver offset. The traveltime of the ray in tR&h layer is given in terms of the
horizontal distance;,, between the refraction point at the first interface and the receiver,
the horizontal distance, travelled by the ray through the stack of anisotropic layers with
known anisotropic parameters;, the thickness of théith layer Hy, and the group

velocity, W, is given by:

Bz Jr-d)? g .10
Vy 8.9y (r-d)? O '
5V (r-d)? +H: 0

ty(r) =

The group velocityVy, is given in terms of the vertical wave speBg,and the
unknown anisotropic parameter, Only one value of, i.e., the value minimizing the
traveltime, is physically acceptable. In general, the refraction point on the first interface
must be located quite close to the source, i.e., the first raypath must be close to the
vertical. Otherwise, if the angle of incidence is large the horizontal distance traveled by
the ray through a stack of layers in which Snell’s law is followed, overshoots the receiver,

making the last segment go backwards (see rayathFigure 8.6). This is clearly an
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aphysical situation, and one that yields a value of traveltime very much greater than the
minimum value. Furthermore, a certain sufficiently small valueleds to a large take-

off angle, resulting in a critical angle at one of the interfaces.

source X

isotropic

receiver

Figure 8.6. The multilayer model used to explain the inversion algotithm.
The surface layer is assumed to be isotropic, while the anisgtropic
parameters of layejs= 2 throughj = N-1 are assumed to be known. The
travelpath, and hence the traveltime are parametrized in terms |of the
horizontal distance, between the refraction point at the first interfacel and
the receiver. The raytracing through a stack of horizontal anisotropic|layers
with known anisotropic coefficient obeys Snell’'s law initialized by|the
choice ofr. The raypath in the lowest layer with unknown anisotropic
coefficient is always such as to arrive at the receiver. The physically
acceptable solution corresponds to the value wfhich minimizes the
traveltime.

The complicated traveltime surface is illustrated in Figure 8.7, in which
allowed to span the entire range from XtoThe largest value of traveltime corresponds

to the point where the lateral location of the receiver is reached on the last interface, i.e.,
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the raypath in the last layer is vertical. Eventually, a complex value of traveltime is
reached and no real surface can be plotted.

Figure 8.8 is an illustration of the traveltime surface with the value$irofted to
the neighbourhood of a Fermatian solution. The general appearance of the surface
resembles the two-layer case illustrated in Figures 8.2 and 8.3. Again, when cutting the
traveltime surface with a horizontal plane corresponding to the actual traveltime, one
obtains the physical solution corresponding to the nadir of the intersection curve.

In practice, one can first generate a plot of the entire rangeand then limit it to
the neighbourhood of the absolute minimum. It is important to establish visually, from
the three-dimensional plot, the range of values within which the absolute minimum is to
be found. Otherwise, the inversion algorithm might return a local minimum that does not

correspond to the absolute minimum.

-0.1
Figure 8.7. The traveltime function for a three-layer case.

The traveltime function illustrated in Figures 8.7 and 8.8 derives from a three
layer model whose parameters are shown in Table 8.3. The traveltime obtained by
forward modelling with a lateral source-receiver separation of 5000 metres and an

assumed anisotropic parameter in the third laygr=00.15, is 1.74208 seconds.
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Layer # Layer Thickness Vertical Wave Anisotropic
(m) Speed (m/s) Parameter, y.
1 1000 3000 0
2 2000 4000 0.2
3 3000 5000 unknown (.19

Table 8.3. The parameters of the model used in numerical calculation of a multilayer
case.

Figure 8.8. The traveltime surface cut by an actual traveltime |value
calculated by forward modelling. The illustration is limited to |the
neighbourhood of the absolute minimum of the traveltime function.

The value ofy can be obtained, as in the two-layer case, by setjidg to zero,
i.e., in our case, by finding the minimum of the intersection curve of two surfaces
illustrated in Figure 8.8. In the multilayer case, one has to be careful to select the proper
local minimum. Graphical output is very helpful in visualizing the solution. Figure 8.9.a.
shows that the function(r), given by equation (8.16) is discontinuous and has several
extrema. One must choose an extremum (minimum) corresponding to the Fermatian
solution visualized by examining Figure 8.7. Figure 8.9.b. shows a smooth continuous
segment in the neighbourhood of the solution. Note that the minimum of is around 0.15,
as expected from parameters of the forward model (Table 8.3).

The solution, as in the two-layer case, can be obtained by finding the minimum of

Ur), based on the total traveltime function with the known value of a particular
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traveltime, T, corresponding to the given source-receiver configuration. The total

traveltime function is trivially given by:

tror(r) =t (r) +t =2-. v-1() ) (8.15)
Equation (8.15) can be solved explicitly fpmwhich appears only in the third term
on the right-hand side. Hence, for a measured travelliiitee expression foy can be

written as:

y(r)=§'H—N +1% J(r=d)" + Hy E. (8.16)
—d %BN[T_(tl(r) +tj:2ﬁN—1(r))]E

The plot of equation (8.16) is shown in Figure (8.9. a, b). Equation (8.15)
represents a complicated entity. The traveltime functignsare quite complicated,
particularly, the traveltime expression for the stack of horizontal layers which involves
the use of the anisotropic formalism of Snell's law. For this reason, mathematical
software becomes extremely helpful.

It is important to realize that in the proposed procedure one does not minimize the
traveltime explicitly. Due to the fact that a minimumyf) corresponds to a stationary
time, Fermat’s principle is guaranteed by the implicit function theorem (see Appendix 4).
Therein lies the power of the proposed method of inversion.

The inversion process can be performed using the Mathematttware. In the
algorithm given below th&indMinimumcommand is used since an algebraic expression
for the derivative ofy with respect ta could not be found. For concerns of numerical

precision and accuracy see Appendix 3.
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1000] 0.3
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: I n JL . R 0.2

] 3000 3300 40 4500

5001 r W 4800 4900
a) - b) 15 r

Figure 8.9. a & b. The graph ¢fas a function of for a given value of th
traveltimeT. Picture a) illustrates the behaviour of the function for the entire
of r. Picture b) illustrates the behaviour of the function in the neighbourhood
Fermatian solution, as visualized in Figure 8.7. The solution corresponds

e

range
of the
to the

minimum clearly illustrated in b). Note that the scales of the axes are differe

nt.

Method of Computation: Anisotropic parameter, y, from traveltime measurements

for a three-layer case.

Step 1

Express the unknowpin the bottom layer as a functionrgimeasured traveltim&, and

known parameters of the upper layers.

0
0
:(r—Hztanet)2+H§§ \/(r—Hztanet Y +H2

(r—H,tand,) Bﬁ3§ D\/(_r)—+"|2 H, %

H g cos@t(B2(1+ y, sirt et))E%
where
Dsmf Boy cos & - 0
8, = Arccosi % (E)H

2 ZD’
H\/[ ok +[ B,y sin(2$)] 0

|
[N
I B
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1

"= 5 @ ycode)

and

E]-_\/l_(zxoﬁo)zy

¢ = ArccosH
B 2%,BoY

&
0
H

with the ray parameter obtained by expressing, sim terms ofr:

X-=r

’ B

Step 2
Find the local and absolute minimumyaforresponding to the Fermatian solution.

