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Abstract 

Using surface waves, we can estimate an S-wave velocity model to address the S-wave 

receiver statics of converted waves. Shear wave velocity is estimated from the inversion of either 

phase or group velocity. 

I address three major problems within the realm of S-wave receiver statics and these are 

the problem of inversion accuracy, misinterpretation of multi-modes, and the optimization of 

spatial analysis windows. 

To improve inversion accuracy, I develop a method to simultaneously estimate the phase 

and group velocities of surface waves based on the generalized S transform. The method is 

robust and it returns accurate results. To cope with noise and dispersion in the data, I introduce 

two cost functions. Though my method is robust where the surface wave is highly dispersed, I 

find that parameterization becomes ambiguous when the surface wave is multi-modal, and so it 

is possible for misinterpretation of different modes of the surface wave. 

To address multi-modality for the estimation of the group velocity, I develop a slant stack 

method that is based again on the generalized S transform. To control spectral localization, I use 

a scaling factor in the generalized S transform. I find that a small scaling factor should be chosen 

for low frequency surface-waves, whereas for higher frequencies a larger scaling factor should 

be chosen. 

Finally, I determine an accurate S-wave velocity model of the near surface for use in S-

wave statics estimation by optimizing the analysis spatial-window. To do this, I enlarge upon the 

idea of CMP Cross-Correlation of Surface Waves (CCSW). I obtain a precise estimation of a 

dispersion curve by limiting analysis to seismic traces that lie within a limited spatial window. I 

find that the optimum window length (aperture) should be close (one to one and half) to the 

maximum wavelength in a CMP gather. I find that, through experiment, when the aperture is 

optimum, a high resolution image of each mode within the dispersion curve is observable, and 

this avoids interpretation of modal interferences. A secondary benefit of my CCSW approach is 

its faster computational process than the conventional implementation. 
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Figure 1.1 Particle motion with respect to wave propagation path for (a) P wave, (b) S wave and 

(c) Rayleigh wave. The large white arrow exhibits the direction of wave propagation, and the 

small black arrow indicates particle motion (After Dulaijan, 2008). 

 

1.1.2 Surface waves 

Surface waves propagate travel along the earth's surface (Lay and Wallace, 1995). They 

travel slower than body waves. There are two important categories of surface waves, ‘Love 

waves’ and ‘Rayleigh waves’ (Sheriff and Geldart, 1986). Love waves are horizontally polarized 

shear waves (SH waves) which are trapped in an elastic layer which is bordered by an elastic half 

space on one side and a vacuum on the other side. Rayleigh waves (also known as ground roll) 

are composed of both longitudinal and transverse (Figure 1.1c) motions whose amplitudes 

decrease exponentially with respect to depth. There is a phase difference between these 

component motions. Considering a vertical plane which is oriented in the direction of wave 

propagation, Rayleigh wave motion is elliptical. At the top of the ellipse, particle motion is 

opposite to the direction of propagation, whereas at the bottom, it is in the direction of 

propagation (Figure 1.2). 

 

Figure 1.2 Rayleigh wave particle motion 
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1.2 Seismic reflection survey 

Seismic waves are used to study the earth’s interior. Earth layers are composed of 

different materials in which P and S-waves travel and propagate with different velocities. Figure 

1.3 shows an example of seismic data acquisition. A seismic source releases energy into the 

ground. A medium in which seismic data is acquired is either marine or land (Evans, 1998). P 

and S-Waves velocities vary from one layer to another due to changing composition and 

compression. In a boundary between two layers where there are density and velocity contrasts, a 

fraction of the incident wave is transmitted, and a fraction is reflected back to the surface (Sheriff 

and Geldart, 1986). Reflected waves are used as signals in reflection seismology to image, 

characterize and study the subsurface. After acquisition, seismic data are processed to remove 

noise such as ground roll, air waves, multiples, direct waves, and random noises and improve 

signals (reflectors). There are many processing flows for noise removal and signal enhancement. 

For instance, band pass and FK filters which are based on the 2D Fourier transform for ground 

roll attenuation (Yilmaz, 2001), stacking schemes are utilized for random noise attenuation 

(Yilmaz, 2001), and migration algorithms are implemented to move dipping reflections to their 

true locations with correct amplitudes and dip (Yousefzadeh, 2012). One of the most important 

processing steps is the calculation of static corrections to compensate near surface effects. Figure 

1.4b shows an image produced by reflected waves of a subsurface. In seismic exploration, 

sources and receivers are usually located on the surface or few meters below the surface. 

 

Figure 1.3 A seismic survey (http://cougarlandservices.net/landowners). Vibroseis is used as a 

source.  
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1.3 Near surface weathered layer and seismic data quality 

Seismic data quality is affected by the near surface. The near surface is characterized by 

the weathered layer. The weathered layer is defined by an unconsolidated layer, gravel or clay, in 

which seismic waves travel more slowly than for consolidated rocks (Sheriff, 1991). We can 

consider the water table as a base for the weathered layer because of the sharp increase of 

seismic velocity in the presence of water. The base of the weathered layer can be sharp or 

gradual. Since, in the presence of water, seismic waves’ velocities increase, water tables may be 

considered as a base for the weathered layer boundary.   

The velocity of the near surface changes dramatically in the presence of the weathered 

layer where soil properties change rapidly with respect to geophone location (Yi-Ke et al. 2001). 

When different ray paths travel to the surface from a reflector, they arrive at different times due 

to different delays caused by velocity variations of the near surface. After applying migration, we 

might see time shifts on a reflector that can be misleading in the interpretation of seismic data. 

Figure 1.4a shows a final image of seismic data obtained from converted waves. The data set was 

acquired by Consortium for Research in Elastic Wave Exploration Seismology, University of 

Calgary (CREWES), near Hussar, Alberta, Canada (Margave et al. 2011). Geological structures 

of the site of study are horizontally flat layers. As seen in Figure 1.4a, the reflectors do not seem 

to be flat because huge velocity variations of the weathered layers cause ray paths to arrive at the 

surface at different times. The effect of these huge velocity variations can be observed on the 

stacked data in Figure 1.4a as some seismic traces are shifted about 100 ms with respect to each 

other. In order to obtain a more accurate image of the subsurface, near surface effects must be 

compensated. In the seismic literature, compensations of the near surface weathered layers are 

called static corrections (Yilmaz, 1987). Figure 1.4b shows the final image of the Hussar data 

after applying static corrections. We see a flat trend of reflectors after applying static corrections. 
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Figure 1.4 A seismic image (a) before static corrections, and (b) after applying static corrections. 
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1.4 Converted waves and static corrections 

As mentioned earlier, at a boundary of two layers where there are density and velocity 

discontinuities, a fraction of the incident wave is transmitted and a fraction is reflected back to 

the surface. Some of the energy of the transmitted and reflected waves is converted to other types 

of waves (Stewart et al., 1999). When an incident P-wave is converted to an S-wave, this mode is 

called a converted wave in the literature. In converted wave data acquisition, P- and S-waves are 

recorded by three component receivers (Stewart et al., 1999). Every receiver has one vertical 

component (V) and two horizontal components (Hradial Htangential). The vertical component records 

mainly P-waves and a fraction of the S-waves’ projections, whereas the horizontal components 

record the S-waves and a fraction of the P-waves’ projections. S-wave velocity information 

obtained from converted waves is crucial to determine some physical properties of a reservoir. 

Although converted wave data acquisition has been considered as one of the promising methods 

for oil exploration, there are still many challenges that must be addressed. One of these is the S-

wave receiver statics, which can be two to ten times greater than the P wave receiver statics (the 

amount of static corrections which is calculated for the P-waves) (Tatham and McCormack, 

1991) due to the large       ratio in the near surface.  

There are two categories of methods to address S-wave receiver static corrections, 

modeling methods and data-based methods. In modeling methods, we estimate an S-wave 

velocity model for the near surface from which S-wave receiver static corrections are calculated. 

Data used for modeling can be obtained from either refracted wave analysis (Frasier and 

Winterstein, 1990) or surface waves analysis (Park et al., 1999a). Refracted wave methods are 

based on the analysis of first arrival seismic waves. We model the subsurface based on the 

concept of refracted waves and divide the subsurface into layers based on the number of apparent 

slopes that we see at the first arrivals of seismic waves (Palmer, 1980).  Although refracted wave 

analysis is widely used for the estimation of P-wave statics, the methods become ambiguous 

when we deal with S-waves because it is very hard to pick first arrivals of S-waves.  First 

arrivals of S-waves are sometimes contaminated by noise or are masked by (the first) arrivals of 

P-waves.  

An alternative to estimate S-wave receiver statics from refracted wave analysis is to 

calculate P-wave receiver statics and then scale the calculated P-wave receiver statics by the 
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      ratio. This approach suffers from the fact that there is not a constant       ratio for the near 

surface which results in an inaccurate estimate of S-wave receiver statics. Surface wave analysis 

is based on the dispersion analysis of Rayleigh waves (ground roll). Ground roll is a predominant 

event in seismic data and is historically considered as noise in the reflection seismic literature. 

Dispersion means different frequency components of a signal travel with different velocities, and 

the velocity of each frequency component is called the phase velocity. Generally in surface wave 

analysis, a phase velocity for the fundamental mode is estimated and inverted to an S-wave 

velocity model where the depth of investigation is confined by frequency bandwidth (Xia et al., 

1999).   

Data-based methods are not based on modeling of the subsurface. The CRP stack-power 

optimization method (Cary and Eaton, 1993) is based on improving the resolution of stacked 

data by estimating S-wave receiver statics from the stacked data without static corrections. The 

method is not straight forward when geological structures are complex or converted waves are 

weak (Li et al., 2012). Monte-Carlo simulated annealing (Eaton et al. 1991) is again based on the 

resolution of stacked data, but S-wave receiver statics are calculated from Monte-Carlo 

simulated annealing. The method is computationally expensive (Li et al., 2012).  

1.5 Near surface S-wave velocity and ground roll dispersion analysis 

Where a medium is an isotropic, homogeneous and half space, Rayleigh waves (ground 

roll) are not dispersive. In other words, different frequency components of Rayleigh waves travel 

at the same velocity. But in a real layered earth, different frequency components of Rayleigh 

waves are affected by the velocity structure of the subsurface layers. If we assume the seismic 

wave velocity to increase with depth, high frequency components (short wavelengths) are 

affected by the velocity structure of shallower layers where P-wave and S-wave velocities are 

low. On the other hand, low frequency components (long wavelengths) are affected by the 

velocity structure of deeper layers. Therefore in this case, low frequency components have 

higher velocities in comparison with high frequency components. The variation of Rayleigh 

wave velocity at different frequencies is dispersion. The effects of dispersion become more 

obvious with increasing distance, because the low frequency components of Rayleigh waves 

arrive sooner at any recording station. We can see this phenomenon on a seismic record as 

Rayleigh waves (ground roll) are more drawn out in time with increasing distance (Figure 1.5). 

Rayleigh wave velocity is described by two concepts, ‘phase’ and ‘group’ velocities. Phase 
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velocity is the velocity of each frequency component (single harmonic) of dispersed waves, 

whereas the group velocity is the velocity of a wave pocket of dispersed waves. Many authors 

have studied surface wave dispersion (i.e. Rayleigh, 1887; Sezwa, 1927; Thompson, 1950; 

Dobrin, 1951; and McMechan and Yedlin, 1981).  

 

Figure 1.5 A seismic shot record. Rayleigh waves (ground rolls) are more drawn out in time with 

increasing distance (the red triangle) (from Askari and Siahkoohi, 2008). 

 

It is possible to estimate an S-wave velocity model from the phase velocity of dispersed 

Rayleigh waves (ground rolls) though an inverse procedure. We can forward model the phase 

velocity for any geological 1D model using Knopoff’s method (Schwab and Knopoff, 1972, 

Abo-Zena, 1979). The Rayleigh-wave phase velocity,      , is determined by a nonlinear 

equation ‘ ’ in an implicit form (Appendix A): 

                                                             (                 )                                              (1.3) 
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where   is the frequency,    and    denote the S- and P-wave velocities respectively,   is the 

thickness of each layer, and   is the density of each layer. Based on equation 1.3, it is possible to 

estimate an S-wave velocity model from the phase velocity through inversion. If we divide the 

subsurface into thin layers with constant thicknesses but with varying shear wave velocities, we 

can formulate equation 1.3 as a function of P-wave velocity, S-wave velocity and density. This 

approach is similar to the familiar approach used in tomography, where the subsurface is divided 

into small grids. In order to examine the sensitivity of the phase velocity to the shear wave 

velocity, P-wave velocity and density, we calculate the dispersion function’s derivatives for a 

synthetic geological model (Table 1.1) using the finite difference method. We increase the S-

wave velocity, P-wave velocity and the density of the fifth layer by about 20% to calculate the 

derivatives. Figure 1.6 shows the calculated derivatives for the S-wave velocity, P-wave velocity, 

and density respectively. The phase velocity is most sensitive to the variation of the S-wave 

velocity. Therefore, we can assign reasonable constant values of P-wave velocity and density 

(Xia et al., 1999) for our inverse procedure (Figure 1.7) to obtain a shear wave velocity model 

from the phase velocity. In the inversion, the phase velocity is the data space and the S-wave 

velocity is the model space. We optimize the model space (the S-wave velocity) by minimizing 

an objective function which is the difference between the observed phase velocity and the 

calculated phase velocity (Appendix B). An initial S-wave velocity model is estimated by the 

method proposed by Xia et al. (1999). We calculate the theoretical phase velocity model and 

compare it to the observed phase velocity obtained from field data. If the norm of the difference 

of the observed and calculated phase velocities is small enough, we terminate the process; 

otherwise, we update the S-velocity model using an inverse method (Conjugate Gradient for 

example (Appendix B)).  After some iterations, we will obtainthe final S-wave velocity model.  
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Figure 1.6 Phase velocity derivative with respect to S-wave, P-wave velocities and density 

respectively for the fifth layer. 

 

S-wave Velocity (m/s) P-wave velocity (m/s) Density (kg/m3) 

241 1654 2000 
197 1681 2000 

333 1721 2000 

343 1742 2000 

321 1760 2000 

329 1772 2000 

370 1790 2000 

415 1793 2000 

444 1777 2000 

459 1766 2000 

Table 1.1 The geological model used for the calculation of the derivatives in Figure 1.6. The 

thickness of each layer is 5 m. 
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Figure 1.7 The inverse procedure used for the estimation of shear wave velocity from the phase 

velocity. 

 

1.6 Surface wave analysis methods 

Spectral Analysis of Surface Waves (SASW) (Nazarian et al., 1983) is a conventional 

method for the determination of 1D shear wave velocity for the near surface. The ground roll 

fundamental mode is analyzed by configuring and reconfiguring a pair of receivers and shots 

respectively (Figure 1.8). For each shot, there are two records. If we calculate the Fourier 

spectrum of the two records, we can estimate the phase velocity from the Fourier phase 

difference between the two records with respect to the distance between the two geophones and 

frequency (Chapter 2 presents how we can estimate the phase velocity from the phase spectrum). 

