
Important Notice

This copy may be used only for
the purposes of research and

private study, and any use of the
copy for a purpose other than
research or private study may
require the authorization of the
copyright owner of the work in

question. Responsibility regarding
questions of copyright that may
arise in the use of this copy is

assumed by the recipient.

THE UNIVERSITY OF CALGARY

Numerical Methods in Seismic Wave Propagation

by

MATT MCDONALD

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF M.Sc. IN APPLIED MATHEMATICS

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

September, 2012

c© MATT MCDONALD 2012

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled “NUMERICAL METHODS IN

SEISMIC WAVE PROPAGATION” submitted by MATT MCDONALD in partial

fulfillment of the requirements for the degree of M.Sc. IN APPLIED MATHEMAT-

ICS.

ii

Dr. Michael P. Lamoureux

Department of Mathematics and Statistics

Dr. Wenyuan Liao

Department of Mathematics and Statistics

Dr. Gary F. Margrave

Department of Geoscience

Dr. Mike Potter

Department of Electrical and Computer

Engineering

Date

iii

Abstract

The numerical modelling of wave equations is a common theme in many seismic

applications, and is an important tool in understanding how the physical systems

of interest react in the process of a seismic experiment. In this thesis we apply

state-of-the-art numerical methods based on domain-decomposition combined with

local pseudospectral spatial discretization, to three physically realistic models of

seismic waves, namely their propagation in acoustic, elastic, and viscoelastic media.

The Galerkin formulation solves the weak form of the partial differential equation

representing wave propagation and naturally includes boundary integral terms to

represent free surface, rigid, and absorbing boundary effects. Stability, accuracy,

and computation issues are discussed in this context along with direct comparison

with finite difference methodologies.

This works is an effort to bridge the gap between the development of accurate

physical models to represent the real world, as seen in seismic modelling, and the

implementation of modern numerical techniques for the accurate solutions of partial

differential equations.

iv

Acknowledgements

I would like to thank Michael Lamoureux for being not only an amazing supervisor,

but also a great friend, my friends and colleagues in CREWES, our director Gary

Margrave, the always helpful and supportive Laura Baird and everyone who I met and

talked with along the way. Graduate school for me was a life-changing experience

and the people I met while a graduate student will always be close to my heart.

Thank you everyone.

I would also like to gratefully acknowledge the support of mprime through the

POTSI research project and its industrial collaborators, the support of NSERC

through the CREWES consortium and its industrial sponsors, and support of the

Pacific Institute for the Mathematical Sciences.

v

Dedicated to my family: My Parents Brian and Janet, my brother John and

everyone on my mother and father’s sides of the family. Kirsten, Jacqueline,

Cheryl, Denise, Bart, Ashley, Richard and the entire Dutchak family. Diane Pshyk,

Steve, Erin and Taylor Kaye. Darius Bilokraly. Simon, Ava and Joshua Rainsbury.

Kevin, Darlene, Sarah and Katie Scott.

My friends: Shane and Lukas Ash and Mika Seo. Rob and Bradley Pocsik and

Amanda Chalmers. Kurt and Natalie Reid. Mark and Caleb Slade. Jonathan

Murrin and Paula Kahr. Cody Painter and Shelley Blimke. Chelsie Cann. Jason

and Kristin Demoskoff. Nicole Dekuysscher. All of my friends I met through music

and school and adventure and all of the things that come in between in every

iteration of life.

It’s been a bumpy ride at times. You have all been there for me when I needed you

most, and I couldn’t have done it without you.

This is for you.

vi

Table of Contents

Approval Page ii

Abstract iv

Acknowledgements v

Table of Contents vii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 6

2 Analytic Solutions 8

2.1 1D Scalar Waves . 8

2.2 Separation of Variables . 8

2.3 d’Alembert’s Formula . 12

2.4 Error in Partial Sums . 14

3 Nodal Approximations 18

3.1 Introduction . 18

3.2 Finite Differences . 19

3.3 Pseudospectral Methods . 22

3.4 Integration Weights . 39

3.5 Higher Dimensions . 40

4 Galerkin Methods 42

4.1 The Calculus of Variations . 42

4.2 Weak Forms of Differential Equations 50

4.3 Nodal Galerkin Methods . 55

vii

5 Acoustic Waves 64

5.1 The Acoustic Wave Equation . 64

5.2 Derivation of the Weak Problem . 65

5.3 Absorbing Boundaries . 69

5.4 Time Stepping and Stability . 71

5.5 Comparison of Absorbing Boundaries 79

6 Elastic Waves 88

6.1 Weak Form of the Elastic Wave Equation 88

6.2 Pseudospectral Elements . 93

6.3 Time Stepping . 99

6.4 Numerical Results . 103

7 Viscoelastic Waves 113

7.1 Introduction . 113

7.2 Viscoelastic Models . 114

7.3 Spatial discretization . 117

7.4 Temporal-discretization . 118

7.5 Experimental results . 119

8 Conclusion 123

8.1 Conclusion . 123

8.2 Future work . 123

Bibliography 127

viii

List of Tables

ix

List of Figures

1.1 Comparison of solutions to equations 1.1 and 1.2 3

1.2 Comparison of solutions to equations 1.1 and 1.2 3

1.3 Comparison of solutions to equations 1.1 and 1.2 4

1.4 Comparison of solutions to equations 1.1 and 1.2 4

1.5 Comparison of solutions to equations 1.1 and 1.2 5

1.6 Comparison of solutions to equations 1.1 and 1.2 5

2.1 Hat function initial condition for example problem 12

2.2 Contributing Fourier modes of the example problem. 13

2.3 d’Alembert solution to example. 14

2.4 N = 10 . 15

2.5 N = 100 . 15

2.6 N = 500 . 16

2.7 Error surface at N = 1000. 16

2.8 Amplitude of the non-zero ak’s in the example problem. 17

3.1 A good approximation with a bad error. Notice the sawtooth-like

anomalies near the endpoints. 23

3.2 Error associated with differentiating a 10th-degree polynomial with

increasing dimension of pseudospectral differentiation matrix. 27

3.3 Families of Lagrange interpolating polynomials for increasing number

of zeros. 28

3.4 Runge phenomenon for increasing order of interpolation. The blue

line is the function, and the green line is the interpolating polynomial. 30

3.5 Interpolation of the function exp(−10x2) on clustered nodes. 33

3.6 The function in equation 3.5 and its derivative 36

3.7 Various derivative approximations . 37

3.8 Comparison of pseudospectral differentiation to 8th-order finite-differences. 38

4.1 Linear b-splines. 52

x

4.2 Six Lagrange polynomials defined on a set of LGL nodes 56

4.3 Four 2D Lagrange polynomials defined on a set of tensor-product LGL

nodes . 57

4.4 1D SEM basis functions defined on 2 cells 61

4.5 2D SEM basis functions defined on 4 cells 62

4.6 2 cells each with 3 nodes . 62

5.1 ε− pseudospectra for evolution operator E 75

5.2 2-norm of powers of the evolution operator E. 76

5.3 ε− pseudospectra for evolution operator E for 77

5.4 2-norm of powers of the evolution operator E 78

5.5 Ricker wavelet . 79

5.6 Full boundary reflection . 81

5.7 Rayleigh boundary reflection. Note the scale change. 82

5.8 Absorbing boundary reflection. Note the scale change. 83

5.9 A portion of the Marmousi Velocity model interpolated onto 400 by

400 cells . 84

5.10 Reflections from absorbing boundary conditions 85

5.11 Wavefield for Marmousi velocity model 86

5.12 Surface data for Marmousi velocity model 87

6.1 Two subdomains and their shared boundaries over the entire domain. 94

6.2 2D Legendre-Gauss-Lobatto SEM nodes distributed over 4 subdomains. 95

6.3 2D SEM basis functions defined on 4 elements. 96

6.4 4 elements with 4 nodes each for a total of 9 global nodes. 97

6.5 Sparsity patterns of the stiffness matrix. 100

6.6 2-Norm of elastic displacement. 104

6.7 2-Norm of elastic displacement. 104

6.8 2-Norm of elastic displacement. 105

6.9 2-Norm of elastic displacement. 105

6.10 2-Norm of elastic displacement. 106

6.11 2-Norm of elastic displacement. 106

xi

6.12 Nodal Galerkin. Comp time = 206 s. 108

6.13 Second-Order Finite Difference. Comp time = 64 s. 109

6.14 Fourth-Order Finite Difference. Comp time = 75 s. 110

6.15 Close-up of the centerline of the horizontal component of a 2D elastic

wave propagated to t = .4150 sec. The region plotted shows the

disagreement of the three methods in a smooth region of the velocity

model. 111

6.16 Close-up of the centerline of the horizontal component of a 2D elastic

wave propagated to t = .6 sec. The region plotted shows the disagree-

ment of the three methods in a the presence of a sharp jump in the

velocity model. 112

7.1 Kelvin-Voigt spring and damper model. 114

7.2 The function g(Q). 116

7.3 Numerical dispersion damped by viscoelastic media 121

7.4 Elastic vs. viscoelastic wave propagation. 122

8.1 Eigenvalues and pseudospectra of the discretized spatial part of the

elastic operator. 125

xii

Chapter 1

Introduction

1.1 Background

The numerical modelling of seismic waves is an integral part of many seismic pro-

cessing procedures. When attempting to image the subsurface of the earth it is

sometimes necessary to iteratively update the current model based on the difference

between the response of the modelled system, and the data recorded from the actual

experiment. As such, it is important that both the numerical method, and the type

of model used in the forward modelling are capable of accurately representing the

physical experiment.

Here, an argument is made that the partial differential equations that accurately

model the earth’s properties require a specific type of numerical method. More

precisely, because of the discontinuous nature of the earth’s properties, the partial

differential equations exhibit a low-order level of continuity that shows as a “kink”

at the discontinuous interfaces. Approximation methods that assume a higher level

of continuity, can cause the position of these kinks to show up at incorrect spatial

locations, leading to improperly reconstructed earth models.

1

2

A simple example of this can be seen in the difference between the two equations

utt = c2(x)uxx (1.1)

and

utt =
∂

∂x
c2(x)

∂

∂x
u. (1.2)

Often these equations are used almost interchangebly. In fact, as of September 25,

2012 none of the Wikipedia pages: “Acoustic wave equation”, “Wave equation”

or “Acoustics” contain any mention of the second equation whatsoever. This begs

the question: what is being missed? If c2(x) is discontinuous, as is often the case

for physical earth models the second equation requires a much different continuity

condition than the first equation. The spatial part of the first equation requires the

function u to be twice differentiable, while the second equation requires u to be only

once differentiable, but also requires that c2(x)ux be continuous. Figures 1.1 to 1.6

show the difference between equations 1.1 and 1.2. We can see, in figures 1.1 and

1.2, the initial wave propagating to the left and right until the left-going wave hits

a wavespeed discontinuity at x = 0. Figures 1.3 to 1.6 then show the kinked nature

of the second type of equation, as well as the fact that the polarities of the reflected

wave are opposite and the amplitudes of the trasnmitted waves are different. A

more in depth discussion of this type of behaviour from a variational standpoint is

included in the chapter on Galerkin methods.

This thesis will explore a type of numerical method that is capable of properly

3

−2000 −1000 0 1000 2000

−0.2

0

0.2

0.4

0.6

0.8

x
Figure 1.1: Comparison of solutions to equations 1.1 and 1.2

−2000 −1000 0 1000 2000

−0.2

0

0.2

0.4

0.6

0.8

x
Figure 1.2: Comparison of solutions to equations 1.1 and 1.2

4

−2000 −1000 0 1000 2000

−0.2

0

0.2

0.4

0.6

0.8

x
Figure 1.3: Comparison of solutions to equations 1.1 and 1.2

−2000 −1000 0 1000 2000

−0.2

0

0.2

0.4

0.6

0.8

x
Figure 1.4: Comparison of solutions to equations 1.1 and 1.2

5

−2000 −1000 0 1000 2000

−0.2

0

0.2

0.4

0.6

0.8

x
Figure 1.5: Comparison of solutions to equations 1.1 and 1.2

−2000 −1000 0 1000 2000

−0.2

0

0.2

0.4

0.6

0.8

x
Figure 1.6: Comparison of solutions to equations 1.1 and 1.2

6

representing the second type of spatial differential operator by first converting the

equation into the corresponding weak form, by a standard Galerkin procedure, and

then implicitly enforcing boundary conditions at the material discontinuities. A

discussion on the effects of applying global difference equations in place of the spatial

derivatives is also included in the chapter on the elastic wave equation, which also

includes a comparison between the numerical solutions obtained by finite-differences

and those obtained by a Galerkin-type method.

1.2 Motivation

In conducting the research for this work, the main motivation came from two previous

works. The main source, was that of E. Faccioli, F. Maggio, R. Paolucci and A.

Quarteroni which culminated in the paper [8]. Their work laid the general framework

for a high-order numerical method based on domain-decomposition combined with

pseudospectral methods, and included a boundary treatment based on Lagrange

multipliers that made it extremely efficient to model semi-infinite media by implicitly

enforcing the boundary conditions as part of a damping term.

Several years later the work of Faccioli et al. was reproduced independently by D.

Komatitsch and J.-P Vilotte in [16], using a different method for time-advancement.

This became an issue of contention between the authors of the two papers, the public

record of which is found in [10] and [25].

7

As is pointed out by Komatitsch, the method developed in both of the papers

can be seen as an extension of the well-known h-p finite-element method developed

by Babuska et al. in [2], wherein the classical finite-element method is extended

to allow arbitrary order elements. That is, numerical accuracy can be increased

by either increasing the number of elements, or the number of nodes that make up

the element. This brings up questions of how to define the nodes on the element

depending on the shape of the element and the type of nodes, both of which can

be generalized to any number of methods that may, or may not, warrant a new

classification.

Much of the work in the previous papers is done in an experimental setting and

so contains little explanation of the actual implementation details and the problems

that arise when attempting the implementation in practice. This work arose from

trying to dig deeper into the actual implementation and construction of the nu-

merical schemes for seismic wave propagation, including investigation into efficiency

and feasibility on modern computer systems. Because much of the implementation

is problem-dependent, due to the implicit enforcement of the absorbing boundary

conditions, the chapters are organized in a manner such that the low-level nodal im-

plementation are built-up and then referenced in the later chapters that take care of

the analytic derivations for the acoustic, elastic and anelastic wave-equations, which

themselves each depend on the previous chapter.

Chapter 2

Analytic Solutions

2.1 1D Scalar Waves

The simplest possible place to start studying wave equations is the constant coeffi-

cient equation






























utt = c2uxx, x ∈ Ω, t > 0

u(0, t) = u(L, t) = 0, t ≥ 0

u(x, t = 0) = u0(x), x ∈ Ω

ut(x, t = 0) = u1(x), x ∈ Ω

where the subscript denotes differentiation with respect to the specified variable,

c ∈ R is the speed at which the wave travels, and Ω ∈ [0, L] ⊆ R is domain of the

problem being modelled. The solution u(x, t) can be thought of as the vibration of a

string with constant density, fixed at both ends and released from its initial position

u0(x) with initial velocity u1(x) = 0.

2.2 Separation of Variables

To go about solving the equation the method of separation of variables can be applied.

That is, the solution is assumed to be of the form u(x, t) = X(x)T (t). Substituting

8

9

this into the equation yields

T ′′X = c2TX ′′

or
T ′′

c2T
=
X ′′

X
.

Because the left and right hand side are functions of different variables they must be

equal to a constant C. This produces two ordinary differential equations. For the

x-variable the result is the boundary value problem







X ′′(x) = CX(x)

X(0) = X(L) = 0;

which gives 3 cases: C < 0, C = 0, and C > 0.

If C = 0 then

X(x) = c1 + c2x.

The left boundary condition is X(0) = c1 = 0 and the right is X(L) = c2L = 0

which implies c2 = 0 and so the solution is identically zero.

If C > 0 then say C = λ2, λ ∈ R�{0} so X ′′ = λ2X. The general form of the

solution to this equation is

X(x) = c1e
λx + c2e

−λx.

The left boundary condition then produces X(0) = c1 + c2 = 0 which implies that

c1 = −c2. The right boundary condition then reads X(L) = c1(e
λL − e−λL) = 0, or

that, eλL = e−λL for all λ which is a not possible.