A Mathematical programme for the entire calculation is given below :

T = measured traveltime

X = horizontal source-receiver offset

HJ =thickness of the first (isotropic) layer

HD  =thickness of the second (anisotropic) layer

HB  =thickness of the bottom (anisotropic) layer

VJ =wave speed in the first (isotropic) layer

VD = vertical wave speed in the second (anisotropic) layer
VB = verticalwave speed in the bottom (anisotropic) layer
GD  =anisotropic parameter in the second layer

TJI=Sqrt[(X-r)"2+HJI"2]/VJ
x=((X-n/Sqrt[(X-r)"2+HJI"2])/VJ
raypath and traveltime calculation in the second layer; analogous modules fo
subsequent layers can be added
ZD = ArcCos[(1-Sqrt[1-GD*(2*x*VD)"2])/(2*x*VD*GD)]
RD = 1/(VD*(1+GD*Cos[ZD]"2))
n d= Sin[zZD]*(2*VD*GD*Cos[ZD]*2-1/RD)
dd = Sqrt[1/RD"*2+(VD*GD*Sin[(2*ZD)])"2]
sd = ArcCos[Abs[nd/dd]]

calculation of the traveltime in the second layer:
TD=HD/(Cos[sd]*VD*(1+GD*Sin[sd]*2))
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calculation of the horizontal distance traveled through the stack of the anisd
layers; by adding terms it can be easily extended to accommodate more laye
DD= HD*Tan[sd] +.....

calculation of the minimum ¢fr) with given initial search paramete(¥aluel and
Value 3, to be chosen in the neighbourhood of the Fermatian solution:
FindMinimum[
(((r-DD)"2+HB"2)/(r-DD)"2)*
(Sqart[(r-DD)"2+HB"2])/(VB*(T-(TJ+TD+....)))-1),

tropic
[s:

{r,{ Valuel,Vvalue}]
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CHAPTER

CONCLUSIONS

9.1. GENERAL REMARKS

An analytical scheme relating incidence, reflection and transmission angles in
anisotropic media has been derivedn Chapter Il a rather general method based on
vector calculus was suggested. It works well in cases in which a phase-slowness surface
can be described by Cartesian coordinates in phase-slowness space, e.g., an ellipsoid.
Direct application of this method can be rather cumbersome as it might be exceedingly

difficult to express a complicated slowness surface in Cartesian coordinates.

The weak-anisotropy approximation allows a useful implementation of the
aforementioned analytical scheme relating incidence, reflection and transmission angles
A simplification of the phase-velocity formulae under the assumption of weak anisotropy
allows one to express clearly the relationship among angles (Chapter lll). This yields a
straightforward method for calculating both phase and group angles, as well as phase and
group velocities. A raytracing scheme is developed based on this approach. It allows for
raytracing in multilayer anisotropic media with planar, but not necessarily horizontal,

interfaces.
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The weak-anisotropy approximation works well within its realm of applicability
The results of a physical experiment involving wave propagation across the boundary
between isotropic and anisotropic media indicated that the traveltimes calculated using
the raytracing method agreed reasonably well with the measured values (Chapter VII).
Furthermore, the traveltimes calculated using the weak-anisotropy approach were
significantly closer to the measured values than traveltimes calculated based on an

isotropic approach.

Results pertaining to SV waves are more affected by the weak-anisotropy
approximation than those relating to P and SH waw¢ waves exhibit, in general,
more complicated shapes of slowness curves than either P or SH waves, as illustrated in
Appendix 2. Therefore, in the case of SV waves, the loss of higher-order terms results in
a larger discrepancy between results obtained using exact and approximate approaches

than in the case of either P or SH waves.

An analytic traveltime inversion for SH waves has been developethethod
which uses the traveltime through a stack of anisotropic layers to obtain the single
anisotropic parametery, has been proposed. The method works well with perfect
information, but is very sensitive to input errors. Therefore, it can be used for data
acquired in the laboratory with very precise apparatus and in noise-free conditions.
However, in its present form, the method cannot be confidently used in geophysical field

measurements.

In principle, there seems to be no obstacle to the implementation of exact
equations in the proposed scheifdgpendix 7). Any extension of the development
presented in this dissertation to the realm of strong anisotropy would necessitate use of
exact equations, or at least higher-order approximations. One would certainly gain some

accuracy of results at the expense of clarity. If, however, the development proposed in
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this dissertation were to be used in geophysical practice, such a course of action is

strongly recommended.

9.2. SOME PRACTICAL APPLICATIONS

9.2.1. Modelling

A reliable method allowing one to generate experimental results synthetically can
play a very important réle. Such a technique incorporated into the planning of a seismic
experiment allows one to anticipate the results and thus to correctly deploy sources,
receivers, and other experimental apparatus. Furthermore, it allows the interpreter (while
keeping in mind the intrinsic non-uniqueness) to verify the results of interpretation by
comparing synthetic data, generated based on a given interpretation, with experimental
results.

The raytracing method presented here allows one to generate synthetically results
of wave propagation in weakly anisotropic layered media. The raytracing method
presented can provide the basis of decision as to whether or not an "anisotropic” approach
should be followed. The degree of anisotropy can be varied by modifying anisotropic
parameters and the discrepancy between isotropic and anisotropic approaches can thus be
investigated. As indicated by physical experiments, the anisotropic-modelling approach
reflects very closely the experimental results; one should, however, keep in mind that the
algorithm is designed for weakly anisotropic media, and the accuracy of results relies on
this assumption. As a reasonable rule, one can regard a degree of anisotropy of about

20% as being the limit of applicability.

9.2.2. Near-surface static corrections

The calculation of static corrections, dealing with shallow reflections and
refractions, employs obliquely travelling rays. For such rays, the effects of anisotropy
are, in general, more pronounced than for deep reflections, for which all rays are nearly

vertical.  Furthermore, large differences in velocities among near-surface layers
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emphasize the raybending at interfaces, calling for an accurate description of this
phenomenon.

The anisotropic raytracing presented in this dissertation allows one to calculate
static corrections including the effects of anisotropy. For instance, it is important to
realize that the value of the critical angle is not the same for isotropic and anisotropic

cases, thus directly affecting results of refraction statics.

9.2.3. Vertical seismic profiling (VSP)

The recording geometry of an offset VSP, with receivers deployed throughout a
long section of the wellbore and the source located on the surface at a considerable lateral
distance from the well, can be particularly affected by anisotropic effects. The data set
contains information derived from propagation directions ranging from nearly vertical to
nearly horizontal, thus creating the opportunity for any angular dependence to manifest
itself.

The VSP geometry is ideally suited for employing the method presented in this
dissertation assuming that the anisotropy of the rock mass can be characterized as a Tl
system, i.e., transverse isotropy, with a symmetry axis perpendicular to the planar
geological layering. As a matter of general practice, in addition to the offset source, one
usually records with a near-offset source as well. For the latter case, the rays are nearly
vertical and, since the distance travelled is measured by the geophone cable, the
traveltime reliably yields the vertical speed, which is required by the formalism.
Subsequently, by modifying anisotropic parameters, one can fit modelled and
observational data.

Furthermore, VSP geometry provides an excellent experimental setup for
traveltime inversion, which can yield the anisotropic parameters. As already mentioned,
this geometry gives reliable information on the vertical speed from the zero-offset record
and on the angle-dependent traveltime measurements from the far-offset record.
Moreover, the presence of the wellbore provides information about thicknesses of the

sedimentary layers.
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9.2.4. Intuitive understanding

| believe that an important aspect of the presented method is the educational one.
The method allows a rather straightforward manipulation of various quantities
characteristic of wave propagation in anisotropic media. Concepts of phase and group
angles and velocities can be investigated, allowing a geophysicist to become more
familiar with notions extending beyond an isotropic approach.

Particularly with the aid of “user-friendly” mathematical software, some of the
ideas included in this dissertation can be used as starting points for hours of geophysical

enjoyment. Have fun!
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APPENDIX

THE CHARACTERISTIC BIQUADRATIC

Al.1. PHASE VELOCITY AND RAY PARAMETER IN  WEAKLY
ANISOTROPIC MEDIA

The very appearance of equations involving phenomena of wave propagation
through anisotropic media is often intimidating. It is of great benefit to gain an intuitive
insight into some of these formulae. This can be achieved, at times, with the help of
graphical illustrations. Graphical illustrations can often allow one to observe the effects
of a smooth transition between isotropic and anisotropic cases, i.e., from a well known
scenario to a less intuitive one. There exist various approximations rendering some of
these equations more manageable. Notably, Thomsen (1986), under the assumption of
weak anisotropy, provided a set of formulee which achieve the required simplicity of
form, while retaining their validity in the context of most situations encountered in
exploration geophysics. A weakly anisotropic medium, as far as compressional waves are
concerned, can be characterized by a vertical speed and a pair of anisotropic parameters.

