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Abstract 

A reservoir characterization workflow for time-lapse study requires integrating seismic data 

vintages and well logs information into a single consistent model to delineate changes of 

reservoir parameters. The research work in this thesis is divided into four parts: 1) pre-stack 

inverse problems for time-lapse seismic surveys; 2) prediction of shear sonic logs for wells that 

are not available; 3) a processing flow for optimum seismic repeatability and imaging of the 

production related change; 4) interpretation of seismic inversions and seismic differences results 

from time-lapse seismic surveys. 

In this thesis, we present three new time-lapse AVO inversion algorithms: 1) total inversion of 

the differences; 2) inversion of seismic differences only; 3) sequential reflectivity-constrained 

inversion.  The proposed methods were implemented using synthetic data that simulate reservoir 

conditions at pre- and post-production of a heavy oil reservoir after depletion.  The time-lapse 

AVO inversion schemes simultaneously invert the P-P & P-S seismic data of the baseline and 

monitor line surveys to estimate the change of elastic impedances and density model parameters.  

The proposed algorithms have proven their robustness in terms of computation time and stability 

in the presence of noise. 

Predictions of shear-wave logs in wells that do not have dipole sonic are challenging, particularly 

in heavy oil reservoirs.  The linear-regression, robust locally weighted scattering and smoothing 

(LOWESS), and several other approaches of iteratively re-weighted linear least-squares 

inversion (IRLS) techniques were implemented to estimate shear-wave sonic logs.  The 

developed computer codes were applied using well logs from three different types of reservoirs 

(conventional oil, heavy oil, and tight shale oil) in WCSB.  The proposed methods guard against 
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outliers, and have shown improvements in predicting shear-wave sonic logs compared to 

empirical linear relationships. 

The time-lapse processing and imaging flow designed for seismic data vintages of Pikes-Peak oil 

field has overcome many difficulties related to differences in acquisition parameters and seismic 

noise.  The proposed flow managed to track production related changes in the reservoir and 

clearly imaged induced amplitude changes at the Waseca reservoir channel. 

The dimming zones observed in the stack section of the monitor line reveal that the steam 

pressures have caused fluid move through the top seal into the overlying formation.  This finding 

also correlates with the cloud of amplitude change in colony formation shown in the amplitude 

differences of the time-lapse stack section.  The impedances differences show that the 

interbedded silty sands provide a pathway for steam movements within the Waseca sand channel.  

The elastic attributes from the AVO inversion of time-lapse seismic surveys successfully map 

the hydrocarbon movement at the Waseca reservoir channel. 

Conditioning of pre-stack seismic migrated gathers of the Pikes Peak time-lapse surveys remains 

a challenge and is not covered in this dissertation.  Therefore the implementation of proposed 

time-lapse inversion schemes is left as future research work. 
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 INTRODUCTION Chapter One:

 

1.1 Amplitude variations with offset (AVO) 

In early 1970s, the first use of amplitude information as a hydrocarbon indicator was made by 

Hammond, (1974) when it was found that “bright-spot” amplitude anomalies are associated with 

the gas-filled sand of a hydrocarbon trap.  However, post-stack impedance inversion (Lindseth, 

1979; Oldenburg et al., 1983) and more discoveries indicated that these bright spots are due to 

rapid lithology changes, such as igneous intrusion, carbonate and coal seams in clastic sequences 

(Allen and Peddy, 1993).  Avseth et. al.,(2005) have also shown that gas-filled sands sometimes 

cause "dim spots”, not only bright spots.  Therefore, AVO analysis should be conducted to 

identify potential hydrocarbon accumulations particularly in sand/shale impedance crossovers in 

an over-pressured zone. 

The Zoeppritz equation (Zoeppritz, 1919) forms the basis of AVO methodology by estimating 

reflected amplitude as a function of angle of incidence at a welded elastic interface.  The 

amplitude variations with offset provide the link between rock physics properties and seismic 

observations along offsets (Mavko et al., 1998).  Simplification of the Zoeppritz equation in a 

linearized AVO form (Bortfeld, 1961; Aki and Richards, 1980) has assisted many researchers to 

reformulate the linear AVO equations (such as using the empirical relationship of Gardner et al., 

1974 for two-term AVO reflectivities) to estimate different elastic reflectivities and 

petrophysical attributes (Shuey, 1985; Smith and Gidlow, 1987; Fatti et al., 1994; Goodway et. 

al., 1997; Connolly 1999 and Whitcombe et al., 2002). 

The above literatures, as well as the research work in this thesis, assume that the half-spaces 

across welded contacts are elastic and isotropic.  However, extension of AVO theory to 
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amplitude variation with azimuth (AVAZ) in the anisotropic media demonstrated its successful 

application in determining fracture density and orientation in the unconventional tight reservoirs 

(Thomson, 1986 and 1988; Tsvankin 2001 and Rugure, 2002). 

With the aid of the AVO classifications (Rutherford and William, (1989); Verm and Hilterman 

(1995), and Castagna and Swan, (1997)) the developed AVO methodologies have improved 

capabilities of amplitude variation with offset in discriminating against lithology and pore fluid 

contents.  As such, AVO has become a direct hydrocarbon indicator tool, (DHI) that has been 

used extensively in hydrocarbon explorations. 

A number of authors have used AVO for lithology classifications and pore fluid type 

identifications.  For example, Ostrander (1982) was the first to introduce applications of AVO in 

hydrocarbon explorations, and showed the anomalous behavior of the reflected amplitudes of 

gas-filled sand as a function of offset.  Since then, AVO has become a standard quantitative 

interpretation method used by explorationists in the oil and gas industry.  Moreover, Ostrander 

(1984) published case studies for the successful application of AVO in gas reservoir mapping.  

Allen and Peddy (1993) used AVO on Gulf Coast data to show its usefulness and limitations in 

mapping hydrocarbon traps.  Goodway et al. (1997) used AVO for lithology and fluid 

discrimination in clastics.  Li et al., (2003) show successful applications of AVO in carbonates, 

while Xu (2012) used AVO to characterise the heterogeneity of oil sand. 

The rapid developments in seismic acquisition and data processing software have elevated the 

simultaneous AVO inversion by incorporating multicomponent (PP and PS) seismic data in order 

to improve estimates of elastic and density parameters (Stewart, 1990).  Larsen et al. (1999) 

presented a successful PP-PS inversion for mapping a sand reservoir channel at Blackfoot, 

Alberta.  Russell et al. (2005) applied joint PP-PS inversion to delineate areas of best sand 
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development in oil sand reservoirs.   Mahmoudian (2006) implemented PP-PS inversion for VSP 

studies.  Ronholt et al, (2010) proved the reliability of the use of the Vp/Vs attribute, as a result 

of joint PP-PS inversion, in hydrocarbon explorations in the North Sea. 

 

1.2 Time-lapse reservoir monitoring 

Lumley (1995) established a framework for seismic time-lapse monitoring of subsurface fluid 

flow, while Altan (1997) has improved the repeatability of processing time-lapse seismic data for 

reservoir monitoring.  In time-lapse reservoir monitoring, the ultimate goal is to estimate changes 

in elastic and density attributes of a reservoir after hydrocarbon recovery processes.  Estimations 

of these elastic differences assist in tracking fluid saturation and pressure changes in the reservoir 

after depletion (LandrØ, 2001). 

Pullin et. al., (1987) have applied seismic imaging to map heat zones at an Athabasca tar sands 

thermal project.  Eastwood et. al., (1994) have used seismic monitoring for steam-based recovery 

of bitumen while Isaac (1996) has used seismic methods for monitoring heavy oil reservoirs.  

Time-lapse seismic monitoring has also proven its effectiveness in planning drilling programs by 

identifying bypassed reservoirs and performing pore pressure prediction (Carcione and Gangi, 

2000).  The literature also shows excellent case studies about the successful application of time-

lapse monitoring of steam flood movements and CO2 sequestrations (Waite and Sigit, 1997; Ma 

et al., 2009).  In reservoir characterization, the time-lapse seismic monitoring has been 

successfully applied to estimating pore pressure and saturation changes after hydrocarbon 

recovery processes (Tura and Lumley, 1999; LandrØ, 2001).  The goal of this thesis is to 

establish time-lapse AVO inversion schemes to become standard industry tools for heavy oil 

monitoring using time-lapse seismic surveys. 
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1.3 The Pikes Peak heavy oil field 

1.3.1 Survey area and enhancements oil recovery 

Watson, (2004) has provided excellent reviews of the geology and engineering studies at the 

Pikes Peak oil field.  The Pikes Peak heavy-oil field is located in the western Canadian heavy oil 

basin, approximately 40 km east of Lloydminster (Figure 1.1), border of Alberta/ Saskatchewan 

(Township 55, Range 23W3).  The heavy oil is produced from the sands of the Waseca 

formation (Figure 1.2) of the lower Cretaceous Mannville group (Van Hulten, 1984). 

The Pikes Peak field itself is located on an east-west structural high within an incised valley-fill 

channel complex that trends north/south (Sheppard et al., 1998).  Based on the well logs, the 

Waseca formation lies at a true vertical depth (TVD) range of 475-510 m.  The Waseca channel 

has an average thickness of 10-30 m, but thickness can locally increase up to 50 m.  The channel 

is made up of shale, interbedded silty sand and homogenous sand facies (Van Hulten, 1984).  

Table (1.1) summarizes the reservoir properties of the homogenous sand at the Waseca channel 

reservoir, Pikes Peak oil field. 

The Pikes Peak oil field was first discovered in early 1970 with primary hydrocarbon production 

from the General Petroleum (GP) formation.  In 1981, after successful implementation of cyclic 

steam simulation, CSS, on a pilot project at Waseca channel sand, additional wells were drilled.  

Since then, the Waseca channel has become a main producing formation at the Pikes Peak. 

By the end of 1987, the west side of the Pikes Peak area had undergone thermal recovery, 

including steam drive processes to optimize heavy oil recovery for wells that have shown 

thermal interconnections between them after several cycles of CSS processes.  After 1992, the 

CSS process was implemented on the east side of the Pikes Peak oil field (Wong et al., 2003), 

and since then more wells were drilled and the site expanded more towards the south. 
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Figure 1.1: Location map for the Pikes Peak oil field.  The honeycomb pattern represents 

locations of produced well while injected steam is drilled in the centre of the hexagonal shape 

(after Wong et al., 2003; Watson 2004).  

 

 

Figure 1.2: Stratigraphic chart for the Pikes Peak area (after Core laboratories; Watson, 2004). 
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Reservoir properties Measured values 

Depth(TVD) 475 – 500 m 

Maximum Dip 4.5
º 

Net Pay Thickness (m) – Range 

                                       –Median 

5 – 30 m 

15 m 

Porosity                         – Range 

                                       –Median 

32 – 36% 

34% 

Permeability                   – Range 

                                       –Median 

1 – 10 µm
2 

5 µm
2
 

Oil Saturation 78 – 92% 

Initial Reservoir Pressure 3350 kPa 

Initial Reservoir Temperature 18 
º
C 

Oil Formation Volume Factor 1.022 m
3
/ m

3
 

Oil Density 985 Kg/ m
3
 

Oil Gravity 12.4 
º
API 

Dead –Oil Viscosity @ 18 ºC 25000 mPa.s 

Solution GOR 14.5 m
3
/ m

3
 

Mineralogy 

                          Quartz 

                          Feldspar 

                          Kaolinite 

                          Other 

 

92% 

3% 

3% 

2% 

 

Table 1.1 Summary of the reservoir properties at Waseca Channel (after Wong. at al., 2003). 
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1.3.2 Well log analysis 

Wells that are located closely to the time-lapse seismic survey lines (Figure 1.3) are used in this 

study.  Figure (1.4) shows different logs for the well 15A-6 that was drilled in February, 2000.  

Note the substantial drop in Vp/Vs ratio that starts from the Colony Formation and extends 

through the Waseca reservoir channel.  

The elastic rock properties are computed from the dipole sonic of well 15A-6, of the Pikes Peak 

area.  In the crossplot of Lambda Rho versus Lambda/Mu given in Figure (1.5), data points are 

colored by gamma ray values.  Furthermore, the estimated elastic rock properties for the upper 

Quaternary, Viking, and Waseca formations are colored in black, green and magenta colors 

respectively.  The Quaternary facies show distinct, low Lamé and Mu values, while the Viking 

facies shows smaller Lamé Rho values than the Waseca Formation. 

The resistivity logs of Well D2-6 (Figure 1.6), which was logged in 1980, shows a spike increase 

in resistivity at the Waseca reservoir as an indication of increased hydrocarbon content.  

However, the sharp decrease in resistivity at the base of the Waseca Formation, where the 

bottomwater layer is manifest, is indicative of brine water content.  In general, well log analysis 

shows distinctive changes in elastic rock properties at the Waseca heavy oil reservoir zone, 

which assists in building a time-lapse model. 

 

 

1.3.3 Previous research work at Pikes Peak 

The previous geophysical work at the Pikes Peak oil field includes acquisition and processing of 

surface and VSP multicomponent data (Hoffe et al., 2000).  Downton and Lines (2000) have 

conducted an early AVO feasibility study using seismic data of the monitor survey line H2000.  
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The attenuation of high frequency seismic wavelets due to steam injection was thoroughly 

investigated by Hedlin et al., (2001).  On the other hand, Zhang (2003) used PP-PS inversion 

data as an interpretive tool for the Waseca reservoir channel.  The work by Watson (2004),  Zou 

(2005) and Soubotcheva, (2006) demonstrated successful integration of geological, engineering, 

and geophysical data in interpreting and predicting properties of the Waseca reservoir channel at 

the Pikes Peak heavy oil field. 

 

 

 

Figure 1.3: Map of location of time-lapse seismic surveys (baseline H1991 and monitor line 

H2000) along with wells that are used in this study that are closely located to the time lapse 

seismic survey lines for the Pikes Peak area.  Red dots indicate wells drilled after the baseline 

survey was carried out (after Watson, 2004). 
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Figure 1.4: Log curves of well 1A15-6, Pikes Peak oil field.  Note the drop in the Vp/Vs curve 

commencing at the Colony formation. 
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Figure 1.5: LambdaRho versus Lambda / Mu for Well 15A-6, Pikes Peak field colored by 

gamma ray values.  Estimated elastic rock properties for the upper Quaternary, Viking, and 

Waseca formations are superimposed and colored in solid green, black and magenta respectively. 

 

 

 

Figure 1.6: The shallow, mid and deep resistivity logs along with the SP log for Well D2-6, Pikes 

Peak field. 
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1.4 Thesis contributions 

In performing the research work for this thesis, several computer codes were developed in 

MATLAB to generated sections and graphs to support the theory and concepts introduced in this 

thesis.  These codes have also used some CREWES library modules related to ray tracing and the 

reading of LAS files developed by Dr. Margrave and fellow researchers at CREWES. 

The proposed computer codes were developed for: 

 Reading, displaying and computing elastic rock properties of well logs 

 Implementations of the iteratively re-weighted least square inversion, IRLS, for 

predicting shear sonic logs include building weighted matrices and L2-curves modules. 

 Implementation of the robust locally weighted scattering smoothing, LOWESS, method 

for the estimation of the mudrock line for predicting shear sonic log 

 Three-term simultaneous time-lapse AVO inversion schemes including robust AVO 

inversion. 

 Three-term simultaneous PP-PS AVO inversion to estimate elastic impedances and 

density model parameters. 

The research work has also included the following contributions: 

 Complete seismic data processing of the Pikes Peak for AVO compliants and seismic 

imaging. 

 An effective seismic noise attenuation procedure that attenuates noise while preserving 

reflected amplitude. 

 Quantitative interpretation of seismic data including, time-lapse seismic differences, post-

stack impedance inversion, and three-term AVO inversion for impedances and density 

sections for the Pikes Peak time-lapse seismic surveys. 
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1.5 Outline of thesis 

This thesis is organized as follows.  The introductory chapter reviewed research objectives, and 

provided background details regarding elastic rock properties; and their links with lithology and 

pore-fluid content.  In addition, AVO methodology and time-lapse seismic monitoring 

applications were reviewed to address short comings of applications of time-lapse seismic 

monitoring including AVO inversion in tracking steam movement in heavy oil reservoirs. 

Chapter 2 explains the theory and application of the iteratively re-weighted least-squares 

inversion, IRLS, in predicting a shear sonic log.  Steps to build the L2 curve function to estimate 

optimum curvature value to be used in minimizing the objective function of the inverse problem 

are given in detail.  The robust locally weighted scattering smoothing method, LOWESS that 

further enhances calculating the slope and intercept used in predicting shear sonic log is 

introduced.  The successful implementations of the LOWESS method in predicting shear sonic 

using wells from different reservoirs (conventional -, heavy oil- and unconventional tight- 

reservoirs) from the Western Canadian sedimentary basin, WCSB, are presented. 

Chapter 3 introduces the theory of time-lapse AVO inversion methods that simultaneously invert 

the PP-PS data of the baseline and monitor line surveys.  Further discussions about building 

time-lapse survey and generating synthetic data that are used in testing proposed computer codes 

are given.  Chapter 3 further discusses the potential of implementing the proposed time-lapse 

inversion schemes using noise-free and noisy synthetic data.  The robustness of the AVO 

inversion in the presence of noise, the stability of inversion codes, and the convergence toward a 

final solution are also investigated.  Simultaneous inversion accuracy in estimating elastic 

parameters, density, and changes in inverted model parameters of the time-lapse surveys are also 

investigated. 
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Chapter 4 discusses the seismic data processing of the time-lapse surveys at Pikes Peak heavy oil 

field.   An optimized seismic processing flow that improved seismic repeatabilities and 

minimized processing differences in time-lapse seismic processing is explored.  Noise 

attenuation procedures adopted in this thesis for attenuating ground-roll, pumpjack and air blast 

noise effects by modelling are presented.  Results of the successful seismic imaging of the 

Waseca reservoir channel and time-lapse seismic monitoring of the thermal hydrocarbon 

recovery at the Pikes Peak oil field are also given. 