10

Finally, the only possible case is when C < 0. Say C = −λ2, λ ∈ R�{0}. Then

the equation becomes X ′′ + λ2X = 0. The general solution is now

X(x) = c1 cos(λx) + c2 sin(λx)

Substituting in the left boundary conditions produces X(0) = c1 = 0. The right

boundary produces X(L) = c2 sin(λL) = 0 which can only be true if λk = kπ/L for

k ∈ Z. The λk are the eigenvalues of the system associated with the eigenfunctions

Xk(x) = sin(λkx). For the t-variable the problem now reads T ′′ = c2λ2kT . Like

before, this has general solution

T (t) = ak cos(cλkt) + bk sin(cλkt).

Thus, the general solution to the constant coefficient wave equation in one spatial

dimension is then a linear combination of the eigenfunctions multiplied by the time

part of the solution. That is

u(x, t) =
∞
∑

k=1

{ak cos(cλkt) + bk sin(cλkt)} sin(λkx).

All that is left is to apply the initial conditions. Setting u(x, t = 0) = u0(x)

produces
∞
∑

k=1

ak sin(λkx) = u0(x).

Multiplying both sides by sin(λjx) and integrating from 0 to L yields

ak =
2

L

∫ L

0

u0(x) sin(λkx)dx

11

Similarly, setting ut(x, t = 0) = u1(x) produces

∞
∑

k=1

cλkbk sin(λkx) = u1(x).

Proceeding as in the case for the ak’s it is found that

bk =
2

cλkL

∫ L

0

u1(x) sin(λkx)dx.

As an example, consider the problem































utt = c2uxx, x ∈ [0, 1], t > 0

u(0, t) = u(1, t) = 0, t ≥ 0

u(x, t = 0) = u0(x), x ∈ [0, 1]

ut(x, t = 0) = 0, x ∈ [0, 1]

with

u0(x) =







x, x < 1/2

1− x, x > 1/2

(ignore for the moment that u0 is not actually differentiable at x = 1/2).

Clearly the bk’s are all equal to zero. The ak’s are found as

ak = 2

{

∫ 1/2

0

x sin(λkx)dx+

∫ 1

1/2

(1− x) sin(λkx)dx
}

=
4 sin(kπ/2)

k2π2

These are the Fourier sine coefficients of the hat function u0. The final solution is

then

u(x, t) =
∞
∑

k=1

{

4 sin(kπ/2)

k2π2
cos(cλkt)

}

sin(λkx).

Only the odd coefficients are non-zero, as is expected, since our initial condition

u0 is even about the midpoint of the interval. These correspond to the eigenfunctions

12

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

x

Figure 2.1: Hat function initial condition for example problem

that are also even about the midpoint. These modes have wavenumber equal to k/2

Hz. Figure 2.2 shows several of the contributing eigenfunctions.

2.3 d’Alembert’s Formula

The example problem can also be solved by the formula of d’Alembert. To do so,

the change of variables ξ = x+ct, η = x−ct is applied, resulting in the new problem

∂2u

∂ξ∂η
= 0.

This has general solution u(ξ, η) = φ(ξ) + ψ(η). The initial conditions then read

u(x, t = 0) = u0(x) = φ(x) + ψ(x),

ut(x, t = 0) = 0 = c(φ(x)− ψ(x)).

Together these imply that φ(x) = ψ(x) = u0(x)/2 so the general solution is

u(x, t) =
1

2
(u0(x+ ct) + u0(x− ct)).

13

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

Figure 2.2: Contributing Fourier modes of the example problem.

This, however, does not satisfy the boundary conditions u(0, t) = u(1, t) = 0. To

correct the situation write

u(x, t) =
1

2
(û0(x+ ct) + û0(x− ct)).

where û0 is a periodic extension of u0 that must satisfy

u(0, t) =
1

2
(û0(ct) + û0(−ct)) = 0,

and

u(1, t) =
1

2
(û0(ct) + û0(−ct)) = 0.

That is û0(ct) = û0(−ct) and û0(1 + ct) = û0(1 − ct), which implies that û0 is the

even extension of u0 with period 1.

14

x

t

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 −0.5

0

0.5

Figure 2.3: d’Alembert solution to example.

2.4 Error in Partial Sums

We now have a way of looking at the error of the partial sums of the first solution.

Figure 2.3 shows the d’Alembert solution for all x and all t. Notice that the lines

along t = 1/2± x remain sharp as the solution propagates. This is what is expected

to happen due to the inherent properties of the wave equation. Figures 2.4, 2.5

and 2.6 show the partial sum approximations for N = 10, 100, 500 and the absolute

difference from the d’Alembert solution.

This illustrates the problem inherent to approximating kinked functions by smooth

functions. Even though the solution appears to be well-approximated at N = 100,

increasing the number of terms to 500 only increases the accuracy by a single order

of magnitude. Figure 2.7 shows that increasing N further to 1000 reduces the error

even less than it did when increasing from 100 to 500. Careful examination of the

15

x

t

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

t

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 0

0.005

0.01

0.015

0.02

Figure 2.4: N = 10

x

t

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

t

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 0

0.5

1

1.5

2
x 10

−3

Figure 2.5: N = 100

error surfaces shows that the partial sums are converging as expected away from

t = 1/2±x but along the kinks the convergence starts to stall. Figure 2.8 shows the

first 5000 Fourier coefficients (only the 2500 non-zero odd coefficients are plotted).

The relatively small increase in accuracy is because the amplitude of the coefficients

is decreasing slower and slower as N increases and so even an increase from 500 to

1000 coefficients contributes little to the overall approximation. This is visible in the

plot of the amplitude of the first 5000 Fourier coefficients seen in figure 2.8 (only the

16

x

t

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 −0.5

0

0.5

x

t

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 0

1

2

3

4
x 10

−4

Figure 2.6: N = 500

x

t

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 0

1

2
x 10

−4

Figure 2.7: Error surface at N = 1000.

2500 non-zero odd coefficients are plotted).

17

0 500 1000 1500 2000 2500
10

−8

10
−6

10
−4

10
−2

10
0

Hz

|a
k|

Figure 2.8: Amplitude of the non-zero ak’s in the example problem.

Chapter 3

Nodal Approximations

3.1 Introduction

In the previous chapter we compared partial sums of series solutions to the d’Alembert

solution to the constant coefficient wave equation in one spatial dimension. The

method of partial sums, while an approximation, still relies on the use of analytic

differentiation, and is therefore dependent entirely on manual symbolic analysis of

the boundary and initial conditions.

Another method of approximation, not reliant on symbolic differentiation, is to

replace the derivatives in the wave equation with approximations based on point-

wise evaluations of the functions at hand, and then develop a scheme to further

approximate how these point-wise values will evolve through time. This chapter will

deal with this type of approximation, starting with small, local approximations to

spatial derivatives and then moving through to global approximations, based on each

point-wise function value.

The language we use is that of differentiation matrices. That is, the matrices that

approximately represent continuous differential operators in the sense that, given a

set of point-wise evaluations of a function, multiplication by the differentiation matrix

18

19

returns approximately the derivative at the same points.

3.2 Finite Differences

Suppose that we wish to approximate the derivative of a function at a set of points

{xi}Np

i=1 from a set of sampled values {f(xi)}Np

i=1. A logical place to tackle such a

problem is by using Taylor series to build an approximation. For instance, if the xi

are evenly spaced, let h = xi+1 − xi. Then we can write

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +O(h3) (3.1)

and

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x) +O(h3) (3.2)

where O(·) is the Landau big-O notation for the error term understood to mean

that, f(x) = O(g(x)) if, and only if, there exists a constant M and a real number

x0 such that, for x > x0, |f(x)| ≤ M |g(x)|. Rearranging 3.1 and 3.2 we obtain the

forward-difference and backward-difference formulas, respectively,

f ′(xi) =
f(xi+1)− f(xi)

h
+O(h),

and

f ′(xi) =
f(xi)− f(xi−1)

h
+O(h).

Subtracting 3.2 from 3.1 cancels the even terms (including the zeroth) leaving

f(x+ h)− f(x− h) = 2hf ′(x) +O(h3);

20

rearranging produces the centered-difference formula for the first derivative

f ′(xi) =
f(xi+1)− f(xi−1)

2h
+O(h2).

Note that we have now decreased the power in the error term. By choosing the grid

small enough, so that h << 1, it is expected that the error will be small enough so

that the results are meaningful. Similarly, adding 3.2 to 3.1 cancels the odd terms

terms (not including the zeroth) and leaves

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) +O(h4).

Rearranging we obtain the centered-difference formula for the second derivative

f ′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

h2
+O(h2).

While this method may seem appealing for its rather elegant approach it becomes

quite labourious once we try to increase the order in the error term further.

One such reason for doing this is to maintain a level of accuracy at the endpoints

of the sampling interval. Suppose we wish to approximate the first derivative to

second order at each of the xi. The centered-difference formula will work for the

2nd through (N − 1)st points, but fails at the first and last points since we only

have one-sided information about the function. We seek a formula for f ′(x1) using

information from f at x1, x2 and x3. The Taylor series for f(x+ 2h) is

f(x+ 2h) = f(x) + 2hf ′(x) + 2h2f ′′(x) +O(h3). (3.3)

21

Then 3.3 minus 4 times 3.1 yields

f(x+ 2h)− 4f(x+ h) =f(x) + 2hf ′(x) + 2h2f ′′(x) +O(h3)

− 4f(x)− 4hf ′(x)− 2h2f ′′(x) +O(h3)

=− 3f(x)− 2hf ′(x) +O(h3)

Rearranging produces the second order forward-difference formula

f ′(xi) = −
3f(xi)− 4f(xi+1) + f(xi+2)

2h
+O(h2).

At the right end of the interval we simply substitute −h to obtain the backward-

difference formula

f ′(xi) =
3f(xi)− 4f(xi−1) + f(xi−2)

2h
+O(h2).

The natural thing to do now is to look at the matrix that acts on the values

{f(xi)}Ni=1 and returns approximately {f ′(xi)}Ni=1 for a fixed error. For two points

all we can do is first order since all we have is endpoints. This matrix is

1

h

[

−1 1

1 −1

]

For second-order error we can move up to three points, producing

1

2h















−3 4 −1
−1 0 1

.

−1 0 1

1 −4 3















.

Beyond this, we can no longer resort to strictly centered or one-sided approxima-

tions. The correct way to go about building higher-order differentiation matrices

from Taylor series is to use as many of the left (right) endpoints as possible while

22

moving down (up) the rows until the centered formulas will fit. For the fourth order

matrix this means that the second and second-to-last rows are neither forward nor

centered and are instead lop-sided. The fourth-order differentiation matrix is then

1

12h























−25 48 −36 16 −3
−3 −10 18 −6 1

1 −8 0 8 −1
.

1 −8 0 8 −1
−1 6 −18 10 3

3 −16 36 −48 25























.

Careful observation will reveal that building differentiation matrices in this man-

ner can eventually lead to problems due to the fact that the coefficients in the error

terms for non-centered formulas grow extremely large for higher order formulas.

Figure 3.1 shows this anomaly. Even though the error is on the order of 10−10 the

saw-tooth regions near the endpoints can grow large enough to cause problems for

numerical boundary conditions. As is suggested in [11], one strategy is to increase

the order of approximations strictly at the non-centered rows to offset the larger

coefficients in the error terms.

3.3 Pseudospectral Methods

Another way to build differentiation matrices is to fit a polynomial about a number

of points in a set of nodes and then differentiate the interpolating polynomial. These

are termed pseudospectral-differentiation matrices. There’s a fair bit of discrepancy

23

−100 −80 −60 −40 −20 0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

x

(a) The function.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.01

−0.005

0

0.005

0.01

x

(b) The approximate derivative.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−10

x

(c) The error.

Figure 3.1: A good approximation with a bad error. Notice the sawtooth-like anoma-
lies near the endpoints.

24

in the use of the term pseudospectral, but they generally fall into the category of

solutions to partial differential equations, where it is understood to mean solutions

derived from assuming an eigenfunction expansion of the form

u(x) =
∞
∑

n=0

anφn(x). (3.4)

For time-dependent problems the coefficients an are generally assumed to be func-

tions of t. When the functions φn(x) in 3.4 form an orthogonal basis the expansion

is known as a generalized-Fourier-series in the sense that the basis functions are no

longer strictly sines and cosines. Perhaps the most well-known form of the pseu-

dospectral method in geophysical wave propagation stems from the choice of the

standard Fourier basis for the φn, and, in practice, this is probably the best place

to start when seeking pseudospectral solutions due to the availability of the fast-

Fourier-transform for computing numerical derivatives and convolutional sums, but

is not the approach taken here. Another family of methods comes from choosing the

φn’s to be from a basis of orthogonal polynomials such as Chebyshev or Legendre

polynomials. These are defined as the eigenfunctions of singular Sturm-Liouville

differential equations but may be derived by many methods. All of the methods

mentioned so-far are termed modal methods where the unknowns are the coefficients

of the expansion and, thus, require transformations to and from sampled values of

the functions we are interested in approximating and the appropriate coefficients.

The method used here is a so-called nodal method based on interpolation formulas

25

that make use of the Lagrange polynomials

lj(x) =
∏

i 6=j

(x− xi)
(xj − xi)

for a set of nodes {xi}Ni=1.

These provide a very convenient way of generating interpolating polynomials

due to their discrete-delta property, li(xj) = δij . Given a set of nodes {xi}Np

i=1 and

functions values {f(xi)}Np

i=1 the Lagrange polynomials allow us to write

f(x) ≈
Np
∑

i=1

f(xi)li(x).

For brevity, we will derive only the three point formula about (xi−1, f(xi−1)),(xi, f(xi)),

(xi+1, f(xi+1)), but a similar process may derive an approximation given any number

of points. Neglecting the error term and substituting our three points into the above

formula gives us the following approximation

f(x) ≈ (x− xi)(x− xi+1)

(xi−1 − xi)(xi−1 − xi+1)
f(xi−1) +

(x− xi−1)(x− xi+1)

(xi − xi−1)(xi − xi+1)
f(xi)

+
(x− xi−1)(x− xi)

(xi+1 − xi−1)(xi+1 − xi)
f(xi+1),

differentiating, yields the first derivative approximation

f ′(x) ≈ 2x− xi − xi+1

(xi−1 − xi)(xi−1 − xi+1)
f(xi−1) +

2x− xi−1 − xi+1

(xi − xi−1)(xi − xi+1)
f(xi)

+
2x− xi−1 − xi

(xi+1 − xi−1)(xi+1 − xi)
f(xi+1)

If we evaluate at xi and choose a uniform grid spacing (xi+1−xi) = h then the above

equation simplifies into the familiar form,

f ′(xi) ≈
f(xi+1)− f(xi−1)

2h

26

Differentiating once more produces

f ′′(xi) ≈
2f(xi−1)

(xi−1 − xi)(xi−1 − xi+1)
+

2f(xi)

(xi − xi−1)(xi − xi+1)

+
2f(xi−1)

(xi+1 − xi)(xi+1 − xi−1)
,

or, after again making the substitution (xi+1 − xi) = h,

f ′′(xi) ≈
f(xi+1)− 2f(xi) + f(xi−1)

h2
.

We now have the tools to make fully populated differentiation matrices defined

using Lagrange polynomials. That is, the approximate derivative at each point will

consist of information from all other points in the set of nodes. Since the Lagrange

polynomials are unique and form a basis for all polynomials of degree Np − 1 the

error associated with these differentiation matrices is the error associated with in-

terpolating f by a degree Np − 1 polynomial. In fact, the (Np − 1) by (Np − 1)

pseudospecral differention matrix differentiates the sampled values of an (Np − 1)th

degree polynomial to within machine-precision. Figure 3.2 shows the convergence to

machine-precision of the 2-norm of the difference between a pseudocpectral approx-

imation to the derivative of a 10th-degree polynomial and the analytic derivative as

the dimension of the differentiation matrix increases. Notice that when the dimen-

sion reaches the degree of the polynomial, the error is immediately on the order of

machine-precision.

According to the Weierstrass approximation theorem, any continuous function on

an interval can be uniformly approximated by polynomial to within any error bound.

