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Abstract

In seismic exploration, statistical wavelet estimation and deconvolution are standard tools.

Both of these processes assume randomness in the seismic reflectivity sequence and also make

a minimum phase assumption about the actual wavelet embedded in the trace. The validity of

these assumptions is examined by using well–log reflectivity sequences, synthetic seismic traces,

and by using a procedure for evaluating the resulting deconvolutions. With real data, wavelet

estimations are compared with the in–situ recording of the actual waveform from a vertical seis-

mic profile (VSP). As a result of these investigations, this thesis presents a fairly simple group of

tests that can be used to evaluate the validity of the randomness and minimum phase assumptions.

From the investigations of seismic data in Alberta, it is concluded that the assumption of reflec-

tivity randomness is less of a problem in deconvolution than other assumptions such as phase and

stationarity.
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Chapter 1

Introduction and background

1.1 Introduction

The processing of a digital seismic section is one of the most widely practiced activities in the

field of exploration seismology. Signal deconvolution is a processing step that is ideally carried out

after exponential gain recovery and before velocity analysis. The underlying purpose of deconvo-

lution is to improve data resolution (i.e. improve the ability to separate two features that are close

together, from Sheriff (1974)) by increasing the sharpness of the seismic reflections. In practice,

this process attempts to shorten the seismic wavelet, broaden the wavelet’s spectrum, remove the

change in wavelet shape due to earth filtering, and to stabilize the wavelet from trace to trace.

In both academia and industry, seismic data processors tend to focus on the seismic wavelet

when considering the deconvolution problem because if the wavelet is reliably estimated, it can

generally be deconvolved or shaped to some desired output with a digital filter. Since the onset of

the digital recording, a time honored tradition has arisen in that statistical estimation methods are

15
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used to model the seismic wavelet. Although these methods have been in use for several decades,

it was only in 1991 that Ziolkowski(February 1991, Geophysics) gave a scathing criticism of their

theoretical basis. Even though these statistical methods are tried and tested, there has been no

comprehensive response to the questions raised by Ziolkowski. The major points of contention

arise from the validity of the following statements.

1. The seismic reflectivity sequence is random.

2. The seismic wavelet is minimum phase for impulsive sources and zero phase for vibroseis

sources.

3. The seismic wavelet is stationary.

Ziolkowski does not accept the validity of these assumptions. Furthermore, he goes on to propose

that seismic wavelets should be modeled on data gathered from direct source measurements.

The problem as it stands now is that the determination of the seismic wavelet via the traditional

method of statistical estimation has been challenged and an alternate method has been suggested.

This thesis will bring together a comprehensive and detailed analysis of the first two assumptions.

The third assumption is addressed in the M.Sc. thesis of Alana Schoepp. All of this will first be

considered in a synthetic framework and will then be examined with real data. The importance of

this evaluation is that the increased resolution resulting from deconvolution is directly dependent

on the wavelet used. Consider Figure 1. This shows that if the wavelet is known, then deconvo-

lution will give consistently good results. Hence, the deconvolution of data is only effective if the

estimated wavelet is a reasonable approximation of the true wavelet. To establish the best, and

most effective, means of wavelet extraction is key to creating a more interpretable seismic section.
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This is why the assumptions of statistical wavelet estimation must be tested. The stated problem

will be addressed in the following systematic manner.

The first point to be investigated will be the randomness assumption. Statistical wavelet es-

timation methods assume that the reflectivity is random (i.e. the reflectivity has a probability of

occurrence determined by a probability distribution) and this effectively means that the seismic

trace autocorrelation is approximately equal to the seismic wavelet autocorrelation. The random

reflectivity assumption allows one to estimate the wavelet’s autocorrelation, and consequently the

amplitude spectrum, from the trace autocorrelation. This thesis develops tests for the random-

ness assumption. The validity of this assumption can be tested by using sonic and density logs

to compute the reflectivity for a series of geological areas. This well log information will allow a

measure of the assumption’s goodness to be obtained by comparing wavelet estimates obtained by

statistical methods, such as the Wiener–Levinson double inverse method and the Hilbert transform

method, to the information gained from the well log. This well log information will allow a mea-

sure of the assumption’s goodness to be obtained by comparing statistical wavelet estimates to the

actual wavelet in the case of model data and to information from logs or vertical seismic profiles

in the case of real data. The comparison will consider how the trace’s autocorrelation relates to the

known wavelet’s autocorrelation. Then investigations into how this relation differs when statistical

wavelet estimates are used will be done. For synthetic data, a comparison of the model wavelet and

wavelet estimates obtained by this assumption will be made. It is expected that the randomness

assumption for a reflectivity sequence will be closely tied to the lithology of an area. That is to

say, if an exploration area has periodic physical properties, then its reflectivity will not be random.

The reflectivity sequence, in this case, violates the randomness assumption because the periodicity
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of physical properties implies periodic (not random) reflections occurring on a seismogram. The

present methods, under the assumption of randomness, would be told to interpret these events as

multiples and remove them. This is not the desired effect since processing hopes to image the

geology, not obscure it. The end result is a simple test that can be performed on the data to see if

there are significant amounts of periodicity which make the randomness assumption invalid. One

such way of testing data for randomness is to deconvolve the data with the estimated wavelet and

compare the output to the reflectivity derived from well log data or known from a model. The

comparison will be done by cross–correlating the reflectivity with the deconvolution output. A

100% perfect deconvolution will have output that cross–correlates with the reflectivity to give a

spike. Therefore, it can be said that if this cross-correlation value is within a scale factor of the

spike, then the data is random. The exact determination of the scale factor shall result from the

investigation of various cases. Practically, this ideal is not often the case since there may be extra-

neous energy (side lobes, multiples, etc ...) present. Other avenues to be explored with synthetic

data include the use of various known wavelets and the use of a reflectivity sequence (a signal that

consists of only primary arrivals) instead of an impulse response (a signal that contains primary

and multiple arrivals).

The next issue to be discussed is the problem of estimating the phase spectrum. The ran-

domness assumption allows for the estimation of the wavelet’s amplitude spectrum. In order to

completely define the wavelet, the phase spectrum is also required. The phase spectrum is often

determined by using a minimum phase wavelet (for dynamite sources) or a zero phase wavelet

(for vibroseis sources). The critical role of phase estimation in deconvolution can be established

by making comparisons between wavelet deconvolutions that make different phase assumptions.
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Comparisons will allow for an evaluation of this minimum phase assumption. These various de-

convolution results will be compared to the reflectivity sequence and evaluated. The evaluation

will be done in much the same manner as the test for randomness in that both deconvolution out-

puts will be cross–correlated with a reflectivity. Whichever gives a result closest to a spike (a

perfect cross–correlation is a spike) is the best. It is suspected that the superiority of one over the

other will be dependent on the validity of the phase estimates. This comparison and evaluation will

occur with a model data set because, with model data, the correct answers are known and therefore

the methods can be objectively analyzed. Speaking in a strictly theoretical sense, deconvolution

eludes a rigorous mathematical justification because it is the ill–posed problem of one equation and

many unknowns. However, these series of investigations hope to evaluate how well these phase as-

sumptions work in practice. To this effect, the deconvolution output will be examined for evidence

of distortion, multi–lobed operators, and other effects that are inconsistent with the results of the

desired deconvolution. Figure 2 demonstrates what can occur in the output of a deconvolution that

makes an incorrect phase assumption about the seismic wavelet. Establishing the validity of the

minimum phase assumption is critical because this is the assumption used for estimating the phase

for dynamite and tuned air gun sources.

Ziolkowski’s criticism of the wavelet stationarity assumption is the next point to be addressed.

Nonstationarity of the wavelet is a reality. It is caused by absorption and dispersion effects in the

Earth. These effects are caused by stirring of interstitial pore fluid and constant Q attenuation. If the

data concerned has a nonstationary wavelet for which the assumption of stationarity is invalid, then

the amplitude spectrum will show a shift towards the lower frequencies with time. This implies

that an empirical evaluation of the assumption will give a limit on the amount of time shift that
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can occur without violating the stationarity assumption. In theory, if the time varying nature of the

wavelet is taken into account, then the estimate of the wavelet should be better. This problem is

addressed in Schoepp (1998) and a time variant method is developed.

Outlined above is a problem statement and the groundwork for addressing the problem. This

thesis brings the above research to fruition and evaluates the criticisms of statistical deconvolution.
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Figure 1.1: The result of deconvolution when the wavelet is known (from S.E.G. inversion course
notes, B. Russell).

Figure 1.2: The result of deconvolution when an incorrect assumption about wavelet phase is made
(from S.E.G. inversion course notes, B. Russell).
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1.2 Background

Exploration seismologists might think of the earth as being made up of rock layers that have

differing lithologies and physical properties. These layers are seismically defined by density and

seismic wave propagation velocity, as well as attenuation factors. The product of this velocity and

density is the seismic impedance of the layer. Impedance contrasts between adjacent rock layers

cause the reflections recorded during a seismic survey.

The recorded seismogram can be modeled as the convolution of the earth’s impulse response

with the seismic wavelet. This impulse response of the earth is what would be recorded if the

wavelet were just a delta function or spike. It contains the reflectivity series and all multiples.

