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Abstract 

Acoustic impedance is a rock property that can be derived from seismic data and contains 

important information about subsurface properties. Mathematically, the acoustic impedance can 

be calculated from earth’s reflectivity function and this function can be estimated from seismic 

data. However, estimation of reflectivity from seismic data even after excellent data processing, is 

always very bandlimited, lacking both low and high frequencies. In this situation, recovering any 

of this bandwidth, especially low frequencies, can be helpful. 

The thesis will be focused on recovering low frequencies to improve impedance estimation and 

this includes trying to improve a frequency domain deconvolution algorithm using different 

smoother types and correcting the whitening error of deconvolution operator using color operator. 

At the end, the maximum correlation results between acoustic impedance inversion and well 

impedance demonstrate using color operator can increase the maximum correlation by around 20 

percent comparing with the result without using color operator. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

A primary goal of seismic exploration is to determine the earth’s reflectivity as a function 

of position beneath a seismic survey. The subsurface of the earth consists of different types of 

layers and each interface can be determined by its reflection coefficient. The layer’s thickness, 

identification, and reflectivity estimate are significant for hydrocarbon exploration and for seismic 

interpretation. This can be done by seismic exploration which looks for hydrocarbons in rocks that 

usually have high porosity. Porosity or void fraction is a measure of the void spaces in a material, 

and is a fraction of the volume of voids over the total volume, between 0 and 1, or as 

a percentage between 0 and 100%. 

Seismic exploration starts first with generation of the seismic pulse which is called the 

wavelet. Generally the seismic sources can be divided as either natural sources (uncontrolled) like 

tectonic earthquakes, volcanic tremors, rock falls or man-made sources (controlled) like dynamite 

explosives, hammer on a metal plate, air gun or Vibroseis trucks (Thumper trucks). In seismic 

exploration for the purpose of this study the second type of source has been used. Each of these 

source types have different energy content for instance dynamite creates an intense pressure pulse 

of very short duration, measured in a few milliseconds. In seismic exploration acquiring good 

quality data is more likely assured by choosing optimum parameters with respect to the target zone 

(Scheffers et al., 1997). One of the key parameters is the selection of the appropriate seismic source 

and its characteristics. This selection should be done using several criteria which are related to the 

type of problem under consideration. One of the important criteria to consider is the source energy 

content, which should be large enough so that adequate information is recorded from the desired 

http://en.wikipedia.org/wiki/Void_(composites)
http://en.wikipedia.org/wiki/Percentage
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target depth of the survey. Another criterion is the total cost of the project, and the most appropriate 

source for the project budget would be selected (Karastathis et al., 1995). 

Once the seismic pulse is generated it propagates spherically in homogeneous media. In 

case of dynamite explosion, the wall rock or material surrounding the explosive charge is subjected 

to intense stress exceeding their limit for some distance out from the charge. This displacement of 

media can propagate from point to point in the earth. When the wave crosses a layer boundary 

some of the energy is returned to the surface in the reflected wave and the rest of the energy 

continues downward through the next layer in the transmitted wave. A complete and detailed study 

of the seismic wave propagation and its properties can be found in Aki and Richards (2002). The 

reflected waves from subsurface layers can be recorded via electromagnetic devices called 

geophones. A geophone is a device that converts ground movement (velocity or the time-derivative 

of displacement) into voltage, which may be recorded at a recording station. Geophones usually 

do not require electrical power to operate, and are lightweight, robust, and able to detect extremely 

small ground displacements (Cambois, 2002).  The recorded data are usually contaminated with 

noise, which refers to any unwanted features in the data. These noises can be random noise such 

as wind or vehicle traffic in a land environment or coherent noise. The coherent noise can be 

generated by the seismic experiment as undesirable signals, such as ground roll, reverberating 

refractions and multiples or can be generated by other sources like pump jack noise and power line 

noise.  