Chapter 5 presents quantitative interpretations of the seismic differences and time-lapse post 

stack P-impedance inversion.  Chapter 5 also discuss the potential of seismic data conditioning 

and resulting elastic and density attributes from AVO inversion that was conducted individually 

for the Pikes Peak data set.  Hydrocarbon movement through the top seal into overlying 

formations, as a result of excessive steam injection, are explored.  Further discussions about 

hydrocarbon movements along the interbedded silt/ sand facies, and their correlations with time-

lapse seismic stack and seismic differences sections are also presented. 

Chapter 6 provides concluding remarks drawn from research work carried in this thesis.  

Guidelines for the potential expansion of some of the research ideas left in this thesis for possible 

future work are also given. 
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 PREDICTION OF SHEAR-WAVE SONIC LOGS IN THE WESTERN Chapter Two:

CANADIAN SEDMENTRY BASIN (WCSB) 

2.1 Introduction 

Dipole sonic logging is an important tool capable of measuring sonic compressional and shear 

wave transit time of both hard and soft formations.  Shear sonic logs are not always available for 

most wells drilled in explored areas due to the high cost of shear-wave sonic logging as well as 

the difficulty in obtaining precise shear slowness measurements that are free from mud invasion 

effects, cycle skipping and other environmental attributes that affect well drilling procedures and 

data acquisition (Ellis and Singer, 2008). 

Recent developments of sonic logging tools have prompted drilling companies to calculate 

mode-converted shear sonic wave using compressional sonic measurements from several 

receivers along the probe, as an alternate method of direct shear wave sonic measurement.  

However, this method of calculation can be applied only to formations or rock layers where the 

shear wave velocities are faster than the velocity of drilling mud. 

The Pikes Peak seismic survey area has only one dipole sonic log, therefore, one of the thesis 

objectives is to estimate shear sonic log for wells that do not have dipole sonic measurements 

acquired during well logging.  Another goal is to quantify shear sonic logs for those were logged 

in different (conventional oil, heavy oil and unconventional-tight oil shale) reservoirs in WCSB. 

 

2.2 Empirical Relations for Mudrock Line Estimation 

The Castagna’s mud-rock line equation (Castagna et al., 1985) is given by 

                             2.1 

where P-wave sonic velocities are in km/sec. 



 

15 

Han et al., (1986) have also established another empirical relationship used to predict shear-wave 

log, and it is written as: 

                             2.2 

The most common empirical S-wave estimation formula is the relation developed by Greenberg 

and Castagna, (1992).  The Vs-estimation equation is given by  

           
                  2.3 

Where             coefficients are global and are defined for each lithology. 

While the general approach for estimating shear-wave log is to use one of the empirical 

relationships above, our goal is to derive these empirical parameters locally, since the classical 

approach often neglects specific lithology of geological markers, reservoir pressure and 

temperature conditions, as well as drilling and other circumstances that affect specific well bore 

log during the course of a survey. 

 

2.3 Inverse Problem for Predicting of Shear Sonic log 

Linear regression is a classical method that is used to derive empirical Castagna’s constants 

locally.  Thus, better approximations of lithology and borehole conditions are maintained.  

However, the linear regression method is often influenced by the presence of outliers that lead to 

inaccurate estimates of the slope and intercept points; thus producing erroneous predicted data.  

In a linear inverse problem, the objective is to re-calculate measured data, trying to fit the 

synthetic model or predicted data to measured data, and then estimating data misfit or 

uncertainty.  Producing a model that describes our observed data to a certain degree of 

confidence is the core subject of the inverse theory (Tarantola, 1987).  The shear sonic log can be 
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posed as an inverse problem and solved accordingly.  By writing S-wave estimation as a linear 

inverse problem, Castagna’s equation can be written as follows: 

                    2.4 

The forward – inverse pair can be written as follows: 

                2.5 

                2.6 

where   is the model parameters,   is the forward operator,   is measured data and   noise. 

 

2.3.1 Formulating of Least-squares Inversion 

In least-squares inversion, we solve for a parameter model vector, m, which fits a model 

response to data, d, in a least squares sense (Lines and Treitel, 1984).  The error,  , in equation 

(2.6) is assumed to be white noise (Aster et. al., 2005).  Traditional Tikhonov regularization 

selects solutions by minimizing an objective function of equation (2.7) that combines the    

norm of data-misfit and semi-norm of model length given in equation (2.8). 

 

                   2.7 

      ‖    ‖ 
   ‖ ‖ 

        2.8 

 

The Levenberg-Marquardt least-squares inverse equation (Levenberg, 1963) can be written as 

                       2.9 

where   is the forward operator,   is identity matrix, and   is the regularization parameter. 
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2.3.2 Setting up the Regularization Parameter of the Inversion Scheme 

The regularization parameter or damping factor,  , is the trade-off parameter between the 

residual norm and model norm.  If   is a relatively large number, the noise will be attenuated at 

the expense of a less accurate approximation of the desired output, thus it degrades the resolution 

of the predicted shear sonic log.  On the other hand, if   is too small, the noise could dominate 

the predicted shear sonic log, which leads to instabilities in the inversion.  Therefore, the addition 

of a damping factor is a trade-off between accuracy and instabilities in the inverse algorithm. 

There are many approaches for selecting a proper value of the regularization parameter.  The L-

curve method (Hansen and O’Leary, 19993) is based on maximum curvature.  On the other hand, 

the discrepancy principle or generalized cross-validation method, GCV, (Wahba, 1977) is 

another approach in determining an optimum regularization parameter.  Both techniques require 

solving equation (2.9) for a different range of the damping factor; a potentially very costly task. 

In this study, a damping factor of 0.1 is used in the initial iteration.  For subsequent iterations, the 

damping factor is either increased by 0.25 of      or decreased by a magnitude of       , as 

the computed damping factors have produced stable and good convergence for the inverted 

model.  Increasing or decreasing the regularization parameter is bound by the magnitude of the 

   norm of the model length for   
  and   

   .  For the first iteration, we choose the norm of 

logarithmic measured data as an initial norm condition of model length.  Figure (2.1) shows the 

Lagrange multiplier,    for the i
th

 iterations during an inversion to estimate the shear sonic log.  
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Figure 2.1: The Lagrange multiplier, λ for the i
th

 iterations during inversion of shear sonic log 

using one of the proposed inverse schemes. 

 

 

2.4 IRLS Inversion of the shear-sonic log 

In the previous section, it is stated that the linear inverse method is often influenced by the 

presence of outliers that might give inaccurate estimates of the slope and intercept values. Thus, 

the presence of outliers prompts us to research for an inverse method that tackles noise in shear 

sonic logs. Thus, a need for developing new techniques to estimate the uncertainty in shear sonic 

log becomes imminent in order to quantify the shear sonic log via the Inverse theory, and to 

produce more interpretive sections of inverted shear log. 

The iteratively re-weighted least squares, IRLS, (Wolke and Schwetlick, 1988; Saeed et al., 

2010a and 2010b) inverse method is another technique used to estimate shear-wave sonic log 

that is less influenced by noise, and it guards against outliers.  
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We formulate the inverse problem using Tikhonov regularization (Tikhonov and Arsenin, 1977) 

to obtain inverse solution by minimizing the objective function in equation (2.7).  

The data misfit is defined as 

    ‖        ‖ 
         2.10 

 

While the model solution is defined as 

    ‖     ‖ 
          2.11 

 

A new objective function that incorporates different weights is then expressed as 

      ‖        ‖ 
   ‖     ‖ 

      2.12 

 

Thus, a new system of equation that provide an estimate of unknown parameters can be written 

as 

 (    
           

     )      
         2.13 

 

where Rd and Rm are data misfit and model-structure weighting matrices (Farquharson and 

Oldenburg, 1998) introduced so that different elements of the data misfit and model roughness 

vectors are given equal weights in the inversion process.  Wd is a diagonal weighted matrix in the 

data space, while Wm is a weighted or roughness operator in the model space.   

In the following subsections, several types of weights (constraints) used in the data-misfit and 

regularization model norms are given. 
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2.4.1 Minimization using    measures of Rd and Rm  

The general form of an objective function to be minimized (Scales et al., 1988) can be written as 

      ∑ |  |
 

          2.14 

Traditional least square problems that satisfy ℓ2 are solved for p=2.  If ℓ1 is sought, then p=1, and 

the objective function is merely the sum of the absolute values of vector  .  The vector   

represents either data-misfit term (equation 2.15) or the model-length term given by 

regularization function (equation 2.16). 

 

                    2.15 

                  2.16 

For the case     , the objective function (equation 2.14) must be modified to avoid a 

discontinuity in       (Farquharson and Oldenburg, 1998).  Thus a small user-specified value 

  is added to equation (2.14) in order to introduce stability when     .  The modified 

objection function for an ℓ1 measure is then expressed as 

      ‖   ‖ 
          2.17 

 

Recall equation (2.13), 

 (    
           

     )      
         2.18 

The   matrix in equation (2.18) can be written as 

     {
                       
                                     

      2.19 
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Since   is a function of an unknown parameter,  , this is a non-linear system, and an iterative 

approach must be used.  This is referred to as iteratively re-weighted least squares, IRLS, (Wolke 

and Schwetlick, 1988). 

We followed the approach of Farquharson and Oldenburg (1998), by setting     for the first 

iteration, which results in a traditional least-squares solution.  The estimation of    for i=1 is 

used to calculate   in equation (2.19), and then subsequently substituted again in equation (2.18) 

to calculate a new     .  The procedure is repeated until the convergence condition given in 

equation (2.20) between successive IRLS iterations is met. 

 

      
‖       ‖

 

  ‖    ‖
 

          2.20 

where   is a tolerance value, and was set equal to 0.001 for research work in this thesis. 

 

There are now two user-defined parameters,   and  , that control the behavior of the solution of 

inverse problems.  A small value of   is needed to stabilize equation (2.17), but too small a value 

can introduce instability for any     .  On the other hand, a large value of   tends to act more 

like a traditional regularization parameter when     (Minsley, 1997).  The damping 

parameter,  , can be chosen either by the L-curve method (Hansen, 1994) or by using a user 

specified small positive value that is within       range. 

Since the main objective of the inversion algorithm used in this study is to have minimal 

intervention by the user, it followed the approach of Farquharson and Oldenburg, (1998) and 
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Zhdanov and Tolstaya, (2004) by plotting      for a range of   to determine an optimal balance 

between these two extremes.  This is not computationally expensive because it only requires 

substituting multiple values of   into equation (2.17) using the current value of  .  In the 

following sub sections, building of the L-curve functional and calculating the maximum 

curvature to obtain the optimal trade-off parameter   are given. 

 

2.4.1.1 Building the L-curve 

The optimal trade-off parameter, , is calculated based on the L-curve method of Hansen and 

O’Leary, (1993).  The L-curve is a plot, in log-log scale, of corresponding values of the residual 

and solution norms (Figure 2.2).  In this research, the optimal trade-off value of   is chosen to be 

within the range ( 110 5   ) divided over 150 points of equal spaces.  The L-corner is defined 

either as maximum curvature (Hansen, 1994) or as the point of tangency with a straight line of 

negative slope (Reginska, 1996; Oraintara et. al., 2000).   

Note that Hansen, (1994) defined the L-corner as the point of maximum curvature, and the 

calculation of the inverse problem was repeated for two-hundred different values of 

regularization parameters to find the L-corner. 

In order to construct the L-curve function given in Figure (2.2), define the x- and y-axes as 

follows: 

 

      ‖    ‖ 
          2.21 

      ‖    ‖ 
          2.22 



 

23 

 

Figure 2.2: The L-curve plot of log values of residual and solution norms. 

 

 

where    and    represent the data-misfit and model length terms that were calculated from 

equations (2.15) and (2.16) respectively.  The point on the L-curve associated with   is given by 

        . 

In Figure (2.2), when    is very large, the curve is essentially a horizontal line in a region called 

the over-regularization region (Oraintara et. al., 2000).  Conversely, when   is very small (under-

regularization), the curve is a near vertical line.  The transition between these two regions of 

under and over-regularization corresponds to the “corner” of the L-curve and the associated 

value of   at this corner is considered to be an optimal value of the regularization parameter. 
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2.4.1.2 The curvature of the L-curve 

The curvature    of the L-curve (Calvetti et. al., 2000) is given by  

     
           

                
        2.23 

where ΄ and ΄΄ denotes the first and second derivative with respect to  .  From equations (2.21 

and 2.22), and         (Hansen and O’Leary, 1993), the optimal curvature,   ̂, is given by 

   ̂   
  

  

                

            
       2.24 

 

Note that Hansen, (1994) uses the initial    obtained in equation (2.23) with few regularization 

parameters before and after the initial    in order to obtain the optimal maximum curvature   ̂.  

The index of the minimum of this maximum curvature is the optimal trade-off parameter  ̂.  In 

this study, the associated   to initial    curvature estimated in equation (2.23) is substituted into 

equation (2.24) in order to obtain the optimal   ̂.  The index of the minimum   ̂ is then cross-

referenced with an array of all    values used so as to obtain the associated optimal trade-off 

parameter  ̂.  Figure (2.3) shows the maximum curvature calculated from the L-curve function, 

where the optimal  ̂ is obtained during the IRLS inversion algorithm. 
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Figure 2.3: The optimum maximum curvature  ̂. 

 

 

2.4.2 Smoothness constraint of the model regularization operator    

Imposing additional information about the model will constrain the roughness of the inverse 

operator (Constable et al., 1987) in order to produce a refined model.  The purpose of the 

regularization operator in the inverse problem is to introduce stability while recovering models 

that do not involve complicated features.  The regularization operator can be either smoothness 

or compactness.   

Common forms of regularizations applied to the model space are those developed by Tikhonov 

and Arsenin, (1977) in order to introduce stability through constraints provided by the 

regularization operator.  When the operator is the identity matrix (Wm) = I , 0
th

 order), a 
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minimum length solution is obtained.  If the operator is the gradient (Wm=   , 1
st
 order), a flat 

solution is obtained, while a Laplacian operator (Wm =   , 2
nd

 order) leads to a smooth solution 

(Ajo-Franklin, et. al., 2007). 

Although neither flatness nor smoothness are intrinsic properties of the earth, Tikhonov methods 

have enjoyed remarkable success, particularly in the use of first order finite-difference operators 

(deGroot-Hedlin, and Constable, 1990).  Note that, although these operators introduce stability to 

inverse algorithm, some resulting model tends to have very smooth sections that may not always 

be realistic (Silva et al., 2001). 

Li and Oldenburg, (2000) advocate selecting regularization operators, which incorporate some 

constraints that are responsible for observed property variations, such as geological dip or fluid 

flow in a high permeability zone.  The regularization operators can also be the case when a 

geologic feature such as a dike has material properties that vary over short distances, or where 

fluid flow occurs along restricted high permeability pathways (Ajo-Franklin et al., 2007).   

 

2.4.3 Compactness constraint of the model regularization operator    

A compactness constraint operator is another stabilizing function that minimizes the area where 

strong variation in model parameters or discontinuities occur (Portniaguine and Zhdanov, 1999). 

The compactness constraint operator is non-linear and requires the use of model-space in an 

iteratively reweighted least squares (IRLS) sense for an effective solution.  In the following 

subsections, three types of compactness constraints are given in some details.  The weighted 

matrix, Wd was set as identity matrix during the inversion.  Note that due to large numbers of 

figures generated using different weight methods, we will include only figures that best describe 

the concept used in this study. 
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2.4.3.1 Modified total variation method 

The total variation approach (      ‖  ‖ ) was used by Rudin et al. (1992) to reconstruct 

noisy and blurred images.  This approach was then modified by Acar and Vogel (1994), to 

introduce stability when model parameters are non-differentiable. The modified total variation 

method or cumulative sensitivity (Portniaguine and Zhdanov, 1999) is defined as follows: 

 

                                              2.25 

 

where   is the Jacobian matrix of the data with respect to model parameters        and β is a 

small fractional number introduced to provide stability.  The operator,     forms a diagonal 

weighting matrix that allows for solutions away from measurement locations, where sensitivity 

decreases (Boulanger and Chouteau, 2001; Li and Oldenburg, 1996). 

Figure (2.4) shows measured Vp (blue in color), Vs (red in color), the Vp/Vs ratio (black in 

color) and the density (green in color) logs from Well 1A15-6 of the Pikes Peak, heavy oil 

reservoir.  The hope is to obtain good estimates of slope and intercept values that are used in 

equation (2.4) to estimate shear log that is close to the measured shear-sonic log with minimum 

residual.  In Figure (2.5), the inverted shear sonic log has successfully delineated all lithology 

layers, and was able to discriminate Waseca sandstone reservoir.  Note that a spike at a depth of 

560m in predicted shear log can be attributed to coal seam in McLaren formation.  Figure (2.6) is 

a scatter plot for both measured and predicted shear sonic log colored by residual.  The majority 

of predicted shear log values falls in the low residual area. 
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Figure 2.4: The measured Vp and Vs, Vp/Vs ratio and density logs of the Pikes Peak heavy oil field. 

 

 

 

Figure 2.5: The measured and inverted shear sonic logs of Well 1A15-6, Pikes Peak using the 

modified total variant method. 
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Figure 2.6: The measured versus inverted shear sonic logs colored by residual of Well 1A15-6, 

Pikes Peak, using a modified total variant method.  The color bar represents the absolute 

difference between measured and inverted shear sonic logs values. Velocity unit is in Km/sec. 

 

 

 

2.4.3.2 Minimum support method 

Compact body inversion, developed by Last and Kubik (1983), has been used in potential fields 

(Portniaguine and Zhdanov, 1999) as well as in seismic tomography (Ajo-Franklin, 2007) 

inverse problems, and usually produces a blocky image model (Claerbout and Muir, 1973).  The 

minimum support function, often referred to as compactness, is based on the minimization of an 

area (or volume in three-dimensions) metric of the anomaly.  Last and Kubik (1983) introduced 

an area metric, A(m) that is expressed as follows: 
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               ∑
  

  
   

 
            2.26 

where     is the area of a single element,    is the i
th

 model parameters, and   is a small 

fraction introduced to provide stability as     .  In the limit of    , the term on the right 

hand side of equation (2.26) evaluates to 1 when     , and they become 0 when     .  This 

metric approximate the area of the anomalous region. 

