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Abstract 
 

Stability and accuracy are major concerns when designing recursive wavefield 

extrapolators implemented in the space-frequency domain. In this thesis, a common set of 

tools has been developed and utilized to conduct a comprehensive stability and accuracy 

analysis of selected space-frequency extrapolators. The analysis shows that the Hale 

extrapolator is superior over a limited-aperture Rayleigh extrapolator spatially tapered by 

either a Hanning or a Gaussian window. A key merit of the Hale extrapolator is that it 

preserves as much of the phase and amplitude of the propagating wavefield as possible, 

yet attenuates propagating waves where the extrapolator has significant phase error. 

A new adaptive tapering scheme is proposed and compared with conventional 

tapering methods using both simple and complex models. The results show that adaptive 

tapering can be applied in the first extrapolation step to improve the image at shallow 

depth from a common-source migration. 
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Chapter One: INTRODUCTION 

1.1 Wavefield extrapolation techniques 

In recent years, wavefield-continuation seismic imaging methods1 have found 

wide application as computational power has steadily increased and as exploration for oil 

and gas extends to areas with strong lateral variations in seismic velocity. The essential 

component of a wavefield-continuation imaging method is recursive wavefield 

extrapolation based on the one-way wave equation (Berkhout, 1981), where the term 

recursive implies that the output wavefield from the last extrapolation step is used as the 

input wavefield to the next extrapolation step. Wavefield extrapolation techniques enable 

geophysicists to predict wavefields in the subsurface by propagating the recorded seismic 

wavefields through an appropriate subsurface velocity model.  

Wavefield-continuation imaging methods typically demonstrate a superior 

capability for imaging complex structures compared to nonrecursive ray-based methods 

such as diffraction-stack or Kirchhoff migration. A widely agreed explanation (Bevc and 

Biondi, 2002) is that recursive extrapolators provide a more accurate solution to the wave 

equation over a wider range of velocities and seismic frequencies. Therefore, they can 

more easily handle complex wave phenomena such as multiple arrivals and complicated 

scattering. Figure 1.1 shows an example where the wavefield-continuation migration 

better images the salt structure and sub-salt features than does the nonrecursive Kirchhoff 

migration (Soubaras, 2002). 

 

1 They are also called “wave-equation” seismic imaging methods or “wave-equation” migration methods. 
To avoid confusion with other wave-equation based methods (e.g., nonrecursive Kirchhoff migration), I use 
“wavefield-continuation” seismic imaging methods or “wavefield-continuation” migration methods in this 
thesis. This definition was also used by Biondi (2003). 
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 (a) (b) 

Figure 1.1: Comparison of the images of the 2-D SEG-EAGE salt model from (a) nonrecursive 
Kirchhoff migration; (b) wavefield-continuation migration based on recursive wavefield 
extrapolation (Soubaras, 2002). 

Many algorithms have been developed that fall into the general category of 

recursive wavefield extrapolation, such as finite-difference (Claerbout, 1985), space-

frequency extrapolation (Berkhout, 1981), phase-shift-plus-interpolation (PSPI) (Gazdag 

and Sguazerro, 1984), split-step Fourier (Stoffa et al., 1990), non-stationary phase shift 

(NSPS) (Margrave and Ferguson, 1999; Ferguson and Margrave, 2002), and recursive 

Kirchhoff or Rayleigh2 extrapolation (Bevc, 1997; Margrave and Daley, 2001; Geiger et 

al., 2002), to name a few. These recursive extrapolation methods can be categorized into 

two major groups, implicit and explicit. A typical example of implicit extrapolation is the 

well-known 45-degree finite-difference method for depth migration (Claerbout, 1985), 

where the implicit filtering is implemented by solving a linear system of coupled 

equations for the filtered output points. In contrast, explicit methods approximate the 

extrapolation operator as finite impulse response filters (Berkhout, 1981). Recursive 

Rayleigh extrapolation and the family of wavenumber-frequency extrapolations, such as 
                                                 

 

2 In this thesis, I refer to “recursive Kirchhoff” as “recursive Rayleigh”, and the “Kirchhoff extrapolator” as 
the “Rayleigh extrapolator”; first, to avoid confusion with the industry standard usage of “Kirchhoff” as a 
synonym for “diffraction stack”; and second, because the one-way “Kirchhoff extrapolator” is more 
correctly a discrete formulation of the Rayleigh II integral (Berkhout, 1982, p. 124-127).  
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PSPI and NSPS methods, are considered to be explicit methods. 

1.2 Stability and accuracy of space-frequency extrapolators 

Explicit wavefield extrapolation methods can be implemented in the space-

frequency domain as convolutional filters. Figure 1.2 schematically illustrates the typical 

implementation of a 2-D x-ω (space-frequency) domain extrapolator3. At each frequency 

ω, the output wavefield ),,(ˆ ωzxp  is obtained by convolving the input wavefield 

),0,(ˆ ω=zxp  with an extrapolator that can accommodate local velocity variations. Since 

the extrapolation is implemented in the space domain, it has attractive advantages 

compared to kx-ω (wavenumber-frequency) domain extrapolation methods. The most 

important merit is that it can handle strong lateral velocity variations more simply. 

Moreover, it can provide protection from spatial wrap-around artifacts that typically 

appear with kx-ω extrapolation methods. 

),0,(ˆ ω=zxp  

Figure 1.2: Schematic implementation of a 2-D x-ω (sp

Although these are desirable advantages, stabilit

concerns when designing x-ω extrapolation schemes.

                                                 

 

3  The term “space-frequency extrapolation” refers to all the e
implemented in the space-frequency domain. 
),,(ˆ ωzxp  

a

y

 

x

 

ce-frequency) extrapolation. 

 and accuracy are always major 

Unlike implicit extrapolations, 

plicit extrapolation methods that are 
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which are unconditionally stable (Godfrey et al., 1979; Claerbout, 1985), explicit 

extrapolators implemented in the x-ω domain are not stable unless special care is taken in 

their design and implementation. In general, instability results from the spatial truncation 

of the extrapolation operators, either for the purpose of decreasing the computational cost 

or due to the inevitable finite aperture of the survey. Specifically, truncation of the spatial 

aperture of extrapolators causes oscillation in the wavenumber domain, and instability 

arises when any part of the amplitude spectrum exceeds one (see Maeland, 1994; 

Thorbecke et al., 2004). Recursive application of the spatially truncated extrapolator 

tends to amplify the wavefield energy with increasing depth, distorting the final image. 

Instability is also a result of the Gibbs’ phenomena. As shown in Chapter 2, the 

derivative of the desired extrapolator contains discontinuities in the kx-ω domain. 

According to the definition of the Gibbs’ phenomena, a Fourier transform to the x-ω 

domain does not reconstruct the desired extrapolator at these discontinuities, even if the 

spatial extent is infinite. Instead, amplitude overshot occurs around the discontinuities 

which will also cause instability. In this thesis, I define a stability condition in which no 

amplitude at any frequency should grow with depth. Thus, the stability condition is not 

automatically fulfilled with x-ω extrapolators.  

Another important factor is accuracy, which in general is a measurement of how 

well the designed extrapolator approximates the desired ideal extrapolator. Accuracy is 

affected by parameters such as extrapolation aperture and is compromised if the 

amplitude and phase spectra of the extrapolator deviate from those of the desired 

operator. 
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Many efforts have been devoted to stabilize x-ω extrapolators without sacrificing 

accuracy. Holberg (1988) and Blacquière et al. (1989) suggested a constrained non-linear 

least-square method to design 2-D and 3-D stable extrapolators, respectively. Hale (1991) 

showed that the recursive application of non-linear least-square optimized extrapolators 

may still result in instability and/or exponential decay of the seismic wavefield with 

depth. In addition, the nonlinear algorithm is usually expensive and can be trapped in a 

local minimum (Thorbecke et al., 2004). As an alternative, Hale (1991) designed a stable 

explicit extrapolator using a modified Taylor series method. Although the Hale 

extrapolator is sufficiently stable4, Hale’s method is based on the Taylor series expansion 

about wavenumber zero; therefore, it is not accurate for propagating the wavefield at high 

angles (i.e. at high wavenumbers). An additional drawback is that the Hale extrapolator is 

designed in the kx-ω domain; thus it does not handle irregular acquisition geometry as 

well as, for example, the recursive Rayleigh extrapolator. In addition, the artifacts caused 

by the nature of the extrapolator design make it suboptimal (see Chapter 3).  

A more straightforward way to stabilize the x-ω extrapolator, as well as to 

accommodate irregular geometry, is to taper the extrapolator in the space domain with a 

window function. A successful example was shown by Nautiyal et al. (1993), who used a 

Gaussian window to taper a Rayleigh extrapolator. However, as discussed in Chapter 3, 

the phase accuracy and steep-dip imaging capabilities of the Nautiyal extrapolator are 

inferior to the Hale extrapolator.  
 

4 Etgen (1994) stated that instability is also a function of the degree of lateral velocity variation and the 
persistence of velocity features with depth. Even the Hale extrapolator becomes unstable with some 
laterally-varying velocity models. Thus, strictly speaking, the Hale extrapolator is unconditionally stable 
only with constant velocity model. Since the instability discovered by Etgen is not directly related to the 
extrapolator design, it will not be discussed further in this thesis. 
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Other extrapolators have also been designed that demonstrate interesting stability 

and accuracy features. Soubaras (1996) suggests equiripple polynomial expansion 

combined with Laplacian synthesis, while Thorbecke and Rietveld (1994) and Thorbecke 

et al. (2004) suggest an optimized weighted least-squares method. 

The x-ω extrapolation methods mentioned in the previous paragraph were tested 

for stability and accuracy by their authors. These analyses vary greatly, depending on the 

author and the time of the publication. By examining the literature, we can make the 

following observations on previous stability and accuracy analyses: 

1. Many tools have been developed for the stability and accuracy analysis of 

extrapolation methods. One of the standard tools is the zero-offset constant 

velocity impulse response test. There are, however, other quantitative tools that 

are more effective but have seen limited use. To date, there has not been a study 

that compares the stability and accuracy of various extrapolators using a common 

set of tools, especially tools that quantitatively evaluate the performance of the 

extrapolators. A complete set of tools is required in order to undertake a fair 

comparison between various extrapolation methods, and to develop an 

understanding of the important factors affecting stability and accuracy. This is 

especially important for the evaluation of newly developed methods, in particular 

when the goal is to show whether these new methods have superior capabilities 

compared to older established methods. 

2. The display methods used in the literature are not consistent. The selection of 

model parameters varies, which makes an unbiased comparison difficult. In 
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addition, the quality of images varies widely. For example, Hale (1991) shows a 

figure of an impulse response test which appears to be free from artifacts. 

However, as shown in Chapter 3, the nature of the design of Hale’s method 

introduces artifacts that are clearly evident in a display with more dynamic range. 

3. Many of the published stability and accuracy analyses are limited to simple 

constant velocity models. These are suitable for illustrating basic characteristics 

such as the angular aperture of the extrapolator. However, the behaviour of 

extrapolators in a complex model (e.g. the Marmousi model) is not easy to predict 

based on these simple constant velocity tests. 

4. The stability and accuracy of some extrapolators have not been rigorously 

investigated. A recursive Rayleigh extrapolator proposed by Margrave and Daley 

(2001) as a part of the research at POTSI (Pseudodifferential Operator Theory 

and Seismic Imaging) Project has attractive advantages such as the capability to 

handle irregular acquisition geometry and rough topography (Margrave and 

Geiger, 2002). However, the stability and accuracy of this extrapolator was not 

sufficiently addressed in the 2001 paper, nor in subsequent papers (Geiger et al., 

2002; Margrave and Geiger, 2002). 