Ideally, deconvolution compresses the wavelet and removes multiple energy so that only the re-

flectivity of the primary lithology is left in the recorded seismic trace. The fundamental assump-

tion underlying statistical deconvolution is that of minimum phase because if it is assumed that

the seismic wavelet is minimum phase, then its unique phase spectrum can be determined from an

input seismic trace. It is because of this (as well as other assumptions) spiking deconvolution is

not always desirable.

Deconvolution improves temporal resolution by compressing the basic seismic wavelet. It

is normally applied before stack but it is also common to perform deconvolution on post–stack

data. After a proper deconvolution, the prominent reflections from interface boundaries are more

distinctive because of the compressed waveform and the reduction in the section’s ringiness.

1.2.1 The convolutional model

A number of assumptions are made to simplify the earth imaging problem described in this
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work. Six of these are mentioned here and in subsequent areas. The first two of these are as

follows.

Assumption 1 The earth is comprised of horizontally deposited lithological layers that exhibit

constant velocity.

Assumption 2 An impulsive seismic source generates a compressional pressure wave (P–wave)

that impinges on lithological layers at normal incidence (i.e., perpendicular to horizontal layer

orientation). Physically, this causes no shear waves (S–waves) to be generated as the waveform

passes across layer boundaries.

Assumption 1 is violated in structurally complex areas, such as the foothills of the Canadian

Cordillera, and areas that contain gross lateral facies changes. The second of these assumptions

implies that zero–offset data must be used but this is a problem since the zero–offset is rarely, if

ever, recorded. Both of these assumptions imply that the reflection coefficient c, for pressure or

stress, for the waveform moving from layer 1 to layer 2 can be defined as c= ρ2v2�ρ1v1
ρ2v2+ρ1v1

; where ρ and

v are the densities and velocities of the layers being considered. Assuming a density invariance with

depth, within the layers, gives the following approximation c� v2�v1
v2+v1

. The reflection coefficient is

seen as the ratio of the change in velocity to twice the average velocity.

The P–wave created by an impulsive source is called the signature of the source. All signatures

are band–limited wavelets of finite duration. This leads into the next assumption that must be made

before an earth model can be put forth.

Assumption 3 The source waveform does not change as it travels in the earth’s subsurface. That

is to say, the seismic source signature is stationary.
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With these three assumptions, the convolutional model of the earth can now be written as:

8tjt � 0;x(t) = w(t)� e(t)+n(t); (1.1)

where x(t) is the recorded seismogram, w(t) is the seismic source signature, e(t) is the impulse

response of the earth, and n(t) is random noise. The process of deconvolution being discussed

seeks to undo this convolution that occurs in the subsurface in order to recover e(t). To this end,

several more assumptions are made.

Assumption 4 The random noise component in a recorded seismogram is zero or can essentially

be reduced to zero by processing.

Assumption 5 The seismic source signature, or waveform, is known.

Again, these assumptions are generally invalid. However, if the latter holds, then the solution to

the deconvolution problem is deterministic. Otherwise, the process has only a statistical solution.

In the normal run of seismic processing, the signature is rarely known. To ease this assumption,

and yet still be able to recover e(t), the following assumption is made.

Assumption 6 The reflectivity of the earth’s subsurface is a random process. This means that

the recorded seismogram and the seismic source signature have autocorrelations and amplitude

spectra that are identical to within a scale factor.

1.2.2 Inverse filtering

If there is a filter a(t) such that e(t) = a(t) � x(t), then the convolutional model of the earth

becomes x(t) = w(t) � a(t) � x(t). This model uses the assumption that the noise component is
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negligible or zero. Simplifying this equation by eliminating x(t) gives

δ(t) = w(t)�a(t) =

8>>><
>>>:

1 if t equals 0;

0 elsewhere:

The function δ(t) is the Kronecker delta function and the above simplification implies a(t) =

δ(t) �w0(t), where w0(t) is the inverse wavelet. This means that the operator required to recover

the earth’s impulse response from a recorded seismogram is the inverse of the seismic source

signature. Inverse filtering is a form of deconvolution when this source signature is known. This

type of deconvolution is said to be deterministic. Hence, the solution to the deconvolution problem

is deterministic (i.e. predictable) when the source wavelet is known. One way to recover the

reflectivity in this case is to transform the seismic trace and known wavelet to the frequency domain

(via the Fourier transform) and divide. If there are zeros in the transform of the wavelet, then a

stability factor ε is added to the zero and near zero values.

1.2.3 Least–squares inverse filtering

The cumulative energy of the error, L, is defined as the sum of the squares of the differences

between the coefficients of the actual and desired outputs. Consider a filter (a;b) and an input

wavelet (c;d). The convolution of the two gives the actual output, (ac;ad + bc;bd). In addition,

say, the desired output is (e; f ;g). Then, the cumulative energy of the error between the actual

and desired output is L = (ac� e)2 +[(ad+bc)� f ]2+(bd�g)2. To minimize the error between

these coefficients requires that the variation in L with respect to the filter (a;b) to vanish. The

computation of L allows for a quantification of goodness. If the desired output has an energy
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distribution that closely resembles that of the convolved input series, then the error is reduced.

1.2.4 Minimum phase

Wavelets are transient waveforms with a finite duration. They can be minimum, maximum, or

mixed phase. A minimum phase wavelet has most of its energy at the onset of the time series,

while a maximum phase wavelet has most of its energy at the end of the time series. Mixed

phase wavelets have their energy distributed throughout the time series. In addition, a wavelet is

realizable if is finite in length (i.e. a finite time series) and is causal if it is zero for all negative

times. Hence, a minimum phase wavelet is one that is minimum phase, realizable, and causal.

These kinds of wavelets have the least energy delay.

Mathematically, a stable inverse means that the filter coefficients make a convergent series.

That is, they decrease with increasing time and vanish at infinity. This means that a stable inverse

filter has finite energy. Minimum phase wavelets have stable inverses but maximum and mixed

phase wavelets do not. This leads to the following, and final, assumption.

Assumption 7 The seismic source wavelet is minimum phase and has a minimum phase inverse.

Some examples of proven minimum phase phenomena in exploration geophysics are the transmis-

sion response of layered media (Robinson and Treitel, 1980) and the attenuation law of Futterman

(Futterman, 1962).

1.2.5 Optimum Wiener filters

The general form of the matrix equation for an optimum Wiener filter of length n is R~a =~g;

and the process R�1R~a = R�1~g solves for~a: In expanded form (from Robinson and Treitel, 1980):
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2
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r0 r1 : : : rn�1

r1 r0 : : : rn�2

...
...

. . .
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rn�1 rn�2 : : : r0
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| {z }
R
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a0
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...

an�1

3
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| {z }
~a

=
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g0

g1

...

gn�1

3
77777777775

| {z }
~g

(1.2)

where R is the autocorrelation matrix of the wavelet which is a symmetric Toplitz matrix, ~a is

the desired deconvolution filter vector (the vector components are the desired deconvolution filter

coefficients), and~g is the crosscorrelation vector of the input and desired output. When solving for

~a; the Toplitz nature of R is exploited by the Wiener–Levinson algorithm to compute the inverse

in an efficient manner. The Wiener filter ~a is optimal in the sense that it least–squares minimizes

the energy of the error between actual and desired outputs.
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Typically, the desired output is one of the following:

� a spike at arbitrary lag,

� a time advanced form of the input series,

� a zero–phase wavelet,

� or any desired arbitrary shape.

spiking deconvolution

When the process of determining an optimum Wiener filter requires that the desired output

be a zero–lag spike, it is called minimum–phase spiking deconvolution. In spiking (or statistical)

deconvolution the autocorrelation matrix is computed from the recorded seismogram, while in

the case of least–squares inverse filtering (or deterministic deconvolution) this matrix is computed

directly from the known source wavelet. If the input wavelet is not minimum phase, then the

spiking deconvolution cannot shape the output to a perfect zero–lag spike. This is the pitfall of the

minimum phase assumption.

prewhitening

To insure numerical stability (i.e. prevent division by 0) when computing the inverse filter, an

artificial level of white noise called prewhitening is introduced to the data before deconvolution.

This is achieved by adding a constant to the zero–lag of the autocorrelation function or to the

diagonal of R:
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shaping filters

For any given wavelet, a series of delayed spikes can be produced as desired output. The

least–squares error can then be plotted as a function of delay. The delay, or lag, with the least

error is defined to be the desired spike output. Using this spike as the desired output will result,

in general, in the Wiener filter producing the most compact result. Wavelet shaping with a spike

as the desired output is a special case of shaping deconvolution. Generally speaking, however,

shaping deconvolution includes deconvolutions whose desired output is something other than a

spike (a narrow Gaussian, for example). In the industry jargon, wavelet shaping filters that result

in zero–phase wavelets are called dephasing operators and the process of converting a wavelet to

zero–phase is called dephasing (i.e. the desired wavelet is the zero–phase wavelet that could be

found from the amplitude spectrum of the input wavelet).

If the input wavelet is the recorded source signature, then wavelet shaping is called signature

processing. Wavelet shaping requires a knowledge of the input wavelet. The term wavelet process-

ing generally refers to estimating the embedded wavelet in the seismic data, designing a filter to

shape the wavelet to the desired form, and applying the filter to the seismogram.