27

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

10
5

Number of points

2−
N

or
m

 o
f e

rr
or

Figure 3.2: Error associated with differentiating a 10th-degree polynomial with in-
creasing dimension of pseudospectral differentiation matrix.

The error is closely related to the choice of the interpolation nodes and the resulting

interpolating polynomial basis functions. For example, consider a set of equispaced

points. As we can see in figure 3.3, increasing the number of nodes quickly forces the

polynomials to act very badly near the ends of the interval in order to compensate

for the increase in order.

The behaviour of the interpolating polynomials at the endpoints of an equispaced

grid is known as Runge’s phenomenon and stems from the error term

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n
∏

i=0

(x− xi),

for some ξ ∈ {mini{x, xi},maxi{x, xi}}.

Runge’s classical example is the function

f(x) =
1

1 + 25x2
, x ∈ [−1, 1].

28

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

x

(a) 5 Lagrange polynomials

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

x

(b) 10 Lagrange polynomials

−1 −0.5 0 0.5 1
−1000

−500

0

500

1000

x

(c) 20 Lagrange polynomials

Figure 3.3: Families of Lagrange interpolating polynomials for increasing number of
zeros.

29

The upper bound on the error goes to ∞ as n→∞. Figure 3.4 shows the increased

ringing near the end of the interval as the number of nodes is increased.

The choice of nodes from which to sample our functions is clearly significant.

Choosing the nodes to minimize the presence of Runge’s phenomenon leads to the

zeros of (1− x2)P ′
n, where Pn is the nth Chebyshev or Legendre polynomial defined

as the eigenfunctions of the singular Sturm-Liouville problem

d

dx
(1− x2)w(x) d

dx
P (α,β)
n (x) + n(n+ α + β + 1)w(x)P (α,β)

n (x) = 0, x ∈ [−1, 1],

w(x) = (1− x)α(1 + x)β.

chosen by α = β = −1/2 or α = β = 0, for the Chebyshev or Legendre polynomials,

respectively. These points are known as the Chebyshev or Legendre Gauss-Lobatto

nodes [12].

Let us first provide some motivation by constructing an appropriate set of inter-

polation nodes for the interval [−1, 1].

First of all, note that the nth degree polynomial that interpolates n + 1 nodes

is unique. Call this polynomial p(x). If it was not unique then there would exist

another we will call q(x). Form the polynomial r(x) = p(x)− q(x). This polynomial

is of degree n since p and q are of degree n, but at the n+ 1 nodes p(x) = q(x) and

so r(x) = 0 implying r(x) has n+1 roots, a contradiction. Thus we can assume that

our polynomial is of the form

p(x) =
n
∑

i=0

anx
n

30

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

x

(a) 5 Nodes

−1 −0.5 0 0.5 1
−1

0

1

2

x

(b) 11 Nodes

−1 −0.5 0 0.5 1
−60

−40

−20

0

20

x

(c) 21 Nodes

Figure 3.4: Runge phenomenon for increasing order of interpolation. The blue line
is the function, and the green line is the interpolating polynomial.

31

Then p(x) interpolates f(x) at the n+ 1 nodes {xi}ni=0 so p(xi) = f(xi). That is











1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
... · · · ...

1 xn x2n · · · xnn





















a0
a1
...

an











=











f(x0)

f(x1)
...

f(xn)











The matrix on the left is the generalized Vandermonde matrix. Since xi ∈ [−1, 1]

the matrix becomes increasingly ill-conditioned as n increases. The determinant of

the matrix is
∏

i 6=j

(xj − xi).

The fact that we are trying to solve a linear system suggests that the best set of

nodes would be those that maximize the determinant [13].

This is done approximately by the N+1 Chebyshev-Gauss-Lobatto (CGL) nodes,

which can be computed analytically in Matlab using Code 1.

x = -cos(pi*(0:N)/N);

Code 1: Matlab function for computing the Chebyshev-Gauss-Lobatto nodes.

The Legendre-Gauss-Lobatto (LGL) nodes are those that exactly maximize the

determinant, but unfortunately have no closed form and so must be computed by a

numerical root-finding method.

Code 2 computes the LGL nodes by a Newton method using the asymptotic

relation in [17] as a starting point. At the same time, it computes the Legendre

32

polynomials using the recursion relation



















P0(x) = 1,

P1(x) = x,

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

obtained by applying a Gram-Schmidt procedure to the monomial basis.

function x = LGLNodes(N)

x = -cos (((0:N/2)+.25)* pi/N - 3./(8*N*pi*((0:N/2)+.25)));

xold = 0;

V = zeros(N+1,length(x));

while max(abs(x-xold))>eps

V(1,:) = 1;

V(2,:) = x;

for n = 3:N+1

V(n,:) =((2*n-3)*x.*V(n-1,:)-(n-2)*V(n-2 ,:))/(n-1);

end

xold = x;

x=xold -(x.*V(N+1,:)-V(N,:))./((N+1)*V(N+1,:));

end

x = [x,-x(ceil(N/2): -1:1)];

Code 2: Matlab function for computing the Legendre-Gauss-Lobatto nodes.

Figure 3.5 shows the result of interpolating a compactly-supported function using

different choices of clustered nodes and the mitigated Runge’s phenomenon.

33

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

Figure 3.5: Interpolation of the function exp(−10x2) on clustered nodes.

Returning to the definition of the differentiation matrices, consider the interpolary

expansion

u(x) =
∞
∑

n=0

anφn(x) ∀xi, i = 0, ..., N,

We can write this in matrix form










u(x0)

u(x1)
...

u(xN)











=











φ0(x0) · · · φN(x0)

φ0(x1) · · · φN(x1)
...

. . .
...

φ0(xN) · · · φN(xN)

















a0
...

aN







so then






a0
...

aN






=











φ0(x0) · · · φN(x0)

φ0(x1) · · · φN(x1)
...

. . .
...

φ0(xN) · · · φN(xN)











−1






u(x0)
...

u(xN)







The matrix equation for the nodal values of the derivative is then







u′(x0)
...

u′(xN)






=











φ′
0(x0) · · · φ′

N(x0)

φ′
0(x1) · · · φ′

N(x1)
...

. . .
...

φ′
0(xN) · · · φ′

N(xN)

















a0
...

aN







34

=











φ′
0(x0) · · · φ′

N(x0)

φ′
0(x1) · · · φ′

N(x1)
...

. . .
...

φ′
0(xN) · · · φ′

N(xN)





















φ0(x0) · · · φN(x0)

φ0(x1) · · · φN(x1)
...

. . .
...

φ0(xN) · · · φN(xN)











−1






u(x0)
...

u(xN)







Choosing a basis {φn}Nn=0 (such as the Legendre or Chebyshev polynomials) and set

of points {xn}Nn=0 (such as the LGL or CGL nodes) fully defines the pseudospectral

differentiation matrix

D =











φ′
0(x0) φ′

1(x0) · · · φ′
N(x0)

φ′
0(x1) φ′

1(x1) · · · φ′
N(x1)

...
.

...

φ′
0(xN) φ′

1(xN) · · · φ′
N(xN)





















φ0(x0) φ1(x0) · · · φN(x0)

φ0(x1) φ1(x1) · · · φN(x1)
...

.
...

φ0(xN) φ1(xN) · · · φN(xN)











−1

We compute this matrix for the Legendre polynomials using two functions in Matlab

in Code 3 and 4.

function [V Vx] = legVVx(x)

N = length(x);

V = zeros(N);

Vx = zeros(N);

Vxx = zeros(N);

V(:,1) = 1;

V(:,2) = x;

for n = 3:N

V(:,n) =((2*n-3)*x’.*V(:,n-1)-(n-2)*V(:,n -2))/(n-1);

end

Vx(:,1) = 0;

Vx(:,2) = 1;

35

for n = 2:N-1;

Vx(:,n+1) = (2*n-1)*V(:,n) + Vx(:,n-1);

end

Code 3: Compute the matrices of nodal values of the Legendre polynomials and their

first derivatives.

function Dx = legDMat(x)

[V Vx] = legVVx(x);

Dx = Vx/V;

Code 4: Compute the pseudospectral differentiation matrix.

To compare the accuracies of pesudospectral differentiation matrices with that

of various orders of finite-difference matrices, consider the function in equation 3.5,

shown in figure 3.6 alongside its derivative.

f(x) = x(1 + sin(10π exp(−10x2))) (3.5)

Figure 3.7 shows the 2-norm of the difference between the approximate derivative,

obtained by applying the various pseudospectral and finite-difference matrices, and

the analytic derivative. Figure 3.8 shows the function 3.5 and the points used in the

approximations, the computation times and the final errors for Chebyshev and 8th

order finite differences. We can see that if the concern of the model is accuracy and

not speed, the two methods are fairly similar, but the pseudospectral method requires

36

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

−1 −0.5 0 0.5 1
−30

−20

−10

0

10

20

30

x

y

Figure 3.6: The function in equation 3.5 and its derivative

much fewer points. In terms of gridpoints-per-wavelength, Chebyshev points require

at least π gridpoints-per-wavelength, but are π/2 times less dense near the endpoints

than they are in the middle of the interval [23]. Thus, they require 2 grid-points-

wavelength in the center of the interval as is expected from the Nyquist-Shannon

sampling theorem.

As a final note it should be pointed out that while it is possible to define higher-

order differentiation matrices D(n) that compute the nth nodal derivative by taking

powers of the first derivative matrix, this is generally a bad idea for a large number of

nodes. Instead the matrices should be computed either using the same procedure we

used to derive the first-order differentiation matrix or via special recursion formulas

specific to the choice of basis functions [27].

37

0 50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

10
5

Number of points

2−
N

or
m

 o
f e

rr
or

Error Vs. Number of Points

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
10

−10

10
−5

10
0

Number of points

2−
N

or
m

 o
f e

rr
or

Chebyshev
Legendre

CFD2
CFD4
CFD6
CFD8

Figure 3.7: Various derivative approximations

38

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

250 pts, Max Error: 1.1278 x 10−11, eval. time: .000206 sec.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

2000 pts, Max Error: 1.4322 x 10−9, eval. time: .000258 sec.

f(x)
f(x

i
)

f(x)
f(x

i
)

Figure 3.8: Comparison of pseudospectral differentiation to 8th-order finite-
differences.

39

3.4 Integration Weights

Associated with a set of Gauss-Lobatto nodes {xi}Ni=0 is a set of numerical integration

weights {wi}Ni=0. The weights are computed analytically in both the Chebyshev and

Legendre cases. For the CGL nodes the weights are such that

∫ 1

−1

f(x)√
1− x2

dx =
π

N

{

N−1
∑

i=1

f(xi)wi +
f(x1)w1 + f(xN)wN

2

}

is exact when f is a polynomial of degree less then or equal to 2N − 1. For a general

function f the weights would then be (
√
1− x2)π/N , where

√
1− x2 is the weight

function associated with the Sturm-Liouville equation for the Chebyshev functions.

The integration weights are computed in Code 5.

function x = CGLNodesAndWeights(N)
x = CGLNodes;
w = sqrt(1-x.^2)* pi/N;

Code 5: Matlab function for computing the Chebyshev-Gauss-Lobatto nodes and
weights.

For the Legendre polynomials the Sturm-Liouville weight function is equal to 1

and so the quadrature formula is

∫ 1

−1

f(x)dx =
N
∑

i=0

f(xi)wi.

This is, again, exact for polynomials of degree less than or equal to 2N − 1. The

integration weights are computed from the values of the N th Legendre polynomial

evaluated at the LGL nodes in Code 6.

40

function [x w] = LGLNodesAndWeights(N)
x = LGLNodes(N);
V = zeros(N+1,length(x));
V(1,:) = 1;
V(2,:) = x;
for n = 3:N+1

V(n,:) =((2*n-3)*x.*V(n-1,:)-(n-2)*V(n-2 ,:))/(n-1);
end
w = 2./(N*(N+1)*V(N+1 ,:).^2);

Code 6: Matlab function for computing the Legendre-Gauss-Lobatto nodes and
weights.

3.5 Higher Dimensions

The 2D versions of the pseudospectral differentiation matrices and integration weights

are obtained by defining their 1D counter-parts along each dimension and then tak-

ing Kronecker tensor products. This can be done in Matlab in several ways. For

the integration weights, assume we have two column vectors wx and wz contain-

ing the weights in the x and z directions, respectively, associated with the vectors

x = LGLNodes(Nx) and z = LGLNodes(Nz) of dimension Nx and Nz. Then

the 2D integration weights can be computed as W = wz ∗ wx.
′ giving an Nz-by-

Nx matrix. So, if U is the column-major-storage of the matrix of nodal values of

a function u(x, z) we can perform integration by taking the dot product with the

column-major-storage-vector version of W .

Computing the differentiation matrices is a little different. Suppose again that

we are working with the vector U and wish to compute the matrices Dx and

Dz that discretely compute ∂x and ∂z, respectively. We first compute the 1D

41

differentiation matrices Dx1D and Dz1d. The matrix Dx can be computed as

Dx = kron(Dx1d, eye(Nz)) and Dz = kron(eye(Nx), Dz1d).

Chapter 4

Galerkin Methods

4.1 The Calculus of Variations

The Galerkin method is an analytic procedure for transforming the strong form of a

(partial) differential equation into the weak form, which stems from the fundamental

lemma of the calculus of variations. The lemma states that if a function u is k-times

differentiable on an interval [a, b] and

∫ b

a

u(x)v(x)dx = 0, ∀v ∈ Ck
0 ([a, b]),

where, Ck
0 ([a, b]) is the space of k-times differentiable functions vanishing on the

boundary of [a, b], then u ≡ 0 on [a, b].

Let us employ the lemma to derive the Euler-Lagrange equations from an action

functional for a function u(x, t). We make use of the notation

∂u

∂x
= ux

and
∂u

∂t
= ut

The action functional is

S[u] =

∫ t1

t0

∫ x1

x0

L (x, t, u, ux, ut) dxdt,

42

43

where L is a Lagrangian function. The idea is to find the extrema of S by fixing

the endpoints of u and varying it slightly inside the interval Ω = [x0, x1]× [t0, t1] by

adding small variations εv(x, t) that disappear on the boundary ∂Ω. So, if u is an

extrema of the action functional, then

dS

dε
[u+ εv]

∣

∣

∣

ε=0
= 0.

That is,
∫

Ω

d

dε
L(x, t, u+ εv, ux + εvx, ut + εvt)dΩ

∣

∣

∣

ε=0
= 0

or
∫

Ω

(

∂L
∂u

v +
∂L
∂ux

vx +
∂L
∂ut

vt

)

dΩ = 0

This is known as the weak form of the problem. Note that the integral can be written

as
∫

Ω

(

∂L
∂u

v +

(

∂L
∂ux

,
∂L
∂ut

)

· ∇v
)

dΩ.

Where

∇ =

(

∂

∂x
,
∂

∂t

)

Green’s theorem states that
∫

Ω

(

∂L
∂ux

,
∂L
∂ut

)

· ∇vdΩ

=

∮

∂Ω

(

∂L
∂ux

,
∂L
∂ut

)

· nvdS −
∫

Ω

∇ ·
(

∂L
∂ux

,
∂L
∂ut

)

vdΩ

where n is the outward pointing unit normal vector. Since v vanishes on the boundary

the surface integral term disappears and we are left with
∫

Ω

(

∂L
∂u
− ∂

∂x

∂L
∂ux
− ∂

∂t

∂L
∂ut

)

vdΩ = 0

44

Since v is arbitrary, applying the fundamental lemma of the calculus of variations

yields the Euler-Lagrange equations

∂L
∂u
− ∂

∂x

∂L
∂ux
− ∂

∂t

∂L
∂ut

= 0.

which is known as the strong-form of the problem.

As an aside, if Ω is the union of two regions, Ω = Ω1∪Ω2, then the surface integral

does not disappear on the interior boundary. Assume that Ω1 = [−L, 0]× [0, T] and

Ω2 = [0, L] × [0, T]. Then the normal vector along the boundary x = 0 is equal to

n = [−1, 0], in Ω1 and n = [1, 0], in Ω2. So the surface integral becomes the sum of

the contributions on either side. That is
∮

∂Ω

(

∂L
∂ux

,
∂L
∂ut

)

· nvdS

= −
∫ T

0

lim
x→0−

∂L
∂ux

vdt+

∫ T

0

lim
x→0+

∂L
∂ux

vdt

=

∫ T

0

(

lim
x→0+

∂L
∂ux
− lim

x→0−

∂L
∂ux

)

vdt.