5. The newly developed recursive Rayleigh extrapolator has not been compared to a 

similar method introduced by Nautiyal et al. (1993). Nautiyal et al. (1993) suggest 

tapering the extrapolator in the space domain with a Gaussian window to stabilize 

the extrapolator. However, they in turn did not compare their extrapolator with the 

Hale extrapolator (Hale, 1991), which is widely considered one of the standard 
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explicit extrapolation methods. 

Motivated by these observations, this thesis seeks to examine the stability and 

accuracy of different extrapolation methods using a common set of tools. It would be 

ideal to compare all the extrapolators that have been introduced in the literature. 

However, given the main objective of developing a more sophisticated method for 

stability and accuracy analysis, I have limited this study to three extrapolators: the 

recursive Rayleigh extrapolator, the Nautiyal extrapolator and the Hale extrapolator. This 

choice of extrapolators is based on the following considerations: 

1. As a part of the fundamental research under the POTSI Project, the performance 

of the recursive Rayleigh extrapolator is still under active investigation. It would 

be valuable to evaluate the stability and accuracy of the Rayleigh extrapolator and 

compare its performance against other extrapolators. 

2. A Nautiyal extrapolator is equivalent to a recursive Rayleigh extrapolator 

multiplied by the product of a spatial Gaussian window and a boxcar function. 

The Nautiyal extrapolator is most closely related to the Rayleigh extrapolator, 

thus it is an obvious candidate for comparative analysis. 

3. Hale’s 1991 paper made significant contribution to the development of the 

explicit extrapolator. However, the 2-D Hale extrapolator (1991) has been rarely 

duplicated for comparison in later publications. Possible explanations are (i) 

calculation of the extrapolator requires symbolic differentiation that is not 

generally available; (ii) there is a derivation error in his paper (as pointed out in 

Chapter 2); and (iii) recent research efforts have focused on 3-D extrapolators 
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(e.g., Notfors, 1995; Mittet, 2002). Despite these factors, it is still worthwhile to 

develop the 2-D Hale extrapolator as a “benchmark” for comparison of 

extrapolators. 

4. These three extrapolators have never been compared together and applied to a 

common complex model. The Marmousi model (Versteeg and Grau, 1991) is a 

good candidate for comparative analysis, because this model is considered to be a 

challenge to modern imaging methods. 

To make the comparison fair, the three extrapolation methods used in the thesis 

are implemented in Matlab® and applied to simple and complex synthetic datasets. 

1.3 Adaptive tapering for the first extrapolation step 

In wavefield extrapolation, the surface data are typically padded by adding a 

number of zero traces (null data) to each side, such that the reflection energy can be 

extrapolated beyond the original aperture. This procedure introduces two kinds of 

truncations that need to be addressed. One truncation is the survey truncation caused by 

the finite acquisition survey, i.e. there will be a discontinuity between the null data and 

the acquired data. The second truncation results from the spatial limitation of the 

extrapolator aperture, given that extrapolator truncation is typically desired to decrease 

computational cost. To properly extrapolate surface data with zero-padding, an adaptive 

tapering scheme is proposed to handle truncations dynamically. As will be shown in 

Chapter 4, the adaptive tapering scheme can be combined with stable extrapolators to 

achieve a more optimal image. 
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1.4 Contribution of the thesis 

The contributions of this thesis are as follows: 

1. The three extrapolators studied in this thesis are coded and implemented for 

various tests. The codes developed for this study will be made available to 

colleagues and used as a basis for further research. In addition, the parallel 

Matlab® implementation used for migration of the Marmousi dataset provides an 

alternative to a parallel implementation using C and MPI (Message Passing 

Interface). Although the latter is more efficient, the former is easier to implement 

and takes advantage of Matlab’s powerful visualization capability. These features 

have greatly facilitated debugging and comparative evaluation of Matlab® and C-

MPI codes. 

The Rayleigh extrapolator and the Nautiyal extrapolator are completely coded in 

Matlab®. The coefficients of the Hale extrapolator are computed using Maple® 

because it requires symbolic differentiation, and the extrapolator is then used in 

the Matlab® codes for prestack and poststack tests. 

2. I develop an intuitive way to visualize various wavefield extrapolators. 

3.  I conduct a comprehensive stability and accuracy analysis of the three 

extrapolators using a common set of tools, including 3-D error plots, error 

contours, zero-offset impulse response, prestack dip accuracy and complex 

imaging using the Marmousi dataset. This leads to a better understanding of the 

stability and accuracy problems, and a more effective evaluation of various 

extrapolators. 
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4. I document the derivation error in Hale’s paper and the artifacts from the Hale 

extrapolator that were not described in his paper.  

5. In chapter 3 of this thesis, I show that the Rayleigh extrapolator is not sufficiently 

stable for the large number of extrapolation steps that are typically required to 

image modern datasets. However, its application can be limited to the first few 

extrapolation steps to regularize the data. Other more stable extrapolation 

methods that require regularized data can be used for the remaining steps. 

6. A new adaptive tapering method is presented that dynamically tapers the edges of 

the extrapolator and survey. This method is designed to handle the truncation 

problems for the first extrapolation step where data are padded with zero traces. 

1.5 Structure of the thesis 

In Chapter 2, I provide a brief theoretical review of wavefield extrapolation, 

starting with the scalar wave equation. I then derive various wavefield extrapolators in 

the kx-ω and x-ω domains.  

In Chapter 3, I develop a comprehensive methodology for stability and accuracy 

analysis of the selected recursive extrapolators. The Rayleigh extrapolator, the Nautiyal 

extrapolator and the Hale extrapolator are evaluated using a common set of tools and then 

applied to the common-source prestack depth migration of the Marmousi dataset. 

In Chapter 4, I introduce a new adaptive tapering scheme, which is then used to 

create more optimal images of the Marmousi dataset. The final conclusions are made in 

Chapter 5. 
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Chapter Two: REVIEW OF WAVEFIELD EXTRAPOLATORS 
 

The essential component of most modern wavefield-continuation migration 

methods is wavefield extrapolation based on the one-way wave equation. In this chapter, 

I introduce the one-way wave equation and provide basic derivations of the three 

extrapolators selected for stability and accuracy analysis. A derivation error in Hale’s 

paper (1991) is identified and corrected by equation (2.30) in Section 2.3. 

The imaging condition and the implementation of the common-source migration, 

one of the typical wavefield-continuation migration methods, are briefly described at the 

end of this chapter. 

2.1 One-way wave propagation 

In a homogenous medium, the 2-D acoustic scalar wave equation can be 

expressed as 

 2

2

2
2 1

t
p

v
p

∂
∂

=∇ , (2.1) 

where p=p(x, z, t) is the pressure wavefield and v denotes the velocity. The z-axis 

increases downward, and 2

2

2

2
2

z
p

x
pp

∂
∂

+
∂
∂

=∇  is the Laplacian with respect to x and z. 

Assuming a constant velocity, after a 2-D Fourier transform of equation (2.1) with 

respect to x and t, we obtain the 2-D Helmholtz equation 
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∂
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where ω is the angular frequency, is the horizontal wavenumber, and indicates any 

Fourier transform of the pressure wavefield p. The Fourier transform variables are 

specified explicitly. The signs in equation (2.2) depend on the sign convention of the 2-D 

Fourier transform. I use a 2-D Fourier transform with the following convention: 

xk p̂

 . (2.3) ∫ ∫
+∞

∞−

+∞

∞−

−= dxdtetzxpzkp xkwti
x

x )(),,(),,(ˆ ω

The analytical solution to the above ordinary differential equation (2.2) is 

 , (2.4) zikzik
x

zz BeAezkp −+=),,(ˆ ω

where A and B are the coefficients independent of depth z, and the vertical component of 

the wavenumber vector, kz, can be expressed as 

 2
2

2

xz k
v

k −=
ω . (2.5) 

Equation (2.5) is known as the dispersion relation of the 2-D scalar wave equation. 

The two coefficients A and B in equation (2.4) are determined by enforcing two 

boundary conditions. One boundary condition requires the normal derivative of wavefield 

be evaluated at z=0. Since the derivative is generally not available, we assume that the 

recorded wavefield is strictly an upcoming wave, i.e., reflections, multiple reflections, 

head waves and mode conversions are not generated (Holberg, 1988). According to our 

Fourier transform convention (equation (2.3)), the inverse Fourier kernel will be . 

Thus an upward traveling wave 

tie ω−

),,(ˆ ωzkp xu  (z decreases while t increases) will have the 

form in order to keep the phase “-(ωt+k)( zkti ze +− ω
zz)” constant (Claerbout, 1985), which 
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results in A=0. The second boundary condition is that the solution must match the data at 

z=0, i.e., ),0,(ˆ ω== zkpB xu . Therefore, equation (2.4) becomes 

 , (2.6) zik
xuxu

zezkpzkp −== ),0,(ˆ),,(ˆ ωω

corresponding to downward extrapolation of upgoing waves. Similarly, the downward 

extrapolation of downgoing waves ),0,(ˆ ω=zkp xd  (modeling) can be expressed as 

 . (2.7) zik
xdxd

zezkpzkp ),0,(ˆ),,(ˆ ωω ==

An alternative way to derive equations (2.6) and (2.7) is to factorize the equation 

(2.2), and to solve the one-way wave equations 

 ),,(ˆ),,(ˆ
ωω zkpik

z
zkp

xz
x ±=
∂

∂ . (2.8) 

      
 (a) (b) 

Figure 2.1: (a) Amplitude and (b) phase spectra of the desired extrapolator in the kx-ω domain. 
Wavenumber and phase are normalized by the factors of 2π/∆x and 2π, respectively. 

Equation (2.6) and (2.7) summarize the familiar phase shift method (Gazdag, 

1978), where the vertical variation of velocity is accommodated by recursively 

extrapolating the recorded wavefield through small intervals of constant velocity. The 

desired band-limited phase-shift operator (extrapolator), , can be illustrated in the kzikze x-

ω domain as in Figure 2.1. A constant velocity of 1250m/s (half-velocity of 2500m/s for 
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zero-offset extrapolation), a frequency range of 0 to 55Hz, spatial sampling of 

∆x=∆z=10m and temporal sampling of 4ms are used for the extrapolator calculation. 

2.2 Rayleigh extrapolator 

The derivation of the Rayleigh extrapolator was described by Margrave and Daley 

(2001). In order to obtain the wavefield extrapolator in the x-ω domain, we inverse 

Fourier transform equation (2.6) with respect to kx, 

 ∫
+∞

∞−

−== x
zikxik

x dkezkpzxp zx),0,(ˆ
2
1),,(ˆ ω
π

ω , (2.9) 

where ),,(ˆ ωzxp is a monochromatic scalar wavefield at position (x,z), and 

),0,(ˆ ω=zkp x is 

 . (2.10) ∫
+∞

∞−

−=== dxezxpzkp xik
x

x),0,(ˆ),0,(ˆ ωω

Inserting equation (2.10) into equation (2.9) and interchanging the order of 

integration gives 

 ∫ ∫
+∞

∞−

+∞

∞−

−−
⎥
⎦

⎤
⎢
⎣

⎡
== xddkezxpzxp x

zikxxik zx ˆ),0,ˆ(ˆ
2
1),,(ˆ )ˆ(ω
π

ω , (2.11) 

where denotes the input coordinate and x the output coordinate. By defining the 2-D x-

ω domain extrapolator as 

x̂

 ∫
+∞

∞−

−= x
zikxik

D dkevzxW zx

π
ω

2
1),,,(2 , (2.12) 

equation (2.11) can be written as 
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 . (2.13) ∫
+∞

∞−

−== xdvzxxWzxpzxp D ˆ),,,ˆ(),0,ˆ(ˆ),,(ˆ 2 ωωω

W2D is called the 2-D x-ω domain wavefield extrapolator, and is applied by a 1-D spatial 

convolution. The analytical form of the 2-D wavefield extrapolator (equation (2.12)) is 

well known (Robinson and Silvia, 1981). Assuming constant velocity, it can be expressed 

via the z derivatives of the 2-D Green’s function 

 ),,,(2),,,( 22 ωω vzxg
z

vzxW DD ∂
∂

−= , (2.14) 

where the 2-D Green’s function is (Zauderer, 1989) 

 )(
4

),,,( )1(
02 ρω kHivzxg D = , (2.15) 

with 22 zx +=ρ and k=ω/v. is the zero-order Hankel function of the first kind. 