A new objective function that incorporates the measure of the area, is given by 

         ‖    ‖ 
    ∑

  

  
   

 
   

 

      2.27 

Minimization of the objective function yields a least-square problem that is now dependent on 

model estimates.  The new diagonal weighted matrix, Wc, that incorporates compactness, can be 

written in explicit form as 

     
  

  
   

               2.28 

The    matrix can be viewed as a spatially variable damping matrix with high values in regions 

where the prior model estimate has a small absolute magnitude (Ajo-Franklin, 2007).  The 

inverted shear sonic log (Figure 2.7), using compactness constraint, has converged to the final 

solution after the 7
th

 iteration.  The plot of RMS errors during the inversion (Figure 2.8) shows 

slight decrease change in RMS compared to the cumulative index in Figure (2.5). 
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Figure 2.7: The measured and inverted shear sonic logs of Well 1A15-6, Pikes Peak area using 

the minimum support method. 

 

 

 

Figure 2.8: The RMS error during IRLS inversion of inverted shear sonic logs of Well 1A15-6, 

Pikes Peak, using the minimum support method. 
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2.4.3.3 Minimum gradient support 

A new constraint that can also be implemented in model space is defined by equation (2.29), 

where the cumulative constraint (sensitivity weight) is scaled by model parameters. 

      
     

   
                2.29 

Incorporating of new weight function into traditional least square inverse problem leads to a new 

objective function that can be expressed as, 

         ‖    ‖ 
    ‖  ‖ 

 
 
      2.30 

Figure (2.9) shows the inverted shear sonic log using the minimum gradient support constraint.  

There is a slight change in the slope and intercept calculated after converging to the final solution 

in the 7
th

 iteration.  The damping factor graph in Figure (2.10) starts to showing increasing in 

magnitude at 5
th

 iteration before the program reached the final solution. 

 

 

2.4.4 Constrained weight matrix    

Several methods to estimate the weighted matrix Wd that can be incorporated in the data misfit 

domain have been tested.  These weighted matrices have size of M x M, where zeros take up 

much spaces of the matrices sizes.  One can utilize the sparse matrix technique (Varga, 1962) 

where only non-zero values with their indices are saved in disk memory.  In the following 

subsections, explanations for each of weight method used are given. 
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Figure 2.9: The measured and inverted shear sonic logs of Well 1A15-6, Pikes Peak using the 

minimum gradient support method. 

 

 

Figure 2.10: Plot of the damping factor during IRLS inversion of shear sonic logs of Well 1A15-

6, Pikes Peak area, using the minimum gradient support method. 
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2.4.4.1 Standard deviation of residual 

In geophysical inversion, it is assumed that the model parameter errors are independent and 

normally distributed (Aster et. al., 2005).  Typically, Wd contains information about the standard 

deviation of measurement errors.  For the first iteration, Wd in equation (2.13) was set to be the 

identity matrix, and for subsequent iterations, the standard deviation is calculated by 

   √
 

   
∑   

  
            2.31 

Note that in equation (2.31), the weighted matrix, Wd, is scaled by the measured shear sonic log, 

d
obs

, in order to test the stability of the algorithm.  Figure (2.11) shows the measured and the 

inverted shear log.  Note that the residual in the Waseca zone is less compared to predicted logs 

obtained using the constraints in model space.  Contrarily, the residual from Base fish scale is 

increased until we reach the Colony formation where a better approximation is achieved. 

 

 

Figure 2.11: The measured and inverted shear sonic logs of Well 1A15-6, Pikes Peak, using the 

standard deviation of the weight matrix method. 
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2.4.4.2 Robustness normalized by the standard deviation 

The fractional       norms, scaled by the standard deviation (Rücker and Günther, 2006) are 

another weighted matrix form that can be implemented in data misfit space.  The weighted 

function is written as,  

   

|  |

‖ ‖ 
 

|  |
 

‖ ‖ 
 

 

|  |

∑|  |

  
 

∑  
 

  
∑  

 

|  |  ∑|  |
        2.32 

Further improvement in terms of time computation is made by scaling robustness given in 

equation (2.32) by the standard deviation.  Scaling      leads the program to converge to a final 

solution after 14 iterations compared to the 17 iterations required if equation (2.32) is used alone.  

Figure (2.12) show the inverted shear sonic log, while Figure (2.13) shows an associated RMS 

error during inversion.  In general, the inverted log better predicts the measured shear sonic log 

with a clearly smaller residual compared to the constraint method given in the previous section.  

 

 

2.4.4.3 Hybrid     ⁄  norms 

The hybrid     ⁄  norms are introduced by (Bube and Langan, (1997) to incorporate desirable 

geological characteristic in to the inverse problem.  The hybrid     ⁄  norm is written as 

     [        
 ]              2.33 

The norms were scaled by the Darche (1989) tuning constant,             .   
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Figure 2.12: The measured and inverted shear sonic logs of Well 1A15-6, Pikes Peak using 

robustness normalized by the standard deviation method. 

 

 

 
 

Figure 2.13: The RMS error during IRLS inversion of shear sonic log of Well 1A15-6, Pikes 

Peak, using robustness normalized by the standard deviation method. 

Zone 2 

Zone 3 

Zone 1 
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The use of the maximum value of observed data in Darche’s tuning factor implies scaling the 

weighted matrix by a global constant scale, which leads to an increase in the number of iterations 

required for the program to converge towards the final solution. 

The objective is to optimize the inverse scheme in terms of accuracy and computation time, and 

therefore, by using the absolute maximum of residual in Darche’s threshold,     | |     , the 

tuning scale varies at every iteration.  The modified tuning factor reduced number of iterations 

required to converge to final solution significantly, and has also reduced RMS error.   

The inverted shear sonic log is given in Figure (2.14).  Note that, the final predicted shear sonic 

converges after nine iterations compared to the robustness normalized by standard deviation 

previous method that required 14 iterations.  The final predicted shear sonic log is close to the 

measured shear sonic log with a smaller residual. 

 

 

2.4.4.4 Huber constraint 

The maximum likelihood estimator, often referred as the M-estimator, has been widely used in 

linear regression problems (Hong and Chen, 2005) to reduce the influence of outliers.  The M-

estimator is defined as the solution of the minimization cost function, which can be expressed as 

      ∑  
       

 

 
           2.34 

Where   is an even, continuously differentiable function (Wolke and Schwetlick, 1988), and   is 

a scaling factor of the residual,   .  The scaling parameter,  , used in this study, is the median 

absolute deviation, MAD (Holland and Welsch, 1977).  The most common M-estimators are the 

Huber estimators (Huber, 1981), and these are written as follows: 
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Figure 2.14: The measured and inverted shear sonic logs of Well 1A15-6, Pikes Peak, using a 

hybrid     ⁄  norms method. 

 

 

       {

 

 
                                        | |   

 | | 
 

 
  

 
                       | |   

     2.35 

 

where   is a tuning constant. 

It is common to choose          for a Huber estimator, since it offers robustness against 

outliers, yet produces 95% efficiency when the error are normally distributed (Huber, 1981).  For 

the k th iteration step, the weight function for Huber constraints are defined as follows: 

   
    {

                                   |      |   
 

|      |
                          |      |   

     2.36 
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Since   is a prior unknown, an iteratively reweighted least-square (IRLS) inversion is required.  

Note that the tuning constant given earlier did not produce a converged solution for equation 

(2.13).  Therefore a modification for the tuning constant is needed to stabilize the IRLS inverse 

algorithm.  In this study, a modification of Huber’s and Darche’s tuning constant is established.  

The new tuning constant for the Huber weight function is written as follows: 

         
   | |

   
          2.37 

The new tuning constant in equation (2.37) is used, and has improved convergence and accuracy 

for resulting models.  In Figure (2.15), the inverted shear sonic log using the Huber weight 

function fairly matches the measured shear sonic log.   

 

 

Figure 2.15: The measured and inverted shear sonic logs of Well 1A15-6, Pikes Peak, using the 

Huber constraint. 
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2.4.4.5 The Annealing M-Estimator 

Li, (1996) presented a modified robust M-estimator called annealing M-estimator, often referred 

to as an AM-Estimator, in order to stabilize convergence towards the final solution.  The AM-

estimator gives a global solution, is very stable, and has good behavior with regards to 

percentage of outliers and noise variance. 

The scale, s, in the M-function is replaced by the parameter   in the AM-estimator that is 

approaching 0
+
 during the processing.  The AM-estimator under   is defined by 

 

    
∑          

∑        
          2.38 

where        is an adaptive interaction function parameterized by   (Li, 1996). 

 

The adaptive interaction function is given by 

 

        
 

        
          2.39 

where    acts as interaction weighting function, and      . 

 

In the inversion algorithm, the parameter   was initially set equal to the Huber tuning constant, 

          and then minimized after the first iteration by             .  Figure (2.16) 

shows the inverted shear log, while in Figure (2.17) the RMS error reached a minimum 

magnitude after 6
th

 iteration. 
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Figure 2.16: The measured and inverted shear sonic logs of Well 1A15-6, Pikes Peak, using the 

annealing M-Estimator. 

 

 

 

Figure 2.17: The RMS error during IRLS inversion of shear sonic logs of Well 1A15-6, Pikes 

Peak, using the annealing M-Estimator. 
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2.4.5 Analysis of IRLS results from model and data constraints 

Saeed et al., (2012) used the iteratively re-weighted least-square inversion, IRLS, to improve 

prediction of shear sonic logs in the western Canadian sedimentary basin, as proposed inverse 

schemes give confidence for estimating the regression line in the presence of outliers.   In the 

following subsections, further analysis for the residual, simultaneous utilization for the weighted 

matrices of both model and data domains, and application of proposed inverse schemes to predict 

shear sonic log in the tight shale Montney reservoir are explained. 

 

 

2.4.5.1 Diagnosing the RMS error curve 

A successful inverse algorithm is achieved when its residual follows a Gaussian error 

distribution (Claerbout and Muir, 1973).  The RMS error curve (Figure 2.13) during IRLS 

inversion of the shear sonic log characterizes three RMS areas of interest that need to be 

investigated in some detail.  The first zone of interest is of the first iteration, where no 

constraint(s) applied in the inversion; thus a simple damped least-square (equation 2.9) inversion 

is used.  The second RMS area, which is the zone in the second iteration of IRLS inversion, 

whereby constraints are first introduced into the inverse algorithms (equation 2.18). A noticeable 

spike increase in RMS error is detected.  The third RMS zone of interest is the area after the third 

iteration, leading towards the final solution where convergence is achieved.  In this zone, 

constraints have stabilized the RMS curve towards minimum error estimated during inversion. 

The plot in Figure (2.18a) shows shear sonic inversion in the first iteration where no constraint 

was applied, and the inversion algorithm used is merely a damped least-square inversion.  Note 

that the inverted shear sonic log resembles the measured shear sonic log.  The hope is to 
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minimize the residual between measured and inverted logs.  The inverted shear log shows small 

residual from depth 300m through to the second White Specs geological marker. At the Waseca 

reservoir there is a gap between predicated and measured logs where a best fit line relation is not 

totally adequate.  The spike in the predicted log in the McLaren formation is indicative of a coal 

seam, and is expected since the p-wave velocity is twice the shear wave velocity in coal. 

In Figure (2.18b), the predicted shear sonic at the second iteration where the constraint is just 

introduced into the inversion algorithm, matches the measured shear sonic log.  However the 

residual has grown large, and this is expected since error norms are just introduced in the inverse 

algorithm.  The plot in Figure (2.18c) shows the result at the last iteration.  Note that after a few 

iterations, the incorporated constraint has stabilized the RMS, reduced the residual, and has also 

reduced the magnitudes of spikes that indicative of over estimations of predicted log values at 

various depths in the shear sonic log. 

In other words, introduced constraints reduce the effect of outliers in best fit line estimation.  

Nevertheless, introducing these soft constraints lead to refining estimated slope and intercept 

values in best fit linear relation. 

 

 

2.4.5.2 Cross plots of residuals  

Figure (2.19) shows the cross plot for the measured shear sonic log versus the inverted shear 

sonic (where weighted constraint was embedded into the data space) colored by the residual.  

Figure (2.20) shows same plot but for a weighted matrix embedded in the model-space.  Note 

that the residual in model-space is slightly higher than the residual resulting from the weight 

imposed on the data-space. 
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Figure 2.18: The measured and inverted shear sonic logs of Well 1A15-6, Pikes Peak. (A): 

inversion at the first iteration. (B) Inversion at the second iteration, while (C) the inversion of the 

shear sonic log at the final solution. 

A

a 

B

a 

C

a 

Residual increases 
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The majority of inverted shear sonic values in both figures have small residuals.  Furthermore, 

the cross plots allow user to examine points with high residual that are substantially having high 

error percentage.  Hence, one can either adjust or trim these outliers to improve the overall 

prediction of sonic logs.  In terms of computation time required to converge to a final solution, it 

has been noticed that embedding constraint in model space leads to reduce in number of 

iterations compared to constraints involve in data space. 

Table (2.1) shows values of slope, intercept, number of iteration and RMS values for the final 

iteration of different weighted matrices used in predicting a shear sonic log of Well 1A15-6, 

from a heavy oil reservoir of the Pikes Peak oil field.  Note that all sonic velocities are in km/sec.  

Table (2.1) can serve as a QC tool for estimated slope and intercept. It will also assist in selecting 

the right inverse scheme for the prediction of a shear sonic log. 

In terms of computation time, the study shows that the type of the used constraint, tuning factors, 

and the amount of outliers would control the number of calculation cycles required to converge 

towards final solution model.  For weighted matrices that are embedded in data-misfit space, it 

has been found that the annealing M-estimator method is the fastest inverse scheme in terms of 

time computation required to converge to a final solution.  On the contrary, the minimum 

gradient support constraint applied in model space considers a fast inverse scheme compared to 

the other constraints techniques applied in model norm space. 
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Figure 2.19: Measured versus inverted shear sonic logs of Well 1A15-6, Pikes Peak, color coded 

by the residual. Constraint applied in data space. 

 

 

 

Figure 2.20: Measured versus inverted shear sonic logs of Well 1A15-6, Pikes Peak, color coded 

by the residual. Constraint applied in model space. 
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Table 2.1: The slope, intercept, number of iterations and RMS values for the final iteration of 

different weighted matrices used in predicting of shear sonic log of well 1A15-6, Pikes Peak 

heavy oil field. 

 

 

2.4.5.3 Simultaneous application of model and data misfit norms 

Further experiments were carried out to study effect of simultaneously applying constraints in 

both model-space and data-misfit.  The results from inverting shear sonic log using this approach 

lead to further tuning the estimated slope and intercepts values.  In terms of computation time, it 

has been found that type of constraint used in data-misfit domain controls number of 

computation iterations.  On the other hand, the type of constraint used in the model space may 

reduce the number of iterations required to converge to final solution.  

Figure (2.21) shows a zoomed section of an inverted shear sonic log from the tight-shale 

Montney reservoir in the WCSB.  A combination of data misfit (hybrid     ⁄ ) and model space 

Type of applied Constraint Slope Intercept RMS error % No. of Iterations

No constraint applied 1.2044 -2.159 0.2405 1

Modified total variation 1.1247 -1.9593 0.2413 8

Minimum support 1.1567 -2.0405 0.2408 7

Minimum  gradient support 1.1566 -2.0404 0.2408 6

Std. Deviation of measured error 0.9522 -1.3471 0.3132 12

Robustness normalized by Std. deviation 1.104 -1.9007 0.242 14

Hybrid L1⁄L2  norms 1.2714 -2.3389 0.2415 9

Huber constraint 1.1751 -2.0865 0.2406 8

The Annealing M-Estimator 1.199 -2.1458 0.2405 6
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(minimum gradient support) weighted matrices were incorporated in the inversion algorithm, and 

have led to reduced cycles of calculation iterations, yet improved best fit line estimation.  The 

inverted shear log is consistent with measured shear sonic log where the minimum residual is 

achieved. 

 

 

 

 

Figure 2.21: The measured and inverted shear sonic logs of Tight Shale Montney, WCSB using a 

combination of hybrid      ⁄  and minimum gradient support weighted matrices. 
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2.5 Mud-rock line estimation via the locally weighted scattering smoothing method 

A classical procedure for noisy data usually requires some editing before performing linear 

regression in order to reduce influences of outliers on estimating slope and intercept points used 

in a best fit-line equation.  Another approach is to fit a polynomial of a higher degree, such as 

quadratic equation, where the curvature of line is included in the best fit-line equation.  Thus, to 

map the mud-rock line more precisely, we should look for another regression method that takes 

into consideration the effect of neighbor points in the scattering graph, and prove it is robustness 

against the outliers as well. 

 

 

2.5.1 Robust locally weighted smoothing scattering (LOWESS) 

Cleveland, (1979) has introduced the robust locally weighted scattering smoothing (LOWESS) 

method.  This is another regression method that not only smoothes the scatter plot but also 

guards against outliers that distort the smoothed points in the scattering plot.  Given (  ,   ) 

points, let    be the distance between    and it’s b
th

 nearest neighbors along the X-axis.  The 

value of b is the nearest integer to (     ), where n is the number of data points and   is the 

smoothing factor (     ).  A small value of   produces rough curve (Figure 2.22a), while 

greater value of   tends to smooth the curve line (Figure 2.22b).  However, for a general scatter 

graph, a practical value for   is usually between 0.2 and 0.8. 
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Figure 2.22: Scatter plot of P-wave velocity versus S-wave velocity using LOWESS for mapping 

of Mudrock line. (A): smooth curve factor, f=0.2, while (B), smooth curve factor, f=0.8. 
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a 
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The weighted slope ( estimateb
) and the intercept ( estimatea

) of the line derived from the robust 

locally weighted regression method can be written as, 

 

      
∑  

      ̅       ̅  

  
      ̅  

         2.40 

 

       ̅          ̅          2.41 

 

where  ̅ and  ̅ are weighted mean values, and 
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The best fit line equation is then written as 

 

                ̅          2.43 

 

The weight function,  , can be either a bi-weight function (p=2), or a tri-cube weight function 

(p=3).  In this study, a tri-cube weight function is applied.  Note that the size of the weight 

depends on the magnitude of residual.  Large residuals results in small weights and small 

residuals result in large weights (Cleveland, 1979). 
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2.5.2 Application of LOWESS to Mudrock line estimation in the WCSB 

The robust locally weighted smooth scattering, LOWESS, method has been used to map the 

mud-rock line using well logs from three different types of reservoirs (conventional oil, tight 

shale oil and heavy oil,) in the WCSB.  The optimum choice of a smoothing curve factor   varies 

among different types of reservoirs, and plays a key control of the magnitude of the residual.  It 

has been found that   is a trade-off between consistency of matching log curves for different 

lithology intervals and residuals, particularly in the zone of interest.  Although, it is solely a user 

choice, it would be meaningful to set   to be related to best expected shear sonic values, with a 

minimum residual, in the zone of interest rather than assigning an average   value to the 

complete log. 

