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ABSTRACT

Multicomponent seismic analysis can be a powerful tool for reservoir delineation.
Analyzing both compressional (PP) and converted (PS) wavefields can provide detailed
information about lithologies, fluid saturation and subsurface structures. Two projects are
considered in this thesis: a 2D-3C (two dimensional seismic survey recorded on three
component geophones) project from Willesden Green, Alberta and the 3D-3C (three
dimensional seismic survey recorded on three component geophones) project from
Manitou Lake, Saskatchewan.

The Upper Cretaceous (Turonian) Second White Speckled Shale (2WS) is the zone of
interest at Willesden Green. PP and PS synthetic seismograms generated from borehole
logs correlate well with the surface seismic data. Post-stack PP and PS inversion was

applied to the vertical and radial components to yield P and S impedances.

Vp/Vs estimates (from horizon correlations after registration) show anomalous values
around 1.6 to 1.8 in zones of interest around the producing wells. This result was helpful
for sand/shale discrimination, considering that shale’s Vp/Vs values are usually higher

than 1.9.

Lower Cretaceous fluvial sand channels with high porosity and permeability in the
Manitou Lake area of Saskatchewan contain important oil and gas reserves. The goal here
is to use 3C-3D seismic data to differentiate sand versus shale and find hydrocarbon-
filled porosity. Well logs and synthetic seismograms are used to correlate the PP and PS
seismic sections from the 3C-3D seismic survey, to better delineate the Colony and

Sparky reservoir sands. Detailed registration of multicomponent seismic data aims to



reduce the uncertainty of traditional channel interpretation and improve well targeting.
Mode-converted (PS) seismic amplitudes complement traditional PP channel
interpretations. PP and PS amplitude maps show different aspects of the Sparky and
Colony sand channels. Curvature co-rendered with the PP/PS amplitude envelope or
curvature co-rendered with coherence can better delineate the edges of the channels,
providing information about the top and bottom of the reservoir. Seismic attributes such
as AVO, fluid factor, LMR (lambda-mu-rho), and joint inversion methods provide
additional information. The simultaneous inversion method followed by Vp/Vs maps can
complement the information for drilled wells and give confidence in identifying new
drilling locations. Vp/Vs values less than 2.15, from PP and PS maps (registered in PP

time), correlate with productive zones.
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GLOSSARY OF SCIENTIFIC TERMS

This glossary of technical terms provides context and meaning to many expressions and
words used in this thesis (after Miller, 1984, Watson, 2004, Sheriff, 2006).

1-WS: First White Speckled Shale.
2-WS: Second White Speckled Shale.

3-C seismic survey: A three-component (3-C) seismic survey which uses a conventional
energy source and is recorded with geophones that respond to ground motions in
three orthogonal directions (3-C geophones).

3-C Geophone: Seismic recording device with three orthogonal coils which respond to
ground motion in three orthogonal directions.

3C-2D seismic survey: Two-dimensional seismic survey recorded on 3-C geophones.
3C-3D seismic survey: Three-dimensional seismic survey recorded on 3-C geophones.

Acoustic Impedance: The product of density and seismic velocity. Reflectivity depends
on changes in acoustic impedance.

Amplitude: The excursion of a seismic trace from its null value.

Amplitude spectrum: The Amplitude versus frequency-relationship such as computed in
a Fourier analysis.

Attribute, seismic: A measurement derived from seismic data, usually based on
measurements of time, amplitude, frequency; generally time-based measurements
relate to structure, amplitude-based ones to stratigraphy and reservoir
characterization, and frequency-based ones to stratigraphy and reservoir
characterization.

ACP: Asymptotic binning: This concept was introduced by Garotta et al. (1985) for
PS-wave processing: the reflected S-wave returns to the surface more vertically
than the incident P-wave, thus the reflection or conversion point is not midway
between the source and receiver ; furthermore, this conversion point location moves
toward the receiver for shallower reflections and larger VVp/Vs values; the whole
trace is put at the location defined by a reflector depth at the location that is large
compared with the source receiver offset. For a single layer case, this would be
Xa=X/(1+Vp/Vs), where Xa is the conversion point offset from the receiver
position and X is the source receiver offset.

API Gravity: A standard adopted by the American Petroleum Institute for expressing the

specific weight of oils: © API gravity= -131.5 + 141.5 / (specific gravity). APl 5 to
22 is considered heavy oil, 22 to 31 medium, and greater than 31, light condensate.
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API Units: A unit of counting rate for the gamma-ray log. The difference between the
high and low radioactivity sections in the American Petroleum Institute calibration
pit is defined as 200 API units.

AVO, Amplitude variation with offset: The variation in the amplitude of a seismic
reflection with source-geophone distance; depends on the velocity, density and
Poisson ratio contrasts at the reflecting boundary. Used as hydrocarbon indicator for
gas.

Bandpass filter: A filter which allows the passage of a specified frequency range and
attenuate others.

Bright spot: An increase of amplitude assumed to be caused by hydrocarbon
accumulation.

CDP: Common depth point representing the midpoint between a source and receiver.

Converted wave: Seismic energy that has traveled partly as a P-wave and partly as an S-
wave, being converted from one to the other upon reflection or refraction at oblique
incidence on an interface.

Crosscorrelation function: A measure of the similarity of two waveforms, of the degree
of linear relationship between them; normalized crosscorelation is also called
correlation coefficient.

Dipole sonic log: Sonic logging tool with dipole source that records P- and S-wave
transit times.

Gamma-ray log (GR): A well log that records natural radioactivity; in sediments, the
log mainly reflects shale content because minerals containing radioactive isotopes.

Heavy oil: A type of crude petroleum characterized by high viscosity (less than
10 000 mPa.s) and API gravity between 10 and 20°API. The crude oil at Manitou
Lake is considered heavy oil, according to its gravity 12 °API).

Inversion: Determining the cause from observation of effects. Inversion has to satisfy
constraints that are imposed. The manufacture of a seismic log from seismic data is
an example of one-dimensional inversion.

Isochron: the time thickness or interval traveltime between two interpreted seismic
horizons.

Mode: Refers to type of wave propagation, e.g. compressional mode or shear mode.
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Multicomponent seismic: Seismic data acquired with more than one source and/or
receiver mode.

Poisson’s ratio: The ratio of the fractional transverse contraction to the fractional
longitudinal extension when a rod is stretched; if density is known, specifying
Poisson’s ratio is equivalent to specifying the ratio of Vs/Vp, where Vs and Vp are
S- and P-wave velocities. Values ordinarily range from 0.5 (no shear strength, e.g.,
fluid) to 0.

P-wave: Pressure, compressional, or longitudinal elastic body wave; direction of
propagation is parallel to particle motion.

PP-seismic: Seismic waves traveling down as P-waves, reflecting from an interface, and
traveling up as P-waves. In this thesis, waves recorded on the vertical component of
the geophone are assumed to be largely PP mode.

PS-seismic: Seismic waves traveling down as P-waves, reflecting and converting at an
interface, and traveling up as S-waves. In this thesis, waves recorded on the radial
component of the geophone are assumed to be largely PS mode.

Radial component: Horizontal geophone coil which responds to horizontal ground
motion in line with the source —receiver azimuth.

Ricker wavelet: A zero-phase wavelet, the second derivative of the Gaussian function; it
is often used as a zero-phase embedded wavelet in modeling and synthetic
seismogram manufacture.

Seismic: Having to do with elastic waves; energy may be transmitted through the body of
an elastic solid by body waves of two kinds: P-waves (compressional waves) or S-
waves (shear waves).

SP: Shot point, i.e. station number for seismic source location.

SP log: known also as "Spontaneous Potential™, a well log of the difference between the
potential of a movable electrode in the borehole and a fixed reference electrode at
the surface.

Static correction, statics: Corrections applied to seismic data to compensate for the
effects of variations in elevation, near-surface low-velocity-layer (weathering)
thickness, weathering velocity and/or reference to a datum.

S-wave: Shear, converted or transverse elastic body wave; direction of propagation is
perpendicular to particle motion.

Synthetic seismogram: An artificial seismic reflection record manufactured by assuming
that a particular waveform travels through an assumed model;(1) in the zero-offset

XX



case, convolving a wavelet with a reflectivity series;(2) in the offset case, a layered
model is ray-traced using a chosen geometry and an artificial shot gather is
computed, which can also be stacked.

TOC: total organic content; percent by weight of the total organic carbon.

Transverse component: Horizontal geophone coil which responds to horizontal ground
motion orthogonal to the source-receiver azimuth.

Tunning: Constructive or destructive interference resulting from two or more reflectors
spaced closer than a quarter of the dominant wavelength. The composite wavelet
exhibits amplitude and phase effects that depend on the time delays between the
successive reflection events and the magnitude and polarity of their associated
reflection coefficients, and also on the shape of the embedded wavelet.

Vertical component: Vertical geophone coil which responds to vertical ground motion.

Vibroseis: A seismic method in which a vibrator is used as an energy source to generate
a controlled wavetrain. The vibrator generates waves of continuously varying
frequency content.

Vp: P-wave velocity.

Vp/Vs: Ratio of P-wave velocity to S-wave velocity; it is sensitive to lithology or
interstitial fluid.

Vs: S-wave velocity.

VSP or Vertical seismic profiling: Measurements of the response of a geophone at
various depths in a borehole to sources on the surface.

Well log: A record of one or more physical measurements as a function of depth in a
borehole.

Zoeppritz equations: Equations which express the partition of energy when a plane

wave impinges on an interface at an arbitrary angle; the directions of the reflected
or transmitted waves obey Snell’s law.
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CHAPTER 1 INTRODUCTION
1.1 BACKGROUND

Geophysical exploration in the oil and gas industry requires ever more detailed
information about the subsurface (Stewart, 2007). In the attempt to determine the actual
rock type (e.g., sand versus shale), find sand channels, or to determine the presence of
fluids, the interpretation of S-wave properties coupled with P-wave imaging can assist in
understanding the subsurface (Stewart et al., 1993).

Compressional (P) waves on an interface at non-normal incidence partition into
transmitted and reflected P and shear (S) waves. Reflected P wave energy is largely
recorded on the vertical component (PP) of the receiver, whereas the reflected S wave
acts on the radial (horizontal) component (PS) of the motion sensors. Due to the
difference in wavelength, reflectivity, and travel path, processed PS seismic sections may
show significant changes in both amplitude and character when compared with the PP
section (Miller, 1996).

A multicomponent interpretation workflow (Figure 1.1) is suggested by Xu and Stewart

(2006) and Stewart (2007):

e Interpret the P-wave data to the fullest extent possible, including: geological
review of the area, log analysis and editing, PP synthetic seismogram generation,
and correlation of the synthetic seismograms with the surface seismic sections or
volumes. VSP (vertical seismic profiling) data can help with a more confident

interpretation.



e Pick PP horizons to create time structure maps, determine time-thicknesses
between horizons, search for amplitude features and undertake AVO analysis and
inversions.

e Take the logs and construct PS synthetic seismograms (possibly use a Vp to Vs
relationship to generate an S-wave log), create a geological model or a gross PP to
PS section mapping function, correlate the PS synthetic seismogram to the PS
section in PS time.

e PP and PS data “registration” (shrink the PS sections in time to find a correlation
with PP time), and extract Vp/Vs values varying in depth and with each surface

location. PS data can be assessed in both PS and PP time.

P-wave interpretation
« Use logs, synthetics, VSP, sections, volumes to
identify horizons & faults, extract amplitudes &
thicknesses, find anomalies

]

S-wave model
. From geology, logs, VSP, empirical relationships, or
gross correlations determine Vs and Tps to Ty

]

PS interpretation

+ Use logs, synthetics, VSP, sections, volumes to pick
harizons & faults, amplitudes & thicknesses, find
anomalies

Il

Joint analysis
» Update registration & event matching to extract V,/V;,
evaluate differences, undertake joint inversions

Figure 1.1: Multicomponent seismic workflow including PP and PS wave interpretation
plus joint analysis, from Xu and Stewart (2006) and Stewart (2007).

Larson (1996) and Margrave et al. (1998) developed an interpretation technique for the

analysis of 3-D multicomponent volumes, showing that time slices, horizon and isochron



maps, coupled with the PP and PS results, can all be useful. PS data can be interpreted on
their own, but generally will be analyzed in conjunction with P-wave sections or
volumes. Thus, a primary aspect of interpretation is correlating the PP and PS events
(Stewart et al., 2002).

Seismic attributes at a given reflection time or horizon can be collected for either PP or
PS data (Garotta, 2002).

Shear (S)-waves are insensitive to fluids, slower than pressure (P)-waves, and polarized.
These three properties suggest that shear-wave exploration has potential for: imaging
structure through gas clouds, increased resolution (the difference in velocity between P
and S waves), fluid and lithology discrimination, imaging low acoustic impedance, and
fracture detection by analysis of shear wave splitting (Garotta, 2002).

Seismic velocities are affected by numerous geologic factors including rock matrix
mineralogy, porosity, pore geometry, pore fluid, bulk density, effective stress, depth of
burial, type and degree of cementation, and the degree and orientation of fracturing
(Miller, 1996). Domenico (1984) used Pickett’s (1963) data to demonstrate that Vs in
sandstones is 2 to 5 times more sensitive to variations in porosity than Vp in sandstones.
Kuster et al. (1974) indicate that pore aspect ratio has a strong influence on Vp and Vs.
Anstey’s (1991) conclusions of the factors that control S-wave velocity were: first the
cementation, then the grain shape and the number and angularity of the grain contacts,
intrinsic rigidity of the grain material or cement, clay content and grain size. Porosity, as
such, is not a major control on S-wave velocity; the number of grain contacts affects the
rigidity of the rock. For fine-grained rocks, cement is likely to form preferentially in

small pores and thus the rocks will have a higher rigidity than do the coarse-grained



rocks. Coarse-grained rocks that are well rounded and well-sorted have fairly good
porosity and have many rigid contacts and thus, a high S-wave velocity for that porosity
(Hilterman, 2001).

Knowing that Vs can be more sensitive than Vp to porosity (Domenico, 1984) and to clay
content (Minear, 1982), an increase in clay content (decrease in porosity) should result in
an increase in VVp/Vs. This result has been observed in sand/shale sequences (Garrotta et
al., 1985).The increase in Vp/Vs with “shaliness” (the proportion of shale to sand in the
rock) has been used in seismic field studies to outline sandstone channels encased in
shales (Garrota et al., 1985).

Vp/Vs values are sensitive to gas in most clastics and will often show a marked decrease
in its presence (McCormack et al., 1985). P-wave energy is delayed, scattered, and
attenuated when passing through gas-bearing sediment (Stewart et al., 2003). As “bright
spots” or amplitude anomalies were supposed to originate from gas on P wave data, they
should not show up in the S wave mode because shear propagation is not disturbed by gas
(Garotta, 2000). We expect P and S modes to behave differently in saturated rocks
(Garotta, 2002).

Rock properties such as Vp/Vs or Poisson’s ratio can be extracted from multicomponent
seismic data, and important information about fluid type, porosity, or mineralogy can be
revealed (Miller and Stewart, 1990). Compressional seismic velocity alone is not a good
lithology indicator, as Vp can have the same value for various rock types. Vs can bring

additional information and reduce the interpretational ambiguity.



1.2 THESIS OBJECTIVE, STRUCTURE AND DATASETS USED

This thesis discusses two cases in which multicomponent seismic data were used to help
in the search for hydrocarbons: in one, a 2D-3C project from Alberta at Willesden Green,
the hydrocarbon reservoir is a fractured shale with occurrences of sands, while in the
other, a 3D-3C project from Saskatchewan at Manitou Lake, the zone of interest consists
of sand channels (Figure 1.2). Analysis of both datasets shows how PS data can bring

additional information to geophysical exploration.

