Important Notice

This copy may be used only for the purposes of research and private study, and any use of the copy for a purpose other than research or private study may require the authorization of the copyright owner of the work in question. Responsibility regarding questions of copyright that may arise in the use of this copy is assumed by the recipient.

UNIVERSITY OF CALGARY

Multicomponent seismic exploration and ground-penetrating radar

surveying in the Canadian Arctic

by

Carlos E. Nieto

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS

DEPARTMENT OF GEOLOGY AND GEOPHYSICS

CALGARY, ALBERTA

FEBRUARY, 2005

© Carlos E. Nieto 2005

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled "Multicomponent seismic exploration and ground-penetrating radar surveying in the Canadian Arctic" submitted by Carlos E. Nieto in partial fulfillment of the requirements for the degree of Master of Science in Geology and Geophysics.

> Supervisor, Dr. Robert R. Stewart Department of Geology and Geophysics

> Dr. Brian Moorman Department of Geology and Geophysics

Dr. Alejandro Ramirez-Serrano Department of Mechanical and Manufacturing Engineering

Date

Abstract

This thesis explores the near-surface and deeper subsurface in two different locations of the Canadian Arctic: Devon Island, and Hadween Island in the Mackenzie Delta. A perennial frozen layer, known as permafrost covers part of the study area. The top of this layer thaws during the summer months forming the seasonally unfrozen layer. A similar phenomenon is also observed in the planet Mars. Imaging the subsurface using multicomponent seismic exploration and ground-penetrating radar surveys is the main objective of this work.

The Devon Island case study shows that both methods produce a good quality image of the near-surface. However, the ground-penetrating radar method yields a better image in a faster acquisition and data processing time. A new seismic processing flow based on a linear-offset correction of head wave energy is presented as a solution to produce images under these conditions. A V_P/V_S ratio of 1.55 was obtained for the seasonally unfrozen layer. Velocities of 260 m/s and 168 m/s for P and S-waves were obtained as well. The permafrost shows a similar V_P/V_S ratio of 1.53, with P and S-wave velocities of 3100 and 2030 m/s respectively. For the 2.5D ground-penetrating radar surveys linear interpolation was required to produce an image from the subsurface. A radar velocity change was interpreted as the contrast between lithology of thawed layer and permafrost.

In the Mackenzie Delta study area, the first known multicomponent survey in the Canadian Arctic was recorded and processed. PP and PS seismic sections were obtained and interpreted using well log data from the Hansen G-07. A compelling correlation between the PP and PS seismic sections was found using a V_P/V_S ratio of 1.9.

Acknowledgements

Thanks to every member and sponsor of the Consortium for Research in Elastic Wave Exploration Seismology (CREWES) which is and hope continue being a great place to learn. Special thanks to my supervisor, Dr. Robert R. Stewart not only for his guidance, knowledge and experience but also for his support and encouragement during my time at the University of Calgary. I express my appreciation to the NASA Haughton-Mars Project, and specially its principal investigator Dr. Pascal Lee of NASA Ames. Thanks to our Inuit helpers: Sam, Jon and Pauline. Thanks to Sensors & Software Inc. for all the ground-penetrating radar support.

From the University of Calgary I would like to express my gratitude to Dr. Federico F. Krause for the support and help in the bad parts of the road; Regina Shedd for all the technical and personal help offered throughout my program; Dr. Lawton for important discussions on various areas of multicomponent seismic; Drs. Henley and Krebes for discussions in theoretical seismology; Kevin Hall, Eric Gallant, Henry Bland and Charles Ursenbach for their technical expertise in different areas; and to Louise Forgues and Cathy Hubbell for their assistance.

Finally, many thanks to all the students, staff and proffesors at the University of Calgary for their support and friendship.

Dedication

...para Aurelio, Elena, Claudia Karina y Juan Pablo.

Y para mis abuelos Aurelio, Cecilia, Elena e Ignacio...

TABLE OF CONTENTS

Approval page	ii
Abstract	
Acknowledgements	iv
Dedication	
Table of Contents	
List of Tables	
List of Figures	

CHAPTER ONE: INTRODUCTION

1.1- Motivation	. 1
1.2- Objectives	2
1.3- Devon Island study area	
NASA Haughton-Mars Project	
1.4- Mackenzie Delta study area	

CHAPTER TWO: SEISMIC EXPLORATION AT DEVON ISLAND, NUNAVUT

15
34
41
51

CHAPTER THREE: GROUND – PENETRATING RADAR EXPLORATION AT DEVON ISLAND, NUNAVUT

3.1- 2D GPR survey and test pit	66
3.2- GPR velocity analysis	68
3.3- 2.5D GPR survey	

CHAPTER FOUR: MACKENZIE DELTA MULTICOMPONENT SEISMIC INTERPRETATION

4.1- Subsurface geology review	. 81
Mackenzie Delta geology	. 81

4.2- Well site description: Hansen Harbour G-07	. 86
4.3- 3C-2D seismic survey Hansen Harbour	. 89
4.4- PP and PS seismic correlation	
Geological model for the study area	
PP and PS real to synthetic seismic sections correlation	

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK

5.2- Near-sur 5.3- 3C-2D se	face seismic surveying face ground-penetrating radar surveying eismic interpretation in the Mackenzie Delta ork	
REFERENCES		107
APPENDIX A:	3C-2D and 3C-3D seismic surveys geometry.	111

LIST OF TABLES

Table 2.1:	Elastic parameters for the near surface periglacial model. Density values
taken from Te	lford et.al. (1967)
Table 2.2:	Elastic parameters for a typical weathering-sub weathering model. Values
taken from Szo	elwis and Behle in Damdom and Domenico (1987) 12
Table 2.3:	Sample rates used for the project. Two additional columns with sample
rates from a st	andard 3D seismic survey are shown for comparison
Table 2.4:	Formulae to define the geophone number of the traces from the channel
number	
Table 2.5:	Parameters of location and orientation of the traces analyzed for the
rotation correc	tion
Table 2.6:	The rotation angles using the histogram method coincide with the angles
obtained from	the geometrical measures
Table 2.7:	LMO velocity values obtained for the source domain processing
Table 3.1:	Time-depth values for constant offset GPR line. Rebar times are
referenced to t	he air-ground wave arrival
Table 3.2:	Radar velocity values for different materials
Table 4.1:	Depth and thicknesses for defined sequences in the Hansen G-07 well 87
Table 4.2:	Statistics for targets in sequence C [Hansen G-07 well] 89
Table 4.3:	Vp/Vs values for Mallik 2L-38 well

LIST OF FIGURES

Figure 2.12: Tap test results from high frequency geophones GS-20DH. From left to
right: X1(+), X2(+), X2(-), X3(+) and X3(-) tap directions
Figure 2.13: Experimental head wave energy processing flow
Figure 2.14: Approximate velocities shown in a shot gather from the high resolution
seismic line. From left to right: vertical, crossline and inline component
Figure 2.15: Amplitude spectra (right panel) calculated over two different time
windows of the shot gather number 100 (left). The top panel corresponds to the direct
wave signal and the bottom to the head wave signal
Figure 2.16: Amplitude spectra (right panels) calculated over the shot gathers number
100 (left panels). The top panels are the raw shot gather which has a dominant frequency
around 400 Hz. The bottom panels show the same data after an AGC and a spectral
whitening correction. Observe how the frequency content has been balanced
Figure 2.17: Amplitude spectra (right panels) calculated over the shot gathers number
100 (left panels). The top panel is the result from applying a bandpass 460 Hz to 810 Hz
filter. The bottom panel shows the same data after applying twice a bandpass filter in the
radial domain. Filtering linear noise (direct wave and air wave) is more effectively done
in the radial domain
Figure 2.19. Lincor move out connection, or offect dependent static shifting used in the
Figure 2.18: Linear move out correction, or offset-dependent static shifting used in the
experimental processing flow. Note that the correction is only 4 ms at its maximum
experimental processing flow. Note that the correction is only 4 ms at its maximum
experimental processing flow. Note that the correction is only 4 ms at its maximum value
experimental processing flow. Note that the correction is only 4 ms at its maximum value
experimental processing flow. Note that the correction is only 4 ms at its maximum value
experimental processing flow. Note that the correction is only 4 ms at its maximum value
experimental processing flow. Note that the correction is only 4 ms at its maximum value
experimental processing flow. Note that the correction is only 4 ms at its maximum value
experimental processing flow. Note that the correction is only 4 ms at its maximum value
experimental processing flow. Note that the correction is only 4 ms at its maximum value
experimental processing flow. Note that the correction is only 4 ms at its maximum value

Figure 2.27:	Display of V-H1-H2 sets of traces from various source-receiver pairs 43
Figure 2.28:	Hodograms for traces at different source receiver azimuths
Figure 2.29:	Hodogram diagram example. The horizontal and vertical axes correspond
to the H1 and	H2 components respectively
Figure 2.30:	Histogram for rotation angle calculation. The horizontal axis shows the
angle values	ranging from 0° to 360°. The vertical axis corresponds to the frequency of
samples that f	all into a specific bin
Figure 2.31:	Technique for geometrical rotation of horizontal components
Figure 2.32:	Rotated traces from the original H1-H2 component at source loc 1111 and
receiver loc 4	9 (in black)
Figure 2.33:	H1-H2 rotated trace from source-receiver azimuth 45° 49
Figure 2.34:	H1-H2 rotated trace from source-receiver azimuth 135° 49
Figure 2.35:	H1-H2 rotated trace from source-receiver azimuth 225° 50
Figure 2.36 :	H1-H2 rotated trace from source-receiver azimuth 315° 50
Figure 2.37:	Horizontal component traces from source and receiver location 108 and 1
(chosen since	most of the azimuths here are around 90°) 51
Figure 2.38:	H1-H2 rotated trace from source-receiver azimuth 90° 51
Figure 2.39:	Vertical (top) and inline (bottom) component traces from CMP #210 52
Figure 2.40:	Trace equalization applied in the vertical component of shot 104 53
Figure 2.41:	Amplitude spectrum of data from vertical component of shot 104 54
Figure 2.42:	Comparison of frequency balance (whitening) versus AGC median for
vertical comp	onent shot 104 55
Figure 2.43:	Traces from source location 513 sorted by offset
Figure 2.44:	Three consecutive source ensembles: 2519, 2520 and 2521 57
Figure 2.45:	Map of 3D seismic survey
Figure 2.46:	Vertical shot gather 118 corrected using different LMO velocities (from
left to right):	1500, 2000, 2500 and 3000 m/s
Figure 2.47:	Radial shot gather 2513 corrected using different LMO velocities (from
left to right):	1000, 1500, 2000 and 2500 m/s 60
Figure 2.48:	Crossline seismic section number 1, from vertical component data 61
Figure 2.49:	Crossline seismic section number 1, from radial component data

Figure 2.50:	View of seismic volume from vertical component data	3
Figure 2.51:	View of seismic volume from radial component data	3
Figure 3.1:	Ground-penetrating radar 2D recorded across a stream in the Conra	d
Valley. The le	ngth of this section is 130 m	5
Figure 3.2:	Views of the study areas of the project: (1) base camp zone to the left, an	d
(2) land strip z	zone to the right 6	7
Figure 3.3:	A 26 m GPR reconnaissance line from the base camp site	7
Figure 3.4:	View of the test pit dug in the base camp zone	8
Figure 3.5:	Views of the constant offset GPR velocity survey	9
Figure 3.6:	GPR lines from constant offset velocity survey	1
Figure 3.7:	Time-depth crossplot. An average radar velocity model by linear	ar
regression. No	tice the change of the slope around 0.2 m depth7	1
Figure 3.8:	Various radar velocity models. Interval and RMS velocity curve	es:
calculated from	m the time-depth pairs indicate a change at 0.20 m depth7	2
Figure 3.9:	Diagram calculation of travel time from a scatter point in a constant	nt
velocity media	a with a constant receiver-transmitter array7	3
Figure 3.10:	Synthetic travel times of a scatter point at two different depth values usin	g
a CMP varia	able offset geometry (dashed lines) and constant receiver-transmitte	er
separation (so	lid lines)7	5
Figure 3.11:	Diagram of the acquisition parameters for the 2.5D GPR7	6
Figure 3.12:	Time slice from the 2.5D GPR survey, before and after interpolation	+
averaging, left	and right panels respectively7	7
Figure 3.13:	Left and right panels shows the grids used for the crossline and inlin	ie
interpolations,	respectively	8
Figure 3.14:	Left and right panels correspond to crossline and inline interpolated time	ie
slices, respect	vely	8
Figure 4.1:	Map of the Mackenzie Delta, N.W.T	0
Figure 4.2:	Stratigraphic column of the Mackenzie-Beaufort basin	2
Figure 4.3:	Mallik 2L-38 well logs	5
Figure 4.4:	Hansen Harbour G-07 well logs	7
Figure 4.5:	Target zones in the Hansen G-07 well	9

Figure 4.6:	Hansen Harbour-Mackenzie Delta area, N.W.T	91
Figure 4.7:	Diagram of receiver layouts	92
Figure 4.8:	Typical 3-C geophone plant in an augured hole in the sea ice	93
Figure 4.9:	PP migrated seismic section	
Figure 4.10:	PP seismic data correlation	97
Figure 4.11:	PS NMO removed seismic data correlation	99
Figure 4.12:	Final correlation of the PP and PS synthetic section with the	MKD-8
seismic line		100

CHAPTER ONE: *INTRODUCTION*

This thesis explores the near-surface and deeper subsurface in two different locations of the Canadian Arctic: Devon Island, and Hadween Island in the Mackenzie Delta. The Northwest Territories and Nunavut cover a vast area in the northern latitudes of Canada. Based mainly on seismic exploration and more than 400 wells, several basins have been studied in the Mackenzie Delta with major oil + gas discoveries (Polczer, 2001). Production from these fields waits for delivery options such as the Mackenzie Valley Pipeline. Interest in developing these regions has increased in the last 5 years, creating a need for technologies capable of coping with the harsh climate conditions of the Arctic, and the challenges of subsurface imaging common to this setting.

1.1- Motivation

The Canadian Arctic lies upon a perennial frozen layer, often defined as permafrost. The thickness of this layer varies generally with latitude, thinning southward, where warmer temperatures are typical on the surface. Thickness may also be associated with the presence of water in the form of lakes, rivers, or underground streams. The fact that part of the subsurface is frozen represents a challenge for the development of this area, including oil and gas exploration and production activities. During the summer months, as surface temperature increases, part of the permafrost thaws forming the seasonally unfrozen layer.

The surface of the planet Mars is also been thought to be underlain by frozen ground (Lee, 2002; Long, 1999), and this has been a topic of research for different institutions around the world - the NASA Haughton-Mars Project (HMP) being one of them. HMP is located on Devon Island, Nunavut, where geologic and climatic conditions provide some

similarities to those on Mars. One of the objectives of HMP is to use geophysical exploration techniques, particularly seismic and ground-penetrating radar to study aqueous and frozen ground systems (<u>www.marsonearth.org</u>). Understanding the processes behind the formation of frozen and thawed layers is important to both the development of the Canadian Arctic and to future Mars analysis.

1.2- Objectives

Imaging the subsurface is the main research of this study. To investigate the capabilities and limitations of high resolution seismic and ground-penetrating radar exploration techniques for near surface imaging in periglacial environments. These objectives are achieved through the analysis of data acquired in the two study areas: Devon Island and Hadween Island.

1.3- Devon Island study area

Located in the central part of the Canadian Arctic Islands in Nunavut, Devon Island with a surface area of 66,800 km² is the largest unhabited island on Earth (Figure 1.1). It has been visited by a number of research groups interested in the study of ice caps, glaciers, wildlife, archaeology, and simulations of living logistics on Mars, among others. It was the site of much hydrocarbon exploration activity in the 1960s and 70s and has a number of dry and abandoned offshore wells in its vicinity (Wilkin, 1998).

The majority of the exploration for oil and gas of the island was centred on the Grinnell Peninsula (Figure 1.1). In 1962, west of Devon on Melville Island, the first well Dome Winter Harbour No. 1 in the Canadian Arctic Islands was completed (Figure 1.2). The well was dry, but it increased the interest in the Arctic Islands. Melville Island was the centre of operations for the exploration wells drilled through out the 70s.

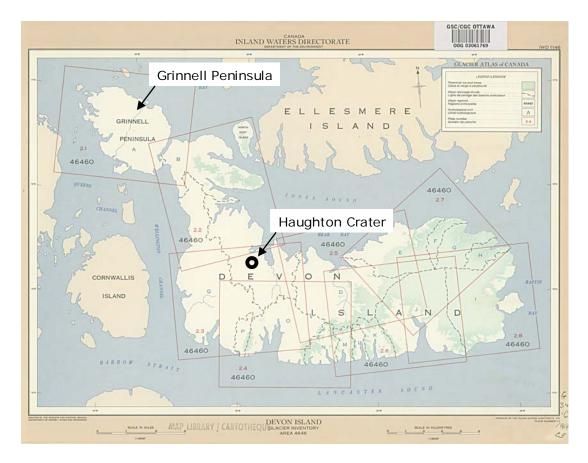


Figure 1.1 Map of Devon Island, Nunavut (Glacier Atlas of Canada). Grinnell and North Yorkshire peninsulas are to the northwest part of Devon Island.

A number of private geological field teams explored the Grinnell Peninsula, finding only poor hydrocarbon potential on northern Devon Island (Mayr *et al.*, 1998). Mayr (1998) states that hydrocarbon accumulations from the middle member of the Allen Bay Formation may be trapped in the Devon Island Formation reefs, in the area north of Grinnell and North Yorkshire peninsulas (Figure 1.1). The Lancaster Sound basin, located southeast of Devon Island, was an important area for exploration in the 70s. More than 6500 km of offshore marine seismic were recorded in this zone (Figure 1.1). The objective was the zone proximal to the basement uplift, the Dundas structure (www.canstrat.com).

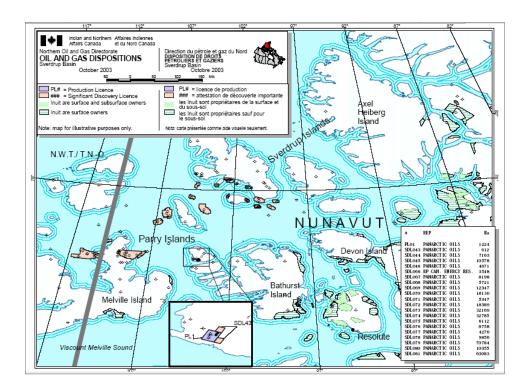


Figure 1.2 Map of region around Devon Island, Nunavut Territory (Indian and Northern Affairs Canada). Grinnell and North Yorkshire peninsulas are in the northwest part of Devon Island.

NASA Haughton – Mars Project (HMP)

The HMP is a field research project whose main objective is the scientific study of the Haughton impact structure and its surroundings, viewed as a terrestrial analog for Mars. In 1996, Dr. Pascal Lee initiated the project with a postdoctoral research proposal approved by the National Research Council (NRC) of the US National Academy of Sciences and NASA Ames Research Center (ARC). It has been active since the summer

of 1997, when the first research group surveyed the Haughton area confirming the potential for Mars analog studies (www.marsonearth.org). A total of eight field seasons have been successfully completed with the participation of various universities and institutions from around the world. The base camp of the HMP is located just outside the northwest area of the Haughton impact crater (Figure 1.1).

The project is divided into two branches: the science and the exploration program. The goals of the *science program* can be summarized in three categories:

(1) Obtain insights into the *possible* evolution of water and of past climates on Mars.

(2) Study the effects of impacts on Earth and on other planets.

(3) Analyze the possibilities and limits of life in extreme environments.

On the other hand, the *exploration program* focuses on the development of new technologies/strategies and the use of human factors experience and field-based operation for the design of the future exploration of the Moon, Mars and other planets by robots and humans. The University of Calgary has collaborated with the science program in two different areas:

(1) <u>Subsurface Geologic Structure</u>: ground-penetrating radar and seismic surveys of a variety of substrates at the Haughton impact structure and surrounding terrain are targeted at determining the crater's subsurface structure; and

(2) <u>Ground Ice and Subsurface Aqueous Environments</u>, and Periglacial Geology: ground-penetrating radar surveys of ground ice and subsurface water at the Haughton impact structure and surrounding terrain are conducted and analyzed as an analog for exploring possible subsurface H₂O-rich environments on the Moon and Mars.

1.4- Mackenzie Delta study area

The discovery of the Taglu, Parsons Lake and Niglintgak gas fields in the years of 1971, 1972 and 1973, respectively, generated interest in the commercial exploration for hydrocarbon in the Mackenzie Delta area. Approximately six trillion cubic feet of natural gas has been discovered in the area. 2D and 3D reflection seismic surveys were essential to the discovery of these three giant gas fields. Currently, the construction of a pipeline connecting the Delta to northern Alberta has been a topic of active discussion (Figure 1.3).



Figure 1.3 Mackenzie Valley Gas Pipeline route (modified from <u>www.mackenziegasproject.com</u>). A total of 1200 km could connect the Mackenzie Delta with Northern Alberta.

As a result of numerous feasibility studies and proposals, the Mackenzie Gas Project (MGP) was formed. The partners in this project comprise four major oil companies: Imperial Oil Resources Ventures Ltd., ConocoPhillips Canada (North) Ltd., ExxonMobil Canada Properties, and Shell Canada Ltd.; plus the Aboriginal Pipeline Group (APG). The MGP has the objective of connecting northern onshore gas fields with North American markets through a 1220 – kilometer natural gas pipeline system, which is proposed to run through the Mackenzie Valley (<u>www.mackenziegasproject.com</u>). The ultimate goal is to begin transporting natural gas through the pipeline by 2010.

The surface of the Mackenzie Delta area has large water coverage, in the form of lakes and rivers. During the winter a layer of ice covers the entire area. When the summer warms the surface, and the ice starts thawing, the top part of the frozen ground thaws, forming what is known as the active layer. This layer may vary according to different factors such as the mean annual ground temperature, nature of the ground surface cover, and/or the thermal properties of the soil material (Williams *et al.*, 1989). All of these processes make the near surface a complex medium with not only lateral but vertical variation in terms of elastic properties. Recording seismic surveys in this type of environment is challenging due to this varying subsurface.

Some of the seismic issues related with periglacial environments are:

- (1) Variation in amplitude energy level;
- (2) Trapped and/or surface waves;
- (3) Poor transmission of acoustic energy to the subsurface;
- (4) Reverberations and/or flexural waves;
- (5) Large variation of static times.

The CREWES Project at the University of Calgary was invited to participate in the acquisition of a 2D multicomponent seismic test line in a transition zone from floating ice to ground – fast ice. A compelling PP and PS 2-D seismic interpretation was achieved in the end.

2.1- Introduction, assumptions and previous work

Water-saturated sediments show an increase of the compressional-wave velocity when temperature drops from 26° C to -36° C (Timur, 1968). The change of elastic modulae due to the freezing of interstitial water may be applied to use the seismic method for the study of physical properties of soil in periglacial environments. On average, an increase of 34% in the velocity of compressional waves due to freezing is obtained in different sands studied by Timur (1968). Based on this fact, a number of seismic experiments were recorded at two different locations in the Canadian Arctic as part of the NASA Haughton-Mars Project. On average, the thickness of the active layer (water-saturated sediments) is 0.6 m, with variations in the order of centimeters due to changes in the mean annual temperature of the region.

Nieto *et al.* (2003) obtained compressional and shear wave velocities of 260 and 168 m/s, with a V_P/V_S ratio of 1.55 in the very near surface. The underlying frozen sediments (permafrost) showed a much higher compressional wave velocity of 3100 m/s and 2030 m/s for shear waves, with a V_P/V_S ratio of 1.53. This strong impedance contrast between frozen and thawed layers represents a challenge to the seismic project due to diverse factors such as;

(1) The critical angle of incidence is close to vertical, restricting the energy transmitted to the sub-permafrost layers;

(2) Most of the seismic energy is trapped in the thawed layer, which results in reverberations and multiples that contaminate the records; and

(3) Small part of the energy gets transmitted below this interface, reducing the possibility of imaging sub-permafrost unfrozen bodies (taliks), if present.

To visualize this situation and understand the propagation of elastic waves in this type of subsurface, seismic ray arrival times were calculated and energy partition were generated. An additional objective of this thesis was to study the possibility of imaging an unfrozen layer (*i.e.* talik) inside the permafrost layer. A general subsurface model, which includes a talik (Table 2.1 and Figure 2.1), was designed based on previous measurements and reference values (Telford *et al.*, 1967; Nieto *et al.*, 2003).

Strata	Thickness (m)	V _P (m/s)	V _s (m/s)	ρ (g/cc)
Water-saturated silt	0.6	260	168	2.21
Seasonal frozen	0.3	3100	2030	2.0
Talik (dry silt)	0.4	260	168	1.43
Permafrost	n.a.	3100	2030	2.0

Table 2.1 Elastic parameters for the near surface periglacial model. Density values taken from Telford *et al.* (1967)

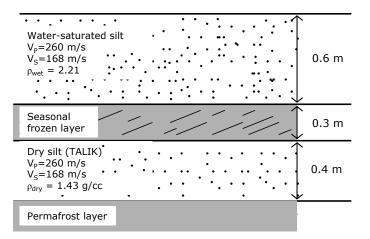


Figure 2.1 Periglacial near-surface elastic model of a particular High Arctic area during the summer including a talik.

Consider a model formed by only the first two layers of the periglacial model (Figure 2.1) and an incident P (compressional) wave to calculate the exact solution of energy partition based on Zoeppritz equations (<u>www.crewes.org</u>). Only the homogeneous solutions are considered for the analysis, i.e. below the critical angle. From the diagram (Figure 2.2) the following are observed:

- (1) A critical angle of incidence of 4.81°.
- A large and almost constant R_{PP} reflection coefficient versus angle of incidence, approximately 0.8;
- (3) An increasing R_{PS} reflection coefficient versus angle of incidence, ranging between 0 to -0.2;
- (4) A low coefficient of transmission T_{PP}, near 0.18, and no variation with versus angle of incidence; and
- (5) Increasing transmission coefficient T_{PS} with angle of incidence, ranging between 0 to -0.2.

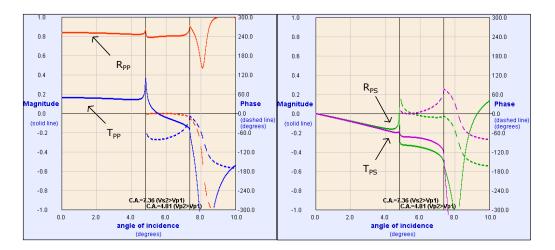


Figure 2.2 Energy partition at the thawed-frozen layer interface of the periglacial model. Observe the small critical angle of incidence caused by the P-wave velocity contrast. R_{PP} , R_{PS} , T_{PP} and T_{PS} are the reflectivity coefficient and transmission coefficient, for PP and PS events, respectively. Dashed and solid lines are the phase and energy partition curves, respectively.

A high reflection coefficient R_{PP} is a promising factor for the application of seismic reflection techniques to survey these areas (periglacial near surface). The critical angle of incidence is small and restricts the transmission of homogeneous waves to the subpermafrost layers. T_{PP} is considerably smaller than the reflection coefficient R_{PP} . The low transmission coefficient energy plus the attenuation and amplitude decay due to a spreading factor of this model limits the possibilities of imaging an intra-permafrost talik. The need for sensors with a broad amplitude range capacity to record possible deep reflections is a requirement.

The exact solution for energy partition at a standard weathering/bedrock layer interface, which is standard in most land seismic surveys, offers insight into the comparison of these two cases (Figure 2.3, Table 2.2).

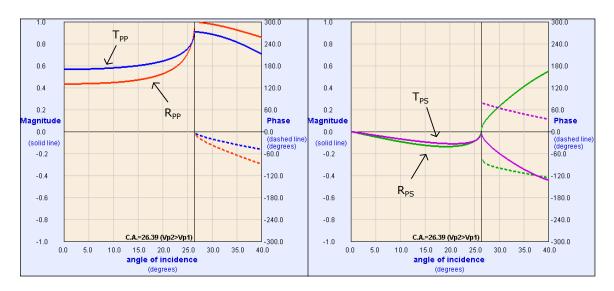


Figure 2.3 Energy partition at a typical weathering-sub weathering type of near surface. R_{PP} , R_{PS} , T_{PP} and T_{PS} are the reflectivity coefficient and transmission coefficient, for PP and PS events, respectively. Dashed and solid lines are the phase and energy partition curves, respectively.

Strata	Thickness	V _P (m/s)	V _s (m/s)	ρ (g/cc)
Weathering	n.a.	800	200	1.6
Sub weathering	n.a.	1800	500	1.8

Table 2.2Elastic parameters for a typical weathering-sub weathering model. Values taken fromSzelwis and Behle *in* Damdom and Domenico (1987)

A larger critical angle of incidence which allows a broader range of homogeneous waves to be transmitted to the subsurface occurs in this model (Figure 2.3). For this case, the transmission coefficient is larger than the reflection coefficient, indicating that more energy is being transmitted than reflected, as opposed to the first model. The convertedwave modes R_{PS} and T_{PS} have a similar trend in both models. Generally, for land seismic surveys, a common convention is to bury the seismic source below the weathering layer. Surface and trapped waves are greatly reduced with this technique.

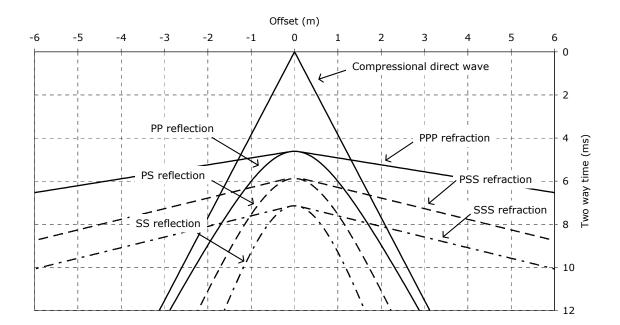


Figure 2.4 Arrival times for various waves propagating in the unfrozen-frozen layered medium. No talik is considered for this example.

Arrival times for different waves were calculated using the previous two-layer periglacial model, and assuming straight seismic rays (Figure 2.4, Equations 2.1 and 2.2). If the head wave event is extrapolated to the zero offset axes, a time value commonly called the intercept time is obtained. For this particular case, the zero-offset reflection two-way time can be approximated by the zero-offset refraction time, even though a head wave at zero offset does not exist. Mathematically, this can be explained using the expressions for reflection and refraction events in a two-layer model flat interface, constant velocity (Equations 2.1 and 2.2, respectively) when the offset is zero and the critical angle of incidence is small.

$$t_{reflected}(x) = \sqrt{t_o^2 + \left(\frac{x}{V}\right)^2}$$
(2.1)

$$t_{refracted}(x) = \frac{x}{V_2} + \frac{2 \cdot z \cdot \cos(\alpha_c)}{V_1}$$
(2.2)

This is the criteria supporting the processing flow used in this research project. The refracted energy is used to image the thawed-frozen layer interface, instead of the reflected energy. The traces are grouped by shot position to apply a Linear Moveout correction (LMO) which flattens the refraction (Figures 2.4 and 2.5). Based on the stacking principle to increase the signal-to-noise ratio, all the traces are summed into a single one located at the source position. The final pseudo-zero offset seismic stacked section is obtained after applying this process for each source point.