 

 

2.5.2.1 Conventional oil reservoir (Blackfoot field) 

The Blackfoot field represents a common style of stratigraphic trap in the western Canadian 

basin (Pendrel et. al, 1999).  The producing formation is from a channel sand (Glauconitic of the 

lower Cretaceous age) deposited as incised valley-fill sediments above the Mississippian 

carbonates (Wood and Hopkins 1992). 

Figure (2.23) shows a cross-plot of Vp versus Vs logs where Mudrock lines calculated from 

using different methods are superimposed.  The scatter points are colored by Gamma values 

where sand usually has low gamma ray values.  The s-wave values of the dipole sonic logs for 

the productive sand channel reservoir are superimposed (black dots) in the section as well.  

Figure (2.24) shows measured and predicated shear logs using the ARCO line equation, linear 

regression, and the weighted regression method (LOWESS) respectively. 
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Figure 2.23: Cross-plot of P-wave velocity versus S-wave velocity of well log from conventional 

oil reservoir area. The scatter points are colored using Gamma ray API (color bar).  Vp-Vs 

values from the productive sand channel reservoir (black dots) are superimposed. 

 

The predicted curves using the linear and LOWESS methods match well the measured shear-

wave log.  Figure (2.25) shows percentages of residuals for the three methods used in predicting 

the shear-wave log of a well from a conventional oil reservoir.  Notice that the residual is higher 

for ARCO compared to regression methods.  

In Figure (2.26), the Mudrock line calculated by the robust locally weighted scattering 

smoothing (LOWESS) method can be used as a direct indicator of hydrocarbon (Saeed et al, 

2010c).  The mud-rock line estimated by the LOWESS method has successfully delineated 

channel sand, whereas linear regression and the ARCO mud-rock equation did not.  Furthermore, 

the carbonate zone can be easily distinguished by the LOWESS method, where it starts from the 

intersection point of Vs (around 2.8 km) and Vp of 4.8 km/sec and above. 
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Figure 2.24: Plots for measured (red color) and inverted shear-wave logs of a well from a 

conventional oil reservoir area using linear regression (green curve), the LOWESS method (blue 

curve) and the ARCO Mudrock equation (black curve). 

 

 

Figure 2.25: Plots for percentage of residual of shear-wave logs using a well log from a 

conventional oil reservoir. 
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Figure 2.26: Cross- plot for S-wave velocity versus P-wave velocity of well log from 

conventional oil reservoir area. The scatter points are colored using Gamma ray values API 

(color bar).  Velocity values from the productive sand channel reservoir (black dots) are 

superimposed.  The LOWESS fit line curves as it maps the channel reservoir. 

 

 

 

2.5.2.2 Tight shale oil reservoir (NW Alberta) 

Figure (2.27) shows P-wave velocity, S- wave velocity, density and Gamma ray of a well from a 

tight shale reservoir in northern Alberta.  Several oil companies have been actively targeting the 

Montney Formation as well as the Duvernay shale.  The tight light oil of shale reservoirs is 

emerging as an important new source of energy in North America.  With successful development 

of fracturing techniques applied to unconventional shale reservoirs, attention has now been 

shifted to the Montney and Duvernay shale in Alberta. 
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Figure (2.28) shows measured and predicted shear-wave logs using linear best fit, LOWESS 

method, ARCO and Han’s empirical equations.  Note that LOWESS method is in excellent 

agreement with the actual measured shear-wave log with minimum residuals, compared to 

estimated shear sonic logs using empirical relationship. 

 

 

 

 

Figure 2.27: Plots for P-wave, S-wave, density and Gamma ray logs of a well from tight shale 

reservoir area. 
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Figure 2.28: Plots for measured (red color) and inverted shear-wave logs of well log from a tight 

shale oil reservoir area using linear regression (green curve), the LOWESS method (blue curve), 

the ARCO Mudrock equation (black curve), and Han’s equation (magenta curve).  Col Color bar 

represents Gamma ray API. 

 

 

2.5.2.3 Heavy oil reservoirs 

The heavy oil in the Pikes Peak area, Saskatchewan, is produced from the sands of the Waseca 

Formation of the Lower Cretaceous Mannville Group (Watson, 2004).  For heavy oil, it is 

understood that the physical properties of reservoirs are considerably affected by the pressure 
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and temperature of steam injected as part of reservoir production process.  Well 1A15-6 was 

drilled in 2000, after the reservoir has already been put in cycle of steam injection, soaked 

period, and then production.  Therefore, prediction of shear sonic log in steam injected heavy oil 

reservoir poses great challenges that need to be investigated in more detail. 

It was stated earlier that the smoothing factor,  , weighs the accuracy of inverted shear sonic, 

and extra attention is needed in assigning an optimal   value.  Figure (2.29a) is a cross plot of 

dipole sonic velocities, where local linear, Arco and LOWESS methods used for calculating 

Mudrock lines are superimposed.  The smoothing factor,   was set to be 0.2 for the LOWESS 

method.  Figure (2.29b) is the same plot but with   set to be 0.95 to produce a very smooth 

curve. 

The objective is to examine the effect of the   value in calculating a best fit line.  The red and 

brown lines, which represent the best fit line using the LOWESS method, in both Figures give an 

indication of the precise   be used in order to guard against outliers in the logs.  Note that the 

brown line of LOWESS-regression is estimated by taking mean values of slope and intercept that 

are calculated during the LOWESS calculation procedure.  When        (set to be an 

extremely rough curve), the estimated best fit line deviates from being a correct estimation of the 

Mudrock line, and outliers now add more weight to the calculated slope and intercept.  The 

LOWESS regression line is projected in the outlier’s territory.  In contrary, when        (set 

to yield an extremely smooth curve), the estimated best fit line of Mudrock line becomes more 

realistic, and outliers have less effect to the calculated slope and intercept.  The mudrock line is 

now better representative of lithology areas and less affected by outliers that could have come 

from cycle skipping or a washout zone. 
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Figure 2.29: Cross- plot for S-wave velocity versus P-wave velocity of well 1A15-6, from a 

heavy oil reservoir area. The scatter points are coloured using Gamma ray, and velocity values 

from the productive Waseca sand reservoir (black dots) are superimposed. (A) for a smoothing 

factor,       , (B) is for       . The color bar represents Gamma ray API. 
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Figure (2.30a) shows a zoomed section of measured and predicted shear-wave logs using linear 

regression, the LOWESS method and the empirical ARCO mudrock relationship.  The 

smoothing factor,  , for LOWESS was set to be 0.25 as in Figure (2.29a).  Note that, although 

the predicted curve of the LOWESS method (middle tack) has matched measured log fairly well 

for the Base fish-scale marker through to the Colony geological marker, the residual between the 

two curves is noticeable at the McLaren formation, and more at the Waseca formation, compared 

to the local regression and ARCO method. 

In Figure (2.30b),   was set be very smooth (0.95) as in Figure (2.29b).  As expected, LOWESS 

become more close to linear regression, but with better tuning for estimated slope and intercept 

values.  The predicted shear sonic log shows good matching to the measured sonic log, with less 

residual compared to the linear regression method.  By far, the ARCO empirical equation shows 

quite obvious residuals (where the gap between measured and estimated shear sonic logs 

increases) compared to the other methods. 
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Figure 2.30: Plots for measured (red color) and inverted shear-wave logs of a well log from the 

heavy oil reservoir area using linear regression (green curve), the LOWESS method (blue curve), 

and the ARCO Mudrock equation (black curve).  (A) for a smoothing factor,       , while 

(B) is for       . 
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2.6 Conclusions 

Sonic measurements make important contributions to our knowledge of a potential hydrocarbon 

field in every phase of reservoir drilling, evaluation and exploitation.  The linear regression 

method is noticeably influenced by the presence of noise or outliers that might give an inaccurate 

prediction of a shear sonic log.  The constraints used in the iteratively re-weighted least-squares 

inversion further refine the estimated slope and intercept values used in the best fit line equation.  

Thus it improves the inverted shear-wave log, and helps in model convergence towards the final 

solution in a few iterations. 

The robust locally weighted smoothing scattering method, LOWESS, successfully maps the 

productive sand reservoir in conventional oil reservoirs.  It proves to be a good interpretive tool 

to be used in hydrocarbon and lithology discrimination. 

The choice of an optimal smoothing factor,  , used in the LOWESS method to map the mudrock 

line, depends mainly on the percentage of outliers in the used logs, lithology of logs, and type of 

hydrocarbon reservoir.  While small values             have produced good results in 

predicting shear sonic logs in conventional and tight shale reservoirs, it has been found that 

             range give better estimation of shear sonic in heavy oil reservoirs. 

In terms of residuals, the study has found that the minimum residual between the measured and 

predicted shear sonic is accomplished by using the LOWESS method, while the ARCO empirical 

relation shows a high residual for different lithology in the predicted well log. 
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 TIME-LAPSE AVO INVERSION OF SEISMIC SURVEYS Chapter Three:

3.1 Introduction 

AVO analysis is a direct diagnostic tool in hydrocarbon detection.  In reservoir monitoring, the 

changes in seismic attributes are often associated to the change in rock fluid properties.  The 

differences in seismic attributes of the base and monitor surveys are then used in evaluating the 

spatial change of reservoir attributes (LandrØ, 2001) after reservoir depletion due to the 

production process. 

A common method used in time-lapse seismic inversion is to invert seismic data of base and 

monitor surveys individually (Watson and Lines, 2001; Zou, 2005) and to then calculate the 

difference or percentage changes in estimated elastic attributes of time-lapse surveys.  Another 

approach used by in-house developed software is to perform simultaneous inversion of base and 

monitor seismic data, and then estimate the change in model parameters in order to reduce 

computation time.  The latter depends on the size of seismic data vintages. 

In this chapter, more practical and non-conventional inverse techniques for time lapse AVO 

inversion are introduced.  The objectives of proposed inverse techniques are to enhance elastic 

parameters estimations, in the presence of noise, and also to prove their efficacy in terms of 

accuracy and computation time. 

 

 

3.2 Time-lapse modelling 

Zou et al. (2006), have attributed the amplitude build-up in the seismic migrated section of 

monitor line for the Pikes Peak survey to the gas accumulating due to the cyclic steam 

stimulation (CSS) process used by Husky Energy for extracting the heavy oil. When the heavy 
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oil is depleted after being heated during the CSS process, it draws the gas out of oil-phase.  The 

reservoir simulation work by Zou, et al., (2006) has shown that seismic response is significantly 

affected by the evolved of gas from the oil-phase. The gas saturation increases at the top of the 

reservoir, and this is confirmed by the cross-over of neutron and porosity logs in Figure (3.1). 

The goal is to build a time lapse model to study the effect of cycle steam simulation on generated 

synthetic P-P and P-S seismic data for the Pikes Peak area, based on available well logs and 

seismic data that were acquired at two different times.  

 

 

 

Figure 3.1: Neutron- and density- porosity logs for Well D2-6, Pikes Peak field.  Arrows shows 

location of crossover of Neutron and density porosity logs as indicative of gas accumulation. 
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3.2.1 Building of time-lapse model of Pikes Peak heavy oil 

AVO modeling is a practical aspect in seismic acquisition design, processing and interpretation 

of pre-stack seismic data (Li., et al., 2007).  In this study, many assumptions are made in 

building up the time-lapse model.  The model consists of three layers, where the second layer 

represents the reservoir.  We assume that the Waseca reservoir is made up of a horizontal 

homogenous sand interval.  The elastic physical parameters (P-wave velocity, S-wave velocity 

and density) for the top and bottom layers were held constant in the base and monitor surveys, 

while elastic attributes of the middle layer were allowed to vary over the lapsed time.  

The P-wave velocity, S-wave velocity, and density values of the top layer are set to be 3500 

m/sec, 1750 m/sec and 2.7 gm/cm
3
 respectively, while for the bottom layer, these physical 

attributes were set to be 4000 m/sec, 2250 m/sec and 2.900 gm/cm
3
 respectively.   For the base 

survey, the P-wave velocity, S-wave velocity, and density values of the reservoir (middle) layer 

were set respectively to 3000 m/sec, 1500 m/sec and 2.65gm/cm
3
, while for the monitor model, 

these attributes were set at 2500 m/sec, 1450 m/sec and 2.5gm/cm
3
. 

Note that we set the change in P-wave velocity by 500 m/sec over the lapsed time, while the S-

wave velocity and density values were changed by small amounts compared to the P-wave 

velocity, because the P-wave velocity is significantly reduced by steam injection due to the CSS 

process.  The assumption of a large P-wave rate of change is in consistent with previous work by 

Watson and Lines, (2001) for the same survey area, where the Vp/Vs ratio was decreased at a 

high rate over time-lapse surveys. 

Figure (3.2) shows the time-lapse model.  The thickness of the reservoir layer is slightly 

exaggerated in order to avoid tuning effects on seismic resolution and AVO responses (Downton, 

2005).  The bottom layer was terminated at a depth of 850m where Pre-Cambrian unconformity 
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manifests itself (Watson 2004).  The far offset of the model is set to be at 1200m, and the 

geophone interval is 20m so as to simulate time-lapse seismic surveys that were carried out for 

the time-lapse lines (H1990 and H2000).  Figure (3.3) shows synthetic logs generated for the 

time-lapse model to simulate pre- and post-steam injection response in a heavy oil reservoir. 

 

 

 

Figure 3.2: Time-lapse model to simulate heavy oil reservoir, Pikes Peak field.  The color bar 

represents P-wave velocity. Note the increase of blue color of the reservoir layer (mid layer) in 

the monitor model as a result of decreasing P-wave velocity. 
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Figure 3.3: Synthetic logs to simulate pre- and post-steam injection in heavy oil reservoir. 

 

 

3.2.2 Synthetic seismic data 

The synthetic P-P and P-S data were generated using a multi-offset synthetic seismogram, 

SYNGRAM, (Lawton and Howell, 1992; Margrave and Foltinek, 1995) CREWES software.  

The Vp, Vs and density models are ray-traced for P-P and P-S incidence angles, and reflectivity 

amplitudes were calculated using the Zoeppritz equations.  The PP- and PS- reflectivities are 

then convolved with a source wavelet, which is a zero-phase Ricker wavelet of dominant 

frequency of 35Hz, to generate synthetic seismic gathers.  Figure (3.4) shows P-P synthetic data 

of baseline and monitoring models respectively, while Figure (3.5) represents P-S synthetic data 

of the baseline and monitoring models.  The seismic amplitudes for the gathers of the monitoring 

survey are scaled relative to the seismic amplitude of baseline survey.  Note the amplitude builds 

up and contrasts increase for the monitor model survey compared to the gathers of the base 

model.  
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Figure 3.4: Synthetic P-P seismic data for the base (A) and the monitor (B) models. 
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Figure 3.5: Synthetic P-S seismic data for the base (A) and the monitor (B) models. 
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The magnitudes of S-wave and density in building a time-lapse model were set to decrease at a 

small rate compared to the P-wave velocity.  In theory, and specifically for conventional oil 

reservoirs, the shear wave velocity is inversely proportional to density (   √   ).  In order to 

investigate this theoretic assumption for a heavy oil model, the density of the second layer 

(reservoir layer) for the monitoring survey model was let to increase in magnitude compared to 

the density value of the same reservoir layer in the baseline survey (i.e., swapped the density 

values of monitoring survey from original setting).  Although, the resulting gathers are not 

shown in this thesis, it was discovered that the amplitude contrast decreased as density increased.  

Thus, the results are in conflict with seismic sections of previous work (Zou et al., 2006). 

Han et. el., (2008) studied elastic properties of heavy oil under the effect of temperature and 

pressure from steam injection in a heavy oil reservoir.  In the study, they have categorized three 

areas in the heavy oil graph (Figure 3.6a) based on temperature.  At low temperature, the heavy 

oil is merely in glass solid-phase, and then it changes to quasi-liquid all the way to liquid phases 

as temperature increases.  The graph represents pre-steam and post-steam stages, which 

simulates the soaking period.  If the pressure is allowed to decrease, as in the production stage, 

then heavy oil evolves to gas-phase as a result from an exsolution process from liquids.  Note 

that both P-wave and S-wave velocities in Han’s work (Figure 3.6b) show decreases in their 

magnitudes as temperature increases.  Furthermore, it has also been found that the P-wave 

velocity decreases at high rate compared to the S-wave velocity (Eastwood, 1993). 

In practice, injecting steam during the cycle steam simulation (CSS) process reduces the 

viscosity of the heavy oil and decreases the density.  The CSS process will also lead to a 

decrease in the shear modulus of the heavy oil.  As a result, an increase in the gas accumulation 

due to the evolution of gas from the oil-phase, will affect seismic amplitude responses.  
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Figure 3.6: Properties of heavy oil sand (after Han et. al., 2008).  (A) shows classification of 

heavy oil phases depending on temperature.  (B) shows changes in Vp and Vs velocities with 

temperature.  Vp decreases at a higher rate compared to Vs as temperature increases. 
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Therefore, we concluded that density values of the reservoir layer of the time-lapse model should 

be decreasing with time due to the steam injection (Saeed at el., 2013a) to be consistent with 

Han’s study as well as processed seismic sections given in Chapter Four of this thesis. 

Figure (3.7) shows the difference of synthetic P-P data between baseline and monitoring models, 

while Figure (3.8) displays the difference of synthetic P-S data between base and monitor 

models. In terms of changes in amplitude magnitude, it is obvious that change in P-wave data is 

responds more to the change in fluid properties at the reservoir zone. 