ALBERTA SASKATCHWAN

Athabasca

& F

Peace River

rt McMurray

Wabiska Cold Lake - Primrose
Edmontong, Manitou
ter Lake

Willesden
Green

O saskatoon

© Regina

Figure 1.2: Map of Alberta and Saskatchewan (modified after Watson, 2004) showing the
location of Willesden Green and Manitou Lake. The green areas hosts heavy oil deposits.

The objectives of this thesis are as follows: (1) to develop an interpretation techniques

using PP and PS seismic data, (using multiple attributes and two different software



packages), (2) investigate which attributes correlate with well production information for

two study areas (3) use a combination of attributes to suggest future drilling locations.

The Upper Cretaceous (Turonian) Second White Speckled Shale (2WS) shale at
Willesden Green, and the lower Cretaceous fluvial sand channels at the Manitou Lake of
Saskatchewan, contain important oil and gas reserves. The Alberta case study is
described in Chapter 2, and the Manitou Lake case from Saskatchewan is described in

Chapter 3.

1.3 SOFTWARE USED

Different software was used with the steps of multicomponent interpretation. For Chapter
2, where 2D interpretation was performed, the following packages have been used to

process and interpret the data:

e The two 2D seismic lines at Willesden Green were reprocessed in 2004 by Peter
Cary at Sensor Geophysical, Calgary. The vertical and radial migrated stacks

were generated using the ProMAX seismic processing package.

e The correlation of well logs to the seismic data was manually done by using the
Hampson-Russell eLog package. The ProMC software package was used to
analyze PP and PS datasets simultaneously with one scale, and to create the

Vp/Vs sections.

e Inversion was performed using Hampson-Russell’s Strata package, where both PP

and PS impedance sections were constructed and analyzed.



e The Accumap System was used to retrieve well logs, and to get information on

well production and operation.

For Chapter 3, concerning the Manitou Lake 3C-3D seismic study, the following

packages have been used to process and interpret the data:

e The data have been processed to a final migrated volume by Hanxing Lu and

Kevin Hall at the CREWES project, by using ProMAX software.

e Log correlations with the seismic, and the registration between PP and PS data,

were performed by using Hampson-Russell’s ProMC from the Geoview package.

e Post-stack inversions were performed with Hampson-Russell’s Strata, and the

software analysis package from Transform.

e The AVO program under Geoview was used to analyze the pre-stack seismic
data: the Amplitude Versus Offset (AVO) anomalies were evaluated to determine
the fluid content of the rocks; simultaneous inversions were performed and the

LMR method was used.

e The joint PP-PS inversion was performed in the ProMC package (Hampson-

Russell).

e The registration was performed in ProMC and Transform software.

e Transform Software was used for more attributes and a detailed 3D
interpretation, to delineate the channel edges. Amplitude envelope, coherency,

curvature, and recursive inversion were co-rendered in this work.



CHAPTER 2 WILLESDEN GREEN OILFIELD, ALBERTA, 2D-3C PROJECT

2.1 INTRODUCTION

In this chapter, 2D multicomponent seismic data and well logs from Willesden Green,
Alberta, are used to investigate an oil reservoir interval. The Upper Cretaceous
(Turonian) Second White Speckled Shale (2WS) represents the zone of interest.

In the attempt to understand subsurface lithologies, it is useful to use not just P wave
properties, but those of the S wave as well. Recent interest in the use of PS waves to help
characterizing reservoirs has lead to the acquisition of multicomponent surveys in the
industry. The combination of pure P wave measurements with the converted waves can
provide more information about the rock structure, state of fracturing, pore fluids,

lithologic type, and stratigraphy (Stewart, 1990; Stewart et al., 1993).

The Second White Speckled Shale (2WS) is picked on geophysical logs by its high
gamma response (Travis, 2002). As calcite percentage in the source rock increases
toward pure limestone, the hydrocarbon potential decreases. A number of wells in the
area have produced, and still produce oil and gas from the 2WS. However, because a
number of penetrations of the 2WS shale have not produced oil, existing exploration
techniques (e.g., conventional P-wave prospecting) are not considered adequate. In an
attempt to better delineate productive zones, 2D multicomponent seismic surveys were
undertaken by Response Seismic Survey, and converted-waves (PS) were analyzed along

with the P-wave data (Stewart et al., 1993).



2.2 STUDY LOCATION AND DATA

The Willesden Green oilfield, located in south-central Alberta (Figure 2.1), covers 50,827
hectares, and is the second largest Cardium field after Pembina (both in area and
initial oil in place). The associated oil in place of this pool is 929 MMBBDIs, and the
cumulative production to date is 140 MMBDbIs. Several productive horizons in this area,
including the Second White Speckled Shale (2WS), Cardium, Viking and Glauconitic

sands, continue to produce significant quantities of oil and gas.

‘ \
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ALBERTA

Ram Falls

Figure 2.1: Location of Willesden Green (W.G.), Alberta (map from Keith, 1985). The
red rectangle indicates the area of interest and the two crossing 2D-3C lines.



Data from the Willesden Green area include well logs, VSP, and 2D-3C seismic lines.
The red square in Figure 2.1 shows the location of the 2D-3C lines in south-central
Alberta. Figure 2.2 provides a zoomed image of the area of interest, with the Response
Seismic Surveys map (T41, R5-6) showing the 2 crossing lines (WG1 and WG2). WG1,
an east-northeast line with CDPs from 1 to 729 (blue rectangles) is crossed by line WG2,

a north-northwest line with CDPs from 1 to 599 (green rectangles), Varga et al.,( 2007).

Three wells were used for line WG1: 6-15-41-6W5, 16-15-41-6W5, and 8-13-41-6WS5.
Two more wells are used with line WG2: 1-35-41-6W5 and 8-26-41-6W5, as shown in

Figure 2.2. The well ties with the seismic are represented by black circles.

2.3 PREVIOUS WORK

Stewart et al. (1993) undertook a preliminary interpretation of Willesden Green data.
Their overall goal was to assess the data quality, correlate the information, and seek
anomalies that could be connected with the oil production in the Second White Speckled
Shale (2WS).

The three Willesden Green VSP surveys (two offset surveys and one zero-offset) were
conducted in 1990 at the 8-13-41-6WS5 location by Schlumberger of Canada. Response
Seismic Surveys Ltd. acquired the two 3-C surface seismic lines in 1992. The surface
data was first processed by Pulsonic Geophysical Ltd. (Cary et al., 1993).

There were reasonable ties (Figure 2.11) among the synthetic seismogram, VSP sections,

and PP and PS surface seismic sections (Stewart et al., 1993) for both lines. A compelling
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Figure 2.2: Location of the study area with the two 2D-3C seismic lines (modified from
Response Seismic Surveys Ltd.). Olive circles indicate the seismic tie points with the
wells (Varga et al., 2007)

preliminary interpretation was made of the seismic signature of the geology. There was
not found an obvious evidence of velocity change with azimuth or shear wave-splitting,
to indicate fracturing of the 2WS. The two lines were reprocessed in 2004 by Peter Cary
at Sensor Geophysical Ltd. Vertical and radial migrated stacks were generated. The
processing flow for the PP section was conventional and included surface-consistent
deconvolution, time-variant spectral whitening, refraction statics, trim statics, CDP stack

and migration. The processing flow for the PS section included asymptotic CDP binning,
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surface consistent deconvolution, refraction statics, trim statics, CDP stack and migration.
The goal of this thesis is to refine the previous interpretation and improve the previous
results by registering the radial and vertical sections in PP time, invert the PP and PS data

and predict drilling locations.

2.4 GEOLOGY AND STRATIGRAPHY

The geologic framework of the Willesden Green area is discussed in this section. The

reservoir is situated in the upper Cretaceous interval of the Colorado Group.

The Colorado Group is of significant economic importance in that it contains about 14%
of the total Western Canada hydrocarbon reserves and about 80% of the reserves within
the Middle Jurassic to Cretaceous foreland basin succession (Podruski et al., 1988;
Porter, 1992). It was deposited during a period of global sea level high stand, which, with
the downflexing of the North American craton, led to increased accommodation and
thick, geographically continuous shale deposition (Leckie et al., 1994). Relative sea level
fluctuations resulted in condensed sections and regressive siltstone and sandstone
packages (Bloch et al., 1999). The Colorado group contains several sandstone and
conglomerate units, some of which are prolific hydrocarbon producers. These include the
Basal Colorado Sandstone, Spinney Hill Sandstone, Viking formation, St. Walburg
Sandstone, Barons Sandstone, the Dunvegan Formation, sandstones of the lower
Kaskapau Formation, sandstones of the Second White Speckled Shale, the Cardium
formation, Medicine Hat Sandstone, and the Alderson member of the Lea Park

Formation; within the Colorado Group, the First and Second White Speckled Shales, the
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Fish Scales Zone, and shale at the base of the Shaftesbury Formation, which are more
radioactive than overlying and underlying shales, have high total organic carbon contents,
and contain considerable hydrocarbon generating potential. An interval such as the
Second White Speckled Shale is potentially both a source and a reservoir rock. The
Colorado Group thins eastward from about 700 m in southwestern Alberta to 200 m in

the Manitoba Escarpment.

Most studies of the Colorado Group have focused on investigations of the coarser-grained
reservoir units like the Cardium formation. However, the shale-dominated sequences
within the Colorado Group provide a much more complete record of deposition and a
more comprehensive picture of Cretaceous paleogeography (Bloch et al. 1994) as

outlined in Figure 2.3.

The Second White Speckled Shale (Colorado Group) is an Upper Cretaceous, fine-
grained, laminated clay sediment, deposited in a shallow to open marine environment. It
is a mainly calcareous shale and mudstone with intercalated chalk, calcarenite, bentonite,
calcite, and phosphorite and localized occurrences of sandstone and siltstone (Lexicon of
Canadian Stratigraphy, Western Canada). The shale is characterized by a high total
organic carbon content, high hydrogen indices, and high radioactivity on well logs. On
gamma-ray logs, the Second White Speckled Shale interval is typically radioactive as a
result of elevated uranium content associated with abundant kerogen (buried organic
matter, broken down and converted into petroleum by combined effects of heat and time)
in the shale. Discrete radioactive spikes also occur as a result of bentonites deposited in

the shales (Travis, 2002).
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The 2WS is a good stratigraphic marker and has a thickness of between 45m and 70m. It
is overlain by the Colorado shale and underlain by the Belle Fourche shale. It is both a
source and a reservoir rock (in shales the hydrocarbon may remain trapped within the
source rock), containing type Il kerogen. The kerogen type will influence the chemistry
of the generated hydrocarbons, and the amount of organic matter (TOC) which exerts a
strong influence on the adsorption capacity of the shale (Travis, 2002). Adsorption is the
adhesion of a single layer of gas molecules to the internal surfaces of the coal or shale
matrix (Hill, 2000). 2WS percent by weight of the total organic carbon (TOC) values

range from 1-5 % (Travis, 2002).

It is suggested by Travis (2002) that the 2WS may retain significant amounts of generated
liquid hydrocarbons due to its fine-grained nature. At greater burial depths, these
hydrocarbons would be transformed (cracked) to gas. For the production of shale gas, a
fracture system must be developed within the source rock to contribute storage capacity

(porosity) and migration pathways (permeability) for the gas (Fig. 2.4.).

Sand lenses within the shale sequences are also common and could represent local zones
of enhanced porosity and permeability within the overall shale reservoir (McKinstry,
2001). The 2WS formation represents a yet undeveloped unconventional gas play within

the Western Canada Sedimentary Basin (Travis, 2002)

The Cardium Formation was deposited along the western margin of the Cretaceous
Interior Seaway within the Alberta Foreland basin of the Canadian Cordillera. It is the
main sandstone unit within the Alberta (Colorado) group and contains about 100 m of

interbedded sandstones and shales, as in Figure 2.3. It is overlain by the Wapiabi
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Formation which is about 600 m thick, which consists mostly of shales. The top of the
Cardium formation is recognized by the first appearance of a thin chert pebble bed, the

main sandstone unit within the Alberta (Colorado) group, and contains about 100 m of
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Figure 2.3: Modified from the simplified stratigraphic nomenclature of Cretaceous
successions in the central plains of Alberta (after Kohrs and Norman, 1988).

interbedded sandstones and shales, as shown in Figure 2.3. It is overlain by the Wapiabi
Formation which is about 600 m thick, and which consists mostly of shales. The Cardium

formation occurs below the First White Specks (the 1WS, is a regionally recognizable
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well log marker), but above the main Cardium sandstones and conglomerates. The
thickest Cardium conglomerates are preferentially accumulated in the East and Northeast
of the Willesden Green area (Keith, 1985). Some scouring of the Cardium sandstone by
the conglomerates is probable within Willesden Green. Storm-generated geostrophic flow
may have been responsible for the offshore transport of the Cardium sands and

conglomerates into this area (Keith, 1985).

The Cardium zone is sometimes difficult to pick and, as shown by Griffith, (1981), has
frequently been incorrectly positioned. The markers with possible high resistivity kicks

which are identifiable on gamma logs are the 1WS shale and the 2WS shale.

Seals are generally formed by interbedded mudstones, but may result from juxtaposition

of low permeability rocks over reservoir rocks by thrusting.

PRINCIPAL
A
ok RESERVOIRS OIL PRONE PRINCIPAL
SOURCE ROCKS SEALS
IERTIARY
FIRST WHITE SPECKS I
CRETACEOUS CARDIUM
COLORADO COLORADO
GROUP SHALES
SECOND WHITE SPECKS
BASE OF FISH SCALES

JOLI FOU

INTRA-MANNVILLE
SHALES
A

Figure 2.4: Modified from Generalized Stratigraphy of the Colorado Group in the
Western Canada Sedimentary Basin (after Creaney and Allen, 1992).

A crossplot of gamma ray versus Vp for well 1-35-41-6 (Figure 2.5) differentiates the

lithologies. Three major types of lithology were selected: sands (yellow), shales (olive),
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and silts combined with sands and shales (orange). Low values in gamma ray log (less
than 75 API) and low P wave velocity (less than 4000m/s) indicates permeable sand
interval with high porosities. Higher values on gamma ray log and higher velocities
delineate the silts mixed with sands and shales. The highest values on gamma ray logs
(higher than 125 API) were defined as shales (olive). The lowest value in gamma ray in
Figure 2.5 a) shows the Cardium formation at depth 1900m-2000m and indicates sands
(yellow). The Cardium is the main sandstone unit, showing a decrease on P-wave and S-
wave logs, a decrease in density and an obvious decrease on gamma ray. The 2WS shows
vertical sequences of shales (olive) alternating with silts and sands and occurs at depths

between 2080m-2120m.

In this thesis, | will mainly analyze the productive Second White Speckled Shale.

Summarizing information about the 2WS (Figure 2.4 and 2.5), we note that it:

e is deposited in the latest Cenomanian to Middle Turonian in an open-
marine environment, represented by a time of maximum sea level. The
fine, laminated character suggests deep-water deposition with low
sedimentation rates; the lack of bioturbation and preservation of abundant
organic matter supports water bottom anoxia (absence of oxygen) theory.
The quiet, deep marine deposition of the 2WS formation allows for the
potential preservation of total organic carbon (TOC) with a type Il

marine/algal kerogen (Travis, 2002).

e is mainly a calcareous shale and mudstone with intercalated chalk,

calcarenite, calcite, and localized occurrences of sandstones and siltstones.
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It can incorporate a sequence of shaly sandstones and siltstones (about 6m
below the 2WS shale) termed the Second White Specs Sandstone
(monotonously repeated light fine and very fine grained sandstones and
coarse grained siltstones) which is correlative with Phillips sandstone in

southern Alberta (Lexicon of Canadian Stratigraphy, 1997).

has occurrences of sand lenses that could represent local zones of enhanced
porosity and permeability within the overall shale reservoir. The
permeability and porosity can be achieved through localized natural

fractures developed from structural influences (McKinstry, 2001).

is a good stratigraphic marker showing an increase on P-wave logs and a
bigger increase on the S-wave logs, a decrease in density, and a jump
(kick) in gamma ray log response followed by a decrease (Figures 2.5 and

2.6). , its thickness varying between 20m to 40m.

is a source rock of light crude oil and gas within Alberta (Figure 2.4)-

contains kerogen Il (which generates oil and gas).

is a reservoir rock (in shale the hydrocarbon may remain trapped within the
source rock). This is possible due to associated coarser grained silts and
sand beds within the shales that may act as local reservoirs (McKinstry,
2001). The 2WS hold large volumes of potential hydrocarbon; its expulsion
of the generated hydrocarbon is considered to be poor, and hence the
generated oil is held within the system and upon continued heating is

cracked to gas (Travis, 2002).
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Figure 2.6 shows a strong pick at the 2WS horizon, indicated with red arrow; it shows a
jump (kick) on the P-wave sonic and the computed S-wave sonic (with Castagna’s

equation 2.2). The top of the formation is picked as a half meter low spike in gamma ray

response, followed by relatively high gamma readings (Travis, 2002), as seen in Figures

2.6,2.7and 2.9.