Since there are two shots, two values for the phase velocity are estimated. An average of the 

estimated phase velocity values is calculated and is assigned to the midpoint.  
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Figure 1.8 A SASW survey (http://www.geovision.com/PDF/M_SASW.PDF). There are two 

shots (the black and red arrows). The phase velocity is measured with respect to the midpoint.  

 

Park et al. (1999a) introduce the Multi-channel Analysis of Surface Waves (MASW) 

method, where a dispersion curve for a multi-channel data set is estimated by transforming (e.g. 

the phase shift method (Appendix C, Park et al., 1998) the data from the time-offset domain to 

the frequency-slowness (or velocity) domain (Figure 1.9). Generally speaking, in a MASW 

survey the calculation of dispersion curves is faster and more accurate than that for SASW 

because we can isolate and distinguish other unwanted coherent events such as first arrivals, 

higher modes and air waves. Furthermore, MASW is less affected by ambient noise and provides 

a better signal to noise ratio (Hayashi and Suzuki, 2004). Therefore, MASW results in better 

dispersion curve estimation, but at the cost of lateral resolution because of the long receiver array 

that must be used (Park et al., 1999b). Paradoxically, smaller arrays should be used when we 

need a better lateral resolution, but this reduces the resolution of the dispersion curve. Therefore, 

there is a tradeoff between the estimation of the dispersion curve and lateral resolution. In 

practice, it is critical to compensate for this tradeoff. Especially in converted wave surveys, rapid 

spatial velocity variations in the weathering layer need to be resolved in order to compute an 

appropriate velocity model for the static corrections. This requires both excellent quality phase 

velocity information and high spatial resolution.  
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Figure 1.9 (a) A shot record containing dispersed (Rayleigh wave) ground roll, and (b) the 

estimated phase velocity (form Luo et al., 2008). 

 

 

Hayashi and Suzuki (2004) introduce CMP Cross-Correlation of Surface Waves (CCSW) 

to increase lateral resolution. In Hayashi and Suzuki’s methodology, all traces within a common 

mid-point (CMP) are correlated with each other, traces with the same offset which belong to the 

same CMP are stacked, and a dispersion curve is computed. This method provides good lateral 

resolution because the phase velocity is estimated with respect to midpoints, similar to SASW 

where the phase velocity is estimated with respect to midpoints. This approach provides 

improved lateral resolution of the S-wave velocity. On the other hand, the dispersion curves are 

estimated from multi-channels, similar to MASW where the phase velocity is estimated from 

multi-channel data which facilitate the estimation of the phase velocity in the presence of noise. 

Therefore CCSW takes the advantages of the two conventional methods to improve lateral 

resolution and dispersion curve estimation simultaneously. 

1.7 Thesis objective and organization 

The main objectives of this thesis are to introduce new approaches to improve surface 

wave analysis, including developing mathematical models to estimate the phase and group 

velocities for surface wave studies, to introducing a new approach for the estimation of the group 

velocity of multi-modal surface waves, and to enlarge upon a new approach to CMP Cross-

Correlation of Surface Waves (CCSW) to increase the lateral resolution of the S-wave velocity to 
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compute receiver static corrections for converted wave. This thesis is organized into three parts 

based on three articles that have been published or are being submitted to peer-reviewed 

journals.  

Shear wave velocity is estimated from the inversion of phase and group velocity. 

Therefore, the analysis of dispersion data to link phase and group velocity to frequency is a 

crucial step. Some algorithms have been developed to address these issues in different transform 

domains such as the FK transform (Yilmaz, 1987), ω-p transform (McMechan and Yedlin, 

1981), the phase shift (Appendix C, Park et al., 1998), and the wavelet transform (Kulesh et al., 

2005; Holschneider et al., 2005; Kulesh et al, 2008) for phase velocity, and narrow band-pass 

filtering (Herrmann, 1973)  and the wavelet transform (Kulesh et al., 2005; Holschneider et al., 

2005) for group velocity. One of the objectives of this thesis is to develop mathematical models 

to estimate the phase and group velocities for surface wave studies. Chapter 2 presents a 

mathematical model (Askari and Ferguson, 2012) based on the generalized S transform 

(Pinnegar and Mansinha, 2003a) to estimate wave propagation parameters (phase velocity, group 

velocity and the attenuation function) for a highly dispersive medium and noisy data. A scaling 

factor is used in the generalized S transform to enable the application of the method in highly 

dispersive meda. In order to improve the method, two cost functions in the generalized S 

transform domain are introduced. The first cost function estimates an optimum value for the 

scaling factor.  The second cost function generalizes the application of the method to noisy data, 

especially data with a low signal to noise ratio at low frequencies where the wave number is 

perturbed. As a remedy, wave number perturbation is estimated by minimizing the cost function 

using Simulated Annealing. Synthetic and real data examples are presented to show the 

efficiency of the method for the estimation of propagation parameters of highly dispersive media 

and noisy data. 

Chapter 3 presents a new approach for the estimation of the group velocity of multi-

modal surface waves. Though the method introduced in Chapter 2 is robust especially where the 

surface wave is highly dispersed, parameterization within the method becomes ambiguous when 

the surface wave is multi-modal. Multi-modal means for any frequency, surface wave does not 

travel with a unique velocity; surface wave travel with different, distinct and discrete velocities 

that satisfies equation 1.3. This can make the analysis of surface waves difficult (Herrmann 

1973). Based on the generalized S transform domain, slant stacking is implemented to identify 
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the linear events that correspond to multi-modal surface waves. To ensure optimal resolution, a 

scaling factor into the generalized S transform is introduced to control spectral localization. We 

find that a smaller scaling factor should be chosen for low frequency surface waves, whereas, for 

higher frequencies, a larger scaling factor should be chosen. We show the application of the 

method to the estimation of the group velocity for synthetic and real data, and we also estimate a 

near surface shear wave velocity model for the real data based on our estimated group velocity. 

We find that the model is well matched to another model separately obtained from an estimated 

phase velocity.     

Chapter 4 presents a new approach enlarged upon the idea of CMP Cross-Correlation of 

Surface Waves (CCSW) to compute receiver static corrections for converted waves. We need an 

accurate shear wave velocity model of the near surface to address receiver static corrections for 

converted waves. Each trace of a shot record is cross-correlated with a reference trace that is 

selected from within the shot gather based on a high signal to noise ratio.  This step removes the 

source effect (the initial phase of a source). New midpoints that relate to the correlated traces are 

then calculated. We calculate the phase velocity for each CMP gather, and we convert the 

resulting dispersion curve to a vertical shear wave velocity through an inverse procedure 

(Conjugate Gradient (Appendix B) for example). Our approach is faster than the conventional 

CCSW because in the conventional CCSW all traces within a CMP gather are cross-correlated 

with each other which is computationally expensive. In this chapter, we show that in order to 

have a precise estimation of dispersion curve, we only consider those traces which lie in a special 

window. An optimum window length should be close (one to one and half times) to the 

maximum wavelength in a CMP gather. The window is the so-called aperture. If the aperture is 

too short, we see a low resolution image of dispersion curves which cause modal interference. 

When the aperture is optimum, we see a high resolution image of dispersion curves that avoid 

modal interferences. Therefore, not only does an appropriate aperture length improve dispersion 

curve estimation, but it also avoids the modal interference that is so disastrous in surface waves 

studies. 2D near surface shear wave velocity models are estimated for two real data sets. By 

decimating traces from the first dataset, we show that we can obtain a good trend of S-wave 

statics similar to those obtained from the original dense array data. This demonstrates that 

CCSW has a capacity to address static correction of converted waves when geophone spacing is 

wide. Using the second data set, the importance of wavelength dependent aperture is presented. 
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We obtain static corrections based on an S-wave velocity model obtained from CCWS and 

successfully apply them to the data. 

Chapter 5 summarizes and concludes the thesis. 

1.8 Software used in this thesis 

 All the codes I used in Chapters 2 and 3 to calculate the phase and group velocity were 

written in MATLAB. I also wrote a code for the calculation of the phase velocity using the phase 

shift method and Conjugate Gradient method in Matlab. I used Computer Programs in 

Seismology developed by Dr. Robert Herrmann from the Saint Louis University to compute the 

theoretical phase velocity for a given geological model. The software is free and open-source, 

and can be found at http://www.eas.slu.edu/eqc/eqccps.html. The initial steps in the processing 

of the Priddis and Hussar data such as applying different filters to the data in order to preserve 

ground roll, which is considered as signal in this thesis, were accomplished in PROMAX in 

collaboration with Dr. Helen Isaac. I collaborated with Dr. Isaac in her use of PROMAX to apply 

the calculated S-wave static corrections to the stacked data, and to perform velocity analysis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.eas.slu.edu/eqc/eqccps.html
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Chapter Two: Dispersion and the Dissipative Characteristics of Surface Waves in the 

Generalized S Transform Domain 

2.1 Overview 

Wavenumber, group velocity, phase velocity, and frequency-dependent attenuation 

characterize the propagation of surface waves in dispersive, attenuating media. We use a 

mathematical model based on the generalized S transform to simultaneously estimate these 

characteristic parameters for later use in joint inversion for near-surface shear wave velocity. We 

use a scaling factor in the generalized S transform to enable the application of the method in a 

highly dispersive medium. We introduce a cost function in the S-domain to estimate an optimum 

value for the scaling factor. We also use the cost function to generalize the application of the 

method for noisy data, especially data with a low signal-to-noise ratio at low frequencies. In that 

case, the estimated wavenumber is perturbed. As a solution, we estimate wavenumber 

perturbation by minimizing the cost function, using Simulated Annealing. We use synthetic and 

real data to show the efficiency of the method for the estimation of the propagation parameters of 

highly dispersive and noisy media. 

2.2 Introduction 

The accurate estimation of shear wave (S-wave) velocity for near surface material such as 

soil, rocks, and pavement is important for many engineering and environmental purposes, as 

shear wave velocity is one of the essential properties used in stiffness coefficient determination 

(Xia et al., 2002a). Though seismic refraction methods are widely used for shear wave velocity 

studies (Palmer, 1980), they fail to estimate S-velocity where geological structure is complex 

(Xia et al., 2002c) or where a hidden layer (a layer whose velocity is less than its upper layer) is 

present (Sheriff and Geldart, 1986). 

An alternative to refraction analysis is surface wave analysis. Surface wave analysis is a 

well-known procedure in which the phase or group velocity of dispersive surface waves is 

inverted to estimate the shear wave velocity structure (e.g. Evison et al., 1959; Stokoe et al., 

1988; Keilis-Borok, 1989; Lay and Wallace, 1995; Xia et al., 1999). The usefulness of surface 

waves lies in their interaction with elastic discontinuities in the subsurface. Velocity varies with 

wavelength, where discontinuities are in the order of wave lengths (Park et al., 1999a). This 
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variation, known as dispersion, is observable on seismic records as a change in the period of 

successive wave cycles with time (Kennett, 1983). 

Shear wave velocity is estimated from the inversion of the frequency-dependent phase 

and group velocity. Therefore, analyzing dispersion data to link phase and group velocity to 

frequency is a crucial step. Some algorithms have been developed to address these issues in 

different transform domains, such as the Fourier phase spectrum analysis (Sato, 1955), the FK 

transform (Yilmaz, 1987), the ω−p transform (McMechan and Yedlin, 1981) the phase shift 

(Appendix C, Park et al., 1998), the wavelet transform (Holschneider et al., 2005; Kulesh et al., 

2005; Kulesh et all, 2008), the slant stack (Xia et al., 2007) and the linear Radon transform (Luo 

et al., 2009) for phase velocity and narrow band-pass filtering (Herrmann, 1973), and the wavelet 

transform (Holschneider et al., 2005; Kulesh et al., 2005) for group velocity. 

In this study, the generalized S transform (Pinnegar and Mansinha, 2003a) is used to 

estimate wave propagation parameters (the wavenumber, phase velocity, group velocity, and the 

attenuation function) for a highly dispersive medium and noisy data. The advantage of the S 

transform (Stockwell et al., 1996) and its generalized versions (e.g. Mcfadden et al., 2002; 

Pinnegar and Mansinha, 2003a; Pinnegar and Mansinha, 2003b; Pinnegar and Mansinha, 2004) 

lies in the fact that it provides frequency-dependent resolution while maintaining a direct 

relationship with the Fourier spectrum. Using this property, wavenumber and phase velocity are 

obtained directly from the absolute phase value of the ridges of the S-domain, and group velocity 

is computed from the time difference of the ridges of the transform. Frequency-dependent 

attenuation is estimated by the relative amplitudes of the ridges of the transform. Kulesh et al. 

(2005) and Holschneider et al. (2005) propose a method for the estimation of the characteristic 

parameters of moderately dispersive surface waves based on the wavelet transform. Using a 

scaling factor introduced in the generalized version, we significantly improve estimation of the 

characteristic parameters of surface waves for highly dispersive data. Experimentally, we find 

that the estimated wavenumber is perturbed for noisy data when signal-to noise-ratio is small at 

low frequencies. As a remedy, we estimate wavenumber perturbation by minimizing a cost 

function using simulated annealing. 

Based on these cost functions we can obtain the wave propagation parameters from real 

data, according to the generalized S transform spectrum. An optimum value for the scaling factor 

can be estimated from a clean or relatively clean record for a data set. For other records, if 
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signal-to-noise ratio (S/N) is small at low frequencies, a wavenumber perturbation must be 

applied on the estimated wavenumber. The wavenumber perturbation is obtained using the 

second cost function. We show the application of the method for a real data example. 

2.3 Theory 

The S transform is a time-frequency spectral localization method that is similar to the 

short-time Fourier transform (Gabor, 1946). The Gaussian window in the S transform is a 

function whose width scales inversely with frequency and whose height scales directly with 

frequency. The S transform is given by Stockwell et al. (1996) as 

                                  [    ]      ∫     [ | |√             ]                                             (2.1) 

where, as an operator, S transforms h, which is a function of Ĳ into a function of frequency f and 

time t. Time t controls the position of the Gaussian window on the output time axis. In equation 

2.1 Ĳ denotes time, and the expression in between brackets is the frequency-dependent scalable 

Gaussian window. The scaling property of the Gaussian window is reminiscent of the scaling 

property of continuous wavelets (Mallat, 1999) because one period of the frequency f is always 

equal to one standard deviation of the window (Stockwell et al., 1996). The S transform, 

however, is not a wavelet transform because the oscillatory parts of the S transform “wavelet” 

(provided by the complex Fourier sinusoid) do not translate with the Gaussian window when t 

changes. As a result, the shapes of the real and imaginary parts of the S transform wavelet 

change as the Gaussian window translates in time. True wavelets do not have this property 

because their entire waveform translates in time with no change in shape (Pinnegar and 

Mansinha, 2003b). Phase measured by the S transform is the localized value of absolute phase 

with respect to the Fourier spectrum (Pinnegar and Mansinha, 2003a). Thus, the S transform is 

conceptually a combination of short-time Fourier analysis and wavelet analysis. 

