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ABSTRACT

An analytic method relating incidence, reflection and transmission angles at an

interface between anisotropic media is presented. The method relies on the continuity

conditions relating tangential components of phase slowness across the interface, and on

the fact that the ray is perpendicular to the phase-slowness surface. The rather familiar

concepts of vector calculus are used in a template for calculating phase and group angles.

The angles involved in wave propagation through layered anisotropic media are, at times,

significantly different than their isotropic counterparts. Thus the trajectories derived in

raytracing by the isotropic versus the anisotropic approach differ significantly.

This template is used to derive analytic expressions for phase and group angles,

and to elaborate a raytracing scheme for qP, qSV and qSH waves using expressions for

phase velocities under the assumption of weak anisotropy. The raytracing method can be

used to calculate traveltimes for layered weakly anisotropic media composed of TI

materials.

The results of a physical laboratory experiment, which involved propagation in the

symmetry plane of an orthorhombic material with known characteristics, have been

compared with theoretical calculations. The comparison indicates that the anisotropic

approach predicts reasonably well the experimental results and yields a significantly

better prediction than an isotropic one. It  also suggests that weak-anisotropy assumptions

can be useful in practical applications as long as one remains within the intended limits of

approximation.

The analytical approach is further extended to provide a traveltime inversion

scheme for the anisotropic parameter characterizing qSH waves. The inversion method

can be used in multi-layer media and accounts for raybending at interfaces. It is, however,

very sensitive to errors in input parameters.

The results of both theoretical and laboratory investigations indicate that ignoring

anisotropic effects can, in certain cases, lead to significant errors. This dissertation offers
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an approach which might prove helpful in such circumstances. Also, I believe, the

usefulness of the present work to lie in clearly relating mathematical analytical

formulations to physical consequences, thus contributing to a more intuitive

understanding of phenomena exhibited by wave propagation in anisotropic media.

R É S U M É

Une méthode analytique liant les angles d’incidence, de réflexion et de réfraction

à l’interface de deux milieux anisotropes est proposée. Cette méthode s’appuie sur les

conditions de continuité liant les composantes tangentielles de la lenteur (inverse de la

vitesse) de phase à l’interface d’une part et d’autre part, sur le fait que le rai est

perpendiculaire à la surface de la lenteur de phase. Les concepts relativement familiers du

calcul vectoriel sont appliqués dans un modèle de calcul des angles de phase et de groupe.

Les angles impliqués dans la propagation des ondes au travers de milieux stratifiés

anisotropes sont parfois très différents de leur homologues isotropes. Ainsi les trajectoires

déduites du traçage de rais suivant les approches isotrope et anisotrope peuvent différer

de manière significative.

Le modèle permet d’obtenir les expressions analytiques des angles de phase et de

groupe et d’élaborer un schéma de traçage de rai pour les ondes qP (quasi longitudinale),

qSV (quasi transversale verticale) et qSH (quasi transversale horizontale) en utilisant

pour les vitesses de phase, des expressions assumant une faible anisotropie. La méthode

de traçage de rai peut s’appliquer lors du calcul des temps de propagation lorsque le

milieu stratifié faiblement anisotrope est composé de matériaux IT (Isotrope Transverse).

Les résultats d’une expérience physique en laboratoire, impliquant la propagation

dans le plan de symètrie d’un matériau orthorhombique aux caractéristiques connues, ont

été comparés avec les solutions du calcul théorique. La comparaison indique que

l’approche anisotrope prédit de manière raisonnable les résultats expérimentaux et

autorise une prédiction plus juste que l’approche isotrope. Il est également suggèré que la

condition de faible anisotropie assumée lors du calcul se révèle être fort utile dans le cas
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d’applications pratiques tant que l’on demeure dans les limites de validité de

l’approximation.

Enfin cette démarche analytique est étendue afin de proposer un moyen

d’inversion du temps de propagation pour les paramètres anisotropes qui caractérisent les

ondes qSH. La méthode d’inversion peut ainsi être appliquée dans un milieu multicouche

et prendre en compte la courbure du rai aux interfaces. Ce type de calcul est toutefois

extrèmement sensible aux erreurs dans les paramètres d’entrée.

En conclusion, les résultats des investigations théoriques et expérimentales

montrent qu’en certains cas, ignorer les effets de l’anisotropie peut conduire à des erreurs

significatives. Cette dissertation propose une approche applicable en pareilles

circonstances. Je crois également que l’utilité de ce travail réside en ce qu’il lie

clairement les formules mathématiques analytiques aux conséquences physiques. Ceci

contribue à une compréhension plus intuitive des phénomènes induits lors de la

propagation d’ondes au sein de milieux anisotropes.

Traduction:  Marc Villéger
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CHAPTER I
“Settle thy studies Faustus, and begin

To sound the depth of that thou wilt profess.
Having commenc’d, be a divine in show,

Yet level at the end of every art,
And live and die in Aristotle’s works.

Sweet Analytics, ‘tis thou hast ravish’d me:
Bene dissere est finis logices.

Is to dispute well logic’s chiefest end?
Afford this art no greater miracle?

Then read no more, thou hast attain’d the end.
A greater subject fitteth Faustus’ wit:

Christopher Marlow
“Doctor Faustus”

DEFINITION OF THE PROBLEM

1.0. INTRODUCTION

The Oxford English Dictionary on Historical Principles states that the term

isotropic derives from the Greek ισοσ (equal) and τροποσ (turn).  It began to be used in

the modern vocabulary in 1864.  The opposite of the isotropic is anisotropic or

æolotropic.  The former term is, at present, widely used, while the latter term was in

favour with earlier researchers, e.g., Love (1927).  Winterstein (1990) restates the

definition of anisotropy as variation of one or more properties of a material with

direction. Within the scope of this dissertation, the anisotropic effects exhibited by

velocity are considered. This means that the speed of the ray propagating through a

medium depends on the direction of propagation and entails concepts  of phase and group
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velocities. Other interesting effect, e.g., amplitude, wavelet shape, etc., are not

considered.

A very  brief introduction to several rudimentary concepts is given below.  Certain

notions and definitions are stated, when necessary, throughout the dissertation.  In

general, however, a reasonable familiarity of the reader with description of anisotropic

phenomena is assumed.  Several textbooks provide an extensive and rigorous

introduction, e.g., Love, 1927, Chapter 13;  Auld, 1973, Volume I, Chapter 7, and

Volume II, Chapter 9;  Helbig, 1994.

1.1. RUDIMENTARY CONCEPTS

In an anisotropic medium Hooke’s law can be written as:

σ εij ijkl klc= , (1.1)

where σσ, and εε are the second-order stress and strain tensors, while  c is the fourth-rank

tensor of elastic constants (stiffnesses) of the medium.  The tensor can be “visualized” as

a 3×3×3×3 matrix in a 4-D space.  In general, c, has eighty-one (34) components.

However, both stress and strain tensors are symmetric, resulting in:

c c cijkl jikl ijlk= = , (1.2)

and giving only thirty-six independent constants.  Furthermore, due to strain energy

considerations::

c cijkl klij= , (1.3)

and the number of elastic constants is further reduced to twenty-one.  This is the largest

number of elastic constants that one might need to uniquely describe an anisotropic

material.  A material requiring all twenty-one elastic constants for a complete description
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belongs to the triclinic symmetry class.  Notably, the smallest number of elastic constants

necessary to describe a material is two. Materials requiring only two elastic constants for

a complete description are called isotropic, and the two elastic constants can be expressed

as the well known Lamé parameters, λ, and µ.

For infinitesimal strains, appropriate in the geophysical context, the strain tensor

may be approximated by the Cauchy strain tensor:

ε
∂
∂

∂
∂ij

i

j

j

i

u

x

u

x
= +











1

2
(1.4)

where u denotes displacement, and x denotes position.  Ignoring any body forces, e.g.,

gravity, the equation of linear momentum can be written as:

∂σ
∂

ρ
∂
∂

ij

j

i

x

u

t
=

2

2
, (1.5)

where t is time, and ρ is the density of the medium. Combining the equations (1.1), (1.4)

and (1.5), one arrives at the wave equation (e.g., Daley and Hron, 1977):

ρ
∂
∂

∂
∂

∂
∂

2

2
0

u

t x
c

u

x
i

j
ijkl

k

l

−






 = . (1.6)

Consider the displacement, u, of the form

( )[ ]u Ap i m x tk k r r= −exp ω , (1.7)

(e.g., Cheadle et al., 1991), where A is the amplitude factor, p corresponds to the particle

displacement or polarization, ω is the angular frequency, and m denotes the phase-
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slowness vector defined in terms of the unit normal parallel to the wave direction, n, and

the phase velocity, v.  That is,

m
n=
v

. (1.8)

Combining equations (1.6), (1.7) and (1.8) yields:

( )c n n v pijkl j l ik k− =ρ δ2 0 . (1.9)

Expression (1.9) constitutes a system of linear homogeneous equations.  The

system has a non-trivial solution if and only if the determinant of the coefficient matrix is

identically zero, i.e.:

c n n vijkl j l ik− =ρ δ2 0. (1.10)

Introducing the Christoffel symbol, Γik ≡ cijklnjnl, the determinental equation (1.10)

can be written in a matrix form  as  a typical eigenvalue problem:

Γ Γ Γ
Γ Γ Γ
Γ Γ Γ

11
2

12 13

21 22
2

23

31 32 33
2

0

−
−

−
=

ρ
ρ

ρ

v

v

v

. (1.11)

The expression ρv2 takes on values equal to the eigenvalues of the matrix ΓΓ.  The

matrix, ΓΓ, is symmetric and real because of the properties of cijkl.  Therefore, in general,

there are three distinct and real phase velocities, v. One of them corresponds to the

compressional-wave speed and the remaining two, to the shear-wave speeds.  In general,

the expressions for phase velocities for an arbitrary symmetry system and in an arbitrary

direction are very complicated.  Much meaningful information, however, can be obtained
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by limiting the solution to a particular symmetry system, and by confining the

propagation to specific symmetry planes or symmetry axes (e.g., Cheadle et al., 1991).

One must remember, however, that in confining oneself to considering anisotropic

propagation within particular symmetry planes one does not embrace the entire

complexity of the problem.  The trade-off between complexity and generality of approach

or complexity and accuracy of description is constantly present in mathematical physics.

This dissertation is no exception to this rule.  The author attempts, as much as possible, to

make the reader aware of limitations and approximations.

In a qualitative sense one could distinguish two methods of dealing with inherent

complexities while describing Nature.  Firstly, one can use a simplified view of the

physical phenomenon in question, e.g., considering the motion along the inclined plane

ignoring effects of friction.  Secondly, one could choose to use an approximate

mathematical description, e.g., truncation of higher-order terms in a series.  Although in

most cases in this dissertation both simplifications are used, it is important, from the

philosophical stand-point, to distinguish between the two.   

In some cases it might be more convenient to express the possible twenty-one

independent components of the tensor, c, as a 6x6 symmetric matrix (e.g., Love 1927):

C =

























C C C C C C

C C C C C

C C C C

C C C

S Y M C C

C

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

.

. .

. . .

.

. . . . .

. (1.12)

 There exists a simple method of index translation between the tensor notation,

cijkl  and the matrix notation Cmn (e.g., Winterstein, 1990):

Tensor ij  or kl 11 22 33 32 = 23 31 = 13 21 = 12

Matrix m or n 1 2 3 4 5 6
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1.2. TRANSVERSE ISOTROPY

As an illustration of possible simplification, used extensively in Chapter III, and

subsequent chapters, one can consider a hexagonal symmetry system.  In the geophysical

context one can often limit the hexagonal symmetry system to the so called transverse

isotropy with an infinite-fold vertical symmetry axis: TIV.  The TIV system implies, in

terms of velocity anisotropy,  equal velocity in the azimuthal sense.  The velocity is

varying, however, with the angle of propagation, in the vertical plane.  The angular

velocity dependence is the same in all vertical planes, i.e., a single vertical plane at any

azimuth is representative of the entire medium.  One could also say that any vertical plane

is a symmetry plane.

This system is particularly applicable in the case of horizontally stratified media,

or in media with predominantly vertical stress direction, which in a geophysical study can

be associated with the weight of the overburden.  A TIV medium is uniquely described in

terms of five independent elastic constants (e.g., Thomsen, 1986) and in matrix notation

one can write:

C =

−























C C C C

C C

C

C

S Y M C

C

11 11 66 13

11 13

33

44

44

66

2 0 0 0

0 0 0

0 0 0

0 0

0

.

. .

. . .

.

. . . . .

.   (1.13)

The phase velocities for three waves with mutually orthogonal polarization

directions can be expressed in terms of the elastic constants (e.g., Thomsen, 1986). The

phase velocity of a compressional wave is expressed by:

v
C C C C D

P ( )
( ) cos ( )

ξ
ξ ξ

ρ
=

+ + + +33 44 11 33
2

2
. (1.14)
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The phase velocity of a shear wave with the vertical polarization direction is expressed

by:

v
C C C C D

SV ( )
( ) cos ( )

ξ
ξ ξ

ρ
=

+ + + −33 44 11 33
2

2
. (1.15)

The symbol D(ξ), used in expressions for phase velocities of P and SV waves, denotes:

( ) ( ) ( ) ( )[ ] ( )[ ]D C C C C C C E E C Cξ ξ ξ≡ − + + − − + − +33 44

2

13 44

2

33 44
2 2

13 44

2 42 2 4cos cos

(1.16)

Another useful symbol is:

( )E C C C≡ + −11 33 442 . (1.16a)

 The phase velocity of a shear wave polarized in the horizontal direction is

expressed by:

v
C C

SH( )
cos sin

ξ
ξ ξ
ρ

=
+66

2
44

2

. (1.17)

The angle ξ is the phase angle, measured with respect to the horizontal, i.e., the

phase-latitude angle. The convention, contrary to most geophysical descriptions where the

phase angle is measured with respect to the vertical, i.e., colatitude, was chosen in order

to facilitate the use of standard expressions of vector calculus in polar coordinates in

subsequent chapters of the dissertation.  When, in this dissertation, the phase colatitude is

used it is clearly stated and denoted by a symbol ϑ.
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1.3. THE OBJECTIVE OF THE WORK

The objective of the work is to investigate several aspects of elastic-wave

propagation in anisotropic media.  Since layered sedimentary rocks are of special interest

to a petroleum geophysicist, the investigation of phenomena at a planar horizontal

interface between two media is given particular attention.  The primary goal of this

dissertation is to provide an approach offering a better understanding of physics of

anisotropic media as observed through elastic waves.  For this reason a special effort is

made to express physical quantities in terms of analytical formulæ.  To remain within the

realm of analytical expression one must, at times, resort to some simplification.  This

dissertation provides a thorough investigation of a very convenient weak-anisotropy

approximation (Thomsen, 1986).

The investigation of the Earth’s interior through seismic studies is primarily based

on the measurement of traveltime of a wave travelling between a source and receiver.

Travelpath, traveltime and velocity of the ray are interrelated, in general, by an

underdetermined system of equations.  One of the key problems for a geophysicist

performing the measurements on, or near, the surface of the Earth is to use the traveltime

information to deduce both the raypath and the velocities of the propagating ray in

various layers of the medium.  This is an inverse problem for which, in general, no unique

solution exists, i.e., the observed data can be satisfied by numerous different models.  The

problem is complicated further if the speed of the ray travelling through a medium varies

with direction, i.e., if the medium is anisotropic.  In a series of anisotropic layers

separated by interfaces, the traveltime depends directly on the ray (group) velocity of the

medium.  The travelpath is governed by Snell’s law depending directly on phase

velocities.

The incorporation of anisotropic phenomena into geophysical investigation

provides two major benefits.  Firstly, anisotropic characteristics of a material are

indicative of its composition and its state.  For instance, a material composed of fine

laminæ, much smaller in thickness than the wavelength of a propagating signal, exhibits a

particular anisotropic behaviour.  Also, fracturing of a material with the particular
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orientation of cracks due to stresses results in anisotropic effects.  Secondly, since, in

general, anisotropy affects the traveltime, the accurate reconstruction of the subsurface

based on the traveltime observations requires the knowledge of anisotropic parameters.

Thus, in the geophysical context, the study of anisotropy is important for both lithology

information, and imaging of the subsurface.

Ray theory, derived originally from geometrical optics, is an elegant and powerful

method for investigating wave propagation.  In this dissertation, prior to approaching an

inverse problem, a new forward method is considered.  Given a medium composed of

anisotropic layers with known properties, a method of  raytracing between a given source

and receiver is proposed.  The result of this method is the computed traveltime and the

raypath.  Once a reliable method of forward modelling has been elaborated and tested

both numerically and experimentally (Chapters II - VII), an inverse solution is derived

(Chapter VIII).  The result of this method is the computation of anisotropic parameters of

a stratified medium based on the measured traveltime.  A more detailed synopsis of the

dissertation is given below.

Firstly, a new formalism of Snell’s law for anisotropic media in terms of vector

calculus is derived (Chapter II).  The formalism is described, for the ease of vector

calculus operations, in terms of Cartesian coordinates.  Based on this formalism several

key attributes of an elastic wave can be given in both incidence and transmission media.

The description includes phase and group angles, as well as magnitudes of phase and

group velocities.  The relationship between various quantities constitutes an important

aspect of comprehending elements of anisotropic wave propagation.

This general formalism is adapted for use in raytracing based on approximate

(weak anisotropy) expressions for  slowness surfaces in anisotropic media. Initially the

method is developed under the assumption that the incident ray propagates through an

isotropic layer (Chapter III).  This assumption, which implies the equivalence of phase

and group velocities in the medium of incidence, allows an initialization of the process by

relating the direction of propagation of the group-velocity vector to the continuity

conditions expressed with respect to the phase-velocity vector.  Also, in Chapter III the

formalism developed in the previous chapter in terms of Cartesian coordinates is
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translated to polar coordinates.  This allows for ease in expressing various quantities with

respect to the angle of propagation.

A raytracing scheme for a stack of horizontal anisotropic layers is developed in

Chapter IV, leading to the traveltime calculations (Chapter V).  The relationship of

modelling results between the approach using the anisotropic formalism of  Snell’s law

and the direct approach using Fermat’s principle of stationary time is discussed.  Snell’s

law, of course, can be viewed as a consequence of Fermat’s principle.  In raytracing

through anisotropic media, the relative equivalence of two approaches forms an important

verification of the methods since the Snell approach relies directly on the concept of

phase velocity, while the Fermat approach relies on the concept of group velocity.

Chapter VI introduces the formalism of Snell’s law with the angle of transmission

given in terms of the angle of incidence for a boundary between two anisotropic media.

This means that one does not benefit from the facility provided by the coincidence of

phase and group velocities in the medium of incidence.  The results of this chapter, which

can be viewed as an extension of the treatment presented in Chapter III, provide further

insight into the concept of Snell’s law and Fermat’s principle of stationary time, as well

as into consequences of approximations and linearizations.

Chapter VII deals with the physical measurement performed in the laboratory with

a medium composed of an isotropic and an anisotropic layer separated by a planar

interface.  The results of physical modelling provide a comparison of numerical forward

modelling and actual experimental measurements.  The results of physical modelling are

also used in the inversion process (Chapter VIII).

Chapter VIII introduces an innovative way of inverting traveltime information

from a seismic experiment to yield the anisotropic parameters of a stack of horizontal

layers through which the ray propagates.  The method is explicitly derived for shear

waves with transverse direction of polarization, and for any other waves exhibiting an

elliptical velocity dependence.

In this dissertation, which aims at understanding certain aspects of

anisotropic wave propagation, many peripheral or esoteric concepts and investigations,
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delegated to appendices, constitute an important part of the whole work.  Thus, the

reader, is asked not to ignore them.

Appendix 1 investigates a concept of a quartic equation relating, for

compressional (P) waves, ray parameter and phase angle under the weak-anisotropy

assumption.  It is observed that the concept can be illustrated as an intersection of a curve

and a straight line.  The curve remains constant for a given medium and hence is termed

the characteristic biquadratic.  The straight line always passes through the origin while

its slope depends on the angle of incidence.

Phase-slowness surfaces or curves form a kernel of anisotropic Snell’s law and

therefore influence all subsequent calculations.  The only major mathematical

simplification used in this dissertation consists of employing simplified expressions of

phase slowness curves under the assumption of weak anisotropy (Thomsen, 1986). In

Appendix 2 a comparison of slowness curves generated using exact and approximate

equations is illustrated.

Although the spirit of this dissertation is to remain within the realm of analytical

expressions, some exceptions could not be avoided. Calculation of roots of a polynomial

expression or of a take-off angle in raytracing between a source and receiver in a

multilayer medium are examples of such instances.  Appendix 3 investigates the

numerical precision of such computation using the mathematical software Mathematica®.

Appendix 4 contains a mathematical proof based on the implicit function theorem.

The proof relates to the method of inversion described in Chapter VIII.  It demonstrates

the necessity of existence of  a physical  solution at a unique point of a mathematical

solution space which forms the crux of the aforementioned inversion method.

The inversion method derived in Chapter VIII applies only to SH waves or other

waves with elliptical velocity dependence.  Appendix 5 contains some attempts at

approximate estimation of anisotropic parameters for P and SV waves.

Equations derived under the concept of weak anisotropy can be simplified further

by full linearization (Thomsen, 1986).  Appendix 6 illustrates that, although by using the

initial simplification, i.e., truncation of higher-order terms in expressions for phase

velocities (or slownesses), one does not  lose fundamental physical attributes of
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anisotropic wave propagation, those attributes can be lost in subsequent steps by

employing linearized expressions.  It is further demonstrated that the initial use of the

weak-anisotropy approximation, which greatly facilitates the application of the formalism

of anisotropic Snell’s law, followed in subsequent steps by exact (or at least not fully

linearized) expressions for group velocity and group angles, constitutes a preferable

approach.  It is not insinuated here that the initial loss of accuracy, however small, can be

recovered, but that no loss of physical attributes results.

Appendix 7 provides a starting point for developing an anisotropic form of Snell’s

law using the exact equations of Daley and Hron (1977).  The exact equations for

slowness curves, analogous in meaning and equivalent in form to those used in the

dissertation, are also shown.
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CHAPTER II

REFLECTION AND TRANSMISSION ANGLES IN

ANISOTROPIC MEDIA 1

2.0. INTRODUCTION

The mathematical description of phenomena related to wave propagation in

anisotropic media is considerably more complicated than that for isotropic media. This

complexity stems from the many physical properties distinguishing the anisotropic from

the isotropic medium. This chapter presents a method of calculating the angles of

reflection and transmission for a ray impinging on a boundary between two anisotropic

media.  The innovation of the method introduced in this chapter consists in providing a

rather general analytical formalism for calculating the ray (group) angles at

discontinuities between anisotropic media.  This formalism is then used, in Chapter III,

for a weakly anisotropic medium yielding several useful equations, and leading, through

the raytracing method, to an inversion scheme presented in Chapter VIII.

For an interface between two isotropic media the relationship among all the angles

is elegantly and concisely described by the classical form of Snell's law, i.e.,

sin sin sin
'

ϑ ϑ ϑi r t

v v v1 1 2

= = , (2.1)

                                                          
1 This chapter is based on work published by Slawinski M.A., and Slawinski R.A. in CREWES Research
Report  (1994).
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where θ's with, respectively, subscripts i, r and t, correspond to incident, reflected and

transmitted waves and  v1 and v2 are the velocities in the two media, 1 and 2, which are

separated by a planar interface.

   In general, the inclusion of anisotropy renders the mathematical formulation quite

complicated. Snell's law is not an exception and the calculation of reflection and

transmission angles is not a trivial task2. A graphical approach to calculating reflection

and transmission angles for anisotropic media is presented by Auld (1973) and Rokhlin et

al. (1986). Rokhlin et al. (1986) also outline a numerical scheme using tensor equations.

Daley and Hron (1977, 1979) derive Snell's law in the particular cases of transversely

isotropic and ellipsoidally anisotropic media.  This chapter seeks to express the concept

of incidence, reflection and transmission angles using the intuitively clear mathematical

apparatus of vector calculus in a rather general case.

Although it lies beyond the scope of this chapter to provide a thorough overview

of numerous physical phenomena in anisotropic media, it can be stated that two aspects of

physical properties inherent in wave propagation in anisotropic media are responsible for

the more complicated formulation than in the isotropic case.  Firstly, the velocity of the

ray depends on direction and thus, for instance, the velocity of the incident ray is, in

general, unequal to the velocity of the unconverted reflected ray, although both rays

propagate in the same medium. This means that, in general, the angle of incidence is not

equal to the angle of reflection, even when the wave type is unchanged. This consequence

is analogous to the phenomena observed in studying converted waves exhibiting different

velocities for incident and reflected rays.  Secondly, both group and phase velocities, w

and v, have to be considered in studying wave propagation in anisotropic media. The two

are related  (e.g., Rokhlin et al., 1986) by the formula:

w k v⋅ = = v , (2.2)

                                                          
2 Note that the “standard” form of Snell’s law still holds in anisotropic media for phase velocities and phase
angles.
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where k is the wave normal, i.e., the unit  vector perpendicular to lines of constant phase,

or in other words, pointing in the direction of the phase velocity, v.  From the definition

of the dot product it follows immediately that:

( )w vcosθ ϑ− = ≡ v , (2.3)

where (θ - ϑ) represents the difference between phase and group angles. i.e., the angle

between w and v.

2.1. IMPORTANT CONCEPTS

In formulating the method for calculating reflected and transmitted angles at an

interface between isotropic and anisotropic media, it is helpful to restate certain basic

concepts. The intention is not to present those concepts in a rigorous and complete way

but to invoke those aspects which are most useful for the task at hand. The concepts in

question include: phase and group velocities, refraction/reflection laws and phase-

slowness surfaces.

2.1.1. Phase and group velocities

Phase velocity is defined as the velocity with which plane-wave crests and troughs

travel through a medium and is expressed as the ratio of the frequency of vibration and

the wave number (i.e., the number of wavelengths per unit distance normal to the

wavefronts).  Group velocity, also known as energy or ray velocity,  is defined as a

velocity with which the energy of a wave propagates3. Direct measurements of traveltime

usually yield the group velocity.

In dispersive media, e.g., an anelastic medium exhibiting frequency dispersion or

an anisotropic medium exhibiting angular dispersion, phase and group velocities are

different; both in magnitude and direction. For an anisotropic medium, at the same point
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on the wavefront, the group velocity is higher than the phase velocity. The direction of the

group velocity is perpendicular to the phase-slowness surface, i.e., to the surface

representing the inverse of the phase-velocity surface (Rokhlin et al, 1986).  Also, the

phase velocity is perpendicular to the wave surface (Helbig, 1994). As a matter of fact,

both above-mentioned statements are equivalent.

2.1.2. Snell's law

Snell's law is a direct consequence of Fermat's principle of stationary time. In

horizontally layered media, it can be conveniently restated as a requirement for the

horizontal component of the wave number, kx, to be continuous across the boundary. As a

matter of fact, the horizontal component of the wave number remains constant for all

layers and is analogous to the ray parameter. This property must be preserved for both

isotropic and anisotropic media regardless of the type of the wave generated at the

boundary, e.g., longitudinal or transverse, and  serves as a kernel for the strategy of

calculating reflected and transmitted angles. A description of physical principles involved

in Snell’s law with emphasis on anisotropic media is given by Helbig (1994) on pages 32

to 38.

2.1.3. Slowness surfaces

Phase-slowness is defined (e.g., Winterstein, 1990) as the reciprocal of the scalar

phase velocity, and therefore can be expressed as the ratio of wave number, k, and angular

frequency, ω. In an isotropic medium the phase-slowness surface is a sphere with radius

equal to the inverse of  the phase velocity (which does not vary with direction). In such a

case, phase and group velocities are collinear since the normal to the surface of a sphere

is collinear with its radius vector.  For an anisotropic medium the shape of the phase-

slowness surface can form a much more complicated figure including concave and

convex shapes. The number of symmetry planes decreases as the number of elastic

constants necessary to describe the material increases. An infinite number of symmetry

                                                                                                                                                                            
3 In dissipative, anisotropic media, i.e., media which are not perfectly elastic, the notions of group and
energy velocity do not coincide (Carcione, 1992). Other physical restrictions might also apply (e.g., Krebes
and Le, 1994)
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planes exist for an isotropic medium described by two elastic constants, e.g., Lamé

parameters; no symmetry planes exist for a triclinic medium which requires twenty-one

elastic constants to be uniquely characterized (see e.g., Crampin and Kirkwood, 1981).

There are, in general, three slowness surfaces, each corresponding to a given wave

type: one for quasi-compressional and two for quasi-shear waves.  The quasi-shear-wave

slowness surfaces can touch or intersect, thus forming singularities, i.e., points

corresponding to orientations along which qS phase velocities become equal for two

wave types. Interesting phenomena relating to polarization occur in the neighbourhood of

those points (Crampin and Yedlin, 1981).

2.2. GEOMETRICAL FORMULATION

Snell's law can be illustrated using phase-slowness surfaces for both incident and

transmitted media (Auld, 1973). The geometrical construction is facilitated by the fact

that the phase-slowness vectors of the incident, reflected and refracted waves are

coplanar. Their being coplanar is guaranteed by the necessity to satisfy boundary

conditions at all times and at every point of the interface.  Therefore, it is convenient to

choose a Cartesian coordinate system such that all the phase-slowness vectors lie in the

xz-plane. To familiarize the reader with the method, the familiar case of isotropic media is

considered below.

Invoking the continuity of the horizontal component of the wave number, kx,

across a boundary, and by applying simple trigonometry to Figure 2.1, it is easy to obtain

the usual form of Snell's law for an isotropic medium, i.e., equation (2.1). Other concepts,

such as total internal reflection, also have their geometrical interpretation. For a

sufficiently large incidence angle one has kx ≥ ω/v2, in which case no transmitted ray is

possible. The equality kx=ω/v2 yields the angle at which this first occurs, i.e., the critical

angle. Note that if the radius of the phase-slowness sphere in the transmitted medium is

larger than in the incident medium, there is always a transmitted ray and total internal

reflection cannot occur. For anisotropic media, each phase-slowness surface is, in general,

described by a different function and the phase- and group-velocity angles do not

coincide. To deal with a more complex situation, a  more complicated mathematical
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scheme has to be employed.   Figure 2.1, without loss of generality, illustrates a generic

case, i.e., the wave type is not specified. Consideration of mode conversion would yield,

in an isotropic case, two concentric circles in both media, representing phase-slowness

surfaces for compressional and shear waves.    In an anisotropic case three geometrical

figures would appear in each medium due to the birefringence of quasi-shear waves, i.e.,

due to different velocities of  two types of quasi-shear waves.

θ

θ

θ

i

r

t

medium
of

incidence

medium
of

transmission

z

x

x

1/v

1/v

k k

k

x x

x

interface

θ θ

θ

i r

t

1

2

Μ Ν

Ο

Figure 2.1. The geometrical construction yielding reflection and transmission angles of
slowness vectors in an isotropic medium using the phase-slowness surface. The same
concept applies in an anisotropic medium except that the xz-plane cross-section of the
phase-slowness surface does not, in general, form a circle. The thin lines within the
circles (radii) are collinear with the phase-slowness vectors; the thick lines, normal to the
phase-slowness surface correspond to the group-slowness vectors. M, N and O are the
angles between phase-slowness vectors for incident, reflected and transmitted waves and
the normal to the interface.  θi, θr and θt are the angles between group-slowness vectors
for incident, reflected and transmitted waves and the normal to the interface, i.e., ray
angles.  In the isotropic case, M =  θi, N =  θr, O =  θt.  The angular frequency is assumed
to be a unity.
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2.3. MATHEMATICAL FORMULATION

The geometrical approach described above for the isotropic case (i.e., spherical

slowness surfaces) is easily extended to include more general scenarios, where the

slowness surface is an arbitrary surface in slowness space.   Although there exist more

efficient computational schemes, e.g., Keith and Crampin (1976), Rokhlin et al. (1986),

the following analytical description provides an intuitive insight which is lost in various

numerical methods.

Consider  two anisotropic media separated by a planar, horizontal interface. Let

the phase-slowness surface in the upper medium be given by the level surface4 of a

function f( x, y, z), in a slowness space spanned by Cartesian coordinates x, y, and z:

f x y z a( , , ) = . (2.4)

Similarly, let the phase-slowness surface in the lower medium be given by the level

surface of a function g( x, y, z),

g x y z b( , , ) = . (2.5)

A ray is incident on the boundary from above. Since all phase-slowness vectors (for

incident,  reflected and transmitted waves) must  be coplanar,  without loss of generality

we take them to lie in the xz-plane (see Figure 2.2). Denoting the phase-slowness vector

as m, the continuity conditions require that:

m x m x m xi r t⋅ = ⋅ = ⋅ , (2.6)

where x  is a unit vector in the x-direction and subscripts i, r, and t refer to incident,

reflected and transmitted waves respectively.  Recall that the group(ray)-slowness vector,

w, is normal to the phase-slowness surface at the corresponding phase-slowness point. A
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detailed description of geometrical relationships and their physical basis is given by

Helbig (1994) on pages 21 to 29.

m m

m

w

w

w

x

x x
i

i r

t

t

t

medium
of

incidence

medium
of

transmission

f(x,y,z)=a

g(x,y,z)=b

i

r

r

θ

θ

θ
t

r

i

z

x

z

x

Μ Ν

Ο

θ θ

θ

interface

Figure 2.2. Illustration of ray angles for incident, reflected and transmitted rays in
anisotropic media separated by a horizontal, planar interface using phase-slowness
surfaces described by functions f and g.  m's correspond to phase-slowness vectors and
w's to group-slowness vectors and θ's to the ray angles for incident, reflected and
transmitted waves. Note that M ≠  θi, N ≠  θr, and  O  ≠  θt; cf. Figure 2.1.