For numerical calculation, the derivative of  is obtained as, 
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where  and  are the first-order Bessel function of the first kind and second 

kind, respectively. Standard routines for calculating  and  can be found in the 

published literature (e.g., Press et al., 1992). Plugging equation (2.15) and (2.16) into 

equation (2.14), the 2-D extrapolator for constant velocity becomes 

)(1 uJ )(1 uY

)(1 uJ )(1 uY

 ⎟
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12 2
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where 
ρ

θ z
=cos  is the cosine of the scattering angle. 

A final form for equation (2.13) can be developed by substituting equation (2.17) 

into equation (2.13), yielding 

 ∫
∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛== xd

v
H

v
zxpizxp ˆ

~cos),0,ˆ(ˆ
2

),,(ˆ )1(
1

ρωθωωω , (2.18) 

where 22)ˆ(~ zxx +−=ρ . Equation (2.18) represents a spatial convolution of the 

wavefield with an operator and is interpretable as a wavefield extrapolation operation in 

the x-ω domain that is based on the Rayleigh II integral (Berkhout, 1982). In the context 

of this thesis, I will call equation (2.18) the Rayleigh wavefield extrapolation, and W2D  

the Rayleigh wavefield extrapolator to avoid confusion with the conventional 

nonrecursive x-t domain Kirchhoff migration. 

The Rayleigh extrapolator is different from typical x-ω extrapolators (e.g., 

Berkhout, 1981). The traditional x-ω extrapolators are usually designed as finite-

difference operators and thus assume a uniformly gridded dataset. The Rayleigh 

extrapolator, on the other hand, is derived from an analytical formula that can be 

evaluated at any arbitrary spatial location. Therefore, it can easily adapt to irregular 

geometry and can prove effective for data regularization and in areas of rough 

topography (Margrave and Geiger, 2002). 

Strictly speaking, equation (2.18) holds only for a perfectly homogenous medium. 

However, notice that the integral for W2D (equation (2.12)) is over wavenumbers, not 

spatial coordinates. A simple replacement of constant velocity by lateral variable velocity 
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in equation (2.18) leads to extrapolators that can approximately accommodate lateral 

velocity variations. For example, the 2-D Kirchhoff GPSPI (Generalized Phase Shift Plus 

Interpolation) extrapolators are given by, 

 ∫
∞

∞−
⎟⎟
⎠

⎞
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⎝

⎛
== xd

xv
Hzzxp

xv
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1
ρω

ρ
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where the velocity v(x) is assigned to the output point. Note that the velocity v(x) is 

assumed to be a function of the transverse coordinate x. The velocity variation with depth 

z is then accommodated by extrapolating the wavefield in small steps within which the 

vertical variation of velocity is small enough to be negligible. The desired velocity values 

for the extrapolator are the ones that can provide the best approximation of the true phase 

(propagation time) of the seismic wavefield between the input points and the output 

point. 

 

In addition to the above GPSPI-type extrapolator, other Rayleigh extrapolators 

have been designed to handle lateral velocity variations: a GNSPS-type (Generalized 

Non-Stationary Phase Shift) extrapolator uses the velocities at the input points; a GSNPS-

type (Generalized Symmetric Non-Stationary Phase Shift) extrapolator incorporates two 

extrapolation steps of dz/2 where the first step uses the velocities at the input points 

(GNSPS-type) and the second step uses the velocity at the output point (GPSPI-type); a 

GWeyl-type (Generalized Weyl- based upon a quantum mechanical idea in Weyl (1931)) 

extrapolator uses an average of the velocities between each input point and the output 

point (see, Margrave and Daley, 2001; Geiger et al., 2002).; while the PAVG-type 

extrapolator (Geiger et al., 2003) uses the velocity calculated as an average slowness 

along straight raypath between each input point and the output point. In this thesis, I use 
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the GPSPI-type Rayleigh extrapolator for tests with a heterogeneous medium. 

Ideally, the Rayleigh extrapolator should extend to infinity in the lateral 

coordinates. From equation (2.5) and (2.12), it is evident that the amplitude of the 

Rayleigh extrapolator in the wavenumber domain is less than one in the evanescent 

region where |kx|>ω/v or equal to one in the propagating wave region where |kx|<ω/v. 

However, the extrapolator is usually truncated to a finite length to reduce computational 

cost (e.g., truncated to 19 points) as shown in Figure 2.2 and a constant frequency 

extraction from Figure 2.2 as shown in Figure 2.3. This truncation is equivalent to 

multiplying the extrapolator by a box-car function in the space domain which, in turn, is 

equivalent to convolving a sinc function (the Fourier transform of the box-car function) 

with the extrapolator in the wavenumber domain. As a result, ripples can be observed in 

the wavenumber domain where part of the amplitudes of the extrapolator will oscillate 

about the desired value of one (see Figure 2.2a and Figure 2.3a). The wavefield tends to 

grow or decay exponentially with the recursive application of the truncated extrapolator. 

In other words, the recursive Rayleigh extrapolator is unstable by design. 

The instability is also a result of the Gibbs’ phenomenon. The definition of the 

Gibbs’ phenomenon tells us that “when a waveform that includes a discontinuity (or 

whose derivative is discontinuous) is Fourier synthesized, the fit is poor near the 

discontinuity. As the number of frequency components included in the synthesis 

increases, the region of poor fit becomes narrower, but some overshoot at discontinuities 

continues” (Sheriff, 2002). In our case, we are seeking an extrapolator in the x-ω  domain 

that can best Fourier synthesize the desired extrapolator in the kx-ω domain. Notice that 
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the derivative of the desired extrapolator contains discontinuities at the evanescent 

boundaries (|kx|=ω/v) (see Figure 2.1). According to the definition of the Gibbs’ 

phenomenon, even the Rayleigh extrapolator with an infinite length cannot exactly 

Fourier synthesize the desired extrapolator. Increasing the length of the Rayleigh 

extrapolator will narrow the misfit, but the overshoot at evanescent boundaries is still 

present (see Figure 2.4). The overshoot will cause instability when the extrapolator is 

applied recursively. 

      

 (a) (b) 

Figure 2.2: (a) Amplitude and (b) phase spectra of a 19-point Rayleigh extrapolator in the kx-ω 
domain. The parameters are the same as those in Figure 2.1. 

Tapering is a standard tool for reducing the ripples associated with the spatial 

truncation and Gibbs’ phenomena (see, Sheriff, 2002, p. 347-348). One of the 

straightforward tapering schemes is to apply Hanning edge tapers to the Rayleigh 

extrapolator in the space domain. The half Hanning window used as the edge taper is 

defined as 

 ),
1

cos(5.05.0)(
+

=
L

nnWH π∓  (2.20) 

 

where n=1,…, L. The plus and minus sign is used for the right and left edge taper, 

respectively. The taper length L is empirically chosen to be 5 points for the 19-point 
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extrapolator. 

      

 (a) (b) 

Figure 2.3: (a) Amplitude and (b) phase spectra of a 19-point Rayleigh extrapolator at the 
frequency of 31.25 Hz (blue lines). The evanescent boundaries are at kx=±0.25. The dashed red 
lines are the amplitude and phase spectra of the desired extrapolator. 

      

 (a) (b) 

Figure 2.4: Amplitude spectrum of a 200-point Rayleigh extrapolator at the frequency of 31.25 
Hz (blue lines). The close-up of (a) is shown in (b). The evanescent boundaries are at kx=±0.25. 
The dashed red lines are the desired amplitude spectrum. 

The amplitude and phase spectra of the 19-point Hanning-tapered Rayleigh 

extrapolator are shown in Figure 2.5 and Figure 2.6. As expected, the ripples in Figure 

2.2 and Figure 2.3 are attenuated by the Hanning tapers. However, it is still unstable 

because some of the amplitudes are bigger than one (Figure 2.6a). A more complete 

stability analysis of the Rayleigh extrapolator will be shown in Chapter 3. 
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 (a) (b) 

Figure 2.5: (a) Amplitude and (b) phase spectra of a 19-point Hanning-tapered Rayleigh 
extrapolator in the kx-ω domain. The parameters are the same as those in Figure 2.1. 

      

 (a) (b) 

Figure 2.6: (a) Amplitude and (b) phase spectra of a 19-point Hanning-tapered Rayleigh 
extrapolator at the frequency of 31.25 Hz (blue lines). The evanescent boundaries are at kx=±0.25. 
The dashed red lines are the amplitude and phase spectra of the desired extrapolator. 

Alternatively, Hale (1991) and Nautiyal (1993) propose methods to design stable 

extrapolators. The Hale extrapolator is designed in the wavenumber domain by matching 

the first few terms of the Taylor series expansion of the desired extrapolator; whereas 

Nautiyal suggests multiplying the Rayleigh extrapolator by a truncated Gaussian window 

in the space domain.  

2.3 Hale extrapolator 

Hale (1991) proposed a modified Taylor series method to design explicit 
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wavefield extrapolators. The method can be viewed as the design of a finite length 

extrapolation filter  with a Fourier transform  that best approximates the 

Fourier transform  of the desired extrapolator, 
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where ω denotes the angular frequency (in radians per unit time), v denotes velocity, z∆  

and  denote vertical and horizontal spatial sampling intervals. The normalized 

wavenumber k  (in radians per sample) is obtained by multiplying the wavenumber  

by .  is the familiar filter applied in Gazdag’s (1978) phase-shift migration, as 

illustrated in Figure 2.1. The dependency of  on frequency, velocity and depth is 

suppressed for convenience in this discussion.  is subject to the constraint that 

x∆

ˆ
xk
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The desired transform  uniquely depends on the two dimensionless 

constants  and ω∆x/v. Equation (2.21) indicates that  is symmetric with 

respect to  (both the real and imaginary parts are even), which implies that  should 

also be even. Thus, the length of , measured by N, should be odd, with the 

coefficient index n bounded by 
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The extrapolation filter is defined by )(nh
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and moδ is the Kronecker delta function defined by 
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To ensure the stability of extrapolator (i.e., 1)ˆ( ≤kH ), the number of weights, M, 

in equation (2.22) should be less than the number of filter coefficients (N+1)/2. The 

Fourier transform of  is obtained as )(nh
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The Taylor series expansion of the desired transform D(k) and the approximation 

 about 0 (i.e., the MacLaurin series) can be calculated respectively as )ˆ(kH
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Since  and  are symmetric, the odd derivatives at  in equation (2.27) and 

(2.28) are all zero. 