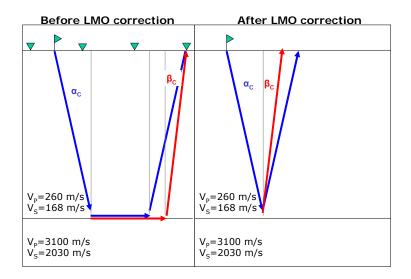


Figure 2.5 Effect of the LMO correction in refracted events. Since the critical angle of incidence is small, the zero-offset time can be approximated with the intercept time of the head wave.

Shallow seismic imaging studies

Seismic refraction data can yield valuable information from the near-surface geology, and sometimes it can also be a useful aid in interpreting shallow reflection data (Reynolds *et al.*, 1990). Analysis of shear-wave reflections has had success in shallow weathering/bedrock interface at 60 m deep (Pullan *et al.*, 1990). These authors found success with shear-wave reflection analyses in areas where the ground roll energy was quickly attenuated and did not interfere with reflection events. The method is optimal when the top layer is unconsolidated.

Norminton (1990) shows by computer modeling that both SH and SV reflections from the bedrock interface should be observable at small angles of incidence, depending on the elastic parameters ratio and the type of incident wave P or SV. The SH wave has an advantage when designing field arrays; it only has one critical angle of incidence. Dufour *et al.* (1996) managed to detect shear head wave arrivals in shot records by analyzing their polarization. Dufour *et al.* showed how the P and S head waves have both rectilinear polarizations in the vertical and radial component respectively and the Rayleigh waves have elliptical polarization. The use of FK filters was key to enhance the shear head waves in the radial component.

Analyzing several shot records from different locations Jolly *et al.* (1971) demonstrated that the surface wave effect is greatly diminished when the source is located below the weathered layer. Bachrach *et al.* (1998) concludes in his work that there is still need to better understand the seismic response of the near surface. These authors showed how the velocity profile is pressure dependent in the first few meters below the surface. Bachrach *et al.* were able to recognize very shallow reflections, less than 1 m deep, in unconsolidated sediments by applying only a low cut filter.

Xia *et al.* (1999) mentions that shear wave reflections will be possible depending on the dispersion of the unconsolidated layer, *e.g.* if the packet is dispersive resulting from strong velocity gradients near the surface, the groundroll will mask much of the viewing window.

2.2- Study area

In a flat area located inside the NASA Haughton-Mars Project base camp, two highresolution seismic surveys were recorded (Figure 2.6). The target for these surveys was the thawed-frozen layer interface and possible deeper events, such as taliks. Highfrequency 40 Hz 3C geophones were used for both surveys. A pellet gun and a 3-lb hammer were the seismic sources for the 2-D and 3-D surveys, respectively.

Figure 2.6 High resolution 3C-2D and 3C-3D seismic surveys, left and right panels respectively. The geophones in the 2D survey are oriented in the N-S direction, while in the 3D the receiver lines are oriented in the E-W direction.

A ground-penetrating radar constant-offset reconnaissance line indicated the presence of a thawed layer (Figure 3.3 in Chapter 3). Additionally, a pit was dug in the study area to take samples and to measure the true depth to permafrost (Figure 2.7). Nieto *et al.* (2003) reports a thickness of 0.6 m for the active layer and describe the active layer in terms of the silt sediment size (Figure 2.7).

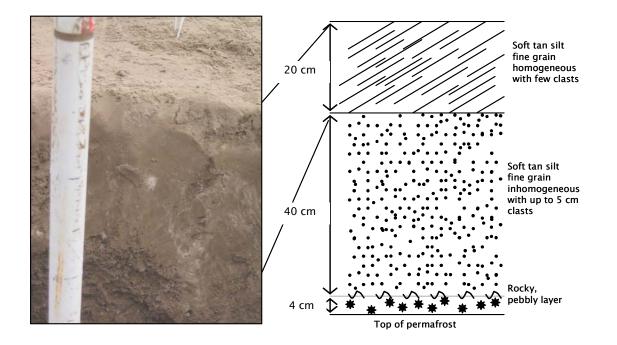


Figure 2.7 Thawed ground profile from the experimental pit. The lithology consists of three units: fine silt, silt with clasts, and rocky layer. At 0.2 m deep a noticeable change in lithology is observed.

The natural frequency of this geophone is 40 Hz, and its spurious frequency occurs at frequencies higher than 400 Hz. The seismic response curve output of this element (Figure 2.8) shows a stable output at frequencies higher than 400 Hz. The range of frequencies used in the project does not exceed 400 Hz, due to the thawed layer attenuation of high frequency components. A Strata View seismic recorder model R60 from Geometrics Inc. allowed recording a maximum of 60 channels. The equipment was originally designed for refraction seismic surveys using single component geophones. It was successfully adapted to multicomponent geophones.

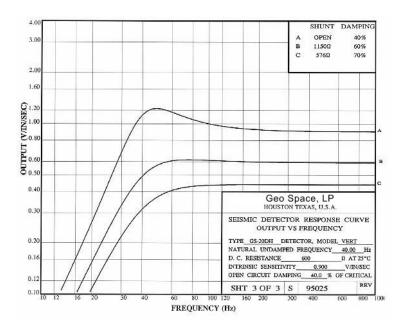


Figure 2.8 Seismic response of the element versus frequency. Observe the stability of the curve for frequencies up to 1 KHz.

2.3- 3C-2D high resolution seismic imaging

Survey design and acquisition

A high – resolution seismic line, 4 m long, was acquired at the base camp survey site (Figure 2.6). Three-component, high frequency geophones were used along with a pellet gun as the seismic source. The line was set in the N-S direction. The target of the seismic line was to image the top of the frozen layer, as well as any other possible interfaces such as taliks. A geophone element was attached to the barrel of the gun to set the zero time for recording. The gun was used with standard pellets (which were recovered to have low environmental impact). The parameters for this recorded line were (Figure 2.9):

- Receiver station interval: 0.2 m;
- Total of 20 receiver stations;
- 3 channels per station: *vertical* (V), *inline* (H2), and *crossline* (H1);

- Source station interval: 0.2 m;
- Source stations in between two receiver stations;
- Total of 21 source stations;
- Time sample rate: 0.125 ms; and
- Recording time: 256 ms.

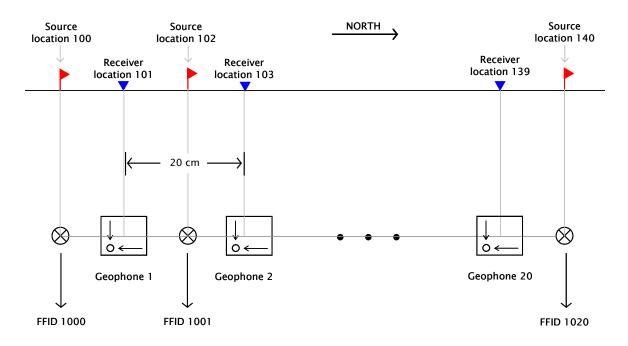


Figure 2.9 Diagram of 3C-2D seismic line. The top part of the diagram shows the location numbers for both receivers and sources. The bottom shows the file number for shots and geophone numbers. The *inline* <<H2>> component is marked by the arrow in the north – south direction while the *crossline* <<H1>> is orthogonal to it.

The survey was recorded with all channels live. Every geophone has three components: *vertical (V), inline (H1) and crossline (H2)*. For every receiver station the H1, V and H2 were connected in the same order as mentioned (Appendix A, Table A.1). Each geophone was oriented in the field such that *the H2 channel* was pointing *south* (Figures 2.6 and 2.9).

The original data was recorded with the corresponding file number and channel number in the header information. Using the channel number, the seismic data were separated into three subsets corresponding to inline, crossline and vertical components. The geophone number was assigned as well using the geophone connection convention presented in Table A.1 (Appendix A). An observer report obtained during the acquisition of the survey (Appendix A, Table A.2) was used to assign source locations to each of the shot gathers, as well as receiver locations. The next step to define the geometry was to assign spatial coordinates to all the traces, which was done by setting the origin of coordinates at the first shot point location.

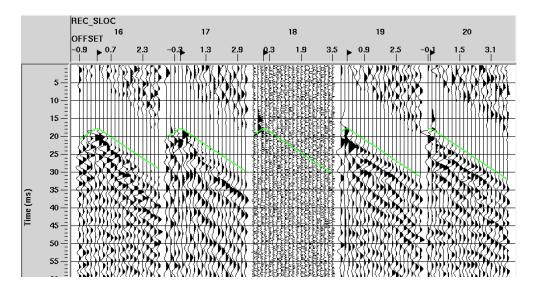


Figure 2.10 Crossline component <<H1>> seismic data sorted by receiver location and offset. All the traces with receiver location 18 were killed due to electronic noise in the seismic recorder.

Up to this point, the data have spatial information, and various domains to be displayed. To check the geometry, the traces were displayed sorted by receiver location and offset (Figure 2.10). The last step in the geometry definition was to define bins and their relations. A bin size of 0.1 m x 0.1 m was defined. The parameters for offset calculation

were: minimum offset of -4 m, maximum offset of 4 m and an interval of 0.1 m. The maximum fold obtained for the full range of offsets was 20.

The position of the horizontal sensors with respect to the labels of the cable connectors and their polarity was obtained by a tap test of the geophones (Figure 2.11). Several time sample rates were analyzed in order to avoid aliasing effects of the first arrival polarity. It has been observed that time aliasing might produce a wrong interpretation of the first break polarity (Bland *et al.*, 2001).

The test consisted in recording three traces (H1, V and H2) for five different tap directions (Figure 2.11), using four different sample rates: 125 us, 250 us, 1000 us and 2000 us. The convention for this project is that a normal polarity corresponds to positive amplitude due to a tap in the direction of the arrows on top of the geophone (Figure 2.11). According to this convention, a normal polarity will correspond to positive amplitude in the *H1* trace due to a *tap in the direction of the H1 arrow* (the same applies to the V and H2 channels).

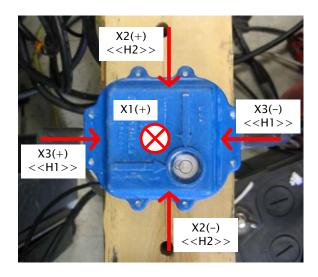


Figure 2.11 Three-component geophones used for all the seismic surveys. The red arrows indicate the tap directions recorded to match the connectors with the sensors, and their polarity.

The cables are labeled as: H2, V and H1. For the vertical sensor only a tap on the top of the geophone was recorded.

The results presented in Figure 2.12 indicate the following:

- V channel corresponds to X1 axis and has NORMAL polarity;
- H2 channel corresponds to X2 axis and has REVERSED polarity; and
- H1 channel corresponds to X3 axis and has REVERSED polarity.

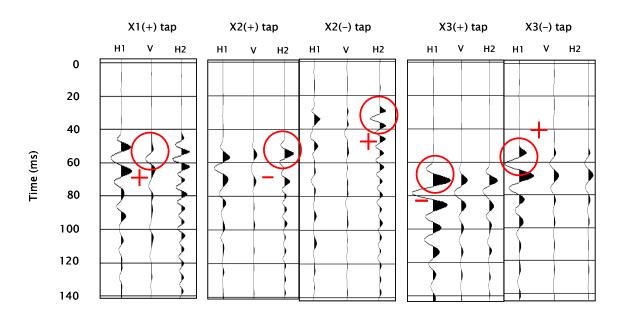


Figure 2.12 Tap test results from high frequency geophones GS-20DH. From left to right: X1(+), X2(+), X2(-), X3(+) and X3(-) tap directions. Each tap test shows three traces: *H1*, *V* and *H2*. The amplitude sign is marked by the red circle. The time sample rate used was 1 ms.

Head-wave energy processing flow

Except for providing refraction statics, the energy from the head waves is generally considered as noise in most seismic reflection surveys. After calculating static solutions for the survey, they are often muted from the data. On the other hand, this project treats head waves as signal. The processing objective is to filter out any events, such as direct

waves, or trapped modes and enhance the head wave signature, for a final stack of traces to obtain the pseudo-zero offset section.

The main objective of this project was to image the top of the frozen layer, events inside the permafrost were considered as well, although no physical evidence of these was found. The origin of these structures may be related to water presence, although for this case we are interested in the ones formed by incomplete freezing of the active layer (depth of seasonal frost). Taliks might be seismically imaged thanks to the contrast in elastic properties with the surrounding frozen ground (Table 2.1).

An *experimental processing* flow was applied to define a pseudo-zero offset stacked seismic section (Figure 2.13). Various filtering methods were applied to separate the signal (*head wave*) from the noise (*direct wave*).

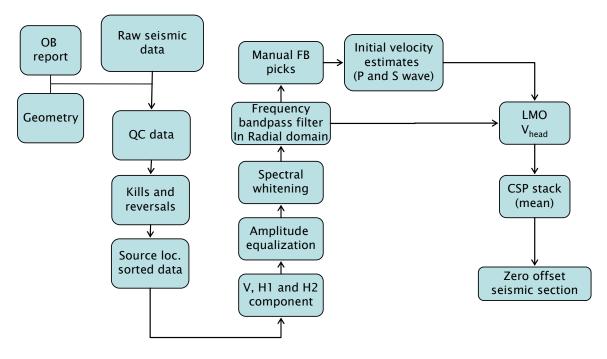


Figure 2.13 Experimental head wave energy processing flow.

The traces from the first shot were sorted and displayed by source location and offset to obtain velocity values (Figure 2.14). A time shift of 15 ms approximately is observed in all the components due to a delay introduced by the pellet gun used as the seismic source. The vertical 'V' component shows three well defined events: (1) the compressional air wave traveling at a velocity of 330 m/s; (2) a compressional direct wave with a velocity lower than the air wave velocity, of approximately 300 m/s; and (3) a compressional head wave <<*PPP*>> from the top of the frozen layer with an approximate velocity of 2500 m/s. The inline 'I' component shows a couple of linear events: (1) the compressional air wave at a velocity of 330 m/s, and (2) a compressional direct wave at a velocity of 300 m/s.

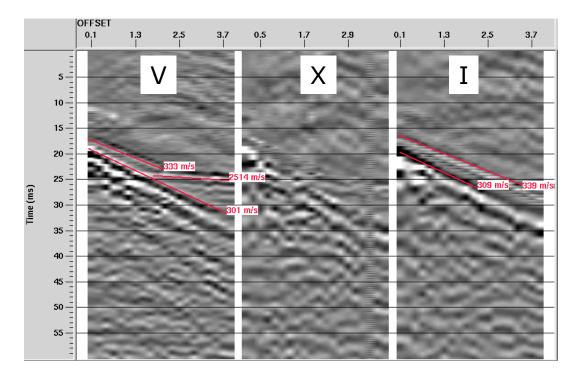


Figure 2.14 Approximate velocities shown in a shot gather from the high resolution seismic line. From left to right: vertical, crossline and inline component.

In terms of frequency content, the head wave has a range from 220 Hz to 800 Hz, while the direct wave has a lower range from 180 Hz to 640 Hz (Figure 2.15). The cutoff dB value used to define these ranges was – 8 dB. This difference in frequency content allows the separation of the noise (*direct wave*) from the signal (*head wave*) in the shot gathers using a simple low cut frequency filter. A reflection event from the thawed – frozen layer interface is expected to occur (since a head wave is observed). For zero – offset there is a small time difference between the direct arrival and the reflected wave, making the two different events hard to resolve. This is one of the reasons why using the head wave for imaging was convenient. No obvious reflections from deeper interfaces are observed.

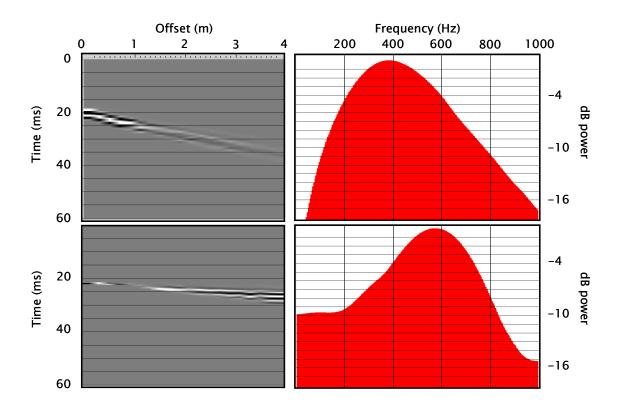


Figure 2.15 Amplitude spectra (right panel) calculated over two different time windows of the shot gather number 100 (left). The top panel corresponds to the direct wave signal and the bottom to the head wave signal. Observe the difference in frequency content.

Vertical and inline components were sorted by source location and offset to obtain an initial estimate of velocities. An application from ProMAX, popular seismic processing software, based on the stabilized power ratio picking was used to obtain first break picks which were later adjusted manually. Velocities were calculated from the time picks using a linear estimation algorithm. The vertical component of the data yields a velocity value of 263 m/s and the inline component yield a value of 256 m/s. In a previous study a compressional direct wave velocity of 260 m/s was estimated from the vertical component data (Nieto *et al.*, 2003). On the other hand, an average velocity of 2244 m/s was estimated for the *PPP* head wave arrivals for the vertical component data (Figure 2.6). Nieto *et al.* (2003) obtained a velocity of 3100 m/s for compressional head waves in a survey located next to a creek.

Kurfurst (1976) obtained ultrasonic wave measurements on different types of soils at permafrost temperatures, from -7° C to $+1^{\circ}$ C. He found the propagation of velocities to be slower in materials with higher percentage of clays than in those with lower percentage of fines. The velocities obtained range from 1500 m/s to 2900 m/s for inorganic clays. An additional behavior observed was that any increase in natural moisture content in clays resulted in proportionately higher velocities below 0° C (Kurfurst, 1976). King (1984) also found the compressional-wave velocity to be strongly dependent on the fraction of clay-sized particles at temperatures below -2° C, with a weak dependence of porosity. The velocities obtained for samples with a fraction of clay-sized particles higher than 0.40 ranged in average from 1600 m/s to 2800 m/s for temperatures from $+5^{\circ}$ C to -15° C respectively.

Zimmerman *et al.* (1986) reported compressional wave velocities of unconsolidated permafrost ranging from 2200 m/s to 4210 m/s, depending mainly on the particle size of the soil, which is related to pore size and determines the water/ice ratio. In a series of laboratory experiments Zimmerman *et al.* (1986) observed P and S-wave velocities at a constant temperature of -5° C to be higher for sand than for clay sediment. Clay velocities ranged from 2270 m/s to 3120 m/s for P-waves and from 900 m/s to 1550 m/s for S-waves. An increase of velocity due to a temperature variation from -5° C to -15° C was observed as well (Timur, 1968; Zimmerman *et al.*, 1986). Empirical equations for samples over the porosity (θ) range from 0.30 to 0.50, and water saturation *s* from 0.00 to 0.6 are obtained by Zimmerman *et al.* (1986) (equation 2.3 and 2.4).

$$V_P = 4.97 - 2.154 \cdot \theta - 2.422 \cdot s \tag{2.3}$$

$$V_s = 3.043 - 1.698 \cdot \theta - 1.654 \cdot s \tag{2.4}$$

The P-wave velocities of 3100 m/s and 2244 m/s reported in this work were acquired in different years and at different locations. The first seismic experiment was recorded besides a small creek close to the base camp (Nieto *et al.*, 2003). The second experiment was recorded on a flat area on the top of a hill in the base camp (Figure 2.6). The water content underlying the small creek study area is likely to be higher than in the hill study area, due to intense drying at the hill. The accumulation of water in the creek area may produce greater ice content in the permafrost than on the hill, and thus higher P and S-wave velocities.

Since no head wave arrivals are observed in the crossline component only the vertical and inline component data will be considered. The first step was to balance the amplitude of the data sorted by source location and offset. An AGC operator with a time length of 20

ms was used. The scale factor in each AGC window was calculated using the median of the amplitude samples rather than the mean. The advantage of the median scaling factor over the mean is that it allows enhancing the head wave despite the amplitude difference of five orders of magnitude with the direct wave amplitude (Figure 2.16).

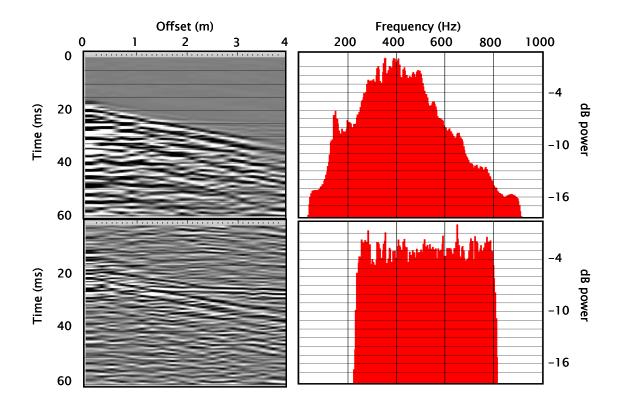


Figure 2.16 Amplitude spectra (right panels) calculated over the shot gather N. 100 (left panel). The top panels are the raw shot gather which has a dominant frequency around 400 Hz. The bottom panels show the same data after an AGC and a spectral whitening correction. Observe how the frequency content has been balanced.

To enhance the high-frequency components of the data a time-invariant spectral whitening function was used. This algorithm works in the frequency domain by applying different gains to individual frequency bands. A total of 10 frequency bands from 210 Hz to 810 Hz were used (Figure 2.16). The method used to restore the amplitude of the traces

was a log average of the individual AGC scalars, which is indicated to be insensitive to large amplitude arrivals, such as near offset direct arrivals.

Following the amplitude balancing and frequency whitening of the data the next processing step applied was to filter out the direct arrival and the air wave responses, and enhance the head wave arrival response (Figure 2.17). Two different frequency bandpass filters were tested: (1) in the *x-t domain;* and (2) in the *radial domain*.

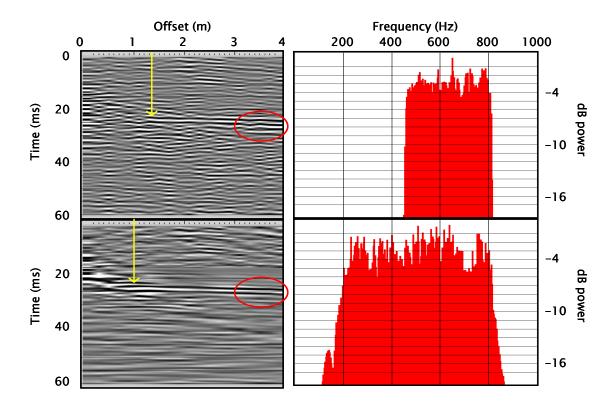


Figure 2.17 Amplitude spectra (right panels) calculated over the shot gathers number 100 (left panels). The top panel is the result from applying a bandpass 460 Hz to 810 Hz filter. The bottom panel shows the same data after applying twice a bandpass filter in the radial domain. Filtering linear noise (direct wave and air wave) is more effectively done in the radial domain.

The first bandpass filter was applied in the *x-t domain*. The pass frequencies were 460 Hz and 810 Hz, respectively. The ramps are formed by Hanning (cosine) tapers in the frequency domain. Both ramps were 10 Hz wide. As a consequence of filtering the data

in the frequency domain (Gibbs's phenomenon) the signal from the head wave is spread out in time (Figure 2.17). Remnants of the direct wave and air wave are observed in the data after filtering it. Another consequence of this technique is that the low frequency component of the signal has to be removed (Figure 2.17).

The second bandpass filtering method was in the *radial domain* which has many advantages for this particular case were the noise to be removed has a linear pattern in the offset – time domain (Henley, 2003). This filter was applied twice since the air wave and the direct wave were to be removed. Using a radial fan filter the data were transformed into the radial domain with the following parameters:

- 200 radial traces (10 times the number of traces in the x t domain). The interpolation method used was linear;
- Minimum radial trace velocity: -20000 m/s;
- Maximum radial trace velocity: 20000 m/s; and
- Time coordinate for radial trace origin: 0.02 s for the first pass and 0.016 s for the second.

Once the data were transformed to the radial domain, a bandpass filter with frequencies in the range of 50 Hz to 810 Hz for the first pass and 170 Hz to 810 Hz was applied. The ramps for both frequency filters were 10 Hz wide. The data after filtering shows that a more continuous signal is recovered from the head wave (Figure 2.17). No spreading of the signal in the time domain is observed like in the previous case. Also the direct wave and air wave were removed. A broader frequency bandwidth for the head wave signal is recovered after filtering, especially in the range of low-frequency components. The head wave can be traced up to 1 m offset using the radial domain filtering, while only up to 1.5 m in the frequency domain (Figure 2.17).

The next step in this experimental processing flow was the linear move out correction of the shot gathers (Figure 2.13). Prior to this correction, the data were limited to an offset range from 0.9 m to 4 m, since the near-offset traces have a high amplitude band that distorts the results. The linear move out correction ' t_{LMO} ' depends on the offset 'x' of the trace and the velocity ' V_{LMO} ' specified (Equation 2.5).

$$t_{LMO} = \frac{x}{V_{LMO}}$$
(2.5)

The correction times from this equation show little sensitivity for large variations of velocities, which in part is a consequence of the small spread and the velocity itself (Figure 2.18).

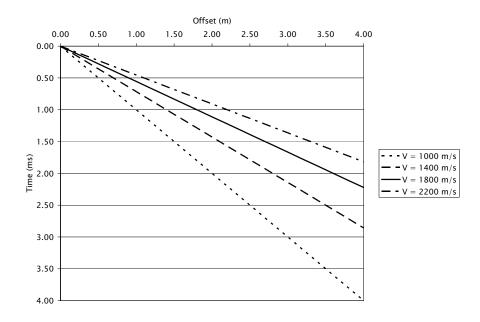


Figure 2.18 Linear move out correction, or offset-dependent static shifting used in the experimental processing flow. Note that the correction is only 4 ms at its maximum value.

A P-wave velocity of 2244 m/s was obtained by averaging the refraction times over all the shot gathers (Figure 2.19). The correction times obtained with velocities higher than the average value of 2244 m/s doesn't show much variation. This is in part due to the small spread used, and the velocity of the frozen layer. A correction LMO velocity of 2000 m/s was used for this line.

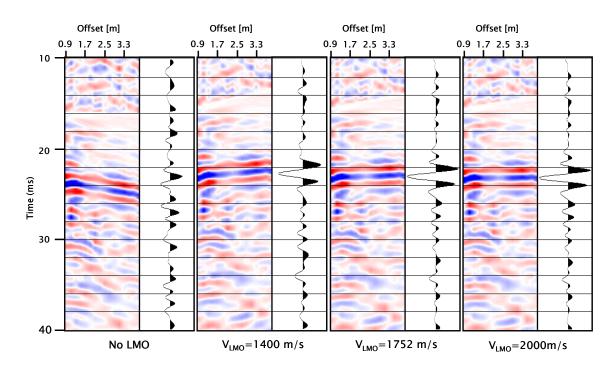


Figure 2.19 Shot gather 100 with offsets from 0.9 m to 4 m and a linear move out correction of: none, 1400 m/s, 1752 m/s and 2000 m/s.

The final step for obtaining an image of the subsurface is stacking and balancing. Little variation of the head wave velocity along the line is observed, however a single linear move out velocity of 2000 m/s was used for all the shots. From every shot gather, a stacked trace was obtained, for a total of twenty traces (equivalent to twenty shot gathers) for all the line. Different stacked sections were obtained using the following LMO velocity corrections: no LMO velocity correction, 1000 m/s, 1752 m/s and 2000 m/s

(Figure 2.20). For longer lines or for 3D surveys this technique could be used to do velocity analyses with different LMO velocity corrections and based on amplitude and continuity of the traces. Additionally this information could be combined to build a stacking velocity model of the surveyed area. The inline component of the data was used to obtain an estimate velocity of the thawed layer, but since the PSS head wave was not recorded, no image was obtained. For longer arrays, a PS seismic stacked section can be obtained (Nieto *et al.*, 2003).

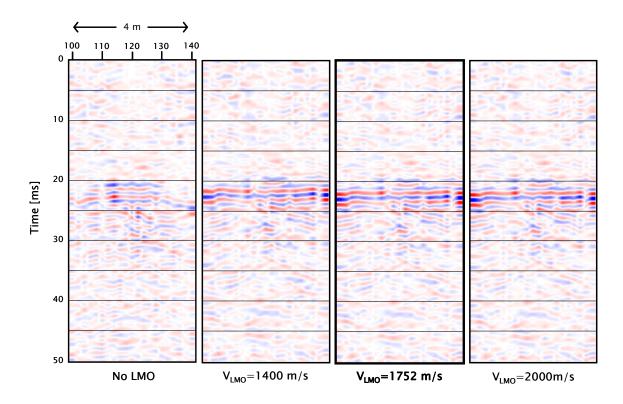


Figure 2.20 Seismic stacked sections obtained from the experimental refracted processing flow. The line is 4 m long and only the top 50 ms is shown. Different LMO velocities show how the highest amplitude is obtained with the correct stacking velocity, however the difference is subtle.

2.4- 3C-3D high resolution seismic imaging

Survey design and field logistics

A 3C-3D high resolution seismic project was acquired in Devon Island, Nunavut as part of the geophysical program. The survey site was conducted on a flat surface of 25 m² inside the perimeter of the HMP base camp (Figure 2.6). The objective of this survey was to image the active layer, and other intra-permafrost events that might be found. Since the depth of investigation is so close to the surface, about one metre depth, issues with reflected energy ratio, attenuation, surface waves, P to S conversion, resolution, and others, were important to understand the process of obtaining an interpretable image. No significant dips are expected to be recorded hence no spatial aliasing represents an issue to the survey. The sample rates used for the survey (Table 2.3) were designed considering subsurface velocities of the study area. Reports from the same area show the presence of a high velocity contrast between the active and the frozen layer (Nieto *et al.*, 2002 and 2003).

Seismic survey	High resolution 3D		Standard 3D	
parameters	Space	Time	Space	Time
Sample rate	0.5 m	0.125 ms	25 m	2 ms
Nyquist frequency	1 cycle/m	4000 Hz	0.02 cycle/m	250 Hz

Table 2.3	Sample rates used for the project. Two additional columns with sample rates
from a stan	dard 3D seismic survey are shown for comparison.

The temporal Nyquist frequency is an important parameter that points the limit for time aliasing problems. Use of these parameters allows seismic data recording *up to 4000 Hz* and 1 cycle/m frequency without aliasing problems, although 400 Hz is the maximum

frequency expected to be recovered due to attenuation and equipment limitations. When the volume of data is considerably large, it is possible to resample the data to an optimal time sample rate, but in this case was not necessary.