As before, since v is arbitrary, this implies

lim
x→0+

∂L
∂ux

= lim
x→0−

∂L
∂ux

,

which are known as the interface conditions.

Let’s now derive the wave equation for a vibrating string using the Euler-Lagrange

equations. The Lagrangian function L of a dynamic system is defined to be the total

kinetic energy T minus the total potential energy V . So the action integral is
∫

Ω

(T − V) dΩ.

45

Let the length of the string be L and let the displacement from equilibrium at some

point x ∈ [0, L] at some time t ∈ [0, T] be a function u(x, t). Let the mass of an

infinitesimal length of string be ρ(x) and the modulus of elasticity be k(x). Then,

the total kinetic energy of the string is

T =
1

2

∫ L

0

ρ(x)u2tdx.

The potential energy is equal to

V =
1

2

∫ L

0

k(x)
(

1 + u2x
)

dx.

So the action integral is

S[u] =
1

2

∫ T

0

∫ L

0

{

ρ(x)

(

∂u

∂t

)2

− k(x)
(

1 +

(

∂u

∂x

)2
)}

dxdt

The Lagrangian is

1

2

{

ρ(x)

(

∂u

∂t

)2

− k(x)
(

1 +

(

∂u

∂x

)2
)}

.

So
∂L
∂u

= 0,

∂L
∂ux

= −k(x)ux

and
∂L
∂ut

= ρ(x)ut.

Substituting these into the Euler-Lagrange equations produces

− d

dx
(−k(x)ux)−

d

dt
ρ(x)ut = 0

46

or since the density does not depend on time

ρ(x)utt =
∂

∂x
(k(x)ux).

If the density varies, but the bulk modulus is constant then this can be written as

utt = c2(x)uxx

where

c(x) =

√

k

ρ(x)

is the propagation speed of the waves in the string.

If the region Ω is split into two regions as before, the interface conditions would

then be

lim
x→0−

k(x)ux = lim
x→0+

k(x)ux

in the case of varying bulk modulus, or

lim
x→0−

ux = lim
x→0+

ux

if it is constant.

To see the difference in the two cases consider the two problems



















utt = c2(x)uxx , x ∈ R

u(x, t = 0) = u0(x) , x ∈ R

ut(x, t = 0) = 0 , x ∈ R

(4.1)

and


















utt =
∂
∂x
c2(x)∂u

∂x
, x ∈ R

u(x, t = 0) = u0(x) , x ∈ R

ut(x, t = 0) = 0 , x ∈ R

(4.2)

47

where

c2(x) =







c21 , x < 0

c22 , x > 0

Note that c1 and c2 arise from different choices of ρ(x) and k(x) as defined before,

but for our purposes we want them to be the same. Technically 4.1 is the wave

equation with piecewise continuous density and constant bulk modulus so

c21 =
k0
ρ1
, c22 =

k0
ρ2

while 4.2 is the equation for constant density and piecewise continuous bulk modulus,

implying

c21 =
k1
ρ0
, c22 =

k2
ρ0
.

Together this yields

k1ρ1 = k2ρ2 = k0ρ0.

We can write either problem as






utt = c21uxx, x < 0

utt = c22uxx, x > 0

where the difference between c1 and c2 may come from either varying density or bulk

modulus.

As in chapter 2, assume the solution in either region, x < 0 or x > 0, is of the

form

u(x, t) = Φ(x)Γ(t)

This yields
c2kΦ

′′

Φ
=

Γ′′

Γ
= λ2, k = 1, 2,

48

and so,






Φ′′ = −(λ/ck)2Φ,

Γ′′ = −λ2Γ.

For simplicity, assume the solutions are constant multiples of

Γ(t) = exp(±iλt)

Φ(x) = exp(±iλskx)

where

sk =
1

ck
, k = 1, 2.

Thus,

u(x, t) =







A1 exp(iλ(t± s1x)), x < 0

A2 exp(iλ(t± s2x)), x > 0,

where A1, A2 are in R. If we assume that solution is initially waves travelling in the

positive x direction with unit amplitude, then the full solution will be of the form

u(x, t) =







exp(iλ(t− s1x)) +R exp(iλ(t+ s1x)), x < 0

T exp(iλ(t− s2x)), x > 0,

where R is the coefficient of the reflected wave, and T is the coefficient of the trasmit-

ted wave.

For both the case of discontinuous density, and discontinuous bulk modulus, we

require the solution to be continuous at the interface x = 0. That is

(1 +R) exp(iλt) = T exp(iλt)

or 1 +R = T .

49

For discontinuous density, we require that the first spatial derivative be continu-

ous at x = 0. That is,

−iλs1 exp(iλt) + iλs1R exp(iλt) = −iλs2T exp(iλt)

or

−iλs1(1−R) exp(iλt) = −iλs2T exp(iλt).

Making the substitution T = 1 +R produces

s1(1−R) = s2(1 +R).

Solving for R and then, again, using T = 1 +R yields

R =
s1 − s2
s1 + s2

, T =
2s1

s1 + s2

or,

R =
c2 − c1
c1 + c2

, T =
2c2

c1 + c2
.

For discontinuous bulk modulus, we require that the bulk modulus times the

first spatial derivative at x = 0 be continuous. It follows from above that the second

condition required to solve for the transmission and reflection coefficients is

−iλs1k1(1−R) exp(iλt) = −iλs2k2T exp(iλt)

or, after some cancellations and the fact that ki = ρic
2
i ,

c1(1−R) = c2T.

Solving the system of equations for R and T yields,

R =
c1 − c2
c1 + c2

, T =
2c1

c1 + c2
.

50

So, we can see that, regardless of whether c1 or c2 is larger, the sign of the reflection

coefficient will be the opposite in the case of varying bulk modulus than it will be

for varying density. Further, the solution in the case of varying bulk modulus only

exhibits C0 continuity, that is, it contains functions that are ”kinked”, and as we

have already seen, may cause problems for numerical methods assuming a higher

level of continuity than is actually present.

4.2 Weak Forms of Differential Equations

The Galerkin method can be thought of as the Calculus of Variations performed

backwards. That is, instead of solving the strong form of the problem, the Galerkin

method seeks to find the weak form, and solve that instead.

To apply the method to a differential equation of the form L[u] = f , defined on

a region Ω where L is a linear spatial differential operator, a space of functions V is

chosen in which u and v will reside. u is then written as a linear combination of the

basis functions of the space,

u =
∞
∑

i=1

aiφi,

and v is chosen from amongst the basis functions.

The measure of the residual R[u] = L[u] − f should then theoretically be zero.

That is,
∫

Ω

R[u]vdx = 0, ∀v ∈ C1
0(Ω),

51

or,
∞
∑

i=1

ai

∫

Ω

L[φi]φjdΩ =

∫

Ω

fφjdΩ, ∀j.

For certain problems, where the strong form corresponds to the Euler-Lagrange equa-

tions of minimum potential energy, the Galerkin method is equivalent to a Rayleigh-

Ritz minimization technique [3].

To make this a numerical method, the infinite sums must be truncated at some

large N , the integrals evaluated, and re-written as a large N -dimensional system of

equations to be solved for the unknown ai’s,







∫

Ω
L[φ1]φ1dΩ · · ·

∫

Ω
L[φN]φ1dΩ

...
. . .

...
∫

Ω
L[φ1]φNdΩ · · ·

∫

Ω
L[φN]φNdΩ













a1
...

aN






=







∫

Ω
fφ1dΩ
...

∫

Ω
fφNdΩ






.

or,

Ka = f .

Clearly, the method is greatly dependent on how the choice of basis function

affects the solvability of the resulting matrix equation. Choosing the basis functions

to be sines or cosines (depending on the boundary conditions) would make the matrix

K diagonal, so long as the differential operator is of the form

L[u] = c0u+ c1u
′ + ...+ cnu

(n)

where the c′is are all constants.

Another method arises from choosing the basis functions to be compactly sup-

ported piecewise polynomials designed to control the bandwidth of the matrix. These

52

are termed basis-splines or b-splines. The functions themselves are considered global,

but are defined by a small set of nodes corresponding to the order of the basis func-

tion. For example, with three nodes {xi−1, xi, xi+1}, define a basis function

φi(x) =







x−xi−1

xi−xi−1
, x ∈ [xi−1, xi)

xi+1−x
xi+1−xi

, x ∈ [xi, xi+1].

The function φi, a first-order b-spline, only overlaps with φi−1 and φi+1 and so the

matrix K will be tridiagonal.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

x

Figure 4.1: Linear b-splines.

It’s fairly easy to see that low-order b-splines can cause problems when the in-

dividual pieces of the function are low-enough order that they do not have enough

derivatives to be non-zero when applying the differential operator. Increasing the

order of b-splines, however, requires more nodes in their definition, and so will in-

53

crease the bandwidth of the matrix K. There is way around this, as we can see in

the following example.

Consider the problem






−u′′(x) = f, x ∈ (0, L),

u(0) = u(L) = 0,
(4.3)

where f ∈ R is a constant. We will employ first-order b-splines defined on equally

spaced nodes, xi+1 − xi = ∆x, for all i, as our basis functions. The boundary

conditions can be enforced implicitly by removing the first and last b-splines from

the functions considered. The elements of the matrix K are then

Kj,i = −
∫ L

0

φ′′
i φjdx

Differentiating φi (in the distributional sense) gives

φ′
i(x) =







1
xi−xi−1

, x ∈ (xi−1, xi)

−1
xi+1−xi

, x ∈ (xi, xi+1)

=
1

∆x
{H(x− xi−1)− 2H(x− xi) +H(x− xi+1)}

where H(x) is the Heaviside step function

H(x) =







1, x > 0

0, x < 0.

Differentiating again, yields

φ′′(x) =
1

∆x
{δ(x− xi−1)− 2δ(x− xi) + δ(x− xi+1},

where δ(x− xi) is the Dirac delta function defined by
∫

δ(x− xi)g(x)dx = g(xi).

54

The integrals inside the matrix K then become

−
∫ L

0

φ′′
i φjdx = − 1

∆x

∫ L

0

{δ(x− xi−1)− 2δ(x− xi) + δ(x− xi+1}φjdx.

The only time the φ′
js contribute to this integral is when j is equal to either i− 1, i

or i+ 1, resulting in

−
∫ L

0

φ′′
i φjdx =



















−1
∆x
, j = i− 1

2
∆x
, j = i

−1
∆x
, j = i+ 1

.

We’re not done, however. The right hand side of equation 4.3 is equal to

∫ L

0

fφjdx = f

∫ xj+1

xj−1

φjdx,

which is just the area of a triangle with base-length 2∆x and height 1. Thus, the

integral is equal to f∆x. Dividing both sides by ∆x gives

1

∆x2















2 −1 0 · · · · · · 0

−1 2 −1 0 · · · 0
...

.
...

0 · · · 0 −1 2 −1
0 · · · · · · 0 −1 2





















a1
...

aN






=







f
...

f






.

Note that since the basis functions are essentially discrete-delta functions on the

defining nodes, ai = u(xi) and the final equation is equivalent to a standard second-

order finite difference method. We could have reached the same conclusion by per-

forming the integration by parts

−
∫ L

0

φ′′
i φjdx =

∫ L

0

φ′
iφ

′
jdx

55

=



















−1
∆x
, j = i− 1

2
∆x
, j = i

−1
∆x
, j = i+ 1

,

which is exactly how the Dirac delta function is equal to the derivative of the Heav-

iside step function anyways.

As we have seen, the method is extremely general and various choices of basis

function can lead to any number of different numerical schemes such as spectral

methods, pseudospectral methods, finite-element methods and even finite-difference

methods. To make the procedure even more general the functions v can be chosen

to be different from the φj’s resulting in a Petrov-Galerkin method [19].

4.3 Nodal Galerkin Methods

The nodal Galerkin method is a variant of the pseudospectral method where-in the

basis functions are defined nodally, that is, as functions defined on a set of points

with the discrete-delta property that they vanish at all but a single node. A simple

way of defining nodal basis functions is via Lagrange polynomials defined by

li(x) =

Np
∏

j 6=i

x− xj
xi − xj

.

Figure 4.2 shows six one-dimensional Lagrange polynomials defined on a set of

Legendre-Gauss-Lobatto (LGL) nodes.

The d-dimensional version of the Gauss-Lobatto points on a rectangular domain

56

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

Figure 4.2: Six Lagrange polynomials defined on a set of LGL nodes

are defined by the one-dimensional nodes in each direction. This is not possible on

a triangle and so more complicated constructions involving warping function must

be employed [26]. The Lagrange polynomials in multiple dimensions have no known

simple closed form for an arbitrary set of points, but for tensor-product grids, are

defined by taking the product of one-dimensional Lagrange polynomials defined along

each dimension. These are shown in figure 4.3 for a rectangular domain.

In pseudospectral methods the nodes are typically chosen to be the zeros of a fam-

ily of Jacobi polynomials such as the Legendre or Chebyshev polynomials. Associated

with these nodes is a set of Gauss-Lobatto integration weights, w = {w1, .., wn}, and

a pseudospectral differentiation matrix, D, defined by Dij = l′j(xi). The details of

the construction of which we have already seen. Where the pseudospectral methods

and nodal Galerkin methods differ is that the pseudospectral method deals with the

strong form of a differential equation while the nodal Galerkin method deals with the

integral form. Both methods however proceed by replacing functions with vectors

57

−1
0

1

−1
0

1
−1

0

1

−1
0

1

−1
0

1
−1

0

1

−1
0

1

−1
0

1
−1

0

1

−1
0

1

−1
0

1
−1

0

1

Figure 4.3: Four 2D Lagrange polynomials defined on a set of tensor-product LGL
nodes

of nodal values, and differential operators with matrices. Where they differ is in the

nodal Galerkin methods ability to implicitly enforce boundary conditions by modi-

fying the surface integrals that arise from applying Green’s theorem to the spatial

part of the integral form of the equation.

For example, consider the 1D equation for waves propagating in either direction

with unit speed































utt = uxx, x ∈ (−1, 1), t > 0

u(x, 0) = u0(x), x ∈ (−1, 1)

ut(x, 0) = u1(x), x ∈ (−1, 1)

u(−1, t) = u(1, t) = 0, t ≥ 0

where the subscript denotes differentiation with respect to the respective variable,

both methods start by choosing a set of nodes, {x1, ..., xn}, and defining u(t) =

58

[u(x1, t), ..., u(xn, t)]
T . The pseudospectral method then proceeds by solving the sys-

tem of ordinary differential equations



















ü(t) = D2u(t), t > 0,

u(0) = u0,

u̇(0) = u1

where the first and last rows and columns of the matrix D2 must be set to zero to

enforce the boundary conditions.

The nodal Galerkin method requires a few more steps. First u(x, t) is written as

u(x, t) =
n
∑

i=1

u(xi, t)li(x).

Then, the weak form is derived by integrating by parts

n
∑

i=1

ü(xi, t)

∫ 1

−1

li(x)lj(x)dx =
n
∑

i=1

u(xi, t)

∫ 1

−1

l′′i (x)lj(x)dx

=
n
∑

i=1

u(xi, t)

{

l′i(x)lj(x)
∣

∣

1

−1
−
∫ 1

−1

l′i(x)l
′
j(x)dx

}

.

For the left hand side
∑n

i=1 ü(xi, t)
∫ 1

−1
li(x)lj(x)dx

=
∑n

i=1 ü(xi, t)
∑n

k=1 li(xk)lj(xk)wk ← LGL quadrature

=
∑n

i=1 ü(xi, t)
∑n

k=1 δikδjkwk ← li(xk) = δik
=

∑n
i=1 ü(xi, t)δijwi

= ü(xj, t)wj.