 

Using properties of the gradient, i.e., its pointing in the direction along which f is

increasing the fastest and its being normal to the surface on which f is constant, gives:

w i x y z
f x y z

i i i
|| ( , , )

( , , )
∇ . (2.7)

                                                                                                                                                                            
4 The level set of value a  is defined to be those points at which f(x, y, z) = a. For the case of three variables,
one speaks of level surface or equipotential surface. For the case of  two variables, one speaks of level
curve (e.g., Marsden and Tromba, 1981).
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i.e., the ray vector, w, is parallel to the gradient. Normalizing, and choosing the function f

to have a minimum at the origin O(0,0,0) and to be monotonically increasing outwards,

yields:

  wi
x y z

x y z

f x y z

f x y z
i i i

i i i

= −
∇

∇

( , , )

( , , )
( , , )

( , , )

, (2.8)

where the negative sign ensures that the incident unit ray, w i , vector points towards the

boundary.  The angle of incidence, i.e., the angle between the ray vector and the normal to

the interface is given by:

cos ( )
( , , )

( , , ) ( , , )
( , , )

( , , )

( , , )

( , , )

θ

∂
∂

i i
x y z

x y z

x y z

x y z

f x y z

f x y z

f

z

f x y z
i i i

i i i

i i i

i i i

= ⋅ − =
⋅∇

∇
=

∇
w z

z
(2.9)

where z is the unit vector parallel to the z-axis.

Now by choice of the coordinate system, yi = 0; given xi, zi is determined by

equation (2.4).  Thus equation (2.4) provides an expression for θi as a function of xi.

Typically  θi is taken as an independent parameter; however, it may not always be

possible to invert equation (2.4) to obtain a closed-form expression for xi as a function of  

θi.  Thus, in the general case, as already emphasized the present approach is presented

chiefly for the intuitive understanding it provides, rather than for its computational

convenience.  In specific cases, illustrated in subsequent chapters, it is always possible to

express reflected and transmitted angles as functions of the incidence angle.

Similarly, the  normalized reflected ray vector can be expressed as:

wr
x y z

x y z

f x y z

f x y z
r r r

r r r

=
∇

∇

( , , )

( , , )
( , , )

( , , )

, (2.10)
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and the angle of reflection, i.e., the angle between the ray vector and the normal is given

by:

cos
( , , )

( , , ) ( , , )
( , , )

( , , )

( , , )

( , , )

θ

∂
∂

r r
x y z

x y z

x y z

x y z

f x y z

f x y z

f

z

f x y z
r r r

r r r

r r r

r r r

= ⋅ =
⋅∇

∇
=

∇
w z

z
. (2.11)

In evaluating the above expression one uses the fact that by continuity xr = -xi; yr

is zero by the choice of the coordinate system, and zr  can be found by substituting into

equation (2.4). Recall that x, y and z are components of slowness while subscripts i and r

refer to incidence and reflection.

Physically, we require that the reflected ray be directed back into the incident

medium; thus the physical solutions must have w zr ⋅ ≥ 0.  Note that the reflected ray need

not be unique: given the slowness surface in Figure 2.3, for instance, we have two

physical reflected solutions and one non-physical solution.
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Figure 2.3. Illustration of the mathematical solution giving three reflected ray vectors.
The one pointing towards the interface is not physically realizable.

The normalized transmitted ray vector is given by:
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wt
x y z

x y z

g x y z

g x y z
t t t

t t t

=
∇

∇

( , , )

( , , )
( , , )

( , , )

, (2.12)

and thus the angle of the transmitted ray measured between the transmitted ray vector and

the normal is given by:

cos ( )
( , , )

( , , ) ( , , )
( , , )

( , , )

( , , )

( , , )

θ

∂
∂

t t
x y z

x y z

x y z

x y z

g x y z

g x y z

g

z

g x y z
t t t

t t t

t t t

t t t

= − ⋅ = −
⋅∇

∇
=

∇
z w

z
. (2.13)

Again, as in equation (2.11), in evaluating the above expression one uses the fact

that xt = -xi; yt is zero by the choice of the coordinate system and zt can be found by

substituting into equation (2.5).  Similar comments to the ones discussed in the case of

reflected waves apply to physical realizability and uniqueness of transmitted rays; the

only difference in the latter case is that one  requires  the rays to be directed into the

transmitted medium, i.e., physical solutions must have w zt ⋅ − ≥( ) 0.

It must be emphasized that, although the phase-slowness vectors, m, are coplanar

for the incident, reflected and transmitted waves, the ray vectors, w, need not lie in the

same plane. Their directions are determined by that of the normal to the plane tangent to

the phase-slowness surface. They will, however, remain in the same plane if the phase-

slowness surfaces are, for instance, rotationally symmetric about the x-axis.  In all cases

the magnitude of the ray velocity is obtained from equation (2.2).

If the phase-slowness surface does not possess rotational symmetry, the incident,

reflected and transmitted group vectors need not be coplanar.  In such a case the angle of

deviation, χ,  from the sagittal plane assumed to coincide with the xz-plane, containing all

phase vectors, m, can be found by considering the projection, wxz, of the ray vector, w, on

this plane:

   [ ]w w x w zxz = ⋅ ⋅, ,0 , (2.14)
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and thus from the definition of scalar (dot) product, it follows that:

cosχ =
⋅w w

w w
xz

xz

. (2.15)

The above formulation can be easily adapted to be used specifically for incident,

reflected, or transmitted rays. Other concepts, such as total internal reflection, also

emerge naturally from the present formulation.  Although for complicated slowness

surfaces it may be impossible to characterize total internal reflection by a single critical

angle as in the isotropic case, the general approach remains as described above.

2.4. EXAMPLES

The approach described above can be illustrated by several examples. Some cases

allow simple analytical solutions leading to valuable physical insight.

2.4.1.General case of elliptical anisotropy

 Consider the ellipsoidal case where the velocities are different in the x, y and z

directions and where xz-, xy-, and yz-planes constitute symmetry planes. Considering the

xz-plane, the two phase-slowness surfaces can be written as:

f x z v x v zx z( , ) ( ) ( )= + =2 2 1, (2.16)

and

g x z v x v zx z( , ) ( ) ( )' '= + =2 2 1 , (2.17)

for the media of incidence and transmission respectively.  Again, without loss of

generality, one can treat a generic case, i.e.,  not specifying the type of conversion at the

interface.
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 Using equation (2.8) one can write:

wi
x i z i

x i z i

v x v z

v x v z
= −

+
[ , ]

( ) ( )

2 2

2 2 2 2
, (2.18)

and by equation (2.9):

cos
( ) ( )

θi
z i

x i z i

v z

v x v z
=

+

2

2 2 2 2
. (2.19)

Solving for z in equation (2.16) yields:

z
v x

vi
x i

z

=
−1 2( )

, (2.20)

in the case of the incident ray.  Substituting equation (2.20) into equation (2.19) gives:

cos
( )

[ ( ) ]
θ i

z x i

x i z x i

v v x

v x v v x
=

−

+ −

1

1

2

4 2 2 2
, (2.21)

which can be explicitly solved for xi
2:

x
v

v v vi
z i

x i x z i

2
2 2

4 2 2 2 2

1

1
= −

+ −
( cos )

cos ( cos )

θ
θ θ

. (2.22)

Analogous expressions can be derived for reflected and transmitted rays.

Furthermore,  since x x xi r t
2 2 2= = , the three expressions can be equated, thus giving Snell's
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law for ellipsoidally anisotropic media. Upon some algebraic manipulation this can be

expressed as:

v
v

v
v

v

v
v

v

vx
x

z
i x

x

z
r x

x

z
t

2
2

2
2 2

2

2
2 2

2

2
21 1 1[ cot ] [ cot ] [ cot ]'

'

'
θ θ θ+ = + = + , (2.23)

where primed quantities refer to the medium of transmission. Equivalent expressions for

Snell's law with elliptical velocity dependence were obtained by Dunoyer de Segonzac

and Laherrere (1959) directly from elliptical geometry, and successfully used in studying

anisotropy in well-bore seismic in the Sahara desert. For further discussion on

geophysical applications of elliptical anisotropy see Chapter IV.  Examining equation

(2.23) we see that θ θr i= . Also, the critical angle can be obtained by setting θt = π/2.

After some algebraic manipulation one gets:

cot
'

θc
z

x

x

x

v

v

v

v
= −

2

2
1. (2.24)

For isotropic media one can write:

v v vx z= = 1, (2.25)

and:

v v vx z
' '= = 2. (2.26)

Equation (2.23) then reduces to equation (2.1), i.e., the standard form of Snell's law in

isotropic media and equation (2.24) to the standard expression for the critical angle in the

isotropic medium.
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2.4.2. A particular case of isotropic/anisotropic interface

Let us consider a planar boundary between the isotropic and elliptically

anisotropic media. Let the velocities be so chosen that:

v v v vx z x= ≡ = ' , (2.27)

i.e., the horizontal velocity in the anisotropic medium equals the velocity in the isotropic

medium.  Using Equation (2.23) gives:

tan tan
'

θ θt
z

i

v

v
= . (2.28)

An interesting phenomenon can be observed by examining equation (2.28).  To

observe the phenomenon more clearly we can write:

tan

tan '

θ
θ

t

i z

v

v
= . (2.29)

Thus if  v vz
' > , θ θi t>  and the transmitted ray is bent towards the normal, which

is the opposite of what happens in the isotropic case. This phenomenon is related to the

complicated form Fermat's principle takes in the anisotropic case, as discussed below, and

more extensively in Chapter VI.

2.5. DISCUSSION

Numerous physical consequences can be described using the approach presented

above. First of all, however, mathematical solutions stemming from this formulation must

be examined in the light of physical realizability. The ray vector for an incident ray must

be pointing towards the boundary, while for reflected and transmitted rays must point
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away from it. This physically intuitive requirement is not satisfied naturally by the

mathematical formalism. Employing either the numerical approach stemming from tensor

analysis (Rokhlin et al., 1986) or the analytical approach described above, one must select

correct ray vectors and reject the ones which fail to satisfy the obvious physical

requirements.

 As already mentioned above, an interesting phenomenon related to Fermat's

principle of stationary time can be particularily easily observed by applying the small-

angle approximation to equation (2.23):

θ θt
x

x

z

z
i

v

v

v

v
≈

'

'

2

2
. (2.30)

This phenomenon is not restricted to small-angle cases and the approximation was used

only for clarity of notation.

In the isotropic case if, say, the velocity in the medium of transmission is greater

than in the medium of incidence, we obtain the familiar result that the transmitted ray is

bent away from the normal. However in the particular case of an isotropic/anisotropic

interface considered in equation (2.29), we obtain the opposite result. Equation (2.30)

gives the behaviour in the case of general ellipsoidal anisotropy.

The behaviour in the isotropic case may be intuitively understood as being the

consequence of Fermat's principle of stationary time; the behaviour in the particular

anisotropic case, considered in equation (2.29), appears counterintuitive when viewed

from this point of view. However, the form of Fermat's principle in the general

anisotropic case can be formulated as (Helbig, 1994):

δ δm dw m dw⋅ = ⋅ =∫∫ w 0 (2.31)

where m is the phase-slowness vector, mw is the ray-slowness vector and dw is a length

element along the ray.  Thus in deriving Snell's law we are minimizing the traveltime

along the ray with respect to the group (ray) velocity, rather than the phase velocity.  As a

consequence, the group- (ray-) slowness surface as well as the phase-slowness surface
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must be considered in order to understand the behaviour of the ray at the  interface.

Therefore, in the general anisotropic case, ray bending does not lend itself to such an

intuitive understanding as in the isotropic case.  In the latter case, the phase and group

velocities are collinear, and the ray bending away from  the normal when it passes from a

slower to a faster medium is easily understood as a consequence of Fermat's principle

which favours shortening the distance travelled by the ray in the slower medium.

An elegant and rigorous proof of Fermat’s principle in elastodynamics has been

established by Epstein and Sniatycki (1992). The authors elaborate the proof  based on

Hamiltonian constraints and homogeneous Lagrangians. This proof, however, applies

only to convex slowness surfaces, since Fermat’s principle can only by formulated for

such cases. For slowness surfaces with concave sections, the singularities of the inflection

point create insurmountable difficulties (A. Hanyga, pers. comm., 1996).

The usefulness of the above approach is extended in the next chapter where the

Snell’s law formalism is expressed in polar coordinates and thus can be conveniently

related to slowness surfaces of  various materials.
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CHAPTER  III

SNELL’S LAW 5 FOR WEAKLY ANISOTROPIC MEDIA 6

3.0. INTRODUCTION

In Chapter II a Snell’s law formalism for anisotropic media is presented.  All

expressions are exact and can be applied in many circumstances. The fact that the phase

slowness surface is smooth and never has cusps (Winterstein, 1990) ensures the

applicability of vector calculus methods required by the formalism.  The direct use of the

formalism presented in Chapter II requires that the  slowness surfaces be expressible in

slowness space as analytic functions of three Cartesian coordinates x, y, and z.  Slowness

surfaces are three-dimensional closed surfaces of various degrees of symmetry, reducing

in the isotropic case to the shape of a sphere.  The choice of spherical coordinates for

description of slowness surface, or polar coordinates for description of slowness curve, is

natural.  Thus, instead of directing one’s efforts towards developing a method of

expressing slowness surfaces or curves in Cartesian coordinates, or as parametric plots,

another method is adopted.   The formalism developed in Chapter II serves as a template

for  linking, through the relation between Cartesian and polar coordinates, the analytical

method for calculating angle of transmission across an interface, with actual measures of

                                                          
5 The term “Snell’s Law” is used, in this dissertation, to denote formulæ dealing with incident, reflected and
transmitted angles in anisotropic media. Thus the scope of this notion goes beyond the initial formulation of
Snellius.
6 Parts of this chapter have been published by Slawinski, M.A., Slawinski, R..A., and Brown, R.J., in
CREWES Research Report  (1995).
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anisotropy defining the materials.  Most commonly they are expressed  as elastic

constants, Cij, the entries of a 6×6 stiffness matrix relating stress and strain vectors, i.e.,

the anisotropic form of Hooke’s law. Thomsen (1986) suggests particular combinations

of elastic constants as convenient measures of anisotropy. They are referred to, in this

dissertation, as anisotropic parameters, and are denoted by δ, ε and γ.  The velocities of

both compressional and shear waves can be expressed in terms of those parameters.

The formulæ for phase velocities can be developed in a Taylor series and, if the

anisotropy is not very pronounced, higher-order terms ignored without significant loss of

accuracy (Thomsen, 1986); see Appendix 2. In the geophysical context, this process can

be justified by the fact that, although on a small scale many crystals are highly

anisotropic, the rocks they form exhibit, in general, only moderate anisotropy as

perceived by a wavelet of a relatively low frequency typical in seismic studies. The phase-

velocity formulæ for three wave types in a weakly anisotropic medium provide the

expressions used in deriving the mathematically tractable, as well as easily coded, Snell’s

law, i.e., a set of equations for calculating incident, reflected and transmitted angles.

In principle, it is possible to use the exact formulæ derived by Daley and Hron

(1977) and expressed in terms of anisotropic parameters by Thomsen (1986).  The

significant loss of clarity of development caused by employing such complicated

equations has been avoided here by using, in their stead, the equations governing weak

anisotropy. Appendix 7, however, provides the initial steps necessary in  developing exact

equations applicable to cases of strong anisotropy.  Thomsen suggests further

simplifications aiding greatly in the intuitive understanding of the concept.  In this

development, however, the minimal amount of approximation was introduced (see

Appendix 6), i.e., allowing one to obtain the slowness surface in a form clearly

manageable by the Snell’s law formalism.  As described in Chapter II, slowness surfaces

form the kernel of Snell’s law.  Since the formulæ for phase slowness can be elegantly

described in polar coordinates it is necessary to translate the formalism described in the

previous chapter  to this system.

The formulæ below refer explicitly to the propagation within a transversely

isotropic system with a vertical symmetry axis (TIV), or within a symmetry plane of a
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given medium (e.g., an orthorhombic medium was used in laboratory measurements

described in Chapter VII).  Distinctive elastic properties of the transversely isotropic

symmetry system are an infinite-fold rotational axis of symmetry, and an infinite set of

two-fold axes perpendicular to it (Winterstein, 1990).  It is described by five independent

elastic constants. Transverse isotropy with a vertical symmetry axis describes well the

intrinsic anisotropy found in a horizontally reposing sedimentary layer, e.g., a shale unit.

Also, a series of isotropic layers, each of thickness considerably smaller than the

wavelength, exhibits, as a whole, transverse isotropy with a vertical symmetry axis, e.g.,

Postma (1955), Levin (1979), Schoenberg (1994).

Weak anisotropy implies that for the compressional-wave solution, the divergence

of displacements is much larger than its rotation, while for  the other two solutions i.e.,

shear waves, the rotation is much larger than the divergence (Helbig, 1994).  Thus the

solutions are only weakly coupled and the particle displacement is almost parallel, in the

case of  quasi-compressional waves, or almost orthogonal, in the case of quasi-shear

waves, to the direction of propagation.  It can be shown that the wave equation for

transverse isotropy yields three independent solutions corresponding to mutually

orthogonal polarization directions. The solutions refer to one quasi-longitudinal wave

(qP), one quasi-transverse wave (qSV) and one exactly-transverse wave (SH) (e.g., Keith

and Crampin, 1977).  Along the symmetry axis all polarizations become pure and all

expressions reduce to the isotropic form. An important consequence of weak anisotropy

in transversely isotropic media is that it is reasonable to consider two separate cases, i.e.,

the first case involving P and SV waves and the second case involving SH waves.

 The simplification of expressions for phase velocities is achieved by developing

the original expressions in Taylor series and neglecting higher-order terms under the

assumption that the anisotropic parameters are much smaller than unity.  The

simplification of expressions is very considerable (see Thomsen, 1986, or Appendix 2),

and, when remaining within the bounds of  assumptions imposed by weak anisotropy, the

accuracy is high.

Thanks to the weak-anisotropy assumption and the entailing simplifications, the

entire mathematical treatment developed and used in this dissertation is tractable, and, in
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almost all cases, leads to analytical expressions.  This is not to say, however, that various

problems, particularly while considering the inversion process in multilayer media, do not

arise.  Here again, however, the tractability allows for investigation and comprehension of

results of raytracing and inversion.  It often permits one to visualize a solution

geometrically, a method favoured by Dr. Helbig, the author of an important text-book

dealing with anisotropy from an exploration seismologist’s point of view.

Thomsen (1986), the developer of the weak-anisotropy expressions, himself states

in his paper that, with today’s computers, there is little excuse for using the linearized

equations for computational purposes7, but that the linearized equations are useful

because their simplicity of form aids in the understanding of the physics.  In this

dissertation the approximate, but not fully linearized, expressions for phase velocities

were used. Other quantities, although given in a linear approximation by Thomsen

(1986), were developed in this dissertation, based on exact relations, e.g., the relation

between the phase and group angles (see Appendix 6).

Furthermore, if any computational algorithm is to work for strong anisotropy it

must also work for weak anisotropy, as the concept of anisotropy (spanned by two end

members, namely, strong anisotropy and isotropy) forms a continuum (Helbig, 1994).

Thus, a mathematically tractable approach provides a potential verification for a machine-

intensive programme which would use the full form of equations for velocity anisotropy

(see Appendix 7).  The innovative aspect of  the approach presented in this chapter

consists of a clear analytical method for calculating propagation angles across an interface

in anisotropic media, with all quantities related to a measurable set of parameters

proposed by Thomsen (1986) and widely used by numerous researchers (e.g., Stewart,

1988; Cheadle et al., 1991; Brown et al., 1991).  Except for using the weak-anisotropy

form of expression for phase velocity, the presented method makes no simplifications or

approximations in deriving the expressions of the generalized Snell’s law in weakly

anisotropic media. Another approach of developing the relationship between incident and

refracted rays was proposed by Byun (1982, 1984). Byun’s method is based on the

assumption of elliptical velocity dependence or its perturbation.
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3.1. QUASI-COMPRESSIONAL WAVES

3.1.1. Phase velocity

Dealing with weakly anisotropic media one often refers to a quasi-compressional

wave (qP) as a compressional wave (P). Such simplification of terminology is due to the

fact that the particle displacement is almost aligned with the direction of propagation.

Similarly, quasi-shear waves (qS) can be, for simplicity, referred to as shear waves due

to the fact that in weakly anisotropic media the particle displacements are almost

perpendicular to the direction of propagation.  Strictly, however, the distinction can be

omitted only for SH waves in transversely isotropic media, in which case the particle

displacement is exactly perpendicular to direction of propagation (Thomsen, 1986).  In

this dissertation the prefix quasi- is sometimes omitted when no possible confusion with

isotropic propagation arises.

The phase velocity of a quasi-compressional, qP, wave in a weakly anisotropic

medium is given by Thomsen (1986):

vqP ( ) ( sin cos cos )ξ α δ ξ ξ ε ξ= + +0
2 2 41 . (3.1)

In this dissertation the phase angle, ξ, is the phase latitude, and a complement of

the angle, ϑ, in Thomsen’s paper, which is equivalent to the phase colatitude, i.e.,

ξ π ϑ= −/ 2 , (3.2)

thus changing in some equations, the cosine function to the sine function.   In this form,

one can take advantage of standard vector calculus expressions in polar coordinates,

where the argument is measured with respect to the horizontal axis.  Thus the gradient

can be expressed as follows:

                                                                                                                                                                            
7 Interestingly, in spite of powerful computers employed in seismic data processing, the moveout velocity is
not commonly computed beyond its first term of the binomial expansion.
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∇ = +f r
f

r r

f
( , )ξ ∂

∂
∂
∂ξ

r Ξ 1
  , (3.3)

where the angle is measured with respect to the x-axis. The symbol r  refers to the unit

vector parallel to the radius, and ΞΞ is the azimuthal unit vector, i.e., the unit vector

perpendicular to the radius.

The anisotropic parameters used in the expression for phase velocity, are defined

in terms either of elastic constants, Cij, or measured velocities.  The latter definition

proves very helpful in experimental studies, e.g., Cheadle et al. (1991). From the

experimental point of view it is easier to use group (ray) velocities since, to obtain

mathematically more convenient, phase velocities, one requires a plane-wave source.  In

either case, it is important to be aware of how one can determine phase and group

velocities, separately, from laboratory measurements (Vestrum, 1994). Thus one can

write:
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ε π
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−
≈

−C C

C

V V

V
P P

P

11 33

332

2 0

0

( / ) ( )

( )
, (3.5)

where Cij are entries in the stiffness matrix relating six components of stress to six

components of strain, i.e., Hooke’s law and VP  is associated with measured, i.e., group

velocities.  For deriving anisotropic parameters from actual measurements, however, it is

advisable to use exact equations instead of their approximate counterparts.  Particularly δ

is prone to the propagation of experimental errors in its approximate form (e.g., Brown et

al., 1991).

The symbol α0, denotes the speed of a ray propagating vertically, along the

symmetry axis of  the medium.  It can be expressed in terms of the elastic constant or,
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similarly to the isotropic case, in terms of the Lamé parameters, λ and µ, and the density

of the medium, ρ , that is:

α
ρ

λ µ
ρ0

33 2= = +C
. (3.6)

Notice that, for a ray propagating vertically or horizontally, the phase and group

velocities coincide, both in exact and approximate expressions.  This is not the case in

any other direction of propagation and it is of considerable importance to distinguish

between the two concepts.

3.1.2. Transmission angle

The subsequent description follows the formalism developed by Slawinski and

Slawinski (1994) and described in Chapter II. Firstly, one must formulate an expression

for a slowness surface. The phase slowness is the reciprocal of the phase velocity,

obtained by taking reciprocals at all points on the phase-velocity surface (e.g.,

Winterstein, 1990). Let f(r,ξ) be a function in slowness space defined by:

f r
r

( , ) ( sin cos cos )ξ α δ ξ ξ ε ξ= − +1
0

2 2 4  , (3.7)

where r is the radius of the slowness surface, i.e., the magnitude of the slowness. For a

particular TI medium, slowness as a function of ξ is r(ξ) which is given by equation

(3.16). This set of points [r(ξ),ξ] is also given by the intersection of f(r, ξ) with the plane f

= α0, i.e., by the set of points (r, ξ) for which:

f r( , )ξ α= 0 . (3.8)

This set of points forms a slowness curve or, mathematically, a level curve. The

above description can be illustrated by Figure 3.1:
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Figure 3.1. Plots in the slowness space; the horizontal axes, i.e., length and width of the
box, have units of slowness, the vertical axis has units of speed. Picture (a) illustrates the
function f(r,ξ). In picture (b) the function f(r,ξ) is intersected by a plane illustrating the
speed value of α0. The line of intersection corresponds to the slowness curve as illustrated
on the contour plot (c), where w represents the unit vector perpendicular to the slowness
curve, i.e., the ray direction.

The propagation (ray, group) vector is always perpendicular to the slowness

surface, i.e., its direction is parallel to the gradient of the surface. Using calculus and

various trigonometric identities, the gradient can be written as follows:
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whose length is:
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The unit ray vector, w, in the direction of the ray can then be determined from

equation (2.8):

w = ∇
∇

f

f
. (3.11)

The angle between the unit ray vector, w, and the normal can be found using the

definition of the dot product.  Using the vertical unit vector, z, one may write:

cosθ = ⋅z w (3.12)

 In polar coordinates, the Cartesian unit vector, z, can be expressed through its

relation to the angle ξ, i.e., the argument. In the present context the argument corresponds

to the phase angle, i.e.,

z r= +sin cosξ ξΞ  . (3.13)

This form is used in the desired dot product.  The group angle, θ, that the group

slowness vector makes with the normal to the interface, can be expressed in terms of the

phase angle, ξ, measured from the horizontal:
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In relating the incidence group angle to the transmission group angle at a

horizontal interface, one uses the fact that the horizontal component of slowness, x0, i.e.,

the ray parameter, must be constant. If the medium of incidence is isotropic8 then phase

and group angles (and velocities) coincide.  The horizontal component of slowness can be

calculated, given the angle of incidence, i.e.,

x
v

xi
i= ≡

sinθ
0 , (3.15)

where the angle of incidence, θi, is measured from the vertical, and v is the speed in the

isotropic medium. The symbol x0 denotes the ray parameter. The radius of the cross-

section of the qP-slowness surface in the xz-plane of the anisotropic medium of

transmission is given by the inverse of the phase velocity:

r ( )
( sin cos cos )

ξ
α δ ξ ξ ε ξ

=
+ +

1

10
2 2 4

 . (3.16)

Using standard relationships between the Cartesian and polar coordinates, one can

relate a given point on a slowness surface to its horizontal component through the phase

angle, ξ:

x r( ) ( ) cosξ ξ ξ= . (3.17)

                                                          
8 The formalism can be extended to the case of an anisotropic/anisotropic interface (see Chapter VI) . The
clarity of presentation is enhanced by assuming the medium of incidence to be isotropic.  Also the
experimental set-up (see Chapter VII ) involves isotropic/anisotropic interface.
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Inserting the equation (3.15) into the equation (3.16) gives a relationship between

the horizontal component of slowness  and the slowness surface for compressional waves:

x( )
cos

( sin cos cos )
ξ ξ

α δ ξ ξ ε ξ
=

+ +0
2 2 41

. (3.18)

Equation  (3.17) can be rewritten as a quartic in cosξ and solved explicitly for the

phase angle, ξ0, corresponding to a given ray parameter, x0. Thus, given the incidence

angle, θi, and thus the ray parameter, x0, one obtains:

α ε δ ξ α δ ξ ξ α0 0
4

0 0 0
2

0 0 0 0 0x x x( ) cos cos cos− + − + = . (3.19)

The appropriate value of ξ0 can be inserted in the equation (3.19) and the angle of

transmission calculated. An insightful look into the solution of the quartic equation is

given in Appendix 1.  Note that in the case of elliptical anisotropy, i.e., ε = δ, the quartic

is reduced to a quadratic of the form analogous to the equation for SH waves (equation

(3.39)).  Also note that, in all expressions, θ is the group (ray) angle measured with

respect to the normal to the interface, and ξ is the phase angle measured with respect to

the horizontal.

Method of Computation9: Snell’s Law for Isotropic/Anisotropic Interface: Angle of
Transmission of  a qP wave.

Given a  P or SV wave with speed v in an anisotropic medium, incident at an angle θi

upon a planar, horizontal interface separating it from an anisotropic medium with vertical

                                                          
9 The inserts providing step-by-step calculations of various values appear throughout the dissertation and
are clearly distinguished from the main body of the text by including them  in a shaded box.  They can be
skipped without disturbing the continuity of presentation.  Their purpose is to provide a convenient method
of calculation.  To further enhance such usefulness, a brief code for a widely available mathematical
software, Mathematica, is also provided.
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speed α0 and anisotropic parameters δ and ε, the angle of transmission, θt , of qP can be
calculated by following the steps below.

Step 1
Calculate the ray parameter, x0, given the angle of incidence, θI:

x
v

i
0 =

sinθ

Step 2
Calculate the phase angle, ξ, in the anisotropic medium by solving the quartic equation.

α ε δ ξ α δ ξ ξ α0 0
4

0 0
2

0 0 0x x x( ) cos cos cos− + − + = .

Choose the root which yields real value for ξ.  Note that although this equation can be
solved algebraically it is a very laborious process.  An alternative approach is to use a

widely available software, e.g., Mathematica (Wolfram, 1991) to solve the equation.  A
code is given below.

v = speed of P wave or SV wave in the isotropic medium, v.
A = vertical speed velocity in the anisotropic medium, αo.
e = anisotropic parameter, ε.
d = anisotropic parameter, δ.
m = incident angle (in degrees)
x = Sin[(m*180/Pi)]/v
FindRoot[ A*x*(e-d)*C^4+A*x*d*C^2-C+A*x==0,{C,0.5,0,1}]

Note that using the command “FindRoot” between 0 and 1 guarantees the programme
returning the desired real root, i.e., yielding the angle ξ between 0 and 90o.  If all four

roots of the quartic are of interest then use the code below.

NSolve[A*x*(e-d)*C^4+A*x*d*C^2-C+A*x==0,C]

Also note that C stands for cosξ and thus the argument must be found using the inverse
trigonometric function.

Step 3
Calculate the length of the radius of the phase-slowness surface in the anisotropic

medium corresponding to the calculated ray parameter, x0.

r ( )
( sin cos cos )

ξ
α δ ξ ξ ε ξ

=
+ +

1

10
2 2 4

 .

Go to Variant A or to Variant B.
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Variant A
Step 4

Calculate the angle of transmission10, θi, of a qP wave in the anisotropic medium.

( )
θ

α ξ ξ δ ξ ε ξ ξ
ξ

ξ
α ξ δ ξ ε ξ

t Arc
r

r

=
− −

+ −





















cos

cos sin( ) cos( ) cos
sin

( )

[ ( )]
[ sin( )( cos( ) cos ]

0
2

2 0
2 2

2 2 2

1
2 2 2

.

Variant B
Step 4

Evaluate the derivative of phase-slowness radius using the phase angle, ξ, from Step 2.

dr

d

( ) sin( )[ cos( ) cos ]

( sin cos cos )

ξ
ξ

ξ δ ξ ε ξ
α δ ξ ξ ε ξ

= − −
+ +
2 2 2

1

2

0
2 2 4 2

 .

Step 5
Calculate the angle of transmission, θt, of a qSV-wave in the anisotropic medium.

θ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ
t Arc

dr

d
r

dr

d
r

=
−

+



















cot

( )
( ) tan

( )
tan ( )

.

N.B. Convenient Mathematica code for equations above is given as parts of
programmes to calculate the traveltime of a ray in Chapter V which can be easily used

just for the purpose of calculated the angle of transmission.

3.2. QUASI-SHEAR WAVES (SV)

This section follows the development presented above for quasi-compressional

waves.  Some details, therefore, are omitted.

                                                          
10 Throughout the dissertation, inverse trigonometric functions are denoted by a prefix Arc. This is to
indicate the principle value, i.e., a value corresponding to an acute angle.
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3.2.1. Phase velocity

The phase velocity of a quasi-shear, qS, wave in a weakly anisotropic medium is

given by Thomsen (1986):

vqSV( ) ( ) sin cosξ β
α
β

ε δ ξ ξ= + −








0

0
2

0
2

2 21 . (3.20)

Note that angle, ξ, is a complement of the angle, ϑ, in Thomsen’s paper. The anisotropic

parameters, ε and δ, are defined in section 3.1.1.  The speed of a wave propagating

vertically through the medium is:

β
ρ0
44=

C
, (3.21)

where ρ is the density of the medium.

3.2.2. Transmission angle

The slowness surface is associated with the function:

g r
r

( , ) ( ) sin cosξ α
β

ε δ ξ ξ β= − − =1 0
2

0

2 2
0   . (3.22)

Therefore the gradient is given by:

∇ = −





+
− −



















g r
r r

( , )

( ) sin( ) cos( )

ξ

α
β

ε δ ξ ξ
r

1
2 2

2

0
2

0Ξ , (3.23)

whose length is:
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∇ = + −








g

r r

1 1
2 2

2
0
2

0

2
α
β

ε δ ξ ξ( ) sin( ) cos( ) . (3.24)

The angle,  θt, that the unit group-velocity vector, w , of a transmitted ray makes

with the unit normal to the interface, z, is found following the generalized Snell’s law

formalism:

cos

sin

( )
cos ( ) sin( ) cos( )

[ ( )]
( ) sin( ) cos( )

θ

ξ
ξ

α
β

ξ ε δ ξ ξ

ξ
α
β

ε δ ξ ξ

t

r

r

= ⋅ = −
+ −

+ −










z w

0
2

0

2
0
2

0

2

2 2

1
2 2

. (3.25)

The above expression must be evaluated at a point on the slowness surface

corresponding to the horizontal component of slowness, x0, i.e., the ray parameter.  It can

be calculated from a given angle of incidence.  Assuming the medium of incidence to be

isotropic yields:

x
v

xi
i= ≡

sinθ
0 , (3.26)

where the angle of incidence, θi, is measured from the vertical, and v is the speed in the

isotropic medium. The radius of the cross-section of the qSV-slowness surface in the xz-

plane is the inverse of the phase velocity, which can be written as:

r ( )

( ) sin cos

ξ
β

α
β

ε δ ξ ξ
=

+ −








1

10
0
2

0
2

2 2

. (3.27)
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Using the standard relationships between Cartesian and polar coordinates, one can

relate the horizontal component to the slowness surface, namely:

x r( ) ( ) cos
cos

( ) sin cos

ξ ξ ξ ξ

β
α
β

ε δ ξ ξ
= =

+ −






0

0
2

0
2

2 21

. (3.28)

For a given angle of incidence, θi , the corresponding value of x(ξ) can be denoted

by x0.  The above expression can be rewritten as a quartic equation in cosξ to give:

α ε δ
β

ξ α ε δ
β

ξ ξ β0
2

0

0

4 0
2

0

0

2
0 0 0

x x
x

( )
cos

( )
cos cos

−
−

−
+ − = . (3.29)

Equation (3.29) has four roots.  The required solution, i.e., the angle of

transmission,θt , must be real.  In general, only one root is real and less than unity (in

absolute value), i.e., whose inverse cosine yields a real angle.