The other criteria of seismic source selection is its broadband coverage which means it 

must cover as many frequency content as possible to obtain the required resolution for the 

exploration of the particular problem. However in seismic exploration it is impossible to produce 

a fully broadband source wavelet (a discrete delta function), thus a recorded seismic trace will 
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always be band-limited by the source wavelet (Oldenburg et. al., 1983). This is one of the problems 

in seismic exploration that the recorded data only have a limited range of frequencies. In the past, 

low frequency seismic recordings have been shunned in the exploration industry, largely because 

of their overwhelming contamination with coherent noise. Surface waves or ground roll have been 

especially problematic. Ground roll can overwhelm other reflected events, especially at near offset 

from the source (Sheriff and Geldart, 1982; Yilmaz, 1987). This low frequency content can be 

attenuated in the field using arrays (Ongkiehong L. et al, 1987, 1988) or in the processing center 

using low-cut filters (Yang et al., 2009).  

1.2 Acoustic reflection coefficient 

As mentioned before, determining the earth’s reflectivity as a function of position is one 

of the exploration seismology goals. Consider a medium with two different horizontal layers. 

Again as it has been mentioned, each subsurface rock layer has unique properties including P-

wave velocity, S-wave velocity and density. The downgoing acoustic wave (e.g. incident wave),

incu , approaches to the interface of the two layers with the angle of 1 . Acoustic wave theory can 

relate the reflected (
refu ) and transmitted ( tru ) waves to the incident wave as 

 ( )ref incu R u ,  1.1 

 ( )tr incu T u , 1.2 

where ( )R  and ( )T  are reflection and transmission coefficients given by (Yilmaz, 1987) 
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   
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
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( )

cos( ) cos( )

v
T
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 


   



, 1.4 

where v and  are P-wave velocity and density respectively and 1  and 2 are incident and 

transmitted angles respectively (Figure 1.1) and they are related by Snell’s law 

 1 2

1 2

sin( ) sin( )

v v

 
 . 1.5 

In case of normal incident waveform, all the incident, reflected and transmitted angles are 

zero which means all three ray paths are perpendicular to the interface. In this case the equations 

1.3 and 1.4 become 

    2 2 1 1

2 2 1 1

v v
R

v v

 

 





, 1.6 

 2 2

2 2 1 1

2 v
T

v v



 



, 1.7 

which shows that normal incidence reflection and transmission coefficients depend only on rock 

density and velocity.  

 

Figure 1.1. When the wave crosses a layer boundary some of the energy is returned to the surface 

in the reflected wave and the rest of the energy continues downward through the next layer in the 

transmitted wave.   
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Assuming a medium with number of different layers with different thicknesses, the 

downgoing wave approaches each layer at different time and it is possible to write the earth’s 

impulse response as a function of time. The earth’s impulse response refers to the reaction of earth 

in response to an impulsive source (Dirac delta) and the impulse response contains all physical and 

geological effects such as attenuation, multiples, transmission losses, spherical divergence, etc. 

(Margrave, 2002). The times of the layer boundaries are not necessarily regularly spaced. 

Typically, 0t  and 0R  represent the time and reflectivity at the surface and it is assumed that their 

value are zero. Thus, if the impulse response only contains the primaries (a primary is described 

as a single-bounce reflections event whereas a multiple has more than one bounce), it can be 

represented as 

 
1 1 2 2( ) ( ) ( ) ...rI t R t R t         1.8 

where is a Dirac delta function, 1R is the primary reflection coefficient of the first layer and 2R is 

represented as (Waters, 1981) 

 
2 1,2 2 2,1R T R T  , 1.9 

where
1,2 1(1 )T R  and

2,1 1(1 )T R  are denoting the transmitted coefficient from layer 1 to layer 

2 and from layer 2 to layer 1 respectively (Figure 1.2). The values of '

iR  for larger i becomes 

complicated because of transmission through shallower interfaces, in the first case, and because of 

delays through media of different velocities, in the second case (Claerbout, 1985). In seismic data 

processing