Consequently, the phase velocitypf a compressional wave is given in terms of
the vertical speedy,, anisotropic parameterd,ande, and the phase angl®, measured

with respect to the normal to the interface, so that:

20 This appendix was published by Slawinski, M.A., in the CREWES Research Report (1995).
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V(9) = a,(1+5sin’ 9 cos 9 +¢ sif9). (Al1.1)

The reciprocal of the phase velociyj.e., the phase slowness, plays an important
réle in various studies of anisotropic phenomena, notably in raytracing methods for
layered media. The horizontal component of phase slowness (for horizontal interfaces) is
equal across all boundaries. It is referred to as the ray paraxeter,

Using the expression for this horizontal slowness component in terms of polar
coordinates, one can write the equation for the ray paramgtan, weakly anisotropic

media;

« = sing
° a,(1+dsin*Id codId +¢ sitd )

(A1.2)

Al.2. QUARTIC EQUATION AND THE CHARACTERISTIC
BIQUADRATIC

Expressing all trigonometric functions in terms of%iand rearranging, one can

write equation (Al1.2) as a fourth-order polynomial:
X, (€ = d)sin* & + x,a I sirf 3§ — sind + x,a, =0. (A1.3)

A general solution of a fourth-order polynomial is a very laborious task. But, a rather
trivial manipulation gives an insight into the character of the solution of equation (A1.3).

One can write:
a, (e~ B)sin' 9 +a,dsit 9 +a, =~ sirg. (A1.4)

Xo

The left-hand side of equation (Al.4) is a biquadratic expression with coefficients

dependent only upon the vertical spegg),and anisotropic parameters of the mediam,
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and o (see Figure Al.1) . The coefficients are independent of the ray direction, and are

characteristic of a given medium (as long as one is considering compressional waves

only).

7000 T
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Figure Al.1. A graph of a characteristic biquadratic for a medium with the follpwing
parametersap = 2925 m/sg = 0.224 andd = 0.183, i.e., corresponding to the phenolic
CE laminate used in the laboratory studies of anisotropy. The units of the verti¢al axis
are metres per second, while the horizontal axis is dimensionless.
The plot corresponds to the expression on the right-hand side of equation| (Al.4)
y=a,(e-9d)sin*9 +a,dsif 9 +a, plotted against= sing.

The coefficient on the right-hand side of equation (A1.4) depends only on the ray
parameter xo, which is a function of the angle of incidence. Letting both sides of
equation (Al.4) equal, and setting sifA = x, and plotting both sides of equation (A4.1)
separately versus one notices that the left-hand side is a curve wiastercepty(0) =
ap. The right-hand side is a straight line passing through the origin, with a slope equal to
the inverse of the ray parametex,see Figure A1.2.

Such innocent transformation leads immediately to several interesting
conclusions. The original quartic (equation (A1.3)) has at most two real solutions. They
correspond to the points of intersection of the straight line and the curve corresponding
to the right-hand side, which often resembles a parabola. These two real roots can
degenerate to just one real root when the straight line is tangent to the graph. Finally, the

original equation may have no real solutions if the straight line and the graph never touch.
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Figure Al.2. A graph of a characteristic biquadratic curve (for parameters seq Figure
Al.1) and the straight line plotted versus sind. The inclination of the straight line
corresponds to critical incidence, calculated using equation (A18) a9, i.e., it is
such that the intercept occursxa& sind= 1. Counterclockwise rotation of the straight
line would yield normal transmission, while clockwise rotation would yield postctitical
refraction. For this illustration, the medium of incidence is assumed to be isotropig with a
compressional-wave velocity= 2250, i.e., PVC used in laboratory studies.

For a given medium, the quantity which determines which case is applicable is the
slope of the straight line. The biquadratic remains constant for all angles of incidence as
long as one is considering compressional waves. Hence, it is referred to as a

characteristic biquadratic

Al.3. THE CRITICAL ANGLE

For a physically meaningful solution, i.e., réalit is required that si not be
greater than unity. This leads to the formulation of the critical-angle expression. The
critical angle corresponds to the point whére 772 in equation (A1.2). This gives a
value of the ray parameteg, that corresponds to the critical angle for compressional

waves at the boundary between weakly anisotropic media:

1

Xy = m . (A15)
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Recalling the definition of the ray parameter in isotropic mediax & ,Sing/v,
one obtains the critical incidence angle for compressional waves at the isotropic/

anisotropic interface:

J. —ArcsmgiD (Al1.6)
B Ch 1)D

Setting the anisotropic parameterto zero reduces equation (Al.6) to the case of

an isotropic/isotropic interface. One can easily rewrite equation (A1.6) as:

) ]
d.= Arcsm%\/—lm : (A1.7)
V2 [

wherev = v, is the velocity in the medium of incidence amg= v; is the velocity in the
medium of transmission. Equation (Al.7) is the well known formula for critical

incidence angley., at the boundary between two isotropic media.

Al.4. REDUCTION TO THE PURELY ISOTROPIC CASE

To complete the concept, one notices that in the limiting aased = 0, i.e.,
isotropy, equation (Al.4) reduces to the standard form of Snell's law. Thus, similar
graphs can be obtained for isotropic media. As the values\d &, approach zero,
tending towards isotropy, the curve opens up. For a perfectly isotropic case, the curve of
the left-hand side of equation (Al1.4) becomes a horizontal straightyixles ao. Also,
in the context of isotropy, just as in the anisotropic case, transmission occurs for values of
sind < 1, the critical angle at sth= 1, and postcritical incidence for #in> 1, as

illustrated in Figure A1.3.
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Figure Al1l.3. Degenerate biquadratic, the graph of a fourth-order polynomial becomes a
horizontal straight line. A sloping line corresponds to critical incidence at the interface
between two isotropic media with velocities of 2250 m/s and 2925 m/s, i.e., it is sych that
the intercept occurs at= sind = 1. Counterclockwise rotation of the straight line would
yield a normal transmission, while clockwise rotation would yield postcritical refraction.

Al.5. CONCLUSIONS

A graphical illustration corresponding to the fourth-order polynomial governing
the transmission/refraction of compressional waves at the boundary between weakly
anisotropic media has been presented. The concept of a characteristic biquadratic, a
curve whose shape depends only on anisotropic parameters of a given medium, has been
introduced. It is believed that the presented graphical approach allows one to gain a more
intuitive understanding of the phenomenon in question than offered by equations alone.