 

 

3.2.3 AVA Reflectivity analysis 

The elastic properties of the time-lapse model of heavy oil are used in combination with the 

Zoeppritz equations to numerically model the changes in P-P and P-S reflectivities with 

incidence angle at the Waseca formation.  Reflectivity analysis is performed only for the top and 

reservoir layers, where the interface is a shale/sand. 

Figure (3.9) shows that the P-P reflectivity steadily decreases in magnitude with increasing angle 

until a critical angle is reached, and then the amplitudes dive towards the end of the curves.  Note 

that there is no change in terms of amplitude polarities for the base and monitoring curves.  The 

amplitudes of P-S reflectivity for the base and monitoring models are showing a scenario reverse 

to that of the P-P reflectivity.  The magnitude of P-S reflection amplitudes is increasing but at 

small magnitudes compared to the P-P reflectivity.  Note that the increase in amplitudes as angle 

of incidence increases is in consistent with synthetic P-S data shown in Figure (3.5). 
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Figure 3.7: Difference of synthetic P-P seismic data for the base and the monitor models. 

 

 

 

Figure 3.8: Difference of synthetic P-S seismic data for the base and the monitor models. 
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Figure 3.9: AVA analysis for the P-P and P-S reflectivities of the top and reservoir layers of 

time-lapse model of the Pikes Peak area. 

 

The analysis of amplitude variation with angle of incidences for the P-P and P-S reflectivity 

curves assist in designing some of field survey parameters, such as defining appropriate 

geophone spacing and maximum offset. 

 

 

3.3 Linear approximation of Zoeppritz equations 

The Knott-Zoeppritz equations (Zoeppritz, 1919) describe the partitioning of seismic wave 

energy for plane waves at a welded elastic interface that is typically a boundary between two 

different layers of rock and fluid content (Sheriff and Geldart, 1995).  The equations relate the 
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amplitudes of the incident, reflected and transmitted waves to the angle of incidence, for plane 

waves at a welded interface (Figure 3.10). 

Although the boundary conditions set for Knott-Zoeppritz equations varies subject to elastic 

media across the interface (Larsen, 1999), boundary conditions for a solid-solid interface are 

commonly used in seismic reflection surveys.  These boundary conditions include continuity for 

the normal and tangential stress and displacement across the welded interface and the incident 

angle does not approach the critical angle (Aki and Richards, 1980). 

 

 

 
 

Figure 3.10: A schematic diagram shows reflected and transmitted waves generated at a welded 

solid-solid interface by an incident P-wave. 
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The Knott-Zoeppritz equations are described in details by Aki and Richards (1980).  While 

Zoeppritz equations are widely used in AVO modelling to provide exact solutions for reflection 

varying with angle or offset, however the Zoeppritz equations are not practically applied to 

actual seismic data, due to the complexity of their algebraic solution with too many unknowns.  

Also, due to the complex nature of the subsurface, the recorded seismic wavefield is not typically 

composed of ideal reflected plane waves (Xu, 1999). 

Aki and Richards (1980) have simplified the Zoeppritz equations into first order approximations 

of reflection and transmission coefficients of a plane-wave at a welded interface, between two 

elastic half-spaces.  The linearized approximations for the P-P and P-S reflection coefficients, 

    and    , as functions of P-wave and S-wave velocity reflectivities, are written as follows: 
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where elastic properties used in equations 3.1 and 3.2 are related to those at each side of the 

interface shown in Figure (3.10) and are given: 
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                    3.2c 

                    3.2d 

                   3.2e 

                    3.2f 

 

The angle   is the average of P-wave angle of incidence and transmission across the interface, 

while   is the average of the S-wave angle of reflection and transmission across the interface: 

                    3.2g 

                    3.2h 

 

In equations (3.1 and 3.2), it is assumed the fractional changes of reflectivity attributes 

(
  

 
,
  

 
,
  

 
) are sufficiently small, and both   and   angles do not approach the critical angle or 

90 degrees (Aki and Richards, 1980). 

 

In equations (3.1 and 3.2), reflectivity attributes are expressed as functions of P-wave and s-wave 

velocities and density.  These equations can be reformulated as function of P-wave and S-wave 

impedances (Fatti et. al., 1994).  By using impedances relationships,      
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 , Snell’s law, and trigonometry relationships, equations (3.1 and 3.2) 

are further re-arranged as functions of elastic impedances as follows: 
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Equations (3.3 and 3.4) are simultaneously inverted for elastic impedances and density using 

both P-P and P-S seismic data that are scaled to reflectivity amplitudes. In matrix notation, 

simultaneous P-P and P-S AVO inversion at specific depth or time sample interval are explicitly 

written for different ranges of M offsets as: 
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where  ̅ and  ̅ are respectively, the averages of the P-wave angle of incident and S-wave 

reflected angle across the interface. 
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Different authors have re-arranged Aki-Richards approximation equations to solve for different 

reflectivity attributes, such as Poisson ratio (Shuey, 1985; Hilterman, 1989), fluid factor (Smith 

and Gidlow, 1987) and for Lame’s parameters (Goodway et. al., 1997; Xu and Bancroft, 1997; 

Gray et. al., 1999 and Gray, 2002).  Due to inversion stability reasons and lacking of large 

offsets, AVO inversion equations are often solved for the first two terms only. 

 

The simultaneous AVO inversion codes for time-lapse P-P and P-S seismic data developed in 

this thesis use three-term reflectivity attributes given in equations (3.3 and 3.4).  Nevertheless, 

the developed AVO inverse schemes can be easily modified to obtain reflectivity model 

parameters as functions of velocities, Poisson ratio or Lame’s attributes. 

 

 

3.4 Practical techniques for time-lapse AVO inversion 

Practical inversion techniques that simultaneously invert seismic data of different vintages 

(Saeed et al., 2013b) are used in this study.  The objectives from proposed inverse techniques are 

to improve model parameter estimations in the presence of noise, and to prove their robustness in 

terms of accuracy and computation time. 

For two given data sets, say (base,   , and a monitor,   ), reflectivity data can be written as: 

             for baseline survey     3.5 

             for monitor line survey    3.6 

where d is seismic data, G is the forward operator, and m represent the unknown model 

parameters. 



 

80 

The least-squares inverse problems of time-lapse seismic surveys requires minimization of the 

cost functions below 

      ‖       ‖
    ‖    ‖

     3.7 

      ‖       ‖
    ‖    ‖

     3.8 

 

Equations (3.7 and 3.8) are then solved to give the solutions 

      
        

    
    

        3.9 

      
        

    
    

        3.10 

 

where,    and   are the regularization operator and parameter (Constable et al., 1987) 

respectively. 

The low frequency models are then integrated with estimated model parameters using the band-

limited impedance, BLIMP, module (Ferguson and Margrave, 1996).  The estimated model 

parameters (m0 and m1) resulting for inverting seismic data vintages separately, are then 

manipulated to be expressed either as differences between estimated base and monitor model 

parameters (        ) or as percentages of changes between base and monitoring model 

parameters (    
  

  
    ). 

In the following sections, we introduce three different time-lapse AVO inversion schemes: 

1)total inversion of the differences; 2) inversion of seismic differences only; 3) sequential 

reflectivity-constrained inversion that simultaneously invert baseline and monitor seismic data 

surveys to estimate the change of model parameters.  The obtained model parameters can also be 

presented as percentages of changes. 
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3.4.1 Total inversion of differences 

The total inversion of differences for estimating model parameter changes of time-lapse data is 

carried out by simultaneously inverting baseline and monitor data.  Equations (3.5) and (3.6) are 

then re-arranged to represent elastic parameter changes as follows: 

 

                       3.11 

Note that different re-arrangement and simplification of total inversion of difference in equation 

(3.11) yields two sub inverse schemes that can be implemented in time-lapse AVO inversion. 

 

 

3.4.1.1 Inversion for elastic attributes of monitor line (  ) and time-lapse changes (  ) 

By using           ), and then substituting for   in equation (3.11) yields the following:  

                       3.12 

 

Then, by further re-arranging equation (3.12), the time-lapse AVO inversion for estimating 

model parameters of monitor line (  ) and model parameter changes (  ) is written as follows: 

                   3.13 

 

In augmented matrix notation, the cost functions of equations (3.7) and (3.8) can be jointly- 

inverted, and written as follows: 
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   represents the difference in ray traced coefficients of equations (3.5 and 3.6) of both baseline 

and monitor surveys.  The differences of ray-traced angles between monitor and base surveys 

[i.e.,   ̅    ̅        
  ̅     

  and   ̅     ̅        
  ̅     

   ] are used as follows: 
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   and    are, respectively, reflecitivities model parameters for the monitor line and change of 

model parameters attributes between baseline and monitor surveys,  
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The forward operator    is identical to    given in equation (3.14a) except that ray-traced 

coefficients of baseline survey are used in building the matrix   .  The regularization operators 

(  ) were set to be first-order derivative (Tikhonov and Arsenin, 1977). 

Since the outputs from equation (3.13) are     and    respectively, then model parameters for 

the baseline survey model can also be estimated as 

                3.15 

 

Figures (3.11 and 3.12) are the inverted model parameters (
  

 
 , 

  

 
 and 

  

 
) for the monitor model 

and model parameters changes [  
  

 
  ,   

  

 
  and    

  

 
 ] for the time-lapse survey before 

adding low frequency components from well logs.  Figure (3.13) shows estimated model 

parameters (
  

 
 , 

  

 
 and 

  

 
) for the baseline model, using equation (3.14), before adding low 

frequency components.  The low frequency components of the background models are added 

using the band-limited impedance module, BLIMP (Ferguson and Margrave, 1996). 

Figures (3.14 and 3.15) show inverted elastic parameters (IP-impedance, IS-impedance and ρ) 

for the baseline and monitor surveys respectively, while Figure (3.16) represents change in 

elastic parameters (ΔIP-impedance, ΔIS-impedance and Δρ), after adding low frequency 

background models, as a result of an inversion of total differences using equation (3.14). 

Note that actual elastic parameters estimated from well logs are also calculated and 

superimposed as a bold black dashed-line.  The inverted elastic parameters coincide with actual 

elastic parameters calculated from well logs shown in graphs. 
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Figure 3.11: Estimated model parameters (
  

 
 , 

  

 
 and 

  

 
) for the monitor model before adding 

low-frequency models. 

 

 

Figure 3.12: Estimated model parameters changes [  
  

 
  ,   

  

 
  and   

  

 
)] for the time- lapse 

model before adding low-frequencies from logs. 
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Figure 3.13: Estimated model parameters (
  

 
 , 

  

 
 and 

  

 
) for the base model before adding low- 

frequencies from logs. 

 

 

Figure 3.14: Elastic parameters (IP, IS and ρ) of the base model after adding low frequencies.  

Embedded graphs in bold black dotted lines represent actual (IP, IS and ρ) calculated from logs. 
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Figure 3.15: Elastic parameters (IP, IS and ρ) of the monitor model after adding low frequency.  

Embedded graphs in bold black dotted lines represent actual (IP, IS and ρ) calculated from logs. 

 

 

Figure 3.16: Elastic parameter changes (ΔIP, ΔIS and Δρ) of the time-lapse model after adding 

low frequency.  Embedded graphs in bold black dotted lines represent actual elastic parameter 

changes calculated from logs. 



 

87 

3.4.1.2 Inversion for elastic attributes of base line (  ) and time-lapse changes (  ) 

Inverting for the elastic model parameters of base line,  , and time-lapse reflectivity changes 

(  ) requires that model parameters of the monitor survey,   , be expressed as (      

  ), and then substitute into equation (3.11) yields the following: 

                       3.16 

 

By re-arranging the above equation, the inverse equation used to invert for base model 

parameters and time-lapse change can be written as follows: 

                    3.17 

 

In augmented matrix notation, the cost functions of equations (3.7) and (3.8) to jointly invert for 

the model parameters of base line,   , and time-lapse reflectivity parameters changes,   , is 

written as follows: 
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   is the forward operator for ray-traced coefficients of the monitor survey,    and is same 

operator explained earlier in equation 3.14a.  Note the difference in laying out seismic data of 

baseline and monitoring surveys compared to the arrangement of input seismic data vintages 

given in equation 3.14. 

The    and   , are respectively, reflectivity model parameters for the baseline line and change 

of model parameters attributes between baseline and monitor surveys, and are given by: 
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   [ 
  

 
      ,  

  

 
      and  
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 ]       3.18b 

 

Figures (3.17) and (3.18) show inverted elastic parameters (IP-impedance, IS-impedance and ρ) 

for the baseline and monitor surveys, while Figure (3.19) shows the change in elastic parameters 

[Δ(IP), Δ(IS) and Δρ] as a result of the inversion of total differences using equation (3.17) after 

adding low frequency components from well logs.  The resulting graphs form the time-lapse 

AVO inversions match the actual elastic parameters estimated from well logs. 

 

 

 

Figure 3.17: Elastic parameters (IP, IS and ρ) of the base survey model using equation (3.17) 

after adding low frequency.  Embedded graphs in bold black dotted lines represent actual (IP, IS 

and ρ) calculated from logs. 
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Figure 3.18: Elastic parameters (IP, IS and ρ) of the monitor survey model using equation (3.17) 

after adding low frequency.  Embedded graphs in bold black dotted lines represent actual (IP, IS 

and ρ) calculated from logs. 

 

 

Figure 3.19: Elastic parameters changes (ΔIP, ΔIS and Δρ) of the time-lapse survey model using 

equation (3.17) after adding low frequency.  Embedded graphs in bold black dotted lines 

represent actual (IP, IS and ρ) calculated from logs. 



 

90 

3.4.2 Inversion of seismic differences data     only 

When      , the time-lapse inversion equations (3.13) and (3.17) of total inversion of 

differences given in the previous section reduce to: 

                 3.19 

                3.20 

 

Thus, we are inverting for    using difference of data   .  Time-lapse inversion of differences 

data only is a quick inverse scheme used to estimate the change in elastic model parameters.  

This method is based on the assumption that, at a specific depth interval, if there is a change in 

time-lapse seismic amplitude   , this will yield a change in the estimated   .  However, if 

there is no change in   ., then     .  The least-squares inversion equation for inverting of 

seismic differences only can be written as 

    
       

                3.21 

 

where    
  

 
  ,  (

  

 
  and  (

  

 
  and    is the difference in seismic data vintages.  Note that the 

forward operator,    can be either ray-trace coefficients of base or monitor surveys.  Figure 

(3.20) shows model parameter changes [  
  

 
  ,   

  

 
  and    

  

 
 ] form inverting time-lapse 

seismic data using equation (3.21), while Figure (3.21) shows elastic model changes (Δ(IP), 

Δ(IS) and Δρ) after adding low frequency components of elastic models.  Note that inverted 
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elastic parameter changes are consistent with actual parameter changes calculated from well 

logs. 

 

Figure 3.20: Estimated model parameters changes [  
  

 
  ,   

  

 
  and   

  

 
)] from an inversion of 

data differences (equation 3.21) before adding low-frequencies from logs. 
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Figure 3.21: Estimated attribute changes [Δ(IP), Δ(IS) and Δρ] from inversion of data differences 

(equation 3.21) after adding low-frequencies from logs. 

In real time-lapse seismic data, it is almost impossible get seismic differences      at a 

specific depth interval.  However, we would rather have very slight changes in amplitude that is 

not necessarily related to changes in fluid properties. 

The unexpected small changes in amplitudes in time-lapse seismic sections can be attributed to 

geometry difference between time-lapse surveys, random noise, or even processing and 

conditioning differences.  Therefore, a cut-off point can be set such that seismic differences,   , 

falling below that cut-off point will be set to zero.  Thus, manipulated differences of seismic 

amplitudes,   ,  would be more representative of fluid change. 
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3.4.3 Sequential reflectivity-constrained inversion 

In geophysical inversion, constraints can be included into inversion problems so as to refine 

estimated model parameters; thus producing more realistic inverted earth models.  Geophysical 

constraints can be incorporated in either data space (Bube and Langan, 1997; Saeed et. al., 

2010b) or in model spaces (Ajo-Franklin et. al., 2007; Saeed et al., 2010a) or in both space 

domains, which is often called blocky inversion (Claerbout, and Muir, 1973). 

In the Pikes Peak seismic surveys, noise is noticeable and affects most shot gathers of the 

monitoring seismic survey (H-2000), compared to the baseline seismic survey, (H-1991).  The 

source of noise is due to jack pumps that were operating during the course of seismic data 

acquisition.  Therefore, In order to simulate the effect of jack pump noise in a time-lapse model, 

small random noise of 0.1% were added to synthetic data of the base line (Figures 3.22 and 

3.23), while 1% of random noise was also added to the monitoring model (Figures 2.24 and 

2.25).  
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Figure 3.22: P-P synthetic seismic data for the base model with 0.1% random noise added. 

 

 

Figure 3.23: P-S synthetic seismic data for the base model with 0.1% random noise added. 
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Figure 3.24: P-P synthetic seismic data for the monitor model with 1% random noise added. 

 

 

 

Figure 3.25: P-S synthetic seismic data for the monitor model with 1% random noise added. 
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The sequential reflectivity-constrained inversion given in equation (3.22) is one form of a robust 

time-lapse inversion method whereby estimated model parameters of a base survey are used to 

constrain inversion of a monitoring model to ensure smooth variation in estimated elastic 

parameters of the monitoring model.  The inverse problem is given by: 

 

[         
       

   ]   [       
       

    
   ] 3.22 

 

where             [        
    

  ] 

 

The estimated model parameters of the baseline survey will act as prior information in the 

inversion of the monitoring survey.  Because   and      
      

   are functions of unknown 

base- and monitor- model parameters, an iterative approach must be used.  This is referred to as 

iteratively re-weighted least squares, IRLS, (Wolke and Schwetlick, 1988). 