Minimum phase wavelets have optimal delay at zero, while maximum phase wavelets have

optimal delay at wavelet length. To delay the desired spike output, apply a constant time shift to

a delayed spike result. Alternatively, shift the shaping filter as much as the delay in the spike and

then apply it to the input data. This operator is two–sided (i.e. noncausal) since it has coefficients

for positive and negative time values.



Chapter 2

Analyzing statistical deconvolution

2.1 Analyzing the randomness assumption

The conventional assumptions of wavelet deconvolution have been criticized by some as being

generally invalid. One focus of this research is to evaluate the common assumption of reflectivity

randomness by use of model synthetics and real data. Since it is expected that this assumption is

dependent on geology, data has been examined from various hydrocarbon reservoirs.

Statistical wavelet estimation methods usually assume that the reflectivity is a random uncor-

related signal (that is, the reflectivity has an autocorrelation which approximates a delta func-

tion) and this effectively means that the seismic trace autocorrelation, T (z)T �(z), is approximately

equal to the seismic wavelet autocorrelation, W (z)W�(z): The deconvolution of data is only effec-

tive if the input wavelet is a reasonable approximation to the true wavelet. To establish the best,

and most effective, means of wavelet extraction is the key to creating a more interpretable, high–

resolution, seismic section. This is precisely why we must investigate the assumptions upon which

our commonly used statistical methods are based. The random reflectivity assumption allows one

30
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to estimate the wavelet’s autocorrelation, and consequently the amplitude spectrum, from the trace

autocorrelation. Hence, given an input seismic trace, it is possible to estimate the wavelet needed

for deconvolution.

Four synthetic seismic sections are generated for use in this investigation. Two are created with

a minimum phase wavelet and the remaining two are created with a zero phase wavelet. First to

be investigated is the validity of the randomness assumption with a primaries only section derived

from a well in central Alberta and then with a section that also incorporates multiples, also derived

from the same well. The use of synthetic data is done because the wavelet used to generate the

section is known and, therefore, meaningful comparisons are made with the statistical estimates.

In judging the accuracy of the randomness assumption, on (model) synthetic data, a systematic

approach is developed. Compare the trace autocorrelations with the wavelet autocorrelations and

examine the degree of similarity. For a purely random reflectivity, these should be identical to

within a scale factor. Subsequently, compare the estimated wavelet with the actual wavelet. How-

ever, it is really the deconvolution based on the wavelet estimate that should be evaluated. One

way to do this is to compute the convolution of the actual wavelet with the deconvolution filter

for the estimated wavelet. One hopes that, this will produce as close a representation of a spike

as for the filter computed from the actual wavelet. This estimation of a spike is what is referred

to as a resolving kernel. That is to say, a resolving kernel is the convolution of a wavelet with a

deconvolution filter to get an estimate of the ideal spike. This gives a measure of resolvability in

that the convolution of a wavelet with a deconvolution filter should – in the ideal case of estimates

that approximate the actual wavelet well – give a spike as the response. In addition to this, esti-

mates of the reflectivity sequence are generated by convolving the synthetic seismic section with

various deconvolution filters. This is simply the deconvolution of the input trace in that the process
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will remove the wavelet from the input data and the result will be an estimate of the reflectivity

sequence. To evaluate how this estimate compares to the well–log derived reflectivity sequence,

cross–correlate the two sequences. An ideal cross-correlation of these reflectivities will give a

spike as the result. Hence, this can provide a measure of goodness in that comparisons between

the similarity of the cross–correlations to a spike can be made.

For the case of real data, the evaluation is somewhat more difficult since the wavelet or the

reflectivity sequence is not known. However, there is access to in–situ measurements of the seismic

wavelet if there are vertical seismic profile (VSP) data, and in some cases there is also sonic well

data to evaluate the deconvolutions. In this particular case, there are vibroseis surface recordings

and a VSP recorded from a vibrator source. This allows the actual wavelet to be directly measured

as the down–going VSP waveform. It is truncated to the same number of samples as a zero phase

wavelet estimate so as to have a measured wavelet with a more reasonable length. Since there is no

well–log derived reflectivity sequence to act as a control for the results, the investigation proceeds

in a slightly different manner than that used for synthetic data. Instead of comparing estimated

sequences to the actual sequence, the results are evaluated with respect to how well responses are

brought out and if the ringy nature of the surface data can be suppressed.

2.1.1 Minimum phase methods

The estimation of minimum phase wavelets from dynamite data generally use the assumption

of a random reflectivity sequence. This assumption is used so that the wavelet’s autocorrelation can

be derived from the seismic traces’s autocorrelation. Given a wavelet’s autocorrelation or its cor-

responding amplitude spectrum, there is then the problem of deriving its phase spectrum. For the
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case of a minimum phase wavelet, its phase spectrum is uniquely defined by the amplitude spec-

trum and can be found using either the Wiener–Levinson double inverse method (a time domain

method) or the Wold–Kolmogorov factorization method (a frequency domain method). Both of

these methods use the assumption of reflectivity randomness to estimate minimum phase wavelets.

There is an overview of these methods in the subsections below and detailed descriptions can be

found in White and O’Brien (1974), Claerbout (1976), and Lines and Ulrych (1977).

The Wiener–Levinson double inverse method

The Wiener filter shapes a time sequence into an approximation of the desired output in a

least–squares sense. There is an assumption of wavelet stationarity in this method. It uses this

assumption to minimize the square of the difference between the actual output and the desired

output by choice of a Wiener filter to get a system of normal equations. This system is as follows:
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; where 8t (2.1)
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r(n) =
1
N ∑

τ
x(n+ τ)x(τ) = input autocorrelation,

g(n) =
1
N ∑

τ
x(τ)z(n+ τ) = input and desired output cross–correlation,

f (n) = the deconvolution filter coefficients, and

N = length of the input sequence.

The inverse Wiener filter is designed so that the wavelet estimate is shaped to a spike. This allows

for an estimate of the impulse response of a layered earth to be computed by convolving the inverse

Wiener filter with the input trace. If the impulse response being estimated is a white noise sequence

(that is, random), then the trace autocorrelation can be replaced by the wavelet autocorrelation. It

should be noted that this method truncates the trace autocorrelation to obtain this approximation

but it can also be accomplished by windowing the trace autocorrelation (e.g. using a Hanning

window). In addition, if a zero–delay is the desired output, then only the first component of the

cross–correlation vector in the normal equations will be non–zero. A zero–delay spike for desired

output is optimal if and only if the the wavelet being considered is minimum delay. Using these

assumptions of a random impulse response and a zero–delay spike as desired output enables a

Wiener deconvolution filter to be designed without explicitly evaluating the source wavelet. Es-

timating the wavelet itself is done by applying the process again to invert the original minimum

delay filter and now the output is the minimum phase wavelet estimate.

The Wold–Kolmogorov factorization method

This is a method where by a minimum phase spectrum is determined from a given amplitude

spectrum. If given an amplitude spectrum for a wavelet of length n+1, then there are 2n wavelets
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with different phase spectra that will have this given amplitude spectrum. However, only one of

these 2n wavelets will have a minimum phase spectrum. By comparing the natural logarithm of

the amplitude spectrum, loge(jW (ω)j), to the natural logarithm of the wavelet’s Fourier transform,

loge(W (ω)), the minimum phase spectrum can be deduced from the amplitude spectrum. As shown

by Robinson (1967b), the relationship between phase and amplitude is as follows

phase spectrum = Θ(ω)

=�
2
π

t=∞

∑
t=1

sin(ωt)

inverse Fourier transform of loge(jW (ω)j)z }| {Z π

0
cos(ωt) loge(jW (ω)j)| {z }

log amplitude spectrum

dω

= Hilbert transform of the natural logarithm of the amplitude spectrum.

(2.2)

The inverse Fourier transform, ν(t), of loge(W (ω)) can be written as ν(t) = νe(t)+νo(t). These

components are the even and odd parts of ν(t) and the even component, νe(t), is the inverse Fourier

transform of the log amplitude spectrum, loge(jW(ω)j). Requiring that ω(t) be minimum phase

means that ν(t) is causal and this causality means that νo(t) = νe(t)sgn(t). The Fourier transform

of νo(t) is the sine transform� 2
π ∑t=∞

t=1 sin(ωt)νe(t). Computing this gives Im[loge(W (ω))] and this

is the phase spectrum Θ(ω). The entire process, just described, is essentially equal to that which is

shown in Equation 2.2. This equation is used instead of said process because of the computational

speed advantage gained when using the fast Fourier transform (FFT).

The phase spectrum, Θ(ω), can also be computed in the frequency domain by the convolution

of loge(jW (ω)j) and the Fourier transform of sgn(t). This convolution is essentially a Hilbert

transform and is the reason why the Wold–Kolmogorov factorization method is commonly referred

to as the Hilbert transform method. This method is equivalent to the Wiener–Levinson double
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inverse method if the Wiener filter has an infinite number of filter points and if the wavelet is

considered to be a transient time sequence of finite energy.