An analogous illustration can be elaborated for SV waves (see equation (3.29)).
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APPENDIX

IMPLICATIONS OF WEAK-ANISOTROPY
APPROXIMATION ON PHASE-SLOWNESS CURVES

A considerable part of this dissertation uses the weak-anisotropy approximation,
which transforms exact equations of phase velocity into approximate equations
(Thomsen, 1986). Exact formulee for P, SV, and SH waves were given by Daley and
Hron (1977). Using anisotropic parameter®, andy defined by Thomsen, the exact

expressions for P, SV, and SH waves can be written as follows:

U 2 N 4 0
O _ 4el-— +¢gfsin"d U
2o +1H B, H2o-¢)sifdcosd O a? O 0
Vo =a (l+esin”d + —[A-—[]|1+ 5 + -17
20 a B | 2 0
. a’ 4 a?H .
[ [
(A2.1)

B |:| D 2 D . %
0 4el- " +¢[win* I

a’d _, 10 B 4(25 - €)sin* 9 cog 9 5o o i

Voy =B |1+ —5Esin”d - —-[A-—[7|1+ 5 + -1

B* g 20 « 1-B _iDZ EN

: : g -
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Vg = By/1+2ysin®9 (A2.3)

wherea and are vertical compressional and shear wave speed respedijvelgndy
are anisotropic parameters, whifedenotes the phase angle. Developing the above
equations into a Taylor series and neglecting higher-order terms assuming anisotropic

parameters to be smaller than unity yields (Thomsen, 1986):

Ve Da(1+ osinfd cosd +¢ sir‘iﬁ), (A2.4)
v, O 3§r+“—2 (e-0)sin’* I co§z95, (A2.5)
O B 0
and
Vg OB(1+ysin?9). (A2.6)

The considerable algebraic simplification facilitates mathematical operations and
enables one to easily express slowness curves as level curves in polar coordinates
(equations (3.7), (3.22), and (3.33)), in a form adaptable to the anisotropic formalism of
Snell's law. Thomsen (1986) provides numerous further simplifications/linearization
which are avoided in this dissertation since they lead to a loss of several physical
attributes characteristic of wave propagation in anisotropic media, e.g., triplication of
group angle as a function of phase angle (see section 6.3 and Appendix 6). No physical
attributes are lost by application of equations (A.2.4), (A.2.5), and (A.2.6); the question
arises, however, whether significant accuracy is sacrificed in this elegant process of
simplification.

To gain an understanding of the consequences of approximation, several plots are

generated using exact formulee ((A2.1), (A2.2), (A2.3)) and their approximate
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counterparts ((A2.4), (A2.5), (A2.6)). The plots represent phase-slowness curves. The
values chosen fay ande, together with corresponding plot letter are given in Table A2.1.
for P and SV waves. The cases where J are not illustrated. Such a fortuitous

combination of anisotropic parameters leads to spherical wavefronts of SV waves.

o0 \ ¢ -0.2 -0.1 0.1 0.2
-0.2 X a b c
-0.1 d X e f
0.1 g h X |
0.2 j k I X

Table A2.1. A selection of anisotropic parameteend d with letters corresponding to
plots shown in Figure A2.1.
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Figure A2.1. On the left-hand-side plots of slowness curves of SV waves are illustrated, using
exact (A2.2.) and approximate (A2.5.) equations. On the right-hand-side plots of slowness
curves of P waves are illustrated, using exact (A2.1.) and approximate (A2.4.) equations. More
complex shapes correspond to the exact equation, i.e., shapes with more pronounced curves.
Letters below each plot correspond to the combination of anisotropic parameisils, given
in Table A2.1. Vertical P-wave and S-wave speeds aré@000 m/s an@ = 2000 m/s. Phase
angle is measured as an argument of polar coordinates, i.e., counter-clockwise from the¢ positive
segment of the horizontal axis.

The SV wave exhibits the most complex slowness curve, which, as a result, is the most
difficult to approximate. In most cases, however, the fit is quite good and the appearance of the
graph is well preserved, i.e., the approximate solution exhibits all principal characteristics of the
exact equation. In the case of P and SH waves the correlation between the exact and the
approximate equations is very good.

Remaining within the realm of weak anisotropy, containing most observations of geophysical
interest, the sacrifice of accuracy is relatively small, particularly in the case of P and SH waves.
Using slowness surfaces or curves, derived using the weak-anisotropy equations, while employing
exact equations in subsequent steps (e.g., calculation of group velocities or group angles) yields

results that are adequate for many purposes (see also Appendix 6). Also, crucial physical atributes
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Figure A2.2 Slowness curves of SH waves using exact (A2.3) and approximate (A2.6) equations.
Letters below each plot correspond to the given value of the anisotropic parammeted,2; n,]
0.1; 0,0.1; p, 0.2. Vertical SH wave speedis 2000 m/s. Phase angle is measured F an

argument of polar coordinates, i.e., counter-clockwise from the positive segment of the hgrizontal
axis.

characteristic of wave propagation in anisotropic media are preserved, thus the

educational benefits are considerable, while comparison of slowness surfaces generated
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using exact an approximate approaches, as well as the physical laboratory measurements
(Chapter VII) suggest that in many instances the approximate method constitutes an
adequate practical approach.

It could, perhaps, be argued that initial loss due to the weak-anisotropy
approximation, is somewhat compensated by operating, for the most part, on simple
analytical expressions, thus avoiding many pitfalls of numerical calculations. This might
be particularly true since many calculations involve values differing by many orders of
magnitude, e.g., ray parameter f},0velocity (18) and their powers. Using the symbolic
mathematical software Mathematfitaone benefits, in most cases from infinite precision
(Wolfram, 1991).

Slowness curves were generated using a plotting routine within the Mathématica

software. The programme is given below.

Mathematicall code for generating exact and approximate (weak anisotropy)
slowness curves for P, SV, and SH waves.

<<Graphics Graphics’

= vertical speed of a compressional waae,
= vertical speed of a shear waye,

= anisotropic parameter.

= anisotropic parameter.

= anisotropic parametery.

Q@ oo w >
[

Calculation of SV curves
svexact=PolarPlot[1/(
B*Sqrt[
1+((A/B)*2)*(e*Sin[p]*2-
0.5*(1-(B/A)2)*
(Sqrt[1+4*(2*d-e)*Sin[p]*2*Cos[p]*2/(1-(B/A)"2)+
4*(1-(B/A)2+e)*e*Sin[p]4/(1-(B/IA)2)"2]
-1))D,
{p.0,2*Pi}]
svapprox=PolarPlot[1/(B*(1+(A/B)"2*(e-d)*Sin[p]*2*Cos[p]*2)),
{p.0,2*Pi}]
Show[svexact,svapprox]
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Calculation of P curves
pexact=PolarPlot[1/(
A*Sqrt[1+e*Sin[p]*2+0.5*(1-(B/A)"2)*
(Sqrt[1+4*(2*d-e)*Sin[p]*2*Cos[p]*2/(1-(B/A)"2)+
4*(1-(B/A)2+e)*e*Sin[p]4/(1-(B/IA)2)"2]
-1)]).
{p.0,2*Pi}]
papprox=PolarPlot[1/(
A*(1+d*Sin[p]*2*Cos[p]*2+e*Sin[p]*4)),
{p.0,2*Pi}]
Show[pexact,papprox]

Calculation of SH curves
shexact=PolarPlot[1/(
B*Sqrt[1+2*g*Sin[p]2]),
{p.0,2*Pi}]
shapprox=PolarPlot[1/(
B*(1+g*Sin[p]"2)),
{p.0,2*Pi}]
Show[shexact,shapprox]
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APPENDIX

CONCERNS OF NUMERICAL PRECISION

A3.1. INTRODUCTION

It is the intention of this dissertation to achieve analytically as many results as
possible. At times, however, it is neither practical nor possible. For instance, the
calculation of the take-off angle for raytracing requires an iterative method of solution,
for it is impossible to express the take-off angle explicitly in terms of other parameters.
All numerical (and most analytical) operations were performed using Mathematica
software package allowing both numerical and symbolic calculations. Since as many
operations as possible are performed symbolically, it allows one to retain, for those
operations, infinite precision (Wolfram, 1991). In general, one expects some errors in
cases of truncated series, finite-element solutions, etc. However, it has been
demonstrated, that even some closed-form expressions arising in geophysics are not free
from the perils of computational errors (Brown, 1988). Thus a geophysicist should be on
the alert for such computational problems. Often | have used different approaches,
utilizing several algorithms to obtain the same physical quantity. At times the numerical
results vary slightly. What follows is an example of applying different approaches in the

investigation of a particular case exhibiting numerical errors.

A3.2. OBSERVATION

An SH wave is transmitted across the two-layer medium. The thicknesdgs are

= 0.0356 m andh, = 0.1046 m, for the upper and lower layers respectively. The upper
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layer is isotropic, with an SH-wave speed 1030 m/s. The lower layer is anisotropic
with a vertical speefl = 1606 m/s, and the anisotropic paramgtei0.096.