A more general version of the S transform allows arbitrary variation in the window. The 

generalized S transform is (Pinnegar and Mansinha, 2003a) 

                                     [    ]        ∫                                                      (2.2) 

where the Gaussian window of  the S transform is generalized into the modeling window w 

whose width and shape are now a function of parameter p. A version of the generalized S 

transform that has particular usefulness in our analysis is defined using 
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                                                           | |√                                                                 (2.3)     

where, compared with the Gaussian window in equation 2.1, a scaling factor ı is introduced 

(Pinnegar and Mansinha, 2003a). Using ı, the generalized S transform is written as 

                            [    ]        ∫     | |√                                                                (2.4)    

where the scaling factor ı controls time-frequency resolution by changing the number of 

oscillations within the window. Figure 2.1 shows the Gaussian window for the scaling factors 

ı=1, 0.25, and 4 at a frequency of 10 Hz. When ı is smaller than one, the Gaussian window is 

tightened in the time domain and the time resolution increases. On the other hand, for ı larger 

than one, the Gaussian window is expanded in the time domain and, therefore, the frequency 

resolution increases. Figure 2.2a shows a signal that consists of three Ricker wavelets with 

central frequencies of 50 Hz at 0.25 s, 150 Hz at 0.50 s, and 250 Hz at 0.75 s, respectively. 

Figures 2.2b, 2.2c, and 2.2d show the generalized S transforms of the signal for ı=1, 0.25, and 4, 

respectively. Figure 2.2c presents a better time resolution at the cost of the frequency resolution, 

whereas Figure 2.2d presents a better frequency resolution. This phenomenon, as explained 

earlier, is pertinent to the time-frequency expansion of the Gaussian window, which is controlled 

by the scaling factor ı. The generalized S transform (equation 2.4) is uniquely linked to the 

Fourier transform of h (Pinnegar and Mansinha, 2003a): 

                      [    ]        ∫                                                                 (2.5) 

where α is a frequency variable and 

                                                         ∫                                                                    (2.6) 

is the Fourier transform of h   . 
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Figure 2.1 The Gaussian window at the frequency of 10 HZ for  =1 (the solid line),  =0.25 (the 

dashed line) and  =4 (the hashed line). 

 

 

Figure 2.2 (a) A signal. (b), (c) and (d) the generalized S transforms of (a) for  =1, 0.25 and 4 

respectively. 
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2.4 The Wave Propagation Operator 

If we assume a geometrical spreading correction to have been applied to the surface wave 

data, then the Fourier spectrum (  ) of the wavelet       recorded at station 2 can be expressed 

in terms of the Fourier spectrum (  ) of the wavelet       recorded at station 1 by 

                                                                                                                         (2.7)  

where      is an attenuation function, and      are spatial wavenumbers that control wave 

propagation from station 1 to station 2. These wavenumbers characterize the horizontal 

propagation of surface wave and are a function of elastic properties of the medium, and   is the 

distance between the two stations. This relation is written in the S domain as 

                   [     ]  ∫                                                                     (2.8) 

Klush et al. (2005) assume that attenuation function      and phase function      vary 

slowly with respect to the effective size of the spectrum of the wavelet transform. We make the 

same assumption for the generalized S transform in order to link the generalized S transforms of 

signals, which were recorded at different stations, to the wave propagation operators. For 

instance, for any fixed point (t, f) on the time-frequency plane, we may develop   and   around 

the central frequency f. Assuming, the wavenumber term      on the right-hand side of equation 

2.8 behaves linearly in the vicinity of f and attenuation function      is constant in that vicinity 

where the vicinity is defined by the width of the Gaussian window.  Therefore,        and        can be expressed 

                                                                                                                           (2.9) 

and 

                                                                                                              (2.10) 

where       indicates a frequency derivative of     . Upon inserting the above approximations 

into the integral (2.8), we obtain   [     ]        ∫                                                       
   

                                               ∫                                         

                                                             [  ]                                              (2.11) 
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where   [  ]               is the generalized S transform of h1 shifted by        . 

Considering 

                                                                          ,                                                        (2.12)   

where    is phase velocity that is the velocity of each frequency component of surface wave, and 

also 

                                                                            ⁄                                                       (2.13)  

where group velocity    is the velocity of a wave pocket (envelope ) of surface wave around 

frequency f, equation 2.11 is expressed as          

                              [     ]                        [     ](           )                    (2.14)                                                                                                          

Based on equation 2.14, any point at time-frequency plane (t, f) of station 2, is equivalent 

to the time shifted-frequency plane (t-       , f) of station 1 with a phase difference of             , and with an amplitude that is proportional to         that of station 1. Based on 

equation 2.14, it is possible to estimate the wavenumber, phase velocity, group velocity, and a 

frequency dependent attenuation from the generalized S transform. First of all, we find the time-

frequency distribution of surface wave on the generalized S transform plane. Then, for every 

frequency, we find the maximum amplitude (ridge) of the generalized S transform, its 

corresponding time and corresponding unwrapped phase. Thus, the group velocity can be 

obtained from the time difference of the ridges of the transforms, the wavenumber and phase 

velocity can be estimated with respect to the phase difference of the ridges, and a frequency 

dependent attenuation can be calculated from the amplitude ratio of the ridges. Figure 2.3 is 

given to show how to use equation 2.14 in order to obtain the propagation parameters. Figures 

2.3a and 2.3b are two synthetic traces recorded at two stations. Figures 2.3c and 2.3d show the 

amplitude spectra of the generalized S transform of station 1 and 2 respectively. Figure 2.3e and 

Figure 2.3f show their phase spectra respectively. At the first step, the ridges of the amplitude 

spectra of the transform are found (Figures 2.3c and 2.3d) at any specific frequency (here f 

=150Hz) with respect to the time axis. Attenuation is obtained as 

                                                   [              ⁄  ]  ,                                               (2.15)        

where     and    are the absolute, maximum amplitudes of the ridges of the stations receptively. 

Group velocity is obtained as 

                                                                                                                                  (2.16) 
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 where          (from Figures 2.3c and 2.3d) is the time difference between two ridges. 

Wavenumber      is computed  

                                                                    ⁄ ,                                                      (2.17)       

where    is the difference between the unwrapped phases at two ridges  (Figures 2.3e and 2.3f). 

Finally phase velocity is calculated using equation 2.12.  

Comparing equation 2.14 with that proposed by Kulesh et al. (2005) for the wavelet 

transform 

                   [     ]                                   [     ] (          )            (2.18)  

one observes that the phase velocity obtained from the generalized S transform is directly related 

to the phase spectrum because the phase in the generalized S transform is a localized value of the 

absolute phase with respect to the Fourier spectrum, whereas the phase in the wavelet transform. 

The phase in the wavelet transform is instant because the shapes of the real and imaginary parts 

of the wavelet do not change as the wavelet traverses the time axis, therefore the phase of the 

wavelet transform is different from the phase of the generalized S transform. Equation 2.14 takes 

advantage of calculating the phase velocity independently from the group velocity, so any error 

in calculating the group velocity does not impact on the estimation of phase velocity.  

At first glance, the assumption applied in equations 2.9 and 2.10 might lead us to the 

conclusion that any propagation parameter estimation based on the generalized S transform 

would make sense only for wave propagation in weakly dispersive media at low frequencies 

where there is a linear phase process. In cases where the medium is highly dispersive, and a 

signal has a wide band of frequencies, there is high uncertainty to accurately estimate amplitude 

and phase spectra of high frequencies due to low frequency resolution which is indicated by 

Heisenberg boxes (Mallat, 1999). However, the generalized S transform improves frequency 

resolution of high frequencies by selecting a larger value of  . So it provides a better estimation 

of amplitude and phase spectra of high frequencies. Thus it is able to estimate propagation 

parameters of surface wave for highly dispersive and attenuating media. 
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Figure 2.3 (a) and (b) Two synthetic traces. (c) The amplitude spectra of the first trace. (d) The 

amplitude spectra of the second trace. (e) The phase spectra of the first trace, and (f) the phase 

spectra of the second trace. The dashed line shows how the time and phase information of the 

ridges is estimated. 

 

Figure 2.4 shows a wavelet signal dispersed in a relatively high dispersive medium with a 

dominant frequency of 125 Hz. Geophone spacing is 250 m. As seen in Figures 2.5a-d 

wavenumber, phase velocity and attenuation obtained using scaling factor  =20 are poorly 

estimated for higher frequencies. This error implies the phase and amplitude spectra of high 

frequencies are poorly estimated. If a larger scaling factor is chosen, the Gaussian window 

expands in the time domain, and frequency resolution increases. So, we expect to improve results 

by choosing larger values for   for this example. The hashed lines in Figure 2.5 show the 

estimated propagation operators based on  =100. The wavenumber and phase velocity are now 

well estimated for all frequency components. The group velocity for lower frequencies (0-4 Hz) 
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is now poorly estimated due to low time resolution for low frequencies. But for higher 

frequencies, the result is acceptable. The estimated attenuation function is well computed for 

frequency ranges from zero to 220 Hz, and for frequency ranges from 220 Hz to 250 Hz, the 

attenuation function is underestimated. One approach to get a better estimation of the attenuation 

function is to select higher values of  . When a higher value of   is selected, the time resolution 

is weakened, so the possibility of the time-frequency overlap of higher modes increases. Thus, 

we are limited to choosing some specific values of   in practice. Since the time resolution 

decreases with  , there is a trade resolution for wavenumber and attenuation with that for group 

velocity. Therefore in general,   may not be chosen too large. To compare amplitude and phase 

spectra of signals based on different values of the scaling factor, the amplitude and phase 

spectrum of traces (1) and (7) for scaling factors  =20 and  =100 are shown in Figure 2.6. For 

any dataset, an optimum value for   is obtained using a cost function 

                       ‖            (            )                     ‖                     (2.19) 

where       is the calculated attenuation and       is the calculated wavenumber based on a 

specific value of   respectively,      is the generalized S transform of the i
th

 geophone,     is the 

generalized S transform of a reference geophone which could be the first geophone and Di is the 

distance between the reference and i
th

 geophones. Figure 2.7 shows the cost function for the data 

in Figure 2.4. As seen the cost function approaches zero for   larger than 70. It implies we 

should choose   larger than 70 to have good estimations of the attenuation and the wavenumber. 
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Figure 2.4 A wavelet signal dispersed in a relatively high dispersive medium recorded at 

different geophones.  

 

Figure 2.5 The estimated propagation model parameters based on the scaling factors  =20 and   

=100. (a) The wave number. (b) The phase velocity. (c) The group velocity. (d) The attenuation 

function. 
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Figure 2.6 (a) and (c) The amplitude spectrum; (b) and (d) the phase spectrum for traces 1 and 7 

respectively based on the scaling factor   =20. (e) and (f) the amplitude spectrum; (g) and (h) the 

phase spectrum for traces 1 and 7 respectively based on the scaling factor   =100. 
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Figure 2.7 The cost function for the data in Figure 2.4. 

 

Figures 2.8a and 2.8b show two dispersed synthetic data sets with different dispersivities. 

In the both models, a Ricker wavelet with a dominant frequency of 125 Hz is used as the seismic 

wavelet and geophone spacing is 250 m. Figures 2.8c and 2.8d show phase velocities for Figures 

2.8a and 2.8b respectively. Phase velocity for Figure 2.8a ranges from 760 m/s to 850 m/s 

whereas the phase velocity ranges for Figure 2.8b ranges from 800 m/s to 1400 m/s. Therefore 

the second data set is more dispersed in comparison with the first data set. However it is less 

dispersed than the data used in Figure 2.4 where its phase velocity varies from 850 m/s to 1950 

m/s. Figures 2.8e and 2.8f show the cost function for the both data sets respectively. The cost 

function for the first data converts to zero at   = 5 and for the second data converts to zero at   = 

22. It can be concluded that for higher dispersive media, a higher value of   should be chosen 

because when a medium is highly dispersive, the phase spectrum changes dramatically, therefore 

we have to increase the frequency resolution of the generalized S transform to correctly estimate 

the phase. In other words,   is a function of data dispersivity.   

Another approach that could be used is to include the updated group velocity in equation 

2.18. Using this approach, it is expected to have a cost function with a minimum instead of a cost 

function that approaches zero for infinite  . Therefore, the optimal   compromises for estimating 

the different parameters, instead of only for wavenumber and attenuation.  We do not use this 

approach because we experimentally have found that group velocity is less sensitive to   than 

the wavenumber and attenuation (Figure 2.5c). Moreover, this approach increases the 

computational cost. Equation 2.18 could be only applied for the ridges of the transforms in order 

to find the optimum value for   whereas the updated group velocity approach must be applied to 

any single point on the generalized S transform planes. Thus it is computationally expensive.     



30 

 

 

 

Figure 2.8 (a) and (b) Two different dispersed data sets; (c) and (d) the phase velocities for (a) 

and (b), respectively; (e) and (f) the cost functions for (a) and (b), respectively. 

 

2.5 Examples 

2.5.1 Synthetic Data Example 

To investigate the noise effect on the estimation of propagation parameters, two synthetic 

seismic records are analyzed. In order to generate these models, we use equation (2.7) with an 

assumed wavenumber and frequency dependent attenuation to calculate the Fourier spectrum of 

the signals at different stations. Then, by calculating the inverse of the Fourier transform, we 

obtain the synthetic signals in the time domain. We expect where the signal to noise ratio is small 
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at low frequencies, there is a wavenumber perturbation. Therefore the wavenumber and 

consequently phase velocity are not well estimated (the second model). The signal to noise ratios 

of the both models are equal to five. In the first model (Figure 2.9), a Gaussian wavelet with 

standard deviation 7 10
-3 

s is used. The additive noise is white Gaussian with a standard 

deviation of 1x10
-2 

s, and where the geophones are irregularly spaced. The average distance 

between two adjacent geophones, however, is set to be 200 m. In the second model (Figure 2.10) 

a Ricker wavelet with dominant frequency 22.5 Hz is used. All other parameters are identical 

with that used in the first model. The theoretical propagation parameters correspond to the solid 

lines in Figure 2.11. The dashed lines in Figure 2.11 are the estimated parameters obtained from 

the first model. As may be seen in Figure 2.11, the wavenumber and the phase velocity are well 

estimated in comparison with the theoretical values for the first model. The group velocity and 

the attenuation function are relatively well estimated around low frequencies where the Gaussian 

wavelet has more energy (Figure 2.12). The estimated group velocity, however, seems distorted 

around zero frequency. Because the calculated group velocities are highly distorted and poorly 

estimated around zero frequency, we do not calculate them for those frequency ranges in Figure 

2.11(c). As explained earlier, it can be referred to low time resolution at low frequencies. When 

the signal to noise ratio is small, the attenuation is poorly estimated. In model 1, there is a large 

difference (over 100%) between the estimated and theoretical attenuation coefficients around 25 

Hz. This can be explained with respect to the amplitude spectra of the Gaussian wavelet (Figure 

2.12). For the Gaussian wavelet most energy is concentrated around zero frequency therefore the 

signal to noise ratio becomes small at higher frequencies such as 25 Hz. Consequently the 

attenuation is poorly estimated at those frequencies. The dotted lines in Figure 2.11 are the 

estimated propagation parameters for model 2. The estimated wavenumber and phase velocity 

are not consistent with the theoretical values. The wavenumber of the model (km) can be 

expressed as approximately equal to the estimated wavenumber (ke) plus perturbation according 

to 

                                                                                                                                    (2.20) 

Equation 2.20 can be explained by the effect of noise at low frequency components where the 

signal to noise ratio is small because the Ricker wavelet has less energy at low frequencies 

(Figure 2.12). At those frequencies, initial values of phase (  ) are highly affected by noise, 

hence, when we unwrap the phase at low frequency, the phase calculation is affected by the 
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phase of the noise, consequently a constant    which is related to the phase of noise at low 

frequencies will be added to the calculated unwrapped phase. Therefore, phase difference 

between two geophones is not directly proportional to the wavenumber. The group velocity and 

the attenuation function are better estimated around frequency 22.5 Hz where signal to noise 

ratio is high. The group velocity is more highly distorted around zero frequency due to the small 

amount of signal to noise ratio and also low time resolution at low frequencies. 