Method of Computation: Snell’s Law for Isotropic/Anisotropic Interface: Angle of
Transmission of an SV wave.

Given a  P or SV wave with speed v in an anisotropic medium, incident at an angle θi

upon a planar, horizontal interface separating it from an anisotropic medium with vertical
speed β0 and anisotropic parameters δ and ε, the angle of transmission, θt , of qSV can be

calculated by following the steps below.

Step 1
Calculate the ray parameter, x0, given the angle of incidence, θi:

x
v

i
0 =

sinθ

Step 2
Calculate the phase angle, ξ, in the anisotropic medium by solving the quartic equation.
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α ε δ
β

ξ α ε δ
β

ξ ξ β0
2

0

0

4 0
2

0

0

2
0 0 0

x x
x

( )
cos

( )
cos cos

−
−

−
+ − =

Choose the root which yields real value for ξ.  Note that although this equation can be
solved algebraically it is a very laborious process.  An alternative approach is to use a

widely available software, e.g., Mathematica.

v = speed of P wave or SV wave in the isotropic medium, v.
A = vertical speed of a compressional  wave in the anisotropic medium, α0.
B = vertical speed of a shear wave  in the anisotropic medium, β0.
e = anisotropic parameter, ε.
d = anisotropic parameter, δ.
m = incident angle (in degrees)
x = Sin[(m*Pi/180)]/v
FindRoot[(A^2*x*(e-d)/B)*C^4-(A^2*x*(e-d)/B)*C^2+C-x*B==0,{C,0.5,0,1}]

Note that using the command “FindRoot” between 0 and 1 guarantees the programme
returning the desired real root, i.e., yielding the angle ξ between 0 and 90o.  If all four

roots of the quartic are of interest then use the code below.

NSolve[(A^2*x*(e-d)/B)*C^4-(A^2*x*(e-d)/B)*C^2+C-x*B==0,C]

Also note that C stands for cosξ and thus the argument must be found using the inverse
trigonometric function.

Step 3
Calculate the length of the radius of the phase-slowness surface in the anisotropic

medium corresponding to the calculated ray parameter, x0.

r ( )

( ) sin cos

ξ
β

α
β

ε δ ξ ξ
=

+ −








1

10
0
2

0
2

2 2

.

Go to Variant A or to Variant B.

Variant A
Step 4

Calculate the angle of transmission, θt,  of a qSV wave in the anisotropic medium.
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θ

ξ
ξ

α
β

ξ ε δ ξ ξ

ξ
α
β

ε δ ξ ξ

t Arc
r

r

= −
+ −

+ −




































cos

sin

( )
cos ( ) sin( ) cos( )

[ ( )]
( ) sin( ) cos( )

0
2

0

2
0
2

0

2

2 2

1
2 2

.

Variant B
Step 4

Evaluate the derivative of phase-slowness radius and evaluate using the phase angle from
Step 2.

 
dr

d

( )
( ) sin( ) cos( )

( ) sin cos

ξ
ξ

α
β

ε δ ξ ξ

β
α
β

ε δ ξ ξ

= −
−

+ −


















0
2

0
0
2

0
2

2 2

2

2 2

1

.

Step 5
Calculate the angle of transmission, θt, of a qSV wave in the anisotropic medium.

θ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ
t Arc

dr

d
r

dr

d
r

=
−

+



















cot

( )
( ) tan

( )
tan ( )

.

N.B. Convenient Mathematica code for the equations above are given as parts of

programmes to calculate the traveltime of a ray in Chapters  5.  They can be easily used

just for the purpose of calculated the angle of transmission.

3.3. SHEAR WAVES (SH)

Investigation of transverse shear waves provides the clearest illustration of the

method.  Firstly, the expression for the phase velocity is simpler than for either

compressional or radial shear waves.  Secondly, considering the propagation within the

symmetry planes, they are not subject to mode conversion.  Furthermore, since even the
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exact expression for phase velocity is quite simple (Appendix 2), one can easily compare

the results of approximate and exact approaches (Appendix 6).

3.3.1. Phase velocity

The angular dependence of the phase velocity of a quasi-shear wave, SH, in a

weakly anisotropic medium can be expressed in terms of the speed of the wave travelling

vertically,  β0, the anisotropic parameter, γ,  and the phase angle, ξ, as described by

Thomsen (1986):

vSH( ) ( cos )ξ β γ ξ= +0
21 . (3.30)

Again, as in qP and qSV cases, the angle, ξ, is the phase latitude.  The anisotropic

parameter is defined in terms of elastic constants, Cij, and can be measured

experimentally in terms of group velocities, V.  For vertical and horizontal propagation

phase and group velocities, v and V, coincide. Thus one can write:

γ π
≡

−
≈

−C C

C

V V

V
SH66 44

442

2 0

0

( / ) ( )

( )
, (3.31)

where angles π/2 and 0 correspond to horizontal and vertical propagation, respectively.

The speed of a wave propagating vertically, along a symmetry axis, through the medium

can be expressed in terms of  the elastic constant or, as in the isotropic case, the Lamé

parameter µ, i.e., the shear modulus, and the density of the medium , ρ:

β
ρ

µ
ρ0

44= =
C

. (3.32)
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3.3.2. Transmission angle

The slowness surface is associated with the function:

h r
r

( , ) cosξ β γ ξ β= − =1
0

2
0 . (3.33)

The gradient of the slowness surface, h(r,ξ), is equivalent to the direction of the

unit ray vector, w, i.e., to the direction of energy propagation.  It can be calculated using a

standard formula of vector calculus in polar coordinates:

∇ = −





+ 





h r
r r

( , )
sin( )

ξ β γ ξ
r

1 2
2

0Ξ . (3.34)

The magnitude  of the gradient is calculated in order to normalize it.

∇ = +h
r r

1 1
2

2 0
2[ sin( )]β γ ξ . (3.35)

The angle between the unit group slowness vector, w , and the unit normal to the

interface, z, results directly from the definition of the dot product:

cos

sin cos
( )

[ ( )]
[( sin( )]

θ
ξ β γ ξ

ξ

ξ
β γ ξ

t

r

r

= ⋅ =
−









+
z w

2
1

1
2

0
2

2 0
2

. (3.36)

Equation (3.36) must be evaluated at the point on the slowness surface

corresponding to the horizontal component of slowness, i.e., ray parameter, x0,  which is

constant across the interface, i.e., the same for both incident and reflected waves.  The
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radius of the cross-section of the qSH-slowness surface in the xz-plane can be expressed

as the inverse of the phase velocity:

r ( )
( cos )

ξ
β γ ξ

=
+

1

10
2

. (3.37)

The slowness surface and the ray parameter, for a horizontal interface, can be

related by a formula for coordinate  transformation between the Cartesian and polar

systems:

x r( ) ( ) cos( )
cos

( cos )
ξ ξ ξ ξ

β γ ξ
= =

+0
21

. (3.38)

The above expression can also be expressed as a quadratic equation in cosξ:  For a

given the incidence angle, θi, and thus a fixed ray parameter, x0, one can calculate a

corresponding transmitted phase angle, ξ0:

x x0 0
2

0 0 0 0 0β γ ξ ξ βcos cos− + = . (3.39)

The “zero” subscript in ξ is used to indicate a specific value corresponding to the

ray parameter, x0.  It will be dropped in further development but any given value of  ξ is

functionally related to the ray parameter.  The discriminant of the quadratic equation

(3.39) illustrates the limitation imposed on the physical solutions requiring it to be

positive:

∆ = − >1 2 00 0
2( )x β γ . (3.40)

Since x0 is, in general, smaller than 1/β0, and γ << 1 for weak anisotropy, the

discriminant is, normally, positive and the solutions, in terms of the cosine function, real.

There are two algebraic solutions to the quadratic, that is:
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cos
( )

,ξ
β γ

β γ1 2
0 0

2

0 0

1 1 2

2
=

± − x

x
. (3.41)

It is obvious from Figure 2.2.1, and can be determined from equation (3.37), that

for noncritical incidence one must require that:

x r0
0

0
1

1
< = =

+
( )

( )
ξ

β γ
, (3.42)

i.e., the horizontal components of slowness must be contained within the slowness curve

of the transmission medium. This insures that the angle ξ is real, i.e., the value of the

cosine is smaller than unity.  For a standard solution one should choose the second root,

i.e., the subtraction in equation (3.41)11.  The first root, i.e., the addition, gives the value

greater than unity and results in a complex angle.  As a confirmation of this choice, one

can consider the limiting case γ → 0, and use the de l’Hôpital’s rule:

cos lim
( )

ξ
β γ

β γ
β

γ2
0

0
2

0 0
0 0

1 1 2

2
=

− −
=

−>

x

x
x , (3.43)

which, solved for x0, leads to the standard form of Snell’s law for isotropic media12.

                                                          
11 Considering vertical incidence, i.e., x0 = 0, one has cosξ1 = 2/0 and cosξ2 = 0/0.  The first result is
physically meaningless, whereas the second case becomes, using limits and de l’Hôpital’s rule cosξ2 = 0,
i.e., vertical incidence causes vertical transmission, as expected.
12 The limiting, i.e., isotropic case results in an expression for Snell’s law:

sin cosθ ξ
β

i

v
x

1
0

0

= = .
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Method of Calculation: Snell’s Law for Isotropic/Anisotropic Interface: Angle of
Transmission of an SH wave.

Given an SH wave with speed v in an isotropic medium incident at an angle θi on the
planar, horizontal interface separating it from an anisotropic medium with vertical speed
β0 and anisotropic parameter γ, the angle of transmission, θt , of qSH can be calculated by

following the steps below.

Method I

Step 1
Calculate the ray parameter, x0, given the angle of incidence, θI:

x
v

i
0 =

sinθ
,

Note that for the noncritical incidence one must choose

θ β γi Arc
v

< +





−cot ( )0

2

1 1

Step 2
Calculate the phase angle, ξ, in the anisotropic medium .

ξ
β γ

β γ
=

− −










Arc

x

x
cos

( )1 1 2

2
0 0

2

0 0

.

Step 3
Calculate the length of the radius of the phase-slowness surface in the anisotropic

medium corresponding to the calculated ray parameter, x0.

r ( )
( cos )

ξ
β γ ξ

=
+

1

10
2

.

Go to Variant A or to Variant B.

Variant A
Step 4

Calculate the angle of transmission of a qSH wave in the anisotropic medium.
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θ
ξ β γ ξ

ξ

ξ
β γ ξ

t Arc
r

r

=
−









+





















cos

sin cos
( )

[ ( )]
[ sin( )]

2
1

1
2

0
2

2 0
2

.

Mathematica code for Variant A is given below.

v  = velocity of a shear-wave in the isotropic layer, v.
B  = vertical shear-wave velocity in the anisotropic layer,βo.
g  = anisotropic parameter, γ.
m  = angle of incidence in degrees, θi

x = Sin[(m*Pi/180)]/v
z = ArcCos[(1-Sqrt[1-g*(2*x*B)^2])/(2*x*B*g)]
dz = 2*z
r = 1/(B*(1+g*Cos[z]^2))
n = Sin[z]*(2*B*g*Cos[z]^2-1/r)
d = Sqrt[1/r^2+(B*g*Sin[dz])^2]
N[ArcCos[Abs[n/d]]]

where the angle of transmission, θt, is given in radians.

Variant B
Step 4

Evaluate the derivative of phase-slowness radius and evaluate using the phase angle from
Step 2.

dr

dξ
γ ξ

β γ ξ
=

+
sin( )

( cos )

2

10
2 2

.

Step 5
Calculate the angle of transmission, θt, of a qSH wave in the anisotropic medium.

θ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ
t Arc

dr

d
r

dr

d
r

=
−

+



















cot

( )
( ) tan

( )
tan ( )

.

Mathematica Code for Variant B is given below.
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v  = velocity of a shear-wave in the isotropic layer, v.
B  = vertical shear-wave velocity in the anisotropic layer,βo.
g  = anisotropic parameter, γ.
m  = angle of incidence in degrees, θi.
x  = Sin[m*Pi/180]/v
z  = ArcCos[(1-Sqrt[1-(2*x*B)^2*g])/(2*x*B*g)]
dz = 2*z
r  = 1/(B*(1+g*Cos[z]^2))
dr = g*Sin[dz]/(B*(1+g*Cos[z]^2)^2)
N[ArcCot[(dr-r*Tan[z])/(dr*Tan[z]+r)]]

where the angle of transmission, θt, is given in radians.

Method II

Since the expression for SH wave slowness surface is equivalent to an ellipse one may
use, recalling the definition of γ, equation (2.23).
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3.4. A COMMENT TO USERS AND PROGRAMMERS

The results of some formulæ appearing in this development depart from intuitive

expectations based upon wave propagation in isotropic media.  Several interesting

phenomena of this nature are illustrated in this dissertation, e.g., Chapter VI.

Consequently, the correctness of results is difficult to ascertain by inspection.  A helpful

method to gain some insight  is provided by various limiting cases and interrelations

between equations.

Firstly, setting the anisotropic parameters to zero leads to well known isotropic

equations.  The form of the latter is very familiar, and, if desired, numerical examples can

easily be verified.

Secondly, the expressions for the three types of waves are related among

themselves.  Setting ε = δ results in elliptical velocity dependence for compressional

waves.  Transverse shear (SH) waves always, even in the case of strong anisotropy,

exhibit elliptical dependence.  Thus equating the two anisotropic parameters reduces the
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equations of compressional waves to the form displayed by those for transverse shear

waves.  Therefore, both compressional and transverse-shear-waves results can be tested

against each other as well as against the elliptical form of Snell’s law described in details

in Chapter II.  Also, the setting of ε = δ results in no angular velocity dependence for

radial shear (SV) waves under the weak-anisotropy approximation.  Hence, all formulæ

for radial shear waves should reduce to the isotropic form. Physical validity of setting the

anisotropic parameters to be equal is limited (e.g., Daley and Hron, 1977, Thomsen,

1986) but provides a method for testing derived expressions.

Thirdly, for vertical and horizontal directions of propagation, phase and group

velocities coincide. Therefore all equations are reduced to isotropic forms.

In many cases, because of the form of the anisotropic equations the process of

reducing one form of  equation to another might require some mathematical manipulation

and not just a straightforward substitution.  For instance, the concept of limits, and

various methods related to it (e.g., de l’Hôpital’s rule) might have to be used.

The interrelations stated above, although necessary for correctness of the derived

anisotropic equations, are not sufficient to prove it.  It is quite possible that, in the

reduction process, a canceling of a term due to the peculiar combination of values

annihilates the error existing in the general form.  To increase the confidence in

correctness of equations one can perform several calculations with increasing values of

anisotropic parameters.  The results should depart smoothly and monotonically from the

easily calculated isotropic case.

Another point should not escape one’s consideration.  As the anisotropy of the

medium increases, i.e., parameters δ, ε, and γ become larger, the adequacy of

formulations based on the weak-anisotropy assumption decreases.  Appendix 2 illustrates

the discrepancy between slowness surfaces obtained using exact and approximate

approaches, while Appendix 7 provides a starting point for development of exact

expressions of Snell’s law applying also to strongly anisotropic media.  The latter method

should be used if strong anisotropy is to be considered and/or an extremely high accuracy

is required.
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CHAPTER IV
RAYTRACING THROUGH A TWO-LAYER,

ISOTROPIC/ANISOTROPIC MEDIUM

4.0. INTRODUCTION

An important element of  studying wave propagation consists of the ability of

predicting theoretically the results which one would obtain by measuring, at a given

receiver, various aspects (e.g., amplitude, phase, traveltime) of a signal emitted by a

distant source.  A powerful and rather intuitive technique, for this purpose, is provided by

ray theory.  It is an approximation to the full wave theory and it derives from the approach

used in geometrical optics. With the aid of Snell’s law, using a raytracing theory, and

knowing all relevant parameters of the medium, one can calculate the trajectory of a ray

between the source and receiver, as well as the traveltime required.  This is a, so called,

forward problem or forward modelling: one calculates the results knowing all parameters.

The, in principle, more difficult, inverse problem, in which one infers parameters of the

medium from the results is treated in Chapter VIII.

The crucial point of raytracing between a given source and receiver consists of

finding the incidence (take-off) angle which, in combination with transmission angles,

obeying Snell’s law at all interfaces, yields the raypath corresponding to a given source-

receiver distance.  This is, as a matter of fact, a little inverse problem, here used in a

larger context of forward modelling. The required equation, for a two-layer case, can be

written as follows:
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X X X1 2+ = , (4.1)

i.e., the sum of horizontal distances travelled in the first, X1, and the second, X2, layer,

must equal the total horizontal distance between the source and receiver, X. In terms of

layer thickness, h1 and h2, as well as angles of incidence, θi, and transmission, θt, it can be

written as:

h h Xi t1 2tan tanθ θ+ = , (4.2)

or in terms of angle of incidence:

h h Xi t i1 2tan tan[ ( )]θ θ θ+ = , (4.3)

where the expression in square brackets denotes that the angle of transmission is a

function of the angle of incidence, i.e., Snell’s law.

4.1. MATHEMATICAL METHODS

4.1.1. General remarks

Even in isotropic layers, i.e.,  with no angular dependence of velocity, the above

equation has to be solved by iteration since one cannot express θi explicitly in terms of

all other variables and parameters.  The problem becomes still more computationally

intensive in anisotropic media. However, using the appropriate form of Snell’s law

derived in previous chapters, one can iterate the above equation for different values of the

incident angle, θi, until the solution is found.

In parameterizing the problem by considering a traveltime between two given

points, one can also use a more straightforward and computationally efficient approach of

Fermat’s principle of stationary time, described in section 4.1.3.  Note, however, that

Fermat’s formulation requires a simplification of  some expressions,  namely the formulæ

for phase and group velocities need to assume the same form.  It entails a loss of some
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physical attributes, and thus it has to be used with caution.  The problems arising from the

direct Fermat formulation are treated more fully in Chapter 6.

4.1.2. SH-wave raytracing based on the Snell’s law formalism

The computational method below is given for SH waves as an example of

raytracing using the Snell’s law formalism.  It is superior, for any given source-receiver

configuration, to the proposed computational method using the Fermat’s-principle

approach, as it reflects more accurately the relationship between phase and group speeds

(see Chapter VI and Appendix 6.).

Method of Computation: RayTracing for a Two-layer, Isotropic/Anisotropic
Medium Using Snell’s Law Formalism

Given a medium composed of  an isotropic layer of thickness h1, and anisotropic layer of
thickness h2 separated by a planar horizontal interface, with a source situated at the
surface of the isotropic layer and the receiver on the bottom of the anisotropic layer,

separated by a horizontal distance D, the incidence angle, θi, corresponding to a given
source-receiver separation can be calculated by following the steps below.

Incident SH ⇒⇒ Transmitted SH

X = horizontal distance between source and receiver, d.
ht = thickness of the isotropic layer, h1.
hb = thickness of the anisotropic layer, h2.
v  = velocity of a shear-wave in the isotropic layer, v.
B  = vertical shear-wave velocity in the anisotropic layer,βo.
g  = anisotropic parameter, γ.
x  = Sin[m]/v
z  = ArcCos[(1-Sqrt[1-(2*x*B)^2*g])/(2*x*B*g)]
dz = 2*z
r  = 1/(B*(1+g*Cos[z]^2))
t = Sin[z]*(2*B*g*Cos[z]^2-1/r)
b = Sqrt[1/r^2+(B*g*Sin[dz])^2]
s = ArcCos[Abs[t/b]]
FindRoot[ht*Tan[m]+hb*Tan[s]==X,{m,{0.1,0.3}}]

Note that the resulting incidence (take-off) angle is given in radians



59

4.1.3. Fermat’s-principle Approach

The operation of calculating the travelpath and  traveltime between a given source

and receiver can be facilitated significantly by using Fermat’s principle of stationary time,

provided one is willing to limit the approach to the fully linearized approach and thus to

decrease somewhat the accuracy (see Appendix 6).  At this point some clarification is

required.

Fermat’s principle of stationary time is, perhaps, the most fundamental concept of

raytracing theory.  Therefore, the above statement, implying some loss of accuracy by

using the Fermat’s-principle approach, calls for some explanation, since, in principle, the

most accurate of solutions must obey Fermat’s principle of stationary time.  The above-

mentioned loss of accuracy is a result of the method through which Fermat’s principle is

treated, not the essence of the principle itself.  The difficulty of the method lies in the fact

that Fermat’s principle relates to traveltime, which in turn, is intimately linked to the

concept of group angle and group velocity.  In order to calculate the group angle and the

magnitude of group velocity properly, one needs the expression for phase velocity and a

given value of phase angle (see equation (6.3)).  The given value of phase angle is

provided by the formalism of Snell’s law.  If one chooses to calculate group angles

directly by finding a stationary point of the traveltime, one must provide a function

describing group velocity with respect to a group angle.  Applying Thomsen’s (1986)

linearization of weak-anisotropy equations implies the equivalence of expressions for

phase, v, and group, V, velocities with corresponding phase, ϑ13, and group, θ, angles,

that is:

( ) ( )V vθ ϑ≅ . (4.4)

Although the above expression does not imply a general equivalence of phase and

group velocities, it constitutes a departure from the exact expression of equation (6.3).

Consequently, both ray path and traveltime calculated using the Fermat’s principle

                                                          
13  Recall that the angle ϑ is the phase angle measured with respect to the vertical, i.e., phase colatitude; it is
the complement of the angle ξ.
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approach suffer from (in the case of weak anisotropy) slight inaccuracy.

In considering various mathematical difficulties one must remember that,

physically speaking, Snell’s law is a direct consequence of Fermat’s principle and,

ideally, results obtained through either method must be identical. Fermat’s principle states

that the path of the ray between two points is such that the first-order variation with

respect to all neighbouring paths is zero.  In other words, it is the path of least or greatest

time.  To gain a more intuitive understanding of this concept one can visualize rays

travelling through a multitude of paths. However, in the neighbourhood of a stationary

path the rays travel in phase and arrive at the receiver at the same time, while the rays

travelling along other paths arrive at the receiver with various delays. The former scenario

leads to constructive interference while the latter scenario results in destructive

interference.   For a primary ray travelling in a stack of horizontal layers the path is a

minimum and the principle is often referred to as a principle of least time. For a P-P wave

in global geophysics (source and receiver at the surface, reflection at the surface in the

midpoint), for example, the path is one of maximum time with respect to lateral variation

of the position of the halfway reflection point.

As mentioned earlier, the approach based on Fermat’s principle used in this

dissertation, relies solely on the concept of group velocity.  The magnitude of the group

velocity, however, is a function of the phase velocity.  Thus, without an explicit formula

for phase velocity one needs to assume the same form of equations between for both

phase and group velocities as proposed by Thomsen (1986).  In the case of weak

anisotropy the accuracy of results is still very high, in spite of the simplifying assumption.

One has to be aware, however, of the assumptions made and their consequences.

Appendix 6 is devoted to an investigation of this matter, where from the point of view of

degree of approximation, the Fermat’s principle approach is equivalent to the linearized

approach.

In the context of  raytracing between a given source and receiver, Fermat’s

principle allows one to obtain results, which under assumptions of full linearization, are

equivalent to those reached via Snell’s law while being simpler from the calculational

viewpoint.  The approach using the calculation of Snell’s law, as described in Chapter II
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and Chapter III is necessary if one considers incidence, refraction and reflection of a ray

at an interface, without specifying two points between which the ray travels.  Also, the

case of non-horizontal layers calls for the Snell’s law formulation. It must be emphasized

that, the Snell’s law formalism, involving both phase and group velocities, is more

general in all cases, even when the two points, most commonly source and receiver, are

specified, but Fermat’s principle provides, algorithmically, a more straightforward

approach.  In other words, one may say that by adding some constraints to the problem,

i.e., the locations of the two end-points of the trajectory of the ray, one can omit the

explicit use of the Snell’s law formalism and obtain a result directly from Fermat’s

principle.  Also, since, as shown in Appendix 6, it yields results very close to those

obtained through a more exact method, it provides an independent verification of

algorithms and coding.  Furthermore, it forms the core of the inversion scheme developed

in Chapter VIII. Thus, taking advantage of the convenience of Fermat’s approach, the

case of  two anisotropic layers separated by an interface is considered.  The problem

consists in  determining the path of a ray shown in Figure 4.1.

For a given horizontal source-receiver separation, X, layer thicknesses H1, H2,

vertical wave speeds V1, V2, and anisotropic parameters δ1, δ2, ε1, ε2, or γ1, γ2, the problem

reduces to that of finding the path of stationary traveltime.  One can conveniently

parameterize the problem, denoting the distance between the refraction point and the

receiver as r, see Figure 4.1.  Both the distances travelled by a ray in a given medium and

the angles of propagation can be expressed in terms of r.  This results in a general form of

a  system of  equations (4.5) to be solved:

( )

( ) ( )
( )

( )

X r H

V r

r H

V r
t r

dt r

dr

− +
+

+
=

=















2
1
2

1

2
2
2

2

0

(4.5)

Appropriate expressions for group velocities V1(r) and V2(r) can be inserted

depending on the types of waves considered.  Namely, P-P,  SV-SV,  P-SV, SV-P, or SH

cases.
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Method of Computation: Raytracing for a Two-layer, Anisotropic/Anisotropic
Medium Using Fermat’s Principle

Incident SH ⇒⇒ Transmitted SH

X   =  horizontal distance between source and receiver
HJ  = thickness of the upper layer
HD  =  thickness of the lower layer
VJ  = vertical wave speed in the upper layer
VD   = vertical wave speed in the lower layer
GJ  = anisotropic parameter in the upper medium, γ1

GD   = anisotropic parameter in the lower medium, γ2

FindMinimum[
Sqrt[r^2-2*X*r+X^2+HJ^2]/
(VJ*(1+GJ*((X-r)^2/((X-r)^2+HJ^2))))+
Sqrt[r^2+HD^2]/
(VD*(1+GD*r^2/(r^2+HD^2))),{r,{0,X}}]

 

X

source r

          H1

H2

receiver

Figure 4.1. The illustration of a ray travelling through a
two-layer between a source and receiver separated by a
horizontal distance X.  The value of r corresponds to the
horizontal distance between the refraction point and the
receiver.
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4.2. RAYTRACING THROUGH A STACK OF SEVERAL

HORIZONTAL LAYERS

4.2.1. Raytracing method based on the global minimization of traveltime

The parameterization of the traveltime function based on the horizontal distance

between the refraction point and the receiver, r, can be used most conveniently for a two-

layer case, i.e., comprising only one interface at which refraction occurs.  In the case of a

model comprising several layers, the same approach leads immediately to a rather

complicated system, for there are as many different values of  r, as there are interfaces.

One can, of course, minimize the traveltime function with respect to several variables rj,

where j corresponds to an interface number.  Because of an extremely simple and

convenient way of programmeming such an approach in  Mathematica, the code is

given below.  There are, however, some reservations concerning fine precision using this

method (see Appendix 3).

Computational Method: Raytracing through  multiple anisotropic layers
using Fermat’s principle of stationary time formulation

Mathematica code for a three layer case.  Note that the code can be very easily extended
for any desired number of layers.  It suffices to add analogous modules in the

FindMinimum statement, and provide additional input information concerning those
layers.

X   = horizontal source/receiver distance
HJ  = thickness of the first layer
HD = thickness of the second layer
HT = thickness of the third layer
GJ  = anisotropic parameter in the first layer
GD  = anisotropic parameter in the second layer
GT  = anisotropic parameter in the third layer
VJ  = vertical speed in the first layer
VD = vertical speed in the second layer
VT = vertical speed in the third layer

FindMinimum[
traveltime in the first layer

HJ*Sec[ArcTan[(X-rj)/HJ]]/
(VJ*(1+GJ*Sin[ArcTan[(X-rj)/HJ]]^2))+
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traveltime in the second layer
HD*Sec[ArcTan[(rj-rd)/HD]]/
(VD*(1+GD*Sin[ArcTan[(rj-rd)/HD]]^2))+

traveltime in the third layer
HT*Sec[ArcTan[(rd/HT)]]/
(VT*(1+GT*Sin[ArcTan[(rd/HT)]]^2)),

{rj,0,X},{rd,0,X}]

4.2.2. Raytracing method based on Snell’s law

One can also parameterize the raypath without direct use of the traveltime.  Using

Snell’s law, the entire model can be parameterized with a single value of r.  For instance,

r can correspond to the horizontal distance between the refraction point and the receiver

for the first interface. Thus one defines the take-off angle in terms of r, and follows

through other interfaces, obeying Snell’s law for anisotropic media.  In general the offset

equation can be written as a series of horizontal distances traveled in each layer (equation

(4.6)).  The  use of r, as opposed to a take-off angle itself, θ1 or θi, is introduced by

design, as it proves to be convenient in inverse calculations (Chapter VIII). Thus:

( ) tan ....... tanX r H H Xn n− + + + =2 2θ θ . (4.6)

The value of θ1 is given immediately as a function of r, and all subsequent values

of θ are related to the previous one by Snell’s law.  Therefore, the entire raypath is

parameterized in terms of r, the horizontal distance between the refraction point and the

receiver, r, for the first interface.

4.2.3. Raytracing through multiple layers (SH waves or any waves with elliptical

phase-velocity dependence).

Elliptical velocity dependence allows for many a valuable mathematical

demonstration.  It is, from the mathematical point of view, the most convenient

formulation of anisotropy.  Isotropy is a special case of this formulation, as a circle is a

particular ellipse, one for which the foci coincide.  The elliptical velocity dependence can
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be defined with two parameters, e.g., horizontal and vertical speeds as used in section

2.4.1, or vertical speed and the anisotropic parameter γ as in the case of weak-anisotropy

approximation for SH waves as illustrated by equation (3.30). Note that the phase

velocity of P and SV waves, requires three parameters as illustrated by equations (3.1)

and (3.20) respectively.

There exists, however, a conflict between physical applicability and mathematical

elegance.  Helbig (1994) states that elliptic anisotropy although it exists is so rare an

occurrence that it seems hardly worth an extended discussion.  However, according to

Helbig, it is important for several reasons.  In particular, elliptical slowness curves, i.e.,

two dimensional cross-sections of slowness surfaces, are not as rare, by far, as ellipsoidal

slowness surfaces.  In other words, although a velocity surface might not be ellipsoidal,

various selected cross-sections might be elliptical. For transversely isotropic media, SH

waves exhibit elliptical slowness curves for all planes that contain the axis of symmetry14.

The concepts of elliptical anisotropy, with all that it entails are perfectly applicable to the

propagation of SH waves in TI media, as the wavefronts of SH waves are always

ellipsoids.  In general, the wavefronts of P  and SV waves are not ellipsoids, thus for

those waves, the concept of elliptical anisotropy can be, at best, an approximation.

Certain pieces of  the wavefront may be represented with sufficient accuracy by ellipsoids

(Helbig, 1983).  Illustrations of various slowness curves are shown in Appendix 2; it is

clear that although some of them could be very well approximated by ellipses, others

exhibit peculiarities of shapes which do not lend themselves to such an approximation.

A strict adherence to the mathematical formulation of elliptical velocity

dependence for compressional waves, in the context of transversely isotropic media,

implies that δ = ε in the equations for phase velocities (Thomsen, 1986).  This implies,

(see equation (3.20)) an isotropic SV wave, i.e., no angular dependence (e.g., Daley and

Hron, 1977).  This according to Thomsen (1986) constitutes a nonphysical situation. In a

general case, it can, however, according to Helbig (1994), be a natural consequence of a

particular symmetry if the combination of elastic constants is such that:

                                                          
14 Note that following the definition of transverse isotropy, in the plane perpendicular to the symmetry axis,
slowness curves for all waves are circular.
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( )( ) ( )C C C C C C11 55 33 55 13 55
2 0− − − + = , (4.7)

in which case the qP wave possesses an elliptical slowness curve, while the qSV wave

has a circular one.  Early field studies, e.g., of Dunoyer de Segonzac and Laherrere

(1959), who used elliptical velocity dependence to reconcile theory and observation from

vertical seismic profiles (VSP), indicate that the usefulness of elliptical formulation, goes

beyond an elegant expression of mathematically tractable equation.  Dellinger (1991)

states appropriately in the conclusions of his doctoral dissertation “even elliptical

anisotropy is better than nothing”.

Firstly, in many cases, the velocity dependence resembles an elliptical shape, and

can, within the experimental context, e.g., in exploration geophysics, be approximated by

an ellipse.  As Dellinger and Muir (1988) point out, geophysicists, for reasonable offsets,

find the hyperbolic move-out a good approximation, although it is not strictly true. They

conclude by remarking that the hyperbolic moveout assumption is equivalent to an

elliptical wavefront assumption, thus the elliptical model applies in any case where the

hyperbolic moveout approximation is appropriate.

Secondly, for an SH wave the elliptical velocity dependence holds true even in the

case of strong anisotropy.  Thus, the formulation based on elliptical velocity dependence

provides an excellent basis for shear-wave exploration, and might be used as a reasonably

approximation for compressional waves in some circumstances.

Dellinger (1991) shows by visualizing an ellipse as a stretched circle that, in

general, only SH waves can undergo the stretching without losing the orthogonality of

polarization (particle motion) with respect to other wave types.  The simple coordinate

stretching transforming a circle into an ellipse for either P- or SV- wavefronts entails the

loss of the orthogonality of particle motion which is intrinsically embedded in the

standard elastic-wave equation.

There also exists, introduced by Muir (see Michelena, Muir, and Harris, 1993), a

double elliptical approximation, which fits a wider range of P and SV wavefronts.

Particularly, it fits well some SV wavefronts which can be described as resulting from the
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superposition of two ellipses, with major axes perpendicular to each other, e.g., Figure

A2.1.(j).  The double elliptical approximation is not, however, used in this dissertation.

.
Computational Method: Raytracing through  multiple layers using Snell’s law

formulation for SH waves

A Mathematicacode for calculating the raypath travelling across three layers.  The
surface layer is assumed to be isotropic while deeper layers are anisotropic. Note that the

code can be very easily extended for any desired number of layers.  It suffices to add
analogous modules, and provide additional input information concerning those layers.