For the right hand side,

∑n
i=1 u(xi, t)

{

l′i(x)lj(x)
∣

∣

1

−1
−
∫ 1

−1
l′i(x)l

′
j(x)dx

}

= −
∑n−1

i=2 u(xi, t)
{

∫ 1

−1
l′i(x)l

′
j(x)dx

}

← Boundary conditions

= −
∑n−1

i=2 u(xi, t)
∑n−1

k=2 l
′
i(xk)l

′
j(xk)wk ← LGL quadrature

= −
∑n−1

i=2 u(xi, t)
∑n−1

k=2 DkiDkjwk ← l′n(xm) = Dmn

59

The boundary conditions are enforced by setting u(x1, t) = u(xn, t) = 0. Again, this

may be done by setting the first and last rows and columns of the differentiation ma-

trix D to zero. The problem then becomes solving the system of ordinary differential

equations


















M ü+Ku = 0, t > 0,

u(0) = u0,

u̇(0) = u1

where M = diag(w) is the mass matrix and K = DTM is the stiffness matrix.

Notice that if the boundary conditions had not been enforced explicitly, the matrix

K would have been defined as D̂ −DTM where

D̂ =















D11 · · · D1n

0 · · · 0
...

. . .
...

0 · · · 0

Dn1 · · · Dnn















Multiplying by M−1 gives exactly the matrix M−1(D̂ − DTM) = D2, so the nodal

Galerkin and pseudospectral methods are essentially equivalent for certain types of

problems. The difference between the two methods is the flexibility of the nodal

Galerkin method to deal with more complex types of boundary conditions by mak-

ing suitable substitutions into the weak form. For example, if the boundary terms

l′i(x)lj(x)|1−1 were set to zero and the matrix K left as D̂ − DTM , the conditions

enforced would be u′(x1, t) = u′(xn, t) = 0 which corresponds to a stress-free bound-

ary condition, useful in modelling free-surfaces. This could have been done in the

pseudospectral method by suitably altering the matrix D2, but would have been a

60

more complicated procedure. The gap in ease of implementation is exacerbated in

multiple dimensions.

To define a spectral element method (SEM) in one-dimension, an arbitrary inter-

val [a, b] is split up into N smaller subintervals (cells) with endpoints {x0, x1, ..., xN}.

Each of these cells is mapped to the reference domain [−1, 1] by the function

ξ : [xi, xi+1]→ [−1, 1] : x 7→
(

2

xi+1 − xi

)

x− 1

and back by

x : [−1, 1]→ [xi, xi+1] : ξ 7→
(

xi+1 − xi
2

)

ξ +
xi + xi+1

2
.

The spectral element method basis functions are defined by enforcing C0 conti-

nuity across the cell interfaces. This is done by taking the Lagrange polynomials

in neighbouring cells that are non-zero at the same node on the cell interface and

piecing them together to form a single piecewise-continuous polynomial. Interior to

each cell the basis functions are unaltered.

In practice this means that the contributions to the global problem from each cell

can be computed individually and then summed at the positions corresponding to

the interface nodes. This is done by defining a connectivity matrix C with columns

defined as the global nodes that appear in each element. For example, in the case of

2 cells with 3 nodes in each cell, for a total of 5 global nodes as seen in figure 4.6,

the connectivity matrix would be

61

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

x

Figure 4.4: 1D SEM basis functions defined on 2 cells

C =





1 3

2 4

3 5





This matrix can then be used to define the global mass and stiffness matricesM and

K from the element mass and stiffness matrices M i and Ki as

for i from 1 to # of elements

for j from 1 to # of nodes

MCjiCji
=MCjiCji

+M i
jj

for k from 1 to # of nodes

KCki,Cji
= KCkiCji

+K i
kj

end

end

end

62

0
1

2

0
1

2
0

0.5

1

0
1

2

0
1

2
0

0.5

1

0
1

2

0
1

2
0

0.5

1

0
1

2

0
1

2
0

0.5

1

Figure 4.5: 2D SEM basis functions defined on 4 cells

4 531

Cell1 Cell2

2

Figure 4.6: 2 cells each with 3 nodes

When computing the element mass and stiffness matrices, the basis functions

on each cell are then the Lagrange polynomials mapped from the reference domain.

Thus,

l′j(xi) =
1

J l
′
j(ξ)

and
∫ xi+1

xi

li(x)lj(x)dx =

∫ 1

−1

li(ξ)lj(ξ)J dξ

where J = dx
dξ

= (xi+1− xi)/(2) is the Jacobian of the map from [xi, xi+1] to [−1, 1].

63

The integration weights and differentiation matrix on [xi, xi+1] are then Jw and

1
J
D. In multiple spatial dimensions the weights are, again, tensor-products of the

one-dimensional versions. The two-dimensional differentiation matrices are defined

by taking left or right tensor-products of the differentiation matrix defined along

one dimension with the identity matrix of size equal to the number of points in the

opposite dimension. For example, in two dimensions (x, z) ∈ R2, if D is the 1D

differentiation matrix along the x direction, the 2D version in the same direction is

D ⊗ I. Since the 1D matrix D is fully populated, the number of non-zero entries

in the 2D version will be 1/Np, where Np is the number of points in the opposite

direction that D is defined along.

Chapter 5

Acoustic Waves

5.1 The Acoustic Wave Equation

We now have the tools necessary to start modelling more complicated wave equations.

The first type we will derive the method for is the acoustic wave equation for the

propagation of pressure (P) waves.

The full acoustic wave equation for pressure is written as

ü(x, t) = K(x)∇ ·
(

1

ρ(x)
∇u(x, t)

)

+ f(x, t), x ∈ Ω, t > 0, (5.1)

where K is the bulk modulus, ρ is the density of the media and f is the forcing

term. Ω is the domain, which is assumed to be discontinuous globally, but made

up of smaller continuous sections where waves will have constant parameters [9].

x ∈ Rd, d = 1, .., 3 is the spatial dimension, dot denotes the time derivative and ∇ is

the gradient operator. This simulates a pure pressure wave propagating through the

region Ω and has only a single component u representing the pressure in the medium

at a point x at time t. While this is less realistic in terms of modelling seismic waves

than the elastic wave equation, it is still very useful since the bulk of recorded data is

due to the pressure component of the wave. Because of this, many iterative imaging

algorithms employ the acoustic wave equations since it is much less computationally

64

65

expensive to model, yet still exhibits useful responses.

5.2 Derivation of the Weak Problem

We begin by choosing a suitable space V of trial and test functions, and applying

the Galerkin method to (5.1). This yields

∫

Ω

üvdΩ =

∫

Ω

K∇ ·
(

1

ρ
∇u
)

vdΩ +

∫

Ω

fvdΩ, ∀v ∈ V

or, after applying Green’s theorem with Γ = ∂Ω
∫

Ω

üvdΩ +

∫

Ω

1

ρ
∇u · ∇(Kv)dΩ =

∮

Γ

K

ρ
∇u · nvdΓ +

∫

Ω

fvdΩ,

where n is the unit outward pointing normal vector.

The region Ω is then split into a union of smaller subregions Ωk in such a way

that in each of the subregions the parameters K and ρ are constant and will be

denoted by Kk, and ρk. The speed at which the waves propagate in each subregion

is V pk =
√

Kk/ρk, so the last equation may be written as

Ncells
∑

k=1

{∫

Ωk

üvdΩk + V p2k

∫

Ωk

∇u · ∇vdΩk

}

=

∫

Ω

fvdΩ +

Nedges
∑

k=1

V p2k

∮

Γk

∇u · nvdΓk.

(5.2)

The boundary integral has been split into Nedges subregions corresponding to the

boundary of the Ωk that lie along the outer boundary, Γ, of the entire region. Rigor-

ously, this means that the space of trial and test functions defined along the boundary

does not belong to the same space of functions as those defined on the entire domain.

66

This, however happens automatically in practice as the space of functions chosen to

define the problem on the interior is made up of products of functions defined along

the boundary.

The points chosen here are the Legendre-Gauss-Lobatto (LGL) points mapped to

the subdomain Ωk. Globally, each of these subdomains share edge nodes and so the

points are chosen constructively instead of explicitly. For simplicity, the cells chosen

here are all the same size with the same number of nodes in each direction. More

complicated procedures are possible for construction of the computational domain

via more elaborate mappings from the reference domain to the global subdomains,

but generally require substantial user input and, thus, are not substantive when

employed in iterative imaging algorithms.

Further derivation in limited to the 2D case with x being the horizontal variable

and z the vertical variable taken positive downward. The choice of nodes is denoted

x. The weights in 2D,w. The integration weights along the boundary will be denoted

wN , wS, wE, wW corresponding to the north (up), south, east and west boundaries,

respectively. The differentiation matrices are denoted Dx and Dz. Because the 2D

grid is constructed is a simplified manner the Jacobian on the kth cell, J k, in two

dimensions will be the product of the one dimensional Jacobians J k
x , J k

z .

Proceeding as in the previous chapter, the solution at some time t > 0 is assumed

to be superpositions of previous times and so is written as a linear combination of

67

tensor-product Lagrange polynomials defined by the nodes x where the coefficients

are the values at a single point at some time t. That is,

u(x, z, t) =

Nx
p
∑

i=1

Nz
p
∑

j=1

u(xi, zj , t)li(x)lj(z) :=

Np
∑

k=1

u(xk, t)lk(x)

where the assignment has been made in an attempt to simplify future notation. The

notation lk(x) is slightly vague as the function is technically the product of two

functions each with its own index, but it will make things much less cluttered. Nx
p

and N z
p denote the number of horizontal, vertical nodes, respectively, while Np is the

total number of nodes.

Equation (5.2) must then be transformed into anNp-dimension system of ordinary

differential equations for the nodal values. As before, the test functions v are chosen

to be the same Lagrange polynomials used to define u. On each element the mass

matrix is then calculated by

∫

Ωk

üvdΩk =

Np
∑

i=1

ü(xi, t)

∫

Ωk

li(x)lj(x)dΩ
k

=

Np
∑

i=1

ü(xi, t)

Np
∑

m=1

li(xm)lj(xm)wmJ k

=

Np
∑

i=1

ü(xi, t)

Np
∑

m=1

δimδjmwmJ k

=

Np
∑

i=1

ü(xi, t)δijwiJ k

= ü(xj, t)wjJ k

68

Since equation (5.2) is summed over all cells, at a cell interface node xi, the result is

Ncells
∑

k=1

ü(xi, t)wiJ k

So, for the kth element, Mk = J kdiag(w) and the global mass matrix is obtained by

summing over the connected elements.

The stiffness matrix is defined by

(V k
p)

2

∫

Ωk

∇u · ∇vdΩk = (V k
p)

2

Np
∑

i=1

u(xi, t)

∫

Ωk

{

∂li(x)

∂x

∂lj(x)

∂x
+
∂li(x)

∂z

∂lj(x)

∂z

}

dΩk

= (V k
p)

2

Np
∑

i=1

u(xi, t)

Np
∑

m=1

{

∂li(xm)

∂x

∂lj(xm)

∂x
+
∂li(xm)

∂z

∂lj(xm)

∂z

}

wmJ k

= (V k
p)

2

Np
∑

i=1

u(xi, t)

Np
∑

m=1

{

1

(J k
x)

2
Dx

miD
x
mj +

1

(J k
z)

2
Dz

miD
z
mj

}

wmJ k

So, for the kth element,

Kk =
J k

z

J k
x

(Dx)Tdiag(w)Dx +
J k

x

J k
z

(Dz)Tdiag(w)Dz,

again, the entries that act on nodes shared between elements are summed.

For the forcing term, f will be assumed to be of the form f1(t)f2(x). Then
∫

Ω

fvdΩ = f1(t)

∫

Ω

f2(x)lj(x)dΩ

= f1(t)

Np
∑

i=1

f2(xi)lj(xi)wiJ k

= f1(t)

Np
∑

i=1

f2(xi)δijwiJ k

= f1(t)f2(xj)wjJ k.

So the time-dependent vector of nodal forces isMF(t) =M [f2(x1), ..., f2(xNp
)]Tf1(t),

where M is the global mass matrix.

69

5.3 Absorbing Boundaries

In order to make the boundaries simulate an infinite medium, we aim to implement a

type of boundary condition that will allow most of the energy of the waves travelling

in the modelled region to escape when reaching the edge, without causing too much

of a reflection. Two methods are considered here. The first is to add a damping term

to the problem in a portion of the region near the boundary. This is called Rayleigh

damping. For now, assume that ∇u · n = 0 so that the boundary term

Nedges
∑

k=1

V p2k

∮

Γk

∇u · nvdΓk

disappears and the problem is now to numerically solve the system

M ü(t) +Ku(t) =MF(t)

where u(t) is the vector of nodal displacements at some time t.

The damped problem is

M ü(t) + Au̇(t) +Ku(t) =MF(t). (5.3)

Denote the damping region by Ωd. The matrix in the damping term is defined in

terms of the mass and stiffness matrices as






Aij = αMij + βKij, xi and xj ∈ Ωd,

Aij = 0, elsewhere

with α + βω2
i = 2ωiζ, where the ωi are the characteristic frequencies of the system

and ζ is the damping parameter. To define α and β two frequencies and a damping

70

parameter need to be chosen and then the resulting system of equations solved.

[20] showed that choosing ζ = 0.3 and ω1, ω2 to be the peak and upper half power

frequencies of the source wavelet f1(t) proved to be sufficient in damping enough of

the wave to be useful in seismic experiments.

The second method considered here is to introduce boundary conditions that sim-

ulate one-way wave equations along the region Γ [6]. In one spatial dimension these

are exact as all waves are either travelling left or right. In more than 1 spatial dimen-

sion waves can travel an infinite number of directions and so paraxial approximations

must be made to account for this.

For a wave travelling at speed c2 the general form of the absorbing boundary

condition at the west boundary (x = 0) is

{

N
∏

i=1

cos(θi)
∂

∂t
− c ∂

∂x

}

u(x, t) = 0,

where |θi| < π/2 for all i [14]. First-order conditions can be generated by considering

only θ = 0 producing u̇+ c∇u ·n = 0. In 1D this produces exactly the equations for

left or right travelling waves u̇+cux = 0 and u̇ = cux. In 2D the conditions are exact

for wavefronts arriving parallel to the boundary and are increasingly reflected as θ →

±π/2. Increasing the number of terms produces combined space/time differential

operators that are much more difficult to implement.

Substituting the first order conditions into the boundary term for an element k

71

produces

V p2k

∮

Γk

∇u · nvdΓk = −V pk
∮

Γk

u̇vdΓk

= −V pk
Np
∑

i=1

u̇(xi, t)

∮

Γk

li(x)lj(x)dΓ
k

= −V pk
Np
∑

i=1

u̇(xi, t)
∑

m = 1Npli(xm)lj(xm)wm|k

= −V pk
Np
∑

i=1

u̇(xi, t)δijwiJ k

= −V pku̇(xj, t)ŵjĴ k

where ŵ and Ĵ depend on if the integration is being performed over the N,S,E orW

boundary. This again results in a damped system of ordinary differential equations

(5.3). A is now, however, much sparser than in the case of Rayleigh damping.

5.4 Time Stepping and Stability

To deal with the time-dependent system a numerical procedure must be implemented

that is capable of handling the first and second order derivatives in equation (5.3).

A second order in time scheme can be constructed by replacing the derivatives with

second-order central difference approximations

ü(tj) =
u(tj+1)− 2u(tj) + u(tj−1)

∆t2
+O(∆t2), u̇(tj) =

u(tj+1)− u(tj−1)

2∆t
+O(∆t2).

After dropping the error term, (5.3) then becomes

M

(

u(tj+1)− 2u(tj) + u(tj−1)

∆t2

)

+ A

(

u(tj+1)− u(tj−1)

2∆t

)

+Ku(tj) =MF(tj)

72

or in terms of the tj’s

[

M +
∆t

2
A

]

u(tj+1) +
[

∆t2K − 2M
]

u(tj) +

[

M − ∆t

2
A

]

u(tj−1) = ∆t2MF(tj)

(5.4)

The matrix
[

M + ∆t
2
A
]

must now be inverted in order to step forward in time. This

is where the two types of boundary treatments lead to very different problems. In

both cases the mass matrix is diagonal and so its inverse is trivial. In the case of

absorbing boundary conditions the matrix A is also diagonal and in fact much of its

main diagonal is zero so
[

M + ∆t
2
A
]−1

is defined purely by it main diagonal which is

just the reciprocal of the diagonal of
[

M + ∆t
2
A
]

. In the case of Rayleigh damping

the matrix A is not diagonal and so at each time step a large system of equations

must be solved.