 

Figure 2.9 A noisy synthetic seismic record with a dispersive Gaussian wavelet. 
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Figure 2.10 A noisy synthetic seismic record with a dispersive Ricker wavelet. 

 

Figure 2.11 The propagation model parameters. (a) The wavenumber. (b) The phase velocity. (c) 

The group velocity. (d) The attenuation function. 
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Figure 2.12 The amplitude spectrum of the Gaussian wavelet (the dashed line) and the Ricker 

wavelet (the dotted line). 

 

 The problem can be solved using the least squares solution by finding an appropriate 

value for wavenumber perturbation  . The assumption is | |  1. The cost function is to be 

minimized is 

                          ‖            (            )                            ‖      (2.21) 

where      is the generalized S transform of the i
th

 geophone,     is the generalized S transform 

of a reference geophone which in this study the first geophone is assumed as the reference and Di 

is the distance between the reference and i
th

 geophones. Figure 2.13 show the error function for 

0< <.1. The cost function is highly non-linear and has a lot of local minima, so it is impossible 

to solve it using some gradient methods such as Steepest Descent or Conjugate Gradient. In this 

chapter, Simulated Annealing (Beaty et al., 2002) is used to find an optimum value for epsilon. 

Each step of Simulated Annealing replaces the current solution by a random "nearby" solution, 

chosen with a probability that depends on the difference between the corresponding cost function 

values and on a global parameter (called the temperature), that gradually decreases during the 

process. For the second model, the optimum value of   = 1.89×10
-3

 is obtained.  Figure 2.14 

shows the wavenumber and the phase velocity corrected based on the computed value for 

epsilon. The corrected wavenumber and corrected phase velocity match very well with that of 

the theoretical.  
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 The reason why the geophones are assumed to be irregularly spaced is that for distances 

larger than 100 m, it is possible to find many values of small epsilons minimizing equation 2.21. 

For instance, if the distance between two adjacent geophones is 100 m, “     ” will give the 

same amount of error as epsilon because the multiplication of .01 by the distance will produce an 

integer multiple of 2 . Therefore in order to have a unique value for epsilon where geophone 

spacing is more than 100 m, data must be irregularly sampled.  

 

Figure 2.13 The cost function for 0<ε<.1 

 
Figure 2.14 (a) The wavenumber. (b) The phase velocity corrected based on computed optimum 

value for ε. 
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2.5.2 Real Data 

 The real data used in this study was acquired from the foothills of the Canadian Rocky 

Mountains, southern Alberta at the University of Calgary’s Rothney Astrophysical/Geophysical 

Observatory. The source is an IVI Envirovibe (18,000 lb) sweeping from 10 to 250 Hz with an 

eleven second listen time and a four times vertical stack. The receivers are 10 Hz 3-C geophones. 

We use the vertical component for ground roll dispersion analysis. Figure 2.15 (solid lines) 

shows the real data consisting of dispersive ground roll with sampling frequency 1000 Hz and 

sampling distance one meter. Figure 2.16 shows the estimated propagation parameters obtained 

from the generalized S transform processing. The estimated phase, group and attenuation are in a 

reasonable range for near-surface materials (.e.g. Xia et al., 2002c, Kulesh et al., 2005, 

Holschneider et al., 2005). We note here that the calculated attenuation is comparable with some 

near surface study results for these ranges of frequency (.e.g. Xia et al., 2002c, Kulesh et al., 

2005, Holschneider et al., 2005). There are some small fluctuations on the calculated attenuation 

which can be referred to the effect of noise. We see this effect (small fluctuations on the 

calculated attenuation) on the synthetic data example too. The attenuation at 30 Hz is smaller 

than that at 15 Hz. It can be concluded that there is a near surface layer with smaller attenuation 

than deeper layers. The estimated group velocity at the frequency ranges from 15 Hz to 35 Hz 

differs significantly from the phase velocity. The estimated group velocity is less than the phase 

velocity. The trend of the group velocity is also different from that of the phase velocity. Other 

authors report similar group velocity ranges and trends for near surface studies (e.g. Kulesh et 

al., 2005 and Holschneider et al., 2005). For visual comparison, we generate synthetic traces for 

each geophone location. We use trace 1 (from geophone 1) as the source term, and we estimate 

traces for geophones 2 through 10 based on the inversion estimates of attenuation and 

wavenumber. The predicted traces (the hashed lines in Figure 2.15) are well matched to the real 

data implying good estimations of the wavenumber and attenuation function.  
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Figure 2.15 The real data (the solid lines) and the predicted (the hashed lines). 

 
Figure 2.16 Estimated propagation model parameters of the real data. (a) The wavenumber. (b) 

The phase velocity. (c) The group velocity. (d) The attenuation function. 
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2.6 Conclusions 

 In this chapter we use a mathematical model to link the time-frequency spectrum of a 

signal based on the generalized S transform to its propagation parameters (wavenumber, phase 

velocity, group velocity and attenuation function) in dispersive and attenuating media. The S 

transform and its generalized versions provide frequency-dependent resolution while maintaining 

a direct relationship with the Fourier spectrum. Using this property, wavenumber and phase 

velocity are obtained directly from the absolute phase value of the ridges of the S domain. Group 

velocity is also computed from the time difference of the ridges of the transform. Finally, 

frequency-dependent attenuation is estimated by the absolute amplitudes of the ridges of the 

transform. The advantage of the generalized S transform over the S transform lies in the fact that 

it manipulates time-frequency resolution in the S domain using a scaling factor. Therefore results 

can be improved, especially for a highly dispersive and dissipative medium. According to the 

results of the synthetic data, for a highly dispersive medium, a larger value of the scaling factor 

must be chosen. In general, estimated parameters are more reliable where signal to noise ratio is 

high. However, group velocity estimated for frequency ranges (0-5) Hz is not satisfactory due to 

low time resolution of the transform at low frequencies. This limits the ability of the method to 

determine the group velocity at mentioned frequency ranges for station separations typical in 

near-surface exploration. 

 In reality, a seismic signal usually consists of several modes of surface waves. If time-

frequency spectrum of different modes of the signal in the S domain is well separated, it is quite 

possible to simultaneously extract the propagation factors of different modes with respects to 

their time-frequency distributions. However, we are usually limited to choosing an appropriate 

scaling factor due to overlapping time-frequency spectrum of different modes for specific values 

of the scaling factor. We introduce a cost function to estimate a minimum optimum value for the 

scaling factor. We could make decision what ranges of the scaling factor should be chosen based 

on the minimum value of the scaling factor and also overlapping time-frequency spectrum of 

different modes.  

Experimentally we find that estimated wavenumber is perturbed for noisy data when 

signal to noise ratio is small at low frequencies. As a remedy, we estimate wavenumber 

perturbation by minimizing a cost function using Simulated Annealing. For receiver spacing 
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larger than 100m, receivers must be irregularly deployed to have a unique answer for the cost 

function. 
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Chapter Three: Group Velocity Estimation by Slant Stack in the Generalized S Transform 

Domain 

3.1 Overview 

We present a new method by which we estimate surface-wave group velocity using 

surface wave dispersion curves. Based in the generalized S transform domain, we use slant 

stacking to identify the linear events that correspond to multi-modal surface waves. To ensure 

optimal resolution, we introduce a scaling factor into the generalized S transform that we use to 

control spectral localization. We find that, a smaller scaling factor should be chosen for low 

frequency surface wave, whereas, for higher frequencies, a larger scaling factor should be 

chosen. We show the application of the method for the estimation of the group velocity for 

synthetic and real data, and we also estimate a near surface shear wave velocity model for the 

real data based on our estimated group velocity. We find that the model is well matched to 

another model separately obtained from a phase velocity estimated.     

3.2 Introduction 

Askari and Ferguson (2012) estimate the phase and group velocity of surface waves 

simultaneously through a mathematical model that is based on the generalized S transform 

(Pinnegar and Mansinha 2003). Though Askari and Ferguson’s (2012) method is robust 

especially where the surface wave is highly dispersed, parameterization within the method 

becomes ambiguous when the surface wave is multi-modal. Multi-modal means that there is 

more than one mode in short period surface wave data, and this can make the analysis of surface 

waves difficult (Herrmann 1973).  

Following Pinnegar and Mansinha (2003a), we note that the generalized S transform 

returns a three dimensional analysis domain (time, frequency and offset) when given a two 

dimensional gather (a shot gather for example). At each constant frequency f in the time, 

frequency and offset domain, we have a 2D common frequency gather in time and offset 

coordinates, and multi-modal surface waves appears there as linear events. The group velocity of 

each member of this set of multi-modes (the fundamental mode plus the higher modes) 

corresponds to the apparent velocity of the linear events. To estimate each linear velocity, we use 

slant stacking (Yilmaz, 1987) to transform the time and offset coordinates to intercept time and 

slowness coordinates. The fundamental and higher modes intercept at time T=0, so the group 

velocity of each mode at each frequency is determined by picking the slowness and then 
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calculating the inverse of the picked slowness. Using this process, we create a 2D image of the 

group velocity for all ranges of frequency.  

A convenient property of the generalized S transform is its spectral localization and this 

is optimized through the use of a scalar. This localization allows us to manipulate the time-

frequency resolution of the transform and therefore the group velocity resolution. We find that a 

small scalar enhances the time resolution of the transform, and we use this property to optimize 

the group velocity estimation for the low frequency components of the surface waves. 

Conversely, we find that a large scaling factor improves the frequency resolution of the 

transform and we use this to optimize the group velocity estimation for the high frequency 

components of surface waves. In this chapter, we demonstrate the application of our slant stack 

method using synthetic and real data examples, and we also estimate a near surface shear wave 

velocity model for the real data based on our estimated group velocity. We find that the model is 

well matched to another model separately obtained from through the inversion of the phase 

velocity.   

3.3 The generalized S transform and the wave propagation operator 

As mentioned in Chapter 2, the S transform (Stockwell et al., 1996) is very similar to the 

familiar Gabor transform (Gabor, 1946). It provides a time dependent frequency distribution of a 

signal, and a Gaussian window is utilized for spectral localization. The S transform differs from 

the Gabor transform, in that the Gaussian window is scalable with frequency, and we use this 

property to enhance the time-frequency resolution. We can generalize the S transform in order to 

manipulate the time-frequency resolution (Pinnegar and Mansinha, 2003a). In this chapter, we 

use the same version of the generalized S transform used in Chapter 2 in order to estimate the 

group velocity of multi-modal surface wave. 

Following Askari and Ferguson (2012), the generalized S transform of the signal at 

station 2 is linked to the signal at station 1 according to equation 2.14. Based on equation 2.14, 

any point in the time-frequency plane (t, f) of station 1 is equivalent to the time shifted-frequency 

plane (t-       , f) of station 2 and a phase difference of             , and the amplitude at 

station 2 is proportional to         times the amplitude of station 1 (Askari and Ferguson, 2012). 

Thus, the group velocity can be obtained from the time difference of the ridge of the transforms 

for any frequency (Askari and Ferguson, 2012). As an example in Chapter 2, Figures 2.3a and 

2.3b show two synthetic traces for two stations, and Figure 2.3c and Figure 2.3d show their 
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amplitude spectra respectively. The ridges of the amplitude spectra of the transform are picked 

(Figures 2.3c and 2.4d) for any specific frequency (here f =150 Hz) with respect to the time axis. 

The group velocity is then obtained from equation 2.16.  

In reality, a seismic record is composed of multi-modal surface waves, and the estimation 

of the group velocity is not as straightforward as equation 2.16. Therefore, in order to apply the 

method to multi-modal data, we introduce the slant stack generalized S transform.  

3.4 The slant stack generalized S transform  

A wavefield such as a common shot gather can be transformed from the offset-time 

domain to the intercept time-slowness domain by applying linear moveout to the data gather   

and summing amplitudes over the offset axis (Yilmaz, 1987). The linear moveout step is  

                                                                                                                        (3.1) 

where   is intercept time,   is slowness and the stacking step is  

                                                              ∑                                                        (3.2) 

where   is the slant stack of the data. Using the slant stack, we can estimate the apparent 

velocities or slownesses of linear events with respect to their intercept times.  We use this 

property in the generalized S transform to estimate the group velocities of multimodal surface 

wave. If we calculate the amplitude spectrum of the generalized S transform of all traces in a 

record, we make a cube whose axes are time, offset and frequency (Figure 3.1). If we cut off the 

frequency axis at any frequency (the red line in Figure 3.1), there is a 2D amplitude function of 

time and distance which is relatively similar to a seismic record. We call the 2D amplitude 

function a pseudo-seismic record. We empirically find that at each pseudo-seismic record, multi-

modal surface waves can be observed as linear events. According to equation 2.14, the relative 

time differences of the ridges of the amplitude spectrum of the generalized S transform of the 

surface wave at different stations provide the group velocity information. Therefore, the apparent 

velocities of the linear events correspond to group velocities and we can estimate the group 

velocity of the multi-modal surfaces by slant-stacking the pseudo-seismic record. In this study 

we call this approach "Slant Stack Generalized S transform Method". 
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Figure 3.1 A cube whose axes are time, frequency and distance. The generalized S transform 

returns a three dimensional analysis domain (time, frequency and distance) when given a two 

dimensional gather (a shot gather for example). 