2.5 GEOLOGIC MODEL OF THE RESERVOIR

A geologic model was created to understand the 2WS reservoir and its Vp/Vs anomalies
from the PP and PS sections. This model helped to identify the oil-saturated Second
white speckled shale. A good correlation between Vp/Vs (from amplitude inversions and
time thickness ratio) and oil production is found. 2WS is a source and a reservoir rock:
oil and gas form from the preserved soft parts of ancient organisms that were buried, and

then broken down and converted into petroleum by the combined effects of heat and
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time. Buried organic matter is called kerogen, and a petroleum source is any rock that

contains enough kerogen to generate oil or gas. Most source rocks are shales with a total

organic content (TOC) of at least 3 % (McGeary and Plummer, 2006).Considerations of

the 2WS reservoir for a schematic geologic model can be seen in Figure 2.8:

2WS is a mainly calcareous shale formation with occurrences of sandstones

and siltstones (enhanced porosity and permeability).

Increasing sand in the reservoir yields porosity (good reservoir) — lower Vp
and gives higher Vs (Figures 2.6 and 2.9), so we suggest that increasing sand

versus shale or limestone could lower the Vp/Vs value.

Increasing calcite / limestone cementation in the reservoir yields higher Vp
value (Figures 2.6, 2.7 and 2.8) as in the schematic geologic model from

Figure 2.8.

The presence of hydrocarbons lowers Vp, and Vp/Vs (Figure 2.7 and 2.9).

The 2WS represent a yet undeveloped unconventional oil/gas play within the
Western Canada Sedimentary basin, with the potential to generate large

volumes of hydrocarbon (Travis, 2002).

For production of shale gas, a fracture system may be developed within the
source rock to contribute storage capacity (porosity) and migration pathways

(permeability) for the gas (Travis, 2002).
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Figure 2.8: Schematic geologic model of 2WS (modified from McGeary and Plummer,

2006).
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Figure 2.9: a) From left to right: S-wave sonic (from Castagna’s equation) in red and P-
wave sonic in blue, Gamma Ray, Vp/Vs, vertical migrated stack and PP Aki-Richards
offset synthetic for well 6-15-41-6 in PP time, on line WG1. b) P wave sonic (blue), S-
wave sonic (red), gamma ray, Vp/Vs, density and radial migrated stack for well 6-15-41-
6 in PS time. Red arrows indicate the 2WS formation.
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2.6 ACQUISITION AND PROCESSING FOR 3-C SURFACE SEISMIC AND VSP

The surface seismic surveys used vertical vibrators, and three component (3-C)
geophones and receivers with offset up to 2520 m. The two surface lines were shot at 70
degrees to one another, with a 60 m source interval and 20 m receiver interval. The
source consisted of four Mertz M18 vibrators sweeping for 12 s over an 8-70 Hz range.
Records were vertically stacked twelve times. The geophones used were 3-C HGS 10 Hz
receivers, planted in a 45 cm augured hole. There were 252 live stations in a split-spread
configuration, providing far offsets of 2520 m. The VSP data were acquired at well 8-13-
41-6 with vertical vibrator sources and 3-C downhole receivers over a depth interval of

400 m and 2175 m (Stewart et al., 1993).

The 3-C surface seismic data were reprocessed in 2004 by Peter Cary at Sensor
Geophysical. Vertical and radial migrations were generated. The processing flow for the
PP section was conventional and included surface-consistent deconvolution, time-variant
spectral whitening, refraction statics, trim statics, CDP stack, and migration. The
processing flow for the PS section included asymptotic (ACP) binning, surface consistent

deconvolution, refraction statics, trim statics, CDP stacking, and migration.

2.7PP INTERPRETATION

As a first step in providing a more confident interpretation, VSP data and the corridor
stack (VET) from well 8-13-41-6 were stretched to tie the PP seismic data on line WG2
(Figures 2.10 and 2.11). Available log suites for most wells include P-wave sonic,

density, gamma ray, resistivity, and SP logs. The next step was to correlate the PP
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Figure 2.11: WG2 seismic line correlated with the zero offset VSP stretched to two way
time at the well 8-13-41-6 location (Stewart et al., 2003). The pink horizon shows the
First White Speckled Shale (1WS), the blue one shows the Second White Speckled Shale
(2WS). Both horizons are nicely seen on the VSP.

seismic data with the well logs, using the Hampson-Russell software packages elLog and

ProMC, as in Figure 2.12. By convolving the reflectivity with a wavelet, the synthetic
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traces (in blue) were generated. Then, each pick from the seismic data (in red) was

correlated with a pick from the synthetic trace. The well log was stretched according to

this correspondence, as in Figures 2.19, 2.12 and 2.13.

In Fig. 2.12, note from left to right the P wave sonic, the zero offset synthetic seismogram

(blue), the vertical surface seismic, the PP offset prestack synthetic and the
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radial surface seismic, all in PP time. In the ProMC package the PS data were squeezed to
match the PP time. A 35 Hz Ricker wavelet was created to match the PP seismic data (the
vertical seismic data were bandpass filtered at 8-12-60-75 Hz after the processing). The
wavelet parameters (Figure 2.14) are: dominant frequency = 35 Hz, sample rate = 2 ms,

wavelet length = 100 ms, phase type = constant phase.
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In Fig. 2.13, note that the correlation coefficient is almost zero phase, with a correlation
of 80%. The interpreted horizon for 1WS is about 1160 ms, and about 1360 ms for the
2WS. The Zoeppritz application from the ProMC package was used to create the prestack
synthetics (Figure.2.12) with the number of offsets being 20 and a maximum offset of
1500 m. The Zoeppritz equations give the reflection and transmission coefficients for
plane waves as a function of angle of incidence and six independent elastic parameters,
three for each side of the reflecting interface (Shuey, 1985). In Figures 2.9, 2.12 and 2.13
note the kicks (jumps) in velocities on the sonic logs at the markers: 1WS and 2WS.
According to the correlation, we can describe the following depth of tops: 1SW around
1710 m, Cardium around 1890 m and 2WS at 2070 m. Well 1-35-41-6 (Figure 2.15 b)
has a gamma ray log which is a good indicator of the natural radioactivity of the rocks.
Radioactive minerals are components of clays and shales. The same steps were used in
the PP correlation on line WG1 with well 6-15-41-6 (Figure 2.15 ¢ and 2.9). The
correlation coefficient was around 81%. A 35 Hz Ricker wavelet (Figure 2.14) was
created for the zero offset synthetic (in blue). The Zoeppritz offset prestack synthetic was
created with a number of offsets of 20 m and a maximum offset of 2500 m. The
interpreted horizon for 1WS is around 1160 ms and for 2WS 1370 ms, which ties well
with line WG2. On line WG1, three wells were correlated with the seismic: 6-15, 16-15
and 8-13. On line WG2, also three wells were correlated with the seismic: 1-35, 8-26 and
8-13. Coal beds were identified on the geophysical logs; coal has several unique physical
properties including low natural radioactivity, low density, and high resistance to
electrical currents; these properties contrast with those of most other rocks in the coal-

bearing sequence.
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Figure 2.13: From left to right, at Well 1-35-41-6: P-wave sonic (red) zero offset
synthetic (blue), PP-vertical stack, the Zoeppritz synthetic, and the cross-correlation
coefficient; correlation with seismic data was around 80%.

o ckers [ s wavet 5 wave 5 e | pswnve w ¢ | »

PP_Ricker3s - wavelet e respanse I
Ampltuce
100 TR
[
050
o
/ \
T
T
T
50 40 0 20 0 @ s W
X Display Wavelet{s} (Aug25, 2006 10:43) =l
fie Yow
g PP_Ru:kerSSI |ps wave|ps | vy

E PP_Ricker35 - wavelet ampltude and phass response.
= | Ampiuce Phass (degress)
S| oo 200

Frequency (Hz)

([ ————rs |

Figure 2.14: 35 Hz Ricker wavelet for the synthetic PP trace - with frequency band 10-65

Hz.

28



ACL WILLGR 8-26-41-6
(x=0.00m, y=0.00m) Elevation: kb=1065m, surface=1056m, SRD: 1056m (same as surface)

+S-w_corr
1000 N mis I"’17[|[||] 1] Gam“}‘\aPIRay 200 21DEHSI.t'g[:"’anZﬂ 1 flc‘:ln.‘lil)"h!u VPN3.3 10101 1”‘]"211 101 .frl";:'Dﬂ(m)
i S S e S
1250 D
N ir 3 «(««-«(«(««(«(««(
BLKSTH. (At A A AAAARAARAARSABAS | 1900
t «« 2 o z(zw\ 2@2
. i <<<<< < R
ol D S o
1400 k <<<22é Egéé <<<<<<<<<<<<< (&
BFSC 1 tsraealdidiidis
(il
i JFou £ i 2200
A s St
a) — <(<<<<<<<<<<<<<<<<<<<g
To) Track 1 | Trackz | Track4 | ka 3 | o I
: COP 100 WILLESDEN GREEM 1-35-41-6 Vertlcal Stack | Offsetsynth
(x=0.00m, y=0.00m} Elevation: kh=1092.96m, surface=1088m, SRD: 10
*S-w_co
muTm!Srrzﬂ‘ G Rax uted Vorvs “ine 1 D (m)
,,,,,,,, 1000 wda G000 10T UARL T R0D 1500 KemedT G000 150 mese 34 19 22 25 Izsl 311 34 37_a0 1y ;5; LA o

G11iY31000 1.0

[CCARDBS_coarss

T

=CoALSB=.

1300 -

1350

3

LU

%ig«ggggg:ggg A <« <««

1950

[- 2000

I 2050

F 2100

] 2WSPK. ! g
J_BFSC___mawsPk

, 3 I
» E:::’” v = j—: < /,,,,,,,,,,,; L o
5 = L e - i
= e P mWT‘wm‘ Vertlcal stack OffsetSynth &
15UU'P-\:’"7I:SHGUUU mino1 13344 e rom)
| Vertical stack || OffsetSynth m
e
= s
G
-
Mm§ é E
C) PO VIKSHD. e

| Track1

| Trackz | Track3 | VERTICAL filt 8-12-50-60

penn west et al willar 8-13-411

Figure 2.15: Well log correlations on line WG2; from left to right: a) 8-26-41-6: P (blue)
and S-wave sonic (red), gama ray, density, Vp/Vs in PP time, vertical stack and the
Zoeppritz offset synthetic; b)1-35-41-6: P (blue) and S-wave sonic (red), gama ray,
density, Vp/Vs in PP time, vertical stack and the Zoeppritz offset synthetic; c) 8-13-41-6:
P (blue) and S-wave sonic (red), density, Vp/Vs in PP time, vertical stack and the
Zoeppritz offset synthetic. Red arrows indicate the 2WS horizon. The synthetic modeling
was created by convolving the wavelet with the reflectivity series.

29



COP WG@G2 tie WGQGI B

586 541 9 451 46 3 301 241 181 121 61 fl

| | | ] | | | | | | |

1 ) o DRI L
200 — BT ; —200

- ™, f; } -
400 — —400
! : g
800 — -—900
1000 — -—1000
1200 — g : -—1200
1400 — -—moo
|eoo—- ;um
1800 — : YRS : b — 1000

T gt L (L5l ) -

Y X (AN BN
Figure 2.16: Tie line (blue arrow) between lines WG1 and WG2 on PP data. Red arrows
indicate the 1WS and the 2WS markers (Seismic processed by Cary, 2004).

2.8 PP INVERSION

Inversion can be defined as a procedure for obtaining models which describe a dataset
(Treitel and Lines, 1994). For our case, the migrated section constitutes the data to be
inverted, and the acoustic impedance is the property to estimate. Well log data provide
additional information to constrain the model and make the inversion result more
accurate. The impedance is the product of density and velocity and is measured in

m/s*g/cc (in this case).

To estimate the PP acoustic impedance, three post-stack seismic inversions were used in
Strata: model-based, recursive and sparse-spike. Model-based inversion was chosen on

both lines because of its more highly resolved appearance.
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We assume that: the seismic trace and the wavelet are known, and the noise is
uncorrelated and random. The program finds a reflectivity which convolves with the
wavelet to get a good approximation of the seismic trace. The initial model uses an

impedance log from the well, where the impedance is:

l=p*V (2.1)

Then, the program iteratively updates an initial model (Figure 2.17).

The parameters for the model-based inversion are: inversion option-“constrained”,
average block size 6 ms, number of iterations 15, processing sample rate 2, separate
scaler for each trace, single trace inversion. This type of inversion is based on the

convolutional model:

Seismic trace = wavelet* reflectivity + noise

The model is an initial low frequency P-impedance model, generated from well data and
horizons. The seismic trace and the wavelet are assumed to be known, the noise is taken
to be random. This method solves for the reflectivity iteratively, looking for differences
between the real seismic trace and the synthetic formed from the model, and modifying
the model to compensate (Hampson-Russell, 2008). The P-wave impedance model was
constructed by blocking an impedance log from the wells and interpolating the values
between the wells (Figure. 2.18). Note a general increase of impedance with depth. Using
the blocked model and the wavelet, a synthetic trace is calculated, which is then matched
to the actual seismic trace. The layers are modified in thickness and amplitude to improve
the match. Then another trace is calculated, compared, and so on (Hampson-Russell,

2008). The statistical used wavelet was extracted from the PP seismic. For the PP
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inversion, lower impedance values of 7000-9000 m/s*g/cc correlate with the producing
zones. After inversion, in Figure 2.19, note the low impedance (7800-8400 m/s*g/cc)

around the 2WS shale horizon. This confirms that well 8-26-41-6 is producing oil and gas
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Figure 2.17: PP Model-based inversion-algorithm (after Russell, 1988)
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Figure 2.19: PP Model-based inversion (zoomed) on line WG2 at well 8-26-41-6W. The
well is producing from the 2WS (green arrow). At the well location, the inserted black
curve is the P-wave sonic and in colors the Vp/Vs ratio from the well data.
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Figure 2.20: PP model based Inversion (zoomed) at well 1-35-41-6W5 on line WG2. This
well is not producing from 2WS (green arrow). At the well location, the inserted black
curve is the P-wave sonic and in colors the Vp/Vs ratio from the well data.
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from the 2WS formation. On the same line WG2, one kilometer to the North, well 1-35-
41-6 is not producing from the 2WS, see Figure 2.20. As expected, the 2WS horizon

shows an impedance increase, of up to 10000 m/s*g/cc.

From the inversion model derived from line WG2, the following observations can be
made: well 1-35-41-6 is not producing from the 2WS horizon. This well is producing oil
and gas from the Glauconitic horizon (black arrow on figure 2.20). Note the impedance
drop around the Glauconitic between 7000-8000 m/s*g/cc, and an increase in impedance
(9000-10000 m/s*g/cc) values at the 2WS shale. This suggests that zones of increasing
porosity are associated with lower acoustic PP impedances. For well 8-26-41-6 (Figure
2.19), note lower impedance at the 2WS horizon; the well is producing from the 2WS

formation.