Since we had a restricted number of receiver points (twenty per shot) a large number of shot points were recorded compared to receiver locations. The procedure to record this survey was similar to that of a standard rectangular 3D seismic exploration survey, but on a smaller scale. We used a rectangular recording spread formed by two receiver lines and ten stations per line (Figure 2.21). Since we were constrained by the number of receivers to a maximum of twenty, a more dense shot coverage was used. The parameters of the survey were defined as highlighted below:

- Source points spacing of 25 cm;
- Source lines spacing of 50 cm;
- 9 source points per source line centred;
- 13 source lines per recording unit;
- Receiver stations spacing of 50 cm;
- Receiver lines spacing of 50 cm;
- 10 receiver stations per receiver lines; and
- 2 receiver lines per recording unit.

A recording area patch defined as a *swath* from now on, consists of a fixed position of receiver stations for several source stations. The total number of source points per swath was 117 (Figure 2.21). To cover the study area we recorded five swaths moving the receiver lines 1 m at a time without overlap (Figure 2.23). In this type of survey the use of a plastic grid marked with source and receiver positions would be very useful addition

to avoid the possibility for human errors, and accelerate the recording process. Once the swath has been finished, the grid will be moved to a new position and the source points will be marked automatically as well.

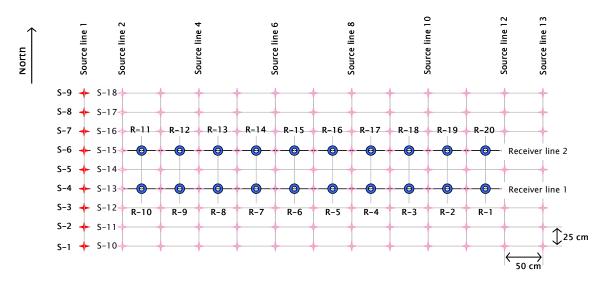
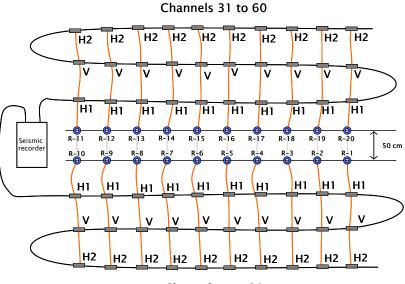



Figure 2.21 Recording unit for 3C-3D seismic survey. Red crosses indicate shot points and blue circles indicate receiver stations.

The survey was recorded over three days. Some time was lost during the survey because of heavy rain that caused strong noise level on the geophones. The source used in this survey was a 2 Kg hammer. A metal washer was centred at the shot point to use as the impacting base for the hammer. A trigger was attached to the hammer for zero – time recording. Only one geophone per station was used for this seismic survey. The geophones were oriented in such a way that the *arrow of the H2* direction was pointing towards *south*. To use the three component geophones we had to connect the seismic cable starting with the H2 channel, following the vertical and then the H1 channel (Figure 2.22). Once all the shot points for a swath were acquired, we moved the receiver spread

(geophones + seismic cables + seismic recorder) one metre north, without overlapping receiver lines (Figure 2.23).

Channels 1 to 30

Figure 2.22 Diagram showing the connection of 3C geophones to the seismic recorder.

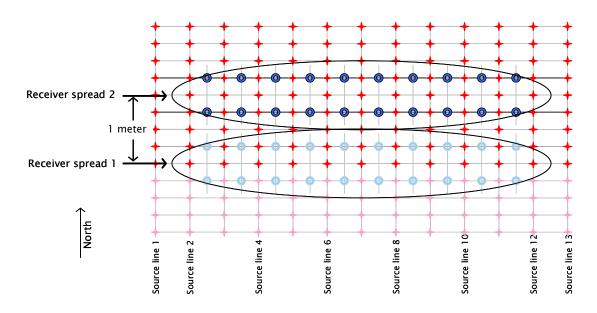


Figure 2.23 Diagram showing the advance of a swath.

Pre-processing (geometry and trace header edit)

The raw data were saved in a format used by seismic refraction recorder systems defined by a "dat" extension. This was transformed to standard "sgy" format, verifying that the file number and the channel number on the trace headers were conserved, as well as the amplitude content. Once the data were correctly converted, we uploaded it into the processing software (ProMAX). The first step to set up the geometry was to separate the data into three different sets corresponding to sensor position: *vertical* <<V>>, *inline* <<H1>> and *crossline* <<H2>>. The three components are defined as in the previous 2D surveys. The order in which the traces were originally sorted was file number and channel number. The channel number corresponds to a specific geophone number and sensor position (Figure 2.22 and Appendix A-Table A.3). The geophone number of each of the three datasets was defined from the channel sequence numbers as a reference, using a simple formula (Table 2.4). The range of the geophone number on each of the components (Figure 2.24).

Channel number ranges	Geophone number formula
1 to 10	= chan
11 to 20	= 21 - chan
21 to 40	= chan – 20
41 to 50	= 61 - chan
51 to 60	= chan - 40

Table 2.4 Formulae to define the geophone number of the traces from the channel number.

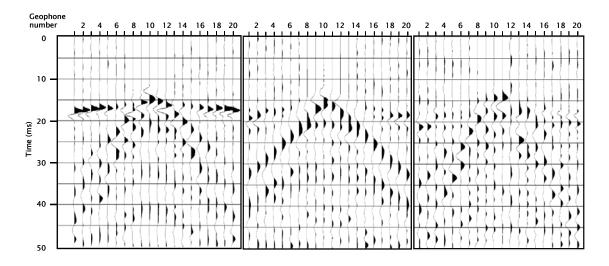


Figure 2.24 Seismic data from shot file number 4012. From left to right, we observe the vertical component, inline (H1) and crossline (H2). An AGC filter of 30 ms with a bandpass frequency filter was used for the display. Notice the presence of a prominent PPP head wave in the vertical component, and a consistent direct arrival in the inline component.

Once the data had the geophone number information on the headers we continued with defining receiver and source locations using a survey grid as a reference. The survey station numbers were defined in a rectangular grid with a unit separation of 0.25 m. The origin of coordinates for the grid was located in the south western corner outside the study area. The station number consists of 2 numbers: "aabb". The "aa" corresponds to the line station number in the east – west direction, and the "bb" corresponds to the ones in the north – south direction (Figure 2.25). For example 1219 corresponds to the station located 2.75 m (11 stations times 0.25 m) east and 4.5 m (18 stations times 0.25 m) north of the station 0101 (south western corner of the survey area).

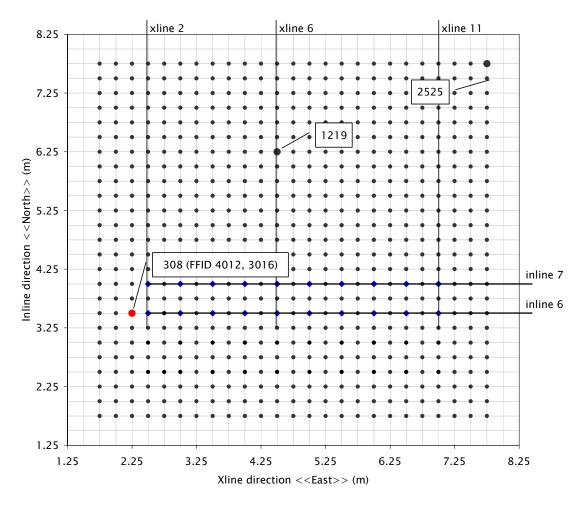


Figure 2.25 Survey grid used for the 3C – 3D high resolution seismic project. The scale used in both axes is centimeters. Some stations are marked for clarification.

The field notes were used to define an observer report that relates the file number and recording channels to the source and receiver stations (Appendix A). The source stations were matched to the file numbers (Table A.4, Appendix A) and the receiver stations were matched to the geophone numbers (Table A.5, Appendix A). After the traces were fed with receiver and source stations, a survey file with spatial coordinates (Table A.6, Appendix A) was loaded as well and completed with this the geometry. To make sure that the geometry is correct, a time gate was picked for one gather and propagated through the rest of the gathers and source by source and receiver locations.

The last step in the definition of the geometry was binning the data. The theoretical bin size was $0.125 \text{ m} \times 0.25 \text{ m}$, but we used a square bin size of $0.25 \text{ m} \times 0.25 \text{ m}$. Offsets were calculated using as a reference 0.25 m, 5.5 m and 0.125 m for minimum, maximum and interval respectively. The maximum fold obtained for the full range of offsets was 60 (Figure 2.26). The acquisition footprint was a consequence of the limited number of geophones for the survey, although it is not so marked for the target depth (Figure 2.26).

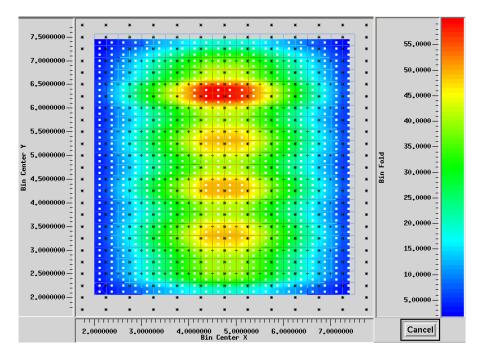


Figure 2.26 Fold distribution obtained for the 3C – 3D survey. The bin size was 0.25 m x 0.25 m.

3C rotation analysis

Tap test of the geophones indicate that the response for each component vary. This conclusion could be biased by the fact that the strength of the tap in different directions was not constant. In order to find if the response varies, or is constant, between the horizontal components, a number of traces with different azimuths were analyzed: 45°,

location looking at the receiver location. For reference, the north direction has 0° azimuth, and 90° azimuth for the east direction.

SR azimuth	Offset	H1 polarity	H2 polarity	Source loc.	Receiver loc.
45°	0.35	Normal	Reversed	1111	49
135°	0.35	Normal	Normal	1515	54
225º	1.77	Reversed	Normal	909	1
315°	1.77	Reversed	Reversed	1305	26

 Table 2.5
 Parameters of location and orientation of the traces analyzed for the rotation correction.

Significantly, this analysis indicates that the energy recorded by the H1-H2 components at different azimuth values is equal and therefore no variation is observed between them. In 3D geometries positive offsets are calculated when both the geometry and the azimuth of the source-receiver point is assigned. This process helps when dealing with *shear waves*. The importance of controlling the position of the source and receiver is due to the nature of shear waves, as they have a polarity sign change with change in the offset sign. In other words, a polarity reversal occurs whenever source and receiver position are interchanged (Figure 2.27). The direct and refracted events recorded by the horizontal components H1-H2 of the geophones show this polarity reversal (Nieto *et al.*, 2002). The behavior observed in the horizontal components H1-H2 at various azimuth values agrees with the expected theoretical results (Table 2.5 and Figure 2.27). An additional issue when dealing with shear waves in 3D geometries is the orientation of the sensors in the field and the orientation for processing. At the time of acquisition a specific orientation is fixed for all sensors. For this 3D survey the convention used was H2 pointing towards

south. Generally for processing the horizontal components have to be rotated from the H1-H2 field directions to the *radial-transverse*. The elastic energy is recorded by both horizontal sensors fixed in a constant direction.

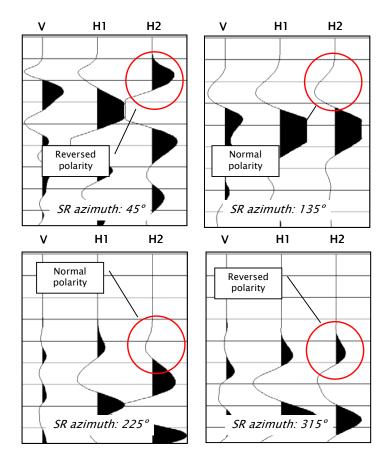


Figure 2.27 Display of V-H1-H2 sets of traces from various source-receiver pairs. Top to bottom, left to right each diagram has a different azimuth and offset value: 45°-0.35 m, 135°-0.35 m, 225°-1.77 m and 315°-1.77 m. Observe how the H1 component traces change polarity between 0°-180° (top) and 181°-360° (bottom). In the same way, H2 component traces change polarity when the azimuth value is in the range 0°-89° or 271°-360°.

The objective of rotating the H1-H2 horizontal traces is to find the direction of *maximum energy* that is defined as *radial* and the direction of *minimum energy* that is defined as *transverse*. By definition the radial and transverse directions are orthogonal. Various methods have been developed to find the angle of rotation (*e.g.* Guevara, 2001).

Generally these methods require the use of either first break picks, or time windows, to obtain the angle were a maximum level of energy is reached (DiSiena *et al.*, 1984). Normally this method uses first breaks, or event(s) in both horizontal components. Other methods consist of using hodograms, which are a plot of the H1 versus H2 amplitudes to define an angle of maximum energy for a particular event. This method requires the presence of clear events as well. A more automated method *geometrical rotation* uses the geometrical angles of source receiver pairs (azimuth) to rotate the H1-H2 into radial and transverse positions, as if the geophones were oriented towards the source location. All of these methods are implemented in the Matlab environment and compared to the geometrical rotation to estimate the error among them. The inputs for this comparison are the traces chosen for the polarity analysis (Table 2.5).

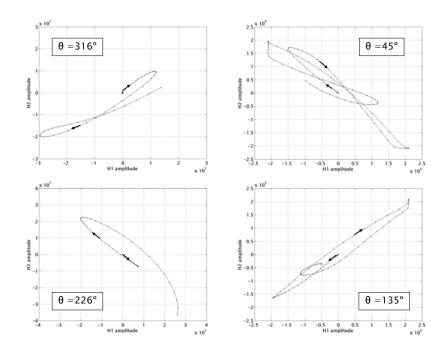


Figure 2.28 Hodograms for traces at different source receiver azimuths: 45°, 135°, 225° and 315°. Each display consists of H2 amplitudes (vertical axis) versus H1 amplitudes (horizontal axis).

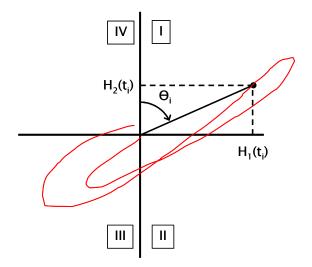


Figure 2.29 Hodogram diagram example. The horizontal and vertical axes correspond to the H1 and H2 components respectively. To calculate the vector θ_i for a complete cycle, the space was subdivided into four quadrants according to their azimuth: (I) 0 to 90, (II) 90 to 180, (III) 180 to 270 and (IV) 270 to 360. The origin for azimuth values points towards positive H2 amplitudes and the angles are measured clockwise.

The first method tested, *hodogram analysis*, allows a visual inspection of the polarization characteristics of the analyzed event. The time window chosen for the amplitude extraction is from 10 ms to 24 ms for all the traces that contain a clear direct event. Traces at different azimuths allow the observation of the variation of polarity of sensors according to their position (Figure 2.28). A good approximation of the rotation angles can be estimated from observing hodogram displays. The uncertainty of these measures is high due to its dependence on visual estimation of the rotation angles. A method that allows obtaining an estimate based on the amplitudes of H1-H2 components (Figure 2.29) was developed by DiSiena *et al.* (1984). This method consists in obtaining instantaneous angles of rotation $\theta(t_i)$ from Eq. 2.6, and defining a histogram of the resultant angle. The vector $\theta(t_i)$ can be weighted using $r(t_i)$ or $r^2(t_i)$ (Eq. 2.7) in the

presence of noise in both components, but this is not the case for this dataset. The origin and direction of measuring the angles is arbitrary, but should be consistent.

$$tan\left(\boldsymbol{\theta}_{i}\right) = H_{1}(t_{i}) / H_{2}\left(t_{i}\right)$$

$$(2.6)$$

where, $\theta_i = \theta(t_i)$

$$[r_i]^2 = [H_2(t_i)]^2 + [H_1(t_i)]^2$$
(2.7)

where, $r_i = r(t_i)$

Once the vector θ_i has been obtained a histogram has to be defined. The number and width of bins to be used may vary according to the distribution of angles obtained. For this case the bins were chosen to be 5° wide, for a total of 72 bins for a complete cycle (Figure 2.30). The azimuth angles obtained by using this method show small differences compared to the geometrical angle from the survey (Table 2.6).

Source Receiver loc. loc.	SR azimuth (geometrical)	Geometrical rotat. angle	Histogram method		
			Rot. angle	Error (%)	
1111	49	45°	135°	135°	0
1515	54	135°	225°	225º	0
909	1	225°	3150	3140	0.3
1305	26	3150	45°	440	0.3

Table 2.6. The rotation angles using the histogram method coincide with the angles obtained from the geometrical measures.

Realizing that the error from using the geometrical angle of rotation is less than 1%, the automatic rotation of H1-H2 components into radial-transverse is chosen. This choice is made because otherwise it would represent an analysis of an approximate of 100,00 traces for this 3D survey. The geometrical rotation method is based on a simple equation

(Eq. 2.8). DiSiena *et al.* (1984) developed a technique to orient geophones in VSP surveys and that is used in this project to rotate the horizontal components towards the source location (Figure 2.31).

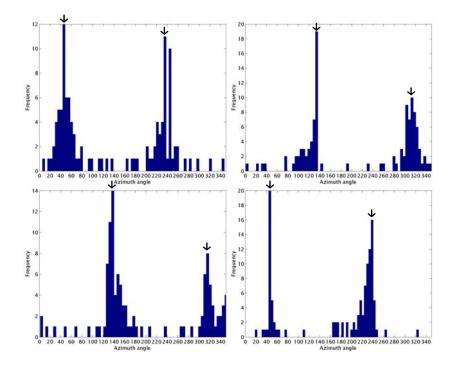


Figure 2.30 Histogram for rotation angle calculation. The horizontal axis shows the angle values ranging from 0° to 360°. The vertical axis corresponds to the frequency of samples that fall into a specific bin. The black arrows indicate the position of a maximum energy, which corresponds to the rotation angle.

The energy from H1 and H2 components is used to calculate both the radial and transverse new components using equation 2.8.

$$x' = M \cdot x \tag{2.8}$$

where

x': columns vector with rotated components;

x: column vector with field components; and

M: transformation matrix.

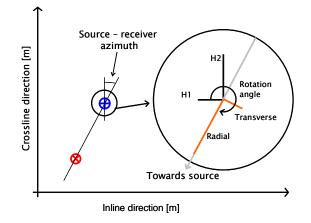


Figure 2.31 Technique for geometrical rotation of horizontal components. The red circle indicates a source location while the blue circle is a 3C receiver location. After a clockwise rotation of the H1-H2 components into radial-transverse is using the respective azimuth angle, every geophone was pointing towards the source.

Consider the traces from source location 1111 and receiver location 49, which has a geometrical azimuth of 45°. The rotation angle for this case is 135°, obtained from its azimuth angle. A series of traces rotated at various angles show continuously how this pair of traces changes its amplitude until it reaches a maximum exactly for the rotation angle equal to 135° (Figure 2.32).

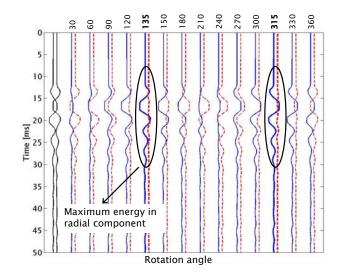


Figure 2.32 Rotated traces from the original H1 - H2 component at source loc 1111 and receiver loc 49 (in black). The source-receiver azimuth for this pair of traces was 45°. The blue

solid traces represent the radial component and the red dashed line the transverse component. Observe how the energy increments and decrements as the rotation angle vary, until a maximum is reached in the radial component for 135°.

A comparison between them is done to assure that the rotation algorithm of the processing software used (ProMAX) was congruent with the theory that was used in the previous analysis (Figures 2.33, 2.34, 2.35 and 2.36).

Figure 2.33 H1-H2 rotated trace from source-receiver azimuth 45°.

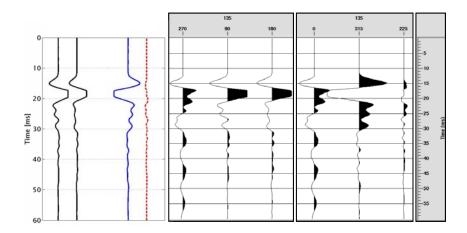


Figure 2.34 H1-H2 rotated trace from source-receiver azimuth 135°.

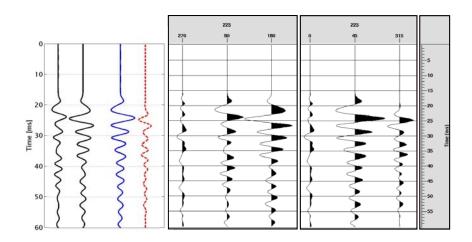


Figure 2.35 H1-H2 rotated trace from source-receiver azimuth 225°.

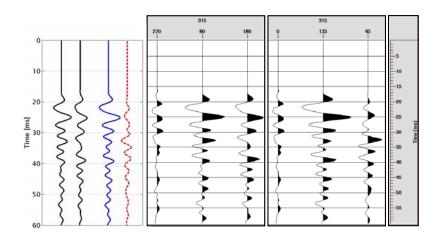


Figure 2.36 H1-H2 rotated trace from source-receiver azimuth 315°.

To fully comprehend the limitations of the rotation algorithm in ProMAX, traces from source-receiver azimuths of 90° were included. This was done since a display of the data after rotation revealed that the traces at these angles were not being rotated properly (Figure 2.37). It was found that the resultant traces after the rotation was applied have incorrect amplitudes because of a improper use of angles (Figure 2.38). Since it only occurs for traces which have source-rotation azimuths of 90°, a simple reversal filter served to correct this mistake (Figure 2.37).

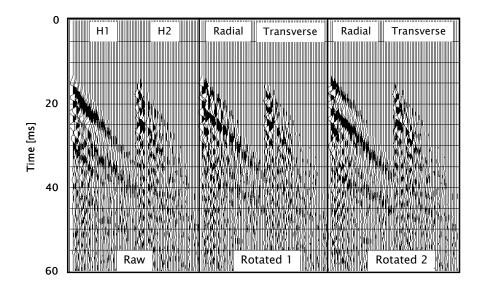


Figure 2.37 Horizontal component traces from source and receiver location 108 and 1 (chosen since most of the azimuths here are around 90°). From left to right: H1 and H2 components with no rotation; radial and transverse traces with no 90° correction; and radial and transverse traces with correction. Rotation effect manifests as the polarity reversals observed in the centre panel.

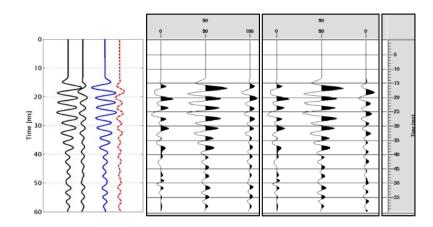


Figure 2.38 H1-H2 rotated trace from source-receiver azimuth 90°. The left panel shows H1 and H2 traces in black (before Matlab rotation) and colour (after Matlab rotation). The right panel shows V, H1 and H2 traces before ProMAX rotation (left) and after rotation (right). Notice the inconsistency between the blue trace in the left panel (radial Matlab trace) and the black trace in the centre of the far right panel (radial ProMAX trace).

Processing head wave energy of 3C-3D seismic

A similar experimental processing flow was applied to the high resolution 3C-3D in order

to obtain a comparable seismic image of the subsurface. A problem included in the

definition of subsurface images when 3D acquisition geometry is used is anisotropy. If the study area has azimuthally anisotropic layers then a variation of arrival times with angle is recorded (Leslie *et al.*, 1999; Vermeer, 2001). A plot of *vertical* traces from a CMP sorted by offset for two different azimuth ranges shows the material to be isotropic (Figure 2.39). This conclusion is based on the absence of variation of arrival times with azimuth.

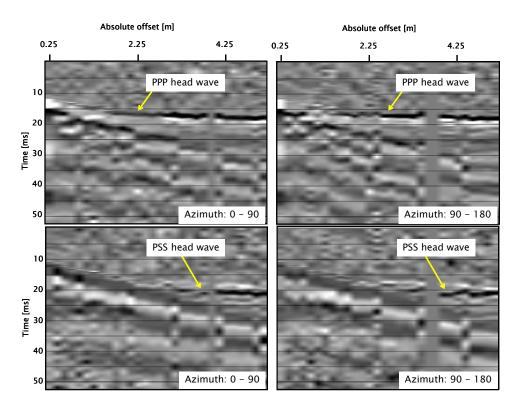


Figure 2.39 Vertical (top) and inline (bottom) component traces from CMP #210. The left panel shows traces with an azimuth range between 0 and 90 degrees, while the right panel is between 90 and 180. No significant difference in arrival time of the PPP head wave is observed in the two different azimuth ranges. Some time variation of the PSS head wave is observed in the inline component.

The inline component traces from the same CMP show some variation, but this variation is unlikely to be caused by anisotropy (Figure 2.39). Many factors that have not been considered include the station elevation differences, the ground coupling, the horizontal orientation and strength of the impact are very likely to cause time variations on the order of fractions of milliseconds.

The first part of the processing flow is the amplitude and frequency balancing. Starting with the amplitude balance, a trace equalization correction was applied to data sorted by receiver location. This was undertaken since the strength of the source varies for every location (hammer impact). The trace by trace equalization was applied to balance the energy by source variability. The effect is not well appreciated in a display, but makes a difference for further processes applied (Figure 2.40). Both the vertical and radial components were equalized using the same operator.

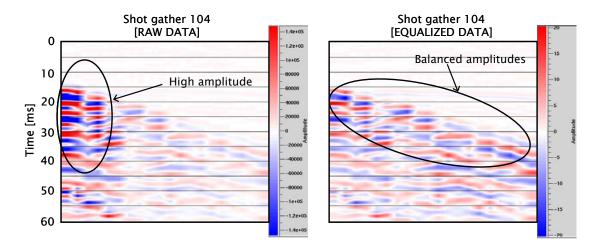


Figure 2.40 Trace equalization applied in the vertical component of shot gather 104. The left diagram shows the raw data with the color bar scale that ranges from 140000 to -140000. Observe how the amplitudes at near offset are very strong compared to the far offset traces. The right diagram shows the same shot gather after trace equalization with the new color bar scale ranging from 20 to -20. Observe how the amplitudes are balanced across all traces.

Now that the amplitudes have been equalized, the frequency spectrum of the data needs to be whitened. The frequency content of the 3D seismic data is different than the 2D seismic because of the different sources used in each survey, a hammer for the 3D and a pellet gun for the 2D surveys. A time-varying spectral whitening application in ProMAX which works by applying different gains to individual frequency bands was used to balance the seismic data.

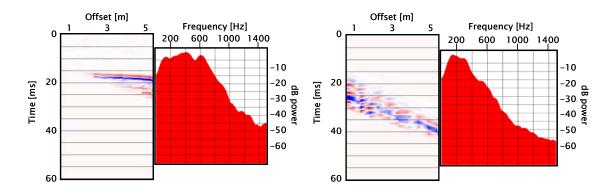


Figure 2.41 Amplitude spectrum of data from vertical component of shot gather 104. The left diagram is the spectrum calculated over a time window containing the head wave, which frequency content ranges from 100 Hz to 650 Hz. The right diagram is the spectrum calculated over the direct arrival, which frequency content ranges from 100 Hz to 300 Hz.

An amplitude spectrum (vertical component) in a time window containing the head wave indicates a broad dominant frequency range from 150 to 650 Hz (Figure 2.41). The parameters for the 3D whitening operator were similar to the 2D, namely, 100 ms operator length, 25% padding, 10 frequency panels and 100-110-810-820 Hz frequency limits. The result from applying this frequency domain operator yields a zero phase wavelet at the head wave arrival and with amplitude similar to the other events (Figure 2.42).

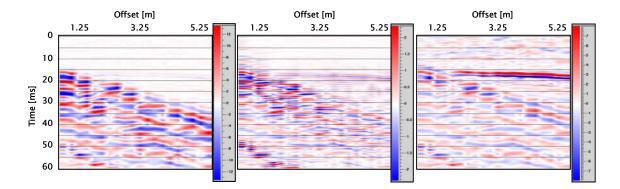


Figure 2.42 Comparison of frequency balance (whitening) versus AGC median for vertical component shot 104. Original (left), frequency balanced (middle) and AGC'ed (right) panels show the different results obtained.

An AGC operator was applied to the raw data as well (Figure 2.42). The scalars for the correction of amplitudes are obtained by calculating a median of all samples in a 20 ms time window. The result from applying this operator to the raw data enhances the head wave arrival, showing a minimum phase wavelet. The difference between the two results rests in the frequency content of the head wave event. The first result has frequencies above -5 dB from 550 Hz to 800 Hz, while the second has a dominant frequency of 150 Hz to 600 Hz. For the purpose of this study frequencies higher than 600 Hz are not considered to be reliable.

The following step is the separation of signal and noise. In this case the direct arrival and lower velocity modes are considered to be *noise*, while the head wave arrival is the *signal* to be separated. Since the radial domain frequency filter was found to be more effective in separating the noise from the signal than a low frequency cut filter, it is used again for the 3D seismic dataset. The discussion can be reviewed in the previous section. A radial fan filter was used to transform the data into the radial domain. The parameters for the transformation were the following:

- 600 radial traces (10 times the maximum number of traces per source location);
- Linear interpolation;
- Minimum radial trace velocity: -20000 m/s;
- Maximum radial traces velocity: 20000 m/s;
- Time coordinate for radial trace origin: 0.01 s; and
- Bandpass filter frequency limits: 80 Hz to 90 Hz and 800 Hz to 810 Hz.

The geometry of this survey makes the offset distribution of source location gathers to be irregular, i.e., consecutive traces with different offset intervals and in some cases with the same offset (Figure 2.43). Trace ensembles output from the radial filter show artifacts (Figure 2.43). This corresponds to traces with similar or equal offset that come into the radial filter. Prior to input traces to the filter a binning of offset values is required to avoid these artifacts. The binning consisted in sorting traces by source location and grouped them in offset bins defined by the following parameters, minimum 0 m, maximum 6 m and interval 0.1 m. Traces within a source location ensemble that had the same offset bin were averaged. After this step the traces were resorted using the new offset distribution and input to the radial filter. The results show a filtered trace ensemble with no smoothing effects of noise (Figure 2.43).

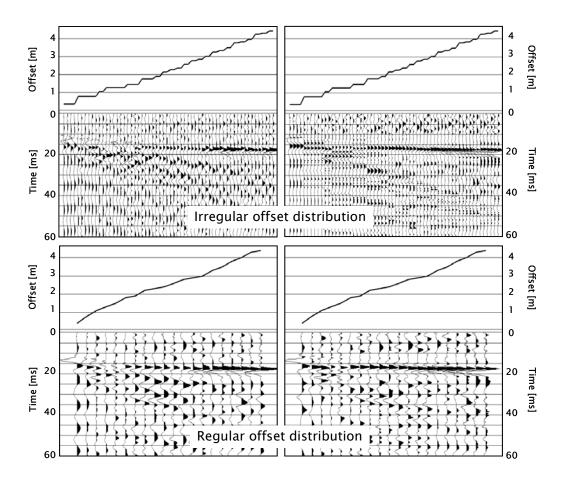


Figure 2.43 Traces from source location 513 sorted by offset. The curve shown on top of each ensemble represents the offset distribution. The left and right ensembles show data before and after radial filter. Observe the artifacts caused by repeated traces in the irregular offset distribution. After offset binning (bottom ensembles) the radial filter is applied without artifacts.