2.1.2 Zero phase methods

The previous section revolves around minimum phase wavelets. Another common type of

wavelet is the zero phase wavelet. When compared to minimum phase wavelets, these zero phase

wavelets are symmetrical and are very broad banded in the frequency domain. That being the

case, investigations are made into the changes that may occur when a zero phase wavelet is used

in the reflectivity analysis. The zero phase wavelets in this study are Ricker and Klauder wavelets

that have 30Hz as the dominant frequency. Besides the fact that now there is a zero phase wavelet,

nothing else changes and the analysis proceeds in the same manner as for minimum phase wavelets.

Klauder wavelets

Vibroseis is based on a concept from chirp radar (Klauder et al., 1964) which was adapted for

seismic exploration by Conoco researchers. The source signature, s(t), sent into the ground by a

vibrator is a lengthy sweep of frequencies. As described by Ristow and Jurzyk (1975), the recorded

trace, y(t), can be considered as the convolution of s(t) with the reflectivity, r(t), and some earth

filter, e(t). That is to say, y(t) = s(t) � e(t) � r(t). The correlation of this recorded trace with the
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input trace produces

x(t) = s(�t)� y(t)

= s(�t)� s(t)� e(t)� r(t)

= w(t)� e(t)� r(t):

(2.3)

Here the autocorrelation of the input sweep s(�t)�s(t) produces a zero–phase wavelet w(t), which

is also known as the Klauder wavelet.

2.2 Analyzing the phase assumptions

The next, and more problematic, issue of concern is that of phase. As stated in the background

section, a fundamental assumption that is made about the seismic source signature (or seismic

wavelet) is that it is minimum phase for impulsive sources. While this assumption is essential to

the process of statistical signature deconvolution, it is generally accepted as being invalid. That

being the case, it is essential to determine how poor this minimum phase assumption for the seismic

wavelet is. In practical terms, it would be worthwhile to know how this assumption affects the

deconvolution. To that end, a three pronged approach is taken.

Firstly, the effect of assuming that the wavelet is minimum phase will be investigated with

respect to resolving kernels. That is, wavelets of various phase will be given as input to an optimum

spiking deconvolution program. This program will determine the optimum spiking position based

on the input wavelet and then generate a resolving kernel that is the convolution of the input

wavelet and the deconvolution filter predicted from it. Two model wavelet scenarios shall be

considered. For both of these models, four wavelets (model wavelet and three permutations) shall
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be investigated: a model minimum phase wavelet, a mixed phase wavelet (permutation), another

mixed phase wavelet (permutation), and a maximum phase wavelet (permutation).

After analyzing the resolving kernels, the investigation will focus on how the minimum phase

assumption affects trace deconvolution. Again, the two scenarios that will serve as models to inves-

tigate are the wavelets discussed above. For each of these, synthetic seismograms will be generated

by convolving the wavelet and permutations discussed above with a primaries only reflectivity se-

quence. These synthetics will then be used to estimate Hilbert transform and Wiener–Levinson

minimum phase wavelets. After this, the wavelets estimated from the synthetic trace will be used

to generate deconvolution filters. Convolving these filters with the synthetic trace will give two

estimates of the reflectivity sequence used to make the trace. By comparing the three (the actual

reflectivity sequence and the two estimates), the effect of the minimum phase assumption will be

evaluated. The use of noise–free sequences is to show how phase effects trace deconvolution in

its simplest case. As complexity in the trace increases (i.e. multiples, noise, etc : : :), the effect of

phase compounds.

Finally, there will be an investigation of a proposed test for phase. Here, various synthetic sec-

tions are used to statistically compute deconvolution filters. Then the actual wavelet that is used to

make the section in question will be convolved with the estimated filter. Comparisons of these re-

sults to the ideal result of a spike will allow for further evaluation of the minimum phase assumption

made about seismic wavelets. Model 1 uses the minimum phase wavelet (�1:1+ z)2(1:75+ z)38,

its selected permutations, and a primaries only reflectivity sequence. Model 2 will show results

involving the minimum phase wavelet (�1:35+ z)2(1:5+ z)38, its selected permutations, and the

same reflectivity sequence from model 1.



Chapter 3

The randomness assumption

3.1 A proposed test for the randomness assumption

An extensive analysis of the assumption that the reflectivity sequence is random has led to the

development of two tests for randomness. These two tests to check the validity of the randomness

assumption are fairly simple and easy to apply. The first of these tests uses a resolving kernel

to evaluate the randomness assumption while the second test uses a well–log derived reflectivity

sequence to evaluate the goodness of the assumption. To follow are flow charts that outline how

these tests work and then there are pseudocodes for the tests themselves.

39
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INPUT: seismic trace INPUT: actual wavelet

Use trace to compute
wavelet estimates

Estimate the Wiener
deconvolution filter

Convolve the actual model wavelet
with the statistically estimated
deconvolution filters.

COMPARE RESOLVING KERNELS

TO THE DESIRED OUTPUT SPIKE

Figure 3.1: Test for reflectivity assumption’s effect on wavelet deconvolution.
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INPUT: seismic trace
INPUT:reflectivity derived

from well logs

Compute statistically
estimated wavelet

Estimate the Wiener
deconvolution filter

Convolve the seismic trace with
the statistically estimated
deconvolution filter.

COMPARE DECONVOLVED TRACE

TO THE DESIRED REFLECTIVITY

Figure 3.2: Test for reflectivity assumption’s effect on trace deconvolution.
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BEGIN: A validity test for the random reflectivity assumption.

for each seismic section do

compute desired statistically estimated wavelet w(n); or ~w;

compute deconvolution filter f (n); or ~f ; based on w(n) ;

compute the resolving kernel;

compare to the desired output delta function end do

where

proc ~w = (R�1~g)�1; R is the autocorrelation matrix of the trace s(n);

proc ~f = W�1~g; W is the autocorrelation matrix of the wavelet;

proc resolving kernel � 8njn� 0;w(n)� f (n) = ∑τ=N
τ=0 w(τ) f (n� τ):

END

BEGIN: A well–log validity test for the random reflectivity assumption.

for each seismic section do

compute desired statistically estimated wavelet w(n); or ~w;

compute deconvolution filter f (n); or ~f ; based on w(n);

compute the trace deconvolution;

compare to the well–log derived reflectivity sequence end do

where

proc ~w = (R�1~g)�1; R is the autocorrelation matrix of the trace s(n);

proc ~f = W�1~g; W is the autocorrelation matrix of the wavelet;

proc trace deconvolution � 8njn� 0;s(n)� f (n) = ∑τ=N
τ=0 s(τ) f (n� τ):

END
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The remaining sections of this chapter present a comprehensive set of results regarding the

investigations on the randomness assumption. Figures 3.3 through 3.14 illustrate the analysis on

minimum phase synthetic sections. Following these are the analyses for the zero phase sections

and then the work on real data is displayed.

3.2 Ideal minimum phase synthetic data

Shown in Figure 3.3 is a synthetic seismogram that contains only the primary reflections. That

is to say, no multiples have been computed. Along side this seismic section is the minimum phase

model wavelet used to create it. It is this wavelet that is convolved with a well–log derived reflectiv-

ity sequence to generate the synthetic to be analyzed. Note several important reflections between

50 and 100, 100 and 150, and again between 150 and 200. The Wiener–Levinson and Hilbert

transform methods base their minimum phase statistical wavelet estimates on an input seismic sec-

tion. These statistical estimation methods use the trace autocorrelation to reproduce the wavelet

autocorrelation under the assumption that the trace autocorrelation is approximately equal to the

wavelet autocorrelation. This requires that the reflectivity sequence be random. There is significant

similarity between the two plots of trace and wavelet autocorrelations shown in Figure 3.2. The

close similarity lends support to the claim of randomness. Now consider the image in Figure 3.5.

Here is a comparison of the actual model wavelet and two common minimum phase wavelets. The

Hilbert estimate is created from a frequency domain method and the Wiener–Levinson estimate is

generated from a time domain method.
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Figure 3.6 illustrates the concept of a resolving kernel. That is to say, a resolving kernel is the

convolution of a model wavelet with a deconvolution filter to get an estimate of the ideal spike.

This gives a measure of resolvability in that the convolution of a wavelet with a deconvolution

filter should (in the ideal case of estimates that approximate the actual wavelet) give a spike as

the response. The deconvolution filter from the model wavelet gives a clean spike. This is to be

expected. What is interesting is that the convolutions of the model wavelet with the statistically

estimated filters give very good representations of a spike. The result with the Hilbert transform

filter has a little noise in the tail and the result from the Wiener–Levinson filter has minute amounts

of noise in the tail.

In Figure 3.7, the ability of the statistical methods to reproduce the actual well–log derived

reflectivity sequence is evaluated. Using the filters based on statistical estimation, estimates of

the reflectivity are generated by convolving the synthetic seismic section with the various filters.

This is simply the deconvolution of the input trace in that the process will remove the wavelet

from the input data and the result should be the reflectivity. Notice that these deconvolutions are

good reproductions of the actual sequence in question. Some things to note are that the estimated

reflectivities are a bit smeared and that the estimates have a slight delay. Some significant events

that correlate from the actual sequence to the estimated sequences can be noticed just before 50,

between 50 and 100, and at about 150. As mentioned before, these events are a bit delayed on the

estimates and appear out of phase.