For line WG1, after the model based-inversion was performed, the observations include:
The P-Impedance model showed similar characteristics to the model created for line
WG2. After inversion, a decrease in impedance (7000-9000 m/s*g/cc) was observed at
the 2WS shale formation in well 16-15-41-6; this well is producing oil and gas from this

horizon.

2.9 PS INTERPRETATION

The correlation of the PS seismic data with a shear acoustic log was done in the same
way as for PP seismic data. The S log was created in ProMC using Castagna’s (1985)
mudrock empirical regressions relating velocities with porosity and clay content under
water-saturated conditions (equation 2.2), where Vp and Vs are the P- and S-wave

velocities, in km/s:
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Vp= 116Vs+ 1.36 (2.2)

These relations are empirical and apply only to the set of rocks studied. Since there is no
PS response at zero offset, data for several offsets were stacked to obtain a synthetic
response to compare with the seismic data. For line WG2, a 25 Hz Ricker wavelet was
created. The radial seismic data was bandpass filtered at 5-10-40-50 Hz after processing.
The wavelet parameters are: dominant frequency = 25 Hz, sample rate = 2 ms, wavelet
length = 100 ms, phase type = constant phase, as in Figure 2.21. Figure 2.22 shows the
correlation in PS time at well 8-26-41-6 on line WG2; the correlation coefficient was
around 64%. On line WG1 the correlation in PS time with well 16-15 -41-6 is shown in
Figure 2.23; the correlation coefficient was around 60%. For line WG1, a 20 Hz Ricker
wavelet was created (the radial seismic data was bandpass filtered at 5-10-30-40 Hz after
processing) to match the PS seismic data. The PS horizons were picked in PS time, as

shown in Figure 2.23.
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Figure 2.21: 25 Hz Ricker wavelet for the synthetic PS trace - with frequency band 8-
45Hz. Red line indicate zero phase.
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Figure 2.22: PS correlation on line WG2 with well 8-26-41-6 in PS time; from left to
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Figure 2.23: PS correlation on line WG1 with well 16-15-41-6 in PS time; from left to
right: S-wave (red) and P-wave sonic (blue), density, Vp/Vs, radial stack, PS Zoeppritz
offset synthetic and horizons in PS time.
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After the PS horizon picking, the next step was to match the PP and PS horizons in the

ProMC package and register the data. The registration was done in PP time.

2.10 PP AND PS INTERPRETATION

With traditional P-wave seismic data, geology is imaged with pressure waves (P-waves)
reflecting from various rock interfaces. In the case of PS-wave seismic data, pressure
waves are “mode converted” into shear waves at the same rock interfaces. The different
velocities of seismic wave propagation between pressure and shear waves result in PS-
wave seismic records typically being twice as long as P-wave seismic records.
Consequently, the key to successful full-wave seismic interpretation lies in establishing a
match between seismic data volumes through some form of “registration”. What makes
this process particularly challenging is that the seismic character between full-wave
seismic volumes can be very different, spanning amplitude, frequency and phase
properties (Roth, 2007). An accurately registered PS volume appears to reduce the risk of

correlations and reduce uncertainty in well targeting.

After the PP horizons were picked in PP time and the PS horizons in PS time, the
registration was accomplished with the Horizons Matching tool in ProMC. This tool
allows linking of the selected horizons (PP and PS data are viewed in a split mode) and
than visualize them in PP or PS time. ProMC can calculate Vp/Vs value between the

horizons, and can colour code its value along the entire line.

Vp/Vs along the seismic lines were calculated using interval travel times with the

following formula as derived in Stewart et al. (2000), Garotta, (2001):
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V, 24T,

V, AT

S pp

1 (2.3)

In equation (2.3), ATpp and ATps are the time thicknesses between the interpolated
horizons, on PP and PS data respectively. The equation is derived by expressing the
thickness of a depth interval in terms of P-wave and S-wave travel time and its limitation

is that it is an average over the time thickness interval.

The horizon match used the well logs as domain conversion: the active depth-time curves
(from both, P and S-wave sonic) at the three selected well tie locations were used to

create a velocity field for domain conversion.

For line WG2, after event matching, the 2WS shales can be delimited with higher Vp/Vs
values of 2.16 to 3, on both, PP and PS data. Figure 2.24 bottom, indicates the 2WS
formation with red arrows. The Cardium sandstones have lower values, from 1.5 to 2, as
expected. The separation from shales to sands is clearly shown; the white arrows in

Figure 2.24, bottom indicate this separation.

The 2WS horizon was picked as a peak on both, PP and PS data, as shown in figure 2.24
top. We note that in a gross perspective our PP and PS sections respond in a similar way

to strong reflectors like coals, or thick sequences of sands or shales (Roth, 2006).
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2.11 PS INVERSION

After registration was done in ProMC, the PS data in PP time were imported into Strata
(Hampson-Russell package), a statistical wavelet was extracted from the PS seismic in
PP time, and then inverted. The same inversion procedure as in the P-wave case was
used, except, to create the model (Figure 2.25) the S-wave reflectivity was used. Note
that we are assuming that the PS data is actually representing an SS amplitude. This is an

approximation.

On the PS model-based inversion result (in PP time) at well 6-15-41-6 on line WG1, note
a lateral impedance increase (between 5400-6000 m/s*g/cc) at the 2WS shale, as

indicated in Figure 2.25 by a white arrow.
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Figure 2.25: PS model-S impedance for inversion in PP time on line WG1, at well 6-15-
41-6 location. White arrow show the 2WS formation.
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Figure 2.26 show the model-based PS inversion in PP time on line WG2 at well 8-26-41-
6; note the increased impedance values 4800-5400 m/s*g/cc at the 2WS shale, shown in

the green ellipse. This well is producing from the 2WS formation.
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Figure 2.26: Top: model-based PS Inver3|on in PP time on line WG2 at well 8-26-41-
6WS5 location; bottom: zoomed image of producing well at the 2WS formation.

Figure 2.27 shows the model-based PS inversion in PP time on line WG1 at well

location 8-13-41-6; observe the higher impedance values of 4800-5400 m/s*g/cc at the
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producing 2WS shale, marked by the black ellipse. The producing zones show an
impedance increase, opposed to the impedance decrease in the PP case. The Cardium
sandstones are delineated by a large increase in impedance (5400-6000 m/s*g/cc).
Producing wells on lines WG1 and WG2 show an S-impedance increase on the PS

model-based inversion, while the non-producing wells show an S-impedance decrease, as

expected.
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Figure 2.27: PS model-based inversion result for line WG1 at well location 8-13 at the
2WS formation, in the black ellipse.

After the inversion of both PP and PS datasets, impedance ratios were calculated (Figure
2.28). Low impedance ratios are interpreted as 1.44-1.79, indicating a potentially
productive 2WS formation. Higher values of 1.8-2.2 above the anomalous zone could
delineate the impermeable seals of this reservoir. The lower impedance ratios at the 2WS

horizon correlate with the production from well 8-13-41-6. The anomaly on line WG2,
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Figure 2.28, can be traced laterally for about 600 m towards the end of the line (South-
East).
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Figure 2.28: Top: The ratio of the PP to PS inversion in PP time on line WG2 at well 8-
13-41-6 location. Bottom: Zoomed image at the 2WS horizon.

2.12 ANOMALOUS ZONES FOR LINE WG1

The ratio of the post-stack inversions of both PP and PS datasets correlates well with the

production zones. Low values in the impedance ratios (1.6 -1.8) highlight potentially
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Cum/2007: 81 000 barrels Cum/2007:15.7 k barrels

Figure 2.29: Wells (from Accumap) on Line WG1: cumulative oil and gas production of
the 2WS horizon up to year 2007.
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productive 2WS zones. Higher values than 1.9 are generally not associated with reservoir
zones. Figure 2.29 shows the cumulative oil and gas production (up to 2007) of the 2WS
horizon at the two well locations 16-15-41-6 and 8-13-41-6 (which is less than 1 km apart
line 1 and was projected on line, Figure 2.29) for line WG1. Well 8-13-41-6 produced

15,700 barrels of oil up to year 2007, and well 16-15-41-6 81,000 barrels.

Figure 2.30 show the ratio of impedances for the two producing wells on this line: 8-13-
41-6W5 and 16-15-41-6-W5. Lower values of the ratio (1.6-1.9) are associated with the
productive zones and higher values as 1.9 - 2.2 (for well 6-15-41-6W5) with non

production. Similar results have been derived for line WG2.,
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Figure 2.30: a) The ratio of PP to PS impedance inversion for line WG1; the two
producing wells on this line: 8-13-41-6W5 (top) and b) 16-15-41-6-W5 (bottom) are
delineated in white ellipses. Lower values of the ratio are associated with the productive
zones; c) well 6-15-41-6WS5 is not producing from the 2WS as shown in black ellipse.
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2.13 ANOMALOUS ZONES FOR LINE WG2

Lower Vp/Vs values at the 2WS horizon are seen in this example, from the wells: 8-13-
41-6W5 and 8-26-41-6WS5, as in figure 2.32. The lateral PS impedance increases on line
WG2 at the productive wells locations correlates to the producing 2WS formation (Figure
2.31). Note similarities with the Vp/Vs value. Low values in the impedance ratios as 1.5-
1.8 indicate the productive 2WS. Higher values 1.8 - 2.2 indicate the non productive

areas, or could delineate the impermeable seal of the reservoir.

1.41
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8-26-41-6

FSPE

Figure 2.31: a) and b) Wells (from Accumap) on Line WG2: cumulative oil and gas
production of the 2WS up until 2007: well 8-26 produced 1,280,000 barrels and well 8-13
15,700 barrels.
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Figure 2.32: The impedance ratio of PP to PS inversion for Line WG2; the two producing
wells on this line: a) 8-13-41-6W5 and b) 8-26-41-6-W5. Lower values of the ratio are
associated with the productive zones; c) — well 1-35-41-6W5 is not producing from the
2WS. As you can note, this well is producing from the Glauconitic sandstone horizon as
the low ratios would indicate: Vp/Vs values are 1.4-1.7
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2.14 JOINT INVERSION OF WILLESDEN GREEN DATA

2.14A JOINT INVERSION OF LINE WG1

After separately inverting the PP and PS datasets in Strata, a joint inversion procedure
was performed in the Hampson-Russell ProMC package using the post-stack, migrated
multicomponent data. Event matching (Figure 2.33) between the PP and PS seismic has
been done using the velocity (through “domain conversion”) from the model (Figure
2.34), created this time in the ProMC package (with the “Strata Model” option). The new
velocity model builds simultaneously a P-wave model, an S-wave model, and a density
model, as in Figure 2.34. The Vp/Vs ratio derived from horizon-based registration using

the velocity from the “strata model” as “domain conversion” is shown in Figure 2.33.
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Figure 2.33: PP and PS data in ProMC after registration and horizon match: line WG1 at
the well 8-13-41-6W5 location. Red arrows on the time scale (left) indicate the 2WS
formation.
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Figure 2.34: Models built in ProMC for line WG1 at well 6-15-41-6 location; a) P-wave

model and b) S-wave model.

The PS statistical wavelet was created in the PP time domain in preparation for joint

inversion. Figure 2.35 show the extracted wavelets from both, the PP and PS seismic (in

PP time), used in the joint inversion. The joint PP-PS inversion of the PP and PS seismic

volumes is a model-based inversion that estimates the acoustic properties that are

consistent with the PP and PS amplitude volumes. This joint inversion uses an initial low
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frequency model created from the extrapolated well logs, updated by the horizon
matching performed in “domain conversion”. Then the model based inversion updates the
initial model to create new models of P-impedance, S-impedance, Vp/Vs values, and

densities that are consistent with the PP and PS seismic amplitude volumes.

PP wavelet PS in PP time wavelet

F5W - wirvelet lien rosponse

-
1

: ]
o \;’

-50 25 o .’3 50

Tone (W)

Figure 2.35: Statistically extracted wavelets for joint i |nver5|on on line WG1; left PP (blue
rectangle) and right PS (red rectangle) in PP time; the top shows the wavelet in time
domain and bottom in frequency domain.

The joint inversion results are shown on Figure 2.36. The best correlation with the
production is given by the Vp/Vs values showing ratios of 1.3 - 2.2. The productive wells
from the 2WS formation are 8-13-41-6 and 16-15-41-6. Well 6-15-41-6 is producing
from the Glauconitic sandstones horizon. Black arrows are used to show 2WS interval on
line WG1. On the P-wave inversion section the productive zones correlate with lower
impedance values between 8000-9500 m/s*g/cc. For the S-wave inversion, higher values
such as 3500-6000 m/s*g/cc were associated with the productive zones. Using both, the
Vp/Vs values and P-impedance, future drilling locations can be considered from CDP
590, which is close to well 16-15-41-6 towards the NE (close to well 8-13-41-6). Well

16-15 is known to produce mostly from the 2WS formation: the anomalies shown in the

joint inversion results confirm this, especially on a) and b) from figure 2.36.
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Figure 2.36: Joint inversion results for line WG1 in PS time: a) Vp/Vs values, b) Zp or P-
wave inversion and c) Zs or S-wave inversion. Red arrow shows the 2WS horizon.
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In conclusion, the recommended future drilling target is marked by white circled areas on
Figure 2.36, from CDP’s 490 to 590. High impedances values on the P-wave inversion
and the high Vp/Vs values above the 2WS horizon may indicate a seal; below, the 2WS
is possibly containing sand lenses and became a good reservoir. Well 8-13-41-6 is also
producing some oil and gas from the 2WS, but the well was projected to tie line WG1
(the distance to the well is less than one kilometer) the seal conditions are not clearly
shown above the reservoir, as in the circled area. The second recommended drilling area
is the white circled area, CDP’s 420-250 (around well 8-13-41-6), which contains
probably less oil and gas: the S-wave inversion (Zs) result may indicate some possible

oil/gas accumulations.

2.14B JOINT INVERSION OF LINE WG2

The same procedures have been used as for line WG2. Figure 2.38 show event matching
between the PP and PS seismic; the VVp/Vs ratio derived from horizon-based registration
using the velocity from “strata model” as “domain conversion” at well 8-26-41-6WS5 is
shown in colours. For the joint inversion preparation, the PS statistical wavelet was
created in the PP time domain. Figure 2.37 shows the extracted wavelets from both, the
PP and PS seismic (in PP time) on line WG2, used in the joint inversion. A P-wave
model and an S-wave model were created in the ProMC package, as for line WG1,; then
the “domain conversion” was updated with a P and S-wave model; the result is shown in
Figure 2.38.

The joint inversion result is shown in Figure 2.39. Black arrows indicate the production

wells from line WG2. The Vp/Vs anomaly, shows in Figure 2.36 that high Vp/Vs
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domain and bottom in frequency domain.
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values (2.15 to 3) above the 2WS horizon can

egistration and horizon match: line WG2 at
on the time scale (left) indicate the 2WS

indicate a seal; below, the 2WS formation

is possibly fractured and became a good reservoir, with values ranging from 1.3 to 2.15.
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The producing wells on line WG2 are 8-26-41-6 and 8-13-41-6; see black arrows on

Figure 2.39 a). Well 1-35-41-6 is not producing from the 2WS formation; our inversion

result shows a thicker shale package at the 2WS horizon. Higher VVp/Vs values lead to the

conclusion that there is no porosity or sand occurrence; there are no favorable conditions
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for a good reservoir accumulation. Moving from NW to SE, towards well 8-26-41-6, note
the low Vp/Vs values; this result shows a good reservoir, with a shale seal above. The
recommended future drilling target is shown in the black circled areas in Figure 2.39,
from CDP’s 60 to 270. The second recommended drilling area is circled in white
showing CDP’s from 390-568 (around well 8-13-41-6), which contains less oil and gas.
This area is probably more fractured, possibly containing sand lenses (lower values of
Vp/Vs from 1.3 to 1.8). There are oil and gas accumulations in this area but migration has

probably occurred; no obvious seal is seen above the formation.