 

Figure 3.2 shows a synthetic record composed of bimodal surface wave. We use the 

approach in 2.5.1 to generate the synthetic data. The amplitude spectrum of the generalized S 

transform is calculated for the first trace (Figure 3.3a). For any specific frequency such as 50Hz 

(in the amplitude spectrum of the generalized S transform), we observe a one dimensional 

amplitude function of time which relatively looks similar to a seismic trace (Figure 3.3b). We 

call this amplitude function a pseudo-seismic trace. By calculating the generalized S transform 

for all traces and putting together all of the pseudo-traces from them, we make a pseudo-seismic 

record for that frequency (Figure 3.4). According to Figure 3.4, the apparent velocity of the 

surface wave can be estimated by applying the slant stack transformation. Figure 3.5a shows the 

slant stack of the pseudo-seismic record in Figure 3.4. We show the slant stack in the intercept-

time-velocity domain instead of the intercept-time-slowness domain for giving a better 

understanding of the velocity ranges of the group velocity. Because surface waves are generated 

and initiated from a source point, all harmonics from different modes (the fundamental mode 

plus higher modes) intercept at T=0. Therefore, we can estimate the group velocity for any 

frequency based on the estimated velocity at T=0 in the slant stack domain (Figure 3.5b). The 
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group velocities of the fundamental and first higher modes are 180 m/s and 550 m/s respectively. 

There is increased uncertainty in the estimated velocity of the first higher mode because, when a 

linear event has a higher velocity, the slant stack provides more velocity uncertainty (Yilmaz, 

1987). We make a 2D image of the group velocity of the surface wave by putting together all the 

velocities, estimated at intercept time T=0, for all frequencies. Figure 3.6 shows the group 

velocity of the record in Figure 3.2 based on the scaling factor ı=2. The group velocity is well 

estimated for frequencies smaller than 120Hz because the local maxima of the group velocity are 

well matched to the theoretical values of the group velocity (the solid line). However, the 

estimated group velocity for frequencies larger than 120Hz is overestimated. This is due to the 

frequency uncertainty of the generalized S transform at higher frequencies and this can cause 

error in our estimates of the ridges within the transform. In order to better estimate the group 

velocity for higher frequencies, a larger scaling factor should be chosen. Figure 3.7 shows the 

group velocity based on a scaling factor ı=7. In this case, the group velocity for higher 

frequencies is better estimated comparatively with the case ı=2 because there is a better match 

between the local maxima of the group velocity and the theoretical values of the group velocity 

(the dashed line). However, at low frequencies, especially for frequencies below 50 Hz, the 

group velocity resolution is weakened due to the low time resolution of the generalized S 

transform for low frequencies for larger scaling factors. Figure 3.8 shows the group velocity 

based on the scaling factor ı=20. The estimated group velocity is now better estimated compared 

to that of the scaling factors ı=2 and ı=7, but, for low frequencies, the resolution is weaker. 

Therefore, there is a tradeoff between the group velocity resolution of low frequencies when a 

small scaling factor is chosen and that of high frequencies when a large scaling factor is chosen.  
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Figure 3.2 A synthetic data containing a two modal surface wave. 

 

Figure 3.3 (a) The amplitude spectrum of the generalized S transform of the first trace in Figure 

3.2. (b) Time representation of the amplitude spectrum of the generalized S transform at the 

single frequency 50Hz. 
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Figure 3.4 A pseudo-seismic record based of the generalized S transform of the traces of the 

record in Figure 3.2 at Frequency=50Hz. 
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Figure 3.5 (a) The slant stack of the pseudo-record in Figure 3.4. (b) Single representation of the 

slant stack at intercept time T=0. 
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Figure 3.6 The estimated group velocity for the record in Figure 3.2 based on the scaling factor 

ı=2. The solid and dashed lines correspond to the theoretical values. 

 

Figure 3.7 The estimated group velocity for the record in Figure 3.2 based on the scaling factor 

ı=7. The solid and dashed lines correspond to the theoretical values. 
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Figure 3.8 The estimated group velocity for the record in Figure 3.2 based on the scaling factor 

ı=20. The solid and dashed lines correspond to the theoretical values. 

 

3.5 Real data 

The real data were acquired in September 2011 by (Consortium for Research in Elastic 

Wave Exploration Seismology, University of Calgary) CREWES, near Hussar, Alberta, Canada. 

The survey was originally designed to test the use of different sources and receivers to 

investigate the extension of the seismic bandwidth in the low frequency range (Margave et al., 

2011). 10 Hz geophones were spaced at 10 meter intervals along the line. A vibroseis source 

with a linear sweep from 1 Hz to 100 Hz, and listening time at 10 s was used.  

Figure 3.9 shows a shot record containing multimodal ground roll. Since most ground roll 

energy is confined to the frequencies from 0 to 35 Hz (Figure 3.10) and with respect to our 

synthetic data results that a small scaling factor for low-frequency surface wave should be 

chosen, we choose a scaling factor of 2 to obtain the group velocity of the record. Figure 3.11 

shows the group velocity obtained from the record using the slant stack generalized S transform 

based method. There are two distinct trends of the group velocity. The first trend contains 

frequencies of 3.5 Hz to 12 Hz and its velocity ranges from 130 m/s to 160 m/s, and the second 

trend contains frequencies from 9 Hz to 15 Hz with a velocity of around 200 m/s. The first trend 

can be referred to as the fundamental mode, and the second trend can be referred to as the first 
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higher mode. In order to verify the reliability of the group velocity of the real data, we calculate 

the phase velocity for the record and invert the fundamental mode phase velocity to an S-wave 

velocity model. We repeat the process for the group velocity as well to see whether two S-wave 

velocity models are in agreement with each other because the group velocity is linked to the 

phase velocity by 

                                              [             ],                                            (3.3) 

therefore we expect to obtain similar S-wave velocity models from the inversion of the phase and 

group velocities if the estimated group velocity in Figure 3.11 is reasonable enough. 

Figure 3.12 shows the phase velocity obtained from the phase shift method (Appendix C, 

Park et al., 1998). Similar to the group velocity, two trends of the phase velocity are observable 

on the phase velocity image. The first trend ranges from frequencies of 3.5 Hz to 12 Hz while its 

velocity ranges from 400 m/s to 200 m/s, and the second trend ranges from 9 Hz to 15 Hz while 

its velocity ranges from 400 m/s to 300 m/s respectively. Again, we can regard the first trend as 

the fundamental mode and the second trend as the first higher mode. The estimated group 

velocity is less than the phase velocity which is well accordant with other observations (e.g. 

Kulesh et al., 2005; Holschneider et al., 2005; Askari and Ferguson, 2012). 

 

Figure 3.9 Real data used in this chapter. 
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Figure 3.10 The average amplitude spectrum of the record in Figure 3.9. 

 

Figure 3.11 The estimated group velocity for the record in 3.9 based on the scaling factor ı=2. 

The fundamental mode of the group velocity is picked (the dashed line) for the inversion. 
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Figure 3.12 The estimated phase velocity for the record in Figure 3.9. The fundamental mode of 

the phase velocity is picked (the dashed line) for the inversion.  

 

We try to obtain an S-wave velocity model based on the phase and group velocities of the 

fundamental mode using an inverse procedure. As mentioned in Chapter 1, we can forward 

model dispersion curves (either phase or group velocities) for any geological 1D model using 

Knopoff’s method (Schwab and Knopoff, 1972). Using equation 1.3, we optimize an initial 

model using the Conjugate Gradient method (Appendix B, Zeidouni, 2011). The initial model is 

calculated from the phase velocity using the formula derived in Xia et al. (1999) 

                                                                                                                                    (3.4) 

where    denotes the phase velocity,    denotes the S-wave velocity,   denotes frequency, and   

denotes depth which is determined by 

                                                                      [      ].                                                           (3.5)                            

We assume the subsurface to be composed of layers with constant thicknesses of 4 m. Since the 

maximum wavelength is 90 m, the maximum depth of investigation is assumed to be about 45 m 

(the half of the maximum wavelength (Xia et al., 1999)). Equation 1.3 is not very sensitive to the 

density and P-wave velocity (Askari et al., 2012). Therefore, we can assign some reasonable 

values of the density and P-wave velocity in the inversion and accomplish the inverse procedure 

based on the S-wave velocity only. The density is assumed to be 2200 kg/m
3
 for all the layers. 
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We can obtain an estimate of P-wave velocity in our inversion from the S-wave velocity as a 

function of the Poisson ratio 

                                                                              .                                                       (3.6) 

Here   denotes the Poisson ratio. Although the Poisson ratio is not constant for the near surface, 

we can assign a constant value for the Poisson ratio in equation 3.6 to be implemented in 

equation 1.3 because equation 1.3 is not very sensitive to the variation of P-wave velocity and an 

estimate of P-wave velocity is enough. We assume the Poisson ratio to be 0.45 which is 

commonly observed for the near surface (e.g. Ivanov et al., 2000). Using the above parameters, 

we optimize the model based on the inversion of the phase velocity and the group velocity.  

Figure 3.13 shows the observed (solid lines) phase and group velocities, and the predicted phase 

and group velocities (dashed lines) through the inversion. Figure 3.14 shows two S-wave 

velocity models obtained from the phase and group velocities. Two models are very similar to 

each other and exhibit the same trend and approximate values of the S-wave velocity versus 

depth. Similarity of the two models implies that the group velocity is well estimated. This 

demonstrates the capability of the slant stack generalized S transform based method for the 

estimation for the group velocity. 

 

Figure 3.13 The observed and predicted phase and group velocities. 
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Figure 3.14 The estimated S-wave velocities for the record in Figure 3.9 based on the inversion 

of the group and phase velocities.  

 

3.6 Discussion 

Several studies confirm that the joint inversion of the phase velocities of the fundamental 

modes with higher modes results in better vertical resolution (e.g. Feng et al., 1995; Luo et al., 

2007). However, in practice, the joint inversion of the phase velocities of the fundamental modes 

with higher modes can be challenging because it is very hard to pick different modes in the 

presence of large velocity contrasts and/or hidden layers (O'Neill and Matsuoka, 2005). One of 

objectives of this study was to develop a method to estimate the group velocity of multi-modal 

surface wave to test whether the joint inversion of the phase and group velocities of the 

fundamental mode can provide a better vertical resolution. Luo et al. (2011) present sensitivity 

analyses of the phase and group velocities by implementing different models. They show the 

group velocity possesses a higher sensitivity and wider usable frequency ranges in comparison 

with the phase velocity. Although their analysis shows a potential of the group velocity to 

improve S-wave velocity estimation, their real data result of the group velocity does not exhibit a 

significant improvement in comparison with the phase velocity. They find that there is a less than 

15% difference between S-wave velocities estimated from the group and phase velocities. Our 
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results of the group and phase velocity inversion are in a good agreement with theirs. Based on 

our results, we are not able to confirm whether the joint inversion of the phase and group 

velocities results in a better vertical resolution. 

3.7 Conclusions 

The slant stack generalized S transform uses a slant stack in the time-frequency domain 

on the generalized S transform. The method is robust to estimate group velocity where surface 

wave is multi-modal. The resolution of the group velocity is manipulated by a scaling factor. 

When we choose a small value of the scaling factor, we properly estimate the group velocity of 

the low frequency surface wave. However, at high frequencies, the group velocity might be 

overestimated. This is explained by the frequency uncertainty of the generalized S transform at 

higher frequencies which results in a low frequency resolution. In order to increase the frequency 

resolution, we should widen the window in the time domain. When the window becomes wide in 

the time domain, the time resolution will decrease at low frequencies which consequently results 

in a low velocity resolution of low frequency surface wave. Therefore, there is a tradeoff 

between the resolution of low and high frequency surface wave. It is concluded where surface 

wave has a broad range of frequencies, different scaling factors with respect to the frequency 

content of surface wave should be chosen.  
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Chapter Four: Estimation of Converted Waves Static Corrections  Using CMP Cross- 

Correlation of Surface Waves 

4.1 Overview 

In order to compute receiver static corrections for converted waves successfully, we need 

an accurate shear wave velocity model of the near surface. To obtain a shear-wave velocity 

model, we have enlarged upon the idea of CMP Cross-Correlation of Surface Waves (CCSW). In 

our approach, we cross-correlate each trace of a shot record with a reference trace that is selected 

from within the shot gather based on high signal to noise ratio.  This step removes the initial 

phase of a source. New midpoints that relate to the correlated traces are then calculated. We 

calculate the phase velocity for each CMP gather, and we convert the resulting dispersion curve 

to a vertical shear wave velocity through an inverse procedure (Conjugate Gradient (Appendix 

B) for example). Our approach is faster than the conventional CCSW because in the 

conventional CCSW all traces within a CMP gather are cross-correlated with each other which is 

computationally expensive.  

In this chapter we show that, in order to have a precise estimation of a dispersion curve, 

we only consider those traces that lie in a spatial window and we found that the optimum 

window length (aperture) should be close (one to one and half times) to the maximum 

wavelength in a CMP gather. If the aperture is too short, we see a blurred image of dispersion 

curves and this causes modal interference. When the aperture is optimum, we see a high 

resolution image of each mode within the dispersion curve that avoids modal interferences. 

Therefore, not only does an appropriate aperture length improve dispersion curve estimation, but 

it also avoids the modal interference that can be so disastrous in surface waves studies (Strobbia 

et al., 2011). 

We obtain 2D near surface shear wave velocity models for two real data sets. By 

decimating traces from the first dataset, we show that we can obtain a good trend of S-wave 

statics relatively similar to those obtained from the original dense array data. This demonstrates 

that CCSW has a capacity to address static correction of converted waves when geophone 

spacing is wide. Using the second data set, we show the importance of wavelength dependent 

aperture for estimating the phase velocity. We obtain static corrections based on an S-wave 

velocity model obtained from CCWS and successfully apply them to the data. 
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4.2 Introduction 

Converted wave data acquisition, which provides more details about reservoirs, has been 

widely considering by industry in recent years. However, there are still many challenges that 

must be addressed. One of these is the S-wave receiver statics, which can be two to ten times 

greater than the P-wave receiver statics (Tatham and McCormack, 1991) due to the large       

ratio in the near surface.  

We can divide S-wave receiver static correction methods into two categories. One 

category is data-based methods, including the CRP stack-power optimization method (Cary and 

Eaton, 1993) and Monte-Carlo simulated annealing (Eaton et al. 1991). The CRP stack-power 

optimization method gives good results where geological structures are not complex, whereas 

Monte-Carlo simulated annealing gives a fairly good solution but is computationally expensive 

(Li et al., 2012).  

Another category is based on modeling the shear wave velocity. These methods are based 

on either refracted waves analysis (Frasier and Winterstein, 1990) or surface wave analysis (Park 

et al., 1999a). Although refracted waves analysis is a conventional method for the estimation of 

P-wave statics where a near surface velocity model is estimated, the method is ambiguous for S-

wave statics because S-wave refractions are hard to pick. Surface wave analysis is based on the 

inversion of the dispersion curve of ground roll, where the phase velocity as a function of 

frequency is inverted to an S-wave velocity model. The availability of ground roll as a 

predominant event in seismic data is utilized for the S-wave velocity estimation of the near 

surface.  