X   = horizontal source/receiver distance
HJ  = thickness of the first layer
HD = thickness of the second layer
HT = thickness of the third layer
GD  = anisotropic parameter in the second layer
GT  = anisotropic parameter in the third layer
VJ  = vertical speed in the first layer
VD = vertical speed in the second layer
VT = vertical speed in the third layer

(Calculation of the ”take-off” angle and the ray parameter)
Qi = ArcTan[(X-r)/HJ]
x   = Sin[Qi]/VJ

(Calculation of phase zd and group sd angle in the second layer)
zd  = ArcCos[(1-Sqrt[1-(2*x*VD)^2*GD])/(2*x*VD*GD)]
dzd= 2*zd
rd = 1/(VD*(1+GD*Cos[zd]^2))
drd = GD*Sin[dzd]/(VD*(1+GD*Cos[zd]^2)^2)
sd = N[ArcCot[(drd-rd*Tan[zd])/(drd*Tan[zd]+rd)]]

(Calculation of phase zt and group st angle in the third layer)
zt  = ArcCos[(1-Sqrt[1-(2*x*VT)^2*GT])/(2*x*VT*GT)]
dzt= 2*zt
rt = 1/(VT*(1+GT*Cos[zt]^2))
drt = GT*Sin[dzt]/(VT*(1+GT*Cos[zt]^2)^2)
st = N[ArcCot[(drt-rt*Tan[zt])/(drt*Tan[zt]+rt)]]

(Iterative procedure of finding the appropriate value of r)

FindRoot[r+HD*Tan[sd]+HT*Tan[st]==0, {r,{0.5*X,0.99*X}}]
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CHAPTER V
TRAVELTIMES IN WEAKLY ANISOTROPIC MEDIA

5.0. INTRODUCTION

Dealing with wave phenomena in anisotropic media one must distinguish between

group and phase velocities. Field  measurements of traveltime and distance often yield

group velocity. Phase velocity is linked intimately with mathematical description of

reflection and transmission, e.g., Snell’s law.  Thus experimental testing of applicability

of a mathematical formalism would often require the establishment of a relationship

between group and phase velocities.

By definition (e.g., Winterstein, 1990), group velocity is the speed at which wave

energy travels in a given direction radially outward from a point source in a homogeneous

elastic anisotropic medium.  In anisotropic media both group and phase velocities vary

with direction, just as they vary with frequency in attenuating media.  The quotient of

distance between a point source and a point receiver, and elapsed traveltime, yields the

value of group velocity.

By definition (e.g., Crampin, 1989), phase velocity is the velocity in the direction

of the phase propagation vector, normal to the surface of constant phase.  Phase velocity

appears naturally in most analytical and numerical expressions.  The quotient of distance

between a source generating plane waves and a receiver, and the elapsed traveltime yields

the value of phase velocity. Such measurements can be performed in laboratory setting

(e.g., Dellinger and Vernik, 1994; Vestrum, 1994).
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In isotropic elastic media, group and phase velocities coincide.  In anisotropic

media, group and phase velocities can coincide along particular trajectories.  For instance,

in transversely isotropic media with a vertical symmetry axis (TIV) at vertical and

horizontal propagation, group velocity equals phase velocity.  This property plays a key

rôle in linking theoretical development with experimental verification of results.  It

allows one to physically measure vertical sound speeds αo and βo, for compressional and

shear waves, respectively, that are equivalent to phase velocities and appear throughout

the entire theoretical development.

5.1. MAGNITUDE OF GROUP VELOCITY

5.1.1. Magnitude of group velocity using the linearized method

Berryman (1979) gives the equation for the scalar magnitude of group velocity in

terms of phase velocity and phase angle.  Employing the form used by, e.g., Thomsen

(1986) and Brown et al. (1991), and measuring phase angle, ξ, from the horizontal for

consistency with development in this dissertation, yields:

[ ]V v
dv

d
2 2

2

θ ξ ξ
ξ

( ) ( )= +






 , (5.1)

or

V v
v

dv

d
= +







1

1
2

2

ξ
, (5.2)

 where V and v refer to group and phase velocities respectively.

Developing equation (5.2) into a Taylor series one obtains:
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Based on equation (5.3), one can say that, correct to the first order:
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[ ]V vθ ϑ ϑ( ) ( )= . (5.4)

In some applications, within the realm of weak anisotropy, equation (5.4) can yield results

of sufficient accuracy.

Equation (5.4) is not to be understood as an equivalence of  group and phase

velocities. Except for a spherical wavefront, i.e., perfect isotropy, and particular

symmetry directions where the normal to the wavefront (direction of phase velocity) is

parallel to the radius (direction of  group velocity) the two velocities are not equivalent. In

this dissertation, equation (5.4) means that in weakly anisotropic media, for a given group

angle, θ, the group velocity can be approximated using the form of equations (3.1), (3.20)

and (3.30).

In the case of two layers separated by a planar interface, in the anisotropic

medium of transmission the group speed of a given ray can be calculated using the group

angle, θt, derived from the phase angle, ξ, and  the ray parameter x0.

Method of Computation: Group Speed for a qP wave, qSV wave or qSH wave

Transmitted Across an Isotropic/Anisotropic Interface assuming Full Linearization.

 Given a planar, horizontal interface between an isotropic medium with an incident P

wave, SV wave or SH wave with speed v at an angle of incidence, θi, and an anisotropic

medium  with the vertical group/phase speed of a compressional wave α0, and the vertical

group/phase speed of a shear wave, β0, anisotropic parameters δ, ε and γ, as well as the

angle of transmission, θt, calculated using the Snell’s law formalism, the group speed, V,

can be calculated using the steps below.

Incident P  or SV ⇒⇒ Transmitted qP

Step 1

Calculate the angle of transmission, θt, using Snell’s law for isotropic/anisotropic

interface

Step 2
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Calculate the group speed, V(θt).

V t t t t( ) ( sin cos sin )θ α δ θ θ ε θ= + +0
2 2 41

Incident P or SV ⇒⇒ Transmitted SV

Step 1

Calculate the angle of transmission, θt, using Snell’s law for isotropic/anisotropic

interface

Step 2

Calculate the group speed, V(θt).

V t t t( ) ( ) sin cosθ β α
β

ε δ θ θ= + −








0

0
2

0
2

2 21

Incident SH ⇒⇒ Transmitted SH

Step 1

Calculate the angle of transmission, θt, using Snell’s law for isotropic/anisotropic

interface

Step 2

Calculate the group speed, V(θt).

V t t( ) ( sin )θ β γ θ= +0
21 .

Note: The angle, θ, is the transmitted group angle, usually referred to, e.g., Thomsen

(1986), Brown et al (1991), as φ.
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5.1..2. Magnitude of group velocity using the approximate method

More accurate and, above all, physically more interesting results reflecting the

distinction between phase and group velocities are obtained using the exact expression

provided by Berryman (1979):

 [ ]V v
dv

d
2 2

2

θ ϑ ϑ
ϑ

( ) ( )= + 





, (5.5)

where V and v refer to group and phase velocities respectively.  Using the expressions for

phase velocities of P, SV, and SH waves, in terms of the phase angle, ϑ, measured with

respect to the normal to the interface, shown below (Thomsen, 1986):

vqP ( ) ( sin cos sin )ϑ α δ ϑ ϑ ε ϑ= + +0
2 2 41 , (5.6)

vqSV( ) ( ) sin cosϑ β
α
β

ε δ ϑ ϑ= + −








0

0
2

0
2

2 21 , (5.7)

and

vSH( ) ( sin )ϑ β γ ϑ= +0
21 , (5.8)

one can obtain expressions for group velocities:

( )[ ] [ ] ( ) ( ) ( )[ ]VqP θ ϑ α δ ϑ ϑ ε ϑ ϑ ε δ ε ϑ= + + + + −1 2 22 2 4 2 2 2
cos sin sin sin cos ,

(5.9)

( )[ ] ( ) ( ) ( )
VqSV θ ϑ β

α ε δ ϑ ϑ
β

α ε δ ϑ
β

= +
−







 +

−
1

4

4

2 2 2

2

2 4 2 2

2

sin cos sin
, (5.10)
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and

( )[ ] [ ] ( )[ ]VqSH θ ϑ β γ ϑ γ ϑ= + +1 22 2 2
sin sin . (5.11)

In order to use equations (5.9), (5.10) and (5.11) one must first express ray angle,

θ, as a function of  the corresponding phase angle, ϑ.  Note that one could also apply

equation (5.5) to exact expressions for phase velocities (equations (A2.1), (A2.2), and

(A2.3)).  However, the resulting expressions for qP and qSV waves become very

complicated, and, in the case of weak anisotropy, a very small increase in accuracy is paid

for by a very large increase in complexity (see Appendix 6).  Nevertheless, should one

desire to derive the Snell’s law for strong anisotropy there appear to be no fundamental

difficulties (see Appendix 7).

Method of Computation: Group Speed for a qP wave, qSV wave or qSH wave

Transmitted Across an Isotropic/Anisotropic Interface using weak-anisotropy

formulation.

 Given a planar, horizontal interface between an isotropic medium with an incident P

wave, SV wave or SH wave with speed v at an angle of incidence, θi, and an anisotropic

medium  with the vertical group/phase speed of a compressional wave α0, and the vertical

group/phase speed of a shear wave, β0, anisotropic parameters δ, ε and γ, as well as the

angle of transmission, θt, calculated using the Snell’s law formalism, the group speed, V,

can be calculated using the steps below.

Incident P  or SV ⇒⇒ Transmitted qP

Step 1

Calculate the angle of transmission, θt, using Snell’s law for isotropic/anisotropic

interface, while retaining the corresponding phase-angle colatitude, ϑ, measured with

respect to the normal to the interface
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Step 2

Calculate the group speed, V[θt(ϑ)], i.e., the group speed of a ray propagating at a group

angle, θ, associated with the phase angle, ϑ.

( )[ ] [ ] ( ) ( ) ( )[ ]VqP θ ϑ α δ ϑ ϑ ε ϑ ϑ ε δ ε ϑ= + + + + −1 2 22 2 4 2 2 2
cos sin sin sin cos

Incident P or SV ⇒⇒ Transmitted SV

Step 1

Calculate the angle of transmission, θt, using Snell’s law for isotropic/anisotropic

interface, while retaining the corresponding phase-angle colatitude, ϑ, measured with

respect to the normal to the interface

Step 2

Calculate the group speed, V[θt(ϑ)], i.e., the group speed of a ray propagating at a group

angle, θ, associated with the phase angle, ϑ.

( )[ ] ( ) ( ) ( )
VqSV θ ϑ β

α ε δ ϑ ϑ
β

α ε δ ϑ
β

= +
−







 +

−
1

4

4

2 2 2

2

2 4 2 2

2

sin cos sin

Incident SH ⇒⇒ Transmitted SH

Step 1

Calculate the angle of transmission, θt, using Snell’s law for isotropic/anisotropic

interface, while retaining the corresponding phase-angle colatitude, ϑ, measured with

respect to the normal to the interface

Step 2

Calculate the group speed, V[θt(ϑ)], i.e., the group speed of a ray propagating at a group

angle, θ, associated with the phase angle, ϑ.

( )[ ] [ ] ( )[ ]VqSH θ ϑ β γ ϑ γ ϑ= + +1 22 2 2
sin sin .
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5.2. TRAVELTIME CALCULATIONS

As mentioned above, the measured traveltime is the function of the group

velocity.  Thus having an expression for group velocity one can compute the time taken

by a signal to travel between a given source and receiver.  For a medium composed of an

isotropic and an anisotropic layer such calculations can be performed with the aid of

Snell’s law derived in Chapters II and III.  The Mathematica codes to perform

traveltime calculations using nonlinearized expressions for group velocity (equations

(5.9), (5.10), and (5.11)) are given below.

Computational Method: Traveltime Between a Source and Receiver Across a Two-
Layer Isotropic/Anisotropic Medium.

Incident P or SV ⇒⇒ Transmitted qP

N.B. The programme below takes, as a starting point, the incident angle, θi, and, for given
layer thicknesses, h1 and h2, as well as other model parameters, calculates the traveltime
and the horizontal source-receiver distance.  I.e., it does not search for the take-off angle

corresponding to a given source receiver separation.

m  = angle of incidence (in radians)
ht = thickness of the isotropic layer, h1.
hb = thickness of the anisotropic layer, h2.
v  = wave speed in the isotropic layer, v.
A  = vertical compressional wave speed in the anisotropic layer, αo.
d  =  anisotropic parameter, δ .
e  =  anisotropic parameter, ε..
x  = Sin[m]/v
FindRoot[A*x*(e-d)*C^4+A*x*d*C^2-C+A*x==0,{C,0.5,0,1}]
z  = ArcCos[C/.%]
dz = 2*z
r  = 1/(A*(1+d*Sin[z]^2*Cos[z]^2+e*Cos[z]^4))
dr = (Sin[dz]*Abs[d*Cos[dz]-
2*e*Cos[z]^2])/(A*(1+d*Sin[z]^2*Cos[z]^2+e*Cos[z]^4)^2)
s  =ArcCot[Abs[(dr-r*Tan[z])/(dr*Tan[z]+r)]]
phi = Pi/2-z
N[ht/(Cos[m]*v)+
hb/(Cos[s]*
A*Sqrt[(1+d*Sin[phi]^2*Cos[s]^2+e*Sin[phi]^4)^2

+Sin[2*phi]^2*(e+(d-e)*Cos[2*phi])^2])]
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N[ht*Tan[m]+hb*Tan[s]]

Incident P or SV ⇒⇒ Transmitted qSV

N.B. The programme below takes, as a starting point, the incident angle, θi, and, for given
layer thicknesses, h1 and h2, as well as other model parameters, calculates the traveltime
and the horizontal source-receiver distance.  I.e., it does not search for the take-off angle

corresponding to a given source receiver separation.

m  = angle of incidence (in radians)
ht = thickness of the isotropic layer, h1.
hb = thickness of the anisotropic layer, h2.
v  = wave speed in the isotropic layer, v.
A  = vertical compressional wave speed in the anisotropic layer, α0.
B  = vertical shear wave speed in the anisotropic layer, β0.
d  =  anisotropic parameter, δ .
e  =  anisotropic parameter, ε..
x  = Sin[m]/v
FindRoot[(A^2*x*(e-d)/B)*C^4-(A^2*x*(e-d)/B)C^2+C-x*B==0,{C,0.5,0,1}]
z  = ArcCos[C/.%]
dz = 2*z
r  = 1/(B*(1+(A/B)^2*(e-d)*Sin[z]^2*Cos[z]^2))
t  = Sin[z]/r+(A^2/B)*Cos[z]*(e-d)*Sin[dz]*Cos[dz]
b  = Sqrt[1/r^2+((A^2/B)*(e-d)*Sin[dz]*Cos[dz])^2]
s  =ArcCos[Abs[t/b]]
N[ht/(Cos[m]*v)+
hb/(Cos[s]*
(B*Sqrt[ (1+(A/B)^2*(e-d)*Sin[phi]^2*Cos[phi]^2)^2

+(A^4*(e-d)^2*Sin[4*phi]^2)/(4*B^2)]))]
N[ht*Tan[m]+hb*Tan[s]]

Incident SH ⇒⇒ Transmitted qSH

N.B. The programme below calculates the traveltime given the horizontal source-receiver
separation, X, and other model parameters.  I.e., it does search for the take-off angle

corresponding to a given source-receiver separation.

X  = horizontal distance between the source and receiver
ht  = thickness of the isotropic layer, h1.
hb = thickness of the anisotropic layer, h2.
v   =  shear wave speed in the isotropic medium, v.
B   =  vertical shear wave speed in the anisotropic medium, β0.
g    =  anisotropic parameter, γ.
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x  = Sin[m]/v
z  = ArcCos[(1-Sqrt[1-(2*x*B)^2*g])/(2*x*B*g)]
dz = 2*z
r  = 1/(B*(1+g*Cos[z]^2))
t = Sin[z]*(2*B*g*Cos[z]^2-1/r)
b = Sqrt[1/r^2+(B*g*Sin[dz])^2]
s = ArcCos[Abs[t/b]]
Cr = N[ArcCot[Sqrt[((B/v)*(g+1))^2-1]]]
FindRoot[ht*Tan[m]+hb*Tan[s]==X,{m,{0.000001,0.5}}]
mf = m/.%
sf = ArcTan[(X-ht*Tan[mf])/hb]
xf  = Sin[mf]/v
zf  = ArcCos[(1-Sqrt[1-(2*xf*B)^2*g])/(2*xf*B*g)]
phi = Pi/2-zf
N[ht/(Cos[mf]*v)+hb/
(Cos[sf]*B*Sqrt[(1+g*Sin[phi]^2)^2+(g*Sin[2*phi])^2])]

Appendix 6 provides a study, based on SH waves, involving traveltime

calculations using exact, approximate, and linearized expressions for velocity.  All in all,

within the realm of weak anisotropy, the discrepancies between numerical values yielded

by the three approaches are relatively small.  More importantly, however, certain physical

attributes are obscured by the process of linearization.  For instance, the distinction

between the phase and group angle becomes less clear in the raytracing process.  The

importance of this distinction, particularly in relation to SV waves, is demonstrated in

Chapter VI.
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CHAPTER VI

ANISOTROPIC/ANISOTROPIC INTERFACE

6.0. INTRODUCTION

Chapter II provided a rather general formalism for calculating reflection and

transmission angles (Snell’s law) at an interface between two anisotropic media.  The two

media were characterized by phase slowness surfaces expressed in terms of Cartesian

components x, y, and z.  Chapter III used the rather general, but less directly applicable

template provided in Chapter II to express the relation between incidence and

transmission angles for compressional and shear waves under the assumption and

approximations of weak anisotropy.  The explicit formulæ were derived for a case of

isotropic/anisotropic interface.  This scenario allows a more straightforward initiation of

the process of raytracing (Chapter IV and Chapter V), and, above all, is perfectly

applicable to the prediction and analysis of results of physical modelling (Chapter VII).  If

the medium of incidence is anisotropic the ray parameter, x0, cannot be found directly

from the angle of incidence because, in general, the group and phase angles are not equal.

In this chapter, the basic formulæ relating incident and transmitted angles for shear and

compressional waves are derived, under the assumptions of weak anisotropy for a case of

an interface between two anisotropic media.

In the transversely isotropic (TI) medium there are, similarly to the isotropic case,

three distinct and independent solutions.  They correspond to the quasi-longitudinal,

quasi-transverse and transverse waves.  The directions of polarization are mutually

orthogonal.  The purely transverse wave, denoted as SH, has a direction of particle



79

displacement, i.e., polarization, perpendicular to the direction of propagation.  Its

slowness curves in the plane of the symmetry axis are always elliptical, even in the case

of strong anisotropy (e.g., Helbig 1994).  The polarization of the remaining waves is not

pure.  In the case of compressional (P) wave, the particle displacement is not perfectly

aligned with the direction of propagation.  In the case of shear (SV) wave, the particle

displacement is not perfectly perpendicular to the direction of propagation.  For this

reason those two waves should be referred to as quasi-longitudinal and quasi-shear.  In

some cases of extreme anisotropy it is conceivable for the polarization to be so impure

that the description of a wave as quasi-compressional or quasi-shear becomes impossible.

As remarked by Winterstein (1990), theory allows for phenomena that are not observed

from data in real rocks. There seems to be no experimental evidence that such impure

polarizations exist in sedimentary rocks (Winterstein, 1990).

Therefore, it appears reasonable and useful to derive refraction formulæ for two

principal scenarios.  The first one consisting of the incidence and transmission of a

perfectly transverse (SH) wave, and the second one of the incidence and transmission of

quasi-compressional (qP) and quasi-shear (SV) wave.  Those two cases result from the

Christoffel equation in the transversely isotropic medium which is separated into two

decoupled systems (e.g., Dellinger, 1991). Assuming, without any loss of generality, that

the propagation occurs in the xz-plane, the particle displacement of an SH wave is

perfectly parallel with the y-axis.  In the case of propagation in the TIV-medium, where

any azimuth constitutes a symmetry plane, the polarizations of quasi-compressional (qP)

and quasi-shear (qSV) waves are contained in the plane of propagation, i.e., xz-plane.

Probably, in the case of weak anisotropy, as encountered in sedimentary rocks, the off-

plane component of polarization, in any symmetry system, is small.  Thus considering the

two distinct cases (SH and P, SV) mentioned above should constitute a valid approach. It

is important to realize, however, that since the polarization of quasi-compressional and

quasi-shear waves, in a general case, contains  all three Cartesian components an incident

wave of one type will generate all three reflected and transmitted waves.

Since, in the present case, there is no danger of confusion one can refer,

particularly under the assumption of weak anisotropy, to the aforementioned waves as P



80

and SV thus omitting the prefix quasi. Such notation is strictly correct with respect to SH

waves.

6.1. THE APPROACH

In the generalized formalism dealing with the interface between two anisotropic

media, derived in Chapter II, the angles of incidence and refraction are related through the

continuity conditions across the boundary, i.e., through the ray parameter, x0.  Thus, in the

general method, one does not necessarily express the angle of transmission as a function

of the angle of incidence, but both are expressed as functions of the ray parameter. In

many cases it is possible to express the angle of transmission as a function of the angle of

incidence, e.g., in the case of the elliptical velocity dependence illustrated in Chapter II.

In other cases such an expression can be very complicated or outright impossible.  In such

a case one needs to resort to some numerical scheme.  In Chapter III, the difficulty was

overcome by assuming the medium of incidence to be isotropic.  This implies that the ray

(group) and phase angles coincide and the ray parameter can be very easily related to the

angle of incidence, θi, and the wave speed in the isotropic medium, v, namely:

x
v

i
0 =

sinθ
 . (6.1)

In an anisotropic medium, i.e., with a nonspherical phase-slowness surface, one

first needs to find a point on the phase-slowness surface at which the direction of the

normal is the same as that of the desired incident ray15.  The horizontal component of the

slowness curve at this point yields the desired ray parameter, x0.  This requires finding the

phase angle, ξ, as a function of a group angle, θ, i.e., the opposite of the procedure

illustrated in Chapter III.

A considerable simplification of the process could be provided by considering the

linearized expressions for the relationships between phase and group angles (Thomsen,

                                                          
15 Note that for a sufficiently complex slowness surface there may be  several points exhibiting the same
direction of the normal to the surface.
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1986).  For instance, in the case of P waves the group, θ, and phase, ϑ, angles are

expressed as follows:

[ ]tan tan ( ) sinθ ϑ δ ε δ ϑ= + + −1 2 4 2 , (6.2)

where ε and δ denote the anisotropic parameters.  Similar formulæ are given for SV and

SH  waves (Thomsen, 1986)16.   They  all stem from simplifying assumptions which are a

further consequence of the notion of weak anisotropy.  Using the basic equations of weak

anisotropy, which allow for mathematically manageable manipulations without all the

entailing simplifications, leads to more accurate results as shown in the Appendix 6.  This

dissertation, attempts to avoid, wherever possible, the use of approximate formulæ and

thus the more complicated route is taken. The repeated use of approximate formulæ, for

instance in a multi-layer case, can lead to a significant numerical errors about which a

geophysicist  should be aware (e.g., Brown, 1988).

6.2. SPECIFIC CASES

In the remainder of this chapter the algorithms for several cases are developed and

described.  Firstly, a distinct case of a purely polarized shear (SH) wave is treated.

Secondly, the most common case in exploration seismology of incident and transmitted

compressional waves (P-P) is shown. Thirdly, an interesting case of a converted wave is

considered; namely, the incident compressional and reflected shear wave (P-SV).  The

remaining two cases (SV-P and SV-SV) are not shown explicitly but their treatment is

analogous to the ones shown.

                                                          
16 The results obtained using the linearized relationship between phase and group angles for SV waves
seems to yield incorrect results (see Figures 6.10 and 6.12).  For this particular reason, as well as to increase
the accuracy of the approach the non-linearized expressions are used.
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6.2.1. SH-SH case

The case of the incident SH wave and the transmitted SH wave has several

appealing features.  Above all it stands on its own as a physical phenomenon occurring in

a transversely isotropic medium.  Mathematically, the expressions related to SH waves

exhibit greater simplicity than either P or SV waves.  Also, since it is known (e.g.,

Helbig, 1994) that the slowness curves of SH waves in any vertical plane of a transversely

isotropic (TIV) medium are  always elliptical, one can compare the results obtained under

the weak-anisotropy assumption with the results obtained using elliptical geometry in the

general scheme as described in Chapter II.  Such a comparison is equivalent to the

comparison between the exact and an approximate solutions (see Appendix 6).

Computation Method: Incidence and transmission Angles at an
Anisotropic/Anisotropic Interface

Incident SH ⇒⇒ Transmitted SH

Step 1

Solve for the phase angle, ξ,  in the medium of incidence, given the incidence
angle, θi.

θ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ
i Arc

dr

d
r

dr

d
r

=
−

+



















cot

( )
( ) tan

( )
tan ( )

 ,

where

r ( )
( cos )

ξ
β γ ξ

=
+

1

10
2

,

and

dr

dξ
γ ξ

β γ ξ
=

+
sin( )

( cos )

2

10
2 2

.
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The equation can be written as a double cubic in cosξ, and thus, in principle, can be
solved analytically.

Step 2

Calculate the ray parameter, x0, using the equation below. Choose the value of ξ which
corresponds to the quadrant of the incidence angle.

x0
0

21
=

+
cos

( cos )

ξ
β γ ξ

.

Note that for a ray incident to the left of the normal, i.e., the second quadrant, x0 < 0.

Step 3

Using the ray parameter, x0, constant for all interfaces, calculate the phase angle, ξ, in the
medium of transmission

ξ
β γ

β γ
=

− −










Arc

x

x
cos

( )1 1 2

2
0 0

2

0 0

Step 4
Calculate the angle of transmission, θt.

θ
ξ β γ ξ

ξ

ξ
β γ ξ

t

o

Arc
r

r

=
−









+





















cos

sin cos
( )

[ ( )]
[ sin( )]

2
1

1
2

2

2 0
2

where:

r ( )
( cos )

ξ
β γ ξ

=
+

1

10
2

The Mathematica code is given below.

Qi  = angle of incidence, θi, in radians.
VJ  = vertical speed in the medium of incidence
VD  = vertical speed in the medium of transmission
GJ  = anisotropic parameter, γ, for SH-waves or δ = ε, for elliptical P-waves, in 

the medium of incidence.



84

GD  = anisotropic parameter, γ, for SH-waves or δ = ε, for elliptical P-waves, in 
the medium of transmission.

R   = Qi
ri  = 1/(VJ*(1+GJ*Cos[zi]^2))
dri = 2*GJ*Sin[zi]*Cos[zi]/(VJ*(1+GJ*Cos[zi]^2)^2)
FindRoot[Cot[Qi]==
(dri-ri*Tan[zi])/(dri*Tan[zi]+ri), {zi,R,-Pi,Pi}]
zif = Abs[zi/.%]
x   = N[Abs[Cos[zif]/(VJ*(1+GJ*Cos[zif]^2))]]
zt  = ArcCos[(1-Sqrt[1-(2*x*VD)^2*GD])/(2*x*VD*GD)]
dzt= 2*zt
rt = 1/(VD*(1+GD*Cos[zt]^2))
phi = N[Abs[Pi/2 - zif]]
Vpi = VJ*(1+GJ*Cos[zif]^2)
Vgi =  N[VJ*Sqrt[(1+GJ*Sin[phi]^2)^2+

(GJ*Sin[2*phi])^2]]
s = N[ArcCos[

Abs[Sin[zt]*(2*VD*GD*Cos[zt]^2-1/rt)/
Sqrt[1/rt^2+(VD*GD*Sin[dzt])^2]]]]

pht = N[Abs[Pi/2 - zt]]
Vpt = VD*(1+GD*Cos[zt]^2)
Vgt = N[VD*Sqrt[(1+GD*Sin[pht]^2)^2+

(GD*Sin[2*pht])^2]]
Note that the resulting value of ξ appears in radians.

To completely describe the phenomena occurring at the boundary one needs to

provide both phase, ϑ, and group,  θ, angles as well as phase, v, and group, V, velocities.

The phase velocity is the inverse of already obtained phase slowness, r(ξ).  Note that

while the symbol,ξ, denotes the phase latitude, i.e., the angle measured from the

horizontal, the symbol, ϑ, denotes the phase colatitude, i.e., the angle measured from the

vertical.  This notation is consistent throughout the entire dissertation.

The group velocity is obtained from a well known relationship (see Chapter  V

and Appendix 6),

( )[ ] ( )
V v

dv

d
2 2

2

θ ϑ ϑ
ϑ
ϑ

= +






( ) , (6.3)
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and for SH waves, under the assumption of weak anisotropy, is given by:

( )[ ] ( ) ( )[ ]V θ ϑ β γ ϑ γ ϑ≅ + +1 22 2 2
sin sin . (6.4)

Note that a fully linearized consequence of weak anisotropy implies:

( )[ ] ( )V vθ ϑ ϑ β γ ϑ= ⇒ +( ) sin1 2 , (6.5)

i.e., the second additive term under the square root which exists in equation (6.4)

disappears in equation (6.5).  The linearization increases the discrepancy between the

exact and the approximate solutions and therefore is not used in this development.  For a

more thorough investigation of  various degrees of approximation, the reader is referred

to the Appendix 6.

6.2.1.1 Numerical example

 Consider a planar horizontal interface between two anisotropic media.  The upper

medium has the vertical wave speed, β = 2000 m/s, and the anisotropic parameter γ =

 - 0.15.  The lower medium has the vertical wave speed, β = 3000 m/s, and the anisotropic

parameter, γ = + 0.2.  The ray strikes the interface from above at the angle, θ i = 20o.

Using the graphical illustration one can, to facilitate the construction, superpose

two slowness curves (Figure 6.1).  Since the phase velocity in the medium of

transmission is significantly higher than the phase velocity in the medium of incidence,

the entire slowness curve of the lower medium lies inside the slowness curve of the upper

medium.  Since the anisotropic parameters for either medium are of the opposite signs the

major and minor axes of either curve coincide with different coordinate axes.  A positive

anisotropic parameter, γ > 0, means that the horizontal speed is greater than the vertical

speed, which   entails flattening on the equator of the slowness surface. Negative

anisotropic parameter, γ < 0, means that the vertical speed is greater than the horizontal
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speed, which entails flattening on the poles of the slowness surface. Using the fact that

the ray parameter, in this case measured along the horizontal axis, i.e., parallel to the

interface, is equal for both incident and transmitted waves one can construct

corresponding angles.

      θi
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    mi

       x
   ϑt

 mt              wt

 θt

    

-0.0006 -0.0004 -0.0002 0.0002 0.0004 0.0006

-0.0004
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Figure 6.1. Slowness curves of SH waves in slowness space, i.e., cross-sections of
corresponding slowness surfaces in a vertical plane, for media of incidence (outer) and
transmission (inner).  The units are those of slowness, i.e., s/m. The ray (group) angles are
denoted as θi and θt  for incidence  and transmission respectively.  The wave (phase)
angles are denoted as ϑi and ϑt for incidence  and transmission respectively.  Symbols w
and m with respective subscripts denote to the ray and phase vectors in the upper and
lower medium.  Note that the shape of slowness surfaces is consistent with the sign of
anisotropic parameters: γ < 0 ⇒ vx < vz ⇒ slowness curve flattened along the z-axis, γ >
0⇒ vx> vz ⇒ slowness curve flattened along the x-axis.

Using the derived algorithm one can calculate all the quantities illustrated above.

The examination of results shows a clear distinction between phase and group
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phenomena, which form an intrinsic element of wave propagation in anisotropic media.

Several important relations between those quantities are described in section 6.3.

Medium of Incidence,
SH wave

Medium of Transmission,
SH wave

Group angle, θθ, [deg.] 20 62.57915511
Phase angle,ϑϑ, [deg.] 27.17059411 52.83375609

Group velocity, V, [m/s] 1952.72 3430.02
Phase velocity, v, [m/s] 1937.44 3381.02

Ray parameter, x0, [s/m]
(horizontal slowness)

0.000235694 0.000235694

Table 6.1. Computational results for an SH-SH case. (N.B. All digits returned by the
computer programme were kept in order to compare various approaches and algorithms
used within Mathematica.)

To better visualize the events at the interface the ray diagram at the interface is

illustrated by Figure 6.2.  The energy propagates in the direction of the ray, while the

wavefronts propagate in the direction of the wave vector, k.

β = 2000 m/s
γ = - 0.15

k
wave
  fronts     ray

wave
      θt    fronts

β = 3000 m/s

γ = + 0.20 ϑt

    k

Figure 6.2. A ray diagram of an SH wave at a horizontal
interface between two anisotropic layers.  Note that the
wavefronts are not perpendicular to the direction of the
propagation of the ray.
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6.2.2. P-P case

In spite of growing interest in shear waves, compressional waves are still the most

commonly recorded waves in seismic exploration.  Shear waves are difficult to generate

and record at the surface due to the unconsolidated surficial material which poorly

support shear stresses.  In the case explicitly considered in this chapter, namely

propagation within a symmetry plane, or equivalently, within any plane of a TIV medium

containing the symmetry axis, the incidence of a P wave entails, apart from the generation

of transmitted P wave, generation of a transmitted SV wave.   Such  mode conversion is

treated in section 6.2.3, while below only incident and transmitted P waves are

considered.  One should note that although neglecting the mode conversion in the

calculation of the reflection and transmission coefficients leads to erroneous results, the

calculation of reflection and transmission angles, on the other hand, can be considered

separately for each case.

Computation Method: Incidence and transmission Angles at an
Anisotropic/Anisotropic Interface

Incident P ⇒⇒ Transmitted P

Step 1

Solve for the phase angle, ξ,  in the medium of incidence, given the incident
angle, θi.

θ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ
i Arc

dr

d
r

dr

d
r

=
−

+



















cot

( )
( ) tan

( )
tan ( )

 ,

where
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r ( )
( sin cos cos )

ξ
α δ ξ ξ ε ξ

=
+ +

1

10
2 2 4

,

and

( ) ( )[ ]dr

dξ
ξ ε δ ξ ε ξ

α δ ξ ξ ε ξ
=

− +
+ +

sin( ) cos cos

( sin cos cos )

2 2 2

10
2 2 4 2

.

Step 2

Calculate the ray parameter, x0, using the equation below. Choose the value of ξ which
corresponds to the quadrant of the incidence angle.

x( )
cos

( sin cos cos )
ξ ξ

α δ ξ ξ ε ξ
=

+ +0
2 2 41

.