2.14C ANOMALOUS ZONES FOR WILLESDEN GREEN

Figure 2.40 shows the cumulative oil and gas production for the Willesden Green area.
The producing wells are 8-26, 16-15 and 8-13. The first recommended drilling area is
according to chapters 2.14A and 2.14B located between the producing wells 8-36 and 16-
15, towards 8-13, in the orange triangle area: The zone with less predicted production is
surrounding well 8-13; it is shown by the yellow polygon around the orange triangle.

More investigations are recommended for the future in this area; polarization and
splitting make shear waves a natural tool to investigate fracturing (Garotta, 2000). Future
work in this project to better delineate the reservoir will need to investigate the 2WS

fracture orientation and anisotropy.
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Figure 2.40: Wells from Accumap on Line WG1 and WG2: cumulative oil and gas
production from 2WS, up until 2007: the three producing well are circled in green. The
non producing wells are in red ellipses. Black circles indicate the well locations.

2.15 CONCLUSIONS

On Willesden Green data, the PP and PS separate post stack inversion method coupled
with the joint inversion method were used to investigate the productive zones, based on

the producing wells in this area: 8-13-41-6, 8-26-41-6 and 6-15-41-6. We find that:

e The main changes in the well logs roughly correspond to the lithology changes. P-
wave sonic shows a lower increase than the S-wave sonic at the 2WS formation,

hence the reservoir zone shows a low Vp/Vs value on the well logs.

58



The model based inversion method using ProMC and Strata software has been
used to predict reservoir properties along the seismic lines. PP and PS impedance
sections were created and analyzed. The productive intervals are interpreted as a
PP impedance drop and PS impedance increase. The calculated Vp/Vs values and
the ratio of PP impedance and PS impedance were helpful for delineating the
porosity zones and the sand/shale discrimination. The producing zones show
values of Ip/ls between 1.6-1.8 while the shales/seals have increased values, in

between 1.9-3.5.

Sands and shales were well separated in the Vp/Vs domain. There are benefits
from using the velocity ratio; Vp/Vs less than 2.15 can give confidence in
delineating the producing 2WS formation (possibly show an increase in porosity

zones).

This chapter indicates that the ratio of the PP inversion to the PS inversion in PP
time can be useful for delineating the reservoirs. Vp/Vs values generated from
joint inversion indicate anomalous areas similar to those found with impedance
ratio values. Shear wave data use can bring useful information in future well

positioning.

According to Garotta (2000), shear waves have no conversion (at least in a one-
dimensional environment) and are more sensitive to lithology, particularly
because of higher and simpler axial isotropy. In this chapter, it has been shown

that the main PP and PS impedance changes correspond to the major lithologic
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boundaries. PS seismic data coupled with PP seismic data from multicomponent

data can bring valuable information for future drilling location.
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CHAPTER 3 MANITOU LAKE, SASKATCHEWAN, 3D-3C PROJECT

3.1 INTRODUCTION

Lower Cretaceous fluvial sands channels with high porosity and permeability in the
Manitou Lake area of Saskatchewan contain important oil and gas reserves. In this
chapter, well logs and synthetic seismograms are used to correlate the PP and PS seismic
sections, from a 3C-3D seismic survey which was undertaken to better delineate the
Colony and Sparky reservoir sands. Mode-converted (PS) seismic amplitudes can
complement traditional channel interpretation from PP data. PP and PS amplitude maps
at the Colony sand level show different aspects of the channel’s expression. Lithology
and fluid discrimination based on Vp/Vs values are derived from the inverted PP and PS
(registered in PP time) sections. Detailed registration of multicomponent seismic data
aims to reduce the uncertainty of the channels interpretation and improve well targeting.
An additional goal is to see if AVO attributes, LMR estimates, and elastic impedances
values will highlight the drilled locations and possibly help identify new drilling

locations.

Exploration targets of this survey include the Colony and Sparky sand channels, both
members of the Cretaceous Mannville Group. These intervals are currently producing oil
and gas in the area. Their thickness may be up to 10m. The oil at Manitou Lake is
considered heavy oil; its gravity is around 12° API. This work investigates whether the
interpretation of 3C-3D seismic data can help discriminate sand versus shale and find

gas-charged porosity.
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Greater porosity is expected in the channel deposits which contain thicker sand intervals.
Log analysis indicates that the sand channels in the area have high porosities, up to 40%,
and low water saturation (Quijada et al., 2007). Larger porosity values can lower the P-
wave velocity. Thus, a good reservoir may have a lower Vp value. High resistivity values
in the Colony and Sparky members indicate hydrocarbons, and the cross-over between
the density and neutron porosity suggests gas. The presence of hydrocarbons might also
lower the P-wave velocity. The S-wave velocity is seen to increase from shale to sand at
the channel levels. Hence, Vp/Vs is often low in sandstones compared to shales. The
interpretation of P-wave seismic reflection data alone can lead to ambiguous conclusions
in certain exploration situations. Differentiation of prospective channel sands and non-
productive shales can be problematic due to the similarity in P-wave impedance of these
two lithologies. PS data are expected to be a direct measurement of the channel system,

given that Vs should respond largely to the lithology and less to the fluid content.

3.2 LOCATION

The location of the Manitou Lake area is shown in Figure 3.1. The red square shows the
location of the 3D-3C survey in central Saskatchewan, close to Lloydminster, on the
Alberta border. Figure 3.1 also shows a zoomed image of the red square: the map (T44,

R27) shows the PP amplitude map at the Colony sand, from Calroc Energy Inc.

The red circles indicate the three wells available for this study. The data from these wells

include spontaneous potential (SP), gamma-ray (GR), density (RHOZ), and resistivity
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logs. Wells A11-17 and C07-16 both have a P-wave sonic log. A shear-wave sonic log is

available only for well A11-17.
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Figure 3.1.Left: Map of major heavy-oil deposits of Alberta and Saskatchewan, and
location of the study area (after Watson, 2004); Right: Amplitude map for the Colony
sand channel from Calroc Energy Inc.

3.3 GEOLOGY AND STRATIGRAPHY

Deposition in the Western Canada Sedimentary Basin (WCSB) can be divided into two
successions, based on two different tectonic settings affecting sedimentation. The
Paleozoic to Jurassic platformal succession, dominated by carbonate rocks, was deposited
on the stable craton adjacent to the ancient western margin of North America. The
overlying mid-Jurassic to Paleocene foreland basin succession, dominated by clastic

rocks, formed during active margin orogenic evolution of the Canadian Cordillera, with

63



the emplacement of imbricate thrust slices progressively from east to west (Mossop and

Shetsen, 1994).

Figure 3.2: Paleogeographic reconstruction of the Upper Mannville deposition. Red
arrow shows the location of the area (Modified from Leckie and Smith, 1992).

According to the stratigraphic column for west-central Saskatchewan (Figure 3.3), the
Colony sand members of the Pense Formation, and the Sparky member of the Cantuar
Formation, are both part of the Cretaceous Mannville Group. Most of the sediments in the
area were deposited during the Cretaceous, and the top of the Mannville marks a clear
separation between the predominant sands in Mannville and the overlying marine shales
of the Colorado and Belly River Groups.

In the area, the Mannville Group lies unconformably on Paleozoic strata, and its
sedimentary pattern consists of an interplay (interaction) of marine, estuarine and

fluviatile agents acting in a setting controlled by paleo-topographic relief and eustatic and

64



tectonic changes in relative sea-levels (Christopher, 1997). The Sparky member is

informally grouped into the middle Mannville, which is dominated by sheet sandstone
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development, with narrow channel sandstones and shales also present (Putnam, 1982).
These units have been interpreted as delta-front facies with associated tidal-flat, tidal-

channel, and beach environments (Vigrass, 1977). Several coal seams are found within
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the Mannville Group in the Lloydminster area, mostly within the Cummings,
Lloydminster, Rex and Sparky Formations. The distribution of coals in the basin is
influenced by the tectonic events that created the foredeep.

The Colony sand member is unconformably overlain by the Joli Fou marine shale,
representing the basal unit of the Colorado Group, which is dominated by marine shales
encasing generally thin but extensive sandstones, such as the Viking and Cardium
formations, as important petroleum reservoirs in other areas (Leckie et al., 1994). Within
the Colorado Group, the First and Second White Speckled Shales, the Fish Scales Zone,
and shale at the base of the Shaftesbury Formation are more radioactive than overlying
and underlying shales, have high total organic carbon contents, and have considerable
hydrocarbon generating potential. An interval such as the Second White Speckled Shale
is potentially both a source and a reservoir rock for hydrocarbons (Mossop and Shetsen,

1994).

3.4 GEOLOGIC MODEL OF THE RESERVOIR

Figure 3.4 shows a schematic depositional model for the Colony sands, including the
three distinct facies units. They include (A) channel facies, (B) crevasse splay facies and
(C) interchannel wetlands facies. Crevasse splay bodies are likely effective reservoirs in
many thick tight-gas fluvial successions. They were formed usually during floods, in a
wide crack or breach in the bank of a river. The sediments that spill out through the
crevasse and fan out along the external margin of the river’s bank form a crevasse splay

deposit. A crevasse splay is defined (Allaby, 1999) as a small alluvial fan or other
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outspread deposit formed where an overloaded stream breaks through a levee (artificial or
natural) and deposits its material (often coarse-grained) on the floodplain. This is also
known as channel splay. A floodplain is flat or nearly flat land adjacent to a stream or
river that experiences occasional or periodic flooding. It includes the floodway, which

consists of the stream channel and adjacent areas that carry flood flows.

0 Channel facies (A)

h

- Crevasse splay facies (B)
- Interchannel wetland facies (C)

Kilometers

Figure 3.4: Depositional model for the Colony sand member after Putham and Oliver
(1980) from Royle (2002).

The Colony sand member is the uppermost unit of the nine member informal subdivision
of the Mannville Group and consists of shales, siltstones, coals and sandstones.
Deposition of this member occurred in an extensive complex of anastomosing (coming
together or opening into each other, defined as the connection of separate parts of a
branching system to form a network, as a river and its branches) channel sandstones,
encased within siltstones, shales, coals and thin sheet sandstones (Putnam and Oliver,
1980). The Colony sand member is capped by the marine shales of the Joli Fou

formation.
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The Sparky member is informally grouped into the middle Mannville, which is
dominated by sheet sandstone development, with narrow, channel sandstones and shales
also present (Putnam, 1982).The sheet sandstones in the Sparky are commonly 6-9 m
thick, and can be traced laterally for several tens of kilometers; however, they are
commonly broken by thick, ribbon-shaped deposits or sandstone pinchouts (Putnam,

1982).

3.5 ACQUISITION AND PROCESSING FOR 3C-3D SURFACE SEISMIC

The Manitou Lake 3C-3D survey was acquired for Calroc Energy Inc. near Manitou Lake,
Saskatchewan (Figure 3.1), in February 2005 by Kinetex Inc. The survey covers an area of
approximately 10 km2 as in the base map (Figure 3.5), with twenty one south-north receiver
lines and eighteen indicated west-east source lines, with 200 m line spacing and 50 m
station spacing (Lu et al., 2006). The seismic data includes a suite of logs from three

different wells in this area. Acquisition parameters are shown in Table 3.1.

The vertical (PP) and the radial (PS) component data were processed to a final migrated
volume by Hanxing Lu and Kevin Hall of the CREWES project. Conventional processing
flows for the PP data have been employed, as described by Lu and Margrave (1998). The
processing flow for Manitou Lake migrated sections consists of deconvolution, time
variant spectral whitening, and FD migration after CDP stack (Lu et al., 2007).

For the CDP gathers in the AVO analysis, the processing flow was done in the following

order: SEGY input, 3D geometry assignment, true amplitude recovery, elevation statics
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and refraction statics, surface consistent deconvolution, front end muting, velocity
analysis, residual surface-consistent statics, normal moveout, and trim statics.

For this survey, most of the coherent energy is in the 18-75 Hz range (Lu et al, 2006).
The dominant frequency of the PP data is about 65 Hz, while that of the PS data is
approximately 25 Hz. Because the PS data were much noisier than the vertical data, and
the velocities were more difficult to pick, near offsets (0-400m) have been excluded in
order to reduce the effects of source noise (Lu et al., 2006). PP shot and receiver statics
were calculated using GLI3D. Due to large lateral variations in the near surface shear-
velocity field, it was difficult to calculate PS receiver statics. Non-surface-consistent

receiver statics were applied for the PS data.

3D acquisition geometry
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Figure 3.5: Acquisition geometry of the Manitou Lake survey from Lu et al., (2006): base
map; Shots are in blue, receivers in purple, and well A11-17 is a cyan circle.
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Table 3.1. Acquisition Parameters (Kinetex Inc.)

Recording W0 System 4

System

Source Two vertical vibrators (VI Y2200}

Source Array 16 m dragged array, 3 sweeps per VP, 1.14 m move-up per sweep. Diversity

stacked in the figld.

Sweep 8-144 Hz over 10 s with 5 s listen time

Receiver 0 VectorSeis SWSM

Receiver Array Single sensor per station

Station spacing 50 m source and receiver station spacing

Line spacing 200 m zource and receiver ling interva
Receiver lines 21 lines, total length 51.93 km

Source lines 18 lines, total length 53.89 km

Total arsa ~10 km”~

For a preliminary interpretation, PP and PS synthetics were generated using the
SYNGRAM package (CREWES) for the construction of synthetic seismograms at well
Al11-17 (Lu et al., 2006). Constant-phase bandpass wavelets were created in
WAVELETED (Lu et al., 2006), with frequency bands matching the bandpass filter used
for the seismic displays (PP=10-15-90-110, PS=15-20-30-45). Figure 3.6 shows the PS
(right) and PP (left) migrated section at well A11-17, and the correlation with the
synthetic seismograms (synthetics: the PP in blue and the PS in red). Red arrows on both,

PP and PS data show the Colony sand member at the well location.
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Figure 3.6: Well 11-17 location: Comparison of migrated PP (left) in PP time to migrated
PS (right) in PS time. Red arrows shows top of Colony sand member. (after Lu et al,
2007).

3.6 LITHOLOGY DIFFERENTIATION

The first step in the interpretation is to differentiate, on the well logs, the clean sand
zones and the shales. Figure 3.8 shows a suite of logs for well A11-17 and C7-17
(Quijada et al., 2007), where gas is highlighted in red, oil in green, and water in blue. The
top of the Colony sand is clearly identified by a significant deviation to the right in the
GR, SP and porosity logs. The P-wave shows almost no change while the S-wave
velocity shows a significant increase. High resistivity values in the Colony and Sparky
formations indicate hydrocarbons, while the cross-over between the density and neutron
porosity logs at the Colony member suggest gas. The shear-wave velocity increases for
water and gas, while it shows lower values where oil is present (Quijada et al, 2008). The
best differentiation with regard to lithology was given by the Vp/Vs ratio: lower values

than 2.15 corresponding to sands and higher values to shales( Quijada et al.,2008).
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A lithology differentiation has been tried for well location A11-17, the single well with a
shear (S) sonic log in this survey. Sand zones where considered to have values less than
100 API on the GR logs, and Vp/Vs values less than 2.15, as in figure 3.7: sands are
shown in yellow, shales in brown and sand/shales in olive. The green arrows on the
vertical depth scale (Figure 3.7 b) shows the hydrocarbon depth, while the blue arrows
suggests the water depth, as in Figure 3.8 a.

The change of Vp/Vs values in the reservoir is not only due to the variation of porosity. It
is also closely related to the shale content and water saturation variation. The shale
variation may change the Vp/Vs value of the rock more drastically than the water
saturation does. Water saturation increases the Vp/Vs value for both, sand and shale (Xu

Y., 2002).