Another way to time-step the problem would be to re-write it as a first order

system by making the substitution v = u̇. Then (5.3) can be rewritten as

[

u̇

v̇

]

+

[

0 I

M−1K M−1A

] [

u

v

]

=

[

0

F

]

(5.5)

and solved by an appropriate method method for first-order systems. Careful choice

of the method can avoid the need to invert the matrix A but at the cost of doubling

the size of the system. In practice this is less ideal that it may appear as the size

of the system has now doubled and may not fit into memory. Also, many numerical

methods that avoid inverting A result in much smaller time-steps than are required

to solve the second-order system via central finite differences.

73

The time stepping method 5.4 is the same as that employed in [8], in which they

state that the method must satisfy a CFL condition

∆t ≤ ζ
∆xmin

max{V p}

where ζ is strictly less than 1. Further, because ∆xmin ≈ N−2 where N is the

maximum number of nodes in each direction inside the cells, this can be rewritten

as

∆t ≤ L

N2

ζ̄

max{V p}

where L is the spatial dimension of the problem. They state that for the case when

the number of nodes in each cell is 5-by-5 the constant ζ̄ required for stability is

approximately 4.3ζ.

In testing the largest stable time-step for the second-order central finite-difference

scheme was

∆t ≈ 1

2

min{∆x,∆z}
max{V p} .

For comparison, when the first-order system was advanced using a first-order-in-time

Euler method the required time-step was

∆t ≈ 1

125

min{∆x,∆z}
max{V p} .

More concrete stability conditions for time-stepping systems of equations involv-

ing pseudospectral differentiation matrices are not as readily available as those for

finite-differences. This is due to the non-normality of the matrices used in the con-

struction. In a sense stability is an almost open question for methods involving

74

pseudospectral differentiation matrices. An extensive treatment of the topic is con-

tained in [23] using the language of ε − pseudospectra defined as the set of points.

For a matrix E, the ε− pseudospectra are defined as the set of points

σε(E) = {z ∈ C|‖(z − E)−1‖ > 1/ε}

The standard method of deriving stability conditions is that to evolve a difference

equation

u(tj+1) = Eu(tj)

the eigenvalues of E must be contained within the unit circle so that powers of E

will remain small in norm. For spatial operators built out of pseudospectral differen-

tiation matrices this fails in general. The problem is that small perturbations in the

matrix E can cause huge changes in its eigenvalues. Thus a more robust stability

condition, as suggested in [23] is that the ε−pseudospectra must be well− behaved.

That is, small perturbations should not cause large changes in the eigenvalues.

To perform this analysis for equation 5.4 we rewrite is as

[

Un+1

Un

]

=

[

P Q

I 0

] [

Un

Un−1

]

where,

P =

[

M +
dt

2
A

]−1
[

2M − dt2K
]

Q =

[

M +
dt

2
A

]−1 [

M − dt

2
A

]

.

Then

E =

[

P Q

I 0

]

.

75

Figure 5.1 show the ε− pseudospectra for a global method based on ∆t = 3N−2

maxj c(xj)
.

Np = 10 points, maxj c(xj) = 3, while figure 5.2 shows the norm of powers of E as

time increases.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

ℜ (z)

ℑ
(z

)

Figure 5.1: ε− pseudospectra for evolution operator E

76

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

t

||E
t/∆

t ||

Figure 5.2: 2-norm of powers of the evolution operator E.

Figure 5.3 shows the ε − pseudospectra for the same operator built using a

domain-decomposition method with Np = 4 points, N = 4 cells, ∆t = min(∆x)
2maxj c(xj)

,

maxj c(xj) = 2000, while figure 5.4 shows the norm of powers of E. We have written

the stability condition in terms of the minimum grid spacing instead of N−2 since

there could be a different number of nodes in each cell.

77

−1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ℜ (z)

ℑ
(z

)

Figure 5.3: ε− pseudospectra for evolution operator E for

78

0 5 10 15 20
4

6

8

10

12

14

16

18

20

22

t

||E
t/∆

t ||

Figure 5.4: 2-norm of powers of the evolution operator E

It’s clear that domain-decomposition has the desirable effect of spreading the

eigenvalues out around the edge of the unit circle even for an increased number of

total nodes. However, both the global and the domain-decomposed operators have

the undesirable “bump” in the ε−pseudospectra near the point (1, 0). This can (and

does) cause problems in practice so for long time evolution, even smaller time-step

requirements may be necessary.

79

5.5 Comparison of Absorbing Boundaries

To test compare the boundary treatment a source was placed in the middle of a 2000

by 2000 meter square homogeneous medium with V p = 1000m/s and the simulation

run for 1.5s. The source had a small Gaussian of the form

f2(x) = e−||x−x0||2

centered at x0 for a spatial component and a 20Hz Ricker wavelet, defined as the

second-derivative of a gaussian and seen in figure 5.5, for a time component. The

model was discretized into 300 by 300 cells each made up of 3 by 3 local nodes for a

total of 601 by 601, or 361,201 global nodes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.5

0

0.5

1

t

Figure 5.5: Ricker wavelet

Figures 5.6, 5.7 and 5.8 show the reflections from the boundaries for ∇u · n =

0, Rayleigh damping and first-order Higdon absorbing boundary conditions. As

expected the boundary reflections from the absorbing boundary conditions are zero

along horizontal and vertical lines away from the source and increase as the angle

of incidence increases. The Rayleigh damping has the same reflections regardless of

angle of incidence but the reflected wave has only about 10% of the energy of the

80

incident wave. This is promising, however the increased computational cost may not

be feasible for larger models.

81

x

z

t=0.06

0 1000 2000

0

500

1000

1500

2000
−5

0

5

10

15

x 10
−3

x

z

t=0.3

0 1000 2000

0

500

1000

1500

2000 −2

0

2

x 10
−3

x

z

t=0.6

0 1000 2000

0

500

1000

1500

2000

−1

0

1

2
x 10

−3

x

z

t=1

0 1000 2000

0

500

1000

1500

2000
−1

0

1

x 10
−3

x

z

t=1.3

0 1000 2000

0

500

1000

1500

2000
−2

−1

0

1

2

x 10
−3

x

z

t=1.5

0 1000 2000

0

500

1000

1500

2000
−2

−1

0

1

2

x 10
−3

Figure 5.6: Full boundary reflection

82

x

z

t=0.06

0 1000 2000

0

500

1000

1500

2000
−5

0

5

10

15

x 10
−3

x

z

t=0.3

0 1000 2000

0

500

1000

1500

2000 −2

0

2

x 10
−3

x

z

t=0.6

0 1000 2000

0

500

1000

1500

2000
−1

0

1

2

x 10
−3

x

z

t=1

0 1000 2000

0

500

1000

1500

2000
−1

0

1

2

x 10
−3

x

z

t=1.3

0 1000 2000

0

500

1000

1500

2000

−2

0

2

4

x 10
−4

x

z

t=1.5

0 1000 2000

0

500

1000

1500

2000 −2

−1

0

1

2
x 10

−4

Figure 5.7: Rayleigh boundary reflection. Note the scale change.

83

x

z

t=0.06

0 1000 2000

0

500

1000

1500

2000

x

z

t=0.3

0 1000 2000

0

500

1000

1500

2000

x

z

t=0.6

0 1000 2000

0

500

1000

1500

2000

x

z

t=1

0 1000 2000

0

500

1000

1500

2000

x

z

t=1.3

0 1000 2000

0

500

1000

1500

2000

x

z

t=1.5

0 1000 2000

0

500

1000

1500

2000

−5

0

5

10

15

x 10
−3

−2

−1

0

1

2

3

x 10
−3

−1

0

1

2
x 10

−3

−1

−0.5

0

0.5

1

1.5

x 10
−3

−1

−0.5

0

0.5

1

1.5
x 10

−3

−2

−1

0

1

x 10
−4

Figure 5.8: Absorbing boundary reflection. Note the scale change.

To test the method on a discontinuous velocity model a portion of the Marmousi

84

model was interpolated onto 400 by 400 cells as shown in figure 5.9.

x

z

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000 1500

2000

2500

3000

3500

4000

4500

Figure 5.9: A portion of the Marmousi Velocity model interpolated onto 400 by 400

cells

Each cell was was made up of 3 by 3 nodes for a total of 641,601 global nodes.

A source of the same type as above but with a 30Hz time component was placed at

the surface and the simulation run for 2.5s. A free surface boundary condition was

simulated at the surface and absorbing boundary conditions were imposed on the

the S,E and W boundaries. Figure 5.11 shows the resulting wavefield. Where the

absorbing boundaries fail is when the reflected waves from the subsurface structure

return to the surface near the vertical boundaries. These waves arrive at almost 90◦

to the vertical boundary and so fail to be absorbed as can be seen in figure 5.10.

85

Figure 5.12 shows the wavefield at the surface (z = 0) for all t. The image has been

scaled so that the reflected waves can be seen clearly.

x

z

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

Boundary Reflections

Figure 5.10: Reflections from absorbing boundary conditions

86

x

z

t=0.05s

0 1000 2000 3000

0

1000

2000

3000

x

z

t=0.54s

0 1000 2000 3000

0

1000

2000

3000

x

z

t=1.03s

0 1000 2000 3000

0

1000

2000

3000

−6

−4

−2

0
x 10

−4

−4

−2

0

2

x 10
−4

−4

−2

0

2
x 10

−4

x

z

t=1.52s

0 1000 2000 3000

0

1000

2000

3000

−2

0

2

4

6

x 10
−5

x

z

t=2.01s

0 1000 2000 3000

0

1000

2000

3000
−1.5

−1

−0.5

0

0.5

1

x 10
−5

x

z

t=2.49s

0 1000 2000 3000

0

1000

2000

3000

−5

0

5

10
x 10

−6

Figure 5.11: Wavefield for Marmousi velocity model

87

offset (m)

tim
e

(s
)

0 500 1000 1500 2000 2500 3000

0

0.5

1

1.5

2

2.5

Reflected
Waves

Direct
Arrival

Boundary
Reflections

Boundary
Reflections

Figure 5.12: Surface data for Marmousi velocity model

Chapter 6

Elastic Waves

6.1 Weak Form of the Elastic Wave Equation

To define our method we first need to derive the weak form of the elastic wave equa-

tion. Consider the strong formulation of the elastic wave equation for an arbitrary

isotropic heterogeneous medium Ω ∈ Rd, d = 1, 2, 3, with boundary ∂Ω = Γ.



















ρüi = ∂jσij(u) + fi, x ∈ Ω, t ≥ 0

u(x, t = 0) = u0(x), x ∈ Ω

u̇(x, t = 0) = u1(x), x ∈ Ω

(6.1)

The stresses for an isotropic medium are

σij(u) = λ(∇ · u)δij + 2µεij(u)

where ∂j denotes differentiation with respect to the jth element xj and

εij(u) =
1

2
(∂iuj + ∂jui) .

Summation over repeated indices, as per Einstein notation, is assumed unless oth-

erwise noted. The parameters λ, µ are the elastic constants of the medium and ρ is

the density. All may be bounded, spatially dependent, functions. fi(x, t) is the i
th

component of the body force applied to the medium.

88

89

We obtain the weak form by multiplying both sides of 6.1 by an arbitrary test

function v ≡ v(x) and integrating over the entire space. This yields
∫

Ω

ρüivdΩ =

∫

Ω

∂jσij(u)vdΩ +

∫

Ω

fivdΩ. (6.2)

Expanding the first term on the right hand side and applying Green’s theorem gives

us the relationship
∫

Ω

∂jσij(u)vdΩ =

∮

Γ

σij(u)vn̂jdΓ−
∫

Ω

σij(u)∂jvdΩ.

where n̂j denotes the jth component of the outward-pointing normal vector. Sub-

stituting this into 6.2 yields the ith component of displacement of the weak form of

6.1
∫

Ω

ρüivdΩ +

∫

Ω

σij(u)∂jvdΩ =

∫

Ω

fivdΩ +

∮

Γ

σij(u)vn̂jdΓ. (6.3)

This is the form for which we will derive the numerical method. The boundary terms

is what allows us to incorporate absorbing and free-surface boundary conditions. The

most appropriate absorbing boundary conditions for our purposes are those for which

the time and space derivatives appear independently. We omit the details of the

derivations here for the sake of brevity as even the two-dimensional case involves 16

boundary integrals, 8 of which account for the absorbing boundary conditions (all of

which factor into a single operator). We note, however, that there are several different

choices available and refer the reader to [22], [21] and [18] for the construction and

implementation of several higher-order methods that fit naturally into variational

schemes.

90

We may then add the d equations in 6.3 together to obtain

d2

dt2

∫

ρu · vdΩ +

∫

Ω

σij(u)∂jvidΩ =

∫

Ω

f · vdΩ +

∮

Γ

σij(u)n̂jvidΓ. (6.4)

For simplicity we present the following derivation for d = 2, but the result is the

same in any number of dimensions. Expanding the integrand of the second term on

the left hand side of 6.4 produces

σ11(u)∂1v1 + σ12(u)∂2v1 + σ21(u)∂1v2 + σ22(u)∂2v2

= σ11(u)ε11(v) + σ12(u)∂2v1 + σ21(u)∂1v2 + σ22(u)ε22(v) (6.5)

adding together the second and third terms in (6.5) yields

µ(∂1u2 + ∂2u1)∂2v1 + µ(∂2u1 + ∂1u2)∂1v2

= µ(∂1u2 + ∂2u1)(∂2v1 + ∂1v2)

= σ12(u)ε12(v) + σ21(u)ε21(v).

So we obtain
∫

Ω

σij(u)∂jvidΩ =

∫

Ω

σij(u)εij(v)dΩ

If we then define the vector T component-wise by

Ti = σij(u)n̂j

we may write the second term in the right hand side of (5.4) as
∫

Γ

σij(u)n̂jvidΓ =

∮

Γ

T · vdΓ

and so (5.3) becomes

d2

dt2

∫

ρu · vdΩ +

∫

Ω

σij(u)εij(v)dΩ =

∫

Ω

f · vdΩ +

∮

Γ

T · vdΓi, j = 1, . . . , d.

91

In order to make the variational approach rigorous we need to identify a few

function spaces in which our various trial and test function will reside. Define H1(Ω)

to be the classic Sobolev space of square integrable functions defined on Ω, with

square-integrable weak first derivatives. That is,

H1(Ω) =
{

f ∈ L2(Ω)
∣

∣

∣
D1f ∈ L2(Ω)

}

,

where

L2(Ω) =

{

f : Ω→ R

∣

∣

∣

∫

Ω

|f(x)|2dΩ <∞
}

and D1 denotes the weak first derivative operator.

Then the vector-valued version is defined as those vector-valued functions whose

components reside in H1(Ω). Denote L2(Ω)d = L2(Ω)× · · · × L2(Ω) and define this

space to be

H =
{

u(x) ∈ L2(Ω)d|∇u ∈ L2(Ω)d
}

.

The variational problem is thus: find u ∈ H such that, for all t ≥ 0,

〈ρü,v〉Ω + a(u,v) = 〈f ,v〉Ω + 〈T,v〉Γ , ∀v ∈ H. (6.6)

The inner-products in (6.6) are the standard vector-valued L2(Ω) inner-products

〈f ,g〉Ω =

∫

Ω

f · gdΩ,

〈f ,g〉Γ =

∮

Γ

f · gdΓ

and the norm on H is given by

‖v‖H =
(

| 〈v,v〉Ω |2 + | 〈∇v,∇v〉Ω |2
)1/2

92

To show that there exists a unique solution to (5.6) we need to show that

a(u,v) =

∫

Ω

σij(u)εij(v)dΩ

is a symmetric, V-elliptic and continuous bi-linear form and apply the Lax-Milgram

lemma [1].

To see that a(u,v) is symmetric and bi-linear we must show that the following

all hold:

1. a(u,v) = a(v,u), ∀u,v ∈ H,

2. a(u+ u′,v) = a(u,v) + a(u′,v), ∀u,u′,v ∈ H,

3. a(αu,v) = αa(u,v), ∀u,v ∈ H, and α ∈ R.

The second and third equalities follow trivially from the linearly of the derivative.

For brevity we show the first equality only for d = 2. This follows from expanding

σij(u)εij(v) as

σij(u)εij(v) = σ11(u)ε11(v) + σ12(u)ε12(v) + σ21(u)ε21(v) + σ22(u)ε22(v).