Note that for a ray incident to the left of the normal, i.e., the second quadrant, x0< 0.

Step 3

Using the ray parameter, x0, constant for all interfaces, calculate the phase angle, ξ, in the
medium of transmission

α ε δ ξ α δ ξ ξ α0 0
4

0 0 0
2

0 0 0 0 0x x x( ) cos cos cos− + − + =

This is a quartic equation yielding a unique real angle.

Step 4
Calculate the angle of transmission, θt.

( )
θ

α ξ ξ δ ξ ε ξ ξ
ξ

ξ
α ξ δ ξ ε ξ

t Arc
r

r

=
− −

+ −





















cos

cos sin( ) cos( ) cos
sin

( )

[ ( )]
[ sin( )( cos( ) cos ]

0
2

2 0
2 2

2 2 2

1
2 2 2

where:

r ( )
( sin cos cos )

ξ
α δ ξ ξ ε ξ

=
+ +

1

10
2 2 4

The Mathematica code is given below.
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Qi    = angle of incidence in radians
VJ    = vertical speed in the medium of incidence
VD   = vertical speed in the medium of transmission
EJ    = anisotropic parameter in the medium of incidence, ε
DJ   = anisotropic parameter in the medium of incidence, ε
ED   = anisotropic parameter in the medium of transmission, δ
DD   = anisotropic parameter in the medium of transmission, δ
R   = Qi
ri  = 1/(VJ*(1+DJ*Sin[zi]^2*Cos[zi]^2+EJ*Cos[zi]^4))
dri = Sin[2*zi]*(EJ-DJ*Cos[2*zi]+EJ*Cos[2*zi])/

(VJ*(1+EJ*Cos[zi]^4+DJ*Cos[zi]^2*Sin[zi]^2)^2)
FindRoot[Cot[Qi]==

(dri-ri*Tan[zi])/(dri*Tan[zi]+ri), {zi,R,-Pi,Pi}]
zif = Abs[zi/.%]
x   = N[Abs[Cos[zif]/

(VJ*(1+DJ*Sin[zif]^2*Cos[zif]^2+EJ*Cos[zif]^4))]]
FindRoot[VD*x*(ED-DD)*C^4+VD*x*DD*C^2-C+VD*x==0,{C,0.5,0,1.5}]
z  = ArcCos[C/.%]
dz = 2*z
r  = 1/(VD*(1+DD*Sin[z]^2*Cos[z]^2+ED*Cos[z]^4))
t = VD*Cos[z]*Sin[dz]*(Abs[DD*Cos[dz]-2*ED*Cos[z]^2])-Sin[z]/r
b = Sqrt[1/r^2+(VD*Sin[dz]*(DD*Cos[dz]-2*ED*Cos[z]^2))^2]
m = Qi
phj = N[(Pi/2-zif)]
Vpj = VJ*(1+DJ*Sin[phj]^2*Cos[phj]^2+EJ*Sin[phj]^4)
Vgj = Sqrt[(VJ*(1+DJ*Sin[phj]^2*Cos[phj]^2+EJ*Sin[phj]^4))^2+

(VJ*Sin[2*phj]*(EJ+DJ*Cos[2*phj]-EJ*Cos[2*phj]))^2]
s = ArcCos[Abs[t/b]]
phd=N[(Pi/2-z)]
Vpd = VD*(1+DD*Sin[phd]^2*Cos[phd]^2+ED*Sin[phd]^4)
Vgd = Sqrt[(VD*(1+DD*Sin[phd]^2*Cos[phd]^2+ED*Sin[phd]^4))^2+

(VD*Sin[2*phd]*(ED+DD*Cos[2*phd]-ED*Cos[2*phd]))^2]

6.2.2.1. Numerical example

Consider a planar horizontal interface between two anisotropic media.  In the

upper medium, the vertical wave speed, α1 = 3000 m/s, ε1= - 0.2 and δ1 = 0.1.  In the

lower medium, the vertical wave speed, α2 = 4000 m/s, and ε2 = + 0.15 and δ2 = -0.2.

The ray strikes the interface from above at an incidence angle of θ i= 30o.
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Figure 6.3. Compressional (P) wave slowness curves, i.e., cross-sections
of corresponding slowness surfaces in a vertical plane.  α1 = 3000 m/s, α2

= 4000 m/s,  ε1 =  -0.2, ε2 = 0.15 , δ1= 0.1, δ2 = -0.2.  The outer curve
corresponds to the “slower” medium of incidence.  The inner curve
corresponds to the “faster” medium of transmission.  The meaning of
various symbols is described in Figure 6.1.

Medium of Incidence,
P waves

Medium of Transmission,
P wave

Group angle, θθ, [deg.] 30 64.00912599
Phase angle,ϑϑ, [deg.] 35.57282955 51.53445969
Group velocity,V, [m/s] 3012.69 4133.32
Phase velocity, v, [m/s] 2998.45 4035.73
Ray parameter, x0, [s/m]
(horizontal slowness)

0.000194013 0.000194013

Table 6.2. Computational results for a P-P case.
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Using the algorithm presented above for incident and transmitted compressional

waves one can calculate all the quantities illustrated above.  Several important relations

between those quantities are described in section 6.3.

To better visualize the events at the interface the ray diagram at the interface is

illustrated by Figure 6.4.  The energy propagates in the direction of the ray, while the

wavefronts propagate in the direction of the wave vector, k.

α = 3000 m/s
ε = - 0.2

k           δ = + 0.1

wave
  fronts     ray

wave
      θt    fronts

α= 4000 m/s

ε= + 0.15 ϑt

δ = - 0.2     k

Figure 6.4. A ray diagram of a P wave at a horizontal
interface between two anisotropic layers.

6.2.3. P-SV case

As already mentioned above, P  and SV waves are coupled, i.e., an incident P

wave generates an SV wave and vice-versa.  As an interesting case, a converted P-SV

propagation is illustrated.  Clearly, one can easily combine several approaches to also

obtain refraction laws for SV-SV and SV-P cases.

Computation Method: Incidence and transmission Angles at an
Anisotropic/Anisotropic Interface

Incident P ⇒⇒ Transmitted SV
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Step 1

Solve for the phase angle, ξ,  in the medium of incidence, given the incidence
angle, θi.

θ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ
i Arc

dr

d
r

dr

d
r

=
−

+



















cot

( )
( ) tan

( )
tan ( )

 ,

where

r ( )
( sin cos cos )

ξ
α δ ξ ξ ε ξ

=
+ +

1
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2 2 4

,

and

( ) ( )[ ]dr

dξ
ξ ε δ ξ ε ξ

α δ ξ ξ ε ξ
=

− +
+ +

sin( ) cos cos

( sin cos cos )

2 2 2

10
2 2 4 2

.

Step 2

Calculate the ray parameter, x0, using the equation below. Choose the value of ξ which
corresponds to the quadrant of the incidence angle.

x( )
cos

( sin cos cos )
ξ ξ

α δ ξ ξ ε ξ
=

+ +0
2 2 41

.

Note that for a ray incident to the left of the normal, i.e., the second quadrant, xo < 0.

Step 3

Using the ray parameter, x0, constant for all interfaces, calculate the phase angle, ξ, in the
medium of transmission

α ε δ
β

ξ α ε δ
β

ξ ξ β0
2

0

0

4 0
2

0

0

2
0 0 0

x x
x

( )
cos

( )
cos cos

−
−

−
+ − =

This is a quartic equation yielding a unique real angle.
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Step 4
Calculate the angle of transmission, θt.

θ

ξ
ξ

α
β

ξ ε δ ξ ξ

ξ
α
β

ε δ ξ ξ

t Arc
r
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The Mathematica code is given below.

Qi    = angle of incidence in radians
VJ    = vertical speed of the compressional wave in the medium of incidence
VPD   = vertical speed of the compressional wave in the medium of transmission
VSD   = vertical speed of the shear wave in the medium of transmission
EJ    = anisotropic parameter in the medium of incidence, ε
DJ   = anisotropic parameter in the medium of incidence, ε
ED   = anisotropic parameter in the medium of transmission, δ
DD   = anisotropic parameter in the medium of transmission, δ
R   = Qi
ri  = 1/(VJ*(1+DJ*Sin[zi]^2*Cos[zi]^2+EJ*Cos[zi]^4))
dri = Sin[2*zi]*(EJ-DJ*Cos[2*zi]+EJ*Cos[2*zi])/

(VJ*(1+EJ*Cos[zi]^4+DJ*Cos[zi]^2*Sin[zi]^2)^2)
FindRoot[Cot[Qi]==

(dri-ri*Tan[zi])/(dri*Tan[zi]+ri), {zi,R,-Pi,Pi}]
zif = Abs[zi/.%]
x   = N[Abs[Cos[zif]/

(VJ*(1+DJ*Sin[zif]^2*Cos[zif]^2+EJ*Cos[zif]^4))]]
FindRoot[(VPD^2*x*(ED-DD)/VSD)*C^4-

(VPD^2*x*(ED-DD)/VSD)C^2+C-x*VSD==0,{C,0.5,0,1}]
z  = ArcCos[C/.%]
dz = 2*z
r  = 1/(VSD*(1+(VPD/VSD)^2*(ED-DD)*Sin[z]^2*Cos[z]^2))
t  = Sin[z]/r+(VPD^2/VSD)*Cos[z]*(ED-DD)*Sin[dz]*Cos[dz]
b  = Sqrt[1/r^2+((VPD^2/VSD)*(ED-DD)*Sin[dz]*Cos[dz])^2]
m = Qi
phj = N[(Pi/2-zif)]
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Vpj = VJ*(1+DJ*Sin[phj]^2*Cos[phj]^2+EJ*Sin[phj]^4)
Vgj = Sqrt[(VJ*(1+DJ*Sin[phj]^2*Cos[phj]^2+EJ*Sin[phj]^4))^2+

(VJ*Sin[2*phj]*(EJ+DJ*Cos[2*phj]-EJ*Cos[2*phj]))^2]
s = ArcCos[Abs[t/b]]
phd=N[(Pi/2-z)]
Vp = VSD*(1+(VPD/VSD)^2*(ED-DD)*Sin[phd]^2*Cos[phd]^2)
Vg = Sqrt[
(VSD*(1+(VPD/VSD)^2*(ED-DD)*Sin[phd]^2*Cos[phd]^2))^2+
((ED-DD)*VPD^2*Sin[4*phd]/(2*VSD))^2]

6.2.3.1. Numerical example

Consider a planar horizontal interface between two anisotropic media.  In the

upper medium, the vertical P-wave speed, α1 = 3000 m/s, and ε1= - 0.2 and δ1 = 0.1.  In

the lower medium, the vertical P-wave speed, α2 = 4000 m/s, the vertical SV-wave speed,

β2 = 2000 m/s, ε2 = + 0.15 and δ2 = -0.2.  The ray strikes the interface from above at an

angle of θ i= 30o.

Incidentally, one notices that the SV slowness curve of the for the chosen

anisotropic parameters δ and ε would be difficult to approximate by an ellipse for the

entire range of angles.  One could, however, use the elliptical approximation in the

neighbourhood of the vertical and horizontal axes, or use the double-elliptical

approximation for the entire slowness curve (see Michelena et al., 1993).  In this case

Thomsen’s (1986) equations were used.

Medium of Incidence,
P wave

Medium of Transmission,
SV wave

Group angle, θθ, [deg.] 30 55.68662754
Phase angle,ϑϑ, [deg.] 35.57282955 29.08058748
Group velocity,V, [m/s] 3012.69 2801.9
Phase velocity, v, [m/s] 2998.45 2505.2
Ray parameter, x0, [s/m]
(horizontal slowness)

0.000194013 0.000194013

 Table 6.3. Computational results for a P-SV case.
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Figure 6.5. P- and SV- slowness curves.  α1 = 3000 m/s, α2 = 4000 m/s, β2

= 2000 m/s.  ε1 =  -0.2, ε2 = 0.15 , δ1= 0.1, δ2 = -0.2. The meaning of
various symbols is described in Figure 6.1.

Using the algorithm presented above for incident compressional wave and

transmitted shear wave, one can calculate all the quantities illustrated in Figure 6.5.

Several important relations between those quantities are described in section 6.3.1.

To better visualize the events at the interface the ray diagram at the interface is

illustrated by Figure 6.6.  The energy propagates in the direction of the ray, while the

wavefronts propagate in the direction of the wave vector, k.
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α = 3000 m/s
ε = - 0.2

k           δ = + 0.1

wave
  fronts     ray

wave
β = 2000 m/s       θ t    fronts
α= 4000 m/s

ε= + 0.15        ϑt

δ = - 0.2      k

Figure 6.6. A ray diagram of an P wave incident at a
horizontal interface between two anisotropic layers and
generating a transmitted SV wave.

6.3. PHYSICAL IMPLICATIONS

6.3.1. Points of verification

There are several ways which allow to confirm the correctness of the solution, i.e.,

to verify that the results obtained from the proposed algorithm are in agreement with

certain fundamental requirements.  The fulfillment of those requirements constitutes

necessary conditions for the validity of the method.

Firstly, the phase, ϑ, and group, θ, angles, as well as the magnitudes of phase, v,

and group, V, velocities must satisfy the following equation in either medium:

( ) ( )
( )

cosθ ϑ
ϑ
θ

− =
v

V
. (6.6)

Secondly, the phase angles and phase velocities must satisfy the following

equation across the interface:
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( )
( )

( )
( )

sin sinϑ
ϑ

ϑ
ϑ

1

1 1

2

2 2v v
=  , (6.7)

where the subscripts 1 and 2 correspond to the upper and lower medium respectively.

This, of course, is the most standard form of Snell’s law, which is always valid for phase

angles and phase velocities.

Thirdly, Fermat’s principle of stationary time must be satisfied.  This is not

obvious from a quick inspection.  As a matter of fact, if one observes the P-SV case with

“isotropic” intuition, one might suspect a contradictory result.  Namely, if the energy of

the signal travels at the group velocity, why is the transmitted ray, going from the “faster”

to the “slower” medium bent away from the normal?  In other words, isotropic intuition

would dictate the following relationship:

V V1 2 1 2> ⇔ >θ θ  , (6.8)

where subscripts 1 and 2 correspond to quantities in the medium of incidence and

transmission respectively.  No such relation can be formulated in anisotropic media, as

illustrated, for instance, by comparing the P-P and the P-SV cases.  Nevertheless,

Fermat’s principle of stationary time is satisfied, although in a less intuitive way due to

the complexity of the slowness surfaces. By calculating traveltimes for various

neighbouring paths one could convince oneself that Fermat’s principle implies a

stationary traveltime path.  An analogous procedure is performed in Chapter VIII.  To

gain deeper understanding of phenomena related to wave propagation in anisotropic

media, it is important to investigate further this “nonintuitive” behaviour in the context

presented above.

6.3.2. Refraction angle and Fermat’s principle

Considering primary rays in horizontal layers one assumes that Fermat’s principle

of stationary time is equivalent to the principle of least time.  In other words, one expects
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the chosen path to be such as to minimize the traveltime with respect to all the

neighbouring paths.  Since the “unusual” occurrence of a ray bending away from the

normal upon the transmission into the slower medium originates in the complicated

appearance of the slowness curve in the medium of transmission, one can assume the

upper medium to be isotropic and focus one’s investigation on the lower, anisotropic

medium.

To demonstrate that the phenomenon of “unusual” ray bending occurs even if the

medium of incidence is isotropic one can use the developed algorithm while setting the

anisotropic parameters in the upper medium to zero.  The results are displayed in Table

6.4.

Medium of Incidence,
P wave

Medium of Transmission,
SV wave

Ray (group) angle, θθ,
[deg.]

30 53.80320067

Phase (wave) angle,
ϑϑ, [deg.]

30 23.24799172

Ray (group) velocity
[m/s]

3000 2750.16

Phase (wave) velocity
[m/s]

3000 2368.27

Ray parameter, x0 , [s/m]
(horizontal slowness)

0.000166667 0.000166667

 Table 6.4. Computational results for an isotropic/anisotropic model.

Quick verification of results in Table 6.4 shows that the continuity conditions, and

the relationship between the magnitudes of phase and group velocities, as described in

section 6.3.1, are satisfied.  The ray bends away from the normal in spite of the fact that

the group velocity decreases across the interface.  The purpose of this section is to

develop a more intuitive understanding of this phenomenon which is not immediately

obvious using intuition derived from the realm of isotropy.

To visualize more clearly the way in which Fermat’s principle of stationary time is

satisfied one has to recall that it minimizes the time between two fixed points on the

trajectory of the ray.  Inspecting the behaviour of relationship between incident and
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transmitted angles without a clear understanding of the consequences of this condition

can lead one’s intuition astray.

Preparatory to considering two fixed points and propagation from one to the other,

let us first consider a plot of phase, v, and group, V, velocities as a function of the phase

angle, ϑ, (Figure 6.7).  Note two local maxima of group velocity, V = 2801.9 m/s, at ϑ =

29.2o, and at ϑ = 60.8o.  Note that the magnitudes of phase, v, and group, V, velocities are

equal to each other at ϑ = 0, π/4, π/2, i.e., points where phase and group angles are equal

to each other, as can be seen from the slowness surface illustrated in Figure 6.5, or the

plot of group versus phase angle shown in Figure 6.10.  The minimization of traveltime

creates an optimal compromise between the distance travelled by the ray and angle at

which the group speed is high.

Velocity [m/s]

Phase angle (degrees)

20 40 60 80

2200

2400

2600

2800

Figure 6.7. Phase, v, and group, V, velocities as function of phase angle, ϑ,
for an SV wave with following parameters: α = 4000 m/s,  β = 2000 m/s, δ
= -0.2, ε = 0.15.
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Consider now a suite of angles of incidence and observe the behaviour of the

phase and group angles.  Examining Figure 6.8 and Table 6.5 one notices that the phase

angle in medium 2 is always smaller than the incident phase angle, i.e., the phase vector

always bends towards the normal upon the refraction.  The ray vector, on the other hand,

bends away from the normal for smaller angles of incidence and towards the normal for

larger angles of incidence.  It is the trajectory of the ray that is directly related to Fermat’s

principle of stationary time.  Note that since the medium of incidence is assumed to be

isotropic, both wave and ray vectors coincide in medium 1.

angle of
incidence

[deg.]

 group angle
[deg.]

transmission

phase angle
[deg.]

transmission

phase velocity
[m/s]

transmission

group velocity
[m/s]

transmission
0 0 0 2000 2000
10 24.1519 6.77613 2038.44 2135.91
20 42.7885 14.2521 2159.42 2458.04
30 53.8032 23.248 2368.27 2750.16
40 54.5711 33.8401 2599.04 2778.97
50 46.5519 43.5496 2698.21 2701.92
60 39.3765 50.5321 2674.22 2725.72
70 35.9959 55.0618 2617.14 2769.04
80 34.8479 57.622 2572.68 2790.21
89 34.6118 58.4451 2556.81 2795.17

Table 6.5. Group and phase angles and velocities of an SV wave in an anisotropic
medium of transmission  (α = 4000 m/s,  β = 2000 m/s, δ = -0.2, ε = 0.15) related to the
set of angles of incidence in an isotropic medium (α = 3000 m/s).  Note that although the
phase angle in the medium of transmission grows monotonically with increasing angle of
incidence, the behaviour of the group angle is more complicated.
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PHASE and GROUP ANGLES vs. ANGLE OF INCIDENCE
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Figure 6.8. Phase and group angles as functions of the incidence angle for SV waves with
the following parameters: α = 4000 m/s, β = 2000 m/s, δ = -0.2, ε = 0.15.  The velocity in
the isotropic medium of incidence is v = 3000 m/s. The line with the slope equal to unity,
i.e., group and phase angle in medium 1, allows one to see clearly that, although the phase
angle in the medium of transmission is always smaller than either phase or group angle in
the medium of incidence, the behaviour of the group angle in the medium of incidence is
more complicated.
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PHASE and GROUP VELOCITIES vs. ANGLE OF 
INCIDENCE
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Figure 6.9. Phase and group velocities as a function of the incidence angle for SV waves
with following parameters: α = 4000 m/s, β = 2000 m/s, δ = -0.2, ε = 0.15.  The velocity
in the isotropic medium of incidence v = 3000 m/s.

Let us now consider two trajectories of rays between points A-B, and A-C,

respectively. Point A is located in the upper, incidence medium, at a vertical distance of

1000 metres from the horizontal, planar interface separating the isotropic and anisotropic

layers. Points B and C are located in the lower, transmission medium, at a vertical

distance of 1000 metres from the horizontal, planar interface.  The horizontal distance

(offset) between points A and B is 2163.99 metres, and between points A and C is

6367.54 metres.

OFFSET ANGLE OF
INCIDENCE

PHASE
ANGLE

GROUP
ANGLE

GROUP
VELOCITY

2163.99 35 28.44198746 55.66067255 2801.25
6367.54 85 57.62198311 34.84792335 2790.21

 Table 6.6. Computational results for two source-receiver offsets (see also Table 6.7).
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GROUP ANGLE vs. PHASE ANGLE
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Figure 6.10. Group angle as a function of phase angle for an SV wave with
following parameters: α = 4000 m/s,  β = 2000 m/s, δ = -0.2, ε = 0.15.
Notice the triplication of the group angle, i.e., the same value of the group
angle corresponds to three distinct values of phase angle.

In the first case, A - B, the ray bends away from the normal upon

transmission into the slower medium. In the second case, A - C, the ray bends towards the

normal upon transmission into the slower medium. Notice that the highest speed in the

medium of  transmission, V = 2801.9 m/s, is always smaller than the isotropic speed in

the medium of incidence, V = 3000 m/s.  One observes that in either case the group

velocity in medium 2 is close to its maximum. In the first case, the group velocity is close

to the local maximum corresponding to the phase angle, ϑ = 29.2o, and in the second case

the group velocity is close to the local maximum corresponding to the phase angle, ϑ =

60.8o; see Figure 6.7.
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A
v = 3000 m/s

 1000 m

V = 2801.25 m/s                                       V =2790.21 m/s   1000m
β = 2000 m/s

       B           ε = +0.15 δ = -0.2 C

     2163.99 m
       6367.54 m

  Figure 6.11.  Illustration of consequences of Fermat’s principle of stationary time.  To
minimize the traveltime for two different offsets in the same medium, the ray bends away
from the normal travelling between points A and B, and towards the normal  travelling
between points A and C, in spite of the fact that the group speed in the medium of
transmission is always lower than in the medium of incidence.  Such phenomenon cannot
occur in isotropic media.

The traveltimes for a signal travelling from point A to B, and from A to C are

1.08681 s and  2.38543 s, respectively.  No other trajectory for either pair of points can

yield a shorter traveltime.  Consider the signal between points A and B.  Shortening of the

raypath in the slower medium of transmission entails a smaller group angle in this

medium. At a smaller group angle, the group velocity, within the range allowed by the

two end-points A and B, is lesser than at larger group angles (at smaller values, group

angle is monotonically increasing with the phase angle as illustrated by Figure 6.7).  Thus

the optimization requires a larger propagation angle in medium 2, entailing a longer

raypath in the slow, anisotropic medium of transmission in order to approach the relative

maximum of propagation speed.  The local maximum available within the constraint of

two fixed points A and B is the one located at the phase angle, ϑ = 29.2o.  For travelling

between points A and C, which because of the larger distance separating the two points

allows a wider range of incidence and transmission group angles, both local maxima are
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available and the maximization of group velocity can be achieved together with

shortening the raypath in the slow medium of transmission.

Thus one can conclude that incidence and transmission angles result, just like in

the isotropic case, from an optimal compromise between the distance traveled and speed

at which the signal travels.  In the anisotropic case there is an additional degree of

freedom, stemming from the very concept of velocity anisotropy, and provided by the

variation of speed with the propagation angle. This introduces an additional complication

rendering the intuitive understanding more difficult, yet not impossible.  “Anisotropy is

not hopeless” (Dellinger, 1991).

6.4. REMARKS ON THE METHOD

The treatment shown above illustrates another instance of considerations

described in detail in Appendix 6.  The development of exact expressions for phase

velocities for P, SV and SH waves in Taylor series, and subsequent truncation of higher-

order terms under the assumption of weak anisotropy (Thomsen, 1986) allows for a very

accurate analytical treatment of physical phenomena occurring at the interface between

anisotropic media.  Distinction between phase and group angles is preserved, and ray

bending according to Snell’s law is consistent with Fermat’s principle.  One might argue,

therefore, that  compromise between mathematical simplification and physical

consideration is acceptable, i.e., no major physical phenomenon is lost in the process of

simplification.

This is not the case under full linearization, i.e., while carrying out the

simplification process further in all equations, e.g., the relationship between phase and

group velocity or the relationship between the phase and group angles.  The linearized

expression between the group, θ, and phase,ϑ , angles is given by Thomsen (1986):

( )tan tan
sin cos

θ ϑ
ϑ ϑ ϑ ϑ

= +








1

1 1

v

dv

d
. (6.9)



107

The plot using relationship (6.9) yields, in the case of SV waves, the graph of

group vs. phase angles displayed in Figure 6.12.

θ (radians)

       ϑ (radians)

0.25 0.50 0.75 1.0
0

1.25 1.5

-1.50

-1.0

 -0.5

  0.5

1

Figure 6.12. Group angle, θ, as a function of phase angle,
ϑ, based on the linear approximation.  Note, by comparing
to Figure 6.10, that for phase angles larger than about 0.5
radian, i.e., 28 degrees, the approximation fails.

Furthermore, the fully linearized expression for group velocity uses only the first

term on the right-hand side of equation (6.3), ignoring the derivative term (Thomsen,

1986). This implies that the group velocity, V, as a function of the group angle, θ, is

identical to the phase velocity, v, as a function of phase angle, ϑ, illustrated in Figure

6.7.  The two local maxima are lost in the process of linearization.  Also, the highest

value of group velocity obtained through a linearized scheme is lower than the value

obtained based on the assumption of weak anisotropy without full linearization.

Considering Fermat’s principle of stationary time and minimizing the traveltime using a

fully linearized scheme yields results shown in Table 6.7.

The traveltimes are 1.03522 s and 2.3379 s for A-B and A-C cases respectively.

One might, at first, be disturbed by the fact that in the fully linearized case the

traveltimes are smaller than in the more complete approach.  Is Fermat’s principle

violated in the more complete approach?  The answer to this question is negative.  The

linearized method, by ignoring a physically more realistic description, provides a
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mathematical minimum of a traveltime function.  The linearized method does not take

into account some consequences of angular dispersion.

OFFSET ANGLE OF
INCIDENCE

GROUP
ANGLE  IN

MEDIUM OF
TRANSM.

GROUP
VELOCITY
IN MEDIUM
OF TRANSM.

2163.99 49.77104235 44.47564370 2699.77
6367.54 79.07536780 49.87792552 2679.90

 Table 6.7. Computational results using linearized scheme (see also Table 6.6).

The interesting concept of bending away or towards the normal in order

to optimize the propagation speed is lost in the linearized approach.  Nevertheless, the

traveltimes obtained by either approach are within a few percent of each other whereas

the traveltime calculation ignoring anisotropy altogether leads to a much larger

discrepancy ( 1.20111 s and  2.52532 s for A-B and A-C cases respectively).

It has been observed through many modelling results involving various

“anisotropic” approaches that, regardless of the method used, the values of resulting

traveltime are relatively close to each other and, most importantly, to experimental

results (Chapter VII).  It is the values of phase and group angles, rather than traveltimes,

which vary much more significantly.  Such a state of affairs is not surprising.  All

approaches attempt to minimize the traveltime within given constraints.  Therefore, the

final result, i.e., the values of traveltime are rather similar, although the means by which

the minimization is achieved, i.e., various degrees of ray-bending, differ significantly.

One should not forget that, after all, the concept of a single raypath corresponding to the

path of least time constitutes an approximation to the result that one would obtain by the

full-wave treatment, rather than the physical entity.

Concluding this chapter one may state that the truncation of the Taylor

expansion under the weak-anisotropy assumption provides a considerable mathematical

simplification without a loss of physical attributes.  The essence of physics of

anisotropic wave propagation is preserved in the “weak-anisotropy approximation”, and

numerical answers are quite close to the exact approach (see Appendix 2 and Appendix



109

6 for a more complete discussion).  In the case of linearized approach, on the other

hand, certain fundamental problems arise (see Figure 6.12), several physical attributes

of anisotropic wave propagation are lost, but the traveltime calculations yield very

reasonable results.  The confirmation of the latter statement can be found in Chapter VII

dealing with physical laboratory measurements of wave propagation in anisotropic

media.

It seems appropriate to close this chapter with a quote from Dellinger’s doctoral

dissertation (1991): “Approximations are useful if you know what you are losing”.  As

demonstrated in Chapter VII both approximate and linearized methods yield results

which are much closer to the experimentally measured values than the approach

ignoring anisotropy altogether.
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CHAPTER VII

PHYSICAL MODELLING

7.0. INTRODUCTION

Physical modelling provides result of controlled experiments, which can be

compared with numerically obtained predictions.  A reliable comparison requires some

consideration of experimental apparatus, most notably, the size of ultrasonic source and

receiver transducers (Vestrum, 1994).  If the size of transducer is sufficiently large in

comparison with the sample size, the generated waves have an appearance of plane waves

over some area of wavefront, and the velocity calculated as a ratio of distance and

traveltime yields the phase velocity.  If, on the other hand, the size of transducers is

sufficiently small compared with the sample size, they can be viewed as point sources and

point receivers yielding the group velocity as a ratio of distance and traveltime.

Obviously, the latter case resembles much more closely the geophysical field acquisition.

Denoting the transducer diameter as D and the shortest raypath considered as H, Vestrum

(1994) uses a simple Pythagorean formula to determine, e,

e H H =  D2 + −2 , (7.1)
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a quantity used to decide whether or not one can consider the experimental results to yield

the value of group velocity. When the value of e is very small, a group traveltime will be

measured, without serious concerns of transducer effects.  The maximum error in raypath

length for the experimental geometry used in this study is even smaller than the one

considered as negligible in of Vestrum’s (1994) investigation,  namely, e ≈ 0.0007 m,

since D = 0.014 m and  H =  0.1400 m.

7.1. MATERIALS

The medium through which the signal is transmitted is composed of two layers.

Scaled dimensions and parameters of this physical model were also used for numerical

calculations in several chapters of this dissertation.  The model with its anisotropic

parameters in the 31-plane were considered as a standard model.

The top, isotropic layer consists of  PVC and the lower, anisotropic layer consists

of Phenolic CE.  The CE-grade phenolic laminate is composed of layers of a woven

canvas fabric saturated and bonded with phenolic resin (e.g., Cheadle et al, 1991).  The

woven pattern results in anisotropic behaviour.  Former studies (e.g., Cheadle et al, 1991,

Brown et al, 1991, Vestrum, 1994) show that Phenolic CE can be classified as belonging

to the orthorhombic symmetry class.  The experiments were conducted in the plane

parallel to the Face 3 along the 31-axis and 32-axis.

Principal dimensions17 and quantities are shown in Tables 7.1, 7.2 and 7.3.

Layer # Material Thickness (m) Symmetry Class

1 PVC 0.0355 m isotropic

2 Phenolic CE 0.1045 m orthorhombic

Table 7.1.  The principal dimensions and characteristics of the physical model.

                                                          
17 A series of measurements performed with high-precision calipers yielded the following thickness values
(0.03518, 0.03565, 0.03545, 0.03550,  0.03540, 0.03537)⇒ 0.0355 m for PVC, and (0.1045, 0.1045,
0.1043, 0.1046) ⇒ 0.1045 m for Phenolic CE.  The manufacturing process of PVC slabs renders their
thickness less uniform, E.V. Gallant ( pers. comm., 1995).
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Since the sagittal planes, i.e., the planes containing sources, receivers and all the

rays, coincide with symmetry planes (the 31- and 32-planes) which are perpendicular to

each other, the shear-wave vertical speeds for SH-type and SV-type polarizations are

reversed for either case.   Notice, however, that different anisotropic parameters govern

the angular velocity dependence for SH and SV waves. As a result the shapes of slowness

curves encompassing all angles of propagation  in the 31- and 32-planes, as well as other

entailing quantities, cannot be obtained by simple reversal of labels.

Layer # /

Symmetry plane

Vertical P wave

speed (m/s)

Vertical SV wave

speed (m/s)

Vertical SH wave

speed (m/s)

1 2250 1030 1030

2 / 31-plane 2925 1609 1516

2 / 32-plane 2925 1516 1609

Table 7.2. Vertical speeds in the physical model.

The value of anisotropic parameters results from experimental measurements on

the very same material performed in the same laboratory setting and reported by Cheadle

et al. (1991).  The results were confirmed by subsequent study of Vestrum (1994).

Layer # /

Symmetry plane

δδ εε γγ

1 0 0 0

2 / 31-plane 0.183 0.224 0.096

2 / 32-plane 0.081 0.150 0.035

Table 7.3. Anisotropic parameters of the physical model.

A useful illustration for familiarization with the anisotropic materials is provided

by the phase slowness curves in the 31-plane and in the 32-plane (Figure 7.1). Equivalent

information to that contained in the slowness curves which are represented by polar plots,
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can be provided by plots of phase velocity versus phase angle in Cartesian coordinates

(Figure 7.2).
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Figure 7.1. Phase slowness curves for Phenolic CE laminate.  The picture on the left
corresponds to propagation in the 31-plane. The picture on the right corresponds to
propagation in the 32-plane.  The innermost curve corresponds to the P-wave slowness,
whereas the two outer curves represent shear waves.  The outer shear-wave slowness
curves cross at points known as shear-wave singularities where phase slowness (phase
velocity) is the same for both polarizations.
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Figure 7.2. Phase velocity plots. The picture on the left corresponds to propagation in the
31-plane. The picture on the right corresponds to propagation in the 32-plane.  Horizontal
axes depict the phase angle, and vertical axes show phase velocity.
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From Figure 7.2 one observes that while in either symmetry plane the P-wave

velocity is significantly different from either SH or SV velocity, both shear wave are

relatively close to each other. In the 32-plane the SH and SV velocities actually coincide

at points referred to as singularities. At those points one can write:

v vqSH qSV( ) ( )ξ ξ= , (7.2)

or using equations (3.20)  and (3.30), one can express the angle at which the singularity

occurs, in terms of the parameters of the medium, that is:

ξ β
α

γ
ε δs Arc=

−








cos . (7.3)

An application of equation (7.3) assumes a single value of speed for vertically

propagating shear waves. This occurs for all azimuths in transverse isotropy with a

vertical symmetry axis.  Since for Phenolic CE  the speed of vertical propagation of the

SH wave is only slightly different in the 31- or 32-planes, the average value was used in

equation (7.3). Thus obtained approximate values are about 35o and 68o, in the first

quadrant, for the 31- and 32-planes, respectively, as illustrated in Figure 7.2.  Note that

although in the 31-plane, velocity values approach one another there is no actual

singularity. The use of an average value for vertical speed, β, in the algebraic solution

using equation (7.3) yields only a very approximate result.