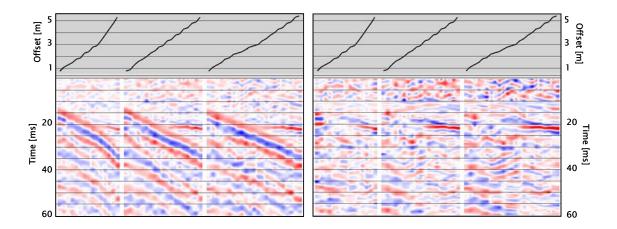


Figure 2.44 Three consecutive source ensembles: 2519, 2520 and 2521. The left diagram is the data before radial filter and the right diagram is after filtering. The ensembles shown have been binned by offset before applying the radial domain frequency filter. The curve shown on top of each ensemble represents the offset distribution. Observe the suppression of direct wave.

The direct wave is strongly apparent on the radial component, compared to the vertical component (Figure 2.44). The use of radial domain frequency filtering for near-surface events is important for the suppression of noise (Figure 2.44). After data has been balanced and filtered, velocity correction and stack follows.

The velocity correction (linear moveout of the head wave arrival) is conducted in the source domain, and the stacked energy is assigned to the trace position falling right under its respective source location. This is repeated for all the source locations and a 3D image with bin size of 25 cm x 50 cm is obtained. The number of bins equals the number of source locations in the survey, which in this case was 325 (25 in the inline direction x 13 in the crossline direction).

The vertical and radial component were sorted by gathers of source location and offset. Since variation of the unfrozen layer structure is observed from the 3D groundpenetrating radar map (Appendix A), 25 gathers from different source locations around the area were used for velocity analysis (Figure 2.45). The traces at each source location were sorted by offset and several linear move-out (LMO) velocity values were applied.

LMO velocity values were obtained selecting the gather with the best corrected event from the gathers with different correction values. The velocity variation observed across the study area responds to dips in the top of the frozen layer. The arrangement of sensors in the field limits the ability of discriminating variation accurately enough since the maximum offset was 5 m. Another disadvantage of this technique is that ensembles (source location gathers) from the centre of the survey lack of long offset traces thus lack of head wave energy.

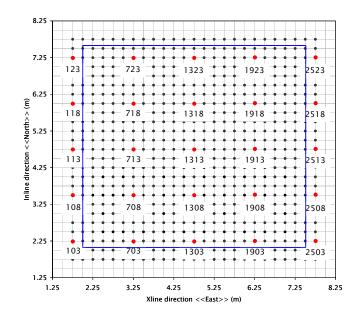


Figure 2.45 Map of 3D seismic survey. Red dots indicate the locations selected for velocity analysis. The blue square delimits the imaged area using the CDP domain method.

The ensembles used for velocity analysis (Figure 2.46 and 2.47) were corrected using the following LMO velocity corrections, 1500, 2000, 2500 and 3000 m/s for the vertical component, and, 1000, 1500, 2000 and 2500 m/s for the radial component data. These velocities were guided using results from the previous 2D seismic imaging. A more refined search was done after the first analysis but no major differences were observed. A single LMO correction velocity of 2500 m/s for P wave and 1500 m/s for S wave, yielding a V_P/V_S ratio across the area of 1.67.

The velocities obtained (Table 2.8) are not interpretable since they cannot be attributed to a common point in the subsurface, but to a rectangular area of the subsurface. The parameter that is related to the structure of the permafrost top is the pseudo zero-offset time since it is a direct function of the depth to the refracting surface below the source location (Equation 2.9).

Source location #	LMO V velocity (m/s)	LMO R velocity (m/s)	Source location #	LMO V velocity (m/s)	LMO R velocity (m/s)
103	2500	1500	1303	2500	1500
108	2500	1500	1308	2500	1500
113	2500	1500	1313	2500	1500
118	2500	1500	1318	2500	1500
123	2500	1500	1323	2500	1500
703	2500	1500	1903	2500	1500
708	2500	1500	1908	2500	1500
713	2500	1500	1913	2500	1500
718	2500	1500	1918	2500	1500
723	2500	1500	1923	2500	1500

Source location #	LMO V velocity (m/s)	LMO R velocity (m/s)
2503	2500	1500
2508	2500	1500
2513	2500	1500
2518	2500	1500
2523	2500	1500

Table 2.7 LMO velocity values obtained for the source domain imaging processing.

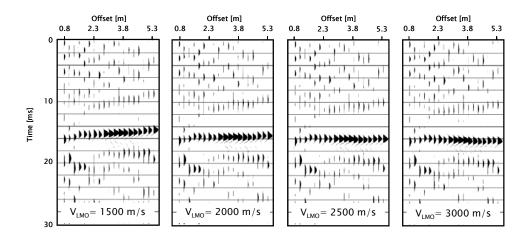


Figure 2.46 Vertical shot gather 118 corrected using different LMO velocities (from left to right): 1500, 2000, 2500 and 3000 m/s. The appropriate correction occurs with a value of 2500 m/s.

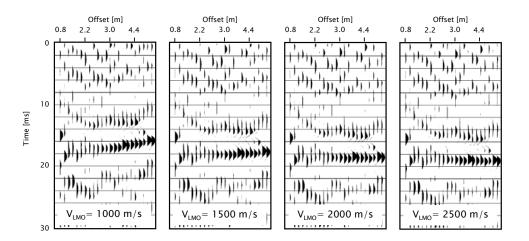


Figure 2.47 Radial shot gather 2513 corrected using different LMO velocities (from left to right): 1000, 1500, 2000 and 2500 m/s. The appropriate correction occurs with a value of 1600 m/s.

A general south to north dip of the frozen layer is interpreted in the stacked sections. The reason being the increasing zero-offset time of the head wave arrival found in the N-S seismic sections.

$$t_i = 2 Z \cos(\alpha_c) / V_{Pl}$$
(2.9)

where Z is the depth to the refracting surface, α_c is the critical incidence angle, V_{P1} is the compressional wave velocity in the first medium (thawed layer), and t_i is the zero-offset time or commonly known as intercept time. After all the traces for one ensemble have been LMO corrected, they are stacked to form a zero – offset trace assigned to the specific source location for that ensemble. The dip of the structure, which can be interpreted, the thickening of the thawed layer, is observed well in the crossline stacked seismic section number 1 (Figures 2.48 and 2.49).

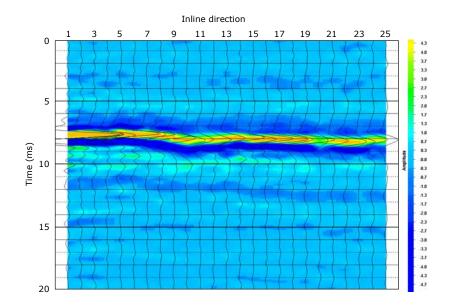


Figure 2.48 Crossline seismic section number 1, from vertical component data.

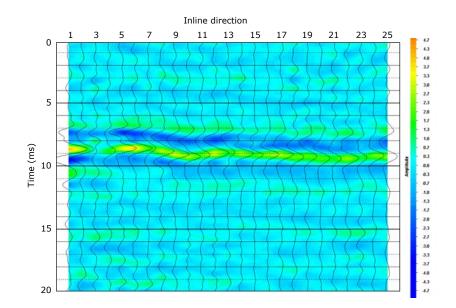


Figure 2.49 Crossline seismic section number 1, from radial component data.

It is possible to generate a 3D seismic image of the shallow subsurface using the refracted wave. After all the ensembles have been stacked a volume is obtained. Due to acquisition geometry, the number of traces in the N-S direction (inline direction) is different than the ones in the E-S direction (crossline direction), 13 and 25 respectively (Figure 2.25). The total number of traces for the radial and the vertical component is 325 for each volume. Linear interpolation in the inline direction was applied to have a symmetrical bin size in both directions. The results indicate a *signal* with stronger amplitude in the vertical component compared to the radial (Figures 2.48 and 2.49).

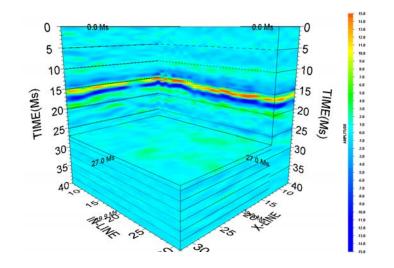


Figure 2.50 View of seismic volume from vertical component data.

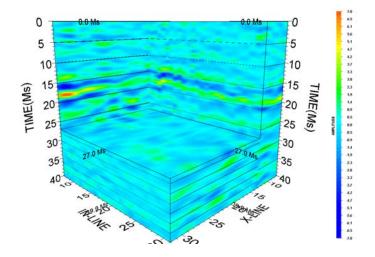


Figure 2.51 View of seismic volume from radial component data.

CHAPTER THREE: GROUND-PENETRATING RADAR EXPLORATION AT DEVON ISLAND, NUNAVUT

A number of ground-penetrating radar, GPR, experiments were acquired at the HMP base camp. These experiments were used to image the frozen-unfrozen sediment interface (Figure 3.1), as well as to obtain soil properties. Velocity analyses using variable-offset, constant-offset geometries, 2D and 2.5D surveys were part of the experiments. GPR method was chosen because radar waves are sensitive to the contrast in dielectric properties of the soil. Moorman *et al.* (2000) review the basic concepts in GPR data interpretation. They show that the reflection coefficient (for a planar surface) can be related to the dielectric properties of the material by equation 3.1:

$$R = \frac{\sqrt{k_1} - \sqrt{k_2}}{\sqrt{k_1} + \sqrt{k_2}}$$
(3.1)

The constants k_i (i=1 for upper layer and i=2 for lower layer) represents the dielectric constant of the material and are measured in electrostatic units (esu). For unfrozen sediments the average k is 25 esu, while for frozen sediments is 6 esu. The reflection coefficient for this case scenario is 0.34. This value is very high compared to the frozen sediment (k=6 esu) over rock (k=8 esu) case which has a reflection coefficient of -0.07. This is the reason why GPR exploration is ideal for subsurface imaging under periglacial conditions.

The depth of the active layer varies according to the combination of several factors, such as, ambient air temperature, degree and orientation of slope, vegetation, drainage, snow cover, soil and/or rock type, and water content (French, 1996).

The freezing is a more complex process than thawing because it occurs from both sides of the active layer while thawing occurs only from the top. Additionally, a drop in temperature occurs in the freezing process as a consequence of the retarding freezing effect caused by the release of latent heat.

The seasonally active permafrost is defined as the uppermost part of the permafrost that thaws and refreezes seasonally. The extent of this layer depends either of the salinity and/or clay content. Frost heave and ground ice segregation are two phenomena which represent engineering hazards due to the displacements and pressures generated (French, 1996).

An interesting feature related to permafrost areas is "patterned ground". Polygonal patterns are one of the most important. Circles, stripes, nets and steps also may be formed depending on the slope angle. The processes responsible for these patterns occur within the active layer, and have not been proven, although numerous hypotheses exist. The term cryoturbation, referred to all soil movements due to frost action, is often used to explain the development of patterns. Usually three types of cracking control the formation of polygonal patterns: desiccation, thermal contraction and seasonal frost. Details with regards to the nature of each of these processes are discussed in French (1996).

Two different instruments were used to record these experiments, both from Sensors and Software Systems: (1) a constant – offset antennas NOGGIN 250 MHz GPR cart, and (2) a variable – offset PulseEKKO unit with 100 and 200 MHz antennas. The separation of the antennas in the NOGGIN equipment is 0.28 m. An important characteristic of this equipment is that it allows a real-time display of the data as it is been acquired. A review of the acquisition and parameters of the experiments was reported earlier by Nieto *et al.* (2003).

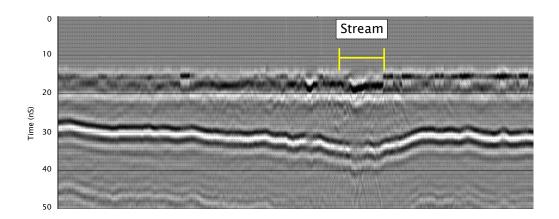


Figure 3.1 Ground – penetrating radar 2D recorded across a stream in the Conrad Valley. The length of this section is 130 m. The thickness of the active layer is greater under the river mainly due to water's greater heat capacity, among other factors.

The location for the 2D and 2.5D ground-penetrating radar experiments was a flat area located between the greenhouse and the work tent inside the base camp (Figure 3.2). The recorded experiments were:

- (1) Reconnaissance 2D survey (250 MHz antennas);
- (2) Constant-offset velocity analysis with 250 MHz antennas (Rebar experiment); and
- (3) 2.5D survey (constant-offset unit with 250 MHz antennas).

The analysis of this data allowed a detailed description of GPR imaging of soil under periglacial conditions.

3.1- 2D GPR survey and test pit

A 26 m GPR line acquired at the study area with the NOGGIN 250 MHz unit indicates the presence of a complex strong reflection from 17 to 25 ns (Figure 3.3). This event was interpreted to be the frozen-unfrozen sediments interface, and it was confirmed with the results obtained from a test pit dug next to the line (Figure 3.4). This interface shows discontinuities and diffractions which could be caused by either the presence of boulders, or by formation of ice lenses at the top of the permafrost (French, 1996).

Figure 3.2 Views of the study areas of the project: (1) base camp zone to the left, and (2) land strip zone to the right.

The distribution of sediments in the active layer varies from a very fine silt layer on the top to a rocky pebbly layer right on top of the permafrost (Figure 3.4). It is reasonable to think this process to be controlled by the freezing-thawing cycles in this area. French (1996) defines the active layer as the layer of ground in areas underlain by permafrost which are subject to annual freezing and thawing.

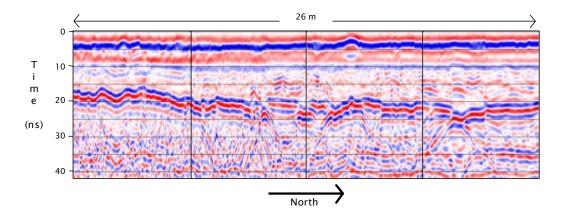


Figure 3.3 A 26 m GPR reconnaissance line from the base camp site. A series of diffractions are interpreted as either boulders or ice lenses in the top of the permafrost.

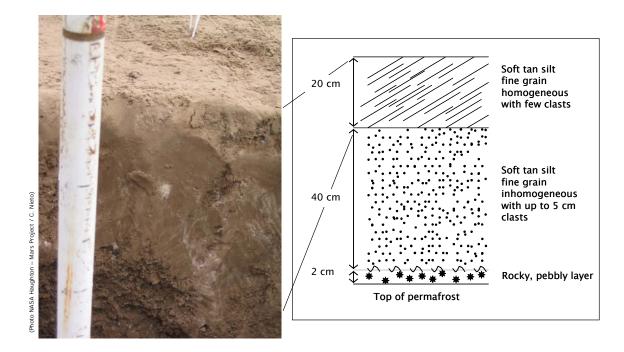


Figure 3.4 View of the test pit dug in the base camp zone. The active layer may be separated into three layers according to sediments size.

3.2- GPR velocity analysis

A number of surveys were recorded to obtain velocity curves for the active layer, seasonally active permafrost, and permafrost (Figure 3.4). Velocity curves are important for time-to-depth conversion, and interpretation of GPR data. The experiment was recorded with the NOGGIN 250 MHz. This unit has a constant separation of 0.28 m between the receiver and transmitter antennas.

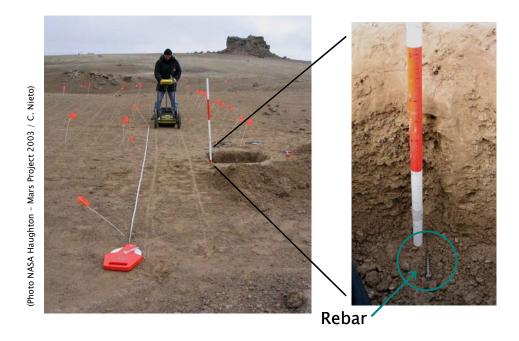


Figure 3.5 Views of the constant offset GPR velocity survey. Rebar was pound at various depths (right) and a GPR line was acquired (left).

The experiment consisted of recording constant offset six meters GPR lines across a Figure with a one meter rebar at various depths (Figure 3.5). This element was used since it has a strong radar response, which is used to complete the calibration. Nieto *et al.* (2003) give a more detailed explanation of the experiment.

A pit was dug to the bottom of the active layer. In one of its sides rebar was driven to the soil at various depths (Figure 3.5). For each depth value a GPR line was recorded. A rebar diffraction event was interpreted for each line (Figure 3.6), obtaining a set of time-depth values (Table 3.1). A cross plot of time and depth values yield an average velocity model of the active layer (Figure 3.7). Interval velocities are obtained from each time-depth pair, and RMS velocities (Figure 3.8) are calculated as well using equation 3.2:

$$V_{RMS} = \sqrt{\frac{\sum V_{INT}^2 \cdot \Delta t}{\sum \Delta t}}$$
(3.2)

Rebar	Rebar	Interval	RMS	Diffraction	Difference
depth (m)	twt (ns)	velocity (m/ns)	velocity (m/ns)	velocity (m/ns)	(%)
0.00	2.98	0.0577	0.0577	0.0430	25.48
0.10	5.95	0.0672	0.0626	0.0565	9.78
0.20	7.54	0.1260	0.0802	0.0575	28.33
0.30	10.32	0.0720	0.0781	0.0630	19.32
0.40	13.50	0.0630	0.0748	0.0640	14.35
0.50	16.67	0.0630	0.0727	0.0705	3.03
0.62	20.24	0.0672	0.0718	0.0740	3.15

Table 3.1 Time-depth values for constant offset GPR line. Rebar times are referenced to the air-ground wave arrival.

The slight change observed in the slope of the time-depth crossplot indicates a change in the radar velocity, which is also observed in the interval and RMS velocity models, as expected (Figures 3.9 and 3.10). This change occurs at the same depth value where the sediments distribution changes in the test pit (Figure 3.4). Based on reported radar velocities (Table 3.2) the conclusion of this velocity change responds to the contrast between saturated silt and saturated sand.

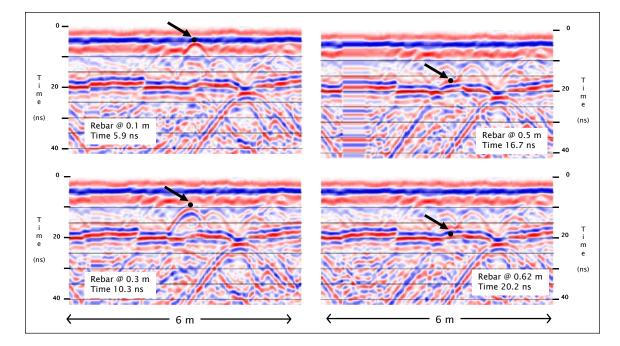


Figure 3.6 GPR lines from constant offset velocity survey. Results from rebar at 0.1, 0.3, 0.5 and 0.62 m are displayed from top to bottom, left to right. Black arrows indicate rebar diffraction apex.

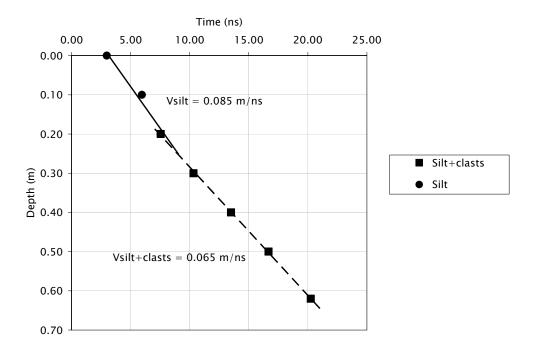


Figure 3.7 Time-depth crossplot. An average radar velocity model by linear regression. Notice the change of the slope around 0.2 m depth.

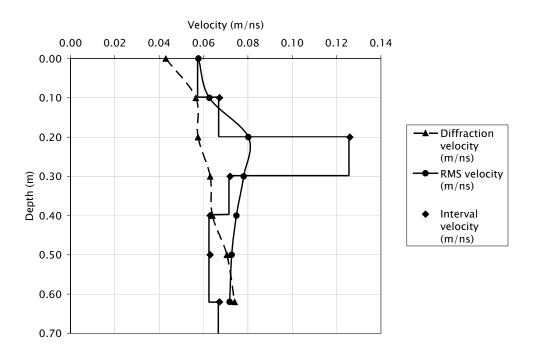


Figure 3.8 Various radar velocity models. Interval and RMS velocity curves calculated from the time-depth pairs indicate a change at 0.20 m depth.

Material	Radar velocity (m/ns)			
Air	0.300			
Fresh water	0.033			
Limestone	0.120			
Saturated sand	0.060			
Saturated silt	0.090			
Dry silt	0.070			

Table 3.2 Radar velocity values for different materials (Davis *et al.* 1989; Moorman *et al.* 2000).

An additional velocity model was obtained by fitting *hyperbolas* to the rebar diffractions at different depth values (Figure 3.8). It is assumed that the moveout of a scatter point recorded with a constant receiver-transmitter survey is hyperbolic, which is a fair approximation for this case. Only a narrow offset of the scattered energy is used to the fitting process as the diffraction is not observed well in the long offset values (Figure 3.6).

The velocity model obtained by fitting hyperbolas to the rebar diffractions grossly correlates with the RMS velocity curve (Figure 3.8) but with some differences. The errors range from 3% to 28% (Table 3.2), decreasing with depth. A number of reasons can be used to explain this difference, starting from the fact that the moveout of a scatter point diffraction recorded using a constant receiver-transmitter separation is governed by the double square root equation (Figure 3.9; Equation 3.3; Bancroft, 2001):

$$T(x) = \sqrt{\left(\frac{t_o}{2}\right)^2 + \left(\frac{x-h}{V}\right)^2} + \sqrt{\left(\frac{t_o}{2}\right)^2 + \left(\frac{x+h}{V}\right)^2}$$
(3.3)

where t_o is the vertical two-way time from a scatter point, x is the horizontal distance from the scatter point to the CMP, h is the half offset, and V is the RMS velocity.

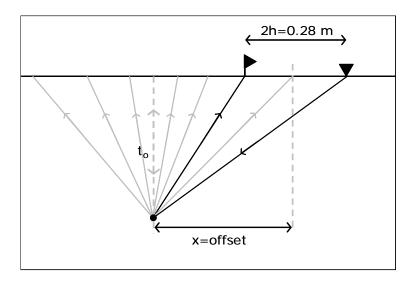


Figure 3.9 Diagram calculation of travel time from a scatter point in a constant velocity media with a constant receiver-transmitter array. Notice that only one receiver records the diffracted event. The gray lines are the scattered energy.

Consider the rebar located at two different depths below the surface: 0.2 and 0.62 m, in a media with a constant radar RMS velocity of 0.08 m/ns (Figure 3.7). A synthetic line recorded using two different settings show the contrast in arrival times and moveout of the scattered energy (Figure 3.9). A constant receiver-transmitter offset and CMP variable offsets surveys were used to calculate travel times from the model defined previously (Figure 3.10). From the synthetic example the diffractions in the variable offset geometry pass through the scatter point for both cases, as expected from the standard normal moveout equation (Equation 3.4).

$$T(x) = \sqrt{\left(t_o\right)^2 + \left(\frac{X}{V}\right)^2}$$
(3.4)

and $X = 2 \cdot x$

where t_o is the vertical two-way time from a scatter point, X is the receiver transmitter offset and V is the RMS velocity.

On the contrary, the diffractions pass below the scatter point for both cases using the constant receiver-transmitter offset geometry. The estimated velocity from a constant receiver-transmitter offset geometry is different than the velocity obtained from a variable offset geometry. Additionally, different apex times occur at zero offset, but are not an issue for the aperture and depths used in this experiment. For a correct estimation of velocities using the hyperbolae fitting process, the double square root equation needs to be considered.

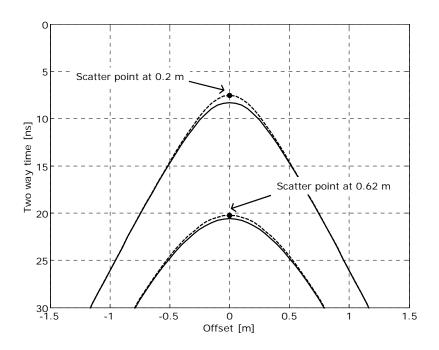


Figure 3.10 Synthetic travel times of a scatter point at two different depth values using a CMP variable offset geometry (dashed lines) and constant receiver-transmitter separation (solid lines).

3.3-2.5D GPR survey

An area of 10 m² was surveyed using the constant offset NOGGIN 250 MHz GPR unit. Nieto *et al.* (2003) describes the field design and recording of this dataset, as well as processing. The volume consists of 21 north-south lines x 21 east-west lines (Figure 3.11). The spatial sample rate set for the inline direction is 0.05 m, and the separation of the lines was 0.5 m. The time sample rate was set to 0.4 ns.

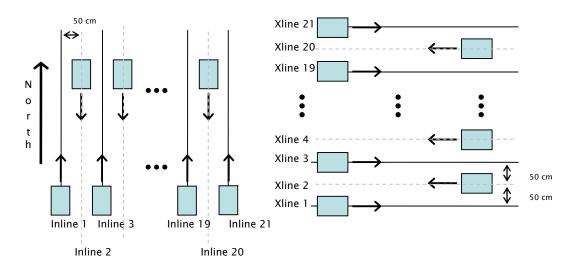


Figure 3.11 Diagram of the acquisition parameters for the 2.5D. GPR inline and xlines correspond to north-south and east-west, respectively. The blue rectangles represent the GPR unit and the arrows are the direction of recording.

An advantage of using constant offset lines is that the processing steps are minimal, consisting of only: trace DC removal, automatic gain control and high cut frequency filter. On the other hand, it constrains the ability of using all the analysis tools from the prestack world, such as: analysis of signal variation with offset (AVO), measurement of propagation velocities of direct, refracted or reflected modes, among other techniques.

Defining a volume from a series of 2D surveys in orthogonal directions is a novel and quick use of constant offset GPR units, but it causes misties among intersecting lines. Additionally, it lacks the ability of correct migration of out-of-plane reflections (Yilmaz, 2001), causing discontinuity of data from line to line. An additional issue with this technique is directly associated with the measuring device attached to the NOGGIN unit. Depending on the conditions of the surface, the unit might jump causing distances to be variable from one line to the other. Even small measuring errors can cause problems with the interpolation results due to the scale of detail for this project.

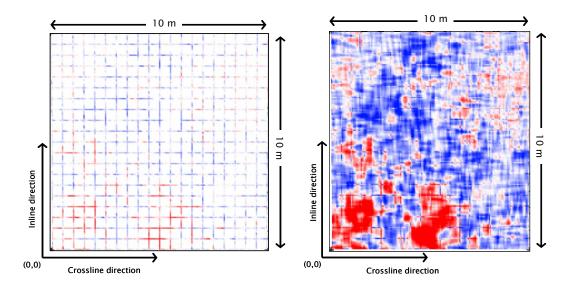


Figure 3.12 Time slice from the 2.5D GPR survey, before and after interpolation+averaging, left and right panels respectively. The spacing between lines is 0.5 m. The gaps are filled by interpolation in each direction. Increasing inline coordinates points toward the north.

Further processes, such as interpolation are required to fill in the gaps produced by the difference between the trace spacing in the inline and crossline directions. A time slice from the volume shows data gaps caused by this problem (Figure 3.12). Two passes of linear interpolation, first in the crossline and second in the inline direction were chosen to fill these zones (Figure 3.13 and 3.14). The final image was obtained by taking the average of both interpolation results. An acquisition footprint marked by the recorded lines is observed in the data after the interpolation+average steps (Figure 3.12).

Out-of-plane reflections problem associated with volumes defined from 2D surveys can be directly observed in the poor correlation at crossing points of orthogonal recorded lines. This causes discontinuity of data from the *recorded lines* to the *interpolated lines* (Figure 3.13). A *recorded line* refers to the line where real data was recorded with the NOGGIN 250 MHz unit. An *interpolated line* refers to the result from interpolating consecutive traces from the orthogonal recorded lines (Figure 3.13). This is the reason why an acquisition footprint is observed in the final interpolated image (Figure 3.12).

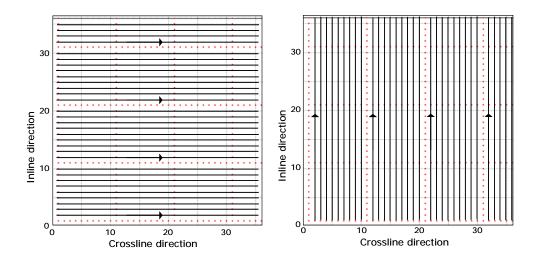


Figure 3.13 Left and right panels shows the grids used for the crossline and inline interpolations, respectively. Red dots indicate a location where a trace was recorded. Black continuous lines indicate the lines which were interpolated. Recorded lines are marked with dotted red lines.

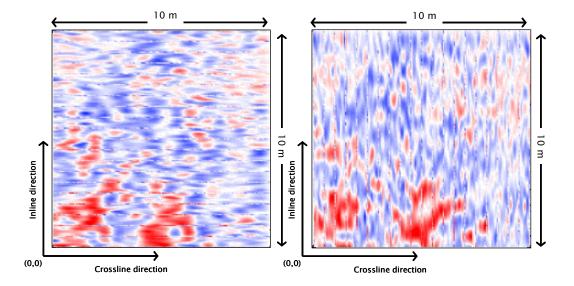


Figure 3.14 Left and right panels correspond to crossline and inline interpolated time slices, respectively. An amplitude stretching effect in the direction of interpolation occurs in both cases as a consequence of the process.

In general, a variety of analysis can be made out of 2.5D data sets. A common application of 2.5D seismic data is to interpret the reflection surfaces and use them to unravel the geological formation history of it.

CHAPTER FOUR: MACKENZIE DELTA MULTICOMPONENT SEISMIC INTERPRETATION

Interest in this part of the Arctic has been increasing after a twenty year hiatus since the discovery of the three giant gas fields: Taglu, Parsons Lake and Niglintgak in 1971, 1972 and 1973 respectively. The possibility of the construction of the Mackenzie Valley Pipeline is the factor that has attracted many companies to explore this part of the Canadian Arctic, again (Polczer, 2001; Ross, 2003; Nieto *et al.*, 2003).