Three methods are used to calculate the traveltjmmad the take-off anglé, for
a horizontal distance between the source and rec&iverP.1 m. The first method uses
the anisotropic formalism of Snell’s law developed in Chapter Il and in Chapter Ill. The
second and third methods use the approach based on Fermat's principle of stationary
time described in Chapter IV.

The first method, utilizing the anisotropic formalism of Snell's law, is based on
calculating the ray parameter corresponding to the desired source-receiver configuration.
The traveltime is computed using expressions for group velocities in weakly anisotropic
media. The results obtained are 0.000118309 s, ané = 20.7006786%

Both the second and third methods, utilize Fermat’s principle of stationary time.
The methods seek to minimize the traveltime between source an receiver. The travelpath
and trigonometric functions are expressed in terms of a distarEtyween the refraction
point and the receiver. In the second case, the derivhtiiras set to zero, the value iof
found, and hence propagation angles and then traveltimslculated. The results
obtained aré = 0.000118309 s, ané = 20.52767868

The third method finds directly the minimum of the traveltime function using the
Mathematical command “FindMinimum”. The results obtained are 0.000118314 s,
and 6 = 19.67525212

A3.3. FURTHER INVESTIGATION

The discrepancies illustrated above prompted further investigation. For this
purpose three analogous methods were used to calculate the take-off angle and traveltime
in a purely isotropic medium. The assumption of perfect isotropy facilitates various
comparisons. All parameters of the medium are the same as the ones shown above,

except the anisotropic parameters identically zero.
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A3.3.1. Calculation using ray parameterp.

o hyvp . 36668 ,  167.987¢

X = =01
le J1-p°V;  41-106Q90@° 1-257923¢p°

The Mathematica code and result are given below:

FindRoot[36.668*p/Sqrt[1-1060900*p"2]+
167.9876*p/Sqrt[1-2579236*p"2]==0.1,
{p,{0.0005,0.001}}]

{p -> 0.00039084# 1.3171 10-10 1}

Ignoring a very small imaginary part yields a take-off angle of 23.73909 Hofl
transmission angle of 38.880656580f course, the same transmission angle is obtained
using Snell’'s law. Knowing layer thicknesses one can calculated the resulting>offset,
0.099999555 m, giving an error of about 0.000445%. One can also calculate the

traveltime to bet = 0.000121425 s.

A3.3.2. Calculation using the traveltime functiont

) = J(X =) +h? . Jri+hz  J01-r)’ + 000126736 _Vr’ +0.01094116
v B 1030 1606

Method A
This method consists of settidg/dr = 0, and solving for. The Mathematida

code and result are given below:

D[Sqrt[(0.1-1)*2+0.00126737]/1030+
Sqrt[r*2+0.01094116]/1606, ]
FindRoot[%,{r,{0.01,0.099}}]
{r -> 0.084343%
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Using the value of, one obtains a take-off angle equal to 23.73924586 a
transmission angle of 38.88076808Jsing the given velocities, the take-off angle and
Snell’s law, one obtains the transmission angle of 38.8809408fch leads taX =
0.100000526 m, i.e., an error of about 0.000525700%. One can also calculate the
traveltime ag = 0.000121425 s;t is the same, within the number of digits displayed,

regardless of the method used for obtaining the angle of transmission.

Method B
This method consists of finding directly the valuer ofor which the traveltime,

t(r), is minimum. The MathematiCacode and result are given below:

FindMinimum([Sqrt[(0.1-r)"2+0.00126737]/1030+

Sqrt[r*2+0.01094116]/1606,

{r,{0.01,0.099}}]

{0.000121425, {r ->0.084284%}

Using the value of, one obtains a take-off angle equal to 23.81876456d a
transmission angle of 38.86117634alculating the path in each layer and adding yields
a traveltimes value computed by the programme to $€.000121425 s. This result,
however, is not entirely consistent with Snell's law. Using the given velocities and the
take-off angle one obtains a transmission angle of 39.02684&Hith leads toX =
0.100499982 m, i.e., within an error of about 0.4999821%, a couple of orders of

magnitude larger than for the other two methods.

A3.4. CONCLUSIONS

For an isotropic case, all three algorithms yield the same value of traveltime,
0.000121425, within the number of digits displayed by the output. Similarly, in the
anisotropic case, the values of traveltime were very close to eacht 6tf6r)00118309
s, 0.000118309 s, 0.000118314 s}. As a matter of fact, the only discrepancy results from
the third method, i.e., the algorithm of Mathemadficavhich calculates directly the
minimum of a traveltime function. If the only purpose of the computational study is the

traveltime calculation, for instance, a comparison between isotropic and anisotropic



184

calculation of traveltimes, any of the three approaches could be used in either case.
Particularly for comparison with experimental results, they all yield adequate theoretical
prediction.

For an isotropic case the values of the take-off angle Gre {23.7390910%
23.73924598 23.81876458, again, the largest discrepancy appearing when using the
third method. Similarly, in the anisotropic case, the values of the take-off ang@s=are
{20.70067866, 20.52767868 19.6752521%, the largest discrepancy appearing when
using the third method. Thus, if one desires to calculate the raypath, it is preferable to
avoid the “FindMinimum” command, which leads to the largest discrepancies, both
within itself when considering Snell’s law, and with respect to the other two methods. In

the dissertation, this command, although very convenient, was avoided altogether.

A3.5. FINAL REMARKS

Throughout the entire study, whenever possible, numerical errors were
investigated. For example, if both forward and inverse algorithms were available, a
careful comparison of results was performed. The high accuracy of inversion of
synthetic results for the values of anisotropic parameter (see Chapter VIIl), indicates that

the use of numerical algorithms has been successful.
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APPENDIX

PROOF THAT dy/dr =0 FOR THE ACTUAL y~21

Suppose there exists a function of three variables,andy:

F(T,r,y)=t(r,y)-T, (A4.1)

for which all first derivatives exist in an open BetD [ [° (this is expected to hold true
in all cases of physical interest); suppose further that there exists a @dging,Jg), P O

D, such that=(P) = 0, i.e.t(ro,v) = To, and thaot/dy # 0 at P. Then by the implicit
function theorem (e.g., Olmsted, 1961), there exists a fung{igir) possessing all first

derivatives, that satisfies the equation:

F(T,r,o(T,r))=t(r,g(T,r))-T=0, (A4.2)

in an open neighbourhodd ] 02 of (To,ro)J02, such thag(To,ro) = .
Geometrically, note tha(T,r,) = 0 implicitly defines a 2-D surface iB®. Now,
consider a curve on this surface defined by its intersection with the stlirfadge The

implicit form of the equation of this curve, withas the parameter, is:

F(To.r.9(To, 1) =t(r,g(To.r))- T, =0 (A4.3)

21 Raphaél A. Slawinski (pers. comm., 1995)
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Differentiating equation (A4.3) with respectrtgives:

dF _d[(rg(h,m)-T] _a o d[g(T,, 1]
dr dr o dr

(A4.4)

Equation (A4.4) is satisfied everywhere along the curve.
Now consider the point defined by the intersection of the above curve with the
surface implicitly defined by the equatiai(r, y)/or = 0. Then, at this point, the

following equation holds:

- (A4.5)

Assumeot/dg = dt/dy# O; then:

- (A4.6)

Hence, at the point defined by the intersection of the surfaces:

il

0

2 g (A4.7)
ngd

corresponding to ray traveltime for specifiandy, Fermat’s principle of stationary time,

and a particular (measured) time, respectively, the following equation holds:
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do(L.0 _ (A4.8)
dr

where the functiowgy(T,r) is obtained by solving(T,r,)) = 0 fory.
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APPENDIX