At this stage, the goodness of these reflectivity estimates are examined. Ideally, cross–correlation

of the estimated reflectivities with the true reflectivity will give a spike as the result. Hence, the

similarity of the cross–correlation to a spike provides a measure of goodness for the deconvolu-



45

tion. Figure 3.8 shows such a result. Both of the cross–correlations show a spike that is many

magnitudes greater than the minor amounts of noise that occur later in the trace. These are ac-

curate estimations of the reflectivity. Notice, again, that there appears to be a slight delay in the

cross–correlation with the Hilbert transform estimate.
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Figure 3.3: A primaries only minimum–phase synthetic trace and the model wavelet.
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Figure 3.4: The trace autocorrelation and the model wavelet autocorrelation.
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Figure 3.5: The model wavelet, a Wiener–Levinson double inverse (WLDI) estimate of the wavelet,

and a Hilbert transform estimate of the wavelet.
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Figure 3.6: Model, Wiener–Levinson, and Hilbert wavelet deconvolutions.
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Figure 3.7: The actual well–log derived reflectivity series, the Wiener–Levinson reflectivity series

estimate, and the Hilbert transform reflectivity series estimate.
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Figure 3.8: Cross–correlation of the actual reflectivity series with the Wiener–Levinson reflectivity

series and the Hilbert transform reflectivity series.
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3.3 Impulse response minimum phase synthetic data

Now the same analysis is conducted for a synthetic seismogram that contains multiples. This

section is created in the same manner as above but multiples have been added by the method

outlined by Robinson (1967). The inclusion of multiples in a synthetic seismic section generally

worsens the whiteness assumption. Again, as an initial test, the trace and wavelet autocorrelations

are compared (Figure 3.10). There is no significant difference between the two except that the trace

autocorrelation seems to have the onset of a doublet near its end. The very close similarity between

the trace and wavelet autocorrelations lends further support to the validity of the randomness as-

sumption. Figure 3.11 shows the Wiener–Levinson and Hilbert transform estimates based on an

input trace with multiples. Even though the whiteness assumption is worsened with multiples in

the section, the resolving kernels (Figure 3.12) for the estimated wavelets are very good approxi-

mations to the expected spike response. The final 2 plots concerning this seismic section relate to

the reflectivity sequence. Figure 3.13 compares the actual reflectivity to the estimated sequences.

These estimated reflectivity sequences are quite good reproductions of the actual reflectivity. Once

again, the estimated results are a bit smeared, due to the band limited nature of the seismic data,

but there is no delay present. This causes events at 50, between 50 and 100, and at 150 on the

actual sequence to correlate better to the same events on the estimated sequences. As above, the

final image shown here is a comparison of cross–correlations. Both of these are very reasonable to

the ideal result of a spike.
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Figure 3.9: A primaries with multiples minimum–phase synthetic trace and the model wavelet.
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Figure 3.10: The trace autocorrelation and the model wavelet autocorrelation.
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Figure 3.11: The model wavelet, a Wiener–Levinson double inverse (WLDI) estimate of the

wavelet, and a Hilbert transform estimate of the wavelet.
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Figure 3.12: Model, Wiener–Levinson, and Hilbert wavelet deconvolutions.
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Figure 3.13: The actual well–log derived reflectivity series, the Wiener–Levinson reflectivity series

estimate, and the Hilbert transform reflectivity series estimate.
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Figure 3.14: Cross–correlation of the actual reflectivity series with the Wiener–Levinson reflectiv-

ity series and the Hilbert transform reflectivity series.
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3.4 Ideal zero phase synthetic data

Another common type of wavelet is the zero phase wavelet. When compared to minimum phase

wavelets, these zero phase wavelets are symmetrical and are very broad band in the frequency

domain. That being the case, an investigation into the changes that may occur when a zero phase

wavelet is used in the reflectivity analysis is done. A zero phase Ricker wavelet that has a dominant

frequency of 30Hz is created to be the ideal model wavelet. Besides the fact that a zero phase

wavelet is being used as the model, nothing else has changed and the analysis proceeds as before.

The figures shown in this section concern investigations for a primaries only zero phase synthetic

while those in the following section show results for a zero phase synthetic that contains primary

and multiple arrivals.
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Figure 3.15: A primaries only zero–phase synthetic trace and the model Ricker wavelet.
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Figure 3.16: The trace autocorrelation and model Ricker wavelet autocorrelation.
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Figure 3.17: The model wavelet and a Klauder zero–phase estimate of the wavelet.

20

40

60

1
30Hz dominant frequency, 2ms sample rate, filter length is 37

Ricker Wavelet Deconvolution

10

20

30

40

50

60

70

1

Klauder wavelet deconvolution

Figure 3.18: Ricker and Klauder wavelet deconvolutions.
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Figure 3.19: The actual well–log derived reflectivity series, the Ricker band limited reflectivity

series estimate, and the Klauder reflectivity series estimate.
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Figure 3.20: Cross–correlation of the actual reflectivity series with the Ricker band limited reflec-

tivity series and the Klauder reflectivity series.
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3.5 Impulse response zero phase synthetic data

From Figures 3.15 – 3.26, note that the general trends discussed previously continue. Notice,

in Figure 3.16 and Figure 3.22, that the trace autocorrelation and the wavelet autocorrelation are

quite similar. Also note that the Klauder zero phase wavelet estimates, shown in Figures 3.17 and

3.23, are nearly identical to the model Ricker wavelet. Despite these similarities, some points of

discussion arise. Figure 3.18 shows, for the 1st zero phase synthetic, that the Klauder and Ricker

wavelet deconvolutions spike at different positions. Namely, the Klauder wavelet deconvolution

has a spike that lags behind the spike seen for the Ricker wavelet. This lag is also evident in

Figure 3.19, where the band limited reflectivity estimates are compared. It shows that events on

the Klauder reflectivity sequence lag behind events on the Ricker reflectivity sequence. Figure

3.23 illustrates the close correlation between the Ricker wavelet and the Klauder estimate based

on the zero phase synthetic with multiples. Their deconvolutions (Figure 3.24) spike at the same

positions and are effectively identical. This similarity is also reflected in Figure 3.25. Here, the

band limited reflectivities are shown and they too are effectively identical.
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Figure 3.21: A primaries with multiples zero–phase synthetic section and the model Ricker wavelet

used to create it.
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Figure 3.22: The trace autocorrelation and the Ricker wavelet autocorrelation.
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Figure 3.23: The model wavelet and a Klauder zero–phase estimate of the wavelet.
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Figure 3.24: Ricker and Klauder wavelet deconvolutions.
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Figure 3.25: The actual well–log derived reflectivity series, the Ricker band limited reflectivity

series estimate, and the Klauder reflectivity series estimate.
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3.6 Integration of VSP data with Vibroseis data

With the battery of tests on synthetic data concluded, the focus is now turned to an analysis on

a real data set. The data set comes to CREWES through a gracious donation from PanCanadian

Petroleum and is from a field in Alberta, Canada. Shown in Figure 3.27 is a near offset surface

recording of real data shot with a vibroseis source and the down going vertical seismic profile

(VSP) waveform. The VSP is also shot with a vibroseis source and it is this down going VSP

waveform that is the in–situ measured wavelet. It, the in–situ wavelet, is a direct recording of the

transmission energy. One thing to note about the waveform is that it, apparently, is illustrating a

time varying nature. This violates the major assumption of the wavelet being stationary. Shown

in Figure 3.28 is the autocorrelation of the reflected wave surface trace and the autocorrelation of

the total down going VSP. The close similarity between the autocorrelations lends support to the

assumption of a random reflectivity sequence. The direct measured wavelet is truncated to the

same number of samples as a zero phase wavelet estimate. This gives a measured wavelet with

a more reasonable length. A comparison of the two is shown in Figure 3.29. When plotted on

the same scale, noticeable differences exist between the measured wavelet and the Klauder zero

phase wavelet estimate. The most pronounced of these differences are in wavelet phase. It appears

that the estimated wavelet is about 180 out of phase from the in–situ wavelet. This means that

whenever there is a trough in the measured wavelet, there is a peak in the estimate. Also note what

can be best described as difference in symmetry. What is meant by this is that the estimate is a

typical zero phase wavelet in that it is symmetric about its major peak. However, this is not what

is seen in the truncated measured wavelet. There is no symmetry about the major trough. In fact,

it appears as if the in–situ measurement is a delayed minimum phase wavelet of sorts. Although
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there are these significant differences between the two, the autocorrelation of the real seismic trace

data is quite similar to the autocorrelations of the truncated and estimated wavelets (see Figure

3.30). The wavelet autocorrelations themselves are also quite similar to each other. Collectively,

this reinforces the belief that trace and wavelet autocorrelations are approximations of each other

and, hence, the reflectivity is random. Resolving kernels for the deconvolution of the different

wavelets (in–situ, in–situ truncated, and statistical zero phase) are shown in Figure 3.31. All three

give good, relatively clean, spikes but the spikes all occur at different positions. These different

spiking positions may imply that the phase differences and nonstationarity of the wavelet itself are

important. That is, the different spiking positions may be due to different phases and the nonsta-

tionary nature of the wavelet. The final figure, Figure 3.32, relates to how well the deconvolution

filters work. Since there is no well log derived reflectivity sequence to act as a control for the

results, we proceed in a slightly different manner. Instead of comparing estimated sequences to the

actual sequence, we evaluate the results with respect to how well responses are brought out and if

the ringy nature of the surface data can be suppressed. Note that the deconvolution result from a

filter based on the Klauder zero phase wavelet estimate best reduces the ringiness and responses

are very clear.
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Figure 3.27: Near offset surface data and the in–situ measured wavelet (down going VSP)
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Figure 3.28: Near offset trace autocorrelation and in–situ wavelet autocorrelation
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Figure 3.29: Truncated measured wavelet and a Klauder zero–phase wavelet.
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Figure 3.30: Near offset trace autocorrelation, truncated wavelet autocorrelation, and Klauder

wavelet autocorrelation.
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Figure 3.31: Measured wavelet deconvolution, truncated wavelet deconvolution, and Klauder

wavelet deconvolution.
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Figure 3.32: Near offset traces and their convolution with an in–situ, truncated, and Klauder filter.