)ˆ(kD )ˆ(kH 0ˆ =k

The conventional way to approximate  is to match the first (N+1)/2 even 

derivatives at  in equation (2.27), which could result in an unstable extrapolation 

filter. The instability rises when the amplitudes of exceed one due to the truncation 

of the infinite Taylor series. Instead, Hale suggests matching only the first M 

(for ) even derivatives, yielding the following linear system, 
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Note that Equation (2.30) corrects Hale’s equation (A-6): 
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Hale’s equation neglects the fact that the derivative of a constant is zero. However, Hale 

coded the right formula since I am able to duplicate the figures in his paper using 
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equation (2.30). 

The remaining [(N+1)/2]-M degrees of freedom are used to achieve the stability 

of the extrapolation filter. The weights cm can be obtained from equation (2.29) by 

solving the linear system. The extrapolation filter h(n) is then obtained from equation 

(2.22).  

Since the symbolic differentiation in equation (2.29) is not generally available in 

Matlab®5, I use Maple® to compute the coefficients of Hale extrapolators which are then 

used in the Matlab® for poststack and prestack experiments. For tests with a 

heterogeneous media, a table of GPSPI-type Hale extrapolators is computed where the 

velocity in Equation (2.21) is assigned to the output point. 

A 19-point (N=19, M≤10) Hale extrapolator in the kx-ω domain is illustrated in 

Figure 2.7. Figure 2.8 shows its spectra at a constant frequency. The blocky appearance 

of the phase figures (Figure 2.7b and Figure 2.8b) is a result of phase wrapping at ±π 

(normalized to ±0.5) boundaries, which is caused by the notched design of the Hale 

extrapolator. Since the phase wrap-around happens outside the evanescent boundary (kx = 

±0.25 in Figure 2.8b), it will have little impact on the propagating waves. Figure 2.9 

shows only the phase spectrum of the Hale extrapolator in the propagating wave region. 

All the values outside the evanescent boundaries are zeroed for a better illustration. 

However, the zeroing is only for the display purpose. There is no zeroing in the 

implementation of the Hale extrapolator. 

 

5 The professional version of Matlab includes a symbolic toolbox that is built on Maple’s symbolic engine. 
Unfortunately, this toolbox was not included in the Matlab version licensed to the University of Calgary 
when I conducted my thesis research. 
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 (a) (b) 

Figure 2.7: (a) Amplitude and (b) phase spectra of a 19-point Hale extrapolator in the kx-ω 
domain. The parameters are the same as those in Figure 2.1. 

       
 (a) (b) 

Figure 2.8: (a) Amplitude and (b) phase spectra of a 19-point Hale extrapolator at the frequency 
of 31.25 Hz (blue lines). The evanescent boundaries are at kx=±0.25. The dashed red lines are the 
amplitude and phase spectra of the desired extrapolator. 

      
 (a) (b) 

Figure 2.9: Phase spectra of a 19-point Hale extrapolator (a) in the kx-ω domain and (b) at the 
frequency of 31.25Hz. All the values outside the evanescent boundaries are zeroed. 

For given velocity, frequency, and spatial sampling intervals ( and x∆ z∆ ), the 
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desired M value is found by testing different M values until 1)ˆ( >kH . In practice, I 

consider an extrapolator to be stable when its amplitude is smaller than 1.0001 for all 

wavenumbers. After 1000 extrapolation steps in a homogenous medium, the amplitude at 

a single frequency will be amplified to a maximum value of 1.00011000=1.1052. This is 

considered as being “reasonably” stable. The desired error tolerance can be adjusted 

depending on the number of the extrapolation steps required and the criteria chosen for 

stability. 

Testing different M values for each frequency can be time-consuming. A shortcut 

utilized here is to look at the amplitude spectrum of desired extrapolator in the kx-ω 

domain (Figure 2.1). In Figure 2.1, it can be noticed that the width of propagating wave 

region (where amplitude equals one) increases with frequency. This can be explained by 

the fact that the evanescent boundary ω/v increases. Therefore, the desired M value 

should also increase with frequency. For the whole frequency band, testing for the 

optimal M value at later frequency can start with the M value selected at the previous 

frequency. The M value is increased until the extrapolator becomes unstable. In other 

words, testing for the optimal M value does not have to start with one (or from (N+1)/2) 

for each frequency. In addition, due to the symmetry of the Hale extrapolator, only the 

coefficients at positive wavenumbers are calculated to save computation time and 

storage. 

2.4 Nautiyal extrapolator 

Nautiyal et al. (1993) suggested applying a Gaussian window, 
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to taper the Rayleigh extrapolator6 in the x-ω domain, where σ is a parameter to be 

chosen to optimize the stability and accuracy.  

In this thesis, I use the “gausswin” function included in the Matlab® Signal 

Processing Toolbox®, where the Gaussian window is defined as 
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where  and Ln ≤≤0 2≥γ . The parameter L controls the length of the Gaussian 

window; while γ is the reciprocal of the standard deviation and controls the shape of the 

window. Figure 2.10 shows a 19-point Nautiyal extrapolator in the kx-ω domain. Figure 

2.11 is sliced from Figure 2.10 at a constant frequency. Unlike the Hale extrapolator, the 

Nautiyal extrapolator has a phase error at kx=0 (Figure 2.11b). 

Equations (2.32) and (2.33) indicate that the ideal Gaussian window extends to 

infinity. In practice, the length of the Gaussian window is equal to the length of the 

extrapolator and therefore must be truncated. Truncation of the Gaussian window also 

introduces an oscillation to the wavenumber domain and may cause instability. 

Nevertheless, as shown in Chapter 3, the Nautiyal extrapolator has reasonable stability, 

i.e. the Gaussian window is effective in attenuating amplitude fluctuations in the 

wavenumber domain. 

                                                 

 
6 Nautiyal used the name “spatial wavelet” in his paper which is in fact the Rayleigh extrapolator. 
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Figure 2.10: (a) Amplitude and (b) phase spectrum of a 19-point Nautiyal extrapolator in the kx-ω 
domain. The parameters are the same as those in Figure 2.1. 

      

 (a) (b) 

Figure 2.11: (a) Amplitude and (b) phase spectra of a 19-point Hale extrapolator at the frequency 
of 31.25 Hz (blue lines). The evanescent boundaries are at kx=±0.25. The dashed red lines are the 
amplitude and phase spectra of the desired extrapolator. 

2.5 Common-source migration and imaging condition 

Most of the wavefield-continuation migration methods fall into two major 

categories: (1) common-source migration7and (2) source-receiver migration. A common-

source migration is applied to each common-source gather (a collection of the traces that 

have the same source location) and consists of forward extrapolation of a modeled source 

and backward extrapolation of the receiver wavefield (i.e., the acquired data). A source-

                                                 

 

7 Other standard terms are “shot-profile migration” and “common-shot migration”. To avoid confusion 
between “shot” and “source”, I use “common-source migration” in this thesis. 
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receiver migration is based on the concept of survey sinking by which we recursively 

synthesize datasets at increasing depth. Both of the migration methods require a proper 

imaging condition at each depth step. 

The implementation of a common-source migration is illustrated in Figure 2.12. A 

reflector at a particular depth step is imaged by (1) forward extrapolating a modeled 

source wavefield (Figure 2.12a); (2) backward extrapolating the receiver wavefield 

(Figure 2.12b) and (3) applying an imaging condition (Figure 2.12c). With recursive 

wavefield extrapolators, the output source and receiver wavefields from one step are used 

as the input wavefields for the next step. For each common-source gather, a partial image 

is generated by applying the imaging condition to the source and receiver wavefields. The 

final depth image is obtained by stacking all the partial images. 

         
 (a) (b) 

 
(c) 

Figure 2.12: Schematic implementation of a wavefield-continuation migration based on the 
wavefield extrapolation. (a) Forward extrapolate the source wavefield by modeling; (b) backward 
extrapolate the receiver wavefield; (c) the horizontal reflector is imaged by applying imaging 
condition (figure courtesy Bancroft). 

Given the source and receiver wavefields, an imaging condition is used to obtain 
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reflectivity of subsurface structures. A practical way to compute the reflectivity, as 

suggested by Claerbout (1971), is to apply the cross-correlation imaging condition 

 ∑∑=
sx

sSsR xzxpxzxpzxr
ω

ωω ),,,(ˆ),,,(ˆ),( * , (2.34) 

where the reflectivity r(x,z) is obtained by multiplying the extrapolated receiver 

wavefield  by the complex conjugate of the extrapolated source wavefield  in the x-

ω domain, and summing over the frequencies ω and source locations x

Rp̂ Sp̂

s. The right hand 

side of equation (2.34) can also be interpreted as the zero lag of the cross-correlation of 

the source and receiver wavefields in the time domain. This is consistent with Claerbout’s 

definition that a reflector exists at the points where the source and the receiver wavefields 

coincide in time. For relative-amplitude-preserving (RAP) migration, a deconvolution-

type imaging condition is required (see, Valenciano et al., 2002; Kelly and Ren, 2003). 

Since the intent of this thesis is not RAP migration, a simple cross-correlation imaging 

condition is sufficient. 

2.6 Chapter summary 

The theory of three x-ω extrapolators is reviewed in this Chapter. All three are 

based on the one-way wave equation and approximate the desired extrapolator in 

different ways. The Rayleigh extrapolator is derived from the analytical formula for the 

exact constant-velocity phase-shift extrapolator, and has the potential advantage of 

handling irregular geometry and rough topography of land data. Unfortunately, the 

Rayleigh extrapolator is not stable when applied in a wavefield-continuation migration. A 

Gaussian taper, as suggested by Nautiyal, is a straightforward way to stabilize the 
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Rayleigh extrapolator in the x-ω domain. The Hale extrapolator is designed in the kx-ω 

domain and then implemented in the x-ω domain as a convolutional filter. It is 

sufficiently stable by design. A comprehensive stability and accuracy analysis for all 

three extrapolators is presented in Chapter 3. 
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Chapter Three: STABILITY AND ACCURACY OF THREE EXTRAPOLATORS 
 

A theoretical introduction to three recursive wavefield extrapolators was 

presented in Chapter 2. Although equations presented there describe these extrapolators, 

it is worthwhile visualizing the various extrapolators to gain an intuitive understanding of 

their features. In addition to the illustrations of the 19-point extrapolators in Chapter 2, I 

also show the 39-point extrapolators in the kx-ω domain and compare them with the 

desired phase-shift extrapolator. 

The main content of this chapter is an analysis of the stability and accuracy of the 

three extrapolators. A common set of tools has been developed for stability and accuracy 

analysis, including 3-D error plots, error contours, zero-offset impulse-response, prestack 

dip accuracy, and complex imaging using the Marmousi dataset. By coding the 

extrapolators in Matlab®/Maple® and comparing them using the same set of tools and 

display methods, a fair judgement can be made of their relative performance. 