3.7PP INTERPRETATION

After the PP seismic data were processed, three sets of logs were chosen for correlations
with seismic: A11-17, C10-17 and C07-16 (see Figure 3.1). The interpretation of the PP
migrated volume was undertaken by correlating well logs to the seismic data and picking
horizons based upon well control. Figure 3.9 shows the well log correlation with seismic
at the A11-17 location. From left to right we can see the following curves a) Porosity
(brown), Gamma Ray (blue), SP (red), Density (blue), Resistivity (black), S (blue) and P
(red) sonic logs, Vp/Vs value (red) and the vertical component migration and b) the
gamma-ray curve, sonic logs (P wave sonic in red and shear sonic in blue) and density.

Note that the Colony sand channel was picked on a trough and shows an increase in
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porosity, a sharp decrease on the gamma ray and SP logs, a density decrease, an increase
in resistivity, an increase on the shear sonic log and almost no increase on the P-wave
sonic, and a lower Vp/Vs value. Vp/Vs give the best differentiation regarding the
lithology: values from 1.70 to 2.15 for sands and values from 2.15 to 3 for shales. Lower
density values, less than 1.7 g/cm? suggest coals. As shown by Quijada et al., 2007, in
Figure 3.8, a) the S-wave velocity shows a very significant increase from 800 m/s in
shales to 1300 m/s in sands. The high resistivity values in the Colony and Sparky
members indicate hydrocarbons, while the cross-over between the density and neutron
porosity logs in the Colony sands suggests the presence of gas. In the target zone, density
is a good lithological indicator, with densities lower than 2250 kg/m3 indicating sands,
and higher values corresponding to shaly sands and shales. Sparky B is picked on a zero
crossing, showing similar characteristics to the Colony sand channel. Figure 3.9 a) shows
for the Colony sand member an effective porosity up to 40%, and an average thickness of
10 m. The Sparky level has a similar porosity, showing a thickness of less than 10 m. As
in Figure 3.8, high resistivity shows hydrocarbon saturation, and low values in Vp/Vs and
gamma ray logs show decreased shale and more sandstone content. The oil gravity in this
area is around 12° API, which corresponds to a density of 0.9861 g/cm3. The S-wave
velocity increases for water and gas, showing lower values where water is replaced by
oil. It is important to note (Quijada et al., 2007) that S-wave velocity appears to be the
best lithological indicator, along with the Vp/Vs value, where sands have a ratio between
1.7 - 2.15, and shales between 2.15 - 4. Integration of seismic and well log information
can lead to qualitative and often quantitative estimates of sand, shale, porosity, fluid

saturation and other key reservoir attributes (Roth, 2007).
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In Figure 3.10 we can identify the two sand channels (green arrows) on the PP migrated
volume: Colony (above) and Sparky (below) at the well location C7-16. The inserted logs
are GR in red and the S-wave sonic in blue. Note the lower values of GR at the sand
channels. The Colony and Sparky tops were picked on troughs on the vertical section. At
the Colony formation the amplitude clearly increases. The change in waveform on both,
Colony and Sparky, suggest differential compaction of the sand channels. Figure 3.11
shows the log suites at the location of well C7-16. The oil/gas/water delineation on the
seismic has been done by comparing the logs with Figure 3.8 b. The depth of the
channels at this well location was found to be around 550m for the Colony and 605m for
the Sparky member.

Amplitude maps were generated at the Colony and Sparky horizons, as in Figures 3.12
and 3.13. A comparison of the PP amplitude map (Figure 3.12) with the previous PP
amplitude map processed by Calroc Energy (Figure 3.13) reveals a more continuous and
sharper representation of the sand channel at the Colony level. Figure 3.14 top, shows our
result for the PP amplitude map at the Sparky sand channel, compared with the previous
amplitude map processed by Calroc Energy Inc. (below). Higher amplitudes (in blue-
purple) in Figures 3.12 and 3.14 show a somewhat different image of the sand channel.
All wells are located on high amplitudes within the Colony sand channels, but only well
Al11-17 is producing from this interval. Wells C10-17 and C7-16 are producing from the
Sparky formation. Black arrows on all amplitude maps indicate a possible reservoir based
on PP data. In the next chapters, the response of PS volumes will be analyzed at the

indicated location.
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3.8 PP AND PS INTERPRETATION

Conventional PP seismic data acquired at the Manitou Lake project (as shown in Chapter
3.7) had limited value in detecting some targets. The PP amplitude maps show high
amplitudes, originally suggesting a good drilling location. Black arrows from previous
figures indicate a drilled location which did not encounter hydrocarbons. This work
shows if combined PP and PS interpretation can distinguish between productive and dry

locations.
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Coupled PP and PS seismic analysis can increase confidence in interpretation, give rock
property estimates, and provide additional information for imaging the subsurface
detailed in the next chapters of this thesis.

When compressional P waves reach an interface at non-normal incidence, they are
partitioned into transmitted and reflected P and shear (S) waves. Significant energy is
converted to S waves which, in the absence of azimuthal anisotropy, will be recorded
primarily on the radial (inline horizontal) component at the receiver. Due to the
difference in travel path, wavelength and reflectivity, PS seismic sections can show
significant changes in amplitude or character of events which are not apparent on
conventional PP sections. Horizons can be better imaged on one or the other of the
sections because of different multiple paths and wavelet interference effects such as
tunning (constructive or destructive interference resulting from two or more reflectors
spaced closer than a quarter of the dominant wavelength).

Garrotta et al., (2002) showed that shear waves are slower than compressional waves and
cannot propagate through fluids, making converted wave exploration useful for fluid and
lithology discrimination, imaging structure through gas clouds and fracture detection by
analysis of shear wave splitting, among others.

The next step in this work is to create the PS synthetic seismograms, as in Chapter 2. In
the wells without a dipole sonic, shear logs were created using Castagna’s equation
(Equation 2.2), where the velocities are in km/s:

Vp= 1.16Vs+ 1.36 (2.2)

This relation is generally defined as the mudrock line. A linear least- square fit of the P-

and S-wave velocities logs from Manitou Lake results in a slope of 1.2 and an intercept
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of 1.257 (Quijada, 2009) which are very similar to the parameters defined by Castagna et
al. (1985) in equation 2.2.

The PS synthetic seismogram was correlated with the PS seismic volume in PS time.
Figure 3.15 shows from left to right: the Gamma Ray log, the P-wave (blue) the S-wave
(red) and the density. The well log is stretched in PS time with a correlation coefficient
around 60%. The synthetic (in blue) was created using the wavelet shown below. The
wavelet was extracted from the PS (radial) migrated stack. Figure 3.16 shows the PS
seismic and well logs at well location A11-17. From left to right the following logs are:
S-wave (blue), the P-wave (red), the SP (red), the Gamma Ray (blue), and the computed
Vp/Vs values. Note the sharp increase in the S-wave value at the Colony level and the

evident decrease in the Vp/Vs value.

Registration was done in PP time, thus shrinking the PS section to match the PP section,
as in Figures 3.18 and 3.19. We consider PS data to be another indicator of the channel

system, given that should respond largely to increased sand content.

There are some challenges when processing the mode-converted data: some issues
include the separation of P wave arrivals, and the large magnitude of shear-wave statics.
Shear statics have much larger variations at a much smaller distance scale than
compressional statics. This originates from the higher variability of the shear velocity in
near surface inhomogenous material (Garotta, 2000). Registration can be challenging. As
seen in Figures 3.17 and 3.18, on the PS time correlated section, the Colony and Sparky
horizons were picked on a peak. Only the horizon Sparky B was picked, due to the fact

that it is the producing horizon for wells C7-16 and C10-17. The sand channels are
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circled in colours. Note the lower frequency content of the PS data compared with the PP
data and the amplitude and waveform changes in both cases. Hydrocarbon fluids can
reduce the acoustic impedance of young unconsolidated reservoir rocks, producing a
bright spot, as seen here.

Figure 3.18, shows the registration using the PP and PS picked horizons (Hampson —
Russell software). The velocity derived from all three wells was used for domain
conversion. On the left side is the PS migrated section, and on the right side is the PP
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Figure 3.18: Well A11-17: Registration and horizon matching. On left we have the PS
data and on right the PP data, both stretched in PP time. In colors, the sand channels are
delineated by the Vp/Vs values calculated from time thickness (using wells for domain
conversion).

migration, both stretched in PP time. The Colony PP-PS horizon after horizon matching
is shown in blue, and the Sparky horizon in red. The sand channels are delineated by the
Vp/Vs values calculated from time thickness. Closer inspection shows that values less
than 2.15 delineate the sand channels.

Figure 3.19 shows the zoomed vertical migrated stack at the location of well A11-17.
Gas, oil and water are shown in white arrows, and correspond to the marked zones, as in
Figure 3.8 a): gas sands have Vp/Vs values up to 1.5; oil sands show values from 1.5 to
2.15, and brine filled sands have values higher than 2.15.

Figure 3.20 shows the zoomed vertical migrated stack at the C10-17 well location.

Colour data shows Vp/Vs values. The inserted curve is the Gamma Ray log, indicating

low values at the sand channel levels.

86

Trace Data: PS : mig_rad_low_cut_filt — Positive Data — Trace Data: PP : mig_vertical — Positive |

3.50
3.37
3.23
3io0
2.97
2.83

PS Color Data: VPIVS PP Color Data: VPVS \Vp/Vs
Inserted Curve Data: VpVs_Ratio . Inserted Curve Data: Gamma Ray
ine 22 23 24 25 26 27 28 29 30 31 3.37 line 22 23 24 25 26 27 2 29 30 3
Offset qmy 211 172 122 123 174 213 301 306 218 179 323 Offset (m) 184 171 186 211 244 249 217 190
well IR \ d well D 2 an-r-adpr

2.70
2.57
2.43
2.30
217
2.03
1.90
1.77
1.63
1.50
1.37
1.23
1.10
0.97
0.83
0.70
0.57
0.43
030




After registration, time structure maps were created at the Colony and Sparky horizons,

as in Figure 3.21. Note the higher time trend from west to east and from south to north on
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Figure 3.19: Well A11-17: Zoomed image of the PP migrated stack after the registration
using horizon match (Hampson — Russell software). Colors show Vp/Vs from time
thicknesses after horizon matching: oil is shown by a ratio value less than 2.15 and gas
shows values less than 1.50. Inserted, is the GR in black colour.

both horizons, in blue. Lower time values in red to green, may suggest differential
channel compaction. The channels may be delineated by different attributes, such as
curvature.

An isochron map (calculate the time interval between two horizons) was created in
Figure 3.22, showing the thicker time intervals in blue, up to 72 ms between the two
horizons, compared with the red/yellow colors with values up to 50 ms. The larger values

likely indicate lesser compaction of the sands in the channels. This leads to the idea that
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under-compacted sand channels have a greater porosity and are possibly better

performing reservoirs.

Trace Data: PP : mig_vertical
Color Data: VPIVS

- Inserted Curve Dat:':\: Gamma Ray

Hine 23 24 25 26 27 28 29 30 W 3} 3B 34 3B 36/ I 3B/ 3/ 440 N

Wl W qem

420 ..
430
440
450

460

40 +

480

I e e — | e e— —

= .blt(lﬂ((d’r Sl

500

510 ______-w""" < Fr | \____..-g;‘

— 3‘{::"—" ‘:ZZ;__,__

520

530

--3- IR —

540 ]

5a0

360

570

PP Time (ms} Aine: 27 PP Time: 467 PS Time: 873 Trace Amp: 0.837209 Color Amp: 3.52305

2 45 44 5 46 47 48 4 S0
Offset (m) 79 78 106 145 190 196 152 112 83 80 104 142 186 196 151 110 8 77 105 143 187 205 152 112 83 80 104

— Positive |

Vp/Vs
3.50
3.37
3.23
310
2.97
2.83
2.70
2.57
2.43
230
217
2.03
190
177
163
150
137
123
110
0.97
0.83
0.70
0.57
0.43
030

Figure 3.20: Well C10-17: Zoomed image of the PP migrated stack after the registration

using horizon match in Hampson — Russell software.
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Figure 3.21: Time structure maps on the registered horizons in PP time: a) Colony and b)
Sparky. Both sand channels show higher values towards NE-SW; the possibly un-

compacted sand channels are in blue and cyan.
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registration). Note thickness values in blue, up to 72 ms. A possibly higher compaction of
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suggests less compaction.

’7 Legend

The data were loaded in both Hampson — Russell and Transform software, where
registration was again performed. Figure 3.23 shows the unregistered PP-PS display, and
Figure 3.24 shows the registration using the amplitude envelope. The amplitude envelope
is a useful seismic attribute for removing phase effects, reducing frequency effects, and
highlighting high and low energy zones. Matching reflection energy “packets” provides a
base methodology for multicomponent registration (Roth, 2006). Amplitude envelope can
isolate amplitude information and discard the phase problem of correlating two datasets
that have different phase properties. A time and spatially-variant registration (“gamma”)

has been performed.
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The energy packages are shown as in Figure 3.24; from left to right they are in order: the
work space stretch, the QC with gamma function applied, and third, the QC plot for a
sparse gamma grid. Colors show the co-rendering of different adjustments. Figure 3.25
shows the Vp/Vs (gamma) adjustment. Residual Gamma adjustment can be performed to
take account of phase problems. In the present case, it was not necessary to perform a
phase adjustment. The objective of registration preparation is to enhance the geology-
driven features that will guide the registration process, such as boosting the frequency
content in both PP and PS data. This can help amplify the event character, even as

reflection continuity is reduced.
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Figure 3.23: Unregistered PP-PS display in Transform software. The PP data is shorter
than PS data and shows a higher frequency content.

After registration, new volumes were created for the PS data with the gamma function

applied. PP and PS attributes such as amplitude envelope coherency, curvature and
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inversions were created. The sand channels were better imaged as shown in the next two

chapters.

— —— ‘————J‘

Figure 3.25:{Regist§ d PP and PS data s%wing the gamma adjustment (residual), in
Transform software.
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CHAPTER 4 - ATTRIBUTES AT MANITOU LAKE

Seismic attributes are measurements derived from seismic data, usually based on
measurements of time, amplitude, frequency and/or attenuation. Generally, time-based
measurements relate to structure, amplitude-based ones to stratigraphy and reservoir
characterization, and ferequency-based ones to stratigraphy and reservoir characterization
(Sheriff, 2006). Marfurt, 2008, states that a simple working definition for a seismic
attribute is any measure of seismic data that helps to better visualize or quantify features

of interest in interpretation.

4.1 PP AND PS AMPLITUDE MAPS

After the registration in Transform software, volumes with PP and PS data were created
with a gamma function applied. Figure 4.1 shows PP time slices at the Sparky and
Colony levels. Figure 4.2 shows the PS amplitude envelope on both horizons: this

attribute does not help us in better delineating the channels due to the low frequency

Figure 4.1: PP Colony (left) and Sparky (right) time slices. Red colors show high
amplitudes.
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Figure 4.3: PP (left) and PS (right) amplitudes on the Sparky horizon. Red colours shows
high amplitudes.

content of PS data. In Figure 4.3 compare the PP (left) and PS (right) amplitudes at the
Sparky horizon. The useful information that PS data can provide at this stage is the fact
that in the circled zone of interest, since high amplitudes do not show, drilling a new well
is of questionable use. This leads to an investigation of whether the combination of

amplitudes with other attributes will help in recognizing geologic features.
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4.2AMPLITUDE ENVELOPE AND CURVATURE

How can derived seismic attributes help in recognizing geologic features? According to
Marfurt, 2008, coherence can help to localize lateral changes in waveform and amplitude,
and curvature can help to see the localized, lateral changes in dip. Broader, lateral
changes in amplitudes can be seen by RMS amplitudes, impedance inversion, or AVO
analysis. Coherency can give more information about channel edge detection. Figure 4.4
shows how a sand channel can be detected with seismic attributes, according to its
geologic features. The channel model in this case is considered as in Figure 4.5, showing

differential compaction, plus dip and amplitude changes.