 

In equation (3.22), we set V and      
      

   = I for the first iteration, which resulted in a 

traditional least squares solution.  The estimation of   
  for i=1 is then subsequently substituted 

in equation (3.22) to obtain new     
 .  The procedure is repeated until the estimated model 

parameters of the monitoring survey between successive IRLS iterations become less than 

tolerance value,   given in convergence limit equation (3.23)by: 
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Note that equation (3.22) can be implemented using two other scenarios that require more time 

computation and cycles of iteration calculations.  These implementation options are: 

 

 Perform IRLS inversion for the baseline survey first where elastic attributes are further 

refined.  Then the final refined model parameters are used as prior information in 

equation (3.23). 

 Implement sequential IRLS inversion for both the baseline and monitor surveys where 

refined model parameters are used as prior information in equation (3.23). 

 

In Figure (3.26), inverted elastic impedances for the monitoring model using reflectivity-

constrained inverse scheme is matching actual impedances fairly well in the presence of noise.  

Figure (3.27) shows regularization parameter during the inversion, while the RMS error (Figure 

3.28) during inversion shows convergence of the program towards the final solution after 5 

iterations. 

 

In order to test the stability and reliability of the resulting elastic parameters in the presence of a 

high percentage of noise, random noise of a magnitude that is 10 fold the noise used before for 

the monitoring survey is added.  Figure (3.29) shows elastic impedances of the monitoring model 

after inversion.  As expected, P-impedance is less affected by noise, while S-impedance and 

density are influenced by excessive added noise.  This experiment assists in deciding which 

reflectivity attribute is to be constrained, and also what percentage use of a reflectivity attribute 

of the base survey should be utilized in constraining inverted model parameters of the monitor 

model. 
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Figure 3.26: Elastic parameters (IP, IS and ρ) using sequential reflectivity-constrained inversion 

of the noisy (0.01) monitor model after adding low frequencies from logs. 

 

 

 

Figure 3.27: Regularization parameter during a reflectivity-constrained Inversion. 
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Figure 3.28: The RMS error during reflectivity- constrained Inversion scheme. 

 

 

 

Figure 3.29: Elastic parameters (IP, IS and ρ) using sequential reflectivity-constrained inversion 

of the noisy (10 times amount of noise in Figure 22) monitor model after adding low frequency. 
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3.5 Conclusions 

The amplitude variation with angle produces information about rock interfaces only, and assists 

in setting survey parameters for field data acquisition, and deciding the volume of synthetic data 

to be used in seismic inversion as well.  Analysis of amplitude variation with angle (AVA) does 

not experience polarity reversal for a given angle range of a time-lapse model. 

 

Three different inverse schemes for time-lapse AVO inversion are developed in this thesis.  

Inverted elastic impedances from proposed inverse schemes are in agreement with actual elastic 

impedances calculated from well logs.  Although the total inversion of difference and inversion 

of seismic differences data     only have given same result, however, total inversion of 

difference scheme would provide more accurate result when implemented using real seismic 

data.  The sequential reflectivity-constrained inversion was introduced as form of robust AVO 

inversion.  Therefore, it cannot be compared with other two inversion schemes. 

 

The developed codes were optimized to perform inversion in less time, and have shown fast 

convergence with a minimal number of iterations for robust time-lapse AVO inversion.  Results 

from inverting noisy data can assist in choosing appropriate reflectivity attributes of a base 

model to be used in constraining the inversion of a monitor survey.  

 



 

101 

 SEISMIC DATA PROCESSING OF THE PIKES PEAK TIME-LAPSE Chapter Four:

SURVEYS 

4.1 Introduction 

Time-lapse seismic surveys, often referred as “4D seismic”, involve repeated 3D seismic surveys 

carried out periodically over a reservoir to image the movement of hydrocarbon fluids (Lumley, 

1995).  Other application include the optimization of production by precise placement of injector 

wells, monitoring of CO2 flooding and sequestration (Kendall et al., 2003), identification of 

bypassed reserves and diagnosing inefficiencies in the reservoir production process. 

A good time-lapse processing of seismic vintages is essential to eliminate noise, and enhance 4D 

repeatability (Johnston et. al., 1998).  As a result, time-lapse models for the reservoir are 

constructed and updated using time-lapse seismic surveys along with other engineering data from 

well logs.  The model is often updated using reservoir production history to calibrate unpredicted 

changes in reservoir attributes using forward modeling and seismic inversion results. 

In the following sections, a description of the time-lapse survey for the Pikes-Peak oil field is 

given.  This is followed by a detailed seismic data processing flow designed for time-lapse and 

imaging purposes.  Noise attenuation by modelling that was implemented to attenuate pump- 

jack noise, ground roll and air blast is also given.  Comparisons between surface consistent 

deconvolution in time and frequency domains are provided.  Seismic images from pre-stack time 

imaging using phase shift plus interpolation are explained. 

 

4.2 Time-lapse seismic surveys for the Pikes Peak heavy oil field 

Time-lapse seismic surveys are usually categorized, based on objectives, as a legacy survey, re-

shoot survey, and 4D surveys (Lumley et. al., 2003).  Optimum time-lapse seismic surveys 
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require using the same field data acquisition geometry over lapsed time to eliminate spurious 

artifacts in seismic images due to differences in used source wavelet and acquisition geometry 

parameters.  However, such acquisition conditions are not often the ideal scenario for which a 

legacy seismic survey was carried out.  Indeed, this is the case for the Pikes Peak time-lapse 

surveys, as a baseline survey was acquired after twelve years of reservoir production, using 

different acquisition geometry parameters. 

The time-lapse seismic surveys conducted at the Pikes Peak heavy oil field can be considered as 

a re-shoot survey.  The two 2D seismic vintages used in this study were acquired nine years apart 

using different field seismic data equipment, sources and acquisition parameters.  The 2D 

seismic line, H91-76S, which will be referred to in this thesis, as the baseline survey line, is one 

of several 2D swath lines acquired by Husky Energy in 1991.  In order to study steam-driven 

effects in heavy oil over lapsed time, the University of Calgary and Husky Oil Energy, in 2000, 

acquired a repeat high resolution 3C-2D line, H00-131 (Hoffe et al., 2000).  This line will be 

referred to as the monitor line survey. 

The shot and receiver coordinates (Figure 4.1) shows that the 2D-lines from time-lapse surveys 

are approximately 8 m apart, but more importantly, they are different in length.  The acquisition 

geometry parameters are also different for the time lapse surveys.  Table 4.1 summarizes field 

survey acquisition parameters that are extracted from survey notes and EBCDIC headers of 

seismic raw gathers of the time-lapse survey for the Pikes Peak oil field. 
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Figure 4.1: Base map view for the 2D time-lapse survey lines of the Pikes Peak oil field. 
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Field data parameters Base line survey ( H-1991) Monitor line survey (H-2000) 

Acquisition data February 1991 March 2000 

2D line length 2.8 Km 3.8 km 

Source array 3 Vibes over 20m 2 Vibes over 20m 

Sweep drag length 10 m No drag 

Sweep length 6 sec 16 sec 

Sweep bandwidth 8-110 Hz 8-150 Hz 

Field filter 8-110 Hz 3-164 Hz 

Geophone array 9 geophones over 20m 6 geophones over 20m 

Source interval 40 m 20 m 

Geophone Interval 20 m 20 m 

CDP Fold 30 66 

Maximum offset 1200 m 1320 m 

 

Table 4.1: Field acquisition parameters for the 2D time-lapse seismic surveys of the Pikes Peak 

heavy-oil field. 

 

 

4.3 Seismic data processing flow for time-lapse and imaging 

A carefully designed time-lapse seismic processing and imaging flow for the Pikes Peak survey 

lines was established in order to remove spurious differences related to seismic acquisition, 

processing and near surface changes.  The processing flow was calibrated and tested to meet 

AVO and time-lapse repeatability compliance.  The key measures for the parallel processing 

flow lie in maximizing the repeatability of the 2D vintages, while improving temporal and spatial 
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resolution of pre-stack image sections of time-lapse surveys to monitor steam-related amplitude 

variations.  The processing flow used for Pikes Peak is given as follows: 

• Reformat (full data length & data integrity) 

• Geometry assignment (verify 2D geometry database) 

• Trace and shot edits 

• Pre-decon noise attenuation  

• Amplitude recovery (Gain recovery & spherical divergence correction) 

• Refraction Statics calculation (GLI,GRM,DRM) 

• Pre-decon Surface Consistent Amplitude Correction 

• Deconvolution  (Surface Consistent Five component Deconvolution) 

• Noise suppression by modeling (Monitor line, H-2000 only) 

• Post-decon Surface Consistent Amplitude Correction 

• Apply datum and refraction statics (DRM) 

• First pass of velocity analysis 

• Surface Consistent Residual Statics (32ms correlation window) 

• Second pass of velocity analysis (half the spacing of first pass for baseline, H-1991 only) 

• Second Pass of Surface Consistent Residual Statics (16ms correlation window) 

• Final Normal move out 

• Trace and shot edits 

• PSTM gathers preparation  

• Pre Stack Time Migration (Phase Shift Plus Interpolation) 

• Mute & Stack 

• Filter & Scale (Stack sections only) 
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Note the time-lapse surveys of the Pikes Peak Oil field were processed using different processing 

software (Promax, Paradigm, and Divestco propriety software).  After assigning geometries of 

both surveys, initial trace and shot editing were applied to remove dead traces, and clip abnormal 

amplitudes due to bad coupling and equipment malfunction. 

The shot gathers of monitor survey line H-2000 are considerably affected by pump jack noise, as 

seismic data was acquired while oil production was in progress.  Figure (4.2) shows a shot gather 

from the monitor line survey where noise from pump jacks affect a good part of the gather. 

 

 

Figure 4.2: A shot gather from monitor line survey (H-2000) show noises related to pump jacks, 

ground-roll and air blast during seismic data acquisition of the 2D time-lapse survey lines of 

Pikes Peak oil field. 

Pump jack noise Ground roll noise 

Air blast noise 
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In the following subsections, descriptions of major steps are given.  Note that some of processing 

steps will be grouped for an easier explanation and brevity. 

 

 

4.3.1 Amplitude recovery and correction 

Amplitude recovery processes including gain correction and spherical spreading compensation 

(Ursin, 1990) were applied to raw data to compensate for noticeable energy loss at deeper parts 

of the shot gather.  The main objective in this processing step is to move seismic energy from the 

shallow section of the raw gather, and then spread and balance the energy evenly across the shot 

gathers of the survey lines. 

In order to meet the AVO compliance, surface consistent amplitude corrections are applied to 

raw data to compensate for acquisition geometry effects and near surface variation (which are 

non-geological amplitude anomalies) at the source and receiver locations.  Furthermore, the 

surface consistent amplitude corrections remove stripe zones from shot gathers by spatially 

applying relative amplitude compensation that smooth sudden changes in amplitude, and 

produces a consistent amplitude-look for full offset in the shot gathers. 

The surface-consistent amplitude correction is applied before and after deconvolution for the 

time-lapse survey of the Pikes Peak seismic data.  The amplitude spectrum is decomposed into 

source, receiver, CDP and offset spectrum during the analysis stage.  Surface consistent 

amplitude scaling is then applied to shot gathers using source and receiver spectrum components 

only.  As expected, the magnitude of surface-consistent amplitude scaling is more visible before 

deconvolution compared to the same processing step after deconvolution. 
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4.3.2 Five-component surface consistent deconvolution  

Surface-consistent processing of seismic data is normally applied in amplitude scaling, 

deconvolution, and residual statics.  The basic concept behind surface-consistent processing for 

seismic data surveys is that any shot-related effects, in principle should affect all traces within a 

shot gather in the same way and are independent of their receiver position.  In the same manner, 

receiver-related effects should also affect all traces within a receiver gather in the same way, and 

independent of their shot position. 

In order to preserve relative amplitudes of reflectors while de-convolving seismic data, the five-

component adaptive surface consistent deconvolution (Wang, 1992) is used in the processing of 

time-lapse seismic surveys of the Pikes Peak data.  The algorithm is implemented in the 

frequency domain and compensates for the distortion in amplitude and phase spectra due to the 

presence of near surface irregularities and source –receiver coupling problem. 

 

In the surface consistent five-component deconvolution, individual traces are decomposed into 

five components (assuming white reflectivity and noise is zero) in the least-square sense as: 

                                  4.1 

 

where   is the average survey line component spectrum,          are respectively, shot, 

geophone, offset and CMP component spectra. 

In order to linearize the problem, component spectra are transformed to the frequency domain 

and by taking logarithm of amplitude spectra, equation (4.1) can be written as follows: 

  [    ]      [    ]+    [    ]+    [    ]+    [    ]+    [    ] 4.2 
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where             are the adaptive factors for the seismic trace.  When the conventional 

surface consistency holds true, adaptive factors are all very close to unity (Wang, 1992). 

 

The industry standard procedure for surface consistent deconvolution involves three stages: 

 Spectral estimation 

 Surface consistent analysis to compute decomposed components 

 Operator application 

 

The algorithm is a minimum phase spike-deconvolution which gives whiter spectra than the 

parametric auto regressive model deconvolution.  For the sake of comparison, the four 

component surface consistent deconvolution (Cary and Lorentz, 1993) that was implemented in 

the time domain is also used.  In this algorithm, a seismic wavelet is broken down into source, 

receiver, CMP and offset components. 

The Pikes Peak seismic data were initially processed by Matrix Geo-services processing 

company (Hoffe et al., 2000).  As a standard procedure in time domain deconvolution, a 

correlation analysis window was used to determine operator length.  Figure (4.3) shows two 

experimental correlation analysis windows for the monitor line survey (H-2000); one with an 

operator length of 60 msec to match the same operator length used by Matrix Geo-services 

processing company, while the another window is for an operator length of 85 msec.  In 

designing operator length, amplitude spectra and brute stacks resulted from deconvolution test 

are also used as key guides for determining optimum operator length.  In this study, an operator 

length of 85 msec is used, and the resulting amplitude spectra were then compared with 

amplitude spectra of five-component surface consistent deconvolution. 
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Figure 4.3: Correlation analysis window to determine operator length for time-domain 

deconvolution. (A) Window length of 60msec, while (b) has an operator length of 85msec. 

A

a 

B

a 
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Figure (4.4a) shows the amplitude spectrum of four-component surface-consistent deconvolution 

that is implemented in the time-domain for the monitor line (H-2000), while Figure (4.4b) is for 

the five component surface-consistent deconvolution, which is implemented in the frequency 

domain.  The five-component decon has produced a broad amplitude spectrum compared to the 

four-component surface consistent deconvolution. 

 

 

 

 

 

Figure 4.4: (A) Spectral analysis form using four component surface-consistent spike 

deconvolution, while (B) from using five component surface-consistent deconvolution. 

  

A

a 

B
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Thus, the five components surface-consistent deconvolution is used in deconvolving time-lapse 

seismic data of the Pikes Peak.  In the analysis stage, seismic traces are decomposed to five 

components, while application of the operator involved the line, source and receiver components 

only.  The deconvolution algorithm has improved lateral wavelet stability in stack sections and 

has also increased frequency bandwidth of the deconvolved data. 

Figures (4.5) and (4.6) respectively, show spectral analyses for a shot, before and after, applying 

five components surface-consistent deconvolution for the base and monitor lines of the time-

lapse survey of Pikes Peak.  The frequency contents in both figures have been broadened in both 

surveys.  Note that, the red curve represents average amplitude spectra for the displayed shot 

gather, while spectra in magenta colors in the background are for all traces in the shot gather.  

The spike at the end of the frequency spectrum of the shot gather of the monitor survey is related 

to the design of a taper zone of the sweep during field data acquisition.  Furthermore, the decon 

operator did also boost noise signal beyond sweep frequency limit (i.e., at 175Hz).  However, the 

frequency content of monitor line will be balanced to match frequency content of base line 

survey in the time-lapse regularization process. 

Another advantage of the five component surface-consistent deconvolution is to leverage against 

noise.  The surface consistent noises are identified in the analysis of surface consistent spectral 

solutions stage and isolated by their corresponding noise spectra (Wang et. al., 2000).  These 

statistical noise components are then removed from the spectra of the input data. 

Figure (4.7a) shows an original shot gather from the monitor line survey where pump jack noise, 

ground-roll and air blast mask reflectors in the middle of the gather.  These noises are further 

attenuated after deconvolution (Figure 4.7b) where the continuity of reflectors can be clearly 

recognized in the middle of the deconvolved shot gather.  
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Figure 4.5: Spectral analysis of a shot gather- from the baseline H-1991.  Left: Spectral analysis 

before Decon.  Right: Spectral Analysis after applying five-component surface consistent 

deconvolution. 

 

 

Figure 4.6: Spectral analysis for a shot gather- from the monitor line H-2000.  Left: Spectral 

analysis before Decon.  Right: Spectral analysis after applying five-component surface consistent 

deconvolution. 

After Decon Before Decon 

Before Decon After Decon 
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Figure 4.7: (A) Original shot gather from monitoring line (H-2000), while (B) is for the same 

shot after deconvolution.  The pump-jack noise and ground-roll noise that masked reflectors at 

the central and eastern part of the shot gather are partially attenuated after deconvolution.  Notice 

the continuity of reflectors at the middle and east sides of the shot gather after deconvolution. 

 

 

4.3.3 Noise attenuation by modelling 

In Figure (4.7b), we have seen that the five component surface-consistent deconvolution has 

partially removed some of the noise.  Our ultimate goal is to attenuate as much noise as possible 

while leaving reflection signals and their frequency contents intact.  The ground–roll and air 

blast noises have specific dip characteristics, velocities, and frequency contents.  Therefore, 

noise attenuation is a procedure to model and subtract noise from the original data, resulting in a 

noise attenuated shot gather. 

B

a 

A
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The procedure for noise attenuation by modelling work as follows: 

 Design an ON-mute zone that starts from the top of the gather, which includes 

characteristic dipping noise. 

 Design an OFF-mute zone that starts from the bottom of the gather, and sometimes the 

end time of the shot gather. 

 The triangle area shown in Figure (4.8) will be the noise train zone, where applicable 

noise attenuation modules can be used to extract noise.  The ON-mute and OFF-mute 

should be kept on while applying frequency filters to avoid contaminating clean zone of 

shot gather by noise leakage artifacts, such as aliasing. 

 After careful noise testing and modeling, filtered noise train will then be subtracted from 

original shot gathers, resulting in noise-attenuated shot gathers. 