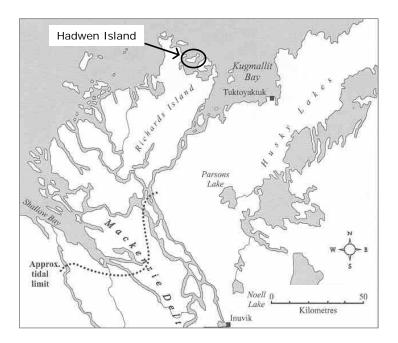


Figure 4.1 Map of the Mackenzie Delta, N.W.T. The location for the seismic test lines was the Hadwen Island north of Richard Island (modified from www.collections.ic.gc.ca)

Devon Energy Ltd. (formerly Anderson Exploration Ltd.) acquired a series of seismic lines in a transition zone, from shore to land, in the Mackenzie Delta, N.W.T. (Figure 4.1). CREWES participated in this project by recording a 3-C seismic line on the same area. This project's main objective was to analyze the performance of different types of sources and receivers. Motivation for this study was the need for better quality data in transition zones, since many seismic surveys cover areas that comprise deep water bottom, shallow water bottom and land.

4.1- Subsurface geology review

A large number of geological surveys, seismic datasets and well logs from the Mackenzie Delta have been reviewed and summarized by Dixon *et al.* (2001). I reviewed isopach maps, structural maps, seismic sections and well logs to define a theoretical geological model of the Hansen Harbour area. Several other authors have worked in the area, but Mi *et al.* (1999) give an interpretation of the Mallik 2L-38 well, which is very useful due to the presence of both P and S wave sonic logs. These are used to define a V_P/V_S function which gives a first approach to the correlation of PS and PP seismic sections.

Mackenzie Delta geology

The Beaufort-Mackenzie basin formed on a post-rift continental margin. The rifting episode began in the Jurassic and continued to the end of the lower Cretaceous. From then until the late Tertiary, compressional tectonics was predominant. Listric faults, folds, and thrust faults are present at various locations in the basin. The combination of significant sedimentation and these structures has resulted in numerous possible traps for hydrocarbons (Dixon *et al.*, 2001).

Consisting mostly of clastic rocks deposited in deltaic, shelf, slope and deep-water environments, the Upper Cretaceous to Holocene sediments in the Beaufort Mackenzie Delta are represented by 12 to 16 km of strata (Dixon *et al.*, 1992). In the area of the

Beaufort-Mackenzie Delta eleven regional sequences have been identified, from the Upper Cretaceous to the Holocene (Figure 4.2). The structural basement is composed of Albian and older strata. These sequences are (from older to younger):

- 1) Boundary Creek (Upper Cretaceous);
- 2) Smoking Hills (Upper Cretaceous);
- 3) Fish River (Early Paleocene to Santonian or Campanian);
- 4) Aklak (Late Paleocene to Early Eocene);
- 5) Taglu (Early to Middle Eocene);

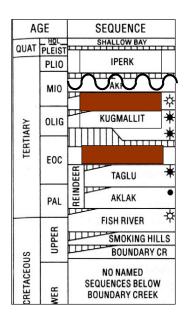


Figure 4.2 Stratigraphic column of the Mackenzie – Beaufort basin (Dixon *et al.*, 1992). Observe that the Kugmallit Sequence has both oil and gas reservoirs.

6) <u>Richards (Middle Eocene to Late Eocene);</u>

Only present as a thin delta complex in the Beaufort-Mackenzie Basin. Under the Mackenzie Delta and near-shore areas the sequence is 1000 to 2000 m thick. Under most of Mackenzie Delta, the Richards Sequence consists mostly of low-velocity shales. They

are of variable thickness and the interval is easily identified on sonic logs. The depositional environment consists of pro delta deposits, mostly shale. The upper boundary is conformable with overlying strata in the Mackenzie Delta. The lower boundary is conformable as well, with the exception of a few erosional unconformities. In seismic sections they consist of either a generally reflection-free interval or one in which there are only weak, discontinuous reflections.

7) <u>Kugmallit (Oligocene)</u>

This sequence has been identified only in the Beaufort-Mackenzie basin. *The thickness estimated in the G-07 well is 1800 m*. The Kugmallit Sequence consists of conglomerates and gravels underlying the Mackenzie Delta and represent *delta plain deposits*. The lower boundary is abrupt throughout most of the basin but varies from apparently conformable (basin ward) to an angular unconformity. The upper contact is also abrupt, but only erosional in the central shelf area. Mackenzie Bay Sequence overlies Kugmallit strata throughout most of the basin. It is possible that the basin margins and some distal basin positions, the younger Iperk Sequence may rest erosional on Kugmallit beds.

8) Mackenzie Bay (Miocene, Late to Middle Miocene)

Deposits of this sequence consist mostly of shale in the central Beaufort area. The dominant environment in the Hansen Harbour area is *delta plain to delta front*, although to the north changes to slope and deep water environments. There is a marked lithological contrast between Mackenzie Bay shale and Kugmallit sandstones. The outer shelf and slope portions of the Mackenzie Bay Sequence are characterized by high-amplitude reflections and well-developed clinoforms, and are good examples of high-amplitude

seismic facies developed in shale-dominant shelf sediments. Under the G-07 well, the thickness of this sequence ranges *from tens of meters up to 300 m*.

9) <u>Akpak (Miocene, probably Late Miocene)</u>

This sequence is not present in the Hansen Island area, since the isopach map indicates that it wedges to a zero edge landward.

10) Iperk (Pliocene to Pleistocene)

The Iperk Sequence thickens from zero on the landward side of the basins to over 4000 m in the north Beaufort Sea. At Hansen Harbour in the G-07 well the interval is approximately 800 meters thick. It consists of weakly consolidated to unconsolidated sandstone and conglomerate at the basin margins, grading laterally into a succession with more shale basinwards. The Iperk Sequence was deposited as one, very large delta complex centred over the eastern Beaufort Sea. The landward part of the sequence contains fluvial conglomerates and sandstones, grading laterally into deltaic and shelf sandstone and shale that in turn grade into overlying slope shale. The sequence has a *fluvio-deltaic dominant environment* in the Hansen area. It is commonly difficult to separate the Iperk from the Shallow Bay strata. The base is marked by a major erosional unconformity that can be traced throughout the Beaufort-Mackenzie and Banks Beaufort basins. The Iperk strata thin rapidly landward to a zero edge.

11) Shallow Bay (Cenomanian to Holocene)

This sequence is characterized by low-amplitude, discontinuous, subparallel reflections, but only in the Mackenzie Trough. Elsewhere it is difficult to separate from the underlying Iperk Sequence. Some other internal units could be defined using shallow, high-resolutions seismic data. The Shallow Bay Sequence consists of ocean-ward prograding sequences, many of which are dominated by large delta complexes.

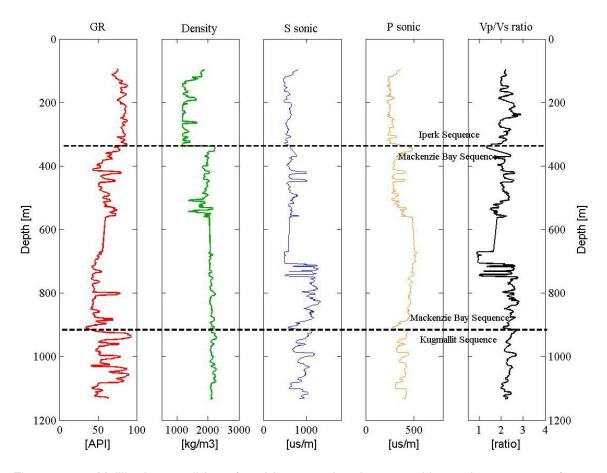


Figure 4.3 Mallik 2L-38 well logs (used by several authors to evidence the presence of gas hydrates in the Mackenzie Delta). The base of ice-bearing permafrost occurs at 640 m deep. The section from 550 m to 718 m was omitted when estimating the Vp/Vs ratio for the lower and upper part of the Mackenzie Bay Sequence (modified from Mi *et al.*, 1999)

A well, relatively close to the area of study is the Mallik 2L-38 (Figure 4.3). Mi *et al.* (1999) provide a detailed discussion of the stratigraphy of this well. They indicate that the upper sequence (Iperk from 0–346 m) is mainly composed of ice-bonded sand with occasional silt and clay layers. The Mackenzie Bay sequence (346-926 m) consists of sand and weakly cemented sandstone with silt/shale interbeds. The Kugmallit sequence

extends below 926 m. The base of the permafrost is at about 640 m and gas hydrates occur between 897 m and 1110 m. VSP and full-waveform sonic logs give P and S-wave velocities of about 3300 m/s and 1500 m/s, respectively, above the base of the permafrost. There is a marked decrease in P and S velocities below the permafrost (to 2100 m/s and 700 m/s). In the gas-hydrate section, the velocities increase to about 2600 m/s for the P waves and 1100 m/s for the S waves. We note that the Vp/Vs value is significantly lower (about 2.4) in the permafrost and gas-hydrate bearing strata than the intervening region that has a Vp/Vs value of about 3.1.

4.2- Well site description: Hansen Harbour G-07

A suite of 10 logs was acquired at the well Hansen G-07 (Figures 4.4 and 4.5). This is an Imperial Esso well located in Hadwen Island (Figure 4.1). It is reported as an oil and gasproducing well (Dixon *et al.*, 1992). This well was logged to approximately 3250 m deep. Spontaneous potential, gamma-ray, caliper logs were acquired from 521.8 m to 3275 m depth. Sonic, density, resistivity (shallow, medium, deep) and porosity were acquired from 1196 m to 3275 m depth. Using the GR and SONIC logs, three lithological boundaries separating four different lithological formations were identified (Figure 4.4 and Table 4.1). The notation used to define the mentioned lithology is sequences A, B, C, and D. A identifies the shallowest between them and the contacts are the following: L1 (between A and B), L2 (between B and C) and L3 (between C and D) (Figures 4.4 and 4.5).

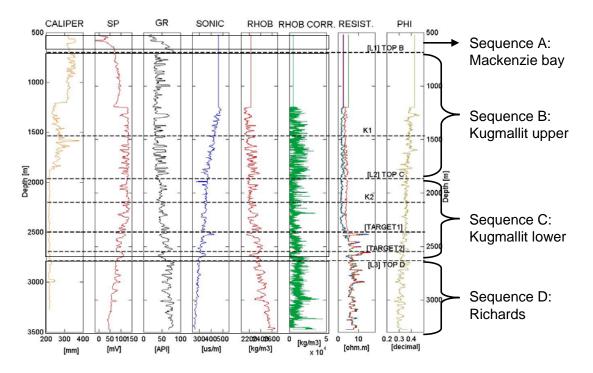


Figure 4.4 Hansen Harbour G-07 well logs. Observe that the SP, gamma ray and caliper logs were acquired from 521.8 m to 3275 m, and the rest went up to 1196 m only. Based on the GR log the lithology of this well was separated into 4 sequences: A, B, C, and D, A being the shallowest and D the deepest sequence. Notice the two target zones defined in the sequence C.

Boundary	Depth [m]		
[L1] Top B	691.4		
[L2] Top C	1871.5		
[L3] Top D	2636.9		
Top target 1	2372.9		
Base target 1	2403.9		
Top target 2	2548.8		
Base target 2	2592.5		

Sequence	Thickness [m]		
В	1180.1		
С	765.4		
D	Undetermined		
Target 1	31.0		
Target 2	43.7		

Table 4.1 Depth and thicknesses for defined sequences in the Hansen G-07 well.

<u>Sequence A:</u> consists of a thick shale body with a sand interval over it (Figure 4.4). The top of this sequence could not be defined since it is out of the logged interval. The caliper response for the shale body indicates a competent rock.

<u>L1 boundary</u> is defined as a lithological contrast at 691.4 m deep that separates the shale body (*sequence A*) from the underlying *sequence B* that consists of a succession of shale and unconsolidated to consolidated sands.

<u>Sequence B:</u> ranges from L1 (691.4 m deep) to L2 (1871.5 m depth). Thickness of this sequence is 1180.1 m. The lithology of this sequence is a succession of shale (from 10 to 40 m) and sand (10 to 90 m) bodies. The predominance of sand in this sequence is easily observed on the gamma-ray log. At 1196 m the remaining logs (sonic, resistivity, density and porosity) started to be recorded.

<u>L2 boundary</u> is defined at 1871.5 m deep. It separates two different lithological successions (B and C). The contrast in the gamma-ray log distribution gives evidence of the contact. This is seen, as well, in a difference in the shape of the density and sonic log. <u>Sequence C</u> consists of a succession of thicker more competent sand (40 m to 100 m) and shale (10 to 50 m) layers with a total thickness of 765.4 m. This sequence has more shale content than *sequence B* (observe how the gamma ray values are higher on average (Figure 4.4). Two seismically recognizable layers are present in this sequence, *TARGET 1* and *TARGET 2*, (Figure 4.5 and Table 4.2). These bodies are attractive because of their high deep, medium, and shallow resistivity values (Figure 4.5).

<u>L3 boundary</u> is defined at 2650-m deep. This contact divides *sequence C and D*. A thick low velocity layer, approximately 60 m thick, lies over a sequence of dominantly shale layers.

<u>Sequence D</u> is more shally than the overlying sequence. The lithology of this sequence is mostly shale intercalated with a few thin sand layers (from 10 to 30 m thick).

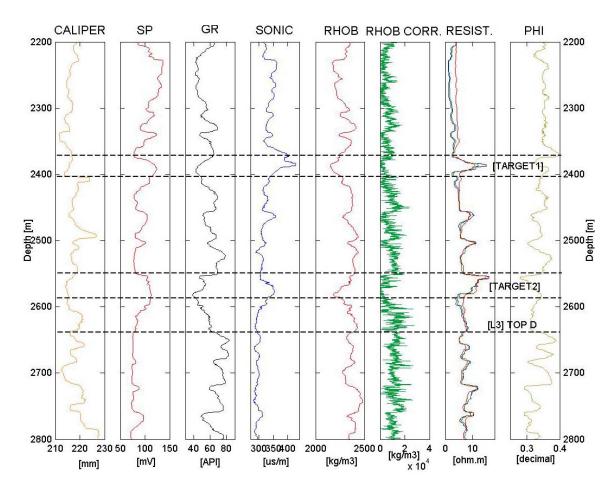


Figure 4.5 Target zones in the Hansen G-07 well. Notice the two bodies defined in the sequence C as TARGET1 and TARGET2. These were marked because of their sonic and resistivity contrast which should be seismically recognizable.

Sequence	Vp [m/s]				Density [kg/m ³]			
Coquence	Mean	Median	Min.	Max	Mean	Median	Min.	Max
TARGET 1	2628	2595	2972	2340	2200	2199	2150	2276
TARGET 2	3030	3040	3307	2822	2294	2286	2187	2401

Table 4.2 Statistics for targets in sequence C [Hansen G-07 well]

4.3- 3C-2D seismic survey Hansen Harbour

A series of seismic lines were acquired in a transition zone, from shore to sea, in the Mackenzie Delta, N.W.T. (Figure 4.6). A 2 m thick layer of ice is floating on the ocean,

and a similar layer of packed snow, ground – fast ice, covers the beach. These lines were part of a survey test carried by Devon Energy in the Mackenzie Delta with the objective of testing different types of receivers, as well as sources. The total length of the seismic lines was six kilometres. Station 101 was on the floating ice at the north end, and station 501 was on the ground-fast ice at the south end.

Different types of receivers (conventional and 3-C sensors), and two different source types (Vibroseis and dynamite) were used in this project. A detailed description and discussion of the acquisition is given by Hall *et al.* (2001 and 2002). From these works it is relevant to mention that the program consisted of five active seismic lines:

Single hydrophones (line 1): consisted of 64 hydrophones at 45 m station spacing, inserted into the seafloor under the floating ice (north half of the line only).

Single deep marshphones (line 2): consisted of 132 single marshphones deployed every 45 m from stations 103 to 499 (Figure 4.7). They were inserted into the mud on the sea floor on the north part of the line, and into the frozen ground beneath the ground-fast ice to the south.

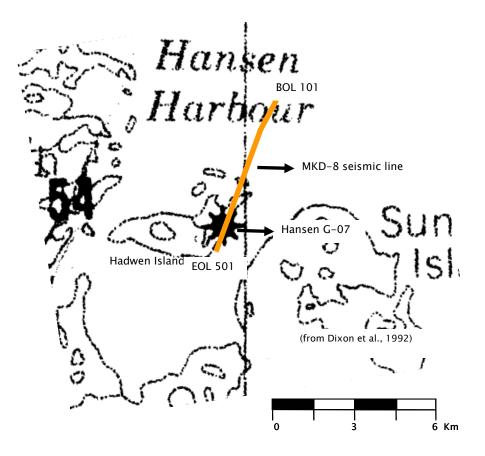


Figure 4.6 Hansen Harbour-Mackenzie Delta area, N.W.T. The six-kilometer MKD-8 seismic line is located along a transitional path from floating ice (BOL101) to ground-fast ice (EOL101). Hansen G-07 is an Imperial Esso well. It is classified as an oil & gas producing well, but no other information is available.

Single shallow marshphones (line 3): consisted of 133 single marshphones deployed between stations 102 and 501 at a 45 m receiver interval (Figure 4.7). These phones were planted just below the surface of the floating ice and the ground-fast ice in augured holes approximately 0.3 m deep.

Six geophone arrays of vertical elements (line 4): consisted of 133 six geophone strings of marshphones 2 m apart. They were deployed between stations 101 and 500 at a 45 m group interval (Figure 4.7). These phones were planted on the surface of the ice using a cordless drill.

Single 3C – geophones (line 5): fifty 3-C geophones (Figures 4.7 and 4.8) were deployed between stations 272 and station 321 every 15 m, centred on the transition zone. The spikes were removed from these geophones, and they were frozen into the bottom of ~0.4 m deep augured holes with fresh water (Figure 4.8).

Three different seismic sources were used as well: Vibroseis, dynamite and sledge hammer. Vibroseis and dynamite covered the entire length of the line while the hammer survey consisted of vertical and 45 degree hits on ice every meter for thirty meters and the floating ice only.

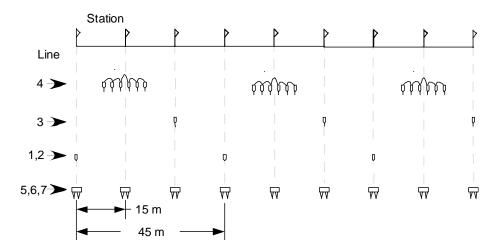


Figure 4.7 Diagram of receiver layout: line 1: single hydrophones; line 2: single deep marshphones; line 3: single shallow marshphones; line 4: six geophone arrays of vertical geophones; line 5: H1 component of 3-C geophones; line 6: Vertical component; Line 7: H2 component.

Vibroseis (source line 1): vibrator points were on every half station with the vibrators centred in-line, from stations 101.5 to 501.5. The linear sweep used for this test line was 6-96 Hz over 32 seconds, and the correlated records are eight seconds long.

Dynamite: Line shot with dynamite at 90 m station spacing. On the floating ice, an in-line five hole pattern (north/south) with 2 kg per hole was used. If the charge could not be placed at least 7 m below the seafloor the shot point was not used. On the ground-fast ice, single 20 kg charges at a depth of 20 m were used.

Figure 4.8 Typical 3-C geophone plant in an augured hole in the sea ice. Geophones were frozen in with fresh water.

Sledge hammer: A twelve pound sledge hammer was pounded on the ice surface from station 285 to station 287, for a total source line length of thirty meters. Three shots were recorded every meter, 1) a vertical hit, 2) a 45° hit into a V shaped notch in the ice towards the east, and 3) a 45° hit on the opposite side of the notch, towards the west. An audible tone was transmitted from the recorder for timing, so time-zero depended on human reflexes, and is different for every shot record.

4.4- PP and PS seismic correlation

The migrated seismic lines resulted from the dynamite source was used to make a correlation with well log data from Hansen G-07. The results from the correlation have been published (Nieto *et al.*, 2003). Geological data from a compilation, plus two well locations were merged to build a proper velocity model for the area.

Geological model for the study area

A model for the surrounding area of the Hansen Island was defined using the isopach maps (modified from Dixon *et al.*, 1992) of all the geological sequences. This model consists of the following sequences:

Iperk: because the logging starting depth was 500 m, this sequence is not expected to be present at this location. Even though, it should be appear in the shallow part of the seismic section.

Akpak: Is not present at this location as it wedges to zero thickness.

Mackenzie: This sequence should be present depending on the real thickness of this sequence at G-07 and should be represented by the first 200 m of the well logs (Figure 4.4).

Kugmallit: A complete section of Kugmallit should have been logged at G-07 and should be 1800 m approximately (Figure 4.4).

Richards: The presence of this sequence depends on the real thickness of the Kugmallit Sequence. If it is present, it should appear at the very bottom of G-07 with a total thickness of 1400 m approximately.

The interpretation of the G-07 logs and the geological interpretation were merged to make a depth model. The depth model from isopach maps was used to guide this interpretation:

[L1] TOP B: Mackenzie Bay Sequence and Kugmallit Sequence contact.

[L2] TOP C: interface where the Kugmallit Sequence become shale-dominant.

[L3] TOP D: Kugmallit Sequence and Richards Sequence contact.

Sequence A [Mackenzie Bay Sequence]: the thickness cannot be calculated.

Sequence B and C [Kugmallit Sequence]: the thickness was 1945.5 m.

Sequence D [Richards Sequence]: the thickness cannot be calculated.

PP and PS real to synthetic seismic sections correlation

Using the "synth" application from the CREWES MATLAB Seismic Toolbox several synthetic sections were created (Figures 4.9 and 4.10). The objective was to interpret the PP and PS seismic sections obtained with the 3C geophones in the Hansen Harbour area. The parameters used to define the synthetic sections are:

Type of section: NMO removed; Maximum offset = 1500 m; Offset increment = 100 m; Offset/depth ratio = 1; Vp/Vs ratio = variable from 1.6 to 2.8; Ricker wavelet, 30 Hz dominant frequency; and No attenuation or geometrical spreading effects included. Since no shear-wave sonic log was acquired at Hansen G-07, several panels with different constant V_P/V_S ratios were created to define an appropriate V_P/V_S depth function.

A reasonable correlation was found between the PP synthetic stacked seismic section from Hansen G-07 and the PP migrated seismic section from Hanson (Figures 4.9 and 4.10). Although the indicators used to correlate the well data are not easily recognized, both the Kugmallit – Richards sequence contact and the target zones at the bottom of the Kugmallit Sequence were successfully identified in the PP seismic section.

Once the PP section has been interpreted, the next thing to do is analyze the PS section. An estimation of V_P/V_S ratio for different sequences from a relatively close well was done. The closest well that had both P-wave and S-wave sonic logs, as well as other logs, and that has been extensively studied is the Mallik 2L-38 (Figure 4.3). The sequences found at this location are: Iperk, Mackenzie Bay, and Kugmallit. The base of the permafrost occurs at 640 m (Mi *et al.*, 1999). The V_P/V_S curve was calculated from the sonic logs (Figure 4.3). An average ratio for each sequence was taken from this log (Table 4.3).

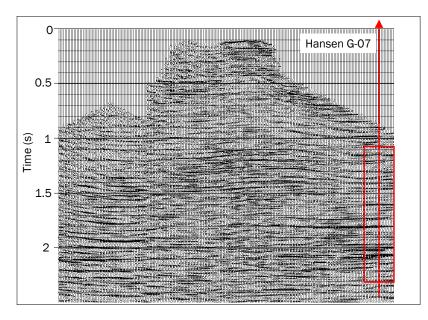


Figure 4.9 PP migrated seismic section. The rectangle highlights the area close to the G-07 well.

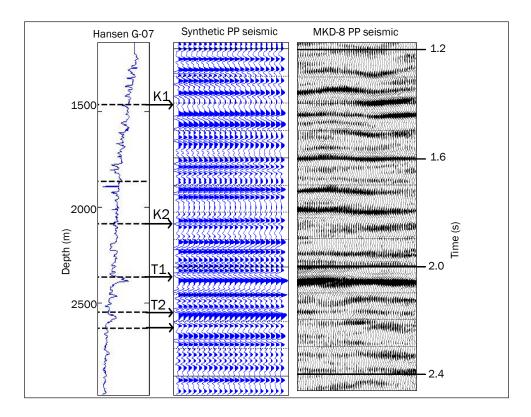


Figure 4.10 PP seismic data correlation. The traces displayed in the left panel correspond to the synthetic NMO removed seismic section. Observe that the targets are not easily recognized in the section. The absence of shallow data doesn't allow the interpretation of the Kugmallit / Mackenzie Bay boundary.

Sequence		Vp/Vs values							
Sequence	Mean	Median	Minimum	Maximum					
lperk	2.19	2.17	1.44	2.90					
Upper Mackenzie Bay	2.04	2.08	1.31	2.62					
Lower Mackenzie Bay	2.41	2.46	1.42	2.81					
Kugmallit	2.30	2.30	1.98	2.69					

Table 4.3 Vp/Vs values for Mallik 2L-38 well

Notice that the Mackenzie Bay may be separated into two different zones, based on the V_P/V_S values (Table 4.3). The reason that the V_P/V_S changes across the sequence is the transition from permafrost to non-frozen rock which occurs at about 640 m deep (Figure 4.3). The upper part has a value of 2.04 (frozen) and the lower 2.41 (unfrozen). The value V_P/V_S for the Iperk Sequence is 2.19, which is larger than the Mackenzie Bay, indicating a change in lithology.

The average V_P/V_S in the upper part of the section (Iperk and Upper Mackenzie Bay sequences) is 2.1, which corresponds to the permafrost section. An average V_P/V_S for the lower part of the section (Lower Mackenzie Bay and Kugmallit) is 2.4.

Using several V_P/V_S values, the PP and PS real sections were compared. Two reflectors "K1" and "K2" were originally defined to help interpret the PS section, (Figure 4.4). Both are part of the Kugmallit Sequence.

The PS section was stretched to match the PP time scale by a factor $t_{PS}/t_{PP} = 1.55$, which corresponds to the average V_P/V_S of 2.1 obtained from the well Mallik 2L-38. Several other values were used as well, and the highest correlation between the PP and PS sections was obtained by using a $t_{PS}/t_{PP} = 1.45$, which corresponds to a V_P/V_S of 1.9 (Figure 4.11). The correlation was done based mainly on the seismic character

(amplitude, continuity) of the reflectors K1 and K2 and omitting any structure around the edges. A low pass frequency filter, 45 Hz, was used to correlate the events K1 and K2. Reliability of the interpretation in the deep area (K2 indicator) is not so high since *there is no control of the shallow velocity and density values*. This represents a preliminary approach, since the PS section looses seismic character under K1.

The PS synthetic section was included in the analysis to make a final interpretation. PP and PS synthetic seismic sections were modeled using constant V_P/V_S value of 1.9. These sections were correlated with the PP and PS migrated seismic sections, reaffirming the interpretation of the data (Figure 4.12).

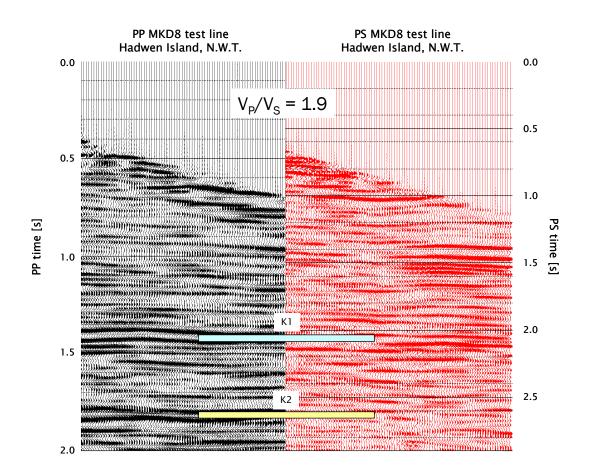


Figure 4.11 PS NMO removed seismic data correlation. The targets are not easily recognized in this section either, but the reflectors K1 and K2 serve as a reference in the Kugmallit Sequence.

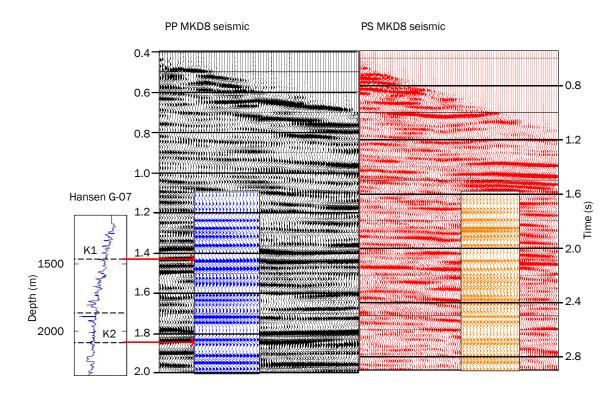


Figure 4.12 Final correlation of the PP and PS synthetic section with the MKD-8 seismic line. From left to right: MKD-8 PP seismic section (black); Hansen G-07 PP seismic section (blue), Hansen G-07 PS seismic section (orange); MKD-8 PS seismic section (red). The synthetic seismograms start at 1 sec PP time, equivalent to 1.5 sec PS time, approximately, due to the absence of the shallow part of the well logs.

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK

Two different objectives were met with the completion of this research: (1) to determine some of the capabilities and limitations of seismic and GPR exploration techniques for near-surface imaging in periglacial environments, and (2) to process and interpret PP and PS seismic sections from the Mackenzie Delta. These experiments took place in two different locations in the Canadian Arctic: Devon Island, Nunavut, and Mackenzie Delta, Northwest Territories. The Devon Island study focuses on the evaluation of geophysical exploration techniques for the study of aqueous and frozen ground systems for future application to Mars exploration. Both seismic and ground-penetrating radar surveys were acquired and evaluated in the base camp of the Haughton-Mars Project. The second part of this thesis focuses on the interpretation of a 3C-2D seismic survey acquired in a transition zone of the Mackenzie Delta, Northwest Territories, and recorded by the CREWES Project at the University of Calgary.

The following sections summarize results presented in this thesis:

5.1- Near-surface seismic surveying

(1) I find that velocity of compressional wave increases considerably due to freezing in the near-surface. As a consequence of this, a large P-wave reflection coefficient is obtained.

(2) Modeling indicates the seismic reflection methods to be limited due to:

• A small critical angle of incidence: which causes poor transmission of homogeneous waves to the sub-permafrost layers, reducing the possibility of imaging sub-permafrost unfrozen bodies (taliks), if present; and causing reverberations and multiples that contaminate the reflections.

• A *P-wave transmission coefficient considerably smaller than the reflection coefficient*: coupled with attenuation and amplitude further reduces more the possibility of imaging an intra-permafrost talik.

(3) Direct and refracted PP and PS waves were interpreted from the seismic gathers. A reflection event from the thawed – frozen layer interface was not identified in any of the records due to the small time difference between the direct and reflected wave for the near-offset traces. No obvious reflections from deeper interfaces were identified.

(4) The head-wave energy was used to image the interface between thawed and frozen layer interface. A processing flow was designed to obtain a seismic image. It consists of four main steps: balance and equalization, signal separation, linear moveout correction and stack.

(5) In the final pseudo zero-offset stacked section or volume, the parameter that is related to the structure of the permafrost top is the pseudo zero-offset time since it is a direct function of the depth to the refracting surface below the source location.