3.1 Three extrapolators in the wavenumber-frequency domain 

The three extrapolators are plotted in the kx-ω domain so that a direct comparison 

can be made with the exact constant-velocity phase-shift operator (Figure 3.1 and Figure 

3.2). To be consistent with the literature (e.g., Hale (1991) and Nautiyal et al. (1993)), the 

operator lengths are chosen as 19 and 39 points. Figure 3.1 is a collection of the figures 

of the 19-point extrapolators illustrated in Chapter 2. They are duplicated in this chapter 

for comparison with the 39-point extrapolators (Figure 3.2). The parameters used for the 

extrapolator calculation are the same as those in Chapter 2. 
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(a) 

       
(b) 

       
(c) 

       
(d) 

Figure 3.1: 3-D plot of various band-limited extrapolators in the kx-ω domain. Amplitude spectra 
are on the left, and phase spectra are on the right. (a) The desired extrapolator (from equation 
(2.21)); (b) the Hanning edge-tapered Rayleigh extrapolator; (c) the Hale extrapolator; (d) the 
Nautiyal extrapolator. An operator length of 19 points is used by operators (b), (c) and (d) in the 
space domain. The phase spectrum of the Hale extrapolator is zeroed outside the evanescent 
boundaries (see discussion in Section 2.3). 
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(a) 

       
(b) 

       
(c) 

       

(d) 

Figure 3.2: 3-D plot of various band-limited extrapolators in the kx-ω domain. The figures on the 
left are the amplitude spectra and on the right are the phase spectra. (a) The desired extrapolator; 
(b) the Hanning edge-tapered Rayleigh extrapolator; (c) the Hale extrapolator; (d) the Nautiyal 
extrapolator. An operator length of 39 points is used by operators (b), (c) and (d) in the space 
domain. The phase spectrum of the Hale extrapolator is zeroed outside the evanescent boundaries. 
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Figure 3.1 and Figure 3.2 illustrate that the various x-ω extrapolators approximate 

the desired phase-shift operator in different ways. Although Thorbecke et al. (2004) has 

similar 3-D plots of his weighted least-squares extrapolator, I developed this particular 

visualization of the extrapolators independently in 2003.  

Figure 3.1a and Figure 3.2a are the spectra of the desired extrapolator (phase-shift 

operator) obtained from equation (2.21). Wavenumber and phase are normalized by the 

factors of 2π/∆x and 2π, respectively. A Hanning edge taper (see equation (2.20)) has 

been applied to the Rayleigh extrapolators in the space domain (Figure 3.1b and Figure 

3.2b). Reasonable taper lengths are 5 points for the 19-point extrapolator and 10 points 

for the 39-point extrapolator. 

3.2 Stability analysis 

A standard method for assessing the stability of an extrapolator is to evaluate its 

amplitude spectrum in the kx-ω domain for each frequency (e.g., Nautiyal, 1990). Here I 

show the extrapolators at an example frequency of 31.25Hz. 

The 19-point and 39-point Rayleigh extrapolators with abrupt truncation are 

shown in Figure 3.3a and Figure 3.3c respectively as thin blue lines. The amplitude 

oscillation in the wavenumber domain is caused by spatial truncation of the extrapolator 

and the Gibbs’ phenomena. As a result, after 100 extrapolation steps, the wavefield 

energy at certain wavenumbers will be amplified approximately by a factor of 170 (19-

point extrapolator, Figure 3.3b) and 41 (39-point extrapolator, Figure 3.3d). From Figure 

3.3a and Figure 3.3c, it is evident that a simple Hanning edge taper applied to the 

extrapolator in the space domain (thick green lines) attenuates the ripples. However, 
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stability cannot be guaranteed after a number of extrapolation steps (thick green lines in 

Figure 3.3b and Figure 3.3d): the longer the extrapolator, the better the stability. In the 

extreme case where full aperture is used (Figure 3.3e and Figure 3.3f), the instability is 

much less severe than with the 19- and 39-point extrapolators. Here, full aperture means 

that the length of the extrapolator is equal to the spatial extent of the finite wavefield (200 

points in this example).  

Mathematically, a Rayleigh extrapolator can never be stable. As long as the 

Gibbs’ phenomenon is present, the amplitude will increase to an unacceptable level. After 

a certain number of extrapolation steps, the final image will be distorted. Practically, 

since the number of extrapolation steps is always finite, we set a tolerance value for the 

amplitude amplification so that the distortion is acceptable. The tolerance value depends 

on the number of extrapolation steps, amplitude error, and a personal judgment of 

acceptable distortion. Given this tolerance value, the Rayleigh extrapolator will be 

reasonably stable for a finite number of extrapolation steps. Therefore, when we deal 

with land data that has irregular geometry and rough topography, the Rayleigh 

extrapolator can be used for the first few steps followed by another stable extrapolator for 

the remaining steps.  

In contrast, the 19- and 39-point Hale extrapolators are sufficiently stable. As 

depicted in Figure 3.4, the amplitude of the wavefield energy will not grow with 

recursive wavefield extrapolation. This is obvious from the design of the Hale 

extrapolator, whose amplitude at each frequency never exceeds 1+ε, where ε is defined 

in Chapter 2 as a small error tolerance (10-4). 
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19-point Hale19-point Hale

 (a) (b) 

     

39-point Hale 39-point Hale

 (c) (d) 

Figure 3.4: Amplitude spectra of the Hale extrapolators at the frequency of 31.25 Hz (blue lines - 
only positive wavenumbers are plotted). The evanescent boundary is at kx=0.25. The dashed red 
lines are the amplitude spectra of the desired extrapolator. (a) 19-point extrapolator; (c) 39-point 
extrapolator. Figures on the right ((b) and (d)) show the amplification of the wavefield energy 
after 100 extrapolation steps.  

The Nautiyal extrapolator (Figure 3.5) is reasonably stable after the same number 

of extrapolation steps when compared to the Hale extrapolator; however, it attenuates 

more of the wavefield at high-angles of propagation (i.e., at large wavenumbers). It 

appears that the 39-point Nautiyal extrapolator is starting to amplify the wavefield energy 

after 100 steps (Figure 3.5d). This can be remedied by adjusting the γ parameter of the 

Gaussian window (see equation (2.33)). Nevertheless, according to Nautiyal et al. (1993), 

all the Gaussian windows share a common γ when tapering the extrapolators at various 

frequencies. Therefore, adjusting γ will result in amplitude amplification/attenuation at 

other frequencies. Thus, the stability of the Nautiyal extrapolator is achieved at the cost 
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of accuracy. The truncation of the Gaussian window in the space domain will still cause 

oscillation in the wavenumber domain. This becomes evident after a number of 

extrapolation steps (Figure 3.5b and Figure 3.5d). However, by comparing Figure 3.3 and 

Figure 3.5, the Gaussian window has greatly attenuated the amplitude ripples. Therefore 

it is more stable than the Hanning edge-tapered Rayleigh extrapolator. 

     

19-point Nautiyal 19-point Nautiyal

 (a) (b) 

     

39-point Nautiyal39-point Nautiyal

 (c) (d) 

Figure 3.5: Amplitude spectra of the Nautiyal (Gaussian tapered) extrapolators at the frequency of 
31.25 Hz (blue lines - only positive wavenumbers are plotted). Evanescent boundary is at 
kx=0.25. The red dashed lines are the amplitude spectra of the desired extrapolator. (a) 19-point 
extrapolator; (c) 39-point extrapolator. Figures on the right ((b) and (d)) are the 
amplification/attenuation of the wavefield energy after 100 steps extrapolations. 

The analysis also indicates that a full Hanning-tapered Rayleigh extrapolator 

(where the length of the full Hanning window equals to the length of the extrapolator) is 

similar to the Nautiyal extrapolator (Figure 3.6). Although it is not guaranteed to be 
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stable (Figure 3.6b), it is much more stable than the Hanning edge-tapered Rayleigh 

extrapolator (Figure 3.3). In addition, it preserves more wavefield energy at high 

wavenumbers and thus is more accurate than the Nautiyal extrapolator. 

     

 (a) (b) 

Figure 3.6: Amplitude spectra of the full Hanning-tapered Rayleigh extrapolator at the frequency 
of 31.25 Hz (blue lines). The evanescent boundary is at kx=0.25. The red dashed lines are the 
amplitude spectra of the desired extrapolator. (a) The 39-point Rayleigh extrapolator; (b) the 
attenuation of the wavefield energy after 100 extrapolation steps. 

3.3 Accuracy analysis 

In order to conduct analysis of accuracy, 3-D error plots (Figure 3.7-Figure 3.10) 

are generated by subtracting the desired extrapolator from the various extrapolators. The 

evanescent boundaries are superimposed on the figures as dashed red lines. 

In this thesis, I define the amplitude and phase errors as 

 ),(),(),( ωωω xdesiredxdesignedx kAkAkA −=∆  (3.1) 

and  

 ),(),(),( ωωω xdesiredxdesignedx kkk Θ−Θ=∆Θ , (3.2) 

where A and Θ are the amplitude and phase of the extrapolators in the kx-ω domain, 
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respectively. 

The amplitude error and phase error can be explained using the concept of plane 

wave superposition. Assuming lateral homogeneity, the x-ω wavefield extrapolation can 

be implemented in the kx-ω domain as a multiplication of the input wavefield and the 

wavefield extrapolator (equation (2.6)). Generally, a 2-D inverse Fourier transform of the 

extrapolated wavefield from the kx-ω domain to the x-t domain is equivalent to a 

wavefield reconstruction by superposing plane waves traveling at various angles. The 

horizontal wavenumber kx and the frequency ω are associated with the propagation angle 

θ of plane waves by 

 θω sin
v

kx = , (3.3) 

where θ  is the propagation angle measured from the vertical direction. For propagating 

waves, the wavenumber is subject to the constraint that |kx|<ω/v which is known as the 

evanescent boundary. From equation (3.1), (3.2) and (3.3), a positive amplitude error ∆A 

at (kx, ω) indicates that the designed extrapolator will exponentially amplify the wave 

traveling at the angle , which makes the extrapolator unstable; whereas 

a negative amplitude error ∆A means that the designed extrapolator tends to attenuate the 

wavefield at that angle. A correct phase will ensure that plane waves are properly shifted 

such that they can reconstruct the extrapolated wavefield (through the 2-D inverse 

Fourier transform) but deconstruct the undesired artifacts. Positive and negative phase 

errors will incorrectly shift the plane waves. Slight phase errors may result in a 

reconstructed wavefield with artifacts; serious phase errors may totally distort the 

)/(sin 1 ωθ vkx
−=
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reconstructed wavefield. 
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19-point Hale

(c) 

 

19-point Nautiyal

(d) 

Figure 3.8: Phase errors of (a) the full-aperture Rayleigh extrapolator, the 19-point (b) Hanning-
tapered Rayleigh extrapolator, (c) Hale extrapolator, and (d) Nautiyal extrapolator. The dashed 
red lines are the evanescent boundaries. The phase error spectrum of the Hale extrapolator is 
zeroed outside the evanescent boundaries (see discussion in Section 2.3). 
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Both the Hale extrapolator and the Nautiyal extrapolator are designed to stabilize 

recursive wavefield extrapolation. However, differences in their design result in 

differences in accuracy. Taking advantage of the Gaussian window (i.e. the Fourier 

transform of a Gaussian is another Gaussian), the Nautiyal extrapolator is like a 

“smoothed” version of the exact extrapolator (Figure 3.1d and Figure 3.2d) where the 

oscillation is suppressed but high angle propagation of the wavefield (at large 

wavenumbers) is also attenuated (Figure 3.5). The fact that the phase error is not zero at 

small wavenumbers (Nautiyal (1993); Figure 2.11b) makes it less accurate. In contrast, 

the Hale extrapolator achieves better accuracy by matching the first few terms in a Taylor 

series expansion of the exact extrapolator. Figure 3.7c - Figure 3.10c indicate that the 

Hale extrapolators are more accurate within the evanescent boundary. Unfortunately, the 

nature of the design for the Hale extrapolator will cause blocky spectra in the kx-ω 

domain (Figure 3.1c and Figure 3.2c). As we will see later, the discontinuities between 

each frequency bands result in high-angle artifacts that would cancel if there were energy 

in between the high wavenumber gaps. In addition, the Hale extrapolator is not accurate 

at high propagation angles because it is derived from a Taylor series expansion at k=0. 