Spectral Analysis of Surface Waves (SASW) (Nazarian et al., 1983) is a method to 

estimate S-wave velocity for the near surface. The method is based on the inversion of the 

fundamental mode phase velocity of ground roll. There are pairs of shots and geophones. The 

geophone interval is determined with regard to the frequency range of ground roll. For higher 

frequency components, narrower geophone spacing is designated whereas for lower frequency 

components, wider geophone spacing is employed.  In order to have an improved signal to noise 

ratio, for any geophone spacing, there are two shots which are configured and reconfigured with 

respect to the midpoint of the geophones. Since the phase velocity and consequently the S-wave 

velocity are estimated with respect to a midpoint, the method provides good lateral resolution. 
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However, the method suffers from a low signal to noise ratio (because there are only two shots 

and receivers), and the effect of higher modes and other types of waves (P-waves for example). 

Multi-channel Analysis of Surface Waves (MASW) (Park et al., 1999a) is another 

method based on the analysis of dispersed ground roll. There is a shot and an array of geophones 

where the phase velocity of the ground roll is determined by transforming (e.g. by the phase shift 

method (Appendix C, Park et al., 1998)) the data from the time-offset domain to the frequency-

slowness (or velocity) domain. The estimated phase velocity and consequently the S-wave 

velocity are assigned to the point in the middle of the array. Generally speaking, a MASW 

survey is faster than an SASW survey in the terms of data acquisition and processing. MASW 

also provides a better signal to noise ratio and is less affected by ambient noise since several 

geophones are utilized in the processing (Hayashi and Suzuki, 2004). Therefore, MASW results 

in better dispersion curve estimates, but at the cost of lateral resolution because the phase 

velocity and the S-wave velocity are not determined with respect to a midpoint between shots 

and receives (Hayashi and Suzuki, 2004). In order to improve the lateral resolution in a MASW 

survey, smaller arrays should be used, but this reduces the resolution of the dispersion curve 

(Park et al., 1999b). Therefore, there is a tradeoff between the estimation of the dispersion curve 

and lateral resolution in MASW surveys. In practice, it is critical to compensate for this tradeoff. 

Especially in converted wave surveys, rapid spatial velocity variations in the weathering layer 

need to be resolved in order to compute an appropriate velocity model for static corrections. This 

requires both excellent quality phase velocity information as well as high spatial resolution.  

In this chapter, we have enlarged upon the idea of CMP Cross-Correlation of Surface 

Waves (CCSW Hayashi and Suzuki, 2004) to increase lateral resolution. In the Hayashi and 

Suzuki’s methodology, all traces within a common mid-point (CMP) are correlated with each 

other, traces with the same offset which belong the same CMP are stacked, and a dispersion 

curve is computed. Though this method provides good lateral resolution and a dispersion curve 

simultaneously, the process is computationally expensive. Therefore in our approach, to reduce 

cost, we cross-correlate each trace of a shot record with a reference trace selected from within 

the shot gather based on high signal to noise ratio.  This step removes the initial phase of a 

source. New midpoints that relate to the correlated traces are then calculated. We calculate the 

phase velocity for each CMP gather, and finally the dispersion curve is converted to a vertical 

shear wave velocity by an inverse procedure. By putting together all the vertical shear wave 
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velocity profiles of all the CMP gathers, a 2D image of shear wave velocity is obtained for the 

data set. Since in our approach only a reference trace is cross-correlated with other trace within a 

CMP gather, it is faster than the conventional CCSW where all traces within a CMP gather are 

cross-correlated with each other which is computationally expensive. 

In this chapter we use two data sets. The first data set was acquired by CREWES 

(Consortium for Research in Elastic Wave Exploration Seismology, University of Calgary) from 

a site near Priddis, Alberta, about 30 km southwest of the city of Calgary. The site of the survey 

is located at the eastern edge of the Rocky Mountain foothills. We show that in order to have a 

precise estimation of dispersion curve, the maximum relative offset, which we call the aperture 

length in this study, must be close to the maximum wavelength of ground roll. If the aperture is 

too short, we see a blurred image of dispersion curves which causes modal interference. When 

the aperture is optimum, we see a high resolution image of dispersion curves that avoids modal 

interferences. Therefore, not only does an appropriate aperture length improve dispersion curve 

estimation, but it also avoids the modal interference that can be so disastrous in surface waves 

studies (Strobbia et al., 2011).  By decimating the data, we show that we can obtain a good trend 

of S statics similar to the original data. This demonstrates that CCSW has a capacity to address 

static correction of converted waves when geophone spacing is wide. The second dataset was 

acquired in September 2011 by CREWES, near Hussar, Alberta, Canada. We show the 

importance of wavelength dependent aperture for estimating the phase velocity where there are 

wide ranges of wavelengths. We obtain static corrections based on an S-wave velocity model 

obtained from CCWS and successfully apply them to the data. We compare our static corrections 

result with another static corrections result obtained from PP refraction analysis scaled by 2.5 

(assuming Vp/Vs ratio to be 2.5 for the near surface), and we find significant improvement of 

reflector coherence in the shot domain. Using our method, subsequent NMO velocity analysis 

shows that we obtain a better estimation of NMO velocity after applying calculated static 

corrections to the data.  

4.3 Theory  

As discussed in Chapter 2, if we assume that a geometrical spreading correction has been 

applied to surface wave data, and       is the recorded signal at station 1, then the Fourier 

spectrum       of the signal        recorded at station 2 can be expressed in terms of the 

Fourier spectrum       of        by equation 2.7. Therefore, for any station such as station 3 we 
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can write its Fourier spectrum (  ) in terms of the Fourier spectrum of station 1 (   . For any 

frequency, the spatial wavenumber between    and    can be obtained by  

                                                                                           ,                                        (4.1) 

where    and    are the absolute phase spectra of stations 2 and 3 respectively and ∆x2,3=x3-x2 

is the distance between the two stations. 

If we cross-correlate    with   , the result is expressed in the Fourier domain as  

                                                                                                           (4.2) 

where     is the complex conjugate of    and ∆x1,2=x2-x1 is the distance between the two 

stations. Similarly, we can write the Fourier spectra of the cross-correlated traces of    and    in 

the terms of the Fourier spectrum of    (  ) and the relative distance between    and    

(x1,3=x3-x1). With respect to the Fourier spectrum of the cross-correlated traces, the spatial 

wavenumber between stations 2 and 3 can be also estimated by    

                                                                                                                                     (4.3) 

where    and  3 are the absolute phase spectra of the cross-correlated traces of stations 1 and 2 

and stations 1 and 3 respectively. Following calculation of the wavenumber ‘ ’, the phase 

velocity is obtained by equation 2.12. 

We use the approach expressed in equations 4.2 and 4.3 for the calculation of the phase 

velocity because the source effect (initial phase value) is removed and the data can be sorted into 

CMP gathers. Consequently, we calculate the phase velocity of traces in one CMP combined 

from different shots to localize our analysis spatially. In this study we use the phase shift method 

(Appendix C, Park et al. 1998) for the calculation of the phase velocity. The method is based on 

the estimation of the phase differences (shifts) of different traces for a range of frequencies and is 

able to estimate the phase velocity of multi-modal ground-roll (Appendix C). 

4.4 CMP Cross-Correlation of Surface Waves 

Hayashi and Suzuki (2004) introduce the idea of CMP Cross-Correlation of Surface Waves 

(CCSW) to increase lateral resolution. They correlate all traces within a common mid-point 

(CMP) with each other, traces with the same offset which belong the same CMP are stacked, and 

a dispersion curve is computed. This approach improves the lateral resolution while keeping a 

good resolution of dispersion curve imaging. Since a dispersion curve is measured with respect 

to a fixed mid-point, the method is similar to SASW, which gives good lateral resolution. The 
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dispersion curve is estimated by transforming multi-channel cross-correlated traces into the 

frequency-slowness (velocity) domain, which is similar to the idea presented in a MASW survey. 

Therefore the method takes the advantages of the two conventional methods for surface wave 

analysis. Though this method provides good lateral resolution and a dispersion curve 

simultaneously, the process is computationally expensive. Therefore in our approach, to reduce 

cost, we cross-correlate each trace of a shot record with a reference trace selected from within 

the shot gather based on high signal to noise ratio.  This step removes the initial phase of a 

source. New midpoints that relate to the correlated traces are then calculated. We calculate the 

phase velocity for each CMP gather, and finally the dispersion curve is converted to a vertical 

shear wave velocity by an inverse procedure. By putting together all the vertical shear wave 

velocity profiles of all the CMP gathers, a 2D image of shear wave velocity is obtained for the 

data set. 

4.5 Field Data 

We have used two converted-wave data sets in this study. The first data were acquired 

from a site near Priddis, Alberta, about 30 km southwest of the city of Calgary. The site of the 

survey is located at the eastern edge of the Rocky Mountain foothills. The 3C geophones are 

spaced at 2 m and the time sample interval is 1 ms. Vibroseis sources are spaced at 4 m, with a 

linear sweep from 10 Hz to 120 Hz, and a listening time of 10 s. Using this dense data set we 

explain the concept of aperture length, which plays an important role in successfully imaging 

dispersed cures for the estimation of the phase velocity. The dense geophone array in the Priddis 

data allows us to investigate effect of geophone interval on the shear wave velocity estimation 

and PS statics. By decimating the data we show how shear wave velocity and PS statics are 

affected by changing geophone interval.  

The second data set was acquired in September 2011 by (Consortium for Research in 

Elastic Wave Exploration Seismology, University of Calgary) CREWES, near Hussar, Alberta, 

Canada. The survey was originally designed to test the use of different sources and receivers to 

investigate the extension of the seismic bandwidth in the low frequency range (Margave et al. 

2011). 10 Hz geophones were spaced at 10 meter intervals along the line. A vibroseis source 

with a linear sweep from 1 Hz to 100 Hz, and listening time at 10 s was used. We show the 

importance of wavelength dependent aperture length for estimating the phase velocity for this 

data set. We successfully apply the calculated statics to the PS data. 



62 

 

4.6 Aperture Length (Priddis data) 

We select the reference trace for each shot gather at an offset of 30 m where the signal to 

noise ratio is high and wave propagation is planar (avoiding near offset effect) (Xia et al, 1999). 

The data are binned using a CMP bin size of 5 m to increase fold to allow for a more stable 

phase velocity analysis. Figure 4.1 shows traces in a bin where the maximum offset is 69 m and 

the maximum wavelength is about 40m. The maximum wavelength is calculated by analyzing 

the CMP gather with different maximum offsets. Figure 4.2 shows the phase velocity that is 

calculated for the data in Figure 4.1. We use the phase shift method (Appendix C, Park et al., 

1998) in this chapter to calculate the phase velocity. The maximum observed wavelength in this 

record is 40 m. There are three distinct patches of dispersion curves, which are indicated by 

letters ‘a’, ‘b’ and ‘c’. The first approach for the estimation of a phase velocity is to choose 

patches ‘a’ and ‘b’ as parts of the main patch of the dispersion curve because of their good 

apparent coherency. Applying this approach, we will pick the solid line in Figure 4.2 as the 

fundamental mode of the dispersion curve and consider patch ‘c’ as an artifact. An alternative 

approach is to choose patches ‘a’ and ‘c’ as parts of the main patch of the dispersion curve. In 

this case, the dashed line in Figure 4.2 is the fundamental mode of the dispersion curve and patch 

‘b’ is considered as the first higher mode of ground roll. Though the second approach seems to 

be more realistic, the apparent incoherency of patches ‘a’ and ‘c’ might make us hesitant to 

choose it. In order to evaluate both approaches, we shorten the maximum relative offset to 45 m, 

which is close to the maximum length of the observed wavelength in the data (40 m) and 

calculate the dispersion curve. Figure 4.3 shows the phase velocity. Here we see two distinct 

patches ‘a’ and ‘b’, where patch ‘a’ is the dispersion curve (the solid line) pertinent to the 

fundamental mode with a tangible coherency and patch ‘b’ is the dispersion curve (the dashed 

line) related to the first higher mode. It can be concluded from Figure 4.3 that choosing the 

optimum length of the window (Figure 4.4) for trace selection plays an important role in CCSW 

analysis. We call the window length ‘aperture length’ in this study. It facilitates the estimation of 

the dispersion curves (the fundamental mode and higher modes) while maintaining good lateral 

resolution.  
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Figure 4.1 Traces in a bin. 

 

Figure 4.2 The phase velocity for the record in Figure 1. 
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Figure 4.3 The phase velocity for the record in Figure 1 with aperture length 45 m. The solid line 

is the fundamental mode and the dashed line is the first higher mode. 

 

Figure 4.4 Concept of Aperture. When aperture length is 100 m, only those traces whose relative 

offsets are less than 100 m are considered for processing. 
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Figure 4.5 shows how dispersion curves evolve with respect to the aperture length. The 

aperture length increases from 4 m to 70 m in steps of 6 m. In the beginning, where the aperture 

is smaller than 20 m, a single crooked dispersion cure is observable (Figures 4.5a-c). Because the 

aperture length is not long enough with respect to the wavelength ranges, two modes (the 

fundamental and first higher) are superimposed. When the aperture length increases from 22 m 

to 34 m, we observe two modes more obviously (Figures 4.5d-f). This shows that dispersion 

curve image resolution improves with aperture increment. A good distinct image of two 

dispersion curves is observable in Figure 4.5g, where the aperture length is 40 m. Here the 

aperture length is equal to the maximum wavelength. High resolution images of dispersion curve 

are observed in Figures 4.5h-j, where the aperture lengths are 46 m, 52 m and 58 m. Dispersion 

curve resolution of the fundamental mode decreases when the aperture length increases from 64 

m to 70 m (Figures 4.5k-l). This can be explained by near surface lateral heterogeneity. When 

the aperture length is long with respect to the maximum wavelength, the near surface lateral 

heterogeneity causes wide ranges of phase velocity for each mode at each frequency. Therefore, 

dispersion curve coherency becomes weak. Based on our empirical observations obtained from 

the analyses of different CMP gathers of the data set, an optimum aperture length is given by 

                                                                       ,                                                                    (4.4)   

where    is the maximum wavelength and    is 

                                                                        .                                                              (4.5)                         

The maximum wavelength ‘ ’ is determined by  

                                                                                                                                          (4.6)   

where          is the maximum phase velocity of the fundamental mode.                                                                                  

Our finding is in good agreement with a study by Ikeda et al. (2013), who propose the same 

criteria for an appropriate aperture length by analyzing synthetic and real data. 