(6) A number of values were obtained from these experiments:

- An average thickness of 0.6 m for the active layer around the study area.
- From the 2D experiment, the vertical component of the data yields a velocity value of 263 m/s and the inline component a value of 256 m/s. In a previous study, values for compressional and shear wave velocities of 260 and 168 m/s, with V_P/V_S of 1.55 in the very near surface were reported (Nieto *et al.*, 2002).
- A velocity of 2244 m/s was estimated from the *PPP* head wave arrivals observed in the vertical component geophones. From a previous investigation (Nieto *et al.*, 2002)

velocity for compressional head waves in permafrost of 3100 m/s and a shear wave velocity of 2030 m/s, with a V_P/V_S ratio of 1.53 were obtained.

(7) From recording the 3C-3D seismic survey it was found that:

- The procedure to record this survey was similar to that of a standard rectangular 3D seismic exploration survey but on a smaller scale.
- Rotation of horizontal component data from the H1 H2 field directions to the *radial-transverse* is required to obtain a seismic image. The geometrical rotation method was used for this survey due to its practicality.
- In the processing flow: a binning of offset values is required to avoid aliasing problems when transforming to the radial domain.
- A single LMO correction velocity of 2500 m/s for P wave and 1500 m/s for S wave, yielding a V_P/V_S ratio across the area of 1.67.
- LMO velocity variation is observed across the study area, and is attributed to dips in the top of the frozen layer.

In general, the refraction seismic method was found to be more applicable to this case of study than the reflection seismic method. It is possible to improve 3D seismic refraction image of the shallow subsurface by modifying the acquisition geometry.

5.2- Near-surface ground-penetrating radar surveying

The motivation for using ground-penetrating radar in this project is based in the dielectric properties contrast which is found between frozen and unfrozen sediments. The use of constant-offset ground-penetrating radar lines allows a fast study of the area due to the simple processing steps required to obtain an image: trace DC removal, automatic gain control and high cut frequency filter. Disadvantages are the impossibility of using

variable-offset tools such as: analysis of signal variation with offset (AVO), measurement of propagation velocities of direct, refracted or reflected modes, stacking to obtain a greater S/N ratio. A number of ground-penetrating radar experiments were acquired to image the frozen-unfrozen sediment interface. From these, it was found that GPR velocity curves for the active layer: these are important for time to depth conversion, and interpretation of GPR data.

A change in the slope of the time-depth crossplot of signal arrival values is interpreted as radar velocity change. This change responds to the contrast between saturated silt and saturated sand observed in the test pit. A third velocity model was obtained by fitting *hyperbolas* to the rebar diffractions at different depth values. It grossly correlates with the RMS velocity curve but with some differences. Difference between these models is due in part to approximating constant-offset velocity estimation with a variable-offset.

From the 3D GPR survey, it was found that an additional interpolation step is required to fill in the gaps due to the acquisition geometry. This step consisted of two passes of linear interpolation, first in the crossline and second in the inline directions, and averaging both results to obtain the final image. An acquisition footprint marked by the recorded lines is observed in the time slices. They are interpreted to be caused by out-of-plane reflections.

5.3- 3C-2D seismic interpretation in the Mackenzie Delta

A theoretical geological model of the Hansen Harbour area was defined from the compilation of isopach maps, structural maps, seismic sections and well logs. Three lithological boundaries separating four different lithological formations were identified using the GR and SONIC logs of the G-07 well. These units were correlated with the

migrated seismic lines resulted from the dynamite source. The results from the correlation have been published (Nieto *et al.*, 2003).

A velocity model, V_P and V_S , was built using geological data from a compilation, plus sonic logs from two different wells: G07 and Mallik 2L-38. The interpretation of PP and PS seismic sections is based on synthetic seismic sections calculated from the velocity model. A good correlation was found between the PP synthetic stacked seismic section from Hansen G-07 and the PP migrated seismic section from Hanson.

To interpret the PS seismic section and correlate it to the PP, a series of V_P/V_S ratios were analyzed. Two reflectors "K1" and "K2" were originally defined to help interpret the PS section, which are both part of the Kugmallit Sequence. The stretch factor used to match the PS section to the PP time scale was $t_{PS}/t_{PP} = 1.45$, which corresponds to the average V_P/V_S of 1.9. In the correlation of the PP and PS sections, the seismic character (amplitude, continuity) of the reflectors K1 and K2 was used. A low pass frequency filter, 45 Hz, was used to correlate the events K1 and K2.

5.4- Future work

The Devon Island study offers several routes for the continuation of research in nearsurface seismic surveying of periglacial environments. I recommend the next step to be taken in this area is in the laboratory measurement of (1) compressional and shear-wave velocity variation with temperature and (2) attenuation coefficients, for P and S-wave, plus their variation with temperature. Samples of soil from different depths are available for these experiments. The estimation of these parameters would serve as input for elastic-wave seismic modeling. The usefulness would be to use correct velocities to model different scenarios and design appropriate survey geometries. Results from this analysis would indicate the requirements to be able to record a standard reflection seismic line. It will also help in investigating the possibility of recording reflected signals from below the top of the frozen soil.

The seismic images shown throughout this project are obtained from processing the refracted wave instead of the reflected wave, as is normally done. For this case of study, a *flat* reflecting/refracting *interface* (frozen/unfrozen sediments interface) allows this method to be equivalent to a pseudo zero-offset seismic section. Modeling a depth-varying single interface would indicate the usefulness of this methodology.

From the ground-penetrating radar section, an area where many improvements can be made is the definition of volumes from a series of orthogonal lines. Different interpolation techniques can be analyzed using the dataset acquired in this project. A new dataset of multi-offset ground-penetrating radar is available for further analysis such as the amplitude variation with offset and its relation with water saturation of the sediments, or the use of seismic processing techniques.

REFERENCES

- Bachrach, R., J. Dvorkin, and A. Nur, 1998, High-resolution shallow-seismic experiments in sand, Part II: Velocities in shallow unconsolidated sand: Geophysics, 63, 1234-1240.
- Bancroft, J., 2001, Seismic imaging: Course notes, The University of Calgary, Department of Geology and Geophysics.
- Bland, H., and E. Gallant, 2001, A simplified tap test method for multicomponent seismic surveys: CREWES Research Report **13**, 17-28.
- Davis, J.L. and A.P. Annan, 1989, Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, **37**, 531-551.
- DiSiena, J.P, J.E. Gaiser, and D. Corrigan, 1984, Horizontal components and shear waves analysis of threecomponent VSP data, in N. Toksoz and R.R. Stewart, eds., Vertical seismic profiling: advanced concepts: Geophysical Press, Vol. 15B.
- Dixon, J., J.R. Dietrich and D.H. MacNeil, 1992, Upper Cretaceous to Pleistocene sequence stratigraphy of the Beaufort-Mackenzie Delta and Banks areas, northwest Canada: Geological Survey of Canada, Bulletin 407.
- Dixon, J., J.R. Dietrich, D.H. McNeil, and L.S. Lane, 2001, Geological framework of the Beaufort-Mackenzie Basin: Annual National Convention Abstracts, Canadian Society of Petroleum Geologists, 103-104.
- Dufour, J., D.C. Lawton and S. Gorek, 1996, Determination of S-wave static corrections from S-wave refractions on P-S data: 66th Annual International Meeting, SEG, Expanded Abstracts, 1551-1554.
- French, H.M., 1996, The periglacial environment, Longman.
- Guevara, S., 2001, Analysis and filtering of near-surface effects in land multicomponent seismic data: M.Sc. thesis, University of Calgary.
- Hall, K., C. Nieto, E. Gallant and R. Stewart, 2001, Multicomponent seismic survey over ground-fast and floating ice, Mackenzie Delta, N.W.T.: CREWES Research Report, 13, 29-38.

- Hall, K.W., C.E. Nieto, E.V. Gallant, R.R. Stewart and P. Cary , 2002, Multicomponent seismic acquisition in the Mackenzie Delta, N.W.T.: Annual National Convention, CSEG, Canadian Society of Exploration Geophysicists, MCC-1.
- Henley, D.C., 2003, Coherent noise attenuation in the radial trace domain: Geophysics, 68, 1408-1416.
- Jolly, R. N. and J.F. Mifsud, 1971, Experimental studies of source-generated seismic noise: Geophysics, **36**, 1138-1149.
- King, M.S., 1984, The influence of clay-sized particles on seismic velocity for Canadian Arctic permafrost: Canadian Journal of Earth Sciences, 21, 19-24.
- Kurfurst, P.L., 1976, Ultrasonic wave measurements on frozen soils at permafrost temperatures: Canadian Journal of Earth Sciences, 13, 1571-1576.
- Lee, P., 2002, Mars on Earth: The NASA Haughton-Mars Project: Ad Astra, National Space Society, 14, 12-17.
- Lee, P., 2002, From Earth to Mars, Part One: A crater, ice, and life: The Planetary Report, **1**, at http://www.planetary.org/html/Devon Island/Devon TPR1.htm
- Lee, P., 2002, From Earth to Mars, Part Two: Robots and humans working together: The Planetary Report, 1, at <u>http://www.planetary.org/html/Devon_Island/Devon_TPR2.htm</u>
- Leslie, J. M. and L.C. Lawyer, 1999, A refraction-seismic field study to determine the anisotropic parameters of shales: Geophysics, **64**, 1247-1252.
- Long, M.E., 1999, Mars on Earth: National Geographic, 196, 34-51.
- Mayr, U., T. de Freitas, B. Beauchamp and G. Eisbacher, 1998, The Geology of Devon Island North of 76°, Canadian Arctic Archipelago: Geological Survey of Canada, Bulletin 526.
- Mi, Y., A. Sakai, R. Walia, R.D. Hyndman and S.R. Dallimore, 1999, Vertical seismic profiling and seismic properties of gas hydrate in an Arctic well: CREWES Research Report, 11, 705-726.
- Moorman, B.J., and F.A. Michel, 2000, Glacial hydrological system characterization using groundpenetrating radar. Hydrological Processes, **14**, 2645-2667.
- Nieto, C.E. and R.R. Stewart, 2002, Ultra high-resolution seismic imaging of permafrost, Devon Island, Nunavut: CREWES Research Report, **14**.

- Nieto, C., and R. Stewart, 2003, Analyzing Multicomponent Seismic Data from the Mackenzie Delta, N.W.T.: Recorder, 28, 36-39.
- Nieto, C. and R. Stewart, 2003, Geophysical investigations at a Mars analog site; Devon Island, Nunavut: Third International Conference on Mars Polar Science and Exploration, 8115.
- Nieto, C.E., and R.R. Stewart, 2003, Interpretation of PP and PS seismic data from the Mackenzie Delta, N.W.T.: CSPG/CSEG Joint Convention, Canadian Society of Petroleum Geologists and Canadian Society of Exploration Geophysicists.
- Nieto, C.E. and R.R. Stewart, 2003, Ultra high-resolution seismic and GPR imaging of permafrost, Devon Island, Nunavut: CSPG/CSEG Joint Convention, Canadian Society of Petroleum Geologists and Canadian Society of Exploration Geophysicists.
- Norminton, E. J., 1990, Seismic model studies of the overburden bedrock reflection: P-wave and s-wave: 60th Annual International Meeting and Exposition, SEG, Expanded Abstracts, 376-379.
- Polczer, S., 2001, Game back on; exploration returns to the Mackenzie Delta after two-decade hiatus: Nickle's Petroleum Explorer, **8**, 4-5.
- Pullan, S. E., J.A. Hunter and K.G. Neave, 1990, Shallow shear wave reflection tests: 60th Annual International Meeting and Exposition, SEG, Expanded Abstracts, 380-382.
- Reynolds, C. B., I.B. Reynolds and W.C. Haneberg, 1990, Refraction velocity sections; an aid in shallow reflection interpretation: 60th Annual International Meeting and Exposition, SEG, Expanded Abstracts, 383-384.
- Ross, E., 2003, New Mackenzie Delta play types identified: Petroleum Explorer, 10, 6-13.
- Szelwis, R. and A. Behle, 1987, Shallow shear-wave velocity estimation from multimodal Rayleigh waves: in S.H. Danbom and S.N. Domenico, eds., Shear-wave exploration: Society of Exploration Geophysicists, 214-226.
- Telford, W.M., L.P. Geldart, R.E. Sheriff and D.A. Keys, 1976, Applied Geophysics. Cambridge University Press.
- Timur, A., 1968, Velocity of compressional waves in porous media at permafrost temperatures: Geophysics, **33**, 584-595.
- Vermeer, G., 2001, Understanding the fundamentals of 3D seismic survey design: First Break, 19, 130-134.

- Wilkin, D., 1998, NTI, Ottawa meet to set rules for High Arctic drilling: Nunatsiaq News. At http://www.nunatsiaq.com/archives/nunavut981130/nvt81120_06.html (published Nov 2004)
- Williams, P.J. and M.W. Smith, 1989, The frozen earth: fundamentals of geocryology: Cambridge University Press.
- Xia, J., R. Miller, C. Park, R. Nigbor, and E. Wightman, 1999, A pitfall in shallow shear-wave refraction surveying: 69th Annual International Meeting, SEG, Expanded Abstracts, 508-511.
- Yilmaz, O., 2001, Seismic data analysis: processing, inversion and interpretation of seismic data: Society of Exploration Geophysicists.
- Zimmerman, R.W. and M.S. King, 1986, The effect of the extent of freezing on seismic velocities in unconsolidated permafrost: Geophysics, **51**, 1285-1290.

Channel number	Geophone number	Туре		Channel number	Geophone number	Туре
01	01	H1		31	11	H1
02	01	V		32	11	V
03	01	H2		33	11	H2
04	02	H1		34	12	H1
05	02	V		35	12	V
06	02	H2		36	12	H2
07	03	H1		37	13	H1
08	03	V		38	13	V
09	03	H2		39	13	H2
10	04	H1		40	14	H1
11	04	V		41	14	V
12	04	H2		42	14	H2
13	05	H1		43	15	H1
14	05	V		44	15	V
15	05	H2		45	15	H2
16	06	H1		46	16	H1
17	06	V		47	16	V
18	06	H2		48	16	H2
19	07	H1		49	17	H1
20	07	V		50	17	V
21	07	H2		51	17	H2
22	08	H1		52	18	H1
23	08	V		53	18	V
24	08	H2] [54	18	H2
25	09	H1] [55	19	H1
26	09	V] [56	19	V
27	09	H2		57	19	H2
28	10	H1] [58	20	H1
29	10	V		59	20	V
30	10	H2	1	60	20	H2

APPENDIX A: 3C-2D AND 3C-3D SEISMIC SURVEYS GEOMETRY

Table A.1 Convention used to connect the H1, V and H2 component of the geophones to the seismic recorder. 3C-2D seismic survey

Source	FFID	1 st receiver	Last receiver	First	Last	Notes
location	IIID	location	location	geophone	geophone	Notes
100	1000	101	139	1	20	
102	1001	101	139	1	20	
104	1002	101	139	1	20	
106	1003	101	139	1	20	
108	1004	101	139	1	20	
110	1005	101	139	1	20	
112	1006	101	139	1	20	
114	1007	101	139	1	20	
116	1008	101	139	1	20	
118	1009	101	139	1	20	
120	1010	101	139	1	20	
122	1011	101	139	1	20	
124	1012	101	139	1	20	
126	1013	101	139	1	20	
128	1014	101	139	1	20	
130	1015	101	139	1	20	
132	1016	101	139	1	20	
134	1017	101	139	1	20	
136	1018	101	139	1	20	
138	1019	101	139	1	20	
140	1020	101	139	1	20	
140	1021	101	139	1	20	VOID
140	1022	101	139	1	20	Used normal pellets
140	1023	101	139	1	20	No pellets

Table A.2Observer report for 3C-2D high resolution seismic line.

Channel	Geophone #	Sensor	Channel	Geophone #	Sensor
number	deopriorie //	position	number		position
1	1	H2	31	11	H1
2	2	H2	32	12	H1
3	3	H2	33	13	H1
4	4	H2	34	14	H1
5	5	H2	35	15	H1
6	6	H2	36	16	H1
7	7	H2	37	17	H1
8	8	H2	38	18	H1
9	9	H2	39	19	H1
10	10	H2	40	20	H1
11	10	V	41	20	V
12	9	V	42	19	V
13	8	V	43	18	V
14	7	V	44	17	V
15	6	V	45	16	V
16	5	V	46	15	V
17	4	V	47	14	V
18	3	V	48	13	V
19	2	V	49	12	V
20	1	V	50	11	V
21	1	H1	51	11	H2
22	2	H1	52	12	H2
23	3	H1	53	13	H2
24	4	H1	54	14	H2
25	5	H1	55	15	H2
26	6	H1	56	16	H2
27	7	H1	57	17	H2
28	8	H1	58	18	H2
29	9	H1	59	19	H2
30	10	H1	60	20	H2

 Table A.3
 Channel number correspondence with geophone number and sensor position.

Each trace has a header that contains a file number and a geophone number which are used to match source station and receiver station respectively. The correspondence between file numbers and source stations is based on the grid designed for the study area and is summarized in Table A.4:

File #	Source	File #	Source		File #	Source		File #	Source	File #	Source
3000	101	4000	105		5000	109		<mark>6127</mark>	<mark>113</mark>	7000	117
3001	102	4001	106		5001	110		6000	114	7001	118
3002	103	4002	107		5002	111		6001	115	7002	119
3003	104	4003	108		5003	112		6002	116	7003	120
3004	105	4004	109		5004	113		6003	117	7004	121
3005	106	4005	110		5005	114		6004	118	7005	122
3006	107	4006	111		5006	115		6005	119	7006	123
3007	108	4007	112		5007	116		6006	120	7007	124
3008	109	4008	113		5008	117		6007	121	7008	125
3009	301	4009	305		5009	309		<mark>6126</mark>	<mark>313</mark>	7009	317
3010	302	4010	306		5010	310		6009	314	7010	318
3011	303	4011	307		5011	311		6010	315	7011	319
3012	304	4012	308		5012	312		6011	316	7012	320
3013	305	4013	309		5013	313		6012	317	7013	321

3014	306	4014	310	5014	314	60	13	318	7014	322
3015	307	4015	311	5015	315	60	14	319	7015	323
3016	308	4016	312	5016	316	60	15	320	7016	324
3017	309	4017	313	5017	317	60	16	321	7017	325
3018	501	4018	505	5018	509	<mark>61</mark>	<mark>25</mark>	<mark>513</mark>	7018	517
3019	502	4019	506	5019	510	60	18	514	7019	518
3020	503	4020	507	5020	511	60	19	515	7020	519
3021	504	4021	508	5021	512	60	20	516	7021	520
3022	505	4022	509	5022	513	60		517	7022	521
3023	506	4023	510	5023	514	60		518	7023	522
3024	507	4024	511	5024	515	60	23	519	7024	523
3025	508	4025	512	5025	516	60		520	7025	524
3026	509	4026	513	5026	517	60		521	7026	525
3027	701	4027	705	5027	709	61	_	713	7027	717
3028	702	4028	706	5028	710	60		714	7028	718
3029	702	4029	707	5029	711	60		715	7029	719
3030	703	4030	707	5030	712	60		716	7030	720
3031	701	4031	709	5031	712	60		710	7030	720
3032	705	4032	710	5032	713	60		717	7031	721
3032	700	4032	710	5032	714	60		710	7032	722
3033	707	4033	711	5034	715	60		719	7033	723
3034	708	4034	712	5035	710	60		720	7034	724
3036	901	4035	905	5036	909	61	_	913	7035	917
3037	902	4037	906	5037	910	60	_	914	7030	918
3038	903	4038	907	5038	911	60		915	7037	919
3039	904	4039	908	5039	912	60		916	7038	920
3040	905	4040	909	5040	913	60		917	7039	920
3040	906	4040	910	5041	914	60		918	7040	922
3042	907	4042	911	5042	915	60		919	7041	923
3042	908	4043	912	5043	916	60		920	7042	923
3043	909	4043	913	5044	917	60		920	7043	925
3044	1101	4045	1105	5045	1109	61	_	1113	7044	1117
3045	1101	4045	1105	5046	1110	60		1113	7045	1117
3040	1102	4047	1100	5047	1110	60		1114	7040	1110
3047	1103	4048	1107	5048	1112	60		1115	7047	1110
3049	1104	4049	1100	5049	1112	60		1110	7040	1120
3050	1105	4050	1110	5050	1113	60		1117	7049	1121
3051	1100	4051	1110	5051	1115	60		1119	7050	1122
3052	1107	4052	1112	5052	1116	60		1120	7052	1123
3053	1109	4053	1112	5053	1117	60		1120	7052	1121
3054	1301	4054	1305	5054	1309	61		1313	7055	1317
3055	1301	4054	1305	5055	1310	60		1313	7055	1317
3056	1302	4055	1300	5056	1310	60		1314	7055	1319
3057	1303	4050	1307	5057	1311	60		1315	7057	1320
3058	1304	4058	1309	5058	1312	60		1310	7057	1320
3059	1305	4059	1310	5059	1313	60		1317	7059	1321
3060	1300	4060	1310	5060	1314	60		1310	7060	1322
3061	1308	4061	1312	5061	1316	60		1320	7060	1323
3062	1309	4062	1312	5062	1317	60		1320	7062	1325
3062	1501	4063	1505	5062	1509	61	_	1521 1513	7062	1525
3064	1502	4064	1505	5064	1510	60		1513	7064	1518
3065	1502	4065	1507	5065	1511	60		1514	7065	1519
3066	1503	4065	1508	5066	1512	60		1516	7065	1519
3067	1504	4067	1509	5067	1512	60		1510	7067	1520
3068	1505	4068	1510	5068	1513	60		1518	7067	1522
3069	1507	4069	1510	5069	1515	60		1519	7069	1522
3070	1508	4009	1512	5070	1515	60		1519	7009	1523
3070	1509	4070	1512	5071	1517	60		1520	7070	1524
3071	1701	4071	1705	5072	1709	61	_	1713	7071	1717
5072	1701	4072	1705	5072	1709	01	17	1/15	1012	1/1/

3073	1702	4073	1706	I	5073	1710	1	6072	1714	7073	1718
3074	1702	4074	1707		5074	1710		6073	1715	7074	1719
3075	1704	4075	1708		5075	1712		6074	1716	7075	1720
3076	1705	4076	1709		5076	1713		6075	1717	7076	1721
3077	1706	4077	1710		5077	1714		6076	1718	7077	1722
3078	1707	4078	1711		5078	1715		6077	1719	7078	1723
3079	1708	4079	1712		5079	1716	1	6078	1720	7079	1724
3080	1709	4080	1713		5080	1717	1	6079	1721	7080	1725
3081	1901	4081	1905		5081	1909		<mark>6118</mark>	<mark>1913</mark>	7081	1917
3082	1902	4082	1906		5082	1910		6081	1914	7082	1918
3083	1903	4083	1907		5083	1911	1	6082	1915	7083	1919
3084	1904	4084	1908		5084	1912	1	6083	1916	7084	1920
3085	1905	4085	1909		5085	1913	1	6084	1917	7085	1921
3086	1906	4086	1910		5086	1914	1	6085	1918	7086	1922
3087	1907	4087	1911		5087	1915	1	6086	1919	7087	1923
3088	1908	4088	1912		5088	1916	1	6087	1920	7088	1924
3089	1909	4089	1913		5089	1917		6088	1921	7089	1925
3090	2101	4090	2105		5090	2109		<mark>6117</mark>	<mark>2113</mark>	7090	2117
3091	2102	4091	2106		5091	2110		6090	2114	7091	2118
3092	2103	4092	2107		5092	2111		6091	2115	7092	2119
3093	2104	4093	2108		5093	2112		6092	2116	7093	2120
3094	2105	4094	2109		5094	2113		6093	2117	7094	2121
3095	2106	4095	2110		5095	2114		6094	2118	7095	2122
3096	2107	4096	2111		5096	2115		6095	2119	7096	2123
3097	2108	4097	2112		5097	2116		6096	2120	7097	2124
3098	2109	4098	2113		5098	2117		6097	2121	7098	2125
3099	2301	4099	2305		5099	2309		6099	2313	7099	2317
3100	2302	4100	2306		5100	2310		6100	2314	7100	2318
3101	2303	4101	2307		5101	2311		6101	2315	7101	2319
3102	2304	4102	2308		5102	2312		6102	2316	7102	2320
3103	2305	4103	2309	-	5103	2313		6103	2317	7103	2321
3104	2306	4104	2310		5104	2314		6104	2318	7104	2322
3105	2307	4105	2311		5105	2315		6105	2319	7105	2323
3106	2308	4106	2312		5106	2316		6106	2320	7106	2324
3107	2309	4107	2313		5107	2317		6107	2321	7107	2325
3108	2501	4108	2505		5108	2509		6108	2513	7108	2517
3109	2502	4109	2506		5109	2510		6109	2514	7109	2518
3110	2503	4110	2507		5110	2511		6110	2515	7110	2519
3111	2504	4111	2508		5111	2512	ļ	6111	2516	7111	2520
3112	2505	4112	2509		5112	2513		6112	2517	7112	2521
3113	2506	4113	2510		5113	2514		6113	2518	7113	2522
3114	2507	4114	2511		5114	2515	ļ	6114	2519	7114	2523
3115	2508	4115	2512		5115	2516	ļ	6115	2520	7115	2524
3116	2509	4116	2513	IL	5116	2517	J	6116	2521	7116	2525

 Table A.4
 File number correspondence to source point for rectangular grid.

The receiver stations were assigned to geophone numbers in each of the five swaths (recording units) since the geophone position changed for every different swath. The correspondence of receiver stations to geophone numbers was done following Table A.5:

Swa	th 1	Swa	th 2	Swa	th 3	Swa	th 4	Swa	th 5
Geophone number	Receiver station								
1	2204	1	2208	1	2212	1	2216	1	2220
2	2004	2	2008	2	2012	2	2016	2	2020
3	1804	3	1808	3	1812	3	1816	3	1820
4	1604	4	1608	4	1612	4	1616	4	1620
5	1404	5	1408	5	1412	5	1416	5	1420
6	1204	6	1208	6	1212	6	1216	6	1220
7	1004	7	1008	7	1012	7	1016	7	1020
8	804	8	808	8	812	8	816	8	820
9	604	9	608	9	612	9	616	9	620
10	404	10	408	10	412	10	416	10	420
11	406	11	410	11	414	11	418	11	422
12	606	12	610	12	614	12	618	12	622
13	806	13	810	13	814	13	818	13	822
14	1006	14	1010	14	1014	14	1018	14	1022
15	1206	15	1210	15	1214	15	1218	15	1222
16	1406	16	1410	16	1414	16	1418	16	1422
17	1606	17	1610	17	1614	17	1618	17	1622
18	1806	18	1810	18	1814	18	1818	18	1822
19	2006	19	2010	19	2014	19	2018	19	2022
20	2206	20	2210	20	2214	20	2218	20	2222

Table A.5Correspondence between geophone numbers and receiver stations for the fivedifferent swaths in the 3C - 3D seismic survey.

The survey file contains the geographical coordinates for all the stations of the study area

(Table A.6). This file is used to add the spatial relations to the seismic traces in the 3C -

North (cm)

East (cm)

3D survey. No elevation information is considered since no variation was observed.