AN APPROXIMATE METHOD FOR CALCULATING
ANISOTROPIC PARAMETERS FROM P-WAVE
TRAVELTIMES

A5.1. INTRODUCTION

The group speed, and hence the traveltime, of a P wave in an anisotropic medium
depend on the direction of propagation. To determine the speed, for a given propagation
direction, one requires, the value of anisotropic parameétersie. The method below
provides a method for obtaining approximate valuesdoénd € of a buried layer by
performing the traveltime measurements on the surface. The method requires the
traveltime information acquired with two different recording geometries. The methods is
analogous to the inversion presented in Chapter VIII and as such possesses all its
characteristics, including extreme sensitivity to errors in input parameters. Consequently,
the applicability of an approximate method for calculating anisotropic parameters from P
wave (or SV wave) traveltimes is limited to numerical examples. It is included here for

educational interest.
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A5.2. OBSERVATION ON THE FORWARD MODEL

The traveltime of a Wave travelling in a model depicted in Figure (4.1), can be
written in terms of the dimensions of the model, group speeds dependent on anisotropic
parameter®, € and a variable;, denoting the distance between the receiver and the
refraction point, chosen in such a way as to satisfy Fermat’s principle of stationary time,

i.e.:

DR I =1(1;8.¢)

O
0 Vv U 202 4 [l
H
A C(EJI.+5 2 f € 2 : 2 2%
E ] re+H; (I‘ +H2) ]
0 (A5.1)
@t(r;é,s)zo
o dr

MmO

By forward modelling, i.e., raytracing through the model, between the given
source and receiver, assuming knowledge of all parameters, one can calculate both
traveltimet, and the distance, intimately related to the take-off angle. A 3-D surface
representing traveltime on the vertical axis, spandiagde, as the horizontal axes, can
be generated. The value pfused to generate the surface, is the value satisfying
Fermat's principle of stationary time, obtained from forward modelling. The surface,
describing all possible traveltime values fod and € combinations displayed on
horizontal axes, can be intersected by the plan#dat; r) = T, i.e., the traveltime

calculated from the forward model.
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Figure A5.1. Traveltime surface$d, ¢, r), (inclined) corresponding to all combinatic
of dande, for a model, aK = 0.1 m ( left) and aX = 0.05 m (right). Planar, horizon
surfaces, illustrating the actual traveltim&s,for X = 0.1 m, andX = 0.05 m, derive
from forward modelling, intersect the appropriate traveltime surfaces. The |
intersection between the inclined and horizontal surfaces, indicates possible comf
of J andg, for a model, given one offset. The combination of results for two 9

NS
Lal
d
ine of
inations
ffsets

yields a unique pair od ande.

The & and e-coordinates of the curve, corresponding to the intersection between

the surface and the plane, are the possible pairs of anisotropic parameters satisfying the

solution of the traveltime equationtéd, &; r) = T. It is impossible, from measurement

at

a single source-receiver configuration to obtain a unigde &l pair.  Another

measurement, however, at a different offset, provides analogous illustration

with a

different intersection curve. It is the intersection of two curves which yields a unique pair

of values ofdand «.

A5.3. STRATEGY FOR AN INVERSE CALCULATION

In the inverse case, one does not know the values of anisotropic paramete

value ofr. An approximate solution, however, can be obtained.

rs or the
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Figure A5.2. The illustration of the intersection point

between the curves (straight lines) corresponding to the
intersection of surfaces (see Figure A5.1). The coordinates
(9, € indicate the anisotropic parameters of a model jused
in forward calculations, i.e., (0.183, 0.224).

The initial guess consists of estimating the value.ofin weak anisotropy the
raypath of a ray calculated using the anisotropic approach is not radically different from
the raypath of a ray calculated using the isotropic approach, in which one assumes the
isotropic speed to be equal to the vertical speed. The position of refractionrpoint,
moves along the interface to satisfy Fermat's principle of stationary time. If, as in the
case in the considered model, the upper layer is isotropic, ther puimtes towards the
receiver, from its isotropic equivalent, if the anisotropic speed in the medium of
transmission decreases with angle of propagation. The pamtves away from the
receiver, from its isotropic equivalent, if the anisotropic speed in the medium of

transmission increases with angle of propagation .

A5.4. ALGEBRAIC FORMULATION
For a set value of corresponding to a value af, satisfying Fermat's principle,
the expressions fa¥ ande are linear. Considering two measurement poftsndB, of

traveltime of compressional waves, the expression® forde can be written a set of
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two linearly independent equations in which all values except for the isotropic parameters

are assumed to be known or estimated:

O I‘:HZZ r: U B er/f + H§ B
——0
g/f"'sz (r/f"‘sz)zgﬁD %(TAV_\/(XA_rA)Z"'le)B
=0 0 (A5.2)
0 %D
0 O 0
OrgH; s 0 g V12 +H2 -
2 2 2
R R H - Y (VRN Faers e I

Note that the group speed of an SV wave depends on the same anisotropic
parameters as the group speed of P waves. Thus, an analogous process performed using
SV waves provides an independent verification. Furthermore, if only a single source-
receiver configuration is available, the traveltimes of P and SV waves provide the two

necessary independent equations, which yield a unique pair of v@alges (
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APPENDIX

DEGREES OF APPROXIMATION

A6.1. INTRODUCTION

This appendix discusses the results of raytracing through an anisotropic medium
obtained with several different methods. The discussed methods use different degrees of
approximation.

The first €xac) method starts with an exact formulation for phase velocity
(Thomsen, 1986). Also, all subsequent relations (e.g., group angle, group velocity) are
derived using exact formulee.

The second gpproximat¢ method uses an approximate formulation for phase
velocity based on the weak-anisotropy assumption (Thomsen, 1986). However, all
subsequent relations are derived using exact formulae.

The third (inearized method uses an approximate formulation for phase velocity
based on the weak-anisotropy assumption (Thomsen, 1986). Moreover, many subsequent
relations are derived using simplified formulee.

All results correspond explicitly to the SH-wave case, but the concepts and
principle conclusions can be, with due care, extended to @d Pwave cases. In
particular, this appendix concentrates on the traveltime and the ray trajectory obtained
using three aforementioned methods. All results are compared to the method that ignores

anisotropic phenomena.
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A6.2. EXACT METHOD
The group velocity)V, is obtained from the exact formula relating group and

phase velocityy, as a function of the phase angle,

(ov(3)f
V2[6(9)] = v*(9) + E{%E , (A6.1)

whered is a phase angle measure with respect to the vertical.

The exact equation for phase velocity is given by Thomsen (1986), and it
represents an equation of an ellipse in polar coordinates expressed as a function of the
phase angled, vertical wave speed3, and the anisotropic parametgr, The tilde
placed above the symbol denotes the anisotropic parameter in the exact equation (A6.2)
as opposed to the anisotropic parameter used in the weak-anisotropy approximation
(equation (3.30)). Specific reasons for this distinction are discussed in section A6.3.
Thus,

V2(9) = B7[1+ 2y sin®9). (A6.2)
The derivative, with respect to the phase angle is given by:

av _ [;—Vsm(w) (A6.3)

dd 1+ 2ysins

Thus, the group velocity in terms of phase velocity may be expressed as:

_ . [ysin(29)]°
V[B(z?)]:B\/1+ 2y sin 19+L2)~/Tz]19 . (A6.4)
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Note that the value of group velocity, could also be determined directly from
the elliptical geometry using the method presented in Chapter Il. Here, however, the
above method was used.