 

 

 

 

 

Figure 4.8: A shot gather from the monitor line survey before applying the noise attenuation 

procedure. 

OFF-mute 

ON-mute Noise train zone 
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Figure (4.9) shows an application of the noise lifting procedure to the shot gather given in Figure 

(4.8) to attenuate ground-roll noise and the air blast.  Note that ground-roll noises are 

successfully attenuated while leaving reflectors in the noise train zone intact. 

The air blast noise could have been completely removed by the noise lift procedure, but at the 

expense of nearby reflection signals with a frequency range of 80-100Hz.  The air blast and 

reflectors in the middle of the shot gather have close ranges of frequency content, and by 

applying a frequency filter, both the noise and reflection signals will be removed.  Therefore, a 

mild frequency filter above 120Hz was applied to raw data of monitor line survey in order to 

leave reflection signals intact. 

 

 

 

Figure 4.9: A shot gather from the monitor line survey after applying a noise attenuation 

procedure.  The ground-roll noise is successfully removed, while preserving reflection 

amplitudes.  Air blast noises with frequencies above 120Hz are also removed. 
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4.3.4 Refraction statics calculation and application 

Refraction statics were calculated using three main methods.  These are, the Generalized 

Reciprocal Method (GRM), Standard Delay Time (DLT), and Diminishing Residual Matrices 

(DRM).  The optimal choice of a better calculation method for refraction statics was judged by 

scrutinizing the brute stack as well as continuity and lateral variation of each reflector in the shot 

gather.  Thus, refraction statics calculation using the diminishing residual matrices, DRM, 

(Gulunay, 1985) was applied.  Figure (4.10) shows a shot gather before and after applying 

refraction static using the DRM method.  Notice the improvement and continuity of reflectors in 

the shot gather after applying refraction statics. 

 

 

 

Figure 4.10: A shot gather from the monitor line survey.  Left: Shot gather before applying 

refraction statics. Right: Same shot gather after applying refraction statics using DRM method. 
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4.3.5 Velocity Analysis and seismic imaging 

Velocity analysis includes velocity picking and applying normal move out correction.  Velocities 

picks were guided by plotting interval velocities along the semblance panels.  Five stacking 

panels with 5% velocities changes were also used and they were crucial guides to delineate 

expected velocity changes at the seam chambers of time-lapse surveys.  Figure (4.11a) shows 

velocity picking for a super CDP gathers from the baseline survey, while Figure (4.11b) shows 

velocity picking for a super gather from the monitor line survey.  Note that, a similar stacking 

velocity range was assigned in generating velocity semblances in velocity picking tools for both 

baseline and monitor line. 

Note that a single designed mute was used for both time-lapse stack sections of the Pikes Peak 

seismic data.  Two cycles of velocity analyses were performed for time lapse surveys.  Surface 

consistent residual statics with correlation windows of 32msec and 16msec for the first and 

second cycle respectively are used to compute short-wavelength component of the statics, and 

applied for structure stack-sections for the time-lapse survey. 

The surface consistent residual static corrections were preformed individually, although new 

emerging 4D processing methods are simultaneously calculating shot-wavelength statics for 

seismic data vintages.  Another option often applied is to use a stack-section of the baseline as a 

model for trim static of the monitor line for further tuning of the stack section from shot-wavelet 

time shift effects.  Note that trim static is not a surface consistent processing step; hence it was 

not used for the AVO friendly processing of time-lapse survey of Pikes Peak seismic data. 

The corrected static (datum, refraction and residual) gathers were then used as input to a prestack 

time migration.  The phase shift plus interpolation, PSPI, (Gazdag and Sguazzero, 1984) was the 

migration algorithm used in this research work. 
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Figure 4.11: Second pass of velocity analysis. (A) for the baseline 1991, while (B) is for the 

monitor line 2000. 
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Note that the Kirchhoff migration method was also tested, but the prestack migrated sections did 

not map the Waseca channel precisely as PSPI migration does.  Therefore, results discussed in 

this thesis will be focused only on the PSPI migrated sections. 

The phase-shift plus interpolation migration method is a one-way wave equation downward-

extrapolation migration (Gazdag, 1978) that provides better image sections for steep dip (90-

degrees) and complex structures.  The prestack time migration algorithm by Ng, (1994) is used 

in seismic imaging of Pikes Peak time-lapse surveys, where the time shifting imaging condition, 

which replaces downgoing wave of the sources, is used to interpolate in between depth or time 

steps (Ng 2007).  The algorithm adjusts offset binning of input shot gathers and compensates for 

missing offsets to ensure offset bins are evenly distributed and fully populated with seismic 

traces. 

Migration velocity analyses (MVA) were conducted for both seismic vintages, as prestack time 

migration needs an accurate velocity model to focus reflections and to position reflectors 

correctly.  Smoothed stacking velocities of 100% were used, and 640 m padding at each side 

with time padding 20 % of trace length was set.  A time step of 5 msec was used to delineate 

subtle variations in the steam zone. 

Figure (4.12) shows both structure-stack and PSPI prestack-migrated sections for the baseline 

line survey.  Note that, the pre-stack migrated section has managed to collapse diffractions at the 

Pre-Cretaceous/ Top Devonian unconformity (PCU) at 650 msec and elsewhere below the 

Waseca channel at 480 msec.  Furthermore, the migrated section managed to focus reflections at 

various time depths, and also imaged the Waseca channel precisely.  The on-lap features inside 

the Waseca channel for the PSPI migrated-section of the monitor line (Figure 4.13) are 

delineated fairly well, compared to the structure section that resulted from applying a second 
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residual static correction.  Notice also that diffraction phenomena at PCU are collapsed in the 

migrated section.  The faulted zones in the top part of the migrated section of monitor line are 

fully focused, and related diffractions that were shown in structure stack-section are collapsed.  

The overall PSPI stack-section is better imaged, and reflectors below the Waseca channels are 

clearly mapped.  Figure (4.14) shows time-lapse prestack migrated sections for both baseline and 

monitor line surveys after applying time-lapse regularization for the monitor line to match the 

baseline in terms of length, CDP fold and frequency bandwidth.  The induced-amplitude changes 

at the Waseca channel due to the steam injection are clearly noticeable in the stack-section of the 

monitor line.  

 

 

Figure 4.12: Left: Structure stack-section. Right: PSPI migrated stack-section for the 2D baseline 

(H-1991) survey of Pikes Peak oil field. 
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Figure 4.13: Left: Structure stack-section. Right: PSPI migrated stack-section for the 2D monitor 

line (H-2000) survey of Pikes Peak oil field. 
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Figure 4.14: PSPI migrated stack-sections for the 2D time-lapse survey of Pikes Peak oil field. 

Left: Baseline (H-1991) survey. Right: monitor line (H-2000) survey. Time horizons: yellow for 

BFS, cyan for Colony, red for Top Waseca, blue for Sparky and green for PCU. Note the change 

in amplitude at the Waseca channel, and below Formations due to steam injection effect. 

 

 

4.4 Conclusions 

The main objective of time-lapse seismic monitoring is to track production related changes in the 

reservoir and to image the movement of hydrocarbon fluids. The time-lapse processing and 

imaging flow designed for seismic data vintages of Pikes Peak oil field has overcome many 

difficulties related to differences in acquisition parameters, environmental changes and noise, 

and managed to delineate expected time-lapse response.  Using a robust migration algorithm, and 

careful testing of processing parameters, allowed us to image areas where production effects are 

likely to have occurred. 

Base Monitor 



 

124 

 QUANTITAIVE INTERPRETATION OF THE PIKES PEAK TIME-Chapter Five:

LAPSE SEISMIC SURVEYS  

 

5.1 Introduction 

The objectives of time-lapse seismic surveys at the Pikes Peak heavy oil field is to track 

production related changes at the Waseca reservoir and steam movements in heavy oil reservoirs.  

In terms of geophysical and reservoir engineering perspectives, several efforts have been made to 

improve interpretations (Watson and Lines, 2001; Wong et al, 2003; Zou et al., 2005) of the 

Pikes Peak time-lapse seismic surveys. 

 

Husky Energy has placed the west part of the Pikes Peak heavy oil block under CSS process and 

exploited most of that side before the end of 1987 (Wang et al., 2003).  Therefore, the east side 

of the Pikes Peak oil field where survey lines reside is the ideal location for a time-lapse study. 

 

The information provided by Husky Company about the wells status and history shows that 

many of the wells in the survey area have undergone several phase changes from steam injection 

to production over time.  The reservoir pressure measured at these wells has also show large 

variation as the status of these wells changed (Wong et. el., 2003).  In the following sections, 

several quantitative analytical techniques are used to study the effect of steam injection and the 

production process on the seismic responses as well as changes of the elastic attributes at the 

reservoir at Pikes Peak heavy oil field over elapsed time. 

 



 

125 

5.2 Interpretation of time-lapse seismic data 

As a first step in the interpretation, the well-seismic tie and wavelet extraction process require 

generating synthetic gathers to be correlated with seismic gathers in order to produce time-depth 

relation, well logs and markers in the time domain and an estimated wavelet at each well.  The 

well-seismic tie and estimated wavelet at Well 1A15 is displayed in Figure (5.1).  A good well to 

seismic tie with an overall correlation coefficient of > 0.72 between synthetic and seismic 

gathers is maintained. 

The time-lapse stack sections of the baseline and monitor line given in Figure (5.2) show 

amplitude changes not only at the steam chamber (Waseca reservoir) zone, but also above and 

below the reservoir zones. The amplitude changes give motivation to explore different 

interpretation tools to gain a better understanding of the changes of elastic properties of the 

reservoir over time.  In the following subsections, detailed interpretations using observations 

from seismic stack sections and seismic differences as well as the time-delay analysis are given. 

 

 

Figure 5.1: Well to seismic tie for dipole sonic well 1A15-6, Pikes Peak oil field. 
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Figure 5.2: Stack sections for the time-lapse survey of Pikes Peak oil field.  Top: stack of the 

baseline H1991.  Bottom: stack of the monitor line H2000. Inserted curves are P-wave curve.  

Note the amplitude build up due to steam injection at the Waseca channel, base of Waseca 

channel (blue color horizon) and below formations. 

Base line H1991 

Monitor line H2000 
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5.2.1 Analysis of time-lapse seismic differences 

The geometry parameters for time-lapse seismic surveys at Pikes Peak given in Table 4.1 

indicate that both seismic lines of vertical components have different survey line lengths, shot 

intervals, fold coverage, and frequency bandwidth.  In order to improve seismic repeatabilities 

and to eliminate error due to geometry or noise, the monitor line H2000 survey was calibrated to 

match survey line length, fold and frequency bandwidth of the baseline H1991 survey.  Figure 

(5.3) shows common image gathers, CIG, of the baseline and monitor line surveys for the Pikes 

Peak, where the effects of cycle steam and production process are evident on the reflector 

induced-amplitude changes for the gathers of the monitor line survey.   

In 4D seismic monitoring, it is understood that a change in the seismic section at the reservoir 

zone, is due to a combination of elastic impedance changes and time variant shift, while below 

the reservoir zone, such changes are attributed to the time-variant shift due to velocity change at 

the reservoir layers.  Therefore, the stack sections of the time-lapse survey are then loaded into 

the Pro4D program of Hampson-Russell in order to perform seismic calibration, and then 

measure seismic amplitudes differences. 

The time-lapse seismic conditioning procedure consists of the following: 

1- Re-gridding the processing output geometry of the monitor survey to match those of the 

base line survey.  

2- Frequency bandwidth matching of the monitor survey to frequency bandwidth content of 

the baseline survey. 

3- Constant Phase and bulk time shift where a time-pick is made on the envelope amplitude 

of the cross-correlation of the base to the monitor survey.  The phase shift is determined 
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by a pick that is made on the instantaneous phase of cross-correlation that corresponds to 

the time of the envelope maximum (Hirsche et. al., 2002). 

4- Shaping filter.  This step also referred to as matching filter, and is used to match the static 

time shift, phase, amplitude and frequency content between the surveys by calculating a 

convolutional shaping filter based on a certain design window (Rickett and 

Lumley,2001). 

5- Cross-correlation shallow statics time shift.  This step is also referred to as time wrapping 

that applies a time shift, which is derived from cross correlation analysis, to align mis-

positioned events (Rickett and Lumley, 2001). The process is trace by trace operation, 

and the time-delay map reflects changes in velocity due to steam effect within and below 

the reservoir formations. 

6- Time variant shift.  This step applies to match data above, within and below reservoir, 

and then the calibrated data sets are subtracted to obtain the amplitude differences. 

Prior to seismic subtraction, several tests were conducted using different time windows; 

one above the reservoir (100-430 ms) and another one within the reservoir zone (300-550 

ms).  The above steps were applied to obtain an optimal wavelet shaping filter that can be 

used to calibrate data vintages of the Pikes Peak surveys for amplitude and phase 

matching, shallow statics time shift and time-variant static.  Figure (5.4a) shows seismic 

differences between the baseline H1991 and monitor line H2000 of the Pikes Peak time-

lapse surveys where time windows analysis was chosen to include the reservoir zone 

(300- 550 ms).  In the seismic difference section, while little changes are seen inside the 

Waseca reservoir, most significant differences in seismic amplitudes are observed above 

the thickest reservoir zone in the area where production and injection wells are active. 
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Figure 5.3: Common image gathers of time-lapse survey of Pikes Peak oil field.  Top: CIG of the 

baseline.  Bottom: CIG of the monitor line.  Note the induced-amplitude changes for the gathers 

of the monitor line survey due to steam effect at reflectors close to steam chamber (around 450 -

550 ms). 
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Figure 5.4: Seismic difference between the baseline H1991 and monitor line H2000 of the time-

lapse survey of Pikes Peak oil field.  A) for time window designed to be above, within and below 

the Waseca reservoir zone.  B) for time window designed to be above the Waseca reservoir zone. 

Seismic difference section. Time 
window (300-550 ms). 

Seismic difference section. Time 
window (100-430 ms). 
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Figure (5.4b) shows seismic differences between the baseline H1991 and monitor line H2000 of 

the Pikes Peak time-lapse surveys where time windows analysis was chosen to be above the 

reservoir zone (100- 430 ms).  In the seismic difference section, the amplitude differences inside 

the Waseca reservoir is improved and more changes in amplitude is seen at the bottom of the 

Waseca channel where sand unit exist.  However, significant differences in seismic amplitudes 

are still observed above the reservoir zone in the area where production and injection wells are 

active as well as east side of the Waseca zone. 

 

Although the Colony formation is considered as cap rock seal for the Waseca formation at the 

Pikes Peak oil field, there are weak zones formed from interbedding of shale and coal seams that 

comprise part of the Colony lithology.  The noticeable thick bands correlate with the drop in 

Vp/Vs of the dipole sonic log of Well 1A15-6 given in Figure (1.4).  The visible cloud of 

amplitude differences at the Colony formation can be attributed to the hydrocarbon movement 

through cap rock to overlying formation. 

This finding is also in agreement with the crossover of neutron- and density- porosity logs of 

Well D2-6 (Figure 5.5) nearby the survey lines.  The crossover of neutron and density log is 

indicative of gas accumulations.  Thus the excessive steam injection forced the hydrocarbon fluid 

to move through weak zones in the cap rock to overlaying formation.  The gas hydrocarbon was 

formed from evolved solution gas from the oil phase due to relief in pore pressures.  The pore 

pressure measurements at the nearby wells show large variation as Husky Energy did not 

maintain the original reservoir pressure during the recovery process of heavy oil over lapsed time 

operations at Pikes Peak oil field.  Therefore, pore pressure changes may have contributed to the 

time-lapse seismic differences. 
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Figure 5.5: Volume, pore saturation, neutron and density porosity and resistivity/SP logs of well 

D2-6, Pikes Peak oil field.  Note the crossover of NPHI and DPHI curves at Colony formation 

and subsequent formation that are colored by oil saturation (So). 

 

 

 

5.2.2 Analysis of Isochron ratio 

In time-lapse survey, particularly for heavy oil reservoir, an isochron ratio analysis should have 

been done after matching overlaying formation directly above the top of the reservoir.  This is to 

ensure that picked time horizons would only reflect correct delay time that is related to reservoir 

depletion processes, and not affected by time variant static or different processing flows of 
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seismic data.  Thus, the isochron ratio analysis in this study would be considered as a relative 

analysis.  The isochron ratio analysis uses the time interval of the Waseca reservoir from the 

time-lapse survey to study the effect of steam injection and hydrocarbon recovery process over 

the reservoir zone.  The isochron ratio is calculated using time horizon of the base of reservoir 

(Sparky horizon) minus time horizon of top of Waseca for the monitor lineH2000 divided by the 

same time horizons of the baseline H1991 survey. 

In the previous section, it has been stated that injected steam has decreased the interval velocity 

of the monitor line H2000, thus increased the travel time through the steam zone and underlying 

formations.  However, if there had been no changes in the reservoir elastic properties over lapsed 

time, then the isochron ratio would be unity. 

In Figure (5.6), where isochron ratios are plotted at each CDP, the positive isochron ratio over 

CDP range (50-60) has a good correlation with the negative seismic differences patches inside 

the Waseca reservoir (see Figure 5.4).  On the other hand, the negative isochron ratio at CDP 35, 

close to well D15-6 does not really represent delay time change due to production process, as no 

steam injection or production has occurred at well D15-6.  The isochron ratio over CDP range 

(100-200) shows noticeable changes with some agreements with the change inside the Waseca 

reservoir shown in Figure (5.4). 

In order to correlate the gas accumulation cloud in the middle of the seismic difference section 

(Figure 5.4), the time horizons of the reservoir zone was extended to include the Colony 

formation to act as top of the reservoir, while maintaining the bottom of the reservoir same as in 

Figure (5.6).  The isochron ratio in the middle of Figure (5.7) is consistent with the expected 

increase in delay time due to the effect of steam injection and residual gas in that zone. 
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Figure 5.6: Isochron ratio of the Waseca interval travel time, Pikes Peak oil field. 