Chapter 4

The phase assumption

4.1 Proposed tests for the phase assumption

An extensive analysis of the phase assumption made in statistical deconvolution has led to the

development of two tests for phase. The first test to check the validity of the phase assumption is

fairly simple and easy to apply. It assumes that a trace and a wavelet (measured or estimated) exists.

From this trace, a deconvolution filter is estimated based on the seismic trace. As in the previous

case of the randomness test, the design of the deconvolution filter is based on the seismic trace since

this is what is generally available in the case of real data. Then, the actual wavelet is convolved with

the estimated filter to produce a resolving kernel which is compared to the ideal spiking response.

The resolving kernels similarity to a spike will dictate the goodness of the phase assumption being

made. A pseudocode describing this test is outlined below. The second test involves a well–log

derived reflectivity sequence. Statistically estimated minimum phase wavelets are created from the

input trace. These wavelets are then used to estimate minimum phase deconvolution filters. The

filters are convolved with the input trace to generate reflectivity estimates. Comparisons of these

66
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estimates to the well–log derived reflectivity will allow one to ascertain the goodness of the phase

assumption being made. Again, the flow charts that outline these tests (shown below) are followed

by the pseudocode for the tests themselves.
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INPUT: model wavelet INPUT:reflectivity derived
from well logs

Convolve to form model
synthetic seismic trace

Estimate the Wiener
deconvolution filter

Convolve the actual model wavelet
with the statistically estimated
deconvolution filter.

COMPARE RESOLVING KERNEL

TO THE DESIRED OUTPUT SPIKE

Figure 4.1: A validity test of wavelet phase assumption.
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INPUT: seismic trace
INPUT:reflectivity derived
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Estimate the Wiener
deconvolution filter

Convolve the seismic trace with
the statistically estimated
deconvolution filter.

COMPARE DECONVOLVED TRACE

TO THE DESIRED REFLECTIVITY

Figure 4.2: A well–log validity test of wavelet phase assumption.
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BEGIN: A validity test for the minimum phase assumption.

for each seismic trace do

compute statistical estimate of deconvolution filter f (n); or ~f ;

using the Wiener–Levinson method;

compute the resolving kernel;

compare to the desired output delta function end do

where

proc ~f = R�1~g; R is the autocorrelation matrix of the input trace s(n);

proc resolving kernel � 8njn� 0;w(n)� f (n) = ∑τ=N
τ=0 w(τ) f (n� τ);

w(n) is the actual wavelet being considered.

END

BEGIN: A well–log validity test for the minimum phase assumption.

for each seismic section do

compute desired statistically estimated wavelet w(n); or ~w;

compute deconvolution filter f (n); or ~f ; based on said wavelet;

compute the trace deconvolution;

compare to the well–log derived reflectivity sequence end do

where

proc ~w = (R�1~g)�1; R is the autocorrelation matrix of the trace s(n);

proc ~f = W�1~g; W is the autocorrelation matrix of the wavelet;

proc trace deconvolution � 8njn� 0;s(n)� f (n) = ∑τ=N
τ=0 s(τ) f (n� τ):

END
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These tests will be used on two model environments. Each of these models have a minimum delay

wavelet, two mixed delay wavelets, and a maximum delay wavelet, as well as their correspond-

ing synthetic traces. The remaining sections of this chapter present the model environments and

a comprehensive set of results regarding the investigations on the phase assumption with these

models.



72

4.1.1 model 1

Presented here and in the following subsection are the two model environments where the min-

imum phase assumption is investigated. Each of these scenarios incorporates a minimum delay

wavelet, an end–loaded mixed delay wavelet, a front–loaded mixed delay wavelet, and a maxi-

mum delay wavelet. An end–loaded mixed delay wavelet refers to a mixed delay wavelet whose

energy is concentrated closer to its end. A front–loaded mixed delay wavelet refers to a mixed

delay wavelet whose energy is maximally concentrated at its onset. These models also contain the

synthetic traces associated with each of wavelets and the reflectivity sequence used to create the

synthetics. In addition, the minimum delay synthetic is used to generate two statistical minimum

delay wavelet estimates and their deconvolution filters. The trace deconvolution investigations use

these statistically estimated filters.

Figures 4.3 – 4.6 show the various wavelets used in this model, the common reflectivity se-

quence for the model, and the associated synthetic traces. Note that the reflectivity is a primaries

only reflectivity sequence (i.e. no multiples) and is convolved with each of wavelets to give the

traces shown to the right. The mixed delay wavelet in Figure 4.4 is end–loaded, while in Figure

4.5 is a front–loaded mixed delay wavelet. The final two images shown (Figures 4.7 and 4.8) are

the statistically estimated minimum delay wavelets. Figure 4.7 shows the model minimum delay

wavelet, a Hilbert transform wavelet estimate, and the deconvolution filter associated with it. This

figure shows that the model wavelet and the Hilbert transform estimate are similar waveforms but

have different time delays and the statistical estimate has some minor noise in its tail. Figure 4.8

also shows the model minimum delay wavelet but the statistical wavelet and its filter are gener-

ated by the Wiener–Levinson method. Here, the waveforms are very dissimilar. In particular,
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the Wiener–Levinson double inverse wavelet is quite front–loaded with minimal amounts of tail

energy and is extremely characteristic of a spike response.
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Figure 4.3: The minimum delay wavelet, (�1:1+ z)2(1:75+ z)38, and primaries only reflectivity

sequence are convolved to give the synthetic trace to the right.
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Figure 4.4: A mixed delay wavelet,(1� 1:1z)2(1:75+ z)38, and a primaries only reflectivity se-

quence are convolved to give the synthetic trace to the right.
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Figure 4.5: A mixed delay wavelet,(�1:1+ z)2(1+ 1:75z)38, and a primaries only reflectivity

sequence are convolved to give the synthetic trace to the right.

10

20

30

40

tim
e(

m
s)

1
amplitude

maximum delay wavelet

50

100

150

tim
e 

(m
s)

2 4 6 8 10
trace number

Well-log derived reflectivities

50

100

150

200

tim
e 

(m
s)

2 4 6 8 10
trace number

Maximum delay synthetic trace

Figure 4.6: The maximum delay wavelet,(1� 1:1z)2(1+ 1:75z)38, and primaries only reflectivity

sequence are convolved to give the synthetic trace to the right.
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Figure 4.7: The actual minimum delay wavelet (left) for this model, the Hilbert transform mini-

mum delay wavelet estimate (center) for this model and the deconvolution filter (right) estimated

from it.
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Figure 4.8: The the actual minimum delay wavelet (left) for this model, the Wiener–Levinson min-

imum delay wavelet estimate (center) for this model and the deconvolution filter (right) estimated

from it.
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4.1.2 model 2

Figures 4.9 – 4.14 show the various wavelets used in this model, the common reflectivity se-

quence for the model, and the associated synthetic traces. Note that the reflectivity is a primaries

only reflectivity sequence (i.e. no multiples) and is convolved with each of wavelets to give the

traces shown to the right. The mixed delay wavelet in Figure 4.10 is front–loaded, while in Fig-

ure 4.11 is an end–loaded mixed delay wavelet. Notice that all of the model wavelets used here

have large band–widths and have very little energy distribution. That is, virtually all the energy is

concentrated at the waveforms onset or at its end. The final two images shown for this subsection