To determine the phase angfeone can start with an expression for the radius,

of the phase-slowness surface:

(€)= 1 (A6.5)

B 1+ 2y cod &

where is a phase angle measured from the horizontal, i.e.,
9 = g 3 (A6.6)

The horizontal component of the slowness surfageequivalent to the ray

parameter is:

cosé

X, = rcosé = . (A6.7)
° B+J1+ 2y cos &
Equation (A6.7) can be solved uniquely &o give:
_ X
¢ = Arccos—. (A6.8)

1- 2x2B%y

Note that in contrast to the derivation in the case of weak anisotropy (equations
(3.38) - (3.41)), in the above derivation, there is only one mathematical solution
corresponding to the physical case. Also, in the case of perfect isgirep@, equation
(A6.8) reduces immediately to the familiar isotropic expression without requiring the

application of limits (recall that de I'HOpital’s rule had to be used in equation (3.43)).
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A6.3. ANISOTROPIC PARAMETER AS yAND y

Note that one can sét= 0, in equation (3.30) and by solving fgrarrive at

equation (3.31). Equivalently, if one séts 172 in equation A6.2. one obtains:
0

_ 1 A

V= > B E[ (A6.9)
B

By comparing expressions fgrandy, given by equations (A6.9) and (3.31) one

can see that:
~ _ y
y=y+i—. (A6.10)

Considering the elliptical case described by Cartesian coordinates (Chapter II),
one can use, without loss of generality or accuracy, the definitiposed throughout the
thesis, since it only serves to define the major and minor axes. Furthermore, the

relationship betweey andyfalls-out naturally from following the elliptical geomety

Following the form of equation (2.16), yields:

[B(v+0x]" +[B4" =1. (A6.11)

For a giverx = xo, one can express the correspondingz,, and hence calculate

the phase anglé€, as an inverse trigonometric function:

22 One can view the anisotropic parameter as a fixed quantity regardless of the approach taken. In this
appendix the definition was adjusted so as to yield a perfect equivalence, i.e., equation of an ellipse, through
both Cartesian and polar coordinates.
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0 XO

é= Arccos%x—gz Arc cogim- Arc ¢
U

0

D
Dr XO qg y2|:|
1 2%p° EY 20

(A6.12)

I A O

Note that equation (A6.8) and equation (A6.12) differ by the t¢if® as
expected from equation (A6.10). This is a natural consequence of the difference in

definitions y andy, described above.

A6.4. APPROXIMATE METHOD (WEAK ANISOTROPY)
The approximate method uses Thomsen’s (1986) equation for phase velocity
resulting from developing expression (A6.2) into a Taylor series, and truncating higher-

order terms under the assumption of weak anisotropy, i.e., pralls:
3) DB[1+ysin29+..]. (A6.13)

Equation (A6.13) is used in deriving Snell's law, i.e., it serves as the basis for
constructing the slowness curve, to which the ray is normal at a point corresponding to
the ray parameter (Chapters Il and Ill). The derivative with respect to the phase angle is

given as:

3—; OBy sin(29) . (A6.14)

Thus the group velocity in terms of phase velocity is given as:

V[6(9)] 0By (a+ysin® 8)" +[y sir(29)] . (A6.15)
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The value of the phase angl@, (measured from the vertical, i.e., phase

colatitude) is found from:
9 :g_g, (A6.16)

where the phase anglge,(measured from the horizontal, i.e., phase latitude) is given by:

£ 0 Arcco i VA (ZBa)’y (A6.17)
= 2X,BoY H

The method of calculating the phase anglds demonstrated in Chapter Ill (equations
(3.38) - (3.41)).

A6.5. LINEARIZED METHOD (WEAK ANISOTROPY WITH
FURTHER SIMPLIFICATION)

Thomsen (1986) derives, based on the weak-anisotropy formulse, further
simplified expressions. For instance, the expressions for phase and group velocity are the

same . One can write:
V(6)=v3). (A6.18)

Other simplifications imply, for instance, that the relationship between the phase

and group angles¥(and®, respectively), rather than being expressed through the vector-
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calculus formalism as described in Chapters Il and Ill, can be expressed for SH waves
ags:

tand = (1+ 2y) tang . (A6.19)

The linearized method, as already stated, goes beyond the simplification resulting
directly from the assumption of weak anisotropy (approximate method). Consequently,

as demonstrated below, results obtained by the linearized approach depart more from the

exact results than the results obtained through the approximate method.

A6.6. NUMERICAL EXAMPLE

Consider a horizontal two-layer model with layer thickness of 1000 metres each.
The upper layer is isotropic with wave speéd= 3000 m/s, and the vertical speed in the
lower, anisotropic layer i8 = 4000 m/s. Assume the anisotropic parameter fo=h@.1.

The several traveltime values are displayed in Table A6.1.

OFFSET TIME (s) TIME (s) TIME (s) TIME (s)
(m) EXACT APPROX. | LINEARIZED | ISOTROPIC
0 0.583333 0.583333 0.583333 0.583333
250 0.587304 0.587324 0.587228 0.587779
500 0.599034 0.599109 0.598758 0.600903
1000 0.643508 0.643744 0.642716 0.650531
2000 0.793277 0.793717 0.792035 0.816813
3000 0.985823 0.986253 0.984727 1.02992

Table A6.1. Traveltime values fgr= 0.1 using the exact, approximate, linearized and
isotropic methods.

Now, keeping other parameters of the model constaptl€t2

23 The linearized relationship between phase and group angles for SV waves in Thomsen's (1986)
development, yields completely erroneous results for a choice of anisotropic parameters consistent with the
weak-anisotropy assumption (see Figure 6.12). The exact relationship from the aforementioned publication
leads to correct results.
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OFFSET TIME (s) TIME (s) TIME (s) TIME (s)
(m) EXACT APPROX. | LINEARIZED | ISOTROPIC
0 0.583333 0.583333 0.583333 0.583333
250 0.586888 0.586953 0.586587 0.587779
500 0.597396 0.597642 0.596318 0.600903
1000 0.637332 0.638128 0.634374 0.650531
2000 0.772539 0.774154 0.768223 0.816813
3000 0.947246 0.948926 0.943529 1.02992

Table A6.2. Traveltime values fgr= 0.2 using the exact, approximate, linearized and
isotropic methods.

The values of Table A6.2 are plotted in Figure A.6.1. One can see that all the
curves corresponding to the different anisotropic methods are positioned very close to
each other. The curve corresponding to the isotropic approach is clearly more removed.
To visualize the differences between the anisotropic approaches the values of Table A6.2.
were replotted as a difference between the given value and the value obtained from exact
calculation, normalized to the value of exact calculation (Figure A6.2). It shows that the
approximate method based on the weak anisotropy assumption yields more accurate
results than the fully linearized method. Again, it is clearly shown that the isotropic
approach leads to the least accurate results.

It seems that in the context of geophysics, both approximate and linearized
methods provide a reasonable accuracy for traveltime calculations, while offering a
considerable facility of mathematical manipulation. The superiority of the approximate
method over the linearized method appears twofold. Firstly, the computational results are
slightly more accurate (e.g., see Figure A6.2). Secondly, and perhaps more importantly,
the approximate method yields distinct phase and group velocities and angles, i.e., it
clearly illustrates one of the fundamental concepts in anisotropic wave propagation (see
Figure A6.3 and Table A.6.4). In the process of linearization this physical distinction is

lost.
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TRAVELTIME VALUES
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Figure A6.1. The traveltime of SH waves between the source and regeivers
calculated using four different approaches: exact, approximate, lingarized
and isotropic. The value of anisotropic parametgr=9.2.

Now, keeping other parameters of the model constaptl€x 3.

OFFSET TIME (s) TIME (s) TIME (s) TIME (s)
(m) EXACT APPROX. | LINEARIZED | ISOTROPIC
0 0.583333 0.583333 0.583333 0.583333
250 0.586524 0.586645 0.585861 0.587779
500 0.595964 0.596423 0.593624 0.600903
1000 0.631922 0.633442 0.625765 0.650531
2000 0.754373 0.757675 0.745875 0.816813
3000 0.913615 0.917287 0.906406 1.02992

Table A6.3. Traveltime values fgr= 0.3 using the exact, approximate, linearized and

isotropic methods.
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NORMALIZED TRAVELTIME DIFFERENCE
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Figure A6.2. The normalized difference in traveltime in an anisotropic medium cal¢ulated
using four different approaches: exact, approximate, linearized and isotropic. The
difference between a given method and the exact method is normalized with respect to
the exact method. Notice that the discrepancy decreases after a certain offset value. At
an infinite offset all anisotropic approaches converge again as phase and group yelocities
coincide for horizontal and vertical propagations (Thomsen, 1986).