This loss of accuracy is identified in Figure 3.7c - Figure 3.10c as an increase in 

amplitude and phase errors at larger wavenumbers. 

The method described above for evaluating accuracy of the various extrapolators 

is qualitative. A quantitative approach is to investigate how the errors are associated with 

propagation angle. By remapping the error matrices from the kx-ω domain to the 

frequency-angle (ω-θ ) domain (based on equation (3.3)), the amplitude and phase errors 

(the designed minus the desired) can be contoured as a function of the frequency and 
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propagation angle (Figure 3.11). The amplitude error contour values are -1/20 (solid 

green line), -1/200 (solid black line), 1/20 (dashed green line) and 1/200 (dashed black 

line); the phase error contour values are π/100 (solid green line), π/1000 (solid red line), -

π/1000 (dashed red line). 

In general, the errors from the 39-point Hale extrapolator are more or less 

independent of frequency. Figure 3.11c indicates that one extrapolation step using the 39-

point Hale extrapolator will attenuate waves propagating at about 55° by a factor of 0.995 

(i.e., 1-1/200) for most frequencies. A 200-step extrapolation will attenuate these waves 

by a factor of 0.995200 = 0.367. Similarly, waves propagating at about 70° will be 

attenuated by a factor of 0.9520 = 0.359 after 20 steps. Given that phase errors 

accumulate, the phase error contour shown by Figure 3.11d indicates that one-half cycle 

(π radians) phase error will be generated after 1000 extrapolation steps for waves 

propagating at about 55°, while it only takes 100 steps for the waves propagating at about 

70°. Therefore, waves with inaccurate phases are rapidly attenuated during the 

extrapolation to ensure a proper wavefield reconstruction. 

The errors from 39-point Hanning-tapered Rayleigh extrapolator and Nautiyal 

extrapolator tend to be frequency-dependent. Unlike the error contours of the Hale 

extrapolator, where amplitude errors are all negative (therefore stable) and phase error are 

all positive, the error contours of the Hanning-tapered Rayleigh extrapolator are both 

positive and negative. Figure 3.11a suggested that the 39-point Hanning-tapered Rayleigh 

extrapolator will attenuate waves propagating at 60°-70° by a factor of 0.367 after 200 

extrapolation steps for the normalized frequency range of 0.15-0.5 (see solid black line). 
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The positive amplitude error (dashed lines in Figure 3.11a) indicates that the waves 

propagating at lower angles will be amplified by a factor of (1+1/200)200 = 2.7115 after 

200 steps. This suggests that the lower angle waves will become dominant after a number 

of steps, which is also an indication of the instability. A half-cycle phase error will be 

generated after 1000 steps for the wave propagating at 70°-80° degrees (solid red line in 

Figure 3.11b). However, the waves with positive phase errors are quickly attenuated due 

to the negative amplitude error, as happens with the Hale extrapolator. The lower angle 

propagating waves have the opposite phase change due to the negative phase error 

(dashed red lines in Figure 3.11b). Notice that the negative phase error contour (dashed 

red lines in Figure 3.11b) covers an angle range similar to the one covered by positive 

amplitude contour (dashed black lines in Figure 3.11a). Waves propagating at these 

angles will be amplified due to a positive amplitude error. The amplification of the waves 

with phase errors makes the Hanning-tapered Rayleigh extrapolator unstable and 

inaccurate, and therefore not suitable for a large-number of extrapolation steps. 

The amplitude errors of the 39-point Nautiyal extrapolator are predominantly 

negative9 (Figure 3.11e) which ensures that very few propagating wavefields will be 

amplified (therefore stable). However, it is probably the least accurate extrapolator as 

shown by Figure 3.11e and Figure 3.11f. Waves propagating at 35° will be attenuated by 

a factor of 0.367 after 200 extrapolation steps for the normalized frequency range of 0.15-

0.3. The attenuation is even more severe at some low and high frequencies. Again, the 

waves with positive phase errors will be attenuated quickly, but the attenuation of the 

 

9 There are very small positive errors due to the truncation of Gaussian window. 



53 

 

waves with negative phase errors is not optimal because of the errors are frequency-

dependent. The error contours of the full Hanning-tapered Rayleigh extrapolator (Figure 

3.11g and h) demonstrate similar behaviours compared to the Nautiyal extrapolator. 

However, given the same number of extrapolation steps, it has better steep-dip capability 

as the contours are at higher angles than those of the Nautiyal extrapolator (Figure 3.11e 

and f). 

Based on the above discussion, an accurate extrapolator will:  

1. Attenuate most of the propagating waves with phase error. 

2. Preserve most of the accurate waves. 

The Hale extrapolator meets both criteria, whereas the Hanning edge-tapered 

Rayleigh extrapolator fails in the first, and the Nautiyal and the full Hanning-tapered 

extrapolators fail in the second. 
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3.4 Zero-offset impulse responses 

Zero-offset impulse responses are calculated with a half-velocity of 1250m/s, 

receiver spread of 2000m and maximum extrapolation depth of 2000m. The spatial 

sampling is ∆x=∆z=10m and the temporal sampling is ∆t=4ms. Three Ricker wavelets 

with a dominant frequency of 24Hz are seeded at t=0.16, 0.32 and 0.48s, respectively. 

The impulse response is obtained by backward extrapolating the input wavefield and 

applying a poststack imaging condition (i.e., simply slice the wavefield at t=0). The 

results are shown in Figure 3.12 and Figure 3.13, with angular reference lines 

superimposed on the left half of the figures. The reference lines range from 0º to 90º at 

the interval of 10º. The impulse response from the exact phase-shift operator is also 

calculated and displayed here as the reference (Figure 3.12a). 

  
 

 (a) 

Figure 3.12: Impulse responses (zero-offset migration) of (a)
200-point full-aperture Rayleigh extrapolator. 

After 200 extrapolation steps, the impulse respon

extrapolator is reasonably stable and accurate at high pr

It is nearly identical to the impulse response from the ph

except that it does not have the spatial wrap-around artifa

phase-shift operator (see lower corners of Figure 3.12a). 
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cts that typically appear with the 
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of a 200-point full-aperture Rayleigh extrapolator is about five times greater than a 39-

point extrapolator, and 10 times greater than a 19-point extrapolator (see Figure 3.21). 

In general, the 19-point extrapolators (Figure 3.13a, Figure 3.13c, Figure 3.13e 

and Figure 3.13g) are less accurate than the 39-point extrapolators (Figure 3.13b, Figure 

3.13d, Figure 3.13f and Figure 3.13h). The Hanning edge-tapered Rayleigh extrapolators 

(Figure 3.13a and Figure 3.13b) preserve higher propagation angles than the other three 

extrapolators, but the higher angle wavefields start to become unstable and phase-rotated 

– an undesirable feature particularly noticeable with the 19-point Hanning-tapered 

extrapolator (Figure 3.13a). This confirms our observation from the stability and 

accuracy analysis – that the Hanning edge-tapered Rayleigh extrapolator is neither stable 

nor accurate. 

As predicted by the error contours, the impulse response from the 39-point Hale 

extrapolator (Figure 3.13d) shows attenuation at about 55º after 200 extrapolation steps. 

There are also artifacts present at high propagation angles caused by discontinuities in the 

extrapolator (Figure 3.13c and Figure 3.13d). The 39-point Hale extrapolator (Figure 

3.13d) generates fewer artifacts than the 19-point extrapolator (Figure 3.13c) because the 

discontinuities in the 39-point extrapolator are less severe than those in the 19-point 

extrapolator (compare Figure 3.1c and Figure 3.2c). 

Although the Nautiyal extrapolators are stable, they have the poorest angular 

aperture of all tested extrapolators (Figure 3.13e and Figure 3.13f). This is not surprising 

in view of the amplitude error contours in Figure 3.11e. As discussed previously, tapering 

by a Gaussian window in the space domain is a compromise between stability and 



57 

accuracy. In addition, as indicated by the phase error contour (Figure 3.11f), there is a 

noticeable phase error with 39-point Nautiyal extrapolator (Figure 3.13f).  
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The full Hanning-tapered Rayleigh extrapolators are more stable than the Hanning 

edge-tapered ones. Their impulse responses are very similar to the ones from the Nautiyal 

extrapolators. However, as indicated by the error contours (Figure 3.13g and Figure 

3.13h), they have relatively better dip accuracy and less phase rotation than the Nautiyal 

extrapolators. 

The impulse response test is a good tool for evaluating the performance of the 

extrapolators applied in poststack migrations. However, it is not sufficient when the 

extrapolators are used in prestack migrations. In the next section, a synthetic test is used 

to evaluate the dip accuracy of the extrapolators in prestack migrations. 

3.5 Prestack synthetic test 

A prestack synthetic test is used to examine the accuracy of prestack depth 

migration based on the wavefield extrapolators studied in this thesis. The model has only 

one shot located at x=0. A synthetic source record (Figure 3.14b) is generated from the 

homogeneous model (v=2500m/s) depicted in Figure 3.14a. The spatial sampling is 

∆x=∆z=10m and the temporal sampling is ∆t=4ms. The model contains 17 dipping 

reflectors at the dip angles of 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70° and 80°. The position 

of each reflector is carefully chosen so that the normal to the center of the reflector 

projects through x=0 where the source point is also located. Thus the maximum dip 

imaged will provide a coarse quantitative measure of the angular aperture of both the 

forward propagating source wavefield and the backward propagating receiver wavefield 

(Geiger, pers. comm.). The migration results are shown in Figure 3.15, with the dipping 

reflectors superimposed on the left half of the figures. 
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(a) 

 

(b) 

Figure 3.14: (a) A constant velocity earth model containing 17 dipping events. For a better 
comparison, reflectors are symmetric with x=0. (b) Synthetic common-source gather of the model 
with the source located at x=0. 

 

 



60 

h

 

Full-aperture Rayleig
 
(a) 

)
39-point Rayleigh (Hanning edge
 
(b) 

e
39-point Hal
 
(c) 

l
39-point Nautiya
 
(d) 



61 

)

Figure 3.15: Migration of presta
extrapolator, the 39-point (b) Hann
(d) Nautiyal extrapolator, and (e) fu

The migration based on 

yields a poor image with most

Even the horizontal reflector is

during propagation. It is evide

amplitudes and significant ph

amplification of waves with pha

The 39-point Hale extrapolator 

Noise in Figure 3.15c is a cons

discussed previously. Figure 3.1

39-point Nautiyal extrapolator i

with a maximum dip angle of 30

result (Figure 3.15a). In contras

the reflectors with the dip angles

All the tests conducted s

case in the real world. Thus it is

that has structures and velocities
 

39-point Rayleigh (full Hanning
 
(e) 

ck synthetic data by using (a) the full-aperture Rayleigh 
ing edge-tapered Rayleigh extrapolator, (c) Hale extrapolator, 
ll Hanning-tapered Rayleigh extrapolator. 

the 39-point Hanning edge-tapered Rayleigh extrapolator 

 of the reflectors incorrectly positioned (Figure 3.15b). 

 poorly positioned due to phase rotation of the wavelet 

nt that the 30°, 40° and 50° reflectors have stronger 

ase errors. As discussed before, this is caused by 

se error – an indication of both instability and inaccuracy. 

images reflectors up to a dip angle of 60° (Figure 3.15c). 

equence of the notched design of the Hale extrapolator 

5d shows that a prestack depth migration based on the 

s stable but less accurate. It only imaged the reflectors 

°. The phase also deviates from the desired full-aperture 

t, the full Hanning-tapered Rayleigh extrapolator imaged 

 up to 40° (Figure 3.15e). 

o far assume a homogeneous medium, which is rarely the 

 essential to test the extrapolators using a complex model 

 similar to the real subsurface.  