= [λ(∇·u)+2µε11(v)]ε11(v)+2µε12(u)ε12(v)+2µε21(u)ε21(v)+[λ(∇·u)+2µε22(v)]ε22(v).

The terms corresponding to i 6= j are symmetric and so we only need to show that

the sum of the i = j terms are as well. Adding together the first and last term

produces

[λ(∇ · u) + 2µε11(v)]ε11(v) + [λ(∇ · u) + 2µε22(v)]ε22(v)

= λ(∇ · u)[ε11(v) + ε22(v)] + 2µ[ε11(u)ε11(v) + ε22(u)ε22(v)]

93

= λ(∇ · u)(∇ · v) + 2µ(∇u · ∇v)

which is symmetric and, thus, a(u,v) is symmetric and bi-linear. Continuity follows

directly from our assumptions that all the functions included in our scheme are

bounded.

A bi-linear form a(·, ·) is V-elliptic, or strongly positive, if there exists C > 0

such that

a(v,v) ≥ C‖v‖2H, ∀v ∈ V.

This follows directly from Korn’s inequality [15] which ensures us that there exists

a constant K depending only on Ω such that:

‖v‖2H ≤ K(Ω)

∫

Ω

{v · v + εij(v)εij(v)} dΩ, ∀v ∈ H.

6.2 Pseudospectral Elements

As with any method involving domain-decomposition we decompose Ω into a union

of smaller subdomains,

Ω =
M
⋃

k=1

Ωk.

On each element we then define a tensor-product grid of LGL nodes and make the

definition that the edges of each element share the associated nodes, as seen in figure

6.2.

For the elastic wave equation in 2D we are solving for two components of displace-

94

x0 xn
zn

z0

Γ
W Γ

E

Ω
2

Ω
1

Γ
S

Γ
N

Γ
B

Figure 6.1: Two subdomains and their shared boundaries over the entire domain.

ment u1(x, z, t) and u2(x, z, t) which are the horizontal and vertical displacement of

the medium. In domain decomposition methods we then define these to be combi-

nations of the contributions over each subdomain.

ui(x, z, t) =
M
∑

k=1

uki (x, z, t)

and split up the weak form 6.3 over the subdomains. This results in
∫

Ωk

ρüivdΩk +

∫

Ωk

σij(u)∂jvdΩk =

∫

Ωk

fivdΩk +

∮

Γk

σij(u)vn̂jdΓk. (6.7)

where Γk is the boundary of the kth subdomain Ωk. To enforce proper interface

conditions we require the displacements to be continuous across the boundaries of

each element and that the stresses across the interface vanish. Thus, the boundary

integral vanishes everywhere except at the boundaries where we enforce the absorbing

boundary conditions. The continuity of displacement is represented by defining

the basis functions associated with the edge nodes to be the piece-wise continuous

95

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

Figure 6.2: 2D Legendre-Gauss-Lobatto SEM nodes distributed over 4 subdomains.

functions constructed by equating the basis functions from each element. Several

examples of these functions are seen in figure 6.3.

Interior to each domain, equation 6.7 is discretized using pseudospectral differ-

entiation matrices and integration weights by writing

uki (x, t) =
n
∑

i=1

uki (xi, t)li(x, z).

Substituting this into 6.7 and choosing the functions v to be equal to lj(x, z) produces

the system of equations for the vector of nodal values uk
i (t) in the kth element

Mkük
i (t) + Ak

i u̇
k
i (t) +

∑

j

Kk
iju

k
j (t) =Mkfki (t)

The element mass matrixMk is a diagonal matrix with the integration weights along

96

0
1

2

0
1

2
0

0.5

1

0
1

2

0
1

2
0

0.5

1

0
1

2

0
1

2
0

0.5

1

0
1

2

0
1

2
0

0.5

1

Figure 6.3: 2D SEM basis functions defined on 4 elements.

the main diagonal and the structure of the element damping matrices Ak
i depends on

the absorbing boundary conditions but is generally diagonal and only non-zero along

the main diagonal at the positions corresponding to the indices of nodes along outer

boundaries. The element stiffness matrix Kk
ij are the discrete representation of the

integro-differential operator in the ith equation 6.7 acting on the nodal values of the

jth component of the displacement. The global mass, damping and stiffness matrices

are assembled by transforming their respective indices into the global indices and

summing over the connected nodes. This is done using the so called connectivity

matrix wherein the ith column contains the global node numbers of the ith element.

This is easier to portray in an example. In figure 6.4 we show 4 elements defined on

[−1, 1] × [−1, 1] numbered column-major. If we number the global nodes column-

97

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1

2

3

4

Figure 6.4: 4 elements with 4 nodes each for a total of 9 global nodes.

major as well, the connectivity matrix is defined as

C =









1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9









Using the connectivity matrix we could assemble the global stiffness matrix via Code

7. This, however, requires 3 for-loops and, for large numbers of nodes and/or ele-

ments, takes extremely long. It also assembles a fully-populated matrix that would

be a drastic waste of memory.

for i=1:Nx*Nz

Dxi=Dx*2/ dXk(i);

Dzi=Dz*2/ dZk(i);

Mi=M*(dXk(i)*dZk(i))/4;

Ki=Dxi.’*Vp(i)*Vp(i)*Mi*Dxi+Dzi.’*Vp(i)*Vp(i)*Mi*Dzi;

98

for j=1:Np*Np

for k=1:Np*Np

K(C(k,i),C(j,i))=K(C(k,i),C(j,i))+Ki(j,k);

end

end

end

Code 7: Assemble the global stiffness matrix very slowly.

A much better way of assembly is to define 3 vectors containing the row and

column indices and element entries of the matrix and then call the Matlab function

sparse to define the global matrix. This is done for a single block of the larger block

stiffness matrix in code 8. In practice it is again, much faster to assemble all the

blocks at the same time, but the code is much longer and less readable.

for i=1:Nx*Nz

Dxi=Dx*2/ dXk(i);

Dzi=Dz*2/ dZk(i);

Mi=M*(dXk(i)*dZk(i))/4;

Ki=(Dxi.’*Vp(i)*Vp(i)*Mi*Dxi+Dzi.’*Vp(i)*Vp(i)*Mi*Dzi);

for j=1:Np*Np

idx =((j-1)*Np^2+1:j*Np^2)+(i-1)*Np*Np*Np*Np;

I(idx)=C(j,i)*ones(Np^2,1); % row positions

J(idx)=C(:,i);% col positions

99

X(idx)=Ki(:,j); % entries

end

end

dim=(Nz*(Np -1)+1)*(Nx*(Np -1)+1);

K=sparse(I,J,X,dim ,dim);

Code 8: Assemble the global stiffness matrix using sparse.

The vectors dXk and dZk are the width and height of the elements and are used to

map the differentiation matrices and integration weights from local coordinates to

global coordinates.

Once the global system is assembled it can be written in block matrix form

(

M 0

0 M

)

∂2

∂t2

(

uk
1

uk
2

)

(t) +

(

A11 0

0 A22

)

∂

∂t

(

uk
1

uk
2

)

(t)

+

(

K11 K12

K21 A22

)(

uk
1

uk
2

)

(t) =

(

fk1
fk2

)

(t)

which we will write simply as

M ü+ Au̇+Ku = F. (6.8)

The sparsity pattern of stiffness matrix K is shown in figure 6.5.

6.3 Time Stepping

To deal with the time-dependent system a numerical procedure must be implemented

that is capable of handling the first and second order derivatives in equation (6.8).

100

0 100 200 300

0

50

100

150

200

250

300

nz = 12910
Figure 6.5: Sparsity patterns of the stiffness matrix.

A second order in time scheme can be constructed by replacing the derivatives with

second-order central difference approximations

ü(tj) =
u(tj+1)− 2u(tj) + u(tj−1)

∆t2
+O(∆t2),

u̇(tj) =
u(tj+1)− u(tj−1)

2∆t
+O(∆t2).

After dropping the error term, (6.8) then becomes

M

(

u(tj+1)− 2u(tj) + u(tj−1)

∆t2

)

+ A

(

u(tj+1)− u(tj−1)

2∆t

)

+Ku(tj) =MF(tj)

or in terms of the tj’s
[

M +
∆t

2
A

]

u(tj+1) +
[

∆t2K − 2M
]

u(tj) +

[

M − ∆t

2
A

]

u(tj−1) = ∆t2MF(tj)

The matrix
[

M + ∆t
2
A
]

must now be inverted in order to step forward in time. Since

both the matrices M and A are diagonal this is trivial. The method is implemented

in Code 9 where the solution is returned sampled at SR ms.

101

function [U t] = CFD_SR(M,A,K,U1,U2,tn,dt,fx,ft,SR)

Np=length(fx);

P=(M+.5*dt*A)\(2*M-dt*dt*K);

Q=(M+.5*dt*A)\(.5* dt*A-M);

Fx=dt*dt*((M+.5*dt*A)\M)*fx;

numskip=ceil(SR/dt);

numkept=ceil(tn/(numskip*dt));

t=0:dt:(numskip*numkept*dt);

Ft=ft(t);

U=zeros(Np,numkept +1);

for k=1: numkept

for j=1: numskip

U3=P*U2+Q*U1+Ft(j+(k-1)* numskip)*Fx;

U1=U2;

U2=U3;

end

U(:,k+1)=U3;

end

t = 0:(numskip*dt):(numskip*numkept*dt);

Code 9: Matlab function for time-stepping mixed order ODE systems by central

finite-differences.

102

Another way to time-step the problem would be to rewrite it as a first order

system by making the substitution v = u̇. Then (6.8) can be rewritten as

[

u̇

v̇

]

+

[

0 I

M−1K M−1A

] [

u

v

]

=

[

0

F

]

and solved by an appropriate method for first-order systems. In Code 10 we define

a function that time steps this equation by the 4th-order low-storage explicit-Runge-

Kutta scheme [7] and returns the solution sampled at SRms.

function [U t] = LSERK_SR(K,U0,tn,dt,fx,ft,SR)

Np=length(U0);

numskip=ceil(SR/dt);

numkept=ceil(tn/(numskip*dt));

t=0:dt:(numskip*numkept*dt);

U=zeros(Np,numkept +1);

U(:,1)=U0;

Pk=zeros(Np ,1);

Kk=zeros(Np ,1);

[a b c]= LSERKcoefs;

for i=1: numkept

for j=1: numskip

for k=1:5

Kk=a(k)*Kk+dt*(K*Pk+fx*ft(t(j+(i-1)* numskip)+c(k)*dt));

Pk=Pk+b(k)*Kk;

end

103

end

U(:,i+1)=Pk;

end

t = 0:(numskip*dt):(numskip*numkept*dt);

Code 10: Matlab function for 1st order ode systems by LSERK.

The LSERK method is desirable over standard Runge-Kutta methods in that it

only requires a single extra level of storage, while a standard RK45 scheme requires

an extra 5. The trade-off, however, is an extra level of computation.

6.4 Numerical Results

To test the method we consider a forcing term of the form

F(x, t) = δ(x− x0)f(t)

where the time-component is a Ricker wavelet

f(t) =
2√
3σπ

1

4

(

1− t2

σ2

)

e
−t2

2σ2 .

The model is a simple 2-layer medium with Vp,Vs, and ρ constant in each layer.

The propagating wavefield is shown in figures 6.6 to 6.11. At first we can see the

pressure, shear and surface waves originating from the source term. Then, as the

wave propagates through the interface each wave is converted into more pressure and

shear waves until, finally, as the waves reach the side and bottom boundaries, they

are absorbed.

104

x

z

t=0.16 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

Figure 6.6: 2-Norm of elastic displacement.

x

z

t=0.32 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

Figure 6.7: 2-Norm of elastic displacement.

105

x

z

t=0.47 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

Figure 6.8: 2-Norm of elastic displacement.

x

z

t=0.63 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

Figure 6.9: 2-Norm of elastic displacement.

106

x

z

t=0.94 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

Figure 6.10: 2-Norm of elastic displacement.

x

z

t=1.25 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

Figure 6.11: 2-Norm of elastic displacement.

Next, a nodal Galerkin method is compared to fourth and second order finite

difference methods on a 501 by 501 node grid. To test this we consider a forcing

107

term with Ricker wavelet time-component and conservative spatial component

(u1(x), w1(x)) = −∇e−r‖x−x0‖2

and propagate a 15 Hz wavelet in a 4500m square bipartite medium with properties

listed in the following table.

Region ρ Vp Vs

1 2.064 2305 997

2 2.14 4500 2600

Figures 6.12, 6.13 and 6.14 show the norm of the displacement for the three models

propagated to 1 second and then normalized and clipped to exaggerate the dispersion

effects. The extended arcs in the fourth-order model result from the wider stencil

moving over the large step in the velocity model and then being propagated. Again,

this is exaggerated here and is mainly due to the relatively small number of grid

points we are using, but the effect is apparent.

The computation times are listed with the figures but are not very indicative of

the associated computation costs of the three methods. The implementation of the

three methods are nearly identical, with the only difference being the application

of the derivative approximations. For the finite-difference methods the cost of this

is k ∗ N2 where k is the width of the finite-difference stencil (3 for second order, 5

for fourth order). The differentiation matrices for the nodal Galerkin methods can

be considered finite-difference matrices with stencils of width N and so the cost of

applying these methods is N3. We take dt = .0008 and so take 1179 steps to reach

108

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 6.12: Nodal Galerkin. Comp time = 206 s.

109

one second. We could take a smaller time step, but the one chosen assures us that the

wavelet in time is well-represented and that the error associated with time stepping

will not taint our results as we are more interested in spatial accuracy.

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 6.13: Second-Order Finite Difference. Comp time = 64 s.

Locally the fourth order model approximates the wavefronts better than the

second-order model (as is expected), but the size of the stencil means that we must

alter it somehow at the boundaries, this is not the case with the differentiation

matrices that appear in the nodal Galerkin methods as they are global and so for

the approximation of the derivative at one node they take information from all other

110

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 6.14: Fourth-Order Finite Difference. Comp time = 75 s.

111

nodes in the model.

Figures 6.15 and 6.16 show comparisons of the centerline of the model (x = 2250,

for all z) at time corresponding wavefront in various regions of the velocity model.

The amplitude error associated with the second-order stencil is apparent as is the

dispersion of all three methods near a jump.

2050 2100 2150 2200 2250 2300 2350 2400

−4

−2

0

2

4

6

Galerkin
FD2
FD4

Figure 6.15: Close-up of the centerline of the horizontal component of a 2D elastic
wave propagated to t = .4150 sec. The region plotted shows the disagreement of the
three methods in a smooth region of the velocity model.

112

2400 2500 2600 2700 2800 2900

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Galerkin
FD2
FD4

Figure 6.16: Close-up of the centerline of the horizontal component of a 2D elastic
wave propagated to t = .6 sec. The region plotted shows the disagreement of the
three methods in a the presence of a sharp jump in the velocity model.

Chapter 7

Viscoelastic Waves

7.1 Introduction

We present a method for numerically modelling viscoelastic wave propagation using

domain decomposition combined with a pseudospectral method based on Legendre-

Gauss-Lobatto nodes defined on a structured quadrilateral grid. The physics of the

method is modelled using the Kelvin-Voigt equation for the time-dependent relation

of stress and strain. Here we derive a coupled system of first-order equations for

the particle velocities and accelerations which only doubles the number of required

equations as opposed to the increase from 2 to 5 in the 2D case and 3 to 9 in the

3D case required when modelling the accelerations and stresses. Working with the

first order system also allows us to incorporate absorbing boundary conditions by

modifying the damping matrix at the boundary nodes in a way that further increases

sparsity of the damping matrix and allows us to maintain the use of a low-storage

explicit Runge-Kutta time-stepping algorithm.

113

114

7.2 Viscoelastic Models

When a material is viscoelastic it means that the materials response to an applied

stress is time-dependent, i.e. not instantaneous [24, 4]. What this means is that the

strain of a viscoelastic material due to an applied stress is time delayed, the material

has “memory” [24]. Viscoelastic behaviour is a prevalent feature in hydrocarbon

reservoirs, for instance, heavy oils are viscoelastic [24] and the ability to determine

the viscosity in heavy oil reservoirs could greatly impact drilling programs and lead

to the recovery of potentially stranded reserves [24]. The Kelvin-Voigt model for

viscoelastic behaviour using springs and dash-pots is shown in figure 7.1. Here, E is

the modulus of elasticity and η is the viscosity of the model.