There is a good agreement between the plots displayed in Figure 7.2 and the

results of Vestrum (1994), in particular Figure 4.2. (b) and (c).  This confirms the

reasonable reliability of  the approximation based on the assumption of weak anisotropy.

Furthermore, examining plots shown in Appendix 2, it can be inferred that the

discrepancy between results of the exact and approximate approaches are very small for

the case of the elastic constants measured for Phenolic CE.
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7.2. EXPERIMENTAL SET-UP

The data were recorded using two transducers of 1-MHz frequency, one being a

transmitter the other a receiver.  The transmitter was fixed in one location, while the The

readings were taken at every millimetre between horizontal distances of 0 mm and 300

mm. The readings were performed for P-P, P-SV (i.e., transmitted P wave and received

SV wave), SV-P, SV-SV, and SH-SH waves for both symmetry planes.  Two types of

transducers were used: compressional-wave, and shear-wave.  The shear-wave transducer

was used in two different positions (rotated by 90o) to create SV- or SH-type waves.  The

sample interval was 10-7 s, i.e., the sampling frequency was an order of magnitude higher

than the frequency of the signal; thus avoiding aliasing in the range of interest.  The time

delay between the sending and receiving of the signal for the two transducers placed face-

to-face in contact with each other was measured, on the oscilloscope, to be 2×10-9 s for

the P-P combination and 3×10-9 s for S-S.  This is viewed as negligible in the present

experimental setting as the traveltimes were of the order of 1×10-5 s.

The apparatus used in data acquisition was a converted high-precision plotter

(Figure 7.3)  The entire acquisition process was performed automatically.

X (source-receiver distance )

     transmitter

PVC
      0.0355 m

Phenolic CE       0.1045 m

receiver

Figure 7.3. A schematic diagram of the experimental set-up.
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7.3. DATA ANALYSIS

Recorded signals were plotted as a standard seismic display.  In order to use

standard plotting devices, as well as to render the results more immediately applicable to

a geophysical context, the distances and traveltimes were scaled by a factor of 10,000.

Scaling both distance and time by the same factor preserves original velocity, i.e., the

ratio of distance and time remains constant. Selected   results are presented in different

parts of this dissertation.  The data were not processed and all displays illustrate raw

records.  This implies that no wavelet processing was applied and the traveltime for a

given signal corresponds to the initial deflection.  Two selected data sets for  P-P and SH-

SH cases are described below.

7.3.1. P-P case

The case of transmitted and received compressional waves resulting from using

vertical-component (“P”) transducers, served as a test for the predictive power of

raytracing procedures described in this dissertation.  This case was selected as giving the

cleanest first arrivals, i.e., “first breaks” because of compressional waves being the first

ones to arrive at the receiver.  Numerous interesting phenomena can be observed from the

seismic records (Figure 7.4 and Figure 7.5).  The traveltime at zero offset, and hence the

vertical velocity is the same in both symmetry planes considered.  This observation is

consistent with the theoretical predictions since the particle displacement remains within

the symmetry axis for both cases. Progressing down the seismic record one notices a

“peg-leg” multiple crossing a 1.0 s time line at about trace # 80.  Further down a shear

wave (SV) appears, exhibiting higher amplitude for traces in the neighbourhood of # 60;

compare the arrival traveltime in Figure 7.4 and Figure 7.5 for 31-plane and 32-planes

respectively and notice a slight difference in traveltime, even for zero-offset traces

(faintly visible).  The existence of the shear wave is explained by the fact that a normally-

polarized transducer, used as a P-wave source, generates some shear-wave energy, while

the normally-polarized transducer, used as a P-wave receiver, is sensitive to the normal

component thereof.  For a limited set of offsets (# 50 - # 75) one can also observe the
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aforementioned higher amplitude zone due, most likely, to a converted P-SV wave.   The

event exhibiting a reasonably high amplitude (below 1.5 s) at the bottom of the seismic

record is a compressional-wave multiple travelling in a waveguide created by two free

surfaces at the top and the bottom of the model.  The traveltime of this event is thrice the

traveltime of direct transmission.  Considering all events observed on the P-P seismic

records, however, it is clear that the main event, i.e., P-P transmission exhibits the highest

amplitude, as expected.

Figure 7.4. A seismic record obtained in the 31-plane using vertically polarized
transducers as both sources and receivers.

The results show, as expected, that the raytracing incorporating the anisotropic

effects predicts better the experimental results than an equivalent procedure which
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ignores the anisotropic effects, i.e., “isotropic approach” which assumes that the vertical

P-wave velocity applies in all directions. (see Tables 7.4 and 7.5). The calculation based

on the anisotropic approach using the values of anisotropic parameters published for the

block of Phenolic CE, by Cheadle et al. (1991) approximates the measured times (see

Table 7.4) much more closely than the calculation based on the isotropic approach (see

Table 7.5).  This indicates strongly that the anisotropic approach reflects better the reality

of the experiment (see Figure 7.6).  In the context of exploration geophysics, it implies

that in certain areas one might consider the analysis of the data which takes anisotropy

into account.

Figure 7.5. A seismic record obtained in the 32-plane using vertically polarized
transducers as both sources and receivers.
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In the presented case,  for the propagation along the 31-plane, the match is very

good.  For the propagation along the 32-plane, the match is slightly less good.  The

possible reasons for this difference are discussed in Section 7.4.

Scaled offset Traveltime in 31-plane (s) Traveltime in 32-plane (s)
 (m) calculated

(anisotropic)
αα0=  2925 m/s

δδ = 0.183
εε = 0.224

measured calculated
(anisotropic)
αα0=  2925 m/s

δδ = 0.081
εε = 0.150

measured

0 0.515(385) 0.516 0.515(385) 0.516
190 0.518(585) 0.519 0.519(414) 0.518
390 0.528(745) 0.528 0.532(018) 0.527
590 0.545(512) 0.544 0.552(287) 0.543
790 0.568(328) 0.569 0.579(075) 0.565
990 0.596(497) 0.601 0.611(289) 0.592

1190 0.629(263) 0.635 0.647(990) 0.624

Table 7.4. Comparison of measured and calculated traveltimes for P waves; the
calculations are based on anisotropic approach using values of anisotropic parameters
published by Cheadle et al, 1991. In the present comparison, the values of vertical wave
speed are taken to be exact since, for P waves, they were repeatable to 0.5% (Cheadle et
al, 1991). The same assumption is made for anisotropic parameters. A large number of
decimal points is provided for various comparisons  of performance of the algorithm.

Scaled offset
 (m)

Traveltime (s)
calculated (isotropic)

αα =  2925 m/s
0 0.5150(43)

190 0.5197(02)
390 0.5343(88)
590 0.5582(83)
790 0.5902(14)
990 0.6288(89)
1190 0.6730(73)

Table 7.5. Traveltimes for P waves calculated based on isotropic approach.
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Figure 7.6. A graphical comparison of results for compressional (P-P)
waves in the 31-plane.

7.3.2. SH-SH case

The comparison of results of SH-SH waves is analyzed in the same manner as the

P-P waves. Numerous interesting phenomena can be observed from the seismic records

(Figure 7.7 and Figure 7.8).

Firstly one notices, that the traveltime at zero offset, and hence the vertical

velocities,  are different for propagation in the 31- and 32-planes. This observation is

consistent with theoretical prediction, the particle displacements for the two case being

perpendicular to each other. In a TI medium the zero-offset SH traveltimes, and hence the

vertical SH velocities are the same for all azimuths. In the present case, however,

propagation occurs in symmetry planes of an orthorhombic medium.
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Figure 7.7. A seismic record obtained in the 31-plane using transversally polarized
transducers as both sources and receivers.

The first energy arrival that one notices is the transmitted P-P wave (compare the

traveltime in Figure 7.4 and 7.5). The appearance of the compressional wave is explained

by the fact that the SH-wave-source transducer generates some compressional energy,

while the SH-wave-receiver transducer is sensitive to it.  The three-leg shear-wave

multiple was not recorded since it occurs at multiples of thrice the traveltime of the direct

wave. Considering all events observed on the SH-SH seismic records, however, it is clear

that the main event, i.e., SH-SH transmission exhibits the highest amplitude, as expected

Tables 7.6, 7.7, and Figure 7.9 summarize the results for SH waves. One notices that a

better match between experimental and computational data is obtained using the proposed

anisotropic raytracing than using an isotropic approach.



122

Figure 7.8. A seismic record obtained in the 32-plane using transversally polarized
transducers as both sources and receivers.

.

SH waves, due to their being characterized by only one anisotropic parameter, γ, were

selected as corresponding to the analytical algorithm for inversion. They are described in

more detail in Chapter VIII.
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Scaled offset Traveltime in 31-plane (s) Traveltime in 32-plane (s)
(m) calculated

(anisotropic)
ββ0 = 1609 m/s

γγ = 0.096

measured calculated
(anisotropic)
ββ0 = 1516 m/s

γγ = 0.035

measured

0 0.994(132)
0.994(132)
0.994(132)

0.994 1.033(97)
1.033(97)
1.033(97)

1.034

190 1.001(67)
1.001(71)
1.001(48)

1.001 1.042(68)
1.042(69)
1.042(66)

1.040

390 1.025(44)
1.025(63)
1.024(75)

1.024 1.070(14)
1.070(17)
1.070(04)

1.064

590 1.064(20)
1.064(59)
1.062(86)

1.052 1.114(83)
1.114(89)
1.114(63)

1.102

790 1.116(14)
1.116(73)
1.114(19)

1.108 1.174(56)
1.174(65)
1.174(27)

1.156

990 1.179(22)
1.179(98)
1.176(78)

1.182 1.246(92)
1.247(04)
1.246(55)

1.223

Table 7.6. Comparison of measured and calculated traveltimes for SH waves; the
calculated values are based on anisotropic approach using values anisotropic values
published by Cheadle et al, 1991.  The three values for the calculated traveltime,
correspond to the method using the exact, approximate and linearized schemes,
respectively (see Appendix 6, for a fuller treatment).   Note that any of the “anisotropic”
approaches yields a significantly better match with the observed data than the approach
ignoring the effects of anisotropy (see Table 7.7). In the present comparison, the values of
vertical wave speed are taken to be exact since, for S waves, they were repeatable to
0.25% (Cheadle et al, 1991). The same assumption is made for the anisotropic parameter.
A large number of decimal points is provided for various comparisons  of performance of
the algorithm.
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Scaled offset

(m)

Traveltime in 31-plane (s)

calculated (isotropic)

ββ = 1609 m/s

Traveltime in 32-plane (s)

calculated (isotropic)

ββ = 1516 m/s

0 0.994(132) 1.033(97)

190 1.002(91) 1.043(18)

390 1.030(53) 1.072(19)

590 1.075(40) 1.119(34)

790 1.135(20) 1.182(24)

990 1.207(42) 1.258(27)

Table 7.7. Traveltimes for SH waves calculated based on isotropic approach.  Note that
the vertical SH speed, or so-called, isotropic SH velocity, having polarization vector
perpendicular to the symmetry plane of propagation yields, for Phenolic CE, different
traveltimes for 31- and 32-planes.

SH-SH waves in 31-plane
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Figure 7.9. A graphical comparison of results for SH-SH waves in 31-
plane

7.4. EXPERIMENTAL ERRORS

of error which can account for discrepancy between traveltimes calculated using the

anisotropic approach and the measured values.  The qualitative description of those

sources is presented below.

7.4.1. Measurement errors

Firstly, the dimensions of the PVC and Phenolic CE blocks are subject both to

measurement errors and inconsistencies of actual thickness of the material within one

slab.  Those errors, however, compared to other measurements, can be considered very

small (see Footnote 17).

Secondly, the measurements of spacing between the source and receiver

transducers are subject to error.  All the measurements, however, were performed with

automatic moving of the receiver transducer by an arm of a device converted specially for

this purpose from a high-quality plotter.  Thus, the precision and accuracy can be

considered very high.

Thirdly, the uncertainties due to the finite dimensions of transducers causing

raypath problems and a mixture of phase and group velocity measurements, has to be

considered.  In view of  Vestrum’s (1994) criterion, discussed above, and considering the

weak anisotropy of the material, the errors originating from the size of the transducers are

negligible.

7.4.2. Computational errors

Two main sources of possible computational errors have to be considered in this

category.  It is assumed that errors due to computer precision are negligible (Appendix 3).

Firstly, the values of anisotropic parameters, δ, ε, and as well as the values of

vertical speed, α and β, are subject to various errors (see Brown et al, 1991, Vestrum,

1994).  Especially, the anisotropic parameters calculated from inversion of traveltimes on

the phenolic CE block can be burdened with a significant error.
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Secondly, there is some imperfection due to the raytracing being done with

simplified equations, under the assumption of  weak anisotropy.  Considering, however,

that the assumptions seem to be fully honoured, as well as considering the fact that the

angle of propagation for all cases is not very large, thus rendering the approximate

equations even more accurate than if the entire range of propagation angles were

involved, one can confidently rely on results obtained through  those equations.

7.4.3. Interpretation errors

The results obtained through numerical and physical modelling are compared

based on traveltime values.  In the case of physical modelling of compressional waves,

the traveltime was obtained from the raw record, as the first deflection of the trace

corresponding to the arrival of the P wave.  The data are very clean and the first arrivals

are very well defined. For SH or SV waves, appearing  later in the record, the initial

arrival is slightly less obvious. The process of establishing the time of arrival for all traces

and wave types was performed using the Pro-Max processing software allowing a

display of traces in great magnification, so as to time the selected point with considerable

precision.

The difficulty, however, is of an interpretive nature, namely, where to select the

point which corresponds to the onset of energy, i.e., to the first arrival time, with a high

enough accuracy.  It is this interpretive nature of picking the arrival time that appears to

be responsible for most of the discrepancy.  The degree of difficulty is also offset-

dependent.  At larger offsets, the effect of anisotropic propagation becomes more

pronounced, thus easier to detect, but the wavelet becomes more stretched due to

frequency dispersion, and the picking of first arrivals becomes less reliable.

If the method is to be used repeatedly, a calibration scheme or a criterion can be

developed for a process of automatic picking.  Furthermore, one can deconvolve the data

in an attempt to collapse the wavelet and phase-shift to a zero-phase wavelet in order to

facilitate the picking.

.
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CHAPTER VIII

INVERSION FOR ANISOTROPIC PARAMETER IN

LAYERED MEDIA

8.0. INTRODUCTION

In previous chapters various solutions of forward problems were developed and

verified.  They allow, given all parameters of the medium, to calculate expected physical

consequences.  In many physical sciences, notably in geophysics, one would like to infer

the characteristics of the medium from the observation of consequences.  This is the

inverse problem.  This chapter presents the solution of such an inverse problem in an

anisotropic medium.

Numerous inversion methods for multilayer anisotropic media have been

proposed by various researchers.  Stewart (1988) proposed a modification of an algebraic

reconstruction technique (ART).  It attempts to estimate anisotropic velocity using only

straight rays in a discretized weakly anisotropic medium.  Michelena, Muir and Harris

(1993)  propose an inversion which is a simple extension of an isotropic scheme for

traveltime tomography. Their approach does not consider ray-bending at interfaces, an

omission that can introduce errors into the estimation of velocity anisotropy if the

velocity contrasts are large.  Recently, an interesting inversion scheme using genetic

algorithms (originally developed for biological sciences) was suggested by Horne and
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MacBeth (1994).  It can be viewed as a variation of the Monte Carlo method. Kebaili and

Schmitt (1986) presented an inversion technique operating in the intercept time-ray

parameter (τ-p) domain.

The method described in this chapter allows one to obtain, based on the

measurements made at the surface, a unique value for the SH-wave anisotropic

parameter, γ, in an anisotropic layer at depth, i.e., separated from the surface by another

layer.  In other words, one inverts the traveltime information to obtain crucial information

about anisotropic characteristics of a layer at depth.  The innovative aspect of the method

consists of the analytical approach for obtaining the solution, particularly since it applies

in the context of more than one layer, incorporating the concept of an anisotropic

generalization of Snell’s law discussed in Chapter III and Chapter IV.  Thus the method

incorporates the effects of ray-bending at an interface under anisotropic conditions. The

analytical aspect, illustrated by geometrical representation of solution spaces retains an

immediacy of physical significance and provides an insight so often difficult to maintain

in numerical approaches.  Furthermore, the method is free of wanderings of solutions and

criteria for various search patterns which are of great concern in various numerical

methods.

The treatment is described explicitly in terms of SH waves in a TI  (transversely

isotropic) medium.  It can, however, be applied without any modification to any waves

exhibiting elliptical velocity dependence, and in any symmetry class, as long as the

sagittal plane coincides with a symmetry plane.  The consequences of the method provide

stepping stones to more complicated cases.

8.1. FORMULATION OF THE PROBLEM

Consider a layered medium consisting of an isotropic layer of thickness H1

superposed on an anisotropic layer of thickness, H2. The SH-wave speed, V,  in  the

upper, isotropic medium and vertical SH-wave speed, β, in the lower anisotropic medium,

are assumed to be known.  The SH-wave anisotropic parameter, γ, in the lower medium is

to be determined, based on the measurements performed on the surface of the isotropic

layer.
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In the subsequent development, the upper-case letters correspond to known, or

measured quantities, whereas lower-case letters are the unknown quantities, or variables

in the equations.

8.2. GENERAL MATHEMATICAL FORMULATION

Consider propagation through the medium between the  source and receiver

separated by a horizontal distance, X, see Figure 8.1.  (In the present case, since the

method is based on traveltime measurements, there is no loss of generality in such

recording geometry (transmission study), as compared to both source and receiver

situated on the surface (reflection study).  In the latter case one must make a couple of

straightforward substitutions, namely: T ⇒ 2T and X ⇒ 2X.)  The ray undergoes

refraction at the interface separating the isotropic and  the anisotropic layers.  For a given

source-receiver configuration, a set of three independent equations in three unknowns has

to be satisfied. 

The unknowns in the system of equations are the incidence angle (take-off) angle,

θ1, in the upper medium and the transmission angle, θ2, and the anisotropic parameter, γ,

in the lower medium.  The angles of incidence and transmission are related by the phase

angle, ξ, here given explicitly for SH waves, and involving the value of the ray parameter,

x0.  The first equation in (8.1) describes the measured  traveltime, T.  The second equation

in (8.1) describes the known lateral, source-receiver separation, X, which must be solved

by a numerical method, as we cannot solve for the take-off angle explicitly.  The third,

fourth and fifth equations in (8.1) embody the expression of a generalized Snell’s law at

the isotropic/anisotropic interface.  The angle of transmission, θ2, is a function of  both θ1

and γ.

The conditions stated above would require a rather special algorithm.  A direct

input of system of equations (8.1) into Mathematica, fails to yield satisfactory results

because of the non-algebraic form of equations.
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 (8.1)

8.3. FORMULATION IN TERMS OF PARAMETERIZED

FERMAT’S PRINCIPLE

Fermat’s principle of stationary time plays an important rôle in raytracing theory.

It states that the path of the ray between two points is such that the first-order traveltime

variation with respect to all infinitesimally perturbed neighbouring paths is zero.  In other

words, it is the path of least or greatest time.  One of general expressions of  Fermat’s

principle in anisotropic media requires a functional derivative involving both phase and

group slownesses; see equation (2.31).
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X

source r

          H1

H2

receiver

Figure 8.1 The illustration of a ray travelling through the
model M between a source and receiver separated by a
horizontal distance X.  The value of r corresponds to the
horizontal distance between the refraction point and the
receiver.

If, however, the physical problem is parameterized by a specific case as illustrated

in Figure 8.1, the solution is reduced to minimization of the traveltime in terms of choice

of trajectory.  Under the linearizing assumption (first-order theory) following the weak-

anisotropy concept, one makes use of the fact that the expressions for both phase and

group speeds are identical to first order for a given phase or group angle.

Referring to the lateral distance between the refraction point and receiver as r, and

expressing the trigonometric function as ratios of appropriate segments, one

parameterizes the entire choice of trajectory as a function of r.  This leads to a system of

two equations with two unknowns, r and γ.  The two equations are the traveltime

equation and the mathematical statement of  Fermat’s principle of stationary time:
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(8.2)

In spite of the apparent simplicity, these equations are highly nonlinear and their

general solution is not a trivial matter.  They can, however, be simplified further with an

insight gained through geometrical visualization of solution spaces.

8.4.  VISUALIZATION OF SOLUTION SPACES

For given  X, H1, H2, V and β, one can construct a surface 1  = t(r;γ), i.e., a three-

dimensional representation of the first equation in (8.2) with r and γ as horizontal axes

and t(r;γ) as the vertical one.  The surface is smooth, and the curve corresponding to the

vertical cross-section through the surface for a given value of  γ, has a single extremum;

see Figures 8.2 and 8.4.  This extremum  is always a minimum yielding  the shortest

traveltime corresponding to some r for a given value of  γ.

Having a measurement of traveltime t = T, one can consider the horizontal plane,

1 = T, in the space (t, r, γ). The intersection of the surface 1 and plane 1 forms a curve,

1, e.g., any one of the contours in Figure 8.2. This curve is a set of mathematical

solutions to the equation:

t r T( ; )γ = . (8.3)
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Illustration of the traveltime surface
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Figure 8.2. The surface 1 representing the traveltime as a
function of r and γ, as a 3-D visualization and as a contour
plot.  Notice that the contour plot spans the entire domain
of r, whereas the 3-D plot magnifies the interval in the
vicinity of the expected solution. The values of r are
normalized as r/X; the values of γ range -0.2 and 0.2.

In other words, it is a set of combinations of  r and γ, for which t(r,γ)=T.  There is

however, only one physical solution.  To find it one must not forget that γ is an unknown

constant parameter and not a variable. It is through r, not γ, that one minimizes the

traveltime; γ  is an unknown but it is a constant. For all combinations of r and γ, it is only

the nadir of the intersection curve which satisfies Fermat’s principle, i.e., minimizes t

with respect to r.  This becomes obvious by imagining several vertical cross-sections of

the diagram in Figure 8.3, for different values of γ, i.e., along the r-axis.
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Traveltime Surface and Mathematical Solutions
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Figure 8.3. Two, almost opposite, views of the surface 1

representing the traveltime as a function of  r and γ, cut by a
plane 1 corresponding to the given traveltime value T.  All
mathematical solutions are given by the curve, 1,
corresponding to the intersection of the surface with the
plane.  Only the nadir of 1, as seen particularly well on the
lower plot, corresponds to the local minimum of t(r) for a
given anisotropic parameter,γ.  This point represents the
unique physical solution. The horizontal axes correspond to
r and γ, with the latter quantity varying between -0.2 and
0.2.

The consequences of Fermat’s principle lead to a convenient method of solution.

In the plane 1, the curve of mathematical solutions, 1, can be viewed as an expression of

γ in terms of r at a constant value of  t = T, i.e., 1: γ  =  γ(r;T).  The physical solution
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corresponds to the extremum of γ(r;T).  It can, therefore, be easily found as a solution to

the condition below:

[ ]d r

dr

γ ( )
= 0 , (8.4)

where γ(r) is obtaining by solving the traveltime equation, i.e., the first equation in (8.2)

with t(r, γ) = T. Thus,
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and its derivative with respect to r can be set to zero:
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(8.6)

The resulting real value of r corresponds to the minimum of γ(r;T).  This is

guaranteed by the fact that the plot of is always concave-up within the physically

meaningful domain of r ∈ (0, X); see Figure 8.5.  It can be visualized  as a consequence

of the traveltime surface, 1, sloping down towards higher values of γ. The sloping results
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from the denominator in the traveltime equation (8.2), increasing monotonically18 with

increasing γ.

Derivative Surface and Fermatian Solutions
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Figure 8.4. The inclined surface corresponding to the
derivative dt(γ;r)/dr as obtained from equation (8.2) and the
horizontal plane representing the d[t (γ;r)]/dr = 0.  The line
of intersection between  the surface and the plane is a set of
points obeying Fermat’s principle.  This is the “zero”
contour marked with an arrow.  Notice that the contour plot
spans the entire domain of r, whereas the 3-D plot
magnifies the interval in the vicinity of the expected
solution. The horizontal axes correspond to r and γ, with
the latter quantity varying between -0.2 and 0.2.

The resulting real value of r is unique.  This can be visualized by plotting, for

given X, H1, H2, V and β, the derivative surface of the traveltime equation, i.e.,2 =

                                                          

18 Note that 
d

d
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 > , for physically meaningful values of r, and β.



137

d[t(r,γ)]/dr.  The curve, 2, formed by intersection of the surface 2 and the plane 2 =

d[t(r,γ)]/dr = 0 is a set of solutions satisfying Fermat’s principle of stationary time for

various combinations of  r and γ. The only physical solution of the entire problem

corresponds to the intersection point of the projection of the two curves, 1 and 2, on the

rγ-plane (see Figure 8.5). There is only one such a point and it always occurs at the

minimum of the curve 1 =  γ(r;T); i.e., at the point where γ is minimum.  The

mathematical proof of this appears in Appendix 4.

Having thus calculated the value of r, using equation (8.6), one can easily obtain

the corresponding  γ, by substituting it into equation (8.5).  Thus the traveltime equation,

i.e., the first equation in (8.2) is the only one necessary for computational purposes.

γγ(r;T) and d[t(r; γγ)]/dr Curves in γγr-space and the
Physical Solutions

t(r;γ)=T1

t(r;γ)=T2

γ

∂t/∂r=0

r[m]

Figure 8.5. The projections of the curves 2 = dt/dr = 0 and

1  = γ(r,T) on the rγ-plane.  The two chosen values of T
correspond to the results of forward modelling obtained
with γ = 0, and γ = 0.2. There is a good agreement in this
illustration of the inverse solution.
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One can calculate the dt/dr = 0 contour, i.e., the steeply rising curve in Figure 8.5

for an experiment knowing the horizontal source-receiver separation, X, the vertical

speeds, V and β, and layer thicknesses, H1 and H2.  The position of the other curve, i.e.,

t(r;γ)=T, on the other hand, depends on the result of the experiment, namely, the

measured traveltime, T.  Thus with all model and recording parameters fixed, the

traveltime is a function of the anisotropic parameter, γ, whose value corresponds to the

intersection of these two curves.

Method of Computation: Anisotropic parameter, γγ, from traveltime measurements
in the isotropic/anisotropic case

Step 1
Express γ as a function of r,  and known parameters:
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Step 2
Calculate the local extremum of γ, by setting the derivative of  γ  w.r.t.  r  to zero, and
solving for r.  The process, although analytic, is very laborious and the use of some
mathematical software is recommended in order to ease the task.  In searching the

solution one may use the fact that, the solution of interest is situated between r = 0 and  r
= X .

( ) ( )

( ) ( )

( )
( )

( )

d

dr r

H r

r

V H r X r

r H X r TV H X r

V H r

r TV H X r

V H r

r TV H X r

γ

β

β β

= − + + −
+ −

+ − − + −





+

+
+

− + −





−
+

− + −





=

2 2

3 2
0

2
2 2

3

2
2 2

3

2

2
1
2 2

1
2 2

2

2
2 2

1
2 2

2
2 2

3

2

3
1
2 2

( )

Step 3
Insert the value of  r, calculated in Step 2, into the expression for γ, in Step 1.
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A Mathematica code for the entire calculation is given below.

X     =  horizontal distance between the source and receiver
HJ   =  thickness of the upper, isotropic layer
HD  =  thickness of the lower anisotropic layer
V    =  wave speed in the upper, isotropic layer
B    =  vertical wave speed in the lower, anisotropic layer
TT  =  traveltime between the source and receiver (one way)
D[
V*(r^2+HD^2)*Sqrt[r^2+HD^2]/(B*r^2*(TT*V-Sqrt[(X-r)^2+HJ^2]))
-(r^2+HD^2)/r^2,r]
FindRoot[% == 0, {r, 0.01*X, X/2, 0.99*X}]
N[
V*((r/.%)^2+HD^2)*Sqrt[(r/.%)^2+HD^2]
/(B*(r/.%)^2*(TT*V-Sqrt[(X-(r/.%))^2+HJ^2]))
-((r/.%)^2+HD^2)/(r/.%)^2]

      

8.5. EXAMPLE OF  INVERSION APPLICATION

8.5.1. Numerical modelling

Consider a model composed of two layers.  The upper, isotropic layer has an SH-

wave velocity of 1030 m/s and a thickness of 355 m.  In the lower, anisotropic (TI) layer,

the SH-wave velocity for vertical propagation is 1609 m/s and the thickness is 1045 m.

The anisotropic parameter in the TI layer is γ = 0.096. The results of forward modelling

and inversion are summarized in Table 8.1.

8.5.2. Physical modelling

The elastic modelling method described in more detail in Chapter V was used to

test the usefulness of the inversion algorithm.  A traveltime for an SH wave was recorded

through an isotropic PVC, and anisotropic Phenolic CE, at a range of offset, between 0

mm and 300 mm at 1 mm increments.  Because of the significant decrease of amplitude

for offsets greater than about 120 mm, due to variation of transmission coefficients with

offset, i.e., the angle of incidence (see Daley and Hron, 1979), the offsets selected for



140

inversion lie between 0 mm and 120 mm. The speed of vertical propagation of SH waves

in the 31-plane, calculated at the zero offset, using independent knowledge of speed in the

isotropic layer and thicknesses of both layers, is 1609 m/s.  This result agrees closely with

direct laboratory measurements on the Phenolic CE by Cheadle at al. (1991), where the

range of SH velocity for measurements in the 31-plane is 1602 m/s - 1610 m/s.  The

expected value of the anisotropic parameter is  γ = 0.096.  The inversion results are

shown in Table 8.2.

Offset
(m)

Traveltime
(s)

Inverted γγ
(perfect

information 19)

Inverted γγ
( 1% error in
vertical speed)

(1626 m/s)

Inverted γγ
(up to 1%

random error in
traveltime)

0 1.25 N/A N/A N/A
90 1.25104 0.0959772 * -0.734978
190 1.27558 0.0961738 -0.437334 -0.232223
290 1.3484 0.0958288 -0.116718 -0.0170171
390 1.02475 0.0959165 -0.0227692 0.0755439
490 1.04204 0.0959752 0.0178276 0.117534
590 1.06286 0.0959918 0.0390921 0.110076
690 1.08699 0.0959842 0.051623 0.0843938
790 1.11419 0.0959669 0.0596263 0.0830911
890 1.1442 0.0959865 0.065086 0.0816758
990 1.17678 0.0959947 0.068952 0.117695

 
Table 8.1. The results of  forward numerical modelling and inversion.

8.5.3. Discussion of inversion applications

The numerical example, on noise-free data, shows that the inversion works very

well in ideal circumstances.  Both numerical and physical modelling examples indicate,

however, that the method is very sensitive to errors in the input information.

Geometrically, the sensitivity of inversion  can be visualized by observing the gentle

slope of the traveltime function in Figure 8.2.  This implies that a slight variation in the

                                                          
19 As mentioned in Section 8.4, the inversion relies on the linearized, i.e., first-order approximation of
expression for group velocity. Thus, “perfect information” implies that the traveltime is also computed
using the same approach. If a higher-order approximation for group velocity is used in forward modelling, a
slight  discrepancy between actual and inverted values of γ results. For instance, for offsets of 490 and 990
metres, a higher-order approximation of group velocity yields traveltimes of 1.04305 and 1.7922 seconds,
respectively, which, in turn, gives corresponding values of  0.0852466 and 0.0882306 for γ.
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vertical position of the plane depicting the measured traveltime will result in a

considerable lateral shift of  the curve 1, and hence the value of the anisotropic

parameter, γ.  In principle, however, using modern measuring devices, it is possible, to

measure the traveltime with high enough precision to obtain good inversion results.

Scaled offset (m) Scaled time (s) Inverted γγ
0 0.994 N/A
90 0.997 -0.304444
190 1.001 0.127213
290 1.010 0.129247
390 1.024 0.108049
490 1.036 0.159402
590 1.052 0.177814
690 1.076 0.159333
790 1.108 0.124404
890 1.145 0.0929694
990 1.182 0.0794125

Table 8.2. Measured traveltimes and inverted anisotropic parameter, γ, for SH waves in
31-plane.

 8.6. ANISOTROPIC/ANISOTROPIC CASE

The logic described above can be extended to cases where both layers are

anisotropic.  The anisotropic parameter, γ1 ≡ Γ, as well as the vertical wave speed, β1, of

the first or surface layer, are assumed to be known.  In such a case, the set of equations

has a slightly more complicated appearance but no additional unknowns.  The only

difference is the substitution of an angle-dependent formula for the velocity in the upper

medium, that is:
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Method of Computation: Anisotropic parameter, γγ, from traveltime measurements

in the anisotropic/anisotropic case

Step 1
Express γ as a function of r,  and known parameters:
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Step 2

Calculate the local extremum of γ, by setting the derivative of  γ  w.r.t.  r  to zero, and
solving for r.  The process is very laborious and it might be recommended to use a

mathematical software.  In searching for a solution one may use the fact that the solution
of interest is situated between r = 0 and  r = X .
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Step 3
Insert the value of  r, calculated in Step 2, to the expression for γ, in Step 1.

A Mathematica programme for the entire calculation is given below.