Station number	North (cm)	East (cm)	Station number
101	175	175	1401
102	200	175	1402
103	225	175	1403
104	250	175	1404
105	275	175	1405
106	300	175	1406
107	325	175	1407
108	350	175	1408
109	375	175	1409
110	400	175	1410
111	425	175	1411
112	450	175	1412
113	475	175	1413
114	500	175	1414
115	525	175	1415
116	550	175	1416
117	575	175	1417
118	600	175	1418
119	625	175	1419
120	650	175	1420
121	675	175	1421
122	700	175	1422

1231751427253001247901751427733011257731751425773301301103200190203205190205205305225200190200205205205305226200190200255205307325200190255205205308300200190255255209400200190782552104002001907825521140520019145525521240020019145525521347520019145525521460020019145025521520019145025521660020019145025521779020019145025521860020019165025521965020019165025521779020019165025521867020019165025521979025510019425521079025516019025521167520019015525521270025						-
125175100301175200302200200303225200304229200305300200305300200306300200307352003083002003093002003093002003093002003093002003093002003093002003104003003114752003134772003145002013153232003165332003173732003186002013196252003196262003116072033210302033210302033232001515324530301317225313600235324737200314200235325237200336237235337238235338309235344300235345330235346330235347349348340235349349349359341 <td>123</td> <td>725</td> <td>175</td> <td>1423</td> <td>725</td> <td>500</td>	123	725	175	1423	725	500
90117590220020592322520015022009253042302002053253052733001504225325306300200150527532530732520015063003253083002001507325525209400200150732552521040020015144253252114452001514400325213407200151440032521653720015152353252175752001515235325218600200151653732521963320015177353252217352001517235325222736200152163032522373520015216303253011152253351666330325303200235160732932530423922516073393593053072251667359359306307225160735935931745922516124603593186002351607359359 <t< td=""><td>124</td><td>750</td><td>175</td><td>1424</td><td>750</td><td>500</td></t<>	124	750	175	1424	750	500
2022002012002042392003052372003063002003073232003083002003093732003093732003104002003114532003114532003114502003134002003144002003152014003165072013174502003185172013192011511319203151131140320031551731651731720015193182012150319201151921761720031822322530117322530220322530321522530425930525130525230630025516673072553082503082523092553092553062553072553082593092553092553092553092553092553092553092	125	775	175	1425	775	500
2022002012002042392003052372003063002003073232003083002003093732003093732003104002003114532003114532003114502003134002003144002003152014003165072013174502003185172013192011511319203151131140320031551731651731720015193182012150319201151921761720031822322530117322530220322530321522530425930525130525230630025516673072553082503082523092553092553062553072553082593092553092553092553092553092553092553092	201					
3032252001504225255305307308209309305305307325300309300305308309200107325305309300200108030932521040020015003753252114092001510400205213400200151140532521440020015134002012153257200151532532521640020015153253252174072001515325325218409200151640025521940520015173253252104002001517325325211407200151732532521275720015332532530117521516101753253012002151610375325302200225160732535030320022516073703503042002251607370350305205160737035035031640022516073703503174502251607370						
Dabs250200105300200105300200105300200105350200105350200105350200105350200111400111400111400111400111400111400111400111400111400111400111400 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
3063072073252003073252001563002553083202001508300255210400200150830025521142520015114452552124502001512440555214500200151445055521450020015145055552145002001514505555214600200151860055521767520015186005552186002001518600555219625200151962335521962620015186005552137072001518600555214600200151860055521570720015187085552167072001518708555217708225700151870855930670722516067005593077252251607725559308730225160773555931655022516174505593177552251617450559318600255161860055						
206300200207325200208330200209375200210400200211425200212480200213475200214500200215525200216550200217575200218600200219625200218600200219625200219625200219625200218600200219625200219625200219625200219625200211860020021297052002130600200212175520021317552052147502001531755205301175225303122571530302257153042302253053012253063002253072002553083002253093114263131426255314630255315255316250317450255318640255319455 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
307 325 200 308 300 205 309 775 200 309 775 200 301 445 200 311 445 200 313 445 200 314 500 200 315 525 200 316 550 200 317 575 200 318 600 200 320 605 200 321 675 200 323 775 200 324 790 200 303 225 700 201 304 290 225 305 300 225 306 300 225 307 325 225 308 390 225 309 375 225 306 300 225 313 475						
208330200209375200210400200211425201212440200213445200214500200215525201216539200217575200218600200219625200219625200219625200219625200219625200219625200219625200219625200212675200213755200214770200215775200215775200216200255217700200151675555218775200301175225302200255303225775304275305216300306300225307328225308300225309373225316400255317426256318605225319616400311445225313616255314505255315255316256 <tr< td=""><td>206</td><td>300</td><td>200</td><td>1506</td><td>300</td><td>525</td></tr<>	206	300	200	1506	300	525
209 375 200 110 425 200 211 425 200 212 450 200 213 475 200 214 500 200 215 525 200 216 550 200 217 575 200 218 600 200 219 625 200 210 635 200 211 675 200 222 700 200 223 775 200 224 790 200 232 705 200 303 225 225 304 250 225 305 225 1601 175 550 306 350 225 1604 250 550 306 350 225 1604 250 550 306 350 225 <td>207</td> <td>325</td> <td>200</td> <td>1507</td> <td>325</td> <td>525</td>	207	325	200	1507	325	525
209 375 200 110 425 200 211 425 200 212 450 200 213 475 200 214 500 200 215 525 200 216 550 200 217 575 200 218 600 200 219 625 200 210 635 200 211 675 200 222 700 200 223 775 200 224 790 200 232 705 200 303 225 225 304 250 225 305 225 1601 175 550 306 350 225 1604 250 550 306 350 225 1604 250 550 306 350 225 <td>208</td> <td>350</td> <td>200</td> <td>1508</td> <td>350</td> <td>525</td>	208	350	200	1508	350	525
210 400 200 211 425 200 212 450 200 213 475 200 214 500 200 215 525 200 216 559 200 217 575 200 218 000 200 219 655 200 219 655 200 219 655 200 219 657 200 211 675 200 212 707 200 213 725 200 214 759 200 1531 755 255 750 200 1531 755 224 759 225 750 225 1601 175 550 303 225 1605 235 500 304 259 255 1605 205 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
211 425 200 212 450 200 213 475 200 214 500 200 215 235 200 216 559 200 217 575 200 218 600 200 219 6.05 200 211 675 200 212 675 200 213 6.05 200 214 750 200 212 675 200 213 725 200 214 750 200 215 775 200 301 175 225 705 200 153 725 301 225 775 205 303 225 725 1601 175 304 250 255 305 225 1603 250 306 300 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
121 490 200 131 475 255 14 900 200 151 925 200 1516 559 200 1517 975 200 1518 600 200 1519 625 255 170 675 200 1519 625 255 1219 625 200 1519 650 255 121 675 200 1521 775 200 1521 775 200 1521 775 200 1531 775 255 1601 175 255 1602 200 1531 275 1603 225 1601 175 550 1603 225 1603 225 1603 235 1603 300 225 1605 237 500 1611						
213 475 200 214 500 201 215 925 200 216 550 200 217 975 200 218 600 200 219 625 200 219 635 200 211 6075 200 212 6075 200 213 725 200 214 770 200 215 775 200 212 775 200 213 725 200 215 775 201 301 175 225 303 225 235 304 250 250 305 275 235 306 300 225 306 300 225 308 350 225 309 375 225 310 400 250						
214 500 200 215 525 200 216 550 200 218 600 200 218 600 200 219 600 200 210 625 200 220 600 200 221 605 200 222 700 200 223 725 200 224 730 200 225 775 200 301 175 225 301 175 225 303 225 225 304 230 225 305 275 225 1601 175 530 306 300 225 307 325 250 308 330 225 311 420 250 313 470 250 314 500 250						
215 925 200 216 550 200 217 373 200 218 600 200 219 625 200 220 650 200 221 675 200 222 700 200 223 725 200 224 750 200 233 725 200 301 175 225 715 200 1523 725 301 175 225 716 200 1523 725 301 175 225 716 200 153 725 304 205 1601 175 306 307 325 1603 225 130 400 225 1606 300 550 311 425 225 1607 325 550 313 475 2						
146 590 200 1516 500 525 1219 600 200 1518 600 525 219 625 200 1518 600 525 220 660 200 1518 600 525 221 700 200 1512 675 525 222 700 200 1521 675 525 224 770 200 1523 725 525 301 175 225 1603 225 525 303 225 225 1603 225 550 303 225 225 1603 225 550 303 225 225 1604 250 550 306 300 225 1606 300 550 311 4455 2255 1610 400 550 313 4450 225 1610 400 550 </td <td>214</td> <td>500</td> <td>200</td> <td>1514</td> <td>500</td> <td>525</td>	214	500	200	1514	500	525
1217 575 200 1218 600 200 1219 635 200 1211 675 200 1221 675 200 1222 700 200 1223 725 200 1224 750 200 1225 775 200 1222 700 200 1232 725 225 775 200 1222 700 225 130 175 225 130 225 225 130 225 225 130 225 225 130 225 1605 225 130 400 225 131 475 225 131 475 225 131 475 225 131 475 225 1313 475 225 1611 445 <t< td=""><td>215</td><td>525</td><td>200</td><td>1515</td><td>525</td><td>525</td></t<>	215	525	200	1515	525	525
18 600 200 19 645 200 220 650 200 221 675 200 222 700 200 223 725 200 224 750 200 225 775 200 301 175 225 302 200 225 303 225 225 303 225 225 303 225 225 303 225 225 304 250 225 305 225 225 1001 200 550 306 300 225 307 225 225 1007 225 550 308 330 225 310 400 225 311 425 225 313 475 225 314 500 225	216	550	200	1516	550	525
18 600 200 19 645 200 220 650 200 221 675 200 222 700 200 223 725 200 224 750 200 225 775 200 301 175 225 302 200 225 303 225 225 303 225 225 303 225 225 303 225 225 304 250 225 305 225 225 1001 200 550 306 300 225 307 225 225 1007 225 550 308 330 225 310 400 225 311 425 225 313 475 225 314 500 225	217	575	200	1517	575	525
199 625 200 220 669 220 157 200 1521 675 525 223 725 200 1521 675 525 223 725 200 1523 775 525 224 790 200 1523 775 525 301 175 225 1523 775 525 303 225 225 1601 175 525 303 225 225 1602 200 550 304 250 225 1603 225 1603 255 306 300 225 1606 300 550 306 300 225 1607 325 550 306 300 225 1607 325 550 310 400 225 1601 425 550 311 425 225 1601 450						
220 650 200 221 075 200 222 700 200 223 725 200 224 750 200 225 775 200 301 175 225 302 200 225 303 225 225 304 250 225 305 275 225 306 300 225 306 300 225 306 300 225 306 300 225 307 225 225 1608 350 550 307 225 1605 275 308 359 225 1608 350 311 425 225 1607 325 313 475 225 1619 409 314 500 225 1610 550 313 475						
221 675 200 222 700 200 223 725 200 224 750 200 225 775 200 301 175 225 302 200 225 303 225 225 304 250 225 305 275 225 306 200 225 307 325 225 308 350 225 309 375 225 1604 250 550 307 325 225 1608 350 550 310 400 225 311 425 225 161 400 550 312 450 225 313 475 225 161 450 550 320 650 225 161 500 550						
222 700 200 223 725 200 224 750 200 225 775 200 301 175 225 302 200 225 303 225 225 304 250 225 305 275 225 306 300 225 306 300 225 306 300 225 306 300 225 1603 220 550 306 300 225 1605 275 550 307 225 1606 300 550 308 350 225 1607 325 550 311 425 225 1610 445 550 313 475 225 1611 445 550 314 500 225 1613 500 550						
223 725 200 224 750 200 225 775 200 301 175 225 302 200 225 303 225 225 304 250 225 305 275 225 306 200 225 306 200 225 306 200 225 306 200 225 306 300 225 307 325 225 308 350 225 309 375 225 1601 400 550 311 425 225 161 400 550 313 475 225 161 400 550 314 500 225 316 550 225 320 650 225 1614 500 550						
224 750 200 225 775 200 301 175 225 302 200 225 303 225 225 304 250 225 305 275 225 306 300 225 306 300 225 308 350 225 309 375 225 310 400 225 1603 235 550 309 375 225 1607 325 550 311 425 225 1611 445 550 312 450 225 313 475 225 314 500 225 315 525 225 316 550 225 317 755 225 318 600 225 320 650 225						
225 775 200 301 175 225 302 200 225 303 225 225 304 250 225 305 275 225 306 300 225 307 325 225 308 300 225 309 375 225 300 375 225 1604 250 550 309 375 225 1607 325 550 311 4425 225 1611 445 550 312 450 225 314 500 225 315 525 225 316 550 225 317 575 225 318 600 225 321 675 225 333 725 225 1618 600 550	223	725	200	1523	725	525
225 775 200 301 175 225 302 200 225 303 225 225 304 250 225 305 275 225 306 300 225 307 325 225 308 300 225 309 375 225 300 375 225 1604 250 550 309 375 225 1607 325 550 311 4425 225 1611 445 550 312 450 225 314 500 225 315 525 225 316 550 225 317 575 225 318 600 225 321 675 225 333 725 225 1618 600 550	224	750	200	1524	750	525
901 175 225 302 200 225 303 225 225 304 250 225 305 275 225 306 300 225 306 300 225 306 300 225 308 330 225 309 375 225 310 400 225 311 425 225 313 475 225 314 500 225 315 525 225 316 550 225 316 550 225 316 550 225 317 575 225 318 600 225 320 650 225 321 675 225 322 700 225 323 725 225 340 225 250						
902 200 225 303 225 225 304 230 225 305 275 225 306 300 225 307 325 225 308 230 225 309 375 225 300 375 225 301 400 225 311 425 225 313 475 225 314 500 225 315 525 225 316 550 225 317 575 225 318 600 225 321 675 225 321 675 225 3318 600 225 321 675 225 332 725 225 333 725 225 340 225 250 322 700 225						
903 225 225 304 250 225 305 275 225 306 300 225 307 325 225 308 350 225 308 350 225 309 375 225 310 400 225 1604 300 550 310 400 225 1608 330 550 311 425 225 1610 400 550 313 475 225 314 500 225 315 525 225 316 550 225 317 575 225 318 600 225 320 650 225 331 675 225 340 750 225 341 750 225 3401 175 250						
304 250 225 1604 250 550 306 275 225 1605 275 550 307 325 225 1606 300 550 308 350 225 1607 325 550 309 375 225 1607 325 550 310 400 225 1607 325 550 311 4425 225 1610 400 550 313 475 225 1611 425 550 314 500 225 1613 475 550 315 525 225 1616 550 550 316 605 225 1616 500 550 317 575 225 1620 650 550 321 675 225 1621 650 550 322 700 225 1621 650 550						
305 275 225 306 300 225 307 322 225 308 350 225 309 375 225 310 400 225 311 425 225 312 4450 225 313 475 225 314 500 225 315 525 225 316 550 225 317 575 225 318 600 225 319 625 225 311 550 225 313 660 225 314 550 225 319 625 250 320 650 225 331 755 225 332 725 225 333 725 225 340 250 755 402 200 250						
306 300 225 1606 300 550 307 325 225 1607 325 550 309 375 225 1608 350 550 310 400 225 1609 375 550 311 425 225 1610 400 550 313 475 225 1611 425 550 313 475 225 1613 475 550 316 550 225 1614 500 550 317 575 225 1618 600 550 318 660 225 1618 600 550 321 675 225 1618 600 550 322 700 225 1619 625 550 322 700 225 1621 675 550 323 725 250 1622 700 550						
307 325 225 308 350 225 309 375 225 310 400 225 311 425 225 312 4450 225 313 475 225 314 500 225 315 525 225 316 550 225 316 550 225 317 575 225 318 600 225 319 625 225 320 650 225 321 675 225 322 700 225 323 725 225 323 725 225 324 750 225 325 775 225 401 175 250 1621 675 550 322 700 255 402 200 250	305	275	225	1605	275	550
308 350 225 309 375 225 310 400 225 311 425 225 312 450 225 313 475 225 314 500 225 315 525 225 316 550 225 316 550 225 317 575 225 318 600 225 319 625 225 320 630 225 321 675 225 322 700 225 323 725 225 324 750 225 323 725 225 401 175 250 1612 675 550 1621 675 550 1701 175 575 402 200 250 1704 250 575	306	300	225	1606	300	550
309 375 225 310 400 225 311 425 225 312 450 225 313 475 225 314 500 225 315 525 225 316 550 225 317 575 225 318 600 225 319 625 225 311 575 225 316 550 225 317 575 225 318 600 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 401 175 225 402 200 250 403 225 250 404 250 250 406 300 250	307	325	225	1607	325	550
309 375 225 310 400 225 311 425 225 312 450 225 313 475 225 314 500 225 315 525 225 316 550 225 317 575 225 318 600 225 319 625 225 311 575 225 316 550 225 317 575 225 318 600 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 401 175 225 402 200 250 403 225 250 404 250 250 406 300 250	308	350	225	1608	350	550
310 400 225 311 425 225 312 450 225 313 475 225 314 500 225 315 525 225 316 550 225 316 550 225 317 575 225 318 600 225 319 625 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 402 200 250 403 225 250 404 250 250 405 275 250 406 300 250 407 325 250 410 400 250 410 400 250 4110 425 575						
311 425 225 312 450 225 313 445 225 314 500 225 315 525 225 316 550 225 317 575 225 318 600 225 319 625 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 323 725 225 401 175 250 402 200 250 403 225 250 404 250 250 406 300 250 406 300 250 410 400 250 410 400 250 410 400 250 411 425 250						
312 450 225 313 475 225 314 500 225 315 525 225 316 550 225 316 550 225 317 575 225 318 600 225 319 625 225 320 650 225 321 675 225 321 675 225 322 700 225 323 725 225 324 750 225 401 175 225 402 200 250 403 225 250 404 250 250 406 300 250 406 300 250 406 350 250 411 425 250 411 425 250 411 425 250 411 425 250 411 425 250 411 450 250 411 450 250 411 450 250 411 450 250 411 450 250 411 450 250 411 450 250 411 555 250 411 450 250 411 450 250 411 450 250 411 450 250 4114 500 575 <						
313 475 225 314 500 225 316 525 225 317 575 225 318 600 225 319 625 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 323 725 225 324 750 225 401 175 225 402 200 225 403 225 250 404 250 250 405 275 250 406 300 250 406 300 250 410 400 250 410 400 250 411 425 250 1706 300 575 1707 325 575						
314 500 225 315 525 225 316 550 225 317 575 225 318 600 225 319 625 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 325 775 225 401 175 225 402 200 250 403 225 250 404 250 250 405 275 250 406 300 250 406 300 250 407 325 250 1707 325 575 406 300 250 1707 325 575 410 400 250 1708 350 575						
315 525 225 316 550 225 317 575 225 318 600 225 319 625 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 325 775 225 401 175 250 402 200 250 403 225 250 404 250 250 403 225 250 404 250 250 405 275 250 406 300 250 407 325 250 1704 250 575 406 300 250 1706 300 575 410 400 250 411 425 250						
316 550 225 317 575 225 318 600 225 319 625 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 325 775 225 401 175 250 402 200 250 403 225 250 404 250 250 405 275 250 406 300 250 407 325 250 408 350 250 410 400 250 411 425 250 411 425 250 411 425 250 1710 400 555 411 450 250 1710 400 575	314	500	225	1614	500	550
317 575 225 318 600 225 319 625 225 320 650 225 321 675 225 321 675 225 322 700 225 323 725 225 324 750 225 324 750 225 401 175 225 401 175 250 402 200 250 403 225 250 404 250 250 406 300 250 406 300 250 407 325 250 406 300 250 410 400 250 411 425 250 411 425 250 411 425 250 411 450 250 411 555 416 550 250 411 555 416 550 250 1714 500 575 416 550 250 1714 500 575 416 550 250 1714 500 575 417 575 250 1714 500 575 416 550 250 1714 600 575 417 575 575 418 600 250 1718 600 575 1719	315	525	225	1615	525	550
318 600 225 319 6.25 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 325 775 225 401 175 250 402 200 250 403 225 250 404 250 250 405 275 250 406 300 250 407 325 250 406 300 250 407 325 250 406 300 250 410 400 250 411 425 250 411 425 250 411 425 250 411 425 250 411 425 575 412 450 250	316	550	225	1616	550	550
319 625 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 325 775 225 401 175 225 402 200 250 403 225 250 404 250 250 403 225 250 404 250 250 405 275 250 406 300 250 1704 250 575 406 300 250 1705 275 575 406 300 250 1705 275 575 406 300 250 1706 300 575 410 400 250 1710 400 575 411 425 250	317	575	225	1617	575	550
319 625 225 320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 325 775 225 401 175 225 402 200 250 403 225 250 404 250 250 403 225 250 404 250 250 405 275 250 406 300 250 1704 250 575 406 300 250 1705 275 575 406 300 250 1705 275 575 406 300 250 1706 300 575 410 400 250 1710 400 575 411 425 250	318	600	225	1618	600	550
320 650 225 321 675 225 322 700 225 323 725 225 324 750 225 325 775 225 401 175 250 402 200 250 403 225 250 404 250 250 405 275 250 406 300 250 406 300 250 407 325 250 408 350 250 410 400 250 411 425 250 1708 350 575 1709 375 575 1710 400 575 411 425 250 1710 400 575 411 425 250 1711 425 575 413 475 250						
321 675 225 322 700 225 323 725 225 324 750 225 325 775 225 401 175 250 402 200 250 403 225 250 404 250 250 405 275 250 406 300 250 407 325 250 406 300 250 1704 250 575 406 300 250 1705 275 575 1706 300 575 407 325 250 1706 300 575 409 375 250 1709 375 575 410 400 250 1710 400 575 411 425 250 1711 425 575 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
322 700 225 323 725 225 324 750 225 325 775 225 401 175 250 402 200 250 403 225 250 404 250 250 405 275 250 406 300 250 407 325 250 407 325 250 407 325 250 410 400 250 411 425 250 412 450 250 413 475 250 1709 375 575 1710 400 575 1710 400 575 1707 325 575 1708 350 575 1710 400 575 1711 425 575 1712 450 575 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
323 725 225 324 750 225 325 775 225 401 175 250 402 200 250 403 225 250 404 250 250 405 275 250 406 300 250 407 325 250 406 300 250 407 325 250 408 350 250 410 400 250 411 425 250 412 450 250 413 475 250 1711 425 575 413 475 250 1713 475 575 414 500 250 1714 500 575 1715 525 575 1714 500 575 1714 500 575 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
324 750 225 325 775 225 401 175 250 402 200 250 403 225 250 404 250 250 405 275 250 406 300 250 407 325 250 408 350 250 409 375 250 410 400 250 411 425 250 412 450 250 413 475 250 1711 425 575 414 500 250 1711 425 575 413 475 250 1714 500 575 1714 500 575 1711 425 575 1711 425 575 1714 500 575 1715 525 575 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
325 775 225 401 175 250 402 200 250 403 225 250 404 250 250 404 250 250 405 275 250 406 300 250 407 325 250 408 350 250 409 375 250 410 400 250 411 425 250 412 450 250 413 475 250 414 500 250 1711 425 575 413 475 250 1711 425 575 415 525 250 1714 500 575 1714 500 575 1715 525 575 1714 500 575 1715 525 575 <td>323</td> <td>725</td> <td>225</td> <td>1623</td> <td>725</td> <td>550</td>	323	725	225	1623	725	550
401 175 250 402 200 250 403 225 250 404 250 250 404 250 250 405 275 250 406 300 250 406 300 250 407 325 250 408 350 250 409 375 250 410 400 250 411 425 250 412 450 250 413 475 250 414 500 250 1712 450 575 413 475 250 1714 500 575 415 525 250 1714 500 575 416 550 250 1716 555 575 418 600 250 1718 600 575	324	750	225	1624	750	550
401 175 250 402 200 250 403 225 250 404 250 250 404 250 250 405 275 250 406 300 250 406 300 250 407 325 250 408 350 250 409 375 250 410 400 250 411 425 250 412 450 250 413 475 250 414 500 250 1712 450 575 413 475 250 1714 500 575 415 525 250 1714 500 575 416 550 250 1716 555 575 418 600 250 1718 600 575	325	775	225	1625	775	550
402 200 250 1702 200 575 403 225 250 1703 225 575 404 250 250 1704 250 575 405 275 250 1705 275 575 406 300 250 1706 300 575 407 325 250 1706 300 575 408 350 250 1707 325 575 409 375 250 1708 350 575 410 400 250 1710 400 575 411 425 250 1711 425 575 413 475 250 1712 450 575 414 500 250 1714 500 575 416 550 250 1716 550 575 417 575 250 1717 575 575 418 600 250 1718 600 575 419 625 250 1719 625 575 420 650 250 1720 650 575			250			
403 225 250 404 250 250 405 275 250 406 300 250 406 300 250 407 325 250 408 350 250 409 375 250 410 400 250 411 425 250 411 425 250 411 425 250 413 475 250 414 500 250 1714 500 575 415 525 250 1714 500 575 416 550 250 1716 550 575 1717 575 575 418 600 250 1718 600 575 1719 625 575 1718 600 575						
404 250 250 405 275 250 406 300 250 407 325 250 408 350 250 409 375 250 410 400 250 410 400 250 411 425 250 412 450 250 413 475 250 414 500 250 415 525 250 416 550 250 417 575 250 418 600 250 419 625 250 1716 550 575 575 250 1714 500 575 575 575 1717 575 575 1718 600 575 1719 625 575 1719 650 575 1719 650 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
405 275 250 406 300 250 407 325 250 408 350 250 409 375 250 410 400 250 411 425 250 412 450 250 413 475 250 414 500 250 415 525 250 416 550 250 417 575 250 418 600 250 419 625 250 1718 600 575 575 575 575 575 575 250 1714 500 575 575 575 575 575 575 575 575 575 575 575 575 575 575 575 575						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
407 325 250 408 350 250 409 375 250 410 400 250 411 425 250 412 450 250 413 475 250 414 500 250 415 525 250 416 550 250 417 575 250 418 600 250 419 625 250 1714 575 575 1717 575 575 1718 600 575 1719 625 575 1717 575 575 1718 600 575 1719 625 575 1718 600 575 1720 650 575						
408 350 250 409 375 250 410 400 250 411 425 250 411 425 250 412 450 250 413 475 250 414 500 250 415 525 250 416 550 250 417 575 250 418 600 250 419 625 250 1716 650 575 1717 575 575 500 250 1716 550 575 250 1717 575 575 250 1717 575 1717 575 575 1718 600 575 1719 625 575 1720 650 575						
409 375 250 410 400 250 411 425 250 411 425 250 412 450 250 413 475 250 414 500 250 415 525 250 416 550 250 417 575 250 418 600 250 419 625 250 1716 550 575 1717 575 575 1718 600 575 1719 625 575 1719 650 575						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	408	350	250	1708	350	575
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	409	375	250	1709	375	575
411 425 250 412 450 250 413 475 250 413 475 250 414 500 250 415 525 250 416 550 250 417 575 250 418 600 250 419 625 250 1716 575 1717 575 500 250 1716 550 575 575 1717 575 500 250 1717 575 500 250 1717 575 575 500 250 1718 600 575 1719 625 575 1720 650						
412 450 250 1712 450 575 413 475 250 1713 475 575 414 500 250 1714 500 575 415 525 250 1714 500 575 416 550 250 1716 550 575 417 575 250 1717 575 575 418 600 250 1718 600 575 419 625 250 1719 625 575 420 650 250 1720 650 575						
413 475 250 1713 475 575 414 500 250 1714 500 575 415 525 250 1714 500 575 416 550 250 1716 550 575 417 575 250 1717 575 575 418 600 250 1718 600 575 419 625 250 1719 625 575 420 650 250 1720 650 575						
414 500 250 1714 500 575 415 525 250 1715 525 575 416 550 250 1716 550 575 417 575 250 1717 575 575 418 600 250 1718 600 575 419 625 250 1719 625 575 420 650 250 1720 650 575						
415 525 250 1715 525 575 416 550 250 1716 550 575 417 575 250 1716 550 575 418 600 250 1718 600 575 419 625 250 1719 625 575 420 650 250 1720 650 575						
416 550 250 1716 550 575 417 575 250 1717 575 575 418 600 250 1718 600 575 419 625 250 1719 625 575 420 650 250 1720 650 575						
417 575 250 1717 575 575 418 600 250 1718 600 575 419 625 250 1719 625 575 420 650 250 1720 650 575						
418 600 250 1718 600 575 419 625 250 1719 625 575 420 650 250 1720 650 575	416	550	250	1716	550	575
418 600 250 1718 600 575 419 625 250 1719 625 575 420 650 250 1720 650 575	417	575	250	1717	575	575
419 625 250 1719 625 575 420 650 250 1720 650 575						
420 650 250 1720 650 575						
421 0/3 230 1/21 0/3 5/5						
	421	0/3	230	1721	0/5	5/5

100	500	250	1700	500	
422	700	250	1722	700	575
423	725	250	1723	725	575
424	750	250	1724	750	575
425	775	250	1725	775	575
501	175	275	1801	175	600
502	200	275	1802	200	600
503	225	275	1803	225	600
504	250	275	1804	250	600
505	275	275	1805	275	600
506	300	275	1806	300	600
507	325	275	1807	325	600
508	350	275	1808	350	600
509	375	275	1809	375	600
510	400	275	1810	400	600
511	425	275	1811	425	600
512	450	275	1812	450	600
513	475	275	1813	475	600
514	500	275	1814	500	600
515	525	275	1815	525	600
516	550	275	1816	550	600
517	575	275	1817	575	600
518	600	275	1818	600	600
519	625	275	1819	625	600
520	650	275	1819	650	600
520	675	275	1820	675	600
522	700	275	1821	700	600
523	700	275	1822	700	600
523	725	275	1823	725	600
525	750	275	1824	750	600
601	175	300	1901	175	625
602	200	300	1902	200	625
603	225	300	1903	225	625
604	250	300	1904	250	625
605	275	300	1905	275	625
606	300	300	1906	300	625
607	325	300	1907	325	625
608	350	300	1908	350	625
609	375	300	1909	375	625
610	400	300	1910	400	625
611	425	300	1911	425	625
612	450	300	1912	450	625
613	475	300	1913	475	625
614	500	300	1914	500	625
615	525	300	1915	525	625
616	550	300	1916	550	625
617	575	300	1917	575	625
618	600	300	1918	600	625
619	625	300	1919	625	625
620	650	300	1920	650	625
621	675	300	1921	675	625
622	700	300	1922	700	625
623	725	300	1922	725	625
624	750	300	1923	750	625
625	775	300	1925	775	625
701	175	325	2001	175	650
702	200	325	2001	200	650
703	225	325	2002	225	650
704	225	325	2003	225	650
705	230	325	2004	230	650
705	300	325	2005	300	650
708	325	325	2006	325	650
707 708	325	325	2007 2008	325	650
709	375	325	2009	375	650
710	400	325	2010	400	650
711	425	325	2011	425	650
712	450	325	2012	450	650
713	475	325	2013	475	650
714	500	325	2014	500	650
715	525	325	2015	525	650
716	550	325	2016	550	650
717	575	325	2017	575	650
718	600	325	2018	600	650
719	625	325	2019	625	650
720	650	325	2020	650	650
			· · · · · · · · · · · · · · · · · · ·		