4.7 S-wave Velocity Model for the Priddis Data 

We estimate the fundamental mode phase velocity for all the CDP bins in the line (Figure 

4.6). We invert the phase velocity to a shear wave velocity model by applying an inverse scheme 

described in Chapter 1. For the data inversion, we assign a density of 2300 kg/m
3
, based on well 

logs from the study area. We use the approach used in Chapter 3 to assign an estimation of P-

wave velocity based on the S-wave velocity and the Poisson ratio (equation 3.6). Here, we again 

assume the Poisson ratio to be 0.45 which is commonly observed for the near surface (e.g. 
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Ivanov et al. 2000). Using equation 1.3, we try to optimize a model using the Conjugate Gradient 

method (Appendix B, Zeidouni, 2011). The initial model is calculated from the phase velocity 

using equations 3.3 and 3.4. We assume the subsurface to be composed of layers with constant 

thicknesses of 2m. Since the average of the maximum wavelengths is about 40m, the maximum 

depth of investigation is assumed to be about 20m (the half of the maximum wavelength (Xia et 

al., 1999)).  

Figure 4.7 shows the predicted phase velocity (the dashed line) versus the observed phase 

velocity of the fundamental mode in Figure 4.3 (the solid line) obtained from nine iterations 

using the Conjugate Gradient method (Appendix B). Figure 4.8 shows the S-wave velocity 

model obtained from the phase velocity in Figure 4.6. Some geological features at the depths 7.5 

m and 15 m are noticeable. A low velocity zone in the middle of the line (the distance from 250 

m to 325 m) is detectable which is surrounded by two high velocity zones. The velocity in the 

right side of the low velocity zone is higher than the left side. This detailed S-wave velocity 

model and geological features demonstrate the potential of CCSW for near surface shear wave 

velocity imaging. Figure 4.9 (solid line) shows the static corrections calculated from the S-wave 

velocity model in Figure 4.8. The static corrections in Figure 4.9 are the difference between 

static corrections at any CMP location and the average of the total static corrections. The detailed 

static corrections show the high potential usage of the method for the calculation of the static 

correction of converted waves in multi-component studies. A dramatic change of the calculated 

static corrections is observed around 175 m. The relative amount of the static corrections is about 

20 ms which seems to be reasonable for first 20 m of the near surface. The reason that we are not 

able to image deeper layers in this study is frequency bandwidth limitation. The minimum 

frequency that we can observe in this data set is 11 Hz. This confines the depth of study. In 

practice, it is possible to increase the depth of study by using a low frequency source or doing the 

joint inversion of higher modes with the fundamental mode (Feng et al., 2005). 

4.8 Geophone Spacing Interval 

In order to investigate the role of spacing interval in the calculation of static corrections, 

we decimate the data to have 8 m geophone spacing instead of 2 m geophone spacing, which is 

closer to spacing interval in the real world. The decimated data are binned using a CMP bin size 

of 15 m to increase fold. The inversion parameters and procedure are the same used for the 

original data. Figure 4.10 shows the S-wave velocity model for the decimated data. The general 



67 

 

image of the decimated data is in a good agreement with the original data. However, some 

detailed velocity variations are missed in the decimated data. For instance, the decimated model 

proposes a lower S-wave velocity from 80 m to 140 m distance and also exhibits a smoother 

lateral velocity variation from 325 m to 400 m distance. This can be explained by the sampling 

interval effect. When we have a finer geophone spacing, we obtain a more detailed structure of 

the subsurface while a wider geophone spacing provides a general image of subsurface.  

 

 

Figure 4.5 Evolution of dispersion curves. The aperture length increases from 4 m (a) to 70 m (l) 

in steps of 6 m. 
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Figure 4.6 The estimated phase velocity for the Priddis data. 

 

Figure 4.7 The predicted phase velocity (the dashed line) versus the observed phase velocity in 

Figure 3 (the solid line). 

 

Figure 4.8 The S-wave velocity model for the Priddis data obtained from the phase velocity in 

Figure 4.6. 
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Figure 4.9 Static corrections for the Priddis data (the solid line) and the decimated data (the 

dashed line).  

 

 

Figure 4.10 The S-wave velocity model for the decimated data.  

 

Based on the S-wave velocity model in Figure 4.10, we calculate PS statics. PS static for 

the decimated data is indicated by the dashed line in Figure 4.9. Generally, the decimated data 

provides slightly smaller calculated statics in comparison with the original data. The calculated 

statics for the distance from 330 m to 420 m (the blue box in Figure 4.9) are larger than those for 

the original data because there is a high velocity anomaly surrounded by a low velocity field in 

these geophone locations. When geophone sampling is wider, this high velocity abnormality 

cannot be detected. Thus, the decimated data proposes smoother statics. Though the decimated 

data statics and the original data statics are slightly different in details, both data relatively 

exhibit the same general trend for the PS statics (the red dotted line). This demonstrates CCSW 

has a potential to address converted waves static corrections where geophone interval is wide. 

Unfortunately, the Priddis data do not contain strong PS events to evaluate the calculated statics. 

Therefore, we analyzed the Hussar data where the data contain strong converted waves.  
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4.9 PS Static Corrections (Hussar Data) 

We estimate an S-wave velocity model for the Hussar data in order to calculate receiver 

static corrections. The procedure of sorting the data from shot gathers into cross correlated CMP 

gathers is similar to that done for the Priddis data, however the offsets of the reference traces are 

about 10 m. In this data set, a wide range of wavelengths is observable. Therefore, we use a 

wavelength-dependent aperture for these data. Figure 4.11a shows a phase velocity image for a 

CMP gather whose maximum wavelength is about 150 m. The aperture length is 80 m. At low 

frequencies (4 Hz to 8 Hz), where the wavelengths are large, it is very hard to pick the phase 

velocity due to the low resolution of dispersion curves. This is explained by unsuitable aperture 

length because it is much smaller than the wavelengths at these frequencies. However, at higher 

frequencies (10 Hz to 15 Hz), where the wavelengths are in the order of 20 m, we can see a 

better trend of the dispersion curve and therefore the phase velocity is easily detectable.  Figure 

4.11b shows the estimated phase velocity for the same CMP gather where the aperture length is 

200 m. The phase velocity is obvious on the high resolution images of dispersion curves because, 

as discussed earlier, the aperture length is close to the maximum wavelength. Figure 4.11c shows 

dispersion curves for another CMP gather whose maximum offset is about 70 m. The aperture 

length is 80 m. Clear images of dispersion curves are noticeable for all frequencies from 4 Hz to 

15 Hz because of the suitable length of the aperture. The aperture length (80 m) is close to the 

maximum wavelength (70 m).  

We obtain a 2D image of the phase velocity based on an aperture wavelength dependent 

analysis of the CMP gathers. Figure 4.12 shows the 2D phase velocity image for the Hussar data. 

A low phase velocity zone from 2000 m to 2500 m distance is noticeable, which can be inferred 

to be a channel. Another low phase velocity is observed from 3500 m to 4200 m distance. Two 

smaller low phase velocity zones can be seen from 800 m to 1200 m and from 1500 m to 1700 m 

distance. Based on the inverse procedure as explained for the Priddis data, we obtain a 2D image 

of the S-wave velocity for the Hussar data. Based on well log data we assume the density to be 

2200 kg/m
3
. P-wave velocity is estimated using equation 3.6 and assuming the Poisson ratio to 

be 0.45. We assume the subsurface to be composed of layers with constant thicknesses of 4 m. 

Since the average of the maximum wavelength is 90 m, the maximum depth of investigation is 

assumed to be about 45 m (the half of the maximum wavelength (Xia et al. 1999)). Figure 4.13 

shows the estimated S-wave velocity model for the Hussar data. Two interpreted major channels 
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are seen from 2000 m to 2500 m and from 3500 m to 4200 m distances, which correspond to the 

two major low phase velocity zones in Figure 4.12. Two smaller channels are observable from 

800 m to 1200 m and from 1500 m to 1700 m distances, which correspond to low phase velocity 

zones in Figure 4.12. The S-wave velocity fluctuates with distance. This is expected in the near 

surface where the weathered layer causes dramatic velocity variations. We calculate static 

correction from the S-wave velocity model. The black solid line in Figure 4.14 indicates the 

static corrections for the Hussar data, which vary from -40 ms to 50 ms. The static corrections in 

Figure 4.14 are calculated from the difference between static corrections at any CMP location 

and the average of the total static corrections. The largest static corrections, which are about 50 

ms, are seen from 2000 m to 2500 m distance, corresponding to one of the major channels 

interpreted in Figure 4.13. We apply the static correction to the Hussar data to assess the validity 

of the calculated statics. 

Figure 4.15a shows the stacked data without statics corrections. Flat reflectors are 

perturbated due to the weathered layer. Figure 4.15b shows the stacked data after applying the 

calculated statics. Perturbations are removed significantly. This demonstrates that the calculated 

statics are reasonable enough to address static correction for these data. However, there are still 

some small perturbations. In order to remove the remaining statics, we apply residual statics 

(Figure 4.15c). We see a clear image of the flat reflectors. The red dashed line in Figure 4.14 

indicates the total statics obtained from the calculated statics and the residual statics added 

together. Though at the most station locations there is a good match and compatibility between 

the calculated statics and the total statics, a significant difference is seen from 2000 m to 2500 m 

distance, where there is an interpreted major channel with a low phase velocity zone. There are 

two possibilities for this discrepancy. One is the limited bandwidth of the ground roll. The 

minimum detectable ground roll frequency for this data set is about 4.5 Hz, which confines the 

depth of investigation to about 45 m. If there had been more low frequency components, we 

could have investigated deeper layers and consequently used more information in the statics 

calculation. Another possibility is poor acquisition at the location of the interpreted major 

channel. This interpreted channel is a very low phase velocity zone, where we should choose a 

small aperture. When the geophone interval is wide and the aperture is small, we have only few 

traces in each CMP gather. This causes a low resolution image of dispersion curves because the 

phase velocity estimation is based on slant stacking methods where fold number is very 
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important for resolution. For instance, in a CMP gather where the maximum wavelength is 30 m, 

an optimum aperture length should be close to 30 m (40 m for example). When the geophone 

interval is 10 m and the aperture is 40 m, the fold is four, which results in a low resolution image 

of dispersion curves (Figure 4.17). In order to improve the resolution of dispersion curves, we 

have to increase the aperture beyond its optimum values. This causes the dispersion curves and 

the estimated phase velocity to be affected by the other velocity structures in the vicinity of the 

CMP gather. Therefore, at a low velocity zone surrounded by a higher velocity field, we obtain 

smaller values for statics than if we were able to analyze the low velocity zone without influence 

from the surrounding higher velocities.  

We calculate S-wave refraction statics from the P-wave receiver refraction static as a 

conventional method for a comparison with S-wave receiver statics obtained from CCSW. We 

scale the P-wave receiver static by 2.5 based on an assumption that Vp/Vs ratio is 2.5 and apply 

these statics to the data. Figure 4.18 shows the stacked data after applying the scaled P-wave 

receiver refraction statics. Comparing Figure 4.18 with Figure 4.15b, we observe that the CCSW 

statics provide better corrections. Figure 4.19a shows a shot record without receiver static 

corrections and Figure 4.19b shows the same record after applying CCSW static corrections. We 

see better coherency of reflectors after applying the S-wave static correction. Figure 4.20 shows 

NMO velocity analysis for a CMP gather before and after application of the calculated S–wave 

receiver statics. NMO velocity analysis has improved significantly after applying the S-wave 

receiver statics. 
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Figure 4.11 (a) Dispersion curve analysis for a CMP gather with the aperture 80 m. (b) 

Dispersion curve for the same CMP gather with the aperture 200 m, and (c) dispersion curve 

analysis for a CMP gather whose maximum wavelength is 70 m and the aperture is 80 m. 
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Figure 4.12 The estimated phase velocity for the Hussar data. 

 

Figure 4.13 The S-wave velocity model for the Hussar data obtained from the phase velocity in 

Figure 4.12. 

 

Figure 4.14 Static corrections for the Hussar data. 
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Figure 4.15 (a) Stacked Hussar data before static correction, (b) the stacked data after applying 

the calculated S-wave receiver static,  
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Figure 4.16 The stacked data after applying residual statics.  

 

 

Figure 4.17 The phase velocity estimation for a CMP gather whose fold number is four. We see 

vague trends of dispersion curve which are due to modal imposition.  
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Figure 4.18 P-wave receiver refraction statics scaled by 2.5 applied to the data as S-wave 

receiver statics. 

 

4.10 Conclusions 

We introduce a new approach of the CMP Cross-Correlation of Surface Wave in order to 

obtain better lateral resolution for near surface S-wave velocity imaging. The idea takes 

advantages of SASW and MASW methods, and is faster than the conventional CCSW (Hayashi 

and Suzuki, 2004).  

We define an optimum aperture length for maintaining lateral resolution and dispersion 

curves simultaneously. According to our results, the aperture length must be close to the 

maximum wavelength. This gives us a better coherency of the fundamental mode and avoids 

modal interferences.  

The detailed static corrections calculated for the dense Priddis data from the S-wave 

velocity model in this study demonstrate the high potential of the method to be utilized in 

seismic exploration. The decimated data and the original exhibit the same general trend of 

receiver static corrections. This shows a potential of the method to address converted wave 

receiver static corrections when the geophone interval is wide.  
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In order to have a good estimation of the phase velocity where there are wide ranges of 

wavelengths, a wavelength dependent aperture must be utilized. The general result of the 

calculated statics of the Hussar data demonstrates the capacity of CCSW to address converted 

wave receiver static corrections. We obtain a better image of reflectors after applying additional 

residual statics.  

Our ability to successfully extract information from converted waves and S-waves is 

dramatically hampered by our lack of understanding of the near-surface S-wave velocity 

structure. This is exactly why the surface wave methods should be taken into account.  However, 

if we want to obtain more reliable results from surface wave, we will have to optimize 

acquisition parameters in areas where there are very low velocity zones. We should also consider 

the limitations of surface-wave methods such as the modal superposition, which can cause error 

in the estimation of the phase velocity. 

 

Figure 4.19 A shot record, (a) before without static corrections, and (b) after applying static 

corrections.  
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Figure 4.20 NMO velocity analysis. (a) before static correction and (b) after applying the 

calculated statics.  
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Chapter Five: Summary and Conclusions 

  As a part of my PhD thesis, I developed two novel mathematical models to estimate 

phase and group velocities of surface waves (Chapters 2 and 3). I also enlarged upon the idea of 

CMP Cross-Correlation of Surface Waves (CCSW) to estimate a shear wave velocity model to 

compute converted wave static corrections (Chapter 4).  

 The S transform and its generalized versions provide frequency-dependent resolution that 

makes it suitable to process non-stationary seismic signal. In Chapter 2, a mathematical model is 

developed based on the generalized S transform to estimate propagation parameters 

(wavenumber, phase velocity, group velocity and attenuation function) of surface waves in 

dispersive and attenuating media. This method involves using a scaling factor in the generalized 

S transform to control spectral localization. Therefore results can be improved, especially for a 

highly dispersive and dissipative medium. Based on the mathematical model, wavenumber and 

phase velocity are obtained directly from the absolute phase value of the ridges of the S-domain, 

and group velocity is computed from the time difference of the ridges of the transform. 