Figure 7.1: Kelvin-Voigt spring and damper model.

The relationship between stress, σ, and strain, ε, is

σ = Eε+ ηε̇,

where ε̇ is the derivative with respect to time of the strain. In two spatial dimensions

there are three independent stresses, {σ11, σ22, σ12}, and strains {ε11, ε22, ε12}. The

115

strain operator is defined

εij(u) =
1

2
(∂jui + ∂iuj)

where

∂iuj =
∂uj
∂xi

For an isotropic medium the stress-strain relation is the matrix equation




σ11
σ22
σ12



 =





λ+ 2µ λ 0

λ µ 0

0 λ λ+ 2µ









ε11
ε22
ε12





+





λ′ + 2µ′ λ′ 0

λ′ µ′ 0

0 λ′ λ′ + 2µ′









ε̇11
ε̇22
ε̇12





We can write this component-wise in terms of the vectors of displacements u and

velocities v as

σij = λ∇ · uδij + 2µεij(u) + λ′∇ · vδij + 2µ′εij(v).

Assuming the displacements are of the form

uj(x, z, t) = ûj(x, z)e
iωt

produces

σij = λ∇ · ûδij + 2µεij(û) + iω (λ′∇ · ûδij + 2µ′εij(û))

= Λ∇ · ûδij + 2Mεij(û)

where Λ = λ+ iωλ′ and M = µ+ iωµ′ are the complex Lamé parameters dependent

on the frequency ω. This is the so-called correspondence principle, which assures

that, for a given elastic model a viscoelastic counterpart is also available. Naturally

then, the complex P and S wave velocities are defined as

V̂p =

√

Λ + 2M

ρ
, and V̂s =

√

M

ρ

116

0 5 10 15 20 25 30

0.7

0.8

0.9

1

Q
Figure 7.2: The function g(Q).

The real velocities are obtained as

Vα = <
(

1

V̂α

)−1

where α = P or S. The frequency-dependent P and S wave quality factors are given

by

Qp =
λ+ 2µ

ω(λ′ + 2µ′)
, and Qs =

µ

ωµ′
.

Thus, we can obtain the elastic parameters, λ and µ as

µ = ρV 2
s g(Qs)

and

λ = ρV 2
p g(Qp)− 2µ

where g is obtained algebraically from the above equations as

g(Q) =
1

2
(1 +Q−2)−1/2(1 + (1 +Q−2)−1/2).

The viscoelastic parameters are then obtained from

λ′ =
1

ω

(

λ+ 2µ

Qp

− 2µ

Qs

)

117

and

µ′ =
1

ωQs

.

The inputs of the model are thus ρ, Vp, Vs, Qp and Qs. The choice of ω is arbitrary

but a good choice is generally the dominant frequency of the source wavelet

Further analysis of the viscoelastic properties of the model are available in [5].

7.3 Spatial discretization

The strong-form of the equation of conservation of angular momentum can be written

as

ρüi = ∂jσij + fi, x ∈ Ω, t > 0

where ρ is the density of the medium Ω, x is the vector of spatial variables and fi

is the ith component of the applied force. Einstein’s convention for summation over

repeated indices is assumed.

To obtain the weak form we apply the method of Galerkin to obtain
∫

Ω

ρüivdΩ +

∫

Ω

σij(u)∂jvdΩ =

∫

Ω

fivdΩ +

∮

Γ

σij(u)vn̂jdΓ. (7.1)

The domain is then split up into several subdomains over which the integral is

summed
∫

Ωk

ρüivdΩk +

∫

Ωk

σij(u)∂jvdΩk =

∫

Ωk

fivdΩk +

∮

Γk

σij(u)vn̂jdΓk. (7.2)

Removing the boundary term at the inter-element boundaries enforces and continuous-

stress interface condition. Removing it the boundary of the modelling region enforces

118

a free-surface boundary condition allowing for the propagation of surface waves. At

the artificial boundaries we impose the non-reflecting condition in [22, 21]. We omit

the finer details of the element-wise discretization as they have been covered exten-

sively in previous chapters.

7.4 Temporal-discretization

Implementing the spatial discretization results in the time-dependent system of equa-

tions for the nodal displacements in the kth element,uk
i (t),

Mkük
i (t) + Ak

i u̇
k
i (t) +

∑

j

K̂k
iju̇

k
i (t) +

∑

j

Kk
iju

k
j (t) =Mkfki (t).

Mk is the element mass matrix, Ak
i is the damping matrix corresponding to the

absorbing boundary conditions applied to the ith displacement, K̂k
ij is the stiffness

matrix associated with the viscoelastic term, Kk
ij is the stiffness matrix associated

with the elastic term and fki (t) is the vector of applied nodal forces. Note that the

matrices Ai and K̂
k
ij have no overlapping entries and ultimately can be combined to

form a single damping matrix that represents both the absorbing boundaries and the

viscoelastic damping by editing the matrix K̂k
ij. For brevity we will simply denote

this combined absorbing/damping matrix as K̂k
ij.

The global system is then assembled using the so-called connectivity matrix as

defined in chapter 3. Where the viscoelastic case differs from the elastic case defined

therein, is that the damping matrix is not diagonal and so the system cannot be

119

numerically time-stepped using central finite differences without having to solve a

large system of equations at each time step. Thus we must reduce the order of the

system by doubling the number of equations.

Let U be the vector of nodal displacements ordered vertically

U = [u1(x1, z1, t), ..., u1(xn, zn, t), u2(x1, z1, t), ..., u2(xn, zn, t)]
T .

Similarly let V be the vector of nodal velocities. The system is then re-written as

(

M 0

0 I

)(

V̇

U̇

)

+

(

K̂ K

I 0

)(

V

U

)

=

(

F

0

)

We solve this by the 4th-order low-storage explicit Runge-Kutta method [7]. These

methods have the advantage over standard Runge-Kutta methods of only requiring

a single extra storage level, however, they must compute an additional intermediate

step to update a single time-step. This is less of an issue than it may seem though

as the resulting evolution equation is stable for larger time-steps than the standard

methods.

7.5 Experimental results

We now present several numerical experiments illustrating the use of our procedure.

The source in each is a Ricker wavelet in time with dominant frequency w0 = 30

applied at a single node at x = 500,z = 0. A free surface condition is enforced at

z = 0 and absorbing boundaries are placed at the sides and bottom.

120

First, we wish to show the high-frequency damping present in the viscoelastic

model by purposefully choosing a grid too coarse to represent the source wavelet and

then propagating the dispersed wavefield through the elastic part of the model to

see how it is affected once it reaches the viscoelastic part. The model is 1000 meters

by 1000 meters with Vp = 2400, Vs = 1500 and ρ = 206. From 0 to 250 meters the

model is purely elastic with Qp = Qs =∞, beyond that we add Qp = Qs = 10. We

can see in figure 7.3 that as the source is propagated into the medium significant

numerical dispersion is present. However, once the wave makes it to the viscoelastic

region the high-frequency dispersion is damped considerably.

Next we wish to show the difference in the wavespeeds in elastic and viscoelastic

wave propagation and the presence of reflections that result strictly from a change

in Q. The elastic part of the model is the same as before. We compare the case of

Qp = Qs = ∞, i.e a purely elastic medium, with Qs = 16, and Qp = 24. As we can

see in figures 7.4 the wavelength in the viscoelastic media grows as the high-frequency

portions of the wave is damped as it was in our first experiment.

121

t=0.07 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000

2

4

6

8

10

12

14

16

18

x 10
−4 t=0.15 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000 0

2

4

6

8

10

x 10
−4

t=0.23 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000 0

1

2

3

4

5

6

7

8

9

x 10
−4 t=0.32 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−4

t=0.4 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000

0.5

1

1.5

2

2.5

3

3.5
x 10

−4 t=0.48 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000

0.5

1

1.5

2

2.5

x 10
−4

Figure 7.3: Numerical dispersion damped by viscoelastic media

122

t=0.05 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000 0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4 t=0.05 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000 0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

t=0.26 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000

2

4

6

8

10

12

14

16

18
x 10

−5 t=0.26 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000 0

1

2

3

4

5

6

7

8

x 10
−6

t=0.47 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000

1

2

3

4

5

6

7

8
x 10

−5 t=0.47 sec.

x

z

0 200 400 600 800 1000

0

200

400

600

800

1000

0.5

1

1.5

2

2.5
x 10

−6

Figure 7.4: Elastic vs. viscoelastic wave propagation.

Chapter 8

Conclusion

8.1 Conclusion

The research showed that the study of pseudospectral-element method is a feasible

and computationally efficient method for the numerical modelling of several types of

seismic waves. Special attention was paid to the treatment of numerically imposed

boundaries and discontinuous interfaces through the use of the weak form of the

dynamic equilibrium equations. Further, it was shown that a significant amount of

analytic work is required to build the equation used in the numerical procedure, but

that the payoff for such work is a more efficient model that is capable of representing

desirable properties such as free-surface and absorbing boundary conditions with less

input from the end-user.

8.2 Future work

Preliminary work was done investigating the stability and character of the system

matrices that appear in the spatially-discretized acoustic, elastic and anelastic equa-

tions using Embree and Trefethen’s framework of ε − pseudospectra. Their idea is

123

124

to generalize the idea of the spectrum of an operator, to the set of points that are

within some ε of the actual spectrum. Because of the delicate nature of pseudospec-

tral differentiation matrices, when operators are discretized using these as their base

the operators exhibit the same type of delicate response to numerical precision. This

led Embree and Trefethen to re-frame the language of the stability of a numeri-

cal time stepping algorithm in terms of ε − pseudospectra, postulating that for a

time-stepping equation to be stable, not only must the eigenvalues of the system lie

within the unit-circle, but the pseudospectra must be well-behaved. Their book [23]

serves as an anthology of all their work in spectra and pseudospectra and includes

several examples of cases where the usual eigenvalue analysis fails and pseudospectra

correctly predict the instabilities. Apart from the more useful applications of pseu-

dospectra, when working with them enough one develops a sense of the character

of an operator and an intuition of how they will act. They are also quite beautiful

visually as can be seen in figure 8.1. It would be interesting to attempt to use pseu-

dospectra as a way to investigate the stability of the numerical methods as different

types of absorbing boundary conditions are applied. Many can cause strange insta-

bilities that seem to have nothing to do with the eigenvalues of the matrix for a large

number of degrees of freedom. Because it is expensive to compute pseudospectra

however, this was not something that was explored. There is also a fair bit of new

analytic material coming out about pseudospectra that could be used to develop

125

0 0.2 0.4 0.6 0.8 1 1.2

−0.4

−0.2

0

0.2

0.4

0.6

ℜ (z)

ℑ
(z

)

Figure 8.1: Eigenvalues and pseudospectra of the discretized spatial part of the
elastic operator.

more robust stability criteria.

In terms of the numerical implementation of the methods in this research, some

preliminary work was done with 3D modelling but not enough to warrant inclusion.

Some research level software packages do exist for 3D pseudospectral-element mod-

elling, but are more geared towards global-scale seismic modelling (see SPECFEM3D

available at http://www.geodynamics.org/cig/software/specfem3d for instance). It

would be interesting to attempt to build attempt to replicate three-component three-

126

dimensional seismic acquisition for a 2D line by restricting one of the horizontal

dimensions to something small and then seeing if the absorbing boundary condi-

tions properly handle the reflections from the relatively near boundaries. Another

approach would be to assume a model that was constant in one spatial dimension

and then analytically integrate the equations along that dimension to produce a

2.5D model. Both of these approaches could then be compared to a full 3D model

and see if the results along the surface are similar. If so, this would lead to more

accurate amplitudes in the modelled data and increase the computational efficiency

drastically.

Bibliography

[1] K. E. Atkinson and W. Han. Theoretical Numerical Analysis: A Functional

Analysis Framework. Springer, 2009.

[2] I. Babuska and B.Q. Guo. The h, p and h-p version of the finite element method:

basis theory and applications. Advances in Engineering Software, 1992.

[3] L. Bednath and T. Myint-U. Linear Partial Differential Equations for Scientists

And Engineers. Birkhauser, 2007.

[4] J. M. Carcione. Wave Fields in Real Media - Wave Propagation in Anisotropic,

Anelastic and Porous Media. Elsevier, 2001.

[5] J.M. Carcione, F. Poletto, and D Gei. 3-D wave simulation in anelastic media

using the Kelvin-Voigt constitutive equation. J. Comput. Phys., 196:282–297,

May 2004.

[6] R. Clayton and B Engquist. Absorbing boundary conditions for acoustic and

elastic wave equations. Bulletin of the Seismological Society of America, 1977.

[7] David and Ketcheson. Runge Kutta methods with minimum storage implemen-

tations. Journal of Computational Physics, 229(5):1763 – 1773, 2010.

[8] E. Faccioli, F. Maggio, R. Paolucci, and A. Quarteroni. 2d and 3d elastic wave

127

128

propagation by a pseudo-spectral domain decomposition method. Journal of

Seismology, 1:237–251, 1997. 10.1023/A:1009758820546.

[9] E. Faccioli, F. Maggio, A. Quarteroni, and A. Tagliani. Spectral-domain de-

composition methods for the solution of acoustic and elastic wave equations.

Geophysics, 1996.

[10] E. Faccioli and A. Quarteroni. Comment on “The spectral element method: An

efficient tool to simulate the seismic response of 2D and 3D geological struc-

tures”. Bulletin of the Seismological Society of America, 1999.

[11] B Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge Univer-

sity Press, 1984.

[12] D. Funaro. Polynomial Approximation of Differential Equations. Springer-

Verlag, 1992.

[13] J. S. Hestaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Al-

gorithms, Analysis and Applications. Springer, 2008.

[14] R. L. Higdon. Absorbing boundary conditions for acoustic and elastic waves in

stratified media. Journal of Computational Physics, 101(2):386 – 418, 1992.

[15] C. O. Horgan. Korn’s inequalities and their applications in continuum mechan-

ics. SIAM Rev., 37:491–511, December 1995.

129

[16] D. Komatitsch and J.P. Vilotte. The spectral element method: An efficient tool

to simulate the seismic response of 2d and 3d geological structures. Bulletin of

the Seismological Society of America, 1998.

[17] Seymour V. Parter. On the Legendre Gauss Lobatto points and weights. J. Sci.

Comput., 14:347–355, December 1999.

[18] A. Quarteroni, A. Tagliani, and E. Zampieri. Generalized galerkin approxima-

tions of elastic waves with absorbing boundary conditions. Computer Methods

in Applied Mechanics and Engineering, 163(1-4):323 – 341, 1998.

[19] J. Reddy. An Introduction to the Finite Element Method. McGraw Hill, 2005.

[20] G. S. Sarma, K. Mallick, and V. R. Gadhinglajkar. Nonreflecting boundary

condition in finite-element formulation for an elastic wave equation. Geophysics,

63(3):1006–1016, 1998.

[21] J. Sochacki. Absorbing boundary conditions for the elastic wave equations.

Applied Mathematics and Computation, 28(1):1 – 14, 1988.

[22] R. Stacey. Improved transparent boundary formations for the elastic-wave equa-

tion. Bulletin of the Seismological Society of America, 78:2089–2097, December

1988.

[23] L.N. Trefethen and M. Embree. Spectra and Pseudospectra: The Behavior of

130

Nonnormal Matrices and Operators. Princeton University Press, 2005.

[24] F. Vasheghani and L.R. Lines. Viscosity and Q in heavy-oil reservoir character-

ization. The Leading Edge, July:856–860, 2009.

[25] J.P. Vilotte and D. Komatitsch. Reply to comment by E. Faccioli and A. Quar-

teroni on “The spectral element method: An efficient tool to simulate the seis-

mic response of 2D and 3D geological structures”. Bulletin of the Seismological

Society of America, 1999.

[26] T. Warburton. An explicit construction of interpolation nodes on the simplex.

Journal of Engineering Mathematics, 56:247–262, 2006.

[27] J. A. Weideman and S. C. Reddy. A matlab differentiation matrix suite. ACM

Trans. Math. Softw., 26:465–519, December 2000.