Dip and amplitude changes Dip, amplitude, and waveform change

Figure 4.4: Detection of channels with seismic attributes. Attribute response to channel
features preserved in the geologic record: (a) below thin-bed tuning, with homogeneous
fill and no differential compaction; only the amplitude changes; (b) below thin-bed
tuning, with homogeneous fill and differential compaction. Curvature and amplitude
change; waveform does not change; (c) above thin-bed tuning, with heterogeneous
horizontal fill and no differential compaction. Curvature does not change; amplitude and
waveform do change; (d) above thin-bed tuning, with heterogeneous agradational fill.
Curvature, amplitude, and waveform all change (after K. Marfurt, 2008).
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Figure 4.5: The sensitivity of curvature attributes to channels. Unless there is differential
compaction, channels are not usually seen on curvature volumes (modified after K.

Marfurt, 2008)

The channel features will be seen by the curvature attribute. However, since volumetric

curvature calculations are performed on time slices rather than on picked horizons,

channels that have little differential compaction or internal dip, experience no lateral

change in dip, and thus will not be seen by curvature (Marfurt, 2008).

Positive Curvature K = 1/R
Curvature

Negative
Curvature

Anticline

Syncline

X

Figure 4.6: Sign convention for 3D curvature attributes: synclinal features have negative
curvature, anticlinal features have positive curvature, and planar features have zero

curvature (after Roberts, 2001).
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Figure 4.7: a) PP (top) and PS (bottom) amplitude envelope at the Colony co-rendered
with the PP minimum negative curvature (bump-map). The darker channel features show
the curvature, and the white-grey colour indicates higher amplitudes (Transform
software).
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Figure 4.8: a) PP (top) and PS (bottom) amplitude envelope at the Colony co-rendered
with the PP maximum positive curvature (bump-map). The darker channel features show
the curvature, and the grey-green colour indicates higher amplitudes (Transform
software).
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Figure 4.7: b) PP (top) and PS (bottom) amplitude envelope at the Sparky co-rendered
with the PP minimum negative curvature (bump-map).The darker channel features show
the curvature, and the white-grey colour indicates higher amplitudes (Transform
software).
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Figure 4.8: b) PP (top) and PS (bottom) amplitude envelope at the Sparky co-rendered
with the PP maximum positive curvature (bump-map). The darker channel features show
the curvature, and the grey-green colour indicates higher amplitudes (Transform
software).
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The amplitude envelope is used to calculate instantaneous amplitude characteristics, and
is used to highlight the dominant energy pockets in the data. It is appropriate for
identifying major amplitude anomalies. The combination of two attributes, performed
with Transform software: the amplitude envelope and the most positive and negative
curvature as in Figures 4.6 and 4.7 a) and b), show different aspects at the top and base
of the channels. The “illumination” feature was used on both Figures, to add a third
dimension to the view.

Figure 4.7 a) shows different aspects of the base of the Colony channel for PP and PS
amplitudes respectively, whereas Figure 4.7 b) shows the top of the Colony sands. PS
data show more information about the top and base of the channel, correlating nicely with
the curvature features. The same clear result can be seen in Figure 4.7 and 4.8 b) at the
Sparky level. The curvature attributes indicate a better focussing of the base (most
negative) and the edges of the channels (most positive).

Sand-shale boundaries may produce poor P-wave velocity contrasts, and in the present
case the PS converted mode enables the reservoir boundaries to be delineated. PS
amplitude anomalies seen in Figures 4.7b) and 4.8b) show the top of the sands / reservoir,
which could not be seen seismically on the PP amplitude map. This idea is based on the
fact that Vs show an increase on logs, while Vp has almost no change at the top of the
reservoir. This behavior is probably caused by the decreasing bulk density and bulk
modulus in the hydrocarbon filled sands, while the rigidity remains basically the same

when passing from shales to sands:

vp= |22 w:\ﬁ (5.0)
p p
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where A is the incompressibility, p is the rigidity and p is the density; Vp and Vs are P-

wave velocity and respectively S-wave velocity.

The PS-wave data indicated that the shape of the sand can be different than originally

thought, and a new mapping of the reservoir was achieved.

Shear propagation is not disturbed by gas: if P-wave sections show amplitude anomalies
(bright spot) as seen in Figures 3.17 and 3.19, then the S-wave section should not show
those anomalies and are typically dim (Nahm, 2003, Garotta, 2005). If the amplitude
anomalies appear in both P and S-wave modes, then this is caused by lithology, and not
by gas saturation (Garotta, 2005). This is another important application of PS-waves for
Class Il and Class Il1, bright spot validation. Concluding, the created maps can show the
prospective gas accumulation in this area: a bright spot on the P-wave and a respectively
dimming observed on S-waves may be a criterion for distinguishing gas sand reflectors

versus “false” bright spots.

4.3 CURVATURE, COHERENCE, AND RECURSIVE INVERSION

An interactive registration based on the gamma function (related to P and S velocity
ratios) was performed in Transform software after horizons were re-picked. The intention
behind this registration was to focus on high and low energy zones using the amplitude
envelope. Spectral enhancement was performed before applying the post stack recursive
inversion, as in Figure 4.9 top: a zero phase deconvolution and a median filter were

applied for spectral enhancement.
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After registration, the Colony and Sparky PS and PP amplitude map were showing better
results than the previous interpretation. Higher amplitudes indicate the sand channels as
in figure 4.9. A better delineation of the sand channel at the Colony (left) and at the
Sparky level (right) is available from the co-rendered curvature of the PP and PS picked
horizons. The zone circled in white shows the place where the previous drilling location
did not encounter the reservoir. The “dry hole” was drilled based only on conventional
PP seismic data interpretation. Zero phase deconvolution helped to increase the high
frequency data content.

Figure 4.10 shows a combination of attributes: curvature co-rendered with recursive
inversion for the PP data (left), and the recursive inversion co-rendered with the
amplitude envelope for the PS data (right) at the Colony channel. The recursive inversion
performed in Transform software integrates the seismic data to approximate band-limited
impedance and can be used as a gross porosity and fluid indicator. White ellipses indicate
the same missed drilled location. The same warning arises from these attributes: no fluid
indication or porosity is shown in this area. For increased confidence, one can look at the
previous Figures, 4.7 and 4.8, and compare the results: the zone of interest does not show

any indication of gas or fluid.
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Figure 4.9: Left: the Colony and right: Sparky horizons in Transform software.

a) PP+ PS Curvature is co-rendered for PP and PS data at the Colony (left) and Sparky
(right) interpreted horizons.

b) PP+PS recursive inversions co-rendered for PP and PS data in Transform software
after applying a zero phase decon and a median filter for spectral enhancement: Colony is
on the left side and Sparky on the right.
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Figure 4.10: Left: PP, data and right: PS data at the Colony horizon showing the
amplitude envelope co-rendered with the recursive inversion. Zero phase deconvolution
was used to increase the high frequency content of the data.

The coherence attribute in Transform software creates a volume that highlights
discontinuities and shows sensitivity to the lateral changes of the data. Coherence can be
computed from both the original seismic data and from the relative acoustic impedance.
Since impedance inversion acts as a filter, we can see less incoherent noise and a sharper
delineation of edges (Suarez et al., 2008).

The maximum curvature co-renderd with incoherence on recursive inversion as in
Figures 4.11 and 4.12 can show differential compaction of the channels, with a better
edge delineation. Figure 4.13 shows the result of recursive inversions on PP data co-
rendered with the curvature (above) and recursive inversions on PP co-rendered with PS
data (below) at the Colony horizon. Yellow-brown (above) and blue-purple (below)

colors indicate the fluid/porosity zones.
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Figure 4.11: Top: Colony horizon on PP data (high brown, low green); bottom:
incoherence on recursive inversion at the Colony horizon co-rendered with the maximum
curvature (bump-map shadows) and illumination applied.
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Figure 4.12: Top: Sparky horizon on PP data (high brown, low green); bottom:
incoherence on recursive inversion at the Sparky horizon co-rendered with the maximum
curvature (bump-map shadows) and illumination applied.
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Figure 4.13: Top: Colony horizon on PP data: PP maximum positive curvature co-
rendered with PP recursive inversion; bottom: PP and PS recursive inversions co-
rendered at the Colony horizon.
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The result is consistent with the previous attributes, giving confidence in the improved
interpretation of the drilled location. PS data add more confidence showing that only well
A11-17 should be mainly producing from the Colony horizon, as has been seen in the
production chapter of this thesis; the zone of interest shows a light-yellow colour and

gives a indication that there is no reservoir at that specific location.
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4.4 PP AND PS AMPLITUDE MAPS AND VP/VS MAPS

In Figures 4.14 and 4.15, PS amplitude maps (Hampson - Russell) help to better
understand the lack of success at the drilling location. PP amplitude maps can be
compared with the maps generated from the PS amplitude. The black arrows show the

unsuccessful drilling location, based previously only on PP amplitude maps.
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Figure 4.14: PP and PS amplitude maps (left) for the Colony channels are compared with
the previous (right above) PP interpretation. Vp/Vs map of the registered PP data is on
the right (below) side of the picture. Black arrows and black ellipses show a previous
unsuccessfully drilled location.

The PS amplitude show low values in green at the drilling location. The PP Vp/Vs map
after the registration shows low values (less than 2.2) at the location; high ratios indicate

(Figure 4.14) a low probability to encounter the reservoir. Due to the low frequency
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content of PS data, the channel delineation is poor compared with delineation afforded by
PP data, but the frequency content is sufficient to provide useful information about rock

properties and the reservoir.
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Flgure 4.15: PP and PS amplitude maps (left) for the Sparky sand channels are compared
with the previous (right above) PP interpretation. VVp/Vs map of the registered PP and PS
data is on the right (below) side of the picture. Black arrows show a previously

unsuccessfully drilled location.

As seen in Figures 4.7 a) and b), PS data correlates better with the top and bottom of the
reservoirs. PS amplitude maps combined with Vp/Vs maps are useful in reservoir

delineation.
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CHAPTER 5 - AVO ANALYSIS AT MANITOU LAKE

AVO or “Amplitude Variation with Offset” and refers to the changes of amplitudes with
an increasing offset. Pre-stack seismic data will be analyzed (PP gathers) to identify
anomalies, and to try to determine the fluid content of the rocks. The processing flow for
CDP gathers included true amplitude recovery, elevation statics and refraction statics,
surface consistent deconvolution, front end muting, velocity analysis, residual surface
consistent statics, normal moveout, and trim statics. Then PP-AVO analysis was
performed on the processed gathers of PP-seismic data, using Hampson - Russell’s AVO
software. The PP-AVO attributes were inverted to derive information on rock properties,

such as reservoir rigidity and incompressibility (LMR).

5.1 AVO SIMULTANEOUS INVERSION

Upon completion of the PS processing, well log correlations were performed in PS-time
in the PS-migrated stack in order to pick geologic events corresponding to those picked
on the PP-migrated stack. This is a critical phase in the process as this can reveal the
AVO expression of key events; for example, a peak on the PP-section does not
necessarily correspond to a peak on the converted wave section. These horizons were
used to register the post-stack PS data against PP-time. The horizons were used along
with the PP-velocity model in the use of PP-AVO to perform PS-AVO extraction. PP
gathers were used for this step, as shown in Figure 5.1. Attributes resulting from this
analysis include P-impedance reflectivity (Zp), S-impedance reflectivity (Zs), and density

reflectivity (Hampson et al., 2006).The purpose of simultaneous inversion is to invert
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pre-stack CDP gathers (PP and optionally PS angle gathers) to determine the compression
impedance, shear impedance, and density. Post-stack inversion ignores the fact that, in
wet clastic rocks, Zp and Zs should be related. Vp and Vs should be linearly related (as
shown from Castagna’s equation) when there are no complicating factors, such as the
presence of hydrocarbons. Also, density should relate to Vp through some form of
Gardner’s equation. Therefore, simultaneous or joint inversion would include some form
of coupling between the variables. This should add stability to a problem that is sensitive
to noise and usually produces non-unique solutions It is called simultaneous inversion
because two or more lithologic volumes are created simultaneously (Hampson et al.,
2006).

The fully NMO-corrected CDP gathers should be brought into super-gathers to enhance
the S/N ratio. Residual NMO or Trim statics are helpful to align the events, with
amplitude balancing. Since pre-stack inversion operates in the incident angle domain a
conversion from offset to angle is required, creating angle-gathers (Figure 5.2). A sonic
log from the database was used to create a velocity field. The useful angles range up to
30°. A near angle gather (0-15°) and a far angle gather (15°-30°) were extracted from
seismic. An angle gather model P-impedance is created. The complete model consists of
three volumes, including the S-impedance and density. First, the seismic data is trained at
well locations to derive log properties. Then, the training results are validated before

being applied to the full seismic volume (Hampson et al. 2006).
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Figure 5.1: Summary of AVO Methodology, (Modified after Hampson-Russell, 2007)

After the reflectivity estimates, Rp and Rs, Zp volumes (P-impedance) and Zs volumes
(S-impedance) were created. Figure 5.3 shows the ratio of Zp to Zs on the Sparky (right)
and Colony (left) sand channels. Both pictures show high Zp/Zs values, around 2.5 and
up at the missed drilled location (black arrows). This suggested it might be worthwhile to

see if the post-stack joint inversion (ProMC package) can give a better result.
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Figure'5.2: PP- gathers used in the prestack AVO inversion. Incident angles are shown in

colours: maximum angle is up to 45°.

Figure 5.4 shows that a Zp (P impedance) versus Vp/Vs crossplot at the Colony sand

channel can be a good gas indicator. The crossplot shows a strong separation between the

background trend and the hydrocarbon zone. The circled zone (in blue) cannot give

sufficient information about the missed drilling location. Figure 5.5 shows a lithology

differentiation at well C7-16. The sand channels (in yellow) are clearly differentiated:

this well is producing mainly from the Sparky horizon.
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Figure 5.3: The ratio of Zp/Zs at the Coloﬁy sand channel (left) and Sparky (right) after '
AVO prestack inversion. High values of the ratio are in blue. Red and yellow colors show
low values of the ratio.
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Figure 5.4: After the simultaneous inversion: Zp (P impedance) versus Vp/Vs crossplot at
the Colony sand channel (left) and the Colony map (left). The strong separation between
the background trend and the hydrocarbon zone is shown in red. This result can be an
indicator for porosity/gas. The right map shows RMS amplitudes for zone 1 (probably
gas indicator).
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Figure 5.5: Lithology differentiation for Zp/Zs after the simultaneous inversion at the
well C7-16 location; inserted is the P-wave, olive= sands + shales, brown = shale, yellow
= sands.

5.2 AVO ATTRIBUTES

Attribute analysis may often reveal subtle features. It measures and plots specific seismic
attributes to see what they show, often revealing AVO anomalies. Using AVO attributes,
either the zero-offset and gradient component of the amplitude or the zero-offset P-wave
and S-wave reflection coefficients can be determined at each time sample. These results
are derived from two formulations of the Aki-Richards approximation to the Zoeppritz

equations. Formula (5.1) shows Fatti’s version for the Aki-Richards equation (5.2):

Rep (0) =CR, +C,Rs +C,R, (5.1)
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Figure 5.6: Left: traces in a seismic gather reflect from the subsurface at increasing
angles of incidence 0; right: plot of two terms of the Aki-Richards equation (Hampson-
Russell, 2007).