Frequency-dependent attenuation is estimated by the relative amplitudes of the ridges of the 

transform. According to the results obtained from the analyses of the synthetic data, a larger 

scaling factor should be chosen for highly disperse surface waves. In order to optimize the 

application of the method for highly dispersed surface waves, a cost function is introduced. The 

cost function determines a minimum optimum value for the scaling factor. We could make 

decision what ranges of the scaling factor should be chosen to avoid overlapping time-frequency 

spectrum of different modes. When signal to noise ratio is small at low frequencies, estimated 

wavenumber is perturbed. Another cost function is introduced to estimate wavenumber 

perturbation. The cost function is highly non-linear; therefore it must be minimized with global 

optimization methods such as Simulated Annealing.  

 Though the method introduced in Chapter 2 is robust especially where the surface wave 

is highly dispersed, parameterization within the method becomes ambiguous when the surface 

wave is multi-modal. In order to generalize the application of the mathematical model for the 

estimation of the group velocity, the slant stack generalized S transform based method is 

introduced in Chapter 3. The method takes advantage of slant stacking in the generalized S 

transform domain. The generalized S transform returns a three dimensional analysis domain 

(time, frequency and offset) when given a two dimensional gather (a shot gather for example). At 
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each constant frequency f in the time, frequency and offset domain, there is a 2D common 

frequency gather in time and offset coordinates, and multi-modal surface waves appear there as 

linear events. The group velocity of each member of this set of multi-modes (the fundamental 

mode plus the higher modes) corresponds to the apparent velocity of the linear events. To 

estimate each linear velocity, slant stacking is implemented to transform the time and offset 

coordinates to intercept time and slowness coordinates. Since surface wave is initiated from a 

source point at time t=0, the fundamental and higher modes intercept at time T=0, so the group 

velocity of each mode at each frequency is determined by picking the slowness and then 

calculating the inverse. Using this process, we create a 2D image of the group velocity for all 

ranges of frequency. Similar to Chapter 2, the scaling factor inserted in the generalized S 

transform facilitates the application of the method for wide rangers of frequencies. According to 

the empirical results presented in Chapter 3, in order to increase the frequency resolution, a wide 

window in the time domain should be utilized. When the window is widened in the time domain, 

the time resolution will decrease at low frequencies which consequently results in a low velocity 

resolution of low frequency surface wave. Therefore, there is a tradeoff between the resolution of 

low and high frequency surface wave. It is concluded where surface wave has a broad range of 

frequencies, different scaling factors with respect to the frequency content of surface wave 

should be chosen.  

Surface waves provide information on the earth’s layers nearest to the earth’s surface. We 

can estimate a near surface shear wave velocity model by the inversion of the phase velocity of 

ground roll. Based on this procedure, two conventional methods have developed by previous 

works, “Spectral Analysis of Surface Waves (SASW)” and “Multi-channel Analysis of Surface 

Waves (MASW)”. In SASW, the phase velocity of the fundamental mode of ground roll is 

estimated by configuring and reconfiguring a pair of receivers and shots respectively with 

respect to a mid-point. Since a dispersion cure is estimated with respect to a mid point, SASW 

provides a good lateral resolution. However, the method is very vulnerable to noise because only 

two records are available for each shot. In MASW, a dispersion cure is calculated by analyzing 

several traces from a multi-channel data. Therefore, the method is more robust in the presence of 

variable source wavelet and noise in comparison with SASW. But, MASW provides a weaker 

lateral resolution because of the long receiver array that must be used and the fact that a 

dispersion curve is not estimated with respect to a mid-point. CMP Cross-Correlation of Surface 
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Waves (CCSW) takes the advantage of the two conventional methods. According to the 

methodology introduced in Chapter 4, each trace of a shot record is cross-correlated with a 

reference trace that is selected from within the shot gather based on high signal to noise ratio.  

This step removes the initial phase of a source. New midpoints that relate to the correlated traces 

are then calculated. The phase velocity is calculated for each CMP gather, and finally the 

resulting dispersion is converted to a vertical shear wave velocity through an inverse procedure 

(Conjugate Gradient (Appendix B) for example). This approach is faster than the conventional 

CCSW introduced by Hayashi and Suzuki, (2004)  because in the conventional CCSW all traces 

within a CMP gather are cross-correlated with each other which is computationally expensive. 

The concept of aperture is introduced in Chapter 4 in order to optimize the output of the method 

to address the calculation of converted wave static corrections. Aperture is a window length. 

Only those traces are considered for processing whose offsets are less than the window length 

(aperture). The optimum window length (aperture) should be close (one to one and half) to the 

maximum wavelength in a CMP gather. If the aperture is too short a blurred image of dispersion 

curves is observed and this causes modal interference. When the aperture is optimum, a high 

resolution image of each mode within the dispersion curve is seen that avoids modal 

interferences. Therefore, not only does an appropriate aperture length improve dispersion curve 

estimation, but it also avoids the modal interference that can be so disastrous in surface waves 

studies. According to the analysis of the field data in Chapter 4, when there wide ranges of 

wavelengths, wavelength dependent aperture should be implemented for estimating the phase 

velocity. The general result of the calculated statics of the Hussar data demonstrates the capacity 

of CCSW to address converted wave receiver static corrections. The static results are improved 

applying additional residual statics. However, if we want to obtain more reliable results from 

surface wave, we will have to optimize acquisition parameters in areas where there are very low 

velocity zones. We should also consider the limitations of surface-wave methods such as the 

modal superposition, which can cause error in the estimation of the phase velocity. 
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Appendix A: Phase velocity calculation 

In this appendix, I present a methodology developed by Abo-Zena (1979) for the 

calculation of the phase velocity of Rayleigh wave for a geological model whose layers are 

assumed to be horizontally flat, isotropic, homogeneous, and perfectly elastic (Figure A.1).  

 

 

Figure A.1 A geological model composed of n layers (modified after Abo-Zena, 1979). 

 

The normal stress    and tangential stress     are linked to the x component ‘ ’ and z 

component ‘ ’ of displacements by 

                                                         ቀ         ቁ        ,                                                 (A.1) 
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and 

                                                                ቀ         ቁ,                                                       (A.2) 

where   and   denote Lamé modulii. For a layered earth model, we can estimate the phase 

velocity of Rayleigh wave by considering the following boundary conditions 

                                                                        ,                                                           (A.3) 

                                                             ,                                                           (A.4) 

                                                                     ,                                             (A.5)  

                                                                     ,                                            (A.6) 

                                                                 ,                                                 (A.7)  

and 

                                                                   ,                                                (A.8) 

where    is the depth of the boundary between the two layers ‘ ’ and ‘   ’. Equations A.3 

and A.4 imply that at the surface, the Normal and tangential stresses are zero, Equations A.5, 

A.6, A.7 and A.8 imply that at the boundary between two layers stresses and displacements are 

equal to each other. Abo-Zena (1979) presents a mathematical model to calculate the phase 

velocity using a scalar potential ( ) and a vector potential ( ) (Ewing et al., 1957) 

                                                                                  ,                                                      (A.9) 

and 

                                                                     ,                                                      (A.10) 

where    and    denote the P-Wave and S-wave velocities of each layer, respectively. The 

vertical and horizontal displacements, and the normal and tangential stresses can be written in 

terms of these potentials as  
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                                                                                ,                                                      (A.11) 

                                                                               ,                                                        (A.12) 

                                                                               ,                                        (A.13) 

and  

                                                            ቀ                      ቁ.                                         (A.14) 

By assuming both   and   to be periodic with respect to time, and the waves to be planar, Abo-

Zena (1979) presents the following equations for   and   

                                      [      (    )               ]    [        ],                  (A.15)  

and  

                                       [                          ]    [        ].                  (A.16) 

where   is the wavenumber, and   is the angular frequency which is given by                                

                                                                             ,                                                         (A.17) 

 

and with    denoting the phase velocity,    and    are given (Abo-Zena, 1979) by 

                                                        { 
  [(    )   ]        [  (    ) ]        ,                                       (A.18) 

                                                         { [ቀ    ቁ   ]        [  ቀ    ቁ ]                                                (A.19) 
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 If there is no source at infinity (Abo-Zena, 1979), then 

                                                                      ,                                                                (A.20) 

and 

                                                                                                                                       (A.21) 

Therefore, equations A.15 and A.16 attain the form 

                                        [    (    )             ]    [        ],                       (A.22)  

and  

                                         [                      ]    [        ].                       (A.23) 

By inserting equations A.22 and A.23 into equations A.11-14 and considering the boundary 

conditions (equations A.3-8), Abo-Zena (1979) derives the matrix equation  

                                          [                                    ] [       ]  [  ]                                       (A.24) 

where     are elements of a 4×2 matrix ‘ ’.    is given by (Abo-Zena, 1979) 

                                     [     ]               [        ]                                            (A.25) 

where   is the number of layers,  

                                                           [      ][     ]  ,                                            (A.26) 

                                                                           



87 

 

      
[  
   
               ( ቆ    ቇ   )  ( ቆ    ቇ   )   ቆ    ቇ     ቆ    ቇ   

  ቆ    ቇ     ቆ    ቇ    ( ቆ    ቇ   )  ( ቆ    ቇ   )]  
   
    

                                    [  
                                                         ]  

 
 

             
[  
   
                  ቆ (    )   ቇ   ቆ (    )   ቇ   (    )     (    )      (    )     (    )      ቆ(    )   ቇ  ቆ (    )   ቇ]  

   
 
  

                             [  
                                                         ]  

 
,                (A.27) 

and  

              [     ]   
[  
   
    (    )         ቆ (    )   ቇ           ቆ (    )   ቇ           

  (    )      ]  
   
   
.        (A.28) 

It is obvious that the matrix  

                                                      [                                    ]                                        
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in equation A.24 must be singular, otherwise the displacements   and   will be zero. Therefore, 

the determinant of the matrix must be zero 

                                                                                               (A.29) 

Equation A.29 is called the dispersion function. We calculate the phase velocity of dispersed 

surface waves by finding the roots of the dispersion function. The smallest value of the phase 

velocity that satisfies equation A.29 is called the fundamental mode, and the first velocity above 

the fundamental mode is called the first higher mode. It is implied from equations A.29 that the 

phase velocity is calculated with respect to the S-wave velocity, P-wave velocity, density and 

thickness of the layers. 
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Appendix B: Conjugate Gradient 

 Generally, an inverse problem is given by (Aster et al., 2004) 

                                                                         ,                                                                (B.1)     

where   denotes data,   denotes model parameters, and   is a matrix which presents  the 

explicit relationship between the data and the model parameters. We obtain the model parameters 

‘ ’ from the observed data ‘ ’ using  

                                                                                                                                                (B.2) 

 When there is a bulk volume of data, it is impractical to solve equation B.1 because the 

matrix   might have thousands of rows and columns which requires a great deal computer 

memory. Iterative methods are used to address the problem. Iterative methods are classified into 

two categories, deterministic methods (gradient-based), and stochastic methods (evolutionary). 

The deterministic methods minimize an objective function by the means of the gradient of the 

function. Although the deterministic methods are fast at finding a minimum that satisfies the 

objective function, they might fall into a local minimum when the objective function is not linear 

and has more than one minimum, and thus fail to estimate the global minimum (the best answer 

for the objective function). In order to avoid being trapped in a local minimum, we should take 

different parameters into account such as a good initial model to obtain the global minimum. The 

methodology of Steepest Descent, Newton’s method, the Gauss-Newton method, the Levenberg-

Maquardt method and Conjugate Gradient method are examples of deterministic methods. 

Alternatively, stochastic methods are not based on the gradient of an objective function. At the 

beginning, a random set of solutions is created for an objective function. Different random 

solutions are computed and compared. From those solutions which give the better results, a new 

set of solutions is generated in an organized way. Finally, an optimum solution (global 

minimum) is estimated after some iteration. Genetic algorithm, simulated annealing, particle 

swarm and ant colony are examples of stochastic methods. 

 The Conjugate Gradient method is very similar to the Steepest Descent method where 

each iteration step is calculated with respect to the gradient of the objective function (Colaco et 

al., 2006). But, in the Conjugate Gradient method, the direction of descent is not the negative 

gradient direction of the objective function which this results in a faster convergence and 

consequently a faster process (less iteration). This procedure is based on computing a linear 
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combination of the negative gradient direction of the objective function at the current iteration 

with the direction of descent of the previous iteration (Shewchuk, 1994).  

 Consider an objective function       where    is the S-wave velocity vector for a 

layered model whose the S-wave velocities are    ,    , …, and    .        is given by 

                                                       ∑                    ,                                          (B.3)   

where        denotes the observed phase velocity (estimated for a field data),        denotes the 

calculated  phase velocity for the geological model as a function of   , and   is the number of  

the phase velocity samples. Equation B.3 can be written in matrix form as            

                                   ቀ            ቁ ቀ            ቁ,                            (B.4) 

where  

               ቀ            ቁ  [                                 ].                 (B.5) 

The Jacobean matrix is given by 

                            [          ]  
[  
   
   
   
                                                                           

    
                                     ]  

   
   
   
 
.                                

(B.6)     

To optimize the S-wave velocity, the objective function (equation B.3) is minimized using a 

Conjugate Gradient as 

                                                                                                                              (B.7) 

where 

                                                    ቆ            ቇ [  ]   
ቀ[  ]  ቁ ቀ[  ]  ቁ ,                                                   (B.8) 
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                              [  ] ቀ             ቁ        ,                                        (B.9) 

                                                   

 

and 

         ([  ] ቆ              ቇ) ([  ] ቆ              ቇ [    ] ቆ                ቇ)
([    ] ቆ                ቇ) ([    ] ቆ                ቇ) .            (B.10) 

Since Conjugate Gradient produces   conjugates directions for an   dimensional field, we 

should find an optimum solution for the objective function after  -iterations (Shewchuk, 1994). 
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Appendix C: Phase shift method 

Considering a seismic record in the time-offset domain        containing ground roll, the 

Fourier transform of each trace is expressed by 

                                                               ∫                                                      (C.1) 

The equation above could be rewritten as 

                                                                                                                      (C.2) 

where        is the phase spectrum and        is the amplitude spectrum. The amplitude 

spectrum contains all the information about attenuation and spherical divergence whereas the 

phase spectrum contains all the information about dispersion. Applying the operator          , 

where    is a phase velocity, to integral  

                               (    )  ∫       |      |             ∫                                    (C.3) 

produces a two dimensional image of the phase velocities versus frequencies (Park et al., 1998). 

It is clear that, at those frequencies where    is equal to the phase velocities of the signal, the 

integral will have a maximum.  

Figure C.1 shows synthetic data containing a bi-modal surface wave. The geophone 

spacing is one meter and time sampling is 2 ms. Ricker wavelets are used in both modes. Figure 

C.2 shows the phase velocity obtained from the phase shift method. The solid and dashed lines 

correspond to the theoretical phase velocities. As shown in Figure C.2, the theoretical values are 

well matched by the estimates.  
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Figure C.1 Synthetic data containing bi- modal ground roll. 

 

  

Figure C.2 The phase velocity of the record in Figure 1 obtained from the phase shift method. 
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