X     =  horizontal distance between the source and receiver
HJ   =  thickness of the upper anisotropic layer
HD  =  thickness of the lower anisotropic layer
V    =  vertical wave speed in the upper, anisotropic layer
B    =  vertical wave speed in the lower, anisotropic layer
G   =  anisotropic layer in the upper medium, i.e., medium of incidence
TT  =  traveltime between the source and receiver (one way)

D[
(V*(1+G*(X-r)^2/((X-r)^2+HJ^2)))*(r^2+HD^2)
*Sqrt[r^2+HD^2]/(B*r^2*(TT*(V*(1+G*(X-r)^2/((X-r)^2+HJ^2)))
-Sqrt[(X-r)^2+HJ^2]))
-(r^2+HD^2)/r^2,r]
FindRoot[%==0,{r,0.5*X,0.001*X,0.99*X}]
N[
(V*(1+G*(X-r/.%)^2/((X-r/.%)^2+HJ^2)))*((r/.%)^2+HD^2)*

 Sqrt[(r/.%)^2+HD^2]
 /(B*(r/.%)^2*(TT*(V*(1+G*(X-r/.%)^2/((X-r/.%)^2+HJ^2)))

-Sqrt[(X-(r/.%))^2+HJ^2]))
 -((r/.%)^2+HD^2)/(r/.%)^2]

8.7. MULTI-LAYER CASE

In this section the usefulness of the inversion scheme is enhanced by deriving an

algorithm applicable to propagation of SH waves in multiple layers.  In exploration

geophysics the proposed scheme appears to be particularly applicable in vertical seismic

profiling (VSP).

It is assumed that the surface layer is isotropic. The assumption of an isotropic

surface layer, besides facilitating the mathematics of inversion, is not unreasonable in the

geophysical context.  One might argue that the unconsolidated material composing the

near-surface layer consists, in general, of a rather random arrangement of particles and

does not exhibit any directionality and hence is quite isotropic, even if strongly

inhomogeneous.  Also, the velocity of wave propagation in the surface layer is, in
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general, significantly smaller than that in the deeper layers.  This entails, particularly in

the multilayer case, a near-vertical direction of propagation of the ray in the surface layer.

Therefore, even if the surface layer exhibits some anisotropy, the velocity of propagation

would be very well approximated by the vertical wave speed. Thus, the above assumption

does not limit considerably the practical application of the method.

It is further assumed that all interval vertical speeds are known.  Particularly if one

considers vertical seismic profiling, this information is provided by the velocity survey

from the zero-offset VSP, and thus the above assumption does not constitute any

significant practical limitation of the method.

Moreover, it is assumed that anisotropic parameters for all layers above the layer

in question are known.  Considering, however, that, in the case of VSP recording, one

could have the traveltime information from receivers in the entire well-bore, one can

perform the inversion for each layer starting at the first subsurface layer and repeating it

sequentially for all subsequent layers.  In this manner, the anisotropic parameters of the

overlying layers are always known, and this assumption does not, therefore, constitute

any major practical  limitation of the method.

The extension of the inversion scheme results from combining the inversion

scheme proposed above, for a two-layer medium, with the  anisotropic formulation of

Snell’s law derived in Chapters II and III.  The Snell’s-law formalism allows for the

parameterization of the travelpath in terms of a single value, r, denoting the distance

between the refraction point at the first interface and the receiver.  One considers a model

containing N horizontal layers.  The surface layer (j = 1) is assumed to be isotropic

entailing the equivalence of phase and group velocities.  Thus to initialize the raytracing

process, the ray parameter, x0, can be calculated directly from the value of r, from the

expression:
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X r
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≡ =
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β β
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The traveltime in the first layer is given in terms of X, r, and the vertical SH wave speed,

β1, in the first layer as:

 t r
X r

1
1

( ) = −
β

. (8.9)

Then, the raytracing follows through a series of horizontal layers, j = 2 through j = N − 1,

with known anisotropic parameters obeying the conditions imposed by the anisotropic

form of Snell’s law, until the Nth layer with the unknown anisotropic parameter is

reached.  The total horizontal distance, d, travelled through the stack of N − 2 horizontal,

anisotropic layers is calculated based on the knowledge of layer thicknesses, Hj, and

propagation angles, θj, from Snell’s law:

d Hj j
j

j N
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= −

∑ tanθ
2

1

. (8.10)

The traveltime in the N − 2 layers, i.e., all layers without the surface and the

deepest layer in question, is calculated as a sum of traveltimes in each layer. The

traveltime in terms of the propagation angle, θj, the vertical speed, βj, and the known

anisotropic parameter, Γj, is given as:
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The expression in square brackets in equation (8.11) represents the group velocity in the

jth layer, Vj.

The total horizontal distance, D, travelled prior to reaching the Nth layer, for

which the anisotropic parameter is to be found, is the distance travelled in the first layer,

i.e., X-r, and the distance travelled through a stack of horizontal anisotropic layers, d.

Thus:
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D X r H j j
j
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 The angle of incidence in the Nth layer with the unknown anisotropic parameter is

chosen in such a way that the ray arrives at the receiver, i.e., the horizontal distance, ∆,

travelled in this layer is given by:

∆ = − = −X D r d . (8.13)

The absolute value is important if the initialization of raypath by r is such that

horizontal distance travelled in the first N − 1 layers is greater than the horizontal source-

receiver offset.  The traveltime of the ray in the Nth layer is given in terms of the

horizontal distance, r, between the refraction point at the first interface and the receiver,

the horizontal distance, d, travelled by the ray through the stack of anisotropic layers with

known anisotropic parameters, Γj,  the thickness of the Nth layer HN, and the group

velocity, VN , is given by:
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The group velocity, VN, is given in terms of the vertical wave speed, βN, and the

unknown anisotropic parameter, γ. Only one value of r, i.e., the value minimizing the

traveltime, is physically acceptable.  In general, the refraction point on the first interface

must be located quite close to the source, i.e., the first raypath must be close to the

vertical.  Otherwise, if the angle of incidence is large the horizontal distance traveled by

the ray through a stack of layers in which Snell’s law is followed, overshoots the receiver,

making the last segment go backwards (see raypath B in Figure 8.6).  This is clearly an
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aphysical situation, and one that yields a value of traveltime very much greater than the

minimum value.  Furthermore, a certain sufficiently small value of r leads to a large take-

off angle, resulting in a critical angle at one of the interfaces.

source X
   r

       d
j=1 isotropic

A B
j

j=N γγ = ?        anisotropic

receiver

Figure 8.6. The multilayer model used to explain the inversion algorithm.
The surface layer is assumed to be isotropic, while the anisotropic
parameters of layers j = 2 through j = N-1 are assumed to be known.  The
travelpath, and hence the traveltime are parametrized in terms of the
horizontal distance, r, between the refraction point at the first interface and
the receiver. The raytracing through a stack of horizontal anisotropic layers
with known anisotropic coefficient obeys Snell’s law initialized by the
choice of r.  The raypath in the lowest layer with unknown anisotropic
coefficient is always such as to arrive at the receiver.  The physically
acceptable solution corresponds to the value of r which minimizes the
traveltime.

The complicated traveltime surface is illustrated in Figure 8.7, in which r is

allowed to span the entire range from 0 to X.  The largest value of traveltime corresponds

to the point where the lateral location of the receiver is reached on the last interface, i.e.,



148

the raypath in the last layer is vertical. Eventually, a complex value of traveltime is

reached and no real surface can be plotted.

Figure 8.8 is an illustration of the traveltime surface with the values of r limited to

the neighbourhood of  a Fermatian solution.  The general appearance of the surface

resembles the two-layer case illustrated in Figures 8.2 and 8.3.  Again, when cutting the

traveltime surface with a horizontal plane corresponding to the actual traveltime, one

obtains the physical solution corresponding to the nadir of  the intersection curve.

In practice, one can first generate a plot of the entire range of r, and then limit it to

the neighbourhood of the absolute minimum.  It is important to establish visually, from

the three-dimensional plot, the range of values within which the absolute minimum is to

be found.  Otherwise, the inversion algorithm might return a local minimum that does not

correspond to the absolute minimum.

  t(γ,r)

        γ

r

1000

2000

3000

4000
-0.1

0

0.1

0.2
2

2.5

3

1000

2000

3000

4000

Figure 8.7.  The traveltime function for a three-layer case.

The traveltime function illustrated in Figures 8.7 and 8.8 derives from a three

layer model whose parameters are shown in Table 8.3.  The traveltime obtained by

forward modelling with a lateral source-receiver separation of 5000 metres and an

assumed anisotropic parameter in the third layer of γ = 0.15, is 1.74208 seconds.



149

Layer # Layer Thickness
(m)

Vertical Wave
Speed (m/s)

Anisotropic
Parameter, γγ.

1 1000 3000 0
2 2000 4000 0.2
3 3000 5000 unknown (0.15)

Table 8.3. The parameters of the model used in numerical calculation of a multilayer
case.

4400

4600

4800

0.1

0.15

0.2

0.25

0.3

1.7

1.75

1.8

1.85

4400

4600

4800

Figure 8.8.  The traveltime surface cut by an actual traveltime value
calculated by forward modelling.  The illustration is limited to the
neighbourhood of the absolute minimum of the traveltime function.

The value of γ can be obtained, as in the two-layer case, by setting dγ/dr to zero,

i.e., in our case, by finding the minimum of the intersection curve of two surfaces

illustrated in Figure 8.8.  In the multilayer case, one has to be careful to select the proper

local minimum.  Graphical output is very helpful in visualizing the solution.  Figure 8.9.a.

shows that the function γ(r), given by equation (8.16) is discontinuous and has several

extrema.  One must choose an extremum (minimum) corresponding to the Fermatian

solution visualized by examining Figure 8.7.  Figure 8.9.b. shows a smooth continuous

segment in the neighbourhood of the solution. Note that the minimum of is around 0.15,

as expected from parameters of the forward model (Table 8.3).

The solution, as in the two-layer case, can be obtained by finding the minimum of

γ(r), based on the total traveltime function with the known value of a particular
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traveltime, T, corresponding to the given source-receiver configuration.  The total

traveltime function is trivially given by:

t r t r t r t rTOT j N N( ) ( ) ( ) ( )= + += → −1 2 1 . (8.15)

Equation (8.15) can be solved explicitly for γ, which appears only in the third term

on the right-hand side.  Hence, for a measured traveltime, T, the expression for γ can be

written as:
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The plot of equation (8.16) is shown in Figure (8.9. a, b). Equation (8.15)

represents a complicated entity.  The traveltime functions ti(r) are quite complicated,

particularly, the traveltime expression for the stack of horizontal layers which involves

the use of the anisotropic formalism of Snell’s law.  For this reason, mathematical

software becomes extremely helpful.

It is important to realize that in the proposed procedure one does not minimize the

traveltime explicitly.  Due to the fact that a minimum of γ(r) corresponds to a stationary

time, Fermat’s principle is guaranteed by the implicit function theorem (see Appendix 4).

Therein lies the power of the proposed method of inversion.

The inversion process can be performed using the Mathematicasoftware.  In the

algorithm given below the FindMinimum command is used since an algebraic expression

for the derivative of γ with respect to r could not be found.  For concerns of numerical

precision and accuracy see Appendix 3.
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a)

γ
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b) 

γ

r
4600 4700 4800 4900

.15

0. 25
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0. 35

Figure 8.9. a & b.  The graph of γ as a function of r for a given value of the
traveltime T.   Picture a) illustrates the behaviour of the function for the entire range
of r.  Picture b) illustrates the behaviour of the function in the neighbourhood of the
Fermatian solution, as visualized in Figure 8.7.  The solution corresponds to the
minimum clearly illustrated in b).  Note that the scales of the axes are different.

Method of Computation: Anisotropic parameter, γγ, from traveltime measurements
for a three-layer case.

Step 1
Express the unknown γ in the bottom layer as a function of r, measured traveltime, T, and

known parameters of the upper layers.
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Step 2
Find the local and absolute minimum of γ corresponding to the Fermatian solution.

A Mathematica programme for the entire calculation is given below :

T = measured traveltime
X = horizontal source-receiver offset
HJ = thickness of the first (isotropic) layer
HD = thickness of the second (anisotropic) layer
HB = thickness of the bottom (anisotropic) layer
VJ = wave speed in the first (isotropic) layer
VD = vertical wave speed in the second (anisotropic) layer
VB = vertical wave speed in the bottom (anisotropic) layer
GD = anisotropic parameter in the second layer

TJ=Sqrt[(X-r)^2+HJ^2]/VJ
x=((X-r)/Sqrt[(X-r)^2+HJ^2])/VJ

raypath and traveltime calculation in the second layer; analogous modules for
subsequent layers can be added

ZD = ArcCos[(1-Sqrt[1-GD*(2*x*VD)^2])/(2*x*VD*GD)]
RD = 1/(VD*(1+GD*Cos[ZD]^2))
n d= Sin[ZD]*(2*VD*GD*Cos[ZD]^2-1/RD)
dd = Sqrt[1/RD^2+(VD*GD*Sin[(2*ZD)])^2]
sd = ArcCos[Abs[nd/dd]]

calculation of the traveltime in the second layer:
TD=HD/(Cos[sd]*VD*(1+GD*Sin[sd]^2))
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calculation of the horizontal distance traveled through the stack of the anisotropic
layers; by adding terms it can be easily extended to accommodate more layers:

DD= HD*Tan[sd] +.....

calculation of the minimum of γ(r) with given initial search parameters (Value1 and
Value 2), to be chosen in the neighbourhood of the Fermatian solution:

FindMinimum[
(((r-DD)^2+HB^2)/(r-DD)^2)*
(Sqrt[(r-DD)^2+HB^2]/(VB*(T-(TJ+TD+....)))-1),
{r,{ Value1,Value2}}]
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CHAPTER IX

CONCLUSIONS

9.1. GENERAL REMARKS

An analytical scheme relating incidence, reflection and transmission angles in

anisotropic media has been derived.  In Chapter II a rather general method based on

vector calculus was suggested.  It works well in cases in which a phase-slowness surface

can be described by Cartesian coordinates in phase-slowness space, e.g., an ellipsoid.

Direct application of this method can be rather cumbersome as it might be exceedingly

difficult to express a complicated slowness surface in Cartesian coordinates.

The weak-anisotropy approximation allows a useful implementation of the

aforementioned analytical scheme relating incidence, reflection and transmission angles.

A simplification of the phase-velocity formulæ under the assumption of weak anisotropy

allows one to express clearly the relationship among angles (Chapter III).  This yields a

straightforward method for calculating both phase and group angles, as well as phase and

group velocities. A raytracing scheme is developed based  on this approach. It allows for

raytracing in multilayer anisotropic media with planar, but not necessarily horizontal,

interfaces.
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The weak-anisotropy approximation works well within its realm of applicability.

The results of a physical experiment involving wave propagation across the boundary

between isotropic and anisotropic media indicated that the traveltimes calculated using

the raytracing method agreed reasonably well with the measured values (Chapter VII).

Furthermore, the traveltimes calculated using the weak-anisotropy approach were

significantly closer to the measured values than traveltimes calculated based on an

isotropic approach.

Results pertaining to SV waves are more affected by the weak-anisotropy

approximation than those relating to P and SH waves. SV waves exhibit, in general,

more complicated shapes of slowness curves than either P or SH waves, as illustrated in

Appendix 2. Therefore, in the case of SV waves, the loss of higher-order terms results in

a larger discrepancy between results obtained using exact and approximate approaches

than in the case of either P or SH waves.

An analytic traveltime inversion for SH waves has been developed.  A method

which uses the traveltime through a stack of anisotropic layers to obtain the single

anisotropic parameter, γ, has been proposed. The method works well with perfect

information, but is very sensitive to input errors. Therefore, it can be used for data

acquired in the laboratory with very precise apparatus and in noise-free conditions.

However, in its present form, the method cannot be confidently used in geophysical field

measurements.

In principle, there seems to be no obstacle to the implementation of exact

equations in the proposed scheme (Appendix 7). Any extension of  the development

presented in this dissertation to the realm of strong anisotropy would necessitate use of

exact equations, or at least higher-order approximations. One would certainly gain some

accuracy of results at the expense of clarity. If, however, the development proposed in



156

this dissertation were to be used in geophysical practice, such a course of action is

strongly recommended.

9.2. SOME PRACTICAL APPLICATIONS

9.2.1. Modelling

A reliable method allowing one to generate experimental results synthetically can

play a very important rôle.  Such a technique incorporated into the planning of a seismic

experiment allows one to anticipate the results and thus to correctly deploy sources,

receivers, and other experimental apparatus.  Furthermore, it allows the interpreter (while

keeping in mind the intrinsic non-uniqueness) to verify the results of interpretation by

comparing synthetic data, generated based on a given interpretation, with experimental

results.

The raytracing method presented here allows one to generate synthetically results

of wave propagation in weakly anisotropic layered media. The raytracing method

presented can provide the basis of decision as to whether or not an ”anisotropic” approach

should be followed.  The degree of anisotropy can be varied by modifying anisotropic

parameters and the discrepancy between isotropic and anisotropic approaches can thus be

investigated.  As indicated by physical experiments, the anisotropic-modelling approach

reflects very closely the experimental results; one should, however, keep in mind that the

algorithm is designed for weakly anisotropic media, and the accuracy of results relies on

this assumption.  As a reasonable rule, one can regard a degree of anisotropy of about

20% as being the limit of applicability.

9.2.2. Near-surface static corrections

The calculation of static corrections, dealing with shallow reflections and

refractions, employs obliquely travelling rays.  For such rays, the effects of anisotropy

are, in general, more pronounced than for deep reflections, for which all rays are nearly

vertical.  Furthermore, large differences in velocities among near-surface layers
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emphasize the raybending at interfaces, calling for an accurate description of this

phenomenon.

The anisotropic raytracing presented in this dissertation allows one to calculate

static corrections including the effects of anisotropy.  For instance, it is important to

realize that the value of the critical angle is not the same for isotropic and anisotropic

cases, thus directly affecting results of refraction statics.

9.2.3. Vertical seismic profiling (VSP)

The recording geometry of an offset VSP, with receivers deployed throughout a

long section of the wellbore and the source located on the surface at a considerable lateral

distance from the well, can be particularly affected by anisotropic effects.  The data set

contains information derived from propagation directions ranging from nearly vertical to

nearly horizontal, thus creating the opportunity for any angular dependence to manifest

itself.

The VSP geometry is ideally suited for employing the method presented in this

dissertation assuming that the anisotropy of the rock mass can be characterized as a TI

system, i.e., transverse isotropy, with a symmetry axis perpendicular to the planar

geological layering.  As a matter of general practice, in addition to the offset source, one

usually records with a near-offset source as well.  For the latter case, the rays are nearly

vertical and, since the distance travelled is measured by the geophone cable, the

traveltime reliably yields the vertical speed, which is  required by the formalism.

Subsequently, by modifying anisotropic parameters, one can fit modelled and

observational data.

Furthermore, VSP geometry provides an excellent experimental setup for

traveltime inversion, which can yield the anisotropic parameters.  As already mentioned,

this geometry gives reliable information on the vertical speed from the zero-offset record

and on the angle-dependent traveltime measurements from the far-offset record.

Moreover, the presence of the wellbore provides information about thicknesses of the

sedimentary layers.
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9.2.4. Intuitive understanding

I believe that an important aspect of the presented method is the educational one.

The method allows a rather straightforward manipulation of various quantities

characteristic of wave propagation in anisotropic media.  Concepts of phase and group

angles and velocities can be investigated, allowing  a geophysicist to become more

familiar with notions extending beyond an isotropic approach.

Particularly with the aid of “user-friendly” mathematical software, some of the

ideas included in this dissertation can be used as starting points for hours of geophysical

enjoyment. Have fun!
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APPENDIX 1

THE CHARACTERISTIC BIQUADRATIC 20

A1.1. PHASE VELOCITY AND RAY PARAMETER IN WEAKLY
ANISOTROPIC MEDIA

The very appearance of equations involving phenomena of wave propagation

through anisotropic media is often intimidating.  It is of great benefit to gain an intuitive

insight into some of these formulæ.  This can be achieved, at times, with the help of

graphical illustrations. Graphical illustrations can often allow one to observe the effects

of a smooth transition between isotropic and anisotropic cases, i.e., from a well known

scenario to a less intuitive one.   There exist various approximations rendering some of

these equations more manageable.  Notably, Thomsen (1986), under the assumption of

weak anisotropy, provided a set of formulæ which achieve the required simplicity of

form, while retaining their validity in the context of most situations encountered in

exploration geophysics.  A weakly anisotropic medium, as far as compressional waves are

concerned, can be characterized by a vertical speed and a pair of anisotropic parameters. 

Consequently, the phase velocity, v, of a compressional wave is given in terms of

the vertical speed, α0, anisotropic parameters, δ and ε, and the phase angle, ϑ, measured

with respect to the normal to the interface, so that:

                                                          
20 This appendix was published by Slawinski, M.A., in the CREWES Research Report  (1995).
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( )v( ) sin cos sinϑ α δ ϑ ϑ ε ϑ= + +0
2 2 41 . (A1.1) 

The reciprocal of the phase velocity, v, i.e., the phase slowness, plays an important

rôle in various studies of anisotropic phenomena, notably in raytracing methods for

layered media. The horizontal component of phase slowness (for horizontal interfaces) is

equal across all boundaries. It is referred to as the ray parameter, x0.

Using the expression for this horizontal slowness component in terms of polar

coordinates, one can write the equation for the ray parameter, x0, in weakly anisotropic

media:

x0
0

2 2 41
=

+ +
sin

( sin cos sin )

ϑ
α δ ϑ ϑ ε ϑ

. (A1.2)

A1.2. QUARTIC EQUATION AND THE CHARACTERISTIC 

BIQUADRATIC

Expressing all trigonometric functions in terms of sinϑ, and rearranging, one can

write equation (A1.2) as a fourth-order polynomial:

x x x0 0
4

0 0
2

0 0 0α ε δ ϑ α δ ϑ ϑ α( ) sin sin sin− + − + = .           (A1.3)

A general solution of a fourth-order polynomial is a very laborious task.  But, a rather

trivial manipulation gives an insight into the character of the solution of equation (A1.3).

One can write:

 α ε δ ϑ α δ ϑ α ϑ0
4

0
2

0
0

1
( ) sin sin sin− + + =

x
.          (A1.4)

The left-hand side of equation (A1.4) is a biquadratic expression with coefficients

dependent only upon the vertical speed, α0, and anisotropic parameters of the medium, ε
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and δ (see Figure A1.1) .  The coefficients are independent of the ray direction, and are

characteristic of a given medium (as long as one is considering compressional waves

only).

     y
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Figure A1.1. A graph of a characteristic biquadratic for a medium with the following
parameters: α0 = 2925 m/s, ε = 0.224 and δ = 0.183, i.e., corresponding to the phenolic
CE laminate used in the laboratory studies of anisotropy.  The units of the vertical axis
are metres per second, while the horizontal axis is dimensionless.
The plot corresponds to the expression on the right-hand side of equation (A1.4)
y = − + +α ε δ ϑ α δ ϑ α0

4
0

2
0( ) sin sin  plotted against x = sinϑ.

The coefficient on the right-hand side of equation (A1.4) depends only on the ray

parameter, x0, which is a function of the angle of incidence.  Letting both sides of

equation (A1.4) equal y, and setting sinϑ ≡ x, and plotting both sides of equation (A4.1)

separately versus x, one notices that the left-hand side is a curve whose y-intercept y(0) =

α0. The right-hand side is a straight line passing through the origin, with a slope equal to

the inverse of the ray parameter, x0; see Figure A1.2.

Such innocent transformation leads immediately to several interesting

conclusions.  The original quartic (equation (A1.3)) has at most two real solutions. They

correspond to the points of  intersection of the straight line and the curve corresponding

to the right-hand side, which often resembles a parabola. These two real roots can

degenerate to just one real root when the straight line is tangent to the graph. Finally, the

original equation may have no real solutions if the straight line and the graph never touch.
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Figure A1.2. A graph of a characteristic biquadratic  curve (for parameters see Figure
A1.1) and the straight line plotted versus x ≡ sinϑ.  The inclination of the straight line
corresponds to critical incidence, calculated using equation (A1.6) as ϑc = 39o, i.e., it is
such that the intercept occurs at x ≡ sinϑ= 1. Counterclockwise rotation of the straight
line would yield normal transmission, while clockwise rotation would yield postcritical
refraction.  For this illustration, the medium of incidence is assumed to be isotropic with a
compressional-wave velocity, v = 2250, i.e., PVC used in laboratory studies.

For a given medium, the quantity which determines which case is applicable is the

slope of the straight line.  The biquadratic remains constant for all angles of incidence as

long as one is considering compressional waves.  Hence, it is referred to as a

characteristic biquadratic.

A1.3. THE CRITICAL ANGLE

For a  physically meaningful solution, i.e., real ϑ, it is required that sinϑ not be

greater than unity.  This leads to the formulation of the critical-angle expression.  The

critical angle corresponds to the point where ϑ = π/2 in equation (A1.2).  This gives a

value of the ray parameter, x0, that corresponds to the critical angle for compressional

waves at the boundary between weakly anisotropic media:

x0
0

1

1
=

+α ε( )
.  (A1.5)
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Recalling the definition of the ray parameter in isotropic media, i.e., x0 ≡ sinθi/v,

one obtains the critical incidence angle for compressional waves at the isotropic/

anisotropic interface:

ϑ
α εc Arc

v=
+









sin
( )0 1

.                                        (A1.6)

Setting the anisotropic parameter, ε, to zero reduces equation (A1.6) to the case of

an isotropic/isotropic interface.  One can easily rewrite equation (A1.6) as:

ϑ c Arc
v

v
=









sin 1

2

 , (A1.7)

where v ≡ v1 is the velocity in the medium of incidence and α0 ≡ v2 is the velocity in the

medium of transmission.  Equation (A1.7) is the well known formula for critical

incidence angle, ϑc, at the boundary between two isotropic media.

A1.4. REDUCTION TO THE PURELY ISOTROPIC CASE

To complete the concept, one notices that in the limiting case, ε = δ = 0, i.e.,

isotropy, equation (A1.4) reduces to the standard form of Snell’s law.  Thus, similar

graphs can be obtained for isotropic media.  As the values, δ and ε, approach zero,

tending towards isotropy, the curve opens up.  For a perfectly isotropic case, the curve of

the left-hand side of equation (A1.4) becomes a horizontal straight line,  y(x) = α0.  Also,

in the context of isotropy, just as in the anisotropic case, transmission occurs for values of

sinϑ  < 1, the critical angle at sinϑ = 1, and postcritical incidence for sinϑ  > 1, as

illustrated in Figure A1.3.
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Figure A1.3. Degenerate biquadratic, the graph of a fourth-order polynomial becomes a
horizontal straight line.  A sloping line corresponds to critical incidence at the interface
between two isotropic media with velocities of 2250 m/s and 2925 m/s, i.e., it is such that
the intercept occurs at x ≡ sinϑ = 1. Counterclockwise rotation of the straight line would
yield a normal transmission, while clockwise rotation would yield postcritical refraction.

A1.5. CONCLUSIONS

A graphical illustration corresponding to the fourth-order polynomial governing

the transmission/refraction of compressional waves at the boundary between weakly

anisotropic media  has been presented.  The concept of a characteristic biquadratic, a

curve whose shape depends only on anisotropic parameters of a given medium, has been

introduced.  It is believed that the presented graphical approach allows one to gain a more

intuitive understanding of the phenomenon in question than offered by equations alone.

An analogous illustration can be elaborated for SV waves (see equation (3.29)).
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APPENDIX 2

IMPLICATIONS OF WEAK-ANISOTROPY
APPROXIMATION ON PHASE-SLOWNESS CURVES

A considerable part of this dissertation uses the weak-anisotropy approximation,

which transforms exact equations of phase velocity into approximate equations

(Thomsen, 1986).  Exact formulæ for P, SV, and SH waves were given by Daley and

Hron (1977).  Using anisotropic parameters ε, δ, and γ  defined by Thomsen, the exact

expressions for P, SV, and SH waves can be written as follows:

( )
vP = + + −



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
 +

−

−
+

− +
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(A2.1)
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vSH = +β γ ϑ1 2 2sin , (A2.3)

where α and β are vertical compressional and shear wave speed respectively, δ, ε, and γ

are anisotropic parameters, while ϑ denotes the phase angle.  Developing the above

equations into a Taylor series and neglecting higher-order terms assuming anisotropic

parameters to be smaller than unity yields (Thomsen, 1986):

( )vP ≅ + +α δ ϑ ϑ ε ϑ1 2 2 4sin cos sin , (A2.4)

( )vSV ≅ + −








β α

β
ε δ ϑ ϑ1

2

2
2 2sin cos , (A2.5)

and

( )vSH ≅ +β γ ϑ1 2sin . (A2.6)

The considerable algebraic simplification facilitates mathematical operations and

enables one to easily express slowness curves as level curves in polar coordinates

(equations (3.7), (3.22), and (3.33)), in a form adaptable to the anisotropic formalism of

Snell’s law.  Thomsen (1986) provides numerous further simplifications/linearization

which are avoided in this dissertation since they lead to a loss of several physical

attributes characteristic of wave propagation in anisotropic media, e.g., triplication of

group angle as a function of phase angle (see section 6.3 and Appendix 6).  No physical

attributes are lost by application of equations (A.2.4), (A.2.5), and (A.2.6); the question

arises, however, whether significant accuracy is sacrificed in this elegant process of

simplification.

To gain an understanding of the consequences of approximation, several plots are

generated using exact formulæ ((A2.1), (A2.2), (A2.3)) and their approximate
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counterparts ((A2.4), (A2.5), (A2.6)). The plots represent phase-slowness curves.  The

values chosen for δ and ε, together with corresponding plot letter are given in Table A2.1.

for P and SV waves.  The cases where ε = δ are not illustrated. Such a fortuitous

combination of anisotropic parameters leads to spherical wavefronts of SV waves.

δδ    \      εε -0.2 -0.1 0.1 0.2

-0.2 X a b c

-0.1 d X e f

0.1 g h X I

0.2 j k l X

Table A2.1. A selection of anisotropic parameters ε and δ with letters corresponding to
plots shown in Figure A2.1.

-0.0004 -0.0002 0.0002 0.0004

-0.0004

-0.0002

0.0002

0.0004

-0.0002 -0.0001 0.0001 0.0002

-0.0002

-0.0001

0.0001

0.0002

a)
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-0.0004 -0.0002 0.0002 0.0004

-0.0004

-0.0002

0.0002

0.0004

-0.0002 -0.0001 0.0001 0.0002

-0.0002

-0.0001

0.0001

0.0002

b)

-0.0004 -0.0002 0.0002 0.0004

-0.0004

-0.0002

0.0002

0.0004

-0.0002 -0.0001 0.0001 0.0002

-0.0002

-0.0001

0.0001

0.0002

c)
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-0.0004
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-0.0002 -0.0001 0.0001 0.0002
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-0.0002
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d)
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0.0002
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-0.0004 -0.0002 0.0002 0.0004

-0.0004
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f)

-0.0006 -0.0004 -0.0002 0.0002 0.0004 0.0006

-0.0006
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Figure A2.1. On the left-hand-side plots of slowness curves of  SV waves are illustrated, using
exact (A2.2.) and approximate (A2.5.) equations. On the right-hand-side plots of slowness
curves of  P waves are illustrated, using exact (A2.1.) and approximate (A2.4.) equations. More
complex shapes correspond to the exact equation, i.e., shapes with more pronounced curves.
Letters below each plot correspond to the combination of anisotropic parameters, ε and δ given
in Table A2.1.  Vertical P-wave and S-wave speeds are α = 4000 m/s and β = 2000 m/s.  Phase
angle is measured as an argument of polar coordinates, i.e., counter-clockwise from the positive
segment of the horizontal axis.

The SV wave exhibits the most complex slowness curve, which, as a result, is the most

difficult to approximate.  In most cases, however, the fit is quite good and the appearance of the

graph is well preserved, i.e., the approximate solution exhibits all principal characteristics of the

exact equation.  In the case of P and SH waves the correlation between the exact and the

approximate equations is very good.

Remaining within the realm of weak anisotropy, containing most observations of geophysical

interest, the sacrifice of accuracy is relatively small, particularly in the case of P and SH waves.

Using slowness surfaces or curves, derived using the weak-anisotropy equations, while employing

exact equations in subsequent steps (e.g., calculation of group velocities or group angles) yields

results that are adequate for many purposes (see also Appendix 6).  Also, crucial physical atributes



177

-0.0004 -0.0002 0.0002 0.0004

-0.0006

-0.0004

-0.0002

0.0002

0.0004

0.0006

-0.0004 -0.0002 0.0002 0.0004

-0.0004

-0.0002

0.0002

0.0004

m) n)

-0.0004 -0.0002 0.0002 0.0004

-0.0004

-0.0002

0.0002

0.0004

-0.0004 -0.0002 0.0002 0.0004

-0.0004

-0.0002

0.0002

0.0004

o) p)

Figure A2.2. Slowness curves of SH waves using exact (A2.3) and approximate (A2.6) equations.
Letters below each plot correspond to the given value of the anisotropic parameter, γ: m,-0.2; n,-
0.1; o,0.1; p, 0.2.  Vertical SH wave speed is β = 2000 m/s.  Phase angle is measured as an
argument of polar coordinates, i.e., counter-clockwise from the positive segment of the horizontal
axis.

characteristic of wave propagation in anisotropic media are preserved, thus the

educational benefits are considerable, while comparison of slowness surfaces generated
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using exact an approximate approaches, as well as the physical laboratory measurements

(Chapter VII) suggest that in many instances the approximate method constitutes an

adequate practical approach.

It could, perhaps, be argued that initial loss due to the weak-anisotropy

approximation, is somewhat compensated by operating, for the most part, on simple

analytical expressions, thus avoiding many pitfalls of numerical calculations.  This might

be particularly true since many calculations involve values differing by many orders of

magnitude, e.g., ray parameter (10-4), velocity (103) and their powers.  Using the symbolic

mathematical software Mathematica, one benefits, in most cases from infinite precision

(Wolfram, 1991).

Slowness curves were generated using a plotting routine within the Mathematica

software.  The programme is given below.

Mathematica code for generating exact and approximate (weak anisotropy)
slowness curves for P, SV, and SH waves.

<<Graphics`Graphics`
A = vertical speed of a compressional wave, α.
B = vertical speed of a shear wave, β.
e = anisotropic parameter, ε.
d = anisotropic parameter, δ.
g = anisotropic parameter, γ.