 

 

 

 

Figure 5.7: Isochron ratio of the extension Waseca interval travel time to start from the Colony 

formation as top of the reservoir at Pikes Peak oil field. 
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Note that the interpretation of the relative isochron ratio by relying only on seismic data and 

production history might not provide a good understanding of the reservoir behavior under the 

effect of steam and heat.  Therefore, geo-thermal as well as geo-pressure studies would have to 

be incorporated to answer uncertainties of unexpected changes in the isochron ratio. 

 

 

 

5.3 Interpretation of post-stack impedance inversion 

In seismic inversion we seek to obtain interval rock properties of the earth model by using 

properties of reflectivity interfaces and information from non-seismic, such as well logs, to 

constrain the results.  The objective in this study is to observe and monitor acoustic impedance 

(AI) changes between the time-lapse sections as a result of steam injection effects and 

hydrocarbon recovery processes.  

In the seismic inversion, the seismic data is band limited.  Therefore, the low frequency of the 

back ground model is needed to compensate for the low frequency below the field frequency 

bandwidth.  The low frequency background model (Figure 5.8) was built by interpolating P-

impedance from well logs along seismic time horizons.  The frequency range of 1-8 Hz was 

chosen to compensate from missing frequency bandwidth of the band-limited stack sections of 

the time-lapse surveys, as frequency bandwidth of these stack sections are within 8-110 Hz. 

In the following subsections, discussions of post stack P-impedance inversion as a result from 

individual inversion of each survey line as well as from time-lapse post stack impedance 

inversion are presented. 
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Figure 5.8: The low frequency (1-8 Hz) background model of P-impedance used in the post-

stack acoustic impedance inversion of the Pikes Peak time-lapse survey. 

 

 

5.3.1 Post-stack impedance inversion of individual survey line 

Figure (5.9) shows the acoustic impedance sections for the baseline H1991and monitor line 

H2000 surveys.  The impedance inversion was carried out individually using a sparse-spike 

inversion scheme (Russell, 1988).  The P-impedance section of the monitor line shows a 

decrease in P-impedance values for the large part of the Waseca channel compared to the P-

impedance of the baseline survey. 

In the CSS process, injected steam leads to an increase in mobility of heavy oil and decrease in 

density and velocity at the reservoir; thus a decrease in P-impedance section.  As expected, the 

acoustic impedance section of the monitor line H2000 shows a decrease in the P-impedance at 

the middle of the Waseca channel (the area bounded by the Waseca and Sparky horizons), which 

represents the steam chamber zone.  The cap rock formation above the Waseca channel, which 



 

137 

represents the Colony formation, also shows a drop in P-impedance as sign of possible 

hydrocarbon accumulations.  The decrease in P-velocity, due to steam injection also leads to an 

increase in travel time in the monitor survey.  Therefore, determination of precise changes in P-

impedance at the reservoir layer is not feasible by taking the differences between impedance 

sections, nor would conditioning of post stack impedance sections following 4D conditioning 

process be practical. 

 

 

  

 

Figure 5.9: The post-stack acoustic impedance (AI) inversion sections of the Pikes Peak oil field 

from inverting time lapse seismic data individually using a sparse spike impedance inversion 

scheme.  Left: impedance section of the base line H1991. Right: impedance section of the 

monitor line H2000. 

Waseca channel Colony formation 

Base line H1991 Monitor line H2000 
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5.3.2 Time-lapse post stack impedance inversion 

It has been stated in a previous section that the differences of impedance sections between 

baseline and monitor line surveys without a pre-conditioning stack section for 4D processes will 

be relative and will not reflect precise pore-fluid changes nor be able to track steam movement or 

a temperature front.  Since, the interval time increases at the reservoir and below formation of the 

monitor line survey, nevertheless, the differences in impedances, without 4D conditioning, will 

reflect structure and seismic processing changes more than pore fluid changes. 

The calibrated stack sections subjected to a 4D conditioning process discussed in Section (5.2.1) 

are then used for time-lapse post stack acoustic impedance.  The low frequency model is also 

calibrated for the time delay to accommodate changes in velocity that are below the frequency 

content of the seismic wavelet. 

Before embarking on interpreting time-lapse impedance inversion results, recall that the Waseca 

formation, as shown in Figure (5.10), consists of shale unit, interbedded with silty sand unit and 

homogenous sand unit (Van Hulten, 1984).  The resulting inverted acoustic impedance change 

between the baseline and monitor survey is shown in Figure (5.11).  The impedances differences 

clearly image areas of impedances changes as a result of steam injection and production 

processes.  Steam effects are most noticeable at the base of the Waseca channel where 

hydrocarbon moves through sandy homogenous layers. 

In order to correlate the impedance difference result in Figure (5.11) with the stack section of the 

monitor line given in Figure (4.13) of a previous section, notice that there are vertical features in 

Figure (4.13) that are inconsistent with low angle thrust faults or high angle normal faults.  These 

features could be strike-slip faulting, if the local stress field allows for such a faulting style.  

Therefore, these features are most likely to represent gas or fluid movement either creating a 
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vertical fracture or exploiting vertical fault planes.  The dimming zones immediately above the 

sand in Figure (4.13) are possibly related to gas or fluid pocket traps. 

The Waseca formation itself has interbedded silty sands that appear to provide a pathway for 

steam in Figure (5.11) to move vertically, either through a more silt-rich interval or along 

inclined beds within the sand channel.  The high pressure steam/fluids could cause fluid 

movement through the top seal into the overlying formation which would correlate to the vertical 

features observed in the seismic section of the monitor line given in Figure (4.13) and also with 

cloud of amplitude changes in the Colony formation (see Figure 5.4). 

The failure (leakage) mechanism could be either tensile failure (fracturing the top seal due to 

high pore fluid pressure) or through membrane leakage, where the differential pressure of the gas 

compared to the water phase is enough to drive gas into the water-wet pores within the seal 

allowing gas to ultimately migrate vertically out of the sand into the overlying formations. 

 

 

 

Figure 5.10: Schematic diagram depicting facies of the Waseca incised valley channel at Pikes 

Peak oil field. The Waseca reservoir is comprised of a shale unit, an interbedded silty sand unit 

and a homogenous sand unit (after Van Hulten 1984; Watson, 2004). 
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Figure 5.11: The time-lapse P-impedance difference section of the Pikes Peak oil field.  The 

section shows the difference between monitor line and baseline surveys.  The negative values in 

impedance difference section are indicative of impedance decreases due to steam effects. 

 

 

5.4 AVO inversion of time-lapse survey 

The three-term AVO inversion was carried out separately for the baseline H1991 and monitor 

line H2000 of the Pikes Peak time-lapse surveys using Hampson-Russell software.  The AVO 

inversion is a model based inversion technique, and differs from the band-limited inversion 

schemes introduced in Chapter Three of this thesis for the time-lapse AVO inversion.  The 

inversion starts from the low frequency model and iterate until the synthetics of the impedances 

and density are closely matching impedances and density of measured logs.  . The Angle gathers 

with associated wavelets were used along with low frequency backgrounds.  Blind tests for the 

Pikes Peak time–lapse survey 
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inverted attributes are conducted and QC of inverted elastic attributes (Figure 5.12) around wells 

shows a total correlation of 0.81 for inverted synthetic is achieved (Figure 5.13). 

 

 

Figure 5.12: Correlating and QC of inverted and actual Zp, Zs and density attributes around well 

D15-6.  The second track represents synthetic while the third panel is extracted gathers around 

the well.  The fourth panel shows residual (difference between seismic and synthetic traces). 

 

 

Figure 5.13: Cross-correlation measurement of inverted synthetic along the wells. 
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In order to establish good correlation between the AVO inverted attributes and the time-lapse 

post stack P-impedance, the AVO inversion outputs were limited to include only the Waseca 

reservoir channel. 

The acoustic impedance attribute resulting from AVO inversion of the baseline and monitor line 

(5.14) display apparent changes in terms of P-impedance values.  The reservoir channel (which 

represents the steam chamber) in the monitor line section, shows a decrease in p-impedance 

covering most of the reservoir channel.  The most distinct areas of a P-impedance decrease are at 

the bottom of the reservoir that is made up of homogenous sand. 

The shear impedance in the monitor line (Figure 5.15) survey has also demonstrated a slight 

decrease in the S-impedance values of the heavy oil bearing layers compared to the shear 

impedance of the baseline survey.  The dark red zones in the shear-impedance sections shown in 

Figure (5.15) as well as in the density section (Figure 5.16) represent the interbedded silty sand 

layers of the Waseca reservoir shown in Figure (5.10).  The density section of the monitor line 

survey shows a substantial decrease in density values across the reservoir layer. 

In Figure (5.17), the P-wave section of the monitor line survey clearly shows a decrease in P-

wave velocity compared to the P-wave velocity from AVO inversion of the baseline survey.  The 

hydrocarbon movement along the base of the P-wave section of the monitor line survey can be 

tracked easily.  On the other hand, in Figure (5.18) of the S-wave velocity section, the 

interbedded silty sand in the Waseca reservoir provides pathways for the hydrocarbon to move 

toward the dipping area along the east side of the S-wave section of the monitor line survey. 

The Vp/Vs (Figure 5.19) sections of the baseline and monitor surveys clearly show a drop in the 

Vp/Vs ratio of the monitor line survey and map areas that are affected most by the steam 

injection and hydrocarbon movements. 
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Figure 5.14: P-Impedance sections of the baseline H1991 (top) and monitor line H2000 (bottom) 

from AVO inversion of the Pikes Peak time-lapse surveys.  Inserted curves are AI logs. Color 

bar for P-impedance is within a range of (4000 – 7600 ((m/s) *(g/cc))). 

Monitor line H2000 

Base line H1991 
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Figure 5.15: S-Impedance sections of the baseline H1991 (top) and monitor line H2000 (bottom) 

from AVO inversion of the Pikes Peak time-lapse surveys.  Inserted curves are density logs.  

Color bar for S-impedance is within a range of (1500 – 3750 ((m/s) *(g/cc))). 

Base line H1991 

Monitor line H2000 
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Figure 5.16: Density sections of the baseline H1991 (top) and monitor line H2000 (bottom) from 

AVO inversion of the Pikes Peak time-lapse surveys.  Inserted curves are density logs. 

Base line H1991 

Monitor line H2000 
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Figure 5.17: P-wave velocity sections of the baseline H1991 (top) and monitor line H2000 

(bottom) from AVO inversion of the Pikes Peak time-lapse surveys.  Inserted curves are P-wave 

logs. 

Monitor line H2000 

Base line H1991 
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Figure 5.18: S-wave velocity sections of the baseline H1991 (top) and monitor line H2000 

(bottom) from AVO inversion of the Pikes Peak time-lapse surveys.  Inserted curves are S-wave 

logs. 

Monitor line H2000 

Base line H1991 
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Figure 5.19: Vp/Vs ratio sections of the baseline H1991 (top) and monitor line H2000 (bottom) 

from AVO inversion of the Pikes Peak time-lapse surveys.  Inserted curves are Vp/Vs logs. 

 

Monitor line H2000 

Base line H1991 
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As a lithology indicator, the VP/Vs section detects an interbedded silty sand layer, and also maps 

on-lap features inside the Waseca channel. 

In general there is a substantial decrease in the P-wave impedances and velocities shown in 

monitor line sections, due to the steam injection and reservoir depletion compared to the baseline 

survey.  The shear wave impedances and velocities have also shown some decrease in inverted 

attributes from the AVO inversion but at small rate compared to the incompressibility attributes. 

 

 

5.5 Conclusions 

The time-lapse stack sections reveal the effect of injected steam on the seismic amplitudes at the 

Waseca reservoir channel.  The heavy oil recovery processes have induced amplitude changes at 

the Waseca reservoir.  The excessive steam pressures have caused fluid movement through the 

top seal into the overlying formation.  This finding correlates with the dimming zones observed 

in seismic section of the monitor line and also with a cloud of amplitude changes in the Colony 

formation shown in the amplitude differences section. 

The impedance differences show that the interbedded silty sands provide a pathway for steam to 

move vertically, either through a more silt-rich interval or along inclined beds within the Waseca 

sand channel.  The elastic attributes from the AVO inversion of time-lapse seismic surveys 

clearly image hydrocarbon movement at the Waseca reservoir channel.  The inverted elastic 

attributes also indicate that incompressibility values are decreasing at a higher rate compared to 

rigidity attributes of the Waseca reservoir channel of Pikes Peak oil field. 
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 CONCLUSIONS AND FUTURE WORK  Chapter Six:

6.1 Conclusions 

The research work in this thesis shows number of improvements in the realm of time-lapse AVO 

inversion.  This is accomplished by introducing new method and constraints to predict dipole 

sonic log, optimized processing flows for seismic repeatabilities and imaging and introducing 

new computer algorithm schemes for time-lapse AVO inversion to estimate elastic attribute 

changes of the heavy oil reservoir after depletion. 

 

The first part of the thesis demonstrated the effectiveness of weighted constraints incorporated in 

the iteratively re-weighted least-squares inversion, IRLS, in improving estimation of intercept 

and slope of the mudrock relationship used in predicting a shear sonic log.  The constraints 

imposed in the model space have reduced the cycle of calculation iteration needed in re-weighted 

linear inversion, while constraints incorporated in the data misfit domain have tuned estimated 

intercept and slope even further, and ensured a smooth convergence of inverse model towards 

the final solution. 

 

The robust locally weighted smoothing scattering method, LOWESS, used in determining slope 

and gradient to be used in mudrock relationship, proved to be less affective by outliers that 

distort the smoothed points in the scattering plot, and proved to be a good interpretive tool to be 

used in hydrocarbon and lithology discrimination.  The proposed computer algorithms for 

predicting shear sonic have shown to be superior among empirical relations.  In terms of 

residual, the study has found that minimal residuals between measured and predicted shear sonic 

are accomplished by using the LOWESS method. 
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In the introductory chapter, it is stated that the aim of this research is to present practical 

techniques for time-lapse AVO inversion.  The developed computer algorithms in this thesis 

simultaneously invert the baseline and monitor line data from time-lapse surveys to estimate 

elastic parameters changes of a reservoir as direct inversion attributes.  Furthermore, these 

algorithms are also devised to simultaneously invert the P-P and P-S seismic data to improve 

resulting shear-wave impedances and density sections.  The inverted elastic attributes have 

shown their robustness in the presence of noise by using constraints in the inverse scheme. 

 

The Pikes Peak oil field is an ideal location for time-lapse monitoring of heavy oil recovery.  The 

processing flow for the time-lapse 2D seismic lines at Pikes Peak have improved repeatability, 

optimized seismic imaging and minimized errors of seismic data processing.  Noise elimination 

by modelling adopted in this thesis have successfully attenuated ground-roll, pump jack noise 

and air blast noises leaving reflectivity amplitudes intact.  Careful velocity picking and testing of 

seismic processing parameters along with the use of a phase-shift plus interpolation migration 

algorithm, allowed to image the Waseca channel fairly well, preserved amplitudes along 

reflectors, and also assisted in tracking areas of injected steam and production-related effects. 

 

The heavy oil recovery processes have induced amplitude changes at the Waseca reservoir.  The 

dimming zones observed in the stack section of the monitor line, as well as the seismic 

difference section indicate that excessive steam pressures have caused fluid movement through 

the top seal into the overlying formation.  The impedances differences show that the interbedded 

silty sand beds provide a pathway for steam to move along inclined beds within the Waseca sand 

channel.  The attributes sections from the AVO inversion of time-lapse seismic surveys imaged 
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the hydrocarbon movement at the Waseca reservoir channel.  The inverted elastic attributes 

confirm that incompressibility attributes decrease at higher rates compared to rigidity attributes 

of the Waseca reservoir channel of Pikes Peak oil field. 

 

 

6.2 Future work 

Many research areas related to this study are left to future work.  In predicting shear sonic log 

using P-wave sonic log, a complete log is used without segmenting the log into parts based on 

lithology.  The iteratively re-weighted least-square inversion is then used to refine model 

parameter estimations.  The IRLS would provide more accurate estimation of slope and intercept 

if the inversion is carried out on segmented logs that are divided based on lithology or facies. 

Then by incorporating volume log, a multi regression relation is established that ensures 

contributions from different lithology, such as sand, carbonate and shale are included in 

predicting shear sonic log.  Joint inversion that incorporates multiple logs, such as P-wave sonic, 

density, temperature and resistivity logs and simultaneously inverts them to predict shear log, 

should be attempted to improve inverted shear log in the heavy oil reservoir. 

 

The time-lapse algorithms established in this thesis are based on band-limited inversion concept, 

and uses offset gathers as input.  The model based inversion is a standard inversion method used 

in the industry where several angle gathers/stacks with associated source wavelets are used as 

inputs for simultaneous AVO inversion.  The low frequency model is used as an initial model 

and the earth model is then updated iteratively until a final solution is found.  Since, in the new 

time-lapse inverse schemes, changes in elastic attributes are obtained as direct inversion 
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attributes, therefore, modification of these codes are needed to move them from merely academic 

research work to become standard industry practice for time-lapse AVO inversion.  The Robust 

AVO inversion by incorporating several weighted matrices developed in chapter two should also 

be tested as it would improve resolution of inverted sections and further stabilize AVO inversion.  

Furthermore, rock physics of end-member analysis should be considered in future to drive the 

time-lapse AVO inversion. 

 

In the total difference inversion scheme of time-lapse AVO inversion, the inverse problem is 

solved as linear inverse problem.  Note that equations (3.13 & 3.17) in section 3.4.1 for total 

inversion of differences are quadratic equations in nature.  Therefore, more accurate model 

parameters are obtained by solving the time-lapse inverse problem in quadratic programing form 

(Fletcher, 1971). 

 

While the inverted sections given in chapter five from the AVO inversion of the time-lapse 

survey at Pikes Peak are absolutes attributes, the comparisons between attributes of data vintages 

were made visually.  Therefore, further conditioning of offset gathers to account for 4D effects, 

such as time shift, phase and time wrapping (Hale, 2006) are required in order to obtain exact 

differences in AVO inverted attributes of the time-lapse surveys that reflect pore fluid changes.  

After conditioning seismic data from 4D effect, the proposed time-lapse AVO inversion schemes 

of section 3.4.1 in chapter four can be extended further to calculate pore pressure and saturation 

changes (LandrØ, 2001). 
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