62 

3.6 Marmousi synthetic test 

The 2-D acoustic Marmousi dataset was created at the Instut Francais du Petrole 

(IFP), and is based on a profile through the North Quenguela trough in the Cuanza basin, 

Angola (Versteeg and Grau, 1991). With the presence of complex reflectors, steep dips 

and strong velocity gradients, it is widely recognized as an ideal synthetic dataset to test 

the competence of seismic imaging algorithms. 

The Marmousi dataset was generated using a typical 2-D end-on marine survey 

geometry. The line was shot from west to east with a shot interval of 25 meters and 

source depth of 8 meters. The first and last shot points are respectively located at 3000 

and 8975 meters from the west edge of the model. The streamer (at 12m depth) was 

composed of 96 hydrophone groups with an offset range from 200 meters to 2575 meters. 

The distance between two consecutive groups is 25 meters. The velocity model (Figure 

3.16) was originally defined with a grid size of 4 meters and contains 160 layers. 

 

W E 

Figure 3.16: Marmousi velocity model. There is also a density model not shown here. 
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Figure 3.17: Pseudo-reflectivity of Marmousi model. Black arrows indicate the structures that 
impose challenges to the imaging techniques. The imaging target (reservoir) is denoted by red 
circle. 

Figure 3.17 shows the pseudo-reflectivity computed from the velocity model 

(Figure 3.16) and the density model (not shown here). The reflectivity is “pseudo” 

because we assume a normal incident wave when computing reflectivity. The black 

arrows in Figure 3.17 indicate the major structures that may pose difficulties for the 

imaging algorithms. The imaging task is to locate the reservoir denoted by the red circle 

in Figure 3.17. 

In order to achieve an optimal image, the Marmousi dataset needs to be carefully 

preprocessed to obtain a maximum bandwidth zero-phase wavelet with no time delay. 

Moreover, an accurate source modeling is essential to account for amplitude effects of 

source arrays, ghosting and near surface multiple effects, and near-surface variable 

velocity subsurface. The implementation of preprocessing and source modeling is 

described by Geiger et al.(2003), and will not be discussed in detail here. 

A common-source migration of Marmousi dataset can be computationally 

expensive, especially with Matlab®, which interprets user-defined functions line by line. 
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A parallel implementation of Matlab® on a Linux cluster significantly decreases the 

elapsed time required to migrate all 240 shots by distributing the common-source gathers 

to the cluster and migrating a number of gathers concurrently. The final image is then 

obtained by stacking all the images from each common-source migration. Although the 

parallel Matlab® implementation is not as efficient as parallel C-MPI, it is easy to 

implement and takes advantage of Matlab’s sophisticated functions and visualization 

capabilities. 

To make the comparison fair, all the tests are based on the same preprocessed data, 

extrapolation parameters, imaging condition (cross-correlation) and display method. The 

final migration results are compared in Figure 3.18 (full images), Figure 3.19 (partial 

images showing the major structures) and Figure 3.20 (partial images showing the 

imaging target). 

Based on the previous analysis, there is no surprise that the 512-point full-

aperture Rayleigh extrapolator generates the best overall image (Figure 3.18a). It 

correctly images the faults, steeply dipping reflectors and reservoir target (Figure 3.20). 

However, it is computationally too expensive to be practical. The 39-point Hale 

extrapolator generates a comparable image (Figure 3.18c) with much less cost. The 

artifacts due to the notched design of the Hale extrapolator are not as evident as seen in 

the single-shot prestack test (Figure 3.15c). The possible explanations are (1) some of the 

artifacts will not accumulate in the inhomogeneous medium; (2) the final stack 

suppresses some of the artifacts. The close-up display (Figure 3.19d) indicates that the 

image from the Hale extrapolator is slightly phase-rotated. This can be attributed to the 

phase error of the Hale extrapolator discussed in the previous section. The Hale 
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extrapolator successfully images the target reservoir (Figure 3.20). 

 
(a)

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 3.18: Common-source migration of Marmousi dataset using (a) the full aperture (512-
point) Rayleigh extrapolator, the 39-point (b) Hanning edge-tapered Rayleigh extrapolator, (c) 
Hale extrapolator, (d) Nautiyal extrapolator and (e) full Hanning-tapered Rayleigh extrapolator. 
All the figures are displayed using identical scaling values. 

The Hanning edge-tapered Rayleigh extrapolator, the Nautiyal extrapolator and 

the full Hanning-tapered Rayleigh extrapolator (Figure 3.18b, Figure 3.18d and Figure 

3.18e) generate poor images. All of them fail to image the target reservoir correctly. As 

shown by the error contours of the Hanning edge-tapered Rayleigh extrapolator, the 

instability and inaccuracy rapidly accumulate during downward continuation, resulting in 

a distorted image. Even the gentle dipping reflectors in the deeper section are not 
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properly imaged (Figure 3.18b and Figure 3.19c). The Nautiyal extrapolator fails to 

image steeply dipping reflectors (Figure 3.18d and Figure 3.19e). This is caused by 

severe attenuation of the wavefield propagating at high angles, a result of the Gaussian 

window applied to ensure stability. However, compared to the Hanning edge-tapered 

Rayleigh extrapolator, the Nautiyal extrapolator yields better phase accuracy in the 

deeper part of the image. The full Hanning-tapered Rayleigh extrapolator generates the 

“best” image among the three spatially-tapered extrapolators (Figure 3.18e and Figure 

3.19f). Although it is more stable and accurate than the others, instability and inaccuracy 

are still evident in the deeper part of the section. 

The observations from the Marmousi test are consistent with those from the 

single-shot prestack test, except that the Hale extrapolator generates a better image in the 

multi-shot Marmousi test because the artifacts due to the notched design are suppressed. 

This suggests that the single-shot constant-velocity prestack test is a quick and effective 

tool for evaluating an extrapolator before they are applied to the complex models. 
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 (a) (b) 

      
 (c) (d) 

      
 (e) (f) 

Figure 3.19: Comparison of the major faults of images in Figure 3.18. (a) Pseudo-reflectivity; (b) 
images from the full-aperture Rayleigh extrapolator; images from the 39-point (c) Hanning edge-
tapered Rayleigh extrapolator, (d) Hale extrapolator, (e) Nautiyal extrapolator and (f) full 
Hanning-tapered Rayleigh extrapolator. 
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(a) 

 
(b) 

 
(c) 

Figure 3.20: The comparison of image target (reservoir). (a) Pseudo-reflectivity; image from (b) 
the full-aperture Rayleigh extrapolator and (c) the 39-point Hale extrapolator. 

3.7 Computation costs 

The computation costs of various extrapolators in a constant velocity zero-offset 

impulse response test are shown in Figure 3.21. The coefficients of the three 
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extrapolators are computed in Matlab® (the Rayleigh and Nautiyal extrapolator) and 

Maple® (the Hale extrapolator), and then implemented in Matlab® using a table-lookup 

scheme for the wavefield extrapolation. The test is conducted with a dataset containing 

200 traces (512 time samples/trace) and run on a Linux system (3GHz CPU and 2GB 

RAM) with 200 extrapolation steps. 
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Figure 3.21: Computation costs of the three extrapolators. 

The computational cost of implementing the various wavefield extrapolators (not 

including cost of computing coefficients for table-lookup) is shown in Figure 3.21. A 

general observation is that longer extrapolators are more expensive. The full-aperture 

(200-point) Rayleigh extrapolator is the most expensive, suggesting that it is less 

practical for commercial applications. Given the same extrapolator length, the time costs 

for the three extrapolators are very similar. This is because all three limited-aperture 
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extrapolators are calculated in advance and implemented in the x-ω domain as 

convolutional filters. 

It is not practical to compare the computational costs of creating the table for the 

three extrapolators because the Hale extrapolator is computed in Maple® and the other 

two are computed in Matlab®.  

3.8 Chapter summary 

Stability and accuracy are two important aspects of the wavefield extrapolators. A 

stable extrapolator may not be accurate (e.g., the Nautiyal extrapolator), while an 

accurate extrapolator is not guaranteed to be stable (e.g., full-aperture Rayleigh 

extrapolator). The behavior of the extrapolators can only be fully understood by careful 

stability and accuracy analysis. In this chapter, a common set of tools are used to conduct 

the comprehensive stability and accuracy analysis of the three extrapolators. The tools 

and their purposes are listed in Table 1. 

Tool Purpose 

3-D plot of the extrapolators in the kx-ω 
domain 

Help understand the extrapolators intuitively 

3-D error plots in the kx-ω domain Evaluate the extrapolators qualitatively 

Amplitude analysis in the kx-ω domain Stability analysis 

Amplitude and phase error contours Quantitative stability and accuracy analysis 

Zero-offset impulse response test (constant 
velocity) 

Evaluate the stability and accuracy of 
extrapolators in poststack migrations 

Prestack dip accuracy test (constant velocity) Evaluate the stability and accuracy of 
extrapolators in prestack migrations 

Common-source migration of the Marmousi 
dataset (variable velocity) 

Evaluate the capability of extrapolators with 
complex structures 

Table 1: Tools of stability and accuracy analysis in this thesis and their purposes. 
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A comparison of the three extrapolators indicates that the Hale extrapolator is the 

best. Although the full-aperture Rayleigh extrapolator can produce comparable images, it 

is too expensive to be practical. The limited-aperture and spatially-tapered (either by 

Hanning or Gaussian window) Rayleigh extrapolator is not able to generate acceptable 

images of either the simple prestack model or the complex Marmousi model. A 

qualitative comparison is shown in Table 2. 

 x-ω extrapolators Stability Accuracy Efficiency 

Hale extrapolator   

Nautiyal extrapolator   

Rayleigh extrapolator 

(Hanning edge taper) 
NO NO 

Aperture 

limited 

Rayleigh extrapolator 

(full Hanning taper) 

  

 

Full aperture Full aperture Rayleigh    

Table 2: Comparison of stability, accuracy and efficiency of various extrapolators. More 
stars is better. 
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Chapter Four: ADAPTIVE TAPERING IN WAVEFIELD EXTRAPOLATION 
 

Seismic reflection field data are always discontinuous at the bounds of the 

recorded survey, and, as described previously, any practical implementation of a 

wavefield extrapolator has finite length and is therefore discontinuous at the bounds of 

the operator. A proper handling of the discontinuities during seismic imaging is required 

to obtain an optimum image (Claerbout, 1985).  

In recursive wavefield extrapolation, artifacts caused by discontinuities may 

interfere destructively and therefore become negligible after a number of depth steps. 

However, these artifacts could still be significant in the shallow image and may interfere 

with some processing or imaging operations (e.g., creating near surface velocity models). 

A reasonable procedure for dealing with discontinuities is particularly important for the 

first extrapolation step, where the field data are typically padded with zero traces out to 

the desired size of the migration aperture. Note that there are two discontinuities in the 

first extrapolation step (Figure 4.1):  

1. A discontinuity between the acquired data and zero traces (survey truncation). 

2. A discontinuity as a result of the truncation of extrapolation aperture (extrapolator 

truncation).  