R(0)= A+Bsin’0  (5.2)
The Aki-Richards equation (5.2) predicts a linear relationship between the amplitudes
(Figure 5.6) and sin20. Regressions are thus calculated to give A and B values for each
time sample. A is the intercept, and B is the gradient term which produces the AVO
effect. It is dependent on changes in density p, P-wave velocity Vp, and S-wave velocity
Vs. The most popular AVO intercept and gradient derived attributes are: AVO Product:
A*B; Scaled Poisson’s Ratio Change: A+B; Shear Reflectivity: A-B; Fluid Factor. A
number of other possibilities of AVO attributes are: Offset or angle limited stacks, elastic
impedance inversion, extraction of Rp and Rs reflectivity, inversion of Rp and Rs to give

Zp and Zs impedances and a Lambda-Mu-Rho(LMR) analysis of Zp and Zs.

5.21 AVO PRODUCT A*B

Figures 5.7 to 5.9 show that the synthetics and the crossplot with the Gradient versus

Intercept have mainly class 111 and 11 AVO. Figure 5.7 shows (in red) a class 111 anomaly
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at the Colony level, and at the Sparky level (in pink) a class Il anomaly. Figure 5.8 shows

the gradient versus intercept crossplot with class 111 (low impedance contrast) or class 11

Viddicd

)NW)/D/)D) ,;L}j»

Figure 5.7: The offset synthetic at well A11-17: the Colony horizon (red) and Sparky
horizon (pink). The Colony shows a class Il AVO anomaly and the Sparky class II.
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Figure 5.8: Gradient versus intercept crossplot (upper left) shows class Il and 111 anomaly
at the top of the reservoirs, circled in red (upper right).

anomaly (near zero impedance contrast as in Figure 5.10). The top of the reservoir is

shown in pink-salmon colour (Figure 5.8), and the base in light-green (Figure 5.9).
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Figure 5. 9 Gradlent versus mtercept shows class I and Il anomaly at the base of the
reservoirs, according to the gradient versus intercept chart (upper Figure 5.7).
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Figure 5.10: The AVO classification (left) after Rutherford/Williams and (right) AVO
classification after A. Brown, 2006.

A low impedance contrast between shale and sand shows a class 11l AVO, and a near
zero impedance contrast shows a class Il AVO (Figure 5.10). There is a better acoustic
impedance contrast between gas sand, wet sand and shale at smaller depths (for class I11)

as seen in Brown’s classification (2004).
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5.22 AVO SCALED POSSON’S RATIO A+B

The sum A+B is proportional to the change in Poisson’s Ratio, as in formula 5.3.
Poisson’s ratio is directly related to the Vp/Vs values. Interestingly, well 2A-11 (left, red
arrow) is producing from the Colony and C7-16 (right, green arrow) is producing from
the Sparky horizon. The delineation of the channels in the interest zone (black ellipse)
looks better for the Sparky level, but not satisfactory for the Colony sand channel. The

scaled Poisson’s ratio is proportional to the change in Ac as in the formula:

A+B = %AO' (5.3)
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Figure 5.11: The sum A+B is proportion'a{l”to the chlange in Poisson’s Ratio. pr: the
scaled Poison’s ratio at the well 2A-11 (left) and C7-16 (right). Bottom: the Colony and
Sparky horizons showing Poisson’s ratio.
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5.23 AVO — ELASTIC CONSTANTS

Elastic contrasts are derived from the three term AVO (Aki-Richards) equation:

R(0)= A+ Bsin?@+Ctan®dsin? 0 (5.4)

Where
A:Rm:l{Avuﬁp} (5.41)
Ve P
AV, AV Ap
B=2Yp 4,2 ,°P
N YN, (5.42)
2
AV V
c=2"¢ and y=| 5.
av, 7 {VJ (5.43)

Equation (5.41) shows that the zero offset P mode section exhibits density and
compressibility contrasts while in (5.42) the PS converted mode section exhibits mainly
density and rigidity contrasts. The reflectivity of compressional waves depends on the
shear wave velocity contrast, provided that the recording offset is long enough (Garotta ,

2000).

Three maps were generated for both Colony (top) and Sparky (bottom), Figure 5.12.

There are several things to highlight:
e Density is a direct measure of the hydrocarbon saturation.
e The density map highlights the same areas as AVp.

e The hydrocarbon anomaly is associated with the change in AVp, probably the best

in the presented data.
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LUl

Figure 5.12: The elastic contrasts derived from the three terms AVO. Top: Colony and
bottom: Sparky time slices.

5.24 AVO - FLUID FACTOR

The Fluid Factor attribute (Smith and Gidlow, 1987; Fatti et al., 1994) is based on
Castagna’s mudrock equation (2.2), which is assumed to be true for non-hydrocarbon
filled layers:

V, =116V, +1.36 m/s (55)
The Fluid Factor is defined to highlight layers where there is a deviation from Castagna’s

equation, such as potential hydrocarbon (gas) zones:

AF =R, —1.16:/5RS (5.6)

b
The top picture in Figure 5.13, shows well A-11 which is producing mainly from the
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Figure 5.13: Fluid factor at well A-11-17(Top); bottom the fluid factor at Colony time

slice (left) and Sparky (right). Inserted curves are P-wave (black) and density (light
green).

Colony formation. The fluid factor zoomed section correlates with the well production,
for wells A-11 and C-10. We can conclude:

» The fluid factor worked better in delineating the sand channels than the pseudo-

Poisson’s ratio.
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* A11-17 Colony shows clean sand with gas saturation. This well is not producing

from Sparky.

» Well C-7-16 at the Sparky sand channel shows no gas saturation.

»  Well 10-17 shows production from the Sparky gas sand horizon.

5.25 AVO - LMR

The incompressibility attribute, A , is sensitive to pore fluids and is known to be a good

indicator of gas content from shale to gas sands as seen in Table 5.1 (Goodway, 1997).

The rigidity p is sensitive to the rock matrix and density. It is impossible to de-couple the

effects of density from A and p when extracting the information from the seismic data. It

is therefore beneficial to cross-plot Ap versus pp to minimize the effects of density.

Goodway et al. (1997) proposed a new approach to AVO inversion based on the Lame

parameters A and p, and density p, or Lambda-Mu-Rho (LMR). The theory shows that:

vp= [AH2H and  Vs= X
p p

Zs® = (pVs)* = up
Zp? = (pVp)® = (A+21)p

Zp* —2Zs* = Ap

(5.7)

(5.8)

(5.9)

(5.10)

Table 5.1 indicates that % IS most sensitive to variations in rock properties going from

shale to gas sand.
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Table 5.1.Petrophysical analysis for LMR (Goodway et al., 1997)

Walvs | (WYl Mg | p Y
Shale 2.25 5.1 0.38 | 2037 |4.035 | 123 | 3.1
Gas Sand 1.71 2.9 0.24 [ 18.53 |6.314 | 5.9 | 0.9
Change / 27 25 45 | 9.5 44 -0 | -110
Average
N Zone Fiter: LR MR [ " Time”
MR o
75 0 25 50 LR .‘“7
_ Amplitude (Imr_LR) -
o S0 127 2 e 7
. C7-1644-27 . C7-16-44-27
Colony Sparky

Figure 5.14: Above: MR versus LR from the LMR crossplot: Ap versus o shows the
anomalous gas sand in orange. Below, are the results at the Sparky (right) and Colony

(left) time slices.
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The potential anomalous gas sand locations are shown in Figure 5.14 for the Sparky and
Colony time slices. This result can be compared with the gas sands delineations from
Chapter 4.2 but is not too helpful in understanding the missed drilled location, circled in

blue.
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CHAPTER 6 — JOINT INVERSION AT MANITOU LAKE

6.1 JOINT INVERSION METHOD

A joint inversion analysis was undertaken (as in Chapter 2) in ProMC (Hampson-Russell
package), using post-stack, migrated, 3D multi-component data. The steps in this work
were, in order (Figure 6.2): modeling of PP and PS synthetic seismograms, wavelet
extraction from both, well log correlation to the seismic data, horizon picking on both, PP
and PS data, horizon matching to update the Vp/Vs data using wells on this stage (for P
and S wave conversion in domain conversion), building a Strata velocity model using the
typical set-up of ProMC model , updating the domain conversion using the Strata model,

Vp/Vs mapping through the entire volume, extracting statistical (Figure 6.1) wavelets for
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Figure 6.1: The extracted statistical wavelets (in time above and phase below) from the
PP data (left) and from the PS data transformed in PP time (right) used for the joint
inversion in ProMC. Red line indicate zero degrees phase.
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PP and PS (in PP time) and jointly inverting (model based) the PP and PS data to create

3D volumes of either P impedance or S impedance, the Vp/Vs ratio and density.
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Figure 6.2: Joint PP-PS inversion procedures (after Hampson-Russell, 2008).

The model based joint inversion will update an initial model to create new models of P-
impedance, S-impedance, Vp/Vs, and density, that are consistent with both, the PP and

PS seismic amplitude volumes (Figure 6.2).

129



6.2 JOINT INVERSION RESULTS

Figure 6.3 shows the inverted density at well location A11-17. Sands are indicated by

values of density lower than 2.25g/cc at both Colony and Sparky horizons.

Figures 6.4 and 6.5 shows a comparison between the previous amplitude maps and the

Vp/Vs maps obtained after joint inversion at the Colony and Sparky horizons

respectively. The white arrows show the previously drilled dry hole (white ellipse).
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Figure 6.3: Joint PP-PS inversib_n?density at the well A11-17: inserted curves: Gamma

ray (in blue), P-wave (black) S-wave (green) and porosity (pink).

The Vp/Vs maps give a warning about this location, showing Vp/Vs values higher than

2.15, so drilling is not recommended. Figure 6.6 shows the cumulative oil production up

to 2008 from Accumap. Comparing these results with results obtained from Accumap

(Figure 6.6) our confidence increases due to the following observations:
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e only well A11-17 is mainly producing from the Colony formation, with 80,659
bbl cumulative production up to 2008;

e at well C10-17 the Sparky formation is mainly producing, with 114,404 bbl
cumulative production up to 2008;

e well C7-16 cumulative production is less than for C10-17: 18,307 bbl up to 2008,
producing mainly from Sparky.

e all three wells are producing since 2006.

e Well results obtained from the Vp/Vs maps after the joint inversion are

comparable with Accumap results.

The two small red arrows on the amplitude maps (bottom) from Figures 6.4 and 6.5 show
two potential future drilling locations. Brown long arrows show the same locations on the
Vp/Vs map, circled with black ellipses: the Colony Vp/Vs values are clearly higher than
2.15, and at the Sparky level we are close to the channel edges, also on higher values.
According to our result, we strongly recommend caution with respect to those

prospective locations.
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Figure 6.4: Top: Vp/Vs values after joint inversion at the Colony horizon.
Values less than 2.15 show the productive sands, in yellow. Bottom: previous
Colony PP amplitude map from Calroc Energy.
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Figure 6.5: Top:Vp/Vs values after joint inversion at the Sparky horizon. Values
less than 2.15 show the productive sands, in yellow. Bottom: previous Sparky PP
amplitude map from Calroc Energy.
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Figure 6.6: a) Cumulative oil production up to 2008 from Accumap, at the Manitou Lake area.
All three wells are on production after June, 2006. In green is shown the oil production and in
blue is the water. The production numbers are shown in the yellow rectangles.b),c) and d)

zoomed images of wells production.
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6.3 CONCLUSIONS

This work shows that converted-mode acquisition provides information on shear
reflectivity and shear propagation (compared with the shear wave velocity
information obtained from PP gathers) in a more robust way. PS data is helpful in the
planning and risk assessment of new drilling locations. Differences in PP and PS
amplitude maps can assist with drilling positioning, due to the direct response of PS
data largely to lithology. Oil and gas saturated sand channels should give relatively
low Vp/Vs values, a P impedance decrease, and an S impedance increase. The
channels can be filled with sands and/or shales, with similar P-wave impedances. The
dipole sonic log showed S-wave impedance to be higher in the sands than in shales,
and the top of the reservoir could be delineated. Since PP and PS reflectivities are
different, attributes computed from PP and PS volumes show different geologic
features. The ratio of the joint PP inversion to the PS inversion (Vp/Vs from
amplitudes) in PP time is very useful in delineating the reservoir. These points allow

the conclusion that:

« The combination of PP and PS attributes helps in analyzing channel morphology.

« PP and PS amplitude maps are different: PS amplitude maps can increase our
confidence in choosing future drilling locations. High RMS amplitudes are

interpreted to be a PS seismic response to the presence of channel sands.

« Sand-shale boundaries may produce poor P-wave velocity contrasts, and in the

present case the PS converted mode data enable the reservoir boundaries to be
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delineated. PS amplitude anomalies show the top of the reservoir, which could not

be seen on the PP amplitude map.

The productive sand channel is interpreted as a PP impedance drop, a PS increase
and a low Vp/Vs ratio, less than 2.15. It was shown that the main impedance

changes correspond to the major lithologic boundaries.

The density map shows a direct measure of hydrocarbon saturation. The

hydrocarbon anomaly is associated with the change in the delta Vp map.

The fluid factor did a better job in identifying the channels at the missed drilling

location than the pseudo-Poisson’s ratio.

AVO, fluid factor, and simultaneous inversions can give important information in
delineating sand channels. Post stack inversion, which allows only the estimation

of acoustic impedance, is sometimes not sufficient for inferring fluid content.

The combination of PP and PS data can validate the “bright spots”: gas

accumulations are not supposed to show on PS amplitude maps.

The channel edge has been delineated by a combination of attributes like
coherence, curvature, inversion and illumination. Amplitude envelope co-
rendered with the most positive and negative curvature on both PP and PS data,

can show the prospective gas accumulation in area.
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» The Joint inversion shows the best result on the Vp/VVs maps. Our confidence
increased when the results were compared with well production information from

Accumap.
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CHAPTER 7 - SUMMARY AND RECOMMENDATIONS

The Upper Cretaceous Second White Specks (2WS) formation from Willesden Green
(2D project) and the Lower Cretaceous fluvial sand channels from Manitou Lake (3D
project) are attractive prospects for oil and gas production. The future potential values on
both surveys were demonstrated with the use of interpretation strategies on

multicomponent (full wave) seismic data.

In Chapter 2, the calculated Vp/Vs values and the ratio of PP inversion to PS inversion
indicated comparative results with joint inversion, being helpful for sand/shale
discrimination. A drop in Vp/Vs can show the producing horizons (increase in
porosity/fractures) between the well locations. Other shown anomalies between the well

locations indicate possible future drilling targets.

In Chapters 3 to 6, the differences in PP and PS attributes have shown that they can assist
with interpreting sand development, due to the direct response of PS data primarily to
lithology. Amplitudes from the PP and PS volumes show different geologic features
when combined with curvature. As bright spots were supposed to originate from gas, they
do not show in the PS amplitude map; hence this information can lead to a better
understanding of channel “sweet spots” (favorable locations to drill a well) for future
well placements. The fluid factor shows high anomalous values within the channel
boundaries. Vp/Vs values from joint inversion, combined with Vp/Vs derived from AVO
simultaneous inversions, can help in delineating the reservoir. Hydrocarbon filled
sandstones have higher S-wave velocities; hence oil- and gas- saturated sand channels

manifest with relatively low Vp/Vs values (less than 2.15). The channels may be filled
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with sands and/or shales, with similar P-wave impedances. The lithology predictions
from inverted rock properties show good correlation to the wells. Joint inversion
minimizes the uncertainty in sand and shale identification, contributing to optimal well
placement.

While PS seismic data can provide new insights into reservoir lithology and fluid
characteristics, interpretation results are dependent upon the quality of the registration
between PP and PS seismic times. Full-wave seismic data hold tremendous potential
value for reservoir understanding, leading to better well placement and field development
(Roth, 2007). As interpretation of multicomponent seismic data is in its beginnings, more

successful case studies are essential for wider acceptance.

Knowing that shear sensitivity to azimuthal anisotropy is higher than for compressional
waves, further study is required. The unique travel time and polarization properties of S-

wave splitting are useful for fracture characterization (Garotta, 2005).
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