Calculation of SV curves
svexact=PolarPlot[1/(

B*Sqrt[
1+((A/B)^2)*(e*Sin[p]^2-

0.5*(1-(B/A)^2)*
(Sqrt[1+4*(2*d-e)*Sin[p]^2*Cos[p]^2/(1-(B/A)^2)+
4*(1-(B/A)^2+e)*e*Sin[p]^4/(1-(B/A)^2)^2]
-1))]),

{p,0,2*Pi}]
svapprox=PolarPlot[1/(B*(1+(A/B)^2*(e-d)*Sin[p]^2*Cos[p]^2)),

{p,0,2*Pi}]
Show[svexact,svapprox]
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Calculation of P curves
pexact=PolarPlot[1/(

A*Sqrt[1+e*Sin[p]^2+0.5*(1-(B/A)^2)*
(Sqrt[1+4*(2*d-e)*Sin[p]^2*Cos[p]^2/(1-(B/A)^2)+
4*(1-(B/A)^2+e)*e*Sin[p]^4/(1-(B/A)^2)^2]
-1)]),

{p,0,2*Pi}]
papprox=PolarPlot[1/(

A*(1+d*Sin[p]^2*Cos[p]^2+e*Sin[p]^4)),
{p,0,2*Pi}]

Show[pexact,papprox]

Calculation of SH curves
shexact=PolarPlot[1/(

B*Sqrt[1+2*g*Sin[p]^2]),
{p,0,2*Pi}]

shapprox=PolarPlot[1/(
B*(1+g*Sin[p]^2)),

{p,0,2*Pi}]
Show[shexact,shapprox]
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APPENDIX 3
CONCERNS OF NUMERICAL PRECISION

A3.1. INTRODUCTION

It is the intention of this dissertation to achieve analytically as many results as

possible. At times, however, it is neither practical nor possible.  For instance, the

calculation of the take-off angle for raytracing requires an iterative method of solution,

for it is impossible to express the take-off angle explicitly in terms of other parameters.

All numerical (and most analytical) operations were performed using Mathematica, a

software package allowing both numerical and symbolic calculations.  Since as many

operations as possible are performed symbolically, it allows one to retain, for those

operations, infinite precision (Wolfram, 1991).  In general, one expects some errors in

cases of truncated series, finite-element solutions, etc.  However, it has been

demonstrated, that even some closed-form  expressions arising in geophysics are not free

from the perils of computational errors (Brown, 1988).  Thus a geophysicist should be on

the alert for such computational problems.    Often I have used different approaches,

utilizing several algorithms to obtain the same physical quantity.  At times the numerical

results vary slightly.  What follows is an example of applying different approaches in the

investigation of a particular case exhibiting numerical errors.

A3.2. OBSERVATION

An SH wave is transmitted across the two-layer medium.  The thicknesses are h1

= 0.0356 m and h2 = 0.1046 m, for the upper and lower layers respectively.  The upper
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layer is isotropic, with an SH-wave speed v = 1030 m/s.   The lower layer is anisotropic

with a vertical speed β = 1606 m/s, and the anisotropic parameter γ = 0.096.

Three methods are used to calculate the traveltime, t, and the take-off angle, θi, for

a horizontal distance between the source and receiver, X =  0.1 m.  The first method uses

the anisotropic formalism of  Snell’s law developed in Chapter II and in Chapter III.  The

second and third methods use the approach based on Fermat’s  principle of stationary

time described in Chapter IV.

The first method, utilizing the anisotropic formalism of  Snell’s law, is based on

calculating the ray parameter corresponding to the desired source-receiver configuration.

The traveltime is computed using expressions for group velocities in weakly anisotropic

media.  The results obtained are t =  0.000118309 s, and  θi = 20.70067866o.

Both the second and third methods, utilize Fermat’s principle of stationary time.

The methods seek to minimize the traveltime between source an receiver.  The travelpath

and trigonometric functions are expressed in terms of a distance, r, between the refraction

point and the receiver.  In the second case, the derivative dt/dr is set to zero, the value of r

found, and hence propagation angles and then traveltime, t, calculated. The results

obtained are t = 0.000118309 s, and  θi = 20.52767868o.

The third method finds directly the minimum of the traveltime function using the

Mathematica command “FindMinimum”. The results obtained are t =  0.000118314 s,

and  θi = 19.67525212o.

A3.3. FURTHER INVESTIGATION

The discrepancies illustrated above prompted further investigation.  For this

purpose three analogous methods were used to calculate the take-off angle and traveltime

in a purely isotropic medium.  The assumption of perfect isotropy facilitates various

comparisons.  All parameters of the medium are the same as the ones shown above,

except the anisotropic parameter, γ, is identically zero.
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A3.3.1. Calculation using ray parameter, p.
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The Mathematica code and result are given below:

FindRoot[36.668*p/Sqrt[1-1060900*p^2]+
167.9876*p/Sqrt[1-2579236*p^2]==0.1,
{p,{0.0005,0.001}}]
{p -> 0.000390847 + 1.3171 10-10  I}

Ignoring a very small imaginary part yields a take-off angle of 23.73909105o,  and

transmission angle of 38.88065658o.  Of course, the same transmission angle is obtained

using Snell’s law.  Knowing layer thicknesses one can calculated the resulting offset, X =

0.099999555 m, giving an error of about 0.000445%.  One can also calculate the

traveltime to be  t = 0.000121425 s.

A3.3.2. Calculation using the traveltime function, t

t r
X r h

v

r h r r
( )

( ) ( . ) . .=
− +
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− +

+ +2
1
2 2

2
2 2 201 0 00126736

1030

0 01094116

1606β

Method A

This method consists of  setting dt/dr = 0, and solving for r.  The Mathematica

code and result are given below:

D[Sqrt[(0.1-r)^2+0.00126737]/1030+
Sqrt[r^2+0.01094116]/1606,r]

FindRoot[%,{r,{0.01,0.099}}]
{r -> 0.0843436}
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Using the value of r, one obtains a take-off angle equal to 23.73924596o and a

transmission angle of  38.88076608o.  Using the given velocities, the take-off angle and

Snell’s law, one obtains the transmission angle of 38.88094059o, which leads to X =

0.100000526 m, i.e., an error of about 0.000525700%.  One can also calculate the

traveltime as t = 0.000121425 s;  t is the same, within the number of digits displayed,

regardless of the method used for obtaining the angle of transmission.

Method B

This method consists of finding directly the value of r, for which the traveltime,

t(r), is minimum.  The Mathematica code and result are given below:

FindMinimum[Sqrt[(0.1-r)^2+0.00126737]/1030+
Sqrt[r^2+0.01094116]/1606,
{r,{0.01,0.099}}]
{0.000121425, {r -> 0.0842846}}

Using the value of r, one obtains a take-off angle equal to 23.81876456o.  and a

transmission angle of  38.86117634o.  Calculating the path in each layer and adding yields

a traveltimes value computed by the programme to be t = 0.000121425 s.  This result,

however, is not entirely consistent with Snell’s law.  Using the given velocities and the

take-off angle one obtains a transmission angle of 39.02684347o, which leads to X  =

0.100499982 m, i.e., within an error of about  0.4999821%, a couple of orders of

magnitude larger than for the other two methods.

A3.4. CONCLUSIONS

For an isotropic case, all three algorithms yield the same value of traveltime, t =

0.000121425, within the number of digits displayed by the output.  Similarly, in the

anisotropic case, the values of traveltime were very close to each other, t = {0.000118309

s, 0.000118309 s, 0.000118314 s}.  As a matter of fact, the only discrepancy results from

the third method, i.e., the algorithm of Mathematica which calculates directly the

minimum of  a traveltime function.  If the only purpose of the computational study is the

traveltime calculation, for instance, a comparison between isotropic and anisotropic
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calculation of traveltimes, any of the three approaches could be used in either case.

Particularly for comparison with experimental results, they all yield adequate theoretical

prediction.

For an isotropic case the values of the take-off angle are  θi = {23.73909105o,

23.73924596o, 23.81876456o}, again, the largest discrepancy appearing when using the

third method. Similarly, in the anisotropic case, the values of the take-off angles are θi =

{20.70067866o, 20.52767868o, 19.67525212o}, the largest discrepancy appearing when

using the third method.  Thus, if one desires to calculate the raypath, it is preferable to

avoid the “FindMinimum” command, which leads to the largest discrepancies, both

within itself  when considering Snell’s law, and with respect to the other two methods.  In

the dissertation, this command, although very convenient, was avoided altogether.

A3.5. FINAL REMARKS

Throughout the entire study, whenever possible, numerical errors were

investigated.  For example, if both forward and inverse algorithms were available, a

careful comparison of results was performed.  The high accuracy of  inversion of

synthetic results for the values of anisotropic parameter (see Chapter VIII), indicates that

the use of numerical algorithms has been successful.
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APPENDIX 4
PROOF THAT dγ/dr = 0 FOR THE ACTUAL γ 21

Suppose there exists a function of three variables, T, r, and γ :

F T r t r T( , , ) ( , )γ γ= − , (A4.1)

for which all first derivatives exist in an open set D, D ⊂ ℜ3 (this is expected to hold true

in all cases of physical interest); suppose further that there exists a  point P(T0,r0,γ0), P ∈

D, such that F(P) = 0, i.e., t(r0,γ0) = T0,  and that ∂t/∂γ ≠ 0 at P. Then by the implicit

function theorem (e.g., Olmsted, 1961), there exists a function g(T, r) possessing all first

derivatives, that satisfies the equation:

F T r g T r t r g T r T( , , ( , )) ( , ( , ))= − = 0, (A4.2)

in an open neighbourhood N ⊂ ℜ2 of  (T0,r0)∈ℜ2, such that g(T0,r0) = γ0.

Geometrically, note that F(T,r,γ) = 0 implicitly defines a 2-D surface in ℜ3.  Now,

consider a curve on this surface defined by its intersection with the surface T = T0.  The

implicit form of the equation of this curve, with r as the parameter, is:

F T r g T r t r g T r T( , , ( , )) ( , ( , ))0 0 0 0 0= − = (A4.3)

                                                          
21 Raphaël A. Slawinski (pers. comm., 1995)
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Differentiating equation (A4.3) with respect to r gives:

[ ] [ ]dF
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= +
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. (A4.4)

Equation (A4.4) is satisfied everywhere along the curve.

Now consider the point defined by the intersection of the above curve with the

surface implicitly defined by the equation ∂t(r, γ)/∂r = 0.  Then, at this point, the

following equation holds:

∂
∂

t

g

dg T r

dr

( , )0 0= . (A4.5)

Assume ∂t/∂g = ∂t/∂γ ≠ 0; then:

 
dg T r

dr

( , )0 0= . (A4.6)

Hence, at the point defined by the intersection of the surfaces:
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(A4.7)

corresponding to ray traveltime for specific r and γ, Fermat’s principle of stationary time,

and a particular (measured) time, respectively, the following equation holds:



187

dg T r

dr

( , )0 0= , (A4.8)

where the function g(T,r) is obtained by solving F(T,r,γ) = 0 for γ.



188

APPENDIX 5

AN APPROXIMATE METHOD FOR CALCULATING

ANISOTROPIC PARAMETERS FROM P-WAVE

TRAVELTIMES

A5.1. INTRODUCTION

The group speed, and hence the traveltime, of a P wave in an anisotropic medium

depend on the direction of propagation.  To determine the speed, for a given propagation

direction, one requires, the value of  anisotropic parameters, δ and ε.  The method below

provides a method for obtaining approximate values of  δ and ε of a buried layer by

performing the traveltime measurements on the surface.  The method requires the

traveltime information acquired with  two different recording geometries. The methods is

analogous to the inversion presented in Chapter VIII and as such possesses all its

characteristics, including extreme sensitivity to errors in input parameters. Consequently,

the applicability of an approximate method for calculating anisotropic parameters from P

wave (or SV wave) traveltimes is limited to numerical examples. It is included here for

educational interest.
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A5.2. OBSERVATION ON THE FORWARD MODEL

The traveltime of a P wave travelling in a model depicted in Figure (4.1),  can be

written in terms of the dimensions of the model, group speeds dependent on anisotropic

parameters δ, ε and  a variable, r, denoting the distance between the receiver and the

refraction point, chosen in such a way as to satisfy Fermat’s principle of stationary time,

i.e.:
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 (A5.1)

By forward modelling, i.e., raytracing through the  model, between the given

source and receiver, assuming knowledge of all parameters, one can calculate both

traveltime t, and the distance, r, intimately related to the take-off angle.  A 3-D surface

representing traveltime on the vertical axis, spanning δ and ε, as the horizontal axes, can

be generated.   The value of r used to generate the surface,  is the value satisfying

Fermat’s principle of stationary time, obtained from forward modelling.  The surface,

describing all possible traveltime values for  δ and ε combinations displayed on

horizontal axes, can be intersected by the plane at t(δ, ε; r) = T, i.e., the traveltime

calculated from the forward model.
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Figure A5.1. Traveltime surfaces, t(δ, ε, r), (inclined) corresponding to all combinations
of δ and ε,  for a model, at X = 0.1 m ( left) and at X = 0.05 m (right).  Planar, horizontal
surfaces, illustrating the actual traveltimes, T, for X = 0.1 m, and X = 0.05 m, derived
from forward modelling, intersect the appropriate traveltime surfaces.  The line of
intersection between the inclined and horizontal surfaces, indicates possible combinations
of  δ and ε, for a model, given one offset.  The combination of results for two offsets
yields a unique pair of  δ and ε.

The δ- and  ε-coordinates of the curve, corresponding to the intersection between

the surface and the plane, are the possible pairs of anisotropic parameters satisfying the

solution of the traveltime equation at t(δ, ε; r) = T.  It is impossible, from measurement  at

a single source-receiver configuration to obtain a unique (δ, ε) pair.  Another

measurement, however, at a different offset, provides analogous illustration with a

different intersection curve.  It is the intersection of two curves which yields a unique pair

of values of  δ and  ε.

A5.3. STRATEGY FOR AN INVERSE CALCULATION

In the inverse case, one does not know the values of anisotropic parameters or the

value of r.  An approximate solution, however, can be obtained.
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Figure A5.2. The illustration of the intersection point
between the curves (straight lines) corresponding to the
intersection of surfaces (see Figure A5.1).  The coordinates
(δ, ε) indicate the anisotropic parameters of  a model used
in forward calculations, i.e., (0.183, 0.224).

The initial guess consists of estimating the value of r.  In weak anisotropy the

raypath of a ray calculated using the anisotropic approach is not radically different from

the raypath of a ray calculated using the isotropic approach, in which one  assumes the

isotropic speed to be equal to the vertical speed.  The position of refraction point, r,

moves along the interface to satisfy Fermat’s principle of stationary time.  If, as in  the

case in the considered model, the upper layer is isotropic, the point r moves towards the

receiver, from its isotropic equivalent, if the anisotropic speed in the medium of

transmission decreases with angle of propagation. The point r moves away from the

receiver, from its isotropic equivalent, if the anisotropic speed in the medium of

transmission increases with angle of propagation .

A5.4. ALGEBRAIC FORMULATION

For a set value of T corresponding to a value of  r, satisfying Fermat’s principle,

the expressions for δ and ε are linear.  Considering two measurement points, A and B, of

traveltime of compressional waves, the expressions for δ and ε  can be written a set of
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two linearly independent equations in which all values except for the isotropic parameters

are assumed to be known or estimated:
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(A5.2)

Note that the group speed of an SV wave depends on the same anisotropic

parameters as the group speed of P waves.  Thus, an analogous process performed using

SV waves provides an independent verification.  Furthermore, if only a single source-

receiver configuration is available, the traveltimes of  P and SV  waves provide the two

necessary independent equations, which  yield a unique pair of values (δ, ε).



193

APPENDIX  6

DEGREES OF APPROXIMATION

A6.1. INTRODUCTION

This appendix discusses the results of raytracing through an anisotropic medium

obtained with several different methods.  The discussed methods use different degrees of

approximation.

The first (exact) method starts with an exact formulation for phase velocity

(Thomsen, 1986). Also, all subsequent relations (e.g., group angle, group velocity) are

derived using exact formulæ.

The second (approximate) method uses an approximate formulation for phase

velocity based on the weak-anisotropy assumption (Thomsen, 1986). However, all

subsequent relations are derived using exact formulæ.

The third (linearized) method uses an approximate formulation for phase velocity

based on the weak-anisotropy assumption (Thomsen, 1986). Moreover, many subsequent

relations are derived using simplified formulæ.

All results correspond explicitly to the SH-wave case, but the concepts and

principle conclusions can be, with due care, extended to SV- and P-wave cases. In

particular, this appendix concentrates on the traveltime and the ray trajectory obtained

using three aforementioned methods.  All results are compared to the method that ignores

anisotropic phenomena.
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A6.2. EXACT METHOD

The group velocity, V, is obtained from the exact formula relating group and

phase velocity, v, as a function of the phase angle, ϑ:

( )[ ] ( )
V v

dv

d
2 2

2

θ ϑ ϑ
ϑ
ϑ

= +






( ) , (A6.1)

where ϑ  is a phase angle measure with respect to the vertical.

The exact equation for phase velocity is given  by Thomsen (1986), and it

represents an equation of an ellipse in polar coordinates expressed as a function of the

phase angle, ϑ, vertical wave speed, β, and the anisotropic parameter, ~γ .  The tilde

placed above the symbol denotes the anisotropic parameter in the exact equation (A6.2)

as opposed to the anisotropic parameter used in the weak-anisotropy approximation

(equation (3.30)).  Specific reasons for this distinction are discussed in section A6.3.

Thus,

( ) [ ]v2 2 21 2ϑ β γ ϑ= + ~sin . (A6.2)

The derivative, with respect to the phase angle is given by:

( )dv

dϑ
β

γ ϑ

γ ϑ
=

+

~sin
~sin

2

1 2 2
. (A6.3)

Thus, the group velocity in terms of phase velocity may be expressed as:

( )[ ] ( )[ ]
V θ ϑ β γ ϑ

γ ϑ
γ ϑ

= + +
+

1 2
2

1 2
2

2

2
~sin

~sin
~sin

 . (A6.4)
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Note that the value of group velocity, V, could also be determined directly from

the elliptical geometry using the method presented in Chapter II.  Here, however, the

above method was used.

 To determine the phase angle, ϑ, one can start with an expression for the radius, r,

of the phase-slowness surface:

( )r ξ
β γ ξ

=
+

1

1 2 2~cos
, (A6.5)

where ξ is a phase angle measured from the horizontal, i.e.,

 ϑ π ξ= −
2

. (A6.6)

The horizontal component of the slowness surface, x0, equivalent to the ray

parameter is:

x r0 21 2
= =

+
cos

cos
~cos

ξ ξ
β γ ξ

. (A6.7)

Equation (A6.7) can be solved uniquely for ξ to give:

ξ β
β γ

=
−

Arc
x

x
cos

~
0

0
2 21 2

. (A6.8)

Note that in contrast to the derivation in the case of weak anisotropy (equations

(3.38) - (3.41)), in the above derivation, there is only one mathematical solution

corresponding to the physical case.  Also, in the case of perfect isotropy, ~γ  = 0, equation

(A6.8) reduces immediately to the familiar isotropic expression without requiring the

application of limits (recall that de l’Hôpital’s rule had to be used in equation (3.43)).
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A6.3. ANISOTROPIC PARAMETER AS γ AND ~γ

Note that one can set ξ = 0, in equation (3.30) and by solving for γ arrive at

equation (3.31).  Equivalently, if one sets ϑ = π/2 in equation A6.2. one obtains:

~γ

π β

β
=







−

















1

2
2

2 2

2

v
. (A6.9)

By comparing expressions for~γ  and γ, given by equations (A6.9) and (3.31) one

can see that:

~γ γ γ= +
2

2
. (A6.10)

Considering the elliptical case described by Cartesian coordinates (Chapter II),

one can use, without loss of generality or accuracy, the definition of γ used throughout the

thesis, since it only serves to define the major and minor axes. Furthermore, the

relationship between ~γ  and γ falls-out naturally from following the elliptical geometry22.

Following the form of equation (2.16), yields:

( )[ ] [ ]β γ β+ + =1 1
2 2

x z . (A6.11)

For a given x = x0, one can express the corresponding z = z0, and hence calculate

the phase angle, ξ, as an inverse trigonometric function:

                                                          
22 One can view the anisotropic parameter as a fixed quantity regardless of the approach taken.  In this
appendix the definition was adjusted so as to yield a perfect equivalence, i.e., equation of an ellipse, through
both Cartesian and polar coordinates.
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ξ β

β γ γ
= 







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
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
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(A6.12)

Note that equation (A6.8) and equation (A6.12) differ by the term γ2/2, as

expected from equation (A6.10). This is a natural consequence of  the difference in

definitions ~γ  and γ, described above.

A6.4. APPROXIMATE METHOD (WEAK ANISOTROPY)

The approximate method uses Thomsen’s (1986) equation for phase velocity

resulting from developing expression (A6.2) into a Taylor series, and truncating higher-

order terms under the assumption of weak anisotropy, i.e., small γ. Thus:

( ) [ ]v ϑ β γ ϑ≅ + +1 2sin ... . (A6.13)

Equation (A6.13) is used in deriving Snell’s law, i.e., it serves as the basis for

constructing the slowness curve, to which the ray is normal at a point corresponding to

the ray parameter (Chapters  II and III). The derivative with respect to the phase angle is

given as:

( )dv

dϑ
βγ ϑ≅ sin 2 . (A6.14)

Thus the group velocity in terms of phase velocity is given as:

( )[ ] ( ) ( )[ ]V θ ϑ β γ ϑ γ ϑ≅ + +1 22 2 2
sin sin . (A6.15)
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The value of the phase angle, ϑ, (measured from the vertical, i.e., phase

colatitude) is found from:

ϑ π ξ= −
2

, (A6.16)

where the phase angle, ξ, (measured from the horizontal, i.e., phase latitude) is given by:

ξ
β γ

β γ
≅

− −










Arc

x

x
cos

( )1 1 2

2
0 0

2

0 0

. (A6.17)

The method of calculating the phase angle, ξ, is demonstrated in Chapter III (equations

(3.38) - (3.41)).

A6.5. LINEARIZED METHOD (WEAK ANISOTROPY WITH    

FURTHER SIMPLIFICATION)

Thomsen (1986) derives, based on the weak-anisotropy formulæ,  further

simplified expressions.  For instance, the expressions for phase and group velocity are the

same . One can write:

( ) ( )V vθ ϑ≈ . (A6.18)

Other simplifications imply, for instance, that the relationship between the phase

and group angles (ϑ and θ, respectively), rather than being expressed  through the vector-



199

calculus formalism as described in Chapters II and III,  can be expressed for SH waves

as23:

( )tan tanθ γ ϑ≈ +1 2  . (A6.19)

The linearized method, as already stated, goes beyond the simplification resulting

directly from the assumption of weak anisotropy (approximate method).  Consequently,

as demonstrated below, results obtained by the linearized approach depart more from the

exact results than the results obtained through the approximate method.

A6.6. NUMERICAL EXAMPLE

Consider a horizontal two-layer model with layer thickness of 1000 metres each.

The upper layer is isotropic with wave speed  V1 = 3000 m/s, and the vertical speed in the

lower, anisotropic layer is β = 4000 m/s.  Assume the anisotropic parameter to be γ = 0.1.

The several traveltime values are displayed in Table A6.1.

OFFSET
(m)

TIME (s)
EXACT

TIME (s)
APPROX.

TIME (s)
LINEARIZED

TIME (s)
ISOTROPIC

0 0.583333 0.583333 0.583333 0.583333
250 0.587304 0.587324 0.587228 0.587779
500 0.599034 0.599109 0.598758 0.600903
1000 0.643508 0.643744 0.642716 0.650531
2000 0.793277 0.793717 0.792035 0.816813
3000 0.985823 0.986253 0.984727 1.02992

Table A6.1. Traveltime values for γ = 0.1 using the exact, approximate, linearized and
isotropic methods.

Now, keeping other parameters of the model constant let γ = 0.2.

                                                          
23 The linearized relationship between phase and group angles for SV waves in Thomsen’s  (1986)
development, yields completely erroneous results for a choice of anisotropic parameters consistent with the
weak-anisotropy assumption (see Figure 6.12). The exact relationship from the aforementioned publication
leads to correct results.
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OFFSET
(m)

TIME (s)
EXACT

TIME (s)
APPROX.

TIME (s)
LINEARIZED

TIME (s)
ISOTROPIC

0 0.583333 0.583333 0.583333 0.583333
250 0.586888 0.586953 0.586587 0.587779
500 0.597396 0.597642 0.596318 0.600903
1000 0.637332 0.638128 0.634374 0.650531
2000 0.772539 0.774154 0.768223 0.816813
3000 0.947246 0.948926 0.943529 1.02992

Table A6.2. Traveltime values for γ = 0.2 using the exact, approximate, linearized and
isotropic methods.

The values of Table A6.2 are plotted in Figure A.6.1.  One can see that all the

curves corresponding to the different anisotropic methods are positioned very close to

each other.  The curve corresponding to the isotropic approach is clearly more removed.

To visualize the differences between the anisotropic approaches the values of Table A6.2.

were replotted as a difference between the given value and the value obtained from exact

calculation, normalized to the value of exact calculation (Figure A6.2).  It shows that the

approximate method based on the weak anisotropy assumption yields more accurate

results than the fully linearized method.  Again, it is clearly shown that the isotropic

approach leads to the least accurate results.

It seems that in the context of geophysics, both approximate and linearized

methods provide a reasonable accuracy for traveltime calculations, while offering a

considerable  facility  of mathematical manipulation.  The superiority of the approximate

method over the linearized method appears twofold.  Firstly, the computational results are

slightly more accurate (e.g., see Figure A6.2).  Secondly, and perhaps more importantly,

the approximate method yields distinct phase and group velocities and angles, i.e., it

clearly illustrates one of the fundamental concepts in anisotropic wave propagation (see

Figure A6.3 and Table A.6.4).  In the process of linearization this physical distinction is

lost.



201

TRAVELTIME VALUES
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Figure A6.1. The traveltime of SH waves between the source and receivers
calculated using four different approaches: exact, approximate, linearized
and isotropic. The value of anisotropic parameter is γ = 0.2.

Now, keeping other parameters of the model constant let γ = 0.3.

OFFSET
(m)

TIME (s)
EXACT

TIME (s)
APPROX.

TIME (s)
LINEARIZED

TIME (s)
ISOTROPIC

0 0.583333 0.583333 0.583333 0.583333
250 0.586524 0.586645 0.585861 0.587779
500 0.595964 0.596423 0.593624 0.600903
1000 0.631922 0.633442 0.625765 0.650531
2000 0.754373 0.757675 0.745875 0.816813
3000 0.913615 0.917287 0.906406 1.02992

Table A6.3. Traveltime values for γ = 0.3 using the exact, approximate, linearized and

isotropic methods.
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NORMALIZED TRAVELTIME DIFFERENCE
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Figure A6.2. The normalized difference in traveltime in an anisotropic medium calculated
using four different approaches: exact, approximate, linearized and isotropic. The
difference between a given method and the exact method is normalized with respect to
the exact method.  Notice that the discrepancy decreases after a certain offset value.  At
an infinite offset all anisotropic approaches converge again as phase and group velocities
coincide for horizontal and vertical propagations (Thomsen, 1986).

Note that the case of γ = 0.3 may be viewed as being outside the accepted domain

of applicability under the weak anisotropy assumption.  In spite of that fact, all methods

behave very well, and certainly any method including the anisotropic phenomena yields a

more accurate result than the isotropic approach.

A6.7. GEOMETRICAL EXPLANATION

A further insight is gained by the investigation of ray and phase angle.  For the

purpose of illustration a case of γ = 0.3, and offset of 3000 metres is used.  The ray

vector, w, and lines of constant phase with phase vector, v, are illustrated in Figure A6.3

.
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lines of constant phase
ray    (wavefronts)
(direction
of energy flow)

  υυ
θ

      anisotropic medium     v w

Figure A6.3.  Ray, w, and phase, v, vectors.  Dashed lines represent
constant phase, i.e., wavefronts.  Both group (ray) angle, θ, and the phase
angle, ϑ, are measured from the vertical.

Table A6.4. gives the values of phase,ϑ , and group angles,θ , as well as the

phase, |v| and group(ray, energy), |w|, speeds, calculated with appropriate formulæ.  The

magnitude of phase velocity, |v|, is obtained, for each case, from the appropriate equation

for phase velocity given the corresponding phase angle.  Note that for the linearized

scheme phase, ϑ,  and group, θ, angles are equal for all angles of propagation, a

physically unsatisfactory description, but computationally yielding good results.  Also,

phase, |v|, and group, |w|, speeds are equal.  Recall that for body waves in anisotropic

media, the phase speed, |v|, is always smaller than the group speed, |w| as seen from (e.g.,

Auld, 1972):

( )v w= −cosθ ϑ . (A6.20)

Results of exact and approximate methods shown in Table A6.4. are consistent

with equation (A6.20).
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EXACT APPROX. LINEARIZED ISOTROPIC
θθ ; [deg] 67.4692181 67.4732288 67.3520912 64.3492525
ϑϑ; [deg] 54.9664383 54.0742285 67.3520912 64.3492525

w ; [m/s] 4955.06 4920.83 5022.07 4000
|v| ; [m/s] 4837.55 4786.89 5022.07 4000

Table A6.4. Group and phase angles and speeds at the offset of 3000 metres for the model
using γ = 0.2.

A6.8. ANGLE OF PROPAGATION AND PHASE AND GROUP 

CONCEPTS

The results of Table A6.5 and Figures A6.4 and A6.5 explain the appearance of

plots in Figure A6.2.  Unlike the case of the isotropic approach, which diverges

monotonically from the exact approach with increasing angle of propagation, all the

anisotropic approaches coincide with each other at zero offset and at infinite offset,

regardless of the method used to describe the distinction between phase and group

velocities or angles.  As a matter of fact, their coincidence at vertical and horizontal

propagations might be used as a check on  an algorithm.

Large discrepancies among the anisotropic approaches occur when the

propagation in the anisotropic medium is about 45o.  This illustration is applicable to all

symmetry systems with the vertical symmetry axes.  In an arbitrary symmetry system,

oriented in an arbitrary fashion, the consequences of this illustration need not hold.

Note that Table A6.5 and Figures A6.4 and A6.5 illustrate well the dependence of

the magnitude of the group velocity upon that of the phase velocity (equation A6.1).

Namely, the dependence is limited to the derivative and thus, for instance, at ϑ = 40o, the

difference between phase and group angles is over 20%, while the difference between

phase and group velocities is less than 2%.  The limited sensitivity of phase and group

velocities justifies, in many cases, approximate solutions under various simplifying

assumptions.
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phase angle
ϑϑ

[deg]

group angle
θθ

[deg]

phase
velocity

|v|
[m/s]

group
velocity

|w|
 [m/s]

angle
difference

 (θθ -ϑϑ )
[deg]

speed
difference
(|w| -|v|)

[m/s]
0 0 3000 3000 0 0
10 13.8898 3018.09 3025.06 3.8898 6.97
20 27.1599 3070.19 3094.32 7.1599 24.13
30 39.367 3150.00 3192.57 9.367 42.57
40 50.3109 3247.91 3301.22 10.3109 53.31
50 59.997 3352.09 3403.77 9.997 51.68
60 68.5651 3450.00 3488.91 8.5651 38.91
70 76.2355 3529.81 3550.82 6.2355 21.01
80 83.279 3581.91 3587.78 3.279 5.87
90 90 3600 3600 0 0

Table A6.5. Group angle as function of phase angle (equation (A6.1)); magnitudes of
phase (equation (A6.2)) and group (equation (A6.4)) velocities; and their respective
differences for SH waves in an anisotropic medium with γ = 0.2.  Significant difference
between phase and group angles and speeds occurs at the oblique propagation while the
respective values coincide at vertical and horizontal propagations.
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Figure A6.4. Phase and group angles.  Note that although at
oblique angles of propagation phase and group angles
diverge, they are equal to each other at vertical (0) and
horizontal (90) directions of propagation.  This implies that
phase and group velocities are also equal at this angles
(both in magnitude and direction).
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PHASE AND GROUP VELOCITIES
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Figure A6.5. Magnitudes of phase (equation (A6.2)) and
group (equation (A6.4)) velocities.  Note that although at
oblique angles of propagation phase and group velocities
diverge, they are equal to each other at vertical (0) and
horizontal (90) directions of propagation.
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APPENDIX 7
THE APPROACH INVOLVING EXACT FORMULÆ

In principle, it seems to be possible to carry out all the derivations described in

this dissertation using exact equations (A2.1), (A2.2), and (A2.3).   One can express

slowness surfaces (curves) for P, SV, and SH waves as level curves in polar coordinates

of functions F(r,ξ), G(r,ξ) and H(r,ξ), respectively (equations (A7.1), (A7.2), and

(A7.3)).  The symbol ξ denotes the phase angle measured from the horizontal, i.e., phase

latitude.  Notice that equivalent slowness curves, under the weak-anisotropy assumption,

constitute a starting point for development in Chapter III, i.e., equations (3.7), (3.22), and

(3.33).

( ) ( )F r
r

D, cosξ α ε ξ ξ= − + + =1
1 02 (A7.1)

( ) ( )[ ]G r
r

D, cosξ β α
β

ε ξ ξ= + + − =1
1 0

2

2
2 (A7.2)

( )H r
r

, cosξ β γ ξ= − + =1
1 2 02 (A7.3)

The symbol D(ξ) denotes the following expression:
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( ) ( )
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        (A7.4)

Equations (A7.1) and (A7.2)  can be subjected to the procedure illustrated in

Chapter III involving vector calculus (gradient) and linear algebra (normalizing, dot

product). The above mentioned manipulations on such complicated expressions constitute

a tedious yet not impossible task, particularly with the help of mathematical software.  In

this dissertation, for the sake of clarity and with a rather negligible loss of accuracy, the

simplified  version of the above expressions obtained by Thomsen (1986) was used.

Such an approach allows one to gain some insight by inspecting equations at certain

stages of development - a benefit which could be hindered by a more complicated

appearence of equations.

Equation (A7.3) exhibits already, even in its exact form, a simplicity which allows

one to use it conveniently in various calculations used in the derivation of Snell’s law or

in subsequent calculations of the magnitude of group velocity, e.g., Appendix 6. It is

particularily useful for various comparisons between exact and approximate approaches.

In most cases, however, the approximate equation (3.3) is used for consistency with P and

SV waves.

Equations (A7.1), (A7.2) and (A7.3) are both exact and analytic.  Those attributes

deserve attention in developing code.  With the aid of mathematical software involving

symbolic operations, one can derive exact equivalents of all the formulæ in Chapter III,

and benefit from infinite precision.  Although the complexity of equation would prevent

an immediate intuitive understanding, which given by the use of the approximate

formulæ in this dissertation, the final result would be exact and obtainable without

employing any numerical methods.