(Figures 4.13 and 4.14) are the statistically estimated minimum delay wavelets. Figure 4.13 shows

the model minimum delay wavelet, a Hilbert transform wavelet estimate, and the deconvolution

filter associated with it. This figure shows that the model wavelet and the Hilbert transform es-

timate are similar waveforms but have different time delays and the statistical estimate has some

notable noise in its tail. Figure 4.14 also shows the model minimum delay wavelet but the statisti-

cal wavelet and its filter are generated by the Wiener–Levinson method. Here, the waveforms are

very dissimilar. In particular, the Wiener–Levinson double inverse wavelet is quite front–loaded

with minimal amounts of tail energy and is extremely characteristic of a spike response with large

band–width.
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Figure 4.9: The minimum delay wavelet, (�1:35+ z)2(1:5+ z)38, and primaries only reflectivity

sequence are convolved to give the synthetic trace to the right.
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Figure 4.10: A mixed delay wavelet,(1� 1:35z)2(1:5+ z)38, and a primaries only reflectivity se-

quence are convolved to give the synthetic trace to the right.
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Figure 4.11: A mixed delay wavelet,(�1:35+ z)2(1+ 1:5z)38, and a primaries only reflectivity

sequence are convolved to give the synthetic trace to the right.
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Figure 4.12: The maximum delay wavelet,(1�1:35z)2(1+1:5z)38, and primaries only reflectivity

sequence are convolved to give the synthetic trace to the right.
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Figure 4.13: The actual minimum delay wavelet (left) for this model, the Hilbert transform mini-

mum delay wavelet estimate (center) for this model and the deconvolution filter (right) estimated

from it.
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Figure 4.14: The actual minimum delay wavelet (left) for this model, the Wiener–Levinson mini-

mum delay wavelet estimate (center) for this model and the deconvolution filter (right) estimated

from it.
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4.2 Phase effects on resolving kernels

4.2.1 results: model 1

Figures 4.15 through 4.18 show the resolving kernel tests for the first model minimum de-

lay wavelet and its selected permutations. The minimum phase wavelet has the z–dipole form

(�1:1+ z)2(1:75+ z)38 and the permutations considered are: (1� 1:1z)2(1:75+ z)38 (mixed de-

lay), (�1:1+ z)2(1+1:75z)38 (mixed delay), and (1�1:1z)2(1+1:75z)38 (maximum delay).

In Figure 4.15, a spiking deconvolution filter for the minimum delay wavelet is shown along

with the wavelet itself and the resulting resolving kernel. The convolution of the Wiener decon-

volution filter with the wavelet produces the resolving kernel shown in this figure. This is a sharp

resolving kernel with a narrow band–width. The optimal spiking position is at 25ms and there is

insignificant energy in the tail of the kernel. If the dipoles for the 1st term are interchanged, the

end–loaded mixed delay wavelet shown in Figure 4.16 results. The deconvolution, in this case,

produces a resolving kernel which is almost identical to the minimum phase situation with the

exception being that now the optimal spiking position is at 44ms. Similarly, in Figure 4.17, the

second mixed delay wavelet (front–loaded) has a sharp resolving kernel with narrow band–with

and an optimum spiking position at 36ms. Figure 4.18 shows the resolving kernel result for the

maximum delay wavelet. In this case, the kernel is sharp with a spiking position at 55ms but the

kernel has a broader band–with than the previous three images. The general observed trend is that

as the phase delay of the wavelet changes, so does the optimum spiking position. This is seen by

comparing the optimum spiking positions of the various resolving kernels. In other words, if the

wavelet is known, the Wiener deconvolution filter can produce an equally good resolving kernel.
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Figure 4.15: The model minimum delay wavelet, (�1:1+ z)2(1:75+ z)38, its deconvolution filter,

and its resolving kernel. The optimal spiking position is at 25ms.

10

20

30

40

tim
e(

m
s)

1
amplitude

mixed delay wavelet

10

20

30

40

tim
e(

m
s)

1
amplitude

Deconvolution filter

50

60

70

80

tim
e(

m
s)

1
amplitude

Mixed delay resolving kernel

Figure 4.16: A mixed delay version of the model wavelet, (1�1:1z)2(1:75+z)38, its deconvolution

filter, and its resolving kernel. The optimal spiking position is at 44ms.
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Figure 4.17: Another mixed delay version of the model wavelet, (�1:1+ z)2(1+ 1:75z)38, its

deconvolution filter, and its resolving kernel. The optimal spiking position is at 36ms.
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Figure 4.18: The maximum delay version of the model wavelet, (1� 1:1z)2(1+ 1:75z)38, its de-

convolution filter and its resolving kernel. The optimal spiking position is at 55ms.
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4.2.2 results: model 2

Figures 4.19 through 4.22 show the resolving kernel tests for the second model minimum

phase wavelet and its selected permutations. The minimum phase wavelet has the z–dipole form

(�1:35+ z)2(1:5+ z)38 and the permutations considered are: (1� 1:35z)2(1:5+ z)38 (mixed de-

lay), (�1:35+ z)2(1+1:5z)38 (mixed delay), and (1�1:35z)2(1+1:5z)38 (maximum delay).

In Figure 4.19, a spiking deconvolution filter for the minimum delay wavelet is shown along

with the wavelet itself and the resulting resolving kernel. The convolution of the Wiener decon-

volution filter with the wavelet produces the resolving kernel shown in this figure. This is a sharp

resolving kernel with a narrow band–width. The optimal spiking position is at 36ms and there

is insignificant energy in the tail of the kernel. The front–loaded mixed delay wavelet is shown

in Figure 4.20 and the deconvolution, in this case, produces a resolving kernel which is almost

identical to the minimum phase situation with the exception being that now the optimal spiking

position is at 44ms. Notice that both of the resolving kernels shown thus far have a broad band–

width. In Figure 4.21, the second mixed delay wavelet (end–loaded) has a sharp resolving kernel

with slightly narrower band–with and an optimum spiking position at 36ms. Figure 4.22 shows

the resolving kernel result for the maximum delay wavelet. In this case, the kernel is sharp with a

spiking position at 44ms and the kernel has a narrow band–with.

With the wavelets used in this section, the trend hinted at earlier is again visible. As the delay

in the wavelet is changed from minimum, through mixed, to maximum, it is seen that the optimum

spiking position deviates to time positions equal to or later than the optimum position seen for

the minimum delay case. In addition, as before, these results show that if the wavelet is known,

then the optimum Wiener–Levinson deconvolution filter will convolve with the wavelet in question
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to create a sharp resolving kernel. The key question now becomes the following: if the wavelet

is not known and certain wavelet phase assumptions must be made in order to perform seismic

deconvolution, how well will the deconvolved traces estimate the earth’s reflectivity?
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Figure 4.19: The model minimum delay wavelet, (�1:35+ z)2(1:5+ z)38, its deconvolution filter,

and its resolving kernel. The optimal spiking position is at 36ms.
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Figure 4.20: A mixed delay version of the model wavelet, (1�1:35z)2(1:5+z)38, its deconvolution

filter and its resolving kernel. The optimal spiking position is at 44ms.
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Figure 4.21: Another mixed delay version of the model wavelet, (�1:35+ z)2(1+ 1:5z)38, its

deconvolution filter, and its resolving kernel. The optimal spiking position is at 36ms.
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Figure 4.22: The maximum delay version of the model wavelet, (1� 1:35z)2(1+ 1:5z)38, its de-

convolution filter and its resolving kernel. The optimal spiking position is at 44ms.
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4.3 The well–log phase assumption test

The next 8 images display the effect of the minimum phase assumption on the deconvolution

of the entire trace. For both models, each synthetic is created by the convolution of a wavelet

(minimum, mixed, or maximum delay) with the model reflectivity sequence. In each of these

models, the minimum delay trace is used to estimate minimum delay wavelets by the Hilbert

transform and Wiener–Levinson double inverse methods.

4.3.1 results: model 1

This section introduces the problems that often arise when using the minimum phase assump-

tion. Figures 4.23 through 4.26 illustrate just how problematic and damaging the minimum phase

assumption can be. Shown in Figure 4.23 is the actual reflectivity sequence used in this analysis,

the Hilbert transform deconvolution of the minimum delay trace, and the Wiener–Levinson de-

convolution of the minimum delay trace. Both of these reflectivity estimates have a band–passed

nature to them and suffer from significant amplitude attenuation. Both also seem to have strong

impulses for minor reflections but the major reflectivities are absent. It also appears as if the

Wiener–Levinson estimate suffers more from these short comings than the Hilbert transform esti-

mate. Similar results are seen in Figure 4.24 where the results of a mixed delay trace deconvolution

are presented. Present here are the same short comings listed previous except that there seems to

be significant phase mismatch. Next (Figure 4.25) are the deconvolution results for the second

mixed delay trace. These reflectivity estimates cannot, not even in the broadest sense, be consid-

ered representitive of the model reflectivity. This may be due to the fact that both assumptions

(phase and randomness)about the wavelet are now being used in the deconvolution. The time de-
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lay is particularly noticable. Finally, in Figure 4.26, there are the results of the deconvolutions for

the maximum delay trace. Here, the statistical reflectivity estimates are very time delayed, have a

significant band–passed nature, suffer from severe phase mismatches, and there is major amplitude

attenuation.
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Figure 4.23: The actual reflectivity sequence (left), spiking deconvolution of the minimum delay
synthetic trace based on the Wiener–Levinson wavelet (center), and spiking deconvolution of the
minimum delay synthetic trace based on the Hilbert wavelet (right).
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Figure 4.24: The actual reflectivity sequence (left), spiking deconvolution of the mixed delay
synthetic trace based on the Wiener–Levinson wavelet (center), and spiking deconvolution of the
mixed delay synthetic trace based on the Hilbert wavelet (right).
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Figure 4.25: The actual reflectivity sequence (left), spiking deconvolution of the second mixed
delay synthetic trace based on the Wiener–Levinson wavelet (center), and spiking deconvolution
of the second mixed delay synthetic trace based on the Hilbert wavelet (right).
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Figure 4.26: The actual reflectivity sequence (left), spiking deconvolution of the maximum delay
synthetic trace based on the Wiener–Levinson wavelet (center), and spiking deconvolution of the
maximum delay synthetic trace based on the Hilbert wavelet (right).
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4.3.2 results: model 2