The standard method for handling a finite survey aperture is to apply tapers to the 

data edges prior to extrapolation (Sheriff, 2002, p. 347-348). However, it is not clear if 

this static tapering is necessary, as it may introduce additional inaccuracies (Claerbout, 

1985). The typical remedy for extrapolator truncation is to apply a taper to the 
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extrapolator. Although the spatial-tapered extrapolator is not stable (as discussed in 

Section 3.2), it could be useful for the first few steps where the instability can be 

neglected. 

 

Figure 4.1: The discontinuities in the first extrapolation step. 

A simple 2-D synthetic test can be used to show the truncation artifacts created by 

the first extrapolation step. Figure 4.2a illustrates a synthetic input section that consists of 

three dipping events, with dx=18m, and dt=4ms. For this test, a constant velocity of 

2000m/s is assumed for convenience, but the general results are also applicable to 

variable velocity. Before extrapolation the data are padded with null traces at the edges so 

that events can be extrapolated beyond the original extent of the survey. The angular 

aperture of the extrapolator is limited to 70 degrees, which is equivalent to setting a 

maximum scattering angle ( ) of 70 degrees. The input wavefield is then 

upward extrapolated with a single depth step of 200m. Figure 4.2b shows the output 

wavefield with no survey or extrapolator tapers. The two truncation artifacts are readily 

apparent in Figure 4.2b: artifacts labelled “1” and “2” are from the survey and 

extrapolator truncation, respectively. The conventional approach to reducing artifacts is 

to apply tapers to both the data and the extrapolator. 

)/(cos 1 rz−=θ

Figure 4.3 shows that most of the artifacts are removed. However, this kind of 
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static survey tapering may cause unnecessary accuracy losses, as the data are then 

double-tapered (by both survey and extrapolator tapers) when the extrapolation operator 

reaches the edge of the data (Figure 4.4). This observation motivates the design of an 

adaptive tapering scheme that can dynamically handle the data and extrapolator 

truncations with minimal loss of accuracy. 

        

races racesZero tZero t

1

1

1 2 

 (a) (b) 

Figure 4.2: (a) Synthetic section padded with zero traces on each side. (b) The wavefield in 
Figure 4.2a is upward extrapolated using a Rayleigh extrapolator. Without any treatment of the 
truncations, artifacts occur on the output section. 

        
 (a) (b) 

Figure 4.3: The effects of conventional tapering. (a) After a Hanning taper to the extrapolator, 
artifacts 2 have been removed. (b) After applying Hanning tapers to both data and extrapolator, 
most of the artifacts are removed. 
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Figure 4.4: Conventional tapering may cause accuracy loss. 

4.1 Adaptive tapering for the first extrapolation step 

Figure 4.5 illustrates how the extrapolation operator incorporates an adaptive 

taper that varies with output location. The percent ratio of the taper angle to the 

maximum scattering angle is the key parameter that controls both the survey and 

extrapolator taper. To implement the adaptive taper, the output locations are divided into 

three zones: the left padding zone, the data zone, and the right padding zone, 

corresponding to MH, HI and IN in Figure 4.5.  

When the output point O1 lies in the left padding zone (MH), the taper scheme is 

shown in Figure 4.5b. The angle BO1C and DO1E are responsible for taper control and 

chosen such that they have the same percentage of angle KO1B and θ. Once the taper 

zones (BC and DE) are determined, the tapers can be immediately calculated and applied 

to the input wavefield. A minimum taper width is specified in case the angle BO1C is too 

small to taper the data edge effectively; When the output point O2 lies in the data zone 

(HI in Figure 4.5c), the angle B’O2C and DO2E are chosen to be the same percentage of 

angle θ. Thus, taper zones B’C and DE can be identified similar to when the output point 

O3 lies in the right padding zone (IN in Figure 4.5d), except that the sign of the angle is 
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negative. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.5: The adaptive tapering schemes that are dependent on the output point locations. 

 

4.2 Synthetic tests 

Figure 4.6a and Figure 4.6b provide a comparison between the extrapolation 

using conventional survey taper plus extrapolator taper scheme and the extrapolation 

using the adaptive taper. To make them comparable, a data taper width of 10 samples is 
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used in Figure 4.6a, which is equal to the minimum adaptive taper width in Figure 4.6b. 

The taper function used is the half Hanning window (equation (2.20)). Both the 

extrapolators in Figure 4.6a and Figure 4.6b have the same angular aperture. The 

wavefield in Figure 4.6a is obtained by first tapering the synthetic section (Figure 4.2a) at 

the data edges, and applying an extrapolator taper. Although some artifacts are attenuated 

as compared to Figure 4.2b, the survey truncation artifacts are still observable, and are 

strongest from the dipping events. The artifacts can be reduced by increasing the length 

of the survey taper, but the cost is a loss of accuracy in the extrapolated wavefield. In 

comparison, extrapolation using the adaptive taper (Figure 4.6b) better attenuates the 

artifacts with less loss of accuracy in the extrapolated wavefield. 

         

 (a) (b) 

Figure 4.6: (a) Conventional extrapolation with separate data and extrapolator tapers; (b) 
Extrapolation with the adaptive taper. In order to make a better comparison, figures are displayed 
with a less clip value (therefore stronger amplitudes) than the one used in Figure 4.3. 

Figure 4.7a and Figure 4.7b show the wavefields (in the x-t domain) generated by 

the first extrapolation step of a common-source gather of Marmousi dataset. The survey 

taper width and the minimum adaptive tapering width are both chosen as 15 traces. It is 

evident that the conventional tapering scheme double-tapers the data edge (Figure 4.7a) 
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and will cause accuracy loss (see Figure 4.7c). 

 
(a) 

 
(b) 
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(c) 

Figure 4.7: The results from first (backward) extrapolation step of a Marmousi common-source 
gather (shot point at 5000m) with (a) conventional tapering and (b) adaptive tapering. Difference 
((b) minus (a)) is plotted in (c). The common-source gather is padded with zero traces on both 
sides and zeros in the bottom (for fast Fourier transform). 

Images from the common-source migration of Marmousi dataset are shown in 

Figure 4.8. The images are generated by applying conventional tapering (Figure 4.8a) and 

adaptive tapering (Figure 4.8b) to the Rayleigh extrapolator for the first extrapolation 

step and then switching to the Hale extrapolator for the remaining steps to ensure 

stability. The image from adaptive tapering (Figure 4.8b) has a better illumination of the 

shallow structures than the one from the conventional tapering (Figure 4.8c). Improved 

illumination and better event continuity could help with correlation of near surface 

reflectors with surface geology, which would be an important interpretation benefit when 

imaging seismic datasets from complicated structural areas such as the Canadian 

Foothills. However, it is difficult to determine whether the image created using the 
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adaptive tapering scheme has comparable artifact suppression as seen in the synthetic test 

(Figure 4.6). The final stack used in the common-source migration may cancel some 

random artifacts and minimize the difference. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.8: Shallow images of Marmousi dataset generated by (a) conventional tapering and (b) 
adaptive tapering. Difference ((b) minus (a)) is plotted in (c). All the figures are displayed using 
identical scaling values. 
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4.3 Chapter summary 

A new adaptive tapering scheme is proposed. Simple and complex synthetic tests 

indicate that adaptive tapering can be applied in the first extrapolation step to produce a 

better shallow image than the conventional tapering scheme. 



83 

 

Chapter Five: CONCLUSIONS AND FUTURE WORK 
 

Both stability and accuracy are important considerations for the design of x-ω 

domain wavefield extrapolators used in wavefield-continuation migration. Instabilities 

may arise when the recursive extrapolator is spatially truncated and its amplitude 

oscillates about unity. Inaccuracies may also occur when the amplitude and phase of the 

designed extrapolator deviate from those of the desired ideal extrapolator. Many 

extrapolators have been developed with various stability and accuracy features. To fully 

understand the behaviour of extrapolators and better evaluate their performance, a 

comprehensive stability and accuracy analysis is required. In this thesis, I compared the 

stability and accuracy of a Rayleigh extrapolator, Hale extrapolator, and Nautiyal 

extrapolator. 

The implementation of the three extrapolators in Matlab® was designed to ensure 

that the analysis and comparison was fair. The parallel Matlab® implementation has 

provided a way to facilitate the coding and debugging process as well as to achieve better 

efficiency compared to the traditional serial Matlab® implementation. 

A common set of tools that are either intuitive or quantitative has been used for 

stability and accuracy analysis, including 3-D error plots, error contours, zero-offset 

impulse response test, prestack dip accuracy, and complex imaging using the Marmousi 

synthetic dataset. All the tools were designed to supplement each other, and were utilized 

to illustrate the capabilities of the three extrapolators in both a homogeneous medium and 

strong heterogeneous environments. 
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The amplitude and phase error contours in the ω-θ (frequency-angle) domain 

clearly describe the behaviours of the extrapolators. These observations are in turn 

confirmed by the poststack zero-offset impulse test and the prestack dipping-event tests. 

The error contour analysis provides detailed quantitative information about the 

performance of an extrapolator compared to the desired exact response. A key 

observation is that a limited-aperture extrapolator should be designed to preserve as much 

of the propagating wavefield as possibly, but must attenuate propagating waves where 

there is significant phase error. 

The constant velocity dipping-event prestack test has proved to be a very useful 

tool for testing wavefield extrapolators. The observations from the constant velocity 

prestack test are consistent with those from the Marmousi test, where strong 

heterogeneity is present. Therefore, this test is an effective tool for evaluating the 

performance of extrapolators in a prestack depth migration before they are applied to a 

complex model. 

In general, the tools used in this thesis proved to be effective and therefore can be 

used for the further testing of newly developed extrapolators. 

The stability and accuracy analysis shows that the Hale extrapolator, widely 

considered to be an industrial standard, is stable and accurate. Although the limitations on 

propagation angle and the artifacts caused by its inherently blocky design make it less 

than perfect, the Hale extrapolator still produces a superior image compared to the other 

two extrapolators. The full-aperture Rayleigh extrapolator is accurate, but it is 

computationally expensive and not guaranteed to be stable for a large-number of 
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extrapolation steps. The limited-aperture Hanning edge-tapered Rayleigh extrapolator 

turned out to be neither stable nor accurate. The amplification of the propagating waves, 

combined with phase errors, turns out to be the main cause of its instability and 

inaccuracy. The full Hanning-tapered Rayleigh extrapolator is more stable and accurate 

than the Hanning edge-tapered one, but it can not produce an acceptable image in the 

complex model test. The Nautiyal extrapolator represents another straightforward way to 

stabilize the Rayleigh extrapolator in the space domain, and is easy to implement. 

Unfortunately, its stability compromises its accuracy. 

Some important observations are documented in this thesis, including the 

derivation error of the Hale extrapolator, the artifacts associated with the Hale 

extrapolator, and the poor accuracy of the Nautiyal extrapolator. 

A new adaptive tapering scheme is proposed in this thesis and is compared with 

the conventional tapering method using both simple and complex models. The results 

show that adaptive tapering can be applied during the first extrapolation step to improve 

the image from a common-source migration at shallow depth. 

Although the spatially-tapered Rayleigh extrapolator produces the poorest image, 

it could be still useful for regularizing land data with irregular geometry and/or in areas 

of rough topography. The Rayleigh extrapolator could be applied for the first few steps 

(where the effects of instability and inaccuracy do not accumulate sufficiently to be of 

concern) followed by an alternate stable and accurate extrapolator (such as the Hale 

extrapolator) for later depth steps. In addition, the adaptive tapering scheme can be 

further improved and combined with the Rayleigh extrapolator to enhance the imaging of 
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land data with irregular acquisition geometry and rough topography. These would be 

interesting topics for the future research. 
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