722 700 335 723 725 325 724 750 325 725 725 325 780 325 725 690 9801 175 325 725 690 9802 200 380 2101 175 690 9803 225 380 2103 225 675 9806 300 380 2106 225 675 980 400 320 2106 225 675 981 400 320 2106 325 675 981 400 320 2106 320 675 813 455 380 2111 450 675 814 500 330 2113 450 675 814 550 330 2114 500 675 814 675 330 2113 640 675 814<						
723 725 325 724 750 325 725 775 325 801 175 330 822 200 330 823 225 330 826 203 330 886 235 330 886 235 330 886 235 330 886 235 330 886 235 330 886 235 330 886 235 330 886 235 330 886 235 330 889 375 330 811 445 330 812 450 330 813 475 330 814 500 330 817 575 330 818 600 330 822 700 235 834 750 330	721	675	325	2021	675	650
724 750 325 75 775 325 801 175 330 802 200 390 803 225 390 804 250 390 805 275 390 806 300 390 807 232 390 808 300 390 808 300 390 809 375 390 811 490 390 812 490 390 813 475 390 814 590 390 815 555 390 816 590 390 817 757 830 818 660 390 819 663 390 814 770 390 821 675 390 814 770 390 821 675 390 <	722	700	325	2022	700	650
725 775 325 901 175 350 902 200 350 903 225 350 904 250 350 905 2102 200 675 906 300 350 2148 225 675 907 735 530 2148 225 675 907 735 530 2146 300 675 907 375 350 2160 300 675 907 375 350 2160 375 675 910 400 350 2111 450 675 911 425 350 2113 450 675 911 455 350 2114 450 675 917 755 350 2114 6075 675 911 75 350 2114 600 675 912 700 350 <td>723</td> <td>725</td> <td>325</td> <td>2023</td> <td>725</td> <td>650</td>	723	725	325	2023	725	650
981 175 390 982 200 350 983 225 350 984 250 350 985 275 350 986 300 350 987 325 350 989 375 350 989 375 350 810 400 350 811 425 350 812 450 350 813 475 350 814 500 800 675 813 475 350 814 500 350 817 575 380 818 600 350 819 625 380 820 675 380 821 775 350 821 775 350 821 775 350 821 775 350 920 775	724	750	325	2024	750	650
801 175 300 802 200 350 803 225 350 804 250 350 805 275 350 806 300 350 807 325 350 809 375 350 809 375 350 810 400 550 811 425 350 812 450 350 813 475 350 814 500 500 815 525 350 816 500 350 817 575 350 818 600 380 819 625 350 810 625 675 811 600 360 812 670 380 814 750 350 815 755 350 901 175 775	725	775	325	2025	775	650
982 200 350 983 225 350 984 290 350 985 275 350 986 300 359 987 352 350 989 375 350 989 375 350 989 375 350 989 375 350 989 375 350 981 440 350 813 475 350 814 500 350 815 525 350 814 500 350 814 500 350 814 600 350 818 600 350 819 650 350 814 750 350 821 675 350 821 675 350 821 675 350 821 675 350						
800 225 300 804 290 330 805 275 330 806 300 330 807 325 330 808 300 330 809 375 350 800 400 550 810 400 550 811 425 550 812 450 550 813 475 350 814 500 500 815 525 350 816 500 350 817 575 350 818 600 350 819 625 350 821 675 380 2110 605 675 821 675 380 2110 605 675 821 675 380 2111 405 675 822 755 380						
984 290 390 985 275 330 986 300 330 987 225 330 988 530 330 989 275 330 989 275 330 989 275 350 980 400 350 811 425 350 811 425 350 813 475 350 814 500 350 815 525 350 816 550 350 817 575 350 818 600 350 819 625 755 811 675 550 812 700 350 822 700 350 833 725 350 843 755 350 964 225 375 965 275 375						
885 275 390 886 300 330 897 325 330 887 325 330 888 359 350 889 359 350 880 359 350 810 400 350 811 425 350 812 459 350 813 475 350 814 500 350 815 525 350 816 559 330 817 575 350 818 600 350 817 575 350 818 600 350 821 675 350 822 700 350 823 725 350 901 175 375 902 200 375 903 225 375 904 230 375						
886 300 330 2106 300 675 887 329 330 300 300 675 888 330 330 300 300 675 880 400 350 2107 325 675 810 400 350 2107 325 675 811 425 550 2111 445 675 813 477 550 2111 450 675 814 900 350 2114 500 675 816 550 350 2115 555 675 817 975 350 2117 675 675 821 675 350 2119 665 675 821 675 350 2121 675 675 821 675 350 2121 675 675 821 675 350 2121 675 675				2104		
807 325 330 808 350 350 809 775 350 809 775 350 810 400 350 811 425 350 812 459 350 813 4175 350 814 500 350 814 500 350 815 525 350 816 550 350 817 575 350 818 600 350 819 625 350 811 675 350 822 700 330 822 700 350 821 605 375 831 725 330 901 175 375 901 175 375 902 200 375 903 225 375 904 220 375	805	275	350	2105	275	675
988 350 350 989 373 330 810 400 350 811 425 350 812 450 350 813 475 350 814 900 350 815 923 350 816 950 350 817 973 350 818 000 350 819 025 350 811 075 350 812 075 350 813 075 350 814 070 350 821 075 350 821 075 350 822 700 350 901 175 755 823 775 130 902 200 735 903 225 735 904 250 735 905 215 735	806	300	350	2106	300	675
988 350 350 989 373 330 810 400 350 811 425 350 812 450 350 813 475 350 814 900 350 815 923 350 816 950 350 817 973 350 818 000 350 819 025 350 811 075 350 812 075 350 813 075 350 814 070 350 821 075 350 821 075 350 822 700 350 901 175 755 823 775 130 902 200 735 903 225 735 904 250 735 905 215 735	807	325	350	2107	325	675
809 373 300 810 400 539 811 425 590 812 459 570 813 475 590 814 500 530 814 500 530 816 525 350 817 575 350 818 600 350 817 575 350 818 600 350 819 605 350 810 605 350 811 675 350 812 700 350 813 725 350 814 750 350 813 725 350 814 750 350 812 775 350 813 725 375 814 750 735 820 600 375 901 175 375						
810 400 350 811 425 359 812 450 359 813 475 359 814 500 359 815 525 339 816 550 359 816 550 359 817 575 350 818 600 359 819 625 351 810 650 359 821 675 350 822 700 350 823 725 350 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 910 400 375 911 425 375 906 300 375 910 400 375						
811 425 350 2111 425 675 813 475 359 2112 4490 675 814 500 359 2113 475 675 815 525 359 2114 500 675 816 550 359 2114 500 675 817 575 359 2116 525 675 819 625 359 2118 600 675 821 675 359 2120 665 675 823 725 359 2121 605 675 824 730 350 2123 725 675 824 730 350 2123 725 700 901 175 375 2203 720 200 700 904 230 375 2206 200 700 906 300 375 2206 300 <						
812 490 350 2112 490 675 813 475 519 2113 475 675 814 500 359 2114 500 675 816 550 359 2114 500 675 817 575 339 2116 559 675 818 600 350 2118 600 675 820 660 350 2118 600 675 821 675 350 2120 665 675 822 700 350 2121 675 675 823 725 350 2124 750 675 824 780 375 201 175 700 901 175 375 201 175 700 902 300 375 203 225 700 906 300 375 2016 325 700						
813 475 390 2113 475 675 815 525 350 2114 500 675 816 500 300 2115 525 675 817 575 350 2117 575 675 819 625 350 2117 575 675 820 650 350 2118 600 675 821 675 350 2120 630 675 821 775 350 2121 675 675 823 725 350 2124 750 675 824 750 350 2124 750 675 901 175 375 2201 175 675 902 200 375 2201 175 700 904 250 375 2201 135 700 905 375 375 2206 300 700	811	425	350	2111	425	675
814 500 350 815 525 359 816 550 359 817 575 300 819 625 359 810 650 350 811 675 350 822 700 359 821 675 350 822 700 359 823 725 350 824 770 350 825 775 350 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 908 350 375 909 375 375 909 375 375 901 440 375 901 445 375	812	450	350	2112	450	675
844 500 350 2114 900 675 816 550 350 2116 550 675 817 575 360 2116 550 675 819 625 350 2118 600 675 810 650 350 2118 600 675 821 675 350 2119 625 675 822 700 350 2120 650 675 823 775 350 2124 750 675 824 770 350 2124 750 675 825 775 350 2124 750 675 826 775 350 2124 750 675 826 775 375 201 175 700 902 200 375 203 225 700 904 250 375 206 300 700	813	475	350	2113	475	675
815 925 350 816 550 350 817 575 350 818 600 350 819 625 350 820 650 350 821 675 350 821 675 350 822 700 350 823 725 350 824 750 350 825 775 350 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 910 400 375 911 425 375 920 375 375 921 450 375 913 475 375 914 500 375						
816 550 350 817 575 359 818 600 350 819 625 350 820 650 350 821 675 350 822 700 350 823 725 350 824 750 350 825 775 350 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 908 350 375 909 375 375 910 400 375 920 650 375 921 450 375 921 450 375 921 523 375 921 523 375						
817 575 350 818 600 350 819 0.25 350 820 650 350 821 675 350 822 700 350 823 725 350 824 750 350 824 750 350 901 175 375 9212 200 375 903 225 375 904 250 375 905 215 375 906 300 375 906 300 375 907 325 375 908 350 375 910 400 375 911 425 375 912 450 375 913 475 375 914 500 375 915 525 375 921 675 375						
818 600 350 819 625 350 820 650 350 821 675 350 822 700 350 823 725 350 824 750 350 825 775 350 901 175 375 902 200 375 903 225 375 904 250 375 905 200 375 906 300 375 907 323 375 908 350 375 909 375 375 910 400 375 920 375 320 911 425 375 912 450 375 913 475 375 914 500 375 915 525 375 921 650 375						
819 625 330 820 650 350 821 675 350 821 675 350 822 700 350 823 725 350 824 750 350 825 775 350 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 322 375 908 350 375 909 375 375 910 400 375 911 425 375 912 450 375 913 475 375 914 500 375 915 525 375 916 650 375 917 575 375						
820 650 330 821 675 350 822 700 350 823 725 350 823 725 350 824 750 350 825 775 350 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 908 350 375 909 375 375 909 375 375 901 400 375 911 425 375 913 475 375 914 500 375 915 525 375 921 650 375 921 675 375 921 650 375	818	600	350	2118	600	675
820 650 330 821 675 350 822 700 350 823 725 350 823 725 350 824 750 350 825 775 350 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 908 350 375 909 375 375 909 375 375 901 400 375 911 425 375 913 475 375 914 500 375 915 525 375 921 650 375 921 675 375 921 650 375	819	625	350	2119	625	675
821 675 330 822 700 350 823 725 350 824 750 350 825 775 350 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 908 350 375 909 375 375 909 375 375 910 400 375 911 425 375 913 475 375 914 500 375 915 525 375 914 500 375 915 525 375 914 500 375 915 525 375 914 500 375						
822 700 350 823 725 350 824 750 350 825 775 350 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 908 350 375 909 375 3203 225 700 906 300 375 2203 225 700 907 325 375 2206 300 700 909 375 375 2208 350 700 911 425 375 2210 450 700 912 450 375 2212 450 700 913 475 375 2213 475 700 916 550						
823 725 350 824 750 350 825 775 350 901 175 350 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 322 375 908 350 375 909 375 375 909 375 375 901 400 375 911 425 375 912 450 375 914 500 375 915 525 375 914 500 375 915 525 375 916 6550 375 917 575 375 918 600 375 921 675 375 922 700 375						
824 750 350 825 775 350 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 908 350 375 909 375 375 909 375 375 910 400 275 911 423 375 910 400 375 911 425 375 912 450 375 913 475 375 914 500 375 915 525 375 916 550 375 917 575 375 920 650 375 921 675 375 922 700 375						
825 775 330 901 175 375 901 175 375 902 200 375 903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 908 350 375 909 375 375 910 400 375 911 425 375 912 450 375 913 475 375 914 500 375 915 525 375 916 550 375 917 575 375 918 600 375 920 650 375 921 675 375 922 700 375 923 725 375 924 750 375						
901 175 375 902 200 375 2201 175 700 903 225 375 2203 225 700 904 250 375 2203 225 700 905 2275 375 2204 250 700 906 300 375 2206 300 700 906 330 375 2206 300 700 907 325 375 2206 300 700 909 375 375 2209 375 700 910 400 375 2210 400 700 911 425 375 2210 400 700 911 425 375 2211 425 700 911 425 375 2211 425 700 911 552 375 2214 500 700 916 550 375 2216 550 700 917 575 375 2216 550 700 921 675 375 2210 650 700 922 700 375 2213 600 700 922 700 375 2221 675 700 923 725 375 2221 675 700 924 750 375 2223 725 700 925 775 400 2304 2250 725 1						
902 200 375 903 225 375 904 220 200 700 905 275 375 204 250 700 906 3300 375 206 300 7700 907 325 375 206 300 7700 907 325 375 206 300 7700 907 325 375 2206 330 700 909 375 375 2208 330 700 910 400 375 2209 35 700 911 425 375 2210 400 700 913 475 375 2214 500 700 914 500 375 375 2216 525 700 916 550 375 375 2216 525 700 920 680 375 375 2216 650	825	775	350	2125	775	675
903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 908 350 375 909 375 375 909 375 375 910 400 375 910 400 375 911 425 375 912 450 375 911 425 375 912 450 375 914 500 375 916 550 375 916 550 375 916 550 375 911 655 375 912 660 375 914 500 375 911 655 375 921 675 375 921 675 375 921 675 375 922 700 375 922 700 375 922 770 375 922 775 375 1001 175 400 923 725 400 924 755 400 1002 200 400 2304 250 725 1006 300 400 2304 250 725 1006 300 400 2306 330 725 1010 400 400 1011 425 40	901	175	375	2201	175	700
903 225 375 904 250 375 905 275 375 906 300 375 907 325 375 908 350 375 909 375 375 909 375 375 910 400 375 911 425 375 912 450 375 911 425 375 912 450 375 914 500 375 916 550 375 916 550 375 916 550 375 911 660 375 912 660 375 914 500 375 914 500 375 911 625 375 921 675 375 921 675 375 921 675 375 922 700 375 922 700 375 922 770 375 922 775 375 1002 200 400 234 750 700 925 775 400 1001 175 400 2304 250 725 1006 300 400 2302 200 725 1006 300 400 2304 250 725 1006 300 400 1011 425 40	902	200	375	2202	200	700
904 250 375 906 275 375 906 300 375 907 325 375 908 350 375 909 335 375 909 335 375 909 335 375 909 375 375 910 400 375 911 4425 375 911 445 375 911 455 375 911 455 375 911 455 375 911 455 375 911 555 375 911 555 375 911 555 375 911 555 375 911 655 375 911 655 375 921 675 375 922 700 375 922 700 375 922 700 375 922 700 375 1001 175 400 2302 200 725 1003 225 400 2304 250 725 1005 275 400 2306 330 2306 330 2306 330 725 400 2306 330 725 1006 300 400 2306 330 2311 425 725 1012 450						
905 275 375 2205 275 700 906 300 375 325 700 907 325 375 2207 325 700 909 375 375 2207 325 700 910 400 375 2208 350 700 911 425 375 2210 400 700 911 425 375 2210 400 700 911 425 375 2211 425 700 913 475 375 2212 450 700 914 500 375 2214 500 700 916 550 375 2216 550 700 917 575 375 2218 600 700 918 600 375 2218 600 700 920 650 375 2218 600 700 921 675 375 2221 675 700 922 700 375 2222 700 700 923 725 375 2223 725 700 924 750 375 2224 750 700 925 775 400 2304 2250 725 1003 225 400 2304 225 725 1006 300 400 2306 330 725 1007 225 400 2316 450 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
906 300 375 2206 300 700 907 325 375 325 700 909 375 375 2207 325 700 909 375 375 2209 375 700 910 400 375 2209 375 700 911 425 375 2210 400 700 911 425 375 2211 425 700 911 475 375 2211 425 700 913 475 375 2214 500 700 914 550 375 2214 500 700 917 575 375 2217 575 700 918 600 375 2217 575 700 920 650 375 2219 625 700 921 675 375 2222 700 700 922 700 375 2222 700 700 923 725 375 2222 700 700 924 750 375 2222 725 700 1001 175 400 2304 2250 725 1004 250 400 2306 330 725 1004 250 400 2306 330 725 1004 250 400 2316 550 725 1010 400 400 2316 550 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
907 325 375 908 350 375 909 375 375 910 400 375 911 425 375 912 450 375 913 475 375 913 475 375 914 500 375 915 525 375 916 550 375 916 550 375 917 575 375 918 600 375 919 625 375 922 700 375 922 700 375 922 700 375 922 700 375 922 700 375 922 700 375 922 700 375 922 700 375 922 700 375 922 700 375 1001 175 400 923 725 775 1002 200 400 2303 225 725 1004 250 400 2304 250 725 1007 325 400 1011 425 400 2309 375 725 1012 450 400 2310 400 2310 400 2310 475 725 400 2311 425 725 400 2310 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
908 350 375 2208 350 700 909 375 375 2209 375 700 911 425 375 2210 400 700 911 425 375 2210 400 700 912 450 375 2211 425 700 913 4475 375 2213 4475 700 914 500 375 2213 4475 700 915 525 375 2214 500 700 916 550 375 2216 550 700 917 575 375 2216 550 700 918 600 375 2218 600 700 920 650 375 2219 625 700 921 675 375 2221 675 700 922 775 375 2222 700 700 923 725 375 2224 750 700 924 750 375 2224 750 700 925 775 400 2302 200 725 1003 225 400 2304 225 725 1006 330 400 2306 330 725 1007 325 400 2311 425 725 1006 350 400 2311 425 725 1011 425 400 2311 425 7	906	300	375	2206	300	700
909 375 375 2209 375 700 910 400 375 2210 400 700 911 425 375 2211 425 700 912 450 375 2211 425 700 913 475 375 2211 425 700 914 500 375 2212 450 700 915 525 375 2214 550 700 916 550 375 2214 550 700 917 575 375 2216 550 700 918 600 375 2216 550 700 920 655 375 2217 575 700 921 675 375 2220 650 700 923 725 375 2221 675 700 924 750 375 2222 700 700 925 775 375 2223 725 700 925 775 400 2301 175 725 1002 200 400 2304 250 725 1006 330 400 2306 330 725 1006 330 400 2311 425 725 1014 550 400 2314 550 725 1015 525 400 2314 550 725 1016 550 400 2314 550 725	907	325	375	2207	325	700
909 375 375 2209 375 700 910 400 375 2210 400 700 911 425 375 2211 425 700 912 450 375 2211 425 700 913 475 375 2211 425 700 914 500 375 2212 450 700 915 525 375 2214 550 700 916 550 375 2214 550 700 917 575 375 2216 550 700 918 600 375 2216 550 700 920 655 375 2217 575 700 921 675 375 2220 650 700 923 725 375 2221 675 700 924 750 375 2222 700 700 925 775 375 2223 725 700 925 775 400 2301 175 725 1002 200 400 2304 250 725 1006 330 400 2306 330 725 1006 330 400 2311 425 725 1014 550 400 2314 550 725 1015 525 400 2314 550 725 1016 550 400 2314 550 725	908	350	375	2208	350	700
910 400 375 911 425 375 912 450 375 913 475 375 914 500 375 914 500 375 916 550 375 916 550 375 917 575 375 918 600 375 919 625 375 920 650 375 921 675 375 922 700 375 922 700 375 923 725 375 924 750 375 1001 175 400 925 775 375 1003 225 400 200 400 2300 2302 200 725 300 1004 250 400 2304 250 725 1005 375 400 2306 300 725 1007 325 400 2306 300 725 1011 425 400 2306 350 725 1014 500 400 2311 425 725 1014 500 400 2314 500 725 1015 525 400 2314 500 725 1016 550 400 2316 525 725 1017 575 400						
911 425 375 912 450 375 913 475 375 914 500 375 915 525 375 916 550 375 916 550 375 917 575 375 918 600 375 919 625 375 920 650 375 922 650 375 922 700 375 923 725 375 924 750 375 222 700 375 924 750 375 1001 175 400 924 750 375 1002 200 400 225 775 700 225 775 700 1004 250 400 2304 225 725 1004 250 400 2304 225 725 1006 300 400 2304 225 725 1006 300 400 2304 225 725 1011 425 400 2311 425 725 1012 450 400 2314 500 725 1014 500 400 2314 500 725 1015 525 400 2314 500 725 1016 550 400 2318 600 <						
912 450 375 913 475 375 914 500 375 915 525 375 916 550 375 917 575 375 918 600 375 919 625 375 920 650 375 921 675 375 922 700 375 923 725 375 924 750 375 925 775 375 1001 1175 400 925 225 400 1001 175 400 2304 250 400 2305 275 400 2304 250 400 2305 275 725 1007 325 400 2308 350 725 1009 375 400 2309 375 725 1007 225 400 2308 350 725 1010 400 400 2310 475 725 1011 425 400 2310 400 2311 425 725 1014 500 400 2314 500 725 1017 575 400 2316 550 725 1018 600 400 2318 600 725						
91347537591450037591552537591655037591757537591860037591962537592065037592167537592270037592372537592475037592577537592622065092770037592872537592475037592577537510011754009252254001002200400230117572510042254002304250725100527540023063007251007325400230835040023093757251010400400231040023114257251012450400231450072510145004002315525725101655040023165507251017575400231655072510175757251018600400						
914 500 375 915 525 375 916 550 375 917 575 375 917 575 375 918 600 375 919 625 375 920 650 375 921 675 375 922 700 375 922 700 375 922 700 375 922 700 375 922 700 375 922 700 375 924 750 375 1001 175 400 925 775 375 1002 200 400 2300 200 725 1003 225 400 1004 250 400 2304 250 725 1006 300 400 2306 300 725 1008 350 400 2310 400 2310 400 2311 425 725 1012 450 400 2311 425 725 1014 500 400 2314 500 725 1015 525 400 2314 500 725 1016 550 400 2316 550 725 1017 575 400 2316 500 725 2316 500 725 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
915 525 375 916 550 375 917 575 375 917 575 375 918 600 375 919 625 375 920 650 375 921 675 375 922 700 375 922 700 375 922 700 375 922 700 375 922 700 375 922 700 375 924 750 375 925 775 375 1001 175 400 1001 175 400 1003 225 400 2302 200 400 2303 225 725 1004 250 400 2304 250 725 1005 275 400 2304 250 725 1006 300 400 2306 300 725 1007 325 400 2308 350 725 1010 400 400 2310 400 2311 425 725 1011 425 400 2314 500 725 1013 475 400 2314 500 725 1017 575 400 2316 550 725 1017 575 725 1018 600 4						
916 550 375 2216 550 700 917 575 375 2217 575 700 918 600 375 2217 575 700 919 625 375 2219 625 700 920 650 375 2219 625 700 921 675 375 2220 650 700 922 700 375 2221 675 700 923 725 375 2223 725 700 924 750 375 2223 725 700 925 775 375 2224 750 700 925 775 375 2223 725 700 1001 175 400 2301 175 725 1002 200 400 2304 250 725 1004 250 400 2304 250 725 1006 300 400 2306 300 725 1006 300 400 2306 330 725 1010 400 400 2310 400 725 1011 425 400 2311 425 725 1013 475 400 2314 500 725 1014 500 400 2316 550 725 1016 550 400 2316 550 725 1018 600 400 2	914	500	375	2214	500	700
917 575 375 2217 575 700 918 600 375 2218 600 700 919 625 375 2219 625 700 920 650 375 2220 650 700 921 675 375 2220 650 700 922 700 375 2221 675 700 923 725 375 2222 700 700 924 750 375 2223 725 700 925 775 375 2225 775 700 1001 175 400 2301 175 725 1002 200 400 2304 250 725 1004 250 400 2304 250 725 1004 250 400 2306 300 725 1006 300 400 2306 300 725 1008 350 400 2306 300 725 1010 400 400 2311 425 725 1011 425 400 2311 425 725 1013 475 400 2311 425 725 1014 500 400 2314 500 725 1016 550 400 2316 550 725 1018 600 400 2318 600 725	915	525	375	2215	525	700
917 575 375 2217 575 700 918 600 375 2218 600 700 919 625 375 2219 625 700 920 650 375 2229 650 700 921 675 375 2220 650 700 922 700 375 2221 675 700 923 725 375 2222 700 700 924 750 375 2224 750 700 925 775 375 2224 750 700 1001 175 400 2301 175 725 1002 200 400 2304 225 725 1004 250 400 2304 225 725 1004 250 400 2304 250 725 1006 300 400 2304 250 725 1008 350 400 2308 350 725 1010 400 400 2311 425 725 1011 425 400 2311 425 725 1014 500 400 2314 500 725 1016 550 400 2316 550 725 1017 755 400 2316 550 725 1018 600 400 2318 600 725	916	550	375	2216	550	700
918 600 375 2218 600 700 919 625 375 2219 625 700 920 650 375 2220 650 700 921 675 375 2220 650 700 922 700 375 2221 675 700 923 725 375 2222 700 700 924 750 375 2223 725 700 925 775 375 2224 750 700 1001 175 400 2301 175 725 1002 200 400 2302 200 725 1003 225 400 2302 200 725 1004 250 400 2305 275 725 1006 300 400 2306 300 725 1007 325 400 2307 325 725 1008 350 400 2310 400 725 1010 400 400 2311 425 725 1011 425 400 2312 450 725 1012 450 400 2314 500 725 1014 500 400 2316 550 725 1017 575 400 2316 550 725 1018 600 400 2318 600 725	917	575		2217		700
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
920 650 375 2220 650 700 921 675 375 3221 675 700 922 700 375 2221 675 700 923 725 375 2222 700 700 924 750 375 2223 725 700 925 775 375 2224 750 700 1001 175 400 2301 175 725 1002 200 400 2302 200 725 1003 225 400 2304 250 725 1004 250 400 2304 250 725 1006 300 400 2306 300 725 1006 300 400 2306 300 725 1008 350 400 2310 400 725 1010 400 400 2310 400 725 1011 425 400 2311 425 725 1013 475 400 2314 500 725 1014 500 400 2314 500 725 1016 550 400 2316 550 725 1018 600 400 2318 600 725						
921 675 375 922 700 375 923 725 375 924 750 375 925 775 375 1001 175 400 1002 200 400 2302 200 2301 1003 225 400 2304 250 400 2303 225 775 1004 250 400 2304 250 725 1006 300 400 2306 3300 725 1006 350 400 2306 350 725 1007 325 400 2308 350 725 1010 400 400 2309 375 725 1011 425 400 2311 425 725 1011 425 400 2311 425 725 1011 525 400 2311 425 725 1014 500 400 2314 500 725 1016 550 400 2316 550 725 1018 600 400						
922 700 375 923 725 375 924 750 375 924 750 375 925 775 375 1001 175 400 1001 175 400 1002 200 400 1003 225 400 1004 250 400 1005 275 400 1006 300 400 2304 250 725 1006 300 400 2305 275 725 1006 300 400 2306 3300 725 1008 350 400 2309 375 725 1010 400 400 2310 400 2310 400 2311 425 725 1011 425 400 2311 425 725 1012 450 400 2312 450 725 1014 500 400 2314 500 725 1015 525 400 2316 550 725 1017 575 400 2318 600 725						
923 725 375 924 750 375 925 775 375 1001 175 400 1001 175 400 1002 200 400 1003 225 400 1004 250 400 1005 275 400 1006 300 400 2304 225 725 1006 300 400 2305 275 725 1006 300 400 2306 300 725 1008 350 400 2306 300 725 1010 400 400 2309 375 725 1011 425 400 2310 4400 2310 4400 2311 425 725 1012 450 400 2311 425 725 1013 475 400 2314 500 725 1016 550 400 2316 550 725 1018 600 400 2318 600 725	921	675	375	2221	675	700
924 750 375 2224 750 700 925 775 375 2225 775 700 1001 175 400 2301 175 725 1002 200 400 2302 200 725 1003 225 400 2302 200 725 1004 250 400 2304 250 725 1005 275 400 2305 275 725 1006 300 400 2306 300 725 1007 325 400 2306 300 725 1008 350 400 2306 300 725 1010 400 400 2309 375 725 1011 425 400 2311 425 725 1011 425 400 2311 425 725 1011 450 400 2311 475 725 1013 475 400 2313 475 725 1014 500 400 2314 500 725 1016 550 400 2316 550 725 1018 600 400 2318 600 725	922	700	375	2222	700	700
924 750 375 2224 750 700 925 775 375 2225 775 700 1001 175 400 2301 175 725 1002 200 400 2302 200 725 1003 225 400 2302 200 725 1004 250 400 2304 250 725 1005 275 400 2305 275 725 1006 300 400 2306 300 725 1007 325 400 2306 300 725 1008 350 400 2306 350 725 1010 400 400 2309 375 725 1011 425 400 2311 425 725 1011 425 400 2311 425 725 1011 450 400 2311 425 725 1013 475 400 2312 450 725 1014 500 400 2314 500 725 1016 550 400 2317 575 725 1018 600 400 2318 600 725	923	725	375	2223	725	700
925 775 375 2225 775 700 1001 175 400 2301 175 725 1002 200 400 2302 200 725 1003 225 400 2303 225 725 1004 250 400 2304 250 725 1005 275 400 2304 250 725 1006 300 400 2306 300 725 1007 325 400 2306 300 725 1008 350 400 2306 300 725 1009 375 400 2309 375 725 1010 400 400 2310 400 725 1011 425 400 2311 425 725 1012 450 400 2312 450 725 1014 500 400 2313 475 725 1016 550 400 2316 550 725 1017 575 400 2317 575 725 1018 600 400 2318 600 725	924	750	375	2224	750	700
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1005	275	400	2305	275	725
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1006	300	400	2306	300	725
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1007	325	400	2307	325	725
1009 375 400 1010 400 400 1011 425 400 1012 450 400 1013 475 400 1014 500 400 1015 525 400 1016 550 400 1017 575 400 2316 550 725 1018 600 400						
1010 400 400 2310 400 725 1011 425 400 2311 425 725 1012 450 400 2312 450 725 1013 475 400 2312 450 725 1014 500 400 2314 500 725 1015 525 400 2315 525 725 1016 550 400 2316 550 725 1017 575 400 2317 575 725 1018 600 400 2318 600 725						
1011 425 400 2311 425 725 1012 450 400 2312 450 725 1013 475 400 2313 475 725 1014 500 400 2314 500 725 1015 525 400 2315 525 725 1016 550 400 2316 550 725 1017 575 400 2317 575 725 1018 600 400 2318 600 725						
1012 450 400 2312 450 725 1013 475 400 2313 475 725 1014 500 400 2314 500 725 1015 525 400 2315 525 725 1016 550 400 2316 550 725 1017 575 400 2317 575 725 1018 600 400 2318 600 725						
1013 475 400 2313 475 725 1014 500 400 2314 500 725 1015 525 400 2315 525 725 1016 550 400 2316 550 725 1017 575 400 2317 575 725 1018 600 400 2318 600 725						
1014 500 400 2314 500 725 1015 525 400 2315 525 725 1016 550 400 2316 550 725 1017 575 400 2317 575 725 1018 600 400 2318 600 725	1012	450	400	2312	450	725
1014 500 400 2314 500 725 1015 525 400 2315 525 725 1016 550 400 2316 550 725 1017 575 400 2317 575 725 1018 600 400 2318 600 725	1013	475	400	2313	475	725
1015 525 400 2315 525 725 1016 550 400 2316 550 725 1017 575 400 2317 575 725 1018 600 400 2318 600 725	1014		400			
1016 550 400 2316 550 725 1017 575 400 2317 575 725 1018 600 400 2318 600 725						
1017 575 400 2317 575 725 1018 600 400 2318 600 725						
1018 600 400 2318 600 725						
1019 625 400 2319 625 725						
100 201/ 020 120	1019	625	400	2319	625	725

1020	650	400	2320	650	725
1021	675	400	2321	675	725
1022	700	400	2322	700	725
1023	725	400	2323	725	725
1024	750	400	2324	750	725
1025	775	400	2325	775	725
1101	175	425	2401	175	750
1102	200 225	425 425	2402 2403	200 225	750 750
1103 1104	225	425	2403	225	750
1104	230	425	2404	230	750
1105	300	425	2405	300	750
1100	325	425	2400	325	750
1108	350	425	2408	350	750
1109	375	425	2409	375	750
1110	400	425	2410	400	750
1111	425	425	2411	425	750
1112	450	425	2412	450	750
1113	475	425	2413	475	750
1114	500	425	2414	500	750
1115	525	425	2415	525	750
1116	550	425	2416	550	750
1117	575	425	2417	575	750
1118	600	425	2418	600	750
1119	625	425	2419	625	750
1120	650	425	2420	650	750
1121	675	425	2421	675	750
1122	700	425	2422	700	750
1123	725	425	2423	725	750
1124 1125	750 775	425 425	2424 2425	750	750 750
1123	175	423	2423	175	730
1201	200	450	2502	200	775
1202	200	450	2502	225	775
1203	250	450	2504	250	775
1205	275	450	2505	275	775
1206	300	450	2506	300	775
1207	325	450	2507	325	775
1208	350	450	2508	350	775
1209	375	450	2509	375	775
1210	400	450	2510	400	775
1211	425	450	2511	425	775
1212	450	450	2512	450	775
1213	475	450	2513	475	775
1214	500	450	2514	500	775
1215	525	450	2515	525	775
1216	550	450	2516	550	775
1217	575	450	2517	575	775
1218	600	450	2518	600	775
1219 1220	625 650	450 450	2519 2520	625 650	775 775
1220	675	450	2520	675	775
1221	700	450	2522	700	775
1222	725	450	2522	700	775
1223	723	450	2523	750	775
1224	775	450	2525	775	775
1301	175	475	2525	115	115
1302	200	475			
1303	225	475			
1304	250	475			
1305	275	475			
1306	300	475			
1307	325	475			
1308	350	475			
1309	375	475			
1310	400	475			
1311	425	475			
1312	450	475			
1313	475	475			
1314	500	475			
1315	525	475			
1316	550	475			
1317 1318	575 600	475 475			

1319	625	475
1320	650	475
1321	675	475
1322	700	475
1323	725	475
1324	750	475
1325	775	475

Table A.6 Geographical coordinates for 3C – 3D seismic survey.