Figures 4.27 through 4.30 tell the same story seen in model 1. Shown in Figure 4.27 is the

actual reflectivity sequence used in this analysis, the Hilbert transform deconvolution of the min-

imum delay trace, and the Wiener–Levinson deconvolution of the minimum delay trace. Both of

these reflectivity estimates have a prominant band–passed nature to them, suffer from significant

amplitude attenuation, and are time delayed. Both also seem to have strong impulses for minor re-

flections but the major reflectivities are absent. It also appears as if the Wiener–Levinson estimate

suffers more from these short comings than the Hilbert transform estimate. Similar results are seen

in Figure 4.28 where the results of a mixed delay trace deconvolution are presented. Present here

are the same short comings listed previous except that there seems to be phase mismatch. Next

(Figure 4.29) are the deconvolution results for the second mixed delay trace. These reflectivity

estimates are not representitive of the model reflectivity. The time delay is particularly noticable

but these estimates do not suffer from as much band–passing or amplitude attenuation. Finally,

in Figure 4.30, there are the results of the deconvolutions for the maximum delay trace. Here,

the statistical reflectivity estimates are very time delayed. However, the trace deconvolutions have

better amplitude content than the first two of this subsection.
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Figure 4.27: The actual reflectivity sequence (left), spiking deconvolution of the minimum delay
synthetic trace based on the Wiener–Levinson wavelet (center), and spiking deconvolution of the
minimum delay synthetic trace based on the Hilbert wavelet (right).
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Figure 4.28: The actual reflectivity sequence (left), spiking deconvolution of the mixed delay
synthetic trace based on the Wiener–Levinson wavelet (center), and spiking deconvolution of the
mixed delay synthetic trace based on the Hilbert wavelet (right).
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Figure 4.29: The actual reflectivity sequence (left), spiking deconvolution of the second mixed
delay synthetic trace based on the Wiener–Levinson wavelet (center), and spiking deconvolution
of the second mixed delay synthetic trace based on the Hilbert wavelet (right).
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Figure 4.30: The actual reflectivity sequence (left), spiking deconvolution of the maximum delay
synthetic trace based on the Wiener–Levinson wavelet (center), and spiking deconvolution of the
maximum delay synthetic trace based on the Hilbert wavelet (right).
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4.4 The phase assumption test

The final two subsections illustrate a set of results using the proposed test for phase discussed

earlier. Both model 1 and model 2 use the synthetic traces to statistically estimate Wiener–Levinson

deconvolution filters. These filters, computed using the minimum phase assumption, are then

convolved with the actual wavelets to generate resolving kernels. The similarity to an ideal spike

will give a measure of how well or how poor the minimum phase assumption is working.

4.4.1 results: model 1

Given the rather poor preformance of the statistical methods in trace deconvolution section, an-

other approach is taken. As described above, the model synthetic traces are used with the minimum

phase assumption to spike the wavelets used in this model. That is, the synthetic traces generate

the statistically estimated minimum phase filter that convolves with the actual wavelets to give a

good resolving kernel where the major peak greatly dwarfs the residual peaks in the kernel. The

intrigue in Figure 4.32 and Figure 4.33 comes from the mixed phase nature of the actual wavelets.

Figure 4.32 shows a model mixed phase wavelet that is similar to the maximum delay wavelet (see

Figure 4.34), except that the mixed delay wavelet is not as time delayed as the maximum delay

wavelet. The mixed delay wavelet spikes at 39ms, while the maximum delay wavelet spikes at

49ms. Its resolving kernel is a version of the kernel for the maximum delay wavelet except at an

earlier time. The same holds when considering the mixed delay wavelet in Figure 4.33 and the

minimum delay wavelet (see Figure 4.31). This mixed delay wavelet has a close resemblance to

the minimum delay wavelet and its resolving kernel is that of the minimum delay wavelet but it

spikes at 22ms instead of 11ms.
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Figure 4.31: The actual minimum phase wavelet used to create the previously shown synthetic is
convolved with the deconvolution filter, estimated from the synthetic trace, to give the resolving
kernel to the right.
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Figure 4.32: The actual mixed phase wavelet used to create the previously shown synthetic is
convolved with the deconvolution filter, estimated from the synthetic trace, to give the resolving
kernel to the right.
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Figure 4.33: The actual mixed phase wavelet used to create the previously shown synthetic is
convolved with the deconvolution filter, estimated from the synthetic trace, to give the resolving
kernel to the right.
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Figure 4.34: The actual maximum phase wavelet used to create the previously shown synthetic is
convolved with the deconvolution filter to give the resolving kernel to the right.
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4.4.2 results: model 2

The pattern identified with the previous model also reappears in these result. Again it is seen

that one mixed delay wavelet follows the patterns of the minimum delay wavelet while the other

mimics the maximum delay wavelet’s behavior. The general trend being seen with these two

simple models is that even if the wavelet is not minimum phase the deconvolution filter based on

the minimum phase assumption will effectively convert the mixed delay wavelet to a spike.

The intrigue seen in the previous subsection is seen again here. Figure 4.36 shows a model

mixed phase wavelet that is similar to the minimum delay wavelet (see Figure 4.35), except that it

is more time delayed. The mixed delay wavelet spikes at 23ms, while the minimum delay wavelet

spikes at 14ms. Its resolving kernel is a version of the kernel for the minimum delay wavelet except

at a later time. The same holds when considering the mixed delay wavelet in Figure 4.37 and the

maximum delay wavelet (see Figure 4.38). This mixed delay wavelet has a close resemblance to

the maximum delay wavelet and its resolving kernel is that of the maximum delay wavelet but it

spikes at 35ms instead of 36ms.
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Figure 4.35: The actual minimum phase wavelet used to create the previously shown synthetic is
convolved with the deconvolution filter, estimated from the synthetic trace, to give the resolving
kernel to the right.
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Figure 4.36: The actual mixed phase wavelet used to create the previously shown synthetic is
convolved with the deconvolution filter, estimated from the synthetic trace, to give the resolving
kernel to the right.
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Figure 4.37: The actual mixed phase wavelet used to create the previously shown synthetic is
convolved with the deconvolution filter, estimated from the synthetic trace, to give the resolving
kernel to the right.
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Figure 4.38: The actual maximum phase wavelet used to create the previously shown synthetic is
convolved with the deconvolution filter, estimated from the synthetic trace, to give the resolving
kernel to the right.



Chapter 5

Conclusions

The preceding results of Chapter 3 shed some light on the issue of the randomness of the reflec-

tivity sequence. Use of sonic and density logs to compute a reflectivity sequence serves to locally

measure the goodness of the statistical estimates and helps to test the validity of the assumption.

In order to evaluate the effectiveness of the random reflectivity assumption on deconvolution, a

simple test is proposed based on the use of a sonic log. Also investigated are the various resolv-

ing kernels. The closeness of the resolving kernel to a spike is a measure of the deconvolution

filter’s effectiveness. A further test is to apply the estimated deconvolution filter to the trace and

compare the deconvolved output to the reflectivity sequence. With real data, we can compare the

wavelet estimate obtained from surface recorded data with waveforms obtained from in–situ VSP

recordings. Through all of the randomness investigations, it has become clear that the justification

of the randomness assumption is closely tied to the lithology of an area. That is to say, if the rock

layering has periodic properties, then its reflectivity sequence will not exhibit the required random-

ness property. Should reflectivity randomness be an inadequate assumption, then the processing

flow will need to resort to alternate methods or, in fact, to physical measurements of the source

101



102

signature.

From the investigations of Chapter 4, it is clear the minimum phase assumption is far more crit-

ical in determining the success or failure of statistical deconvolution methods. Proper investigation

of the minimum phase assumption must be done in a synthetic framework because a knowledge

of how the wavelet phase differs from minimum phase is required to know how these phase dif-

ferences affect statistical deconvolution. The complete picture involves investigating resolving

kernels and trace deconvolutions. It is evident that if there is a priori knowledge of the wavelet,

then the statistical methods used in this thesis will consistently produce a well–defined, sharp, re-

solving kernel. Also seen from the study is that statistically estimating minimum phase wavelets

from input traces and then using these wavelets to deconvolve the trace is a disastrous path to fol-

low. Far better results are seen when the statistical deconvolution filters are estimated from the

trace themselves. This is seen by convolving the filter estimated from the trace with the actual

wavelet used to create the trace. For the situations considered in this thesis, the previous process

creates good resolving kernels and, therefore, it can be concluded that the filters will effectively

spike the embedded wavelet.

As a whole, for the Alberta data examined in this thesis, it is seen that the problems of wavelet

phase and wavelet non–stationarity beset the statistical deconvolution problem far more than the

random reflectivity assumption. To assess the usefulness of statistical deconvolution as a process-

ing tool, use the proposed tests along with the best interpretive judgment available.
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