Note that the case ¢f= 0.3 may be viewed as being outside the accepted domain
of applicability under the weak anisotropy assumption. In spite of that fact, all methods
behave very well, and certainly any method including the anisotropic phenomena yields a

more accurate result than the isotropic approach.

A6.7. GEOMETRICAL EXPLANATION
A further insight is gained by the investigation of ray and phase angle. For the
purpose of illustration a case gf= 0.3, and offset of 3000 metres is used. The ray

vector,w, and lines of constant phase with phase veetaue illustrated in Figure A6.3
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' Iine's*é'f constant phase
_(wavefronts) .-~

ray
(direction >™N\_ -
of energy flow)

anisotropic medium

Figure A6.3. Rayw, and phasey, vectors. Dashed lines repregent
constant phase, i.e., wavefronts. Both group (ray) aAgknd the phase
angle,d, are measured from the vertical.

Table A6.4. gives the values of phdse,and group angle®,, as well as the
phase,\| and group(ray, energyyy|| speeds, calculated with appropriate formulae. The
magnitude of phase velocityl,|is obtained, for each case, from the appropriate equation
for phase velocity given the corresponding phase angle. Note that for the linearized
scheme phased, and group,f, angles are equal for all angles of propagation, a
physically unsatisfactory description, but computationally yielding good results. Also,
phase,\|, and group,w|, speeds are equal. Recall that for body waves in anisotropic
media, the phase speed, is always smaller than the group spesfia$ seen from (e.g.,
Auld, 1972):

V| =|w|co6 - 39). (A6.20)

Results of exact and approximate methods shown in Table A6.4. are consistent
with equation (A6.20).
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EXACT APPROX. | LINEARIZED | ISOTROPIC

0 ; [deg] 67.4692181 | 67.4732288 | 67.3520912 | 64.3492525

3; [deg] 54.0664383 | 54.0742285 | 67.3520912 | 64.3492525
ow; [m/s] 4955.06 4920.83 5022.07 4000
V] ; [mis] 4837.55 4786.89 5022.07 4000

Table A6.4. Group and phase angles and speeds at the offset of 3000 metres for the model
usingy= 0.2.

A6.8. ANGLE OF PROPAGATION AND PHASE AND GROUP

CONCEPTS

The results of Table A6.5 and Figures A6.4 and A6.5 explain the appearance of
plots in Figure A6.2. Unlike the case of the isotropic approach, which diverges
monotonically from the exact approach with increasing angle of propagation, all the
anisotropic approaches coincide with each other at zero offset and at infinite offset,
regardless of the method used to describe the distinction between phase and group
velocities or angles. As a matter of fact, their coincidence at vertical and horizontal
propagations might be used as a check on an algorithm.

Large discrepancies among the anisotropic approaches occur when the
propagation in the anisotropic medium is abolit 4bhis illustration is applicable to all
symmetry systems with the vertical symmetry axes. In an arbitrary symmetry system,
oriented in an arbitrary fashion, the consequences of this illustration need not hold.

Note that Table A6.5 and Figures A6.4 and AG6.5 illustrate well the dependence of
the magnitude of the group velocity upon that of the phase velocity (equation A6.1).
Namely, the dependence is limited to the derivative and thus, for instagice,4f, the
difference between phase and group angles is over 20%, while the difference between
phase and group velocities is less than 2%. The limited sensitivity of phase and group
velocities justifies, in many cases, approximate solutions under various simplifying

assumptions.
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phase angle|l group angle phase group angle speed
d e velocity velocity difference | difference
[deg] [deg] Y lw] (6-7) (Iw[ -v[)
[m/s] [m/s] [deg] [m/s]
0 0 3000 3000 0 0
10 13.8898 3018.09 3025.06 3.8898 6.97
20 27.1599 3070.19 3094.32 7.1599 24.13
30 39.367 3150.00 3192.57 9.367 42.57
40 50.3109 3247.91 3301.22 10.3109 53.31
50 59.997 3352.09 3403.77 9.997 51.68
60 68.5651 3450.00 3488.91 8.5651 38.91
70 76.2355 3529.81 3550.82 6.2355 21.01
80 83.279 3581.91 3587.78 3.279 5.87
90 90 3600 3600 0 0

Table A6.5. Group angle as function of phase angle (equation (A6.1)); magnitudes of
phase (equation (A6.2)) and group (equation (A6.4)) velocities; and their respective
differences for SH waves in an anisotropic medium with0.2. Significant difference
between phase and group angles and speeds occurs at the oblique propagation while the
respective values coincide at vertical and horizontal propagations.

PHASE AND GROUP ANGLES
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Figure A6.4. Phase and group angles. Note that although at
obligue angles of propagation phase and group angles
diverge, they are equal to each other at vertical (0) and
horizontal (90) directions of propagation. This implies that

phase and group velocities are also equal at this angles

(both in magnitude and direction).
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Figure A6.5. Magnitudes of phase (equation (A6.2)) and
group (equation (A6.4)) velocities. Note that although at
oblique angles of propagation phase and group velocities
diverge, they are equal to each other at vertical (0) and

horizontal (90) directions of propagation.
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APPENDIX

THE APPROACH INVOLVING EXACT FORMULZA

In principle, it seems to be possible to carry out all the derivations described in
this dissertation using exact equations (A2.1), (A2.2), and (A2.3). One can express
slowness surfaces (curves) for P, SV, and SH waves as level curves in polar coordinates
of functions F(r,&), G(r,&) and H(r,&), respectively (equations (A7.1), (A7.2), and
(A7.3)). The symbok denotes the phase angle measured from the horizontal, i.e., phase
latitude. Notice that equivalent slowness curves, under the weak-anisotropy assumption,
constitute a starting point for development in Chalpker.e., equations3.7), (3.22), and
(3.33).

F(r.€) =7 -ayl+ecos £+ D(§) = 0 (A7.1)
G(r,é) = % +,8\/1+Z—2[eco§ £-D(§)] =0 (A7.2)
H(r,é):}—ﬁ 1+2ycog&=0 (A7.3)

r

The symboD(¢) denotes the following expression:
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(A7.4)

Equations (A7.1) and (A7.2) can be subjected to the procedure illustrated in
Chapter Il nvolving vector calculus (gradient) and linear algebra (normalizing, dot
product). The above mentioned manipulations on such complicated expressions constitute
a tedious yet not impossible task, particularly with the help of mathematical software. In
this dissertation, for the sake of clarity and with a rather negligible loss of accuracy, the
simplified version of the above expressions obtained by Thomsen (1986) was used.
Such an approach allows one to gain some insight by inspecting equations at certain
stages of development - a benefit which could be hindered by a more complicated
appearence of equations.

Equation (A7.3) exhibits already, even in its exact form, a simplicity which allows
one to use it conveniently in various calculations used in the derivation of Snell’s law or
in subsequent calculations of the magnitude of group velocity, e.g., Appendix 6. It is
particularily useful for various comparisons between exact and approximate approaches.
In most cases, however, the approximate equation (3.3) is used for consistency with P and
SV waves.

Equations (A7.1), (A7.2) and (A7.3) are both exact and analytic. Those attributes
deserve attention in developing code. With the aid of mathematical software involving
symbolic operations, one can derive exact equivalents of all the formulze in Chapter 1ll,
and benefit from infinite precision. Although the complexity of equation would prevent
an immediate intuitive understanding, which given by the use of the approximate
formulae in this dissertation, the final result would be exact and obtainable without

employing any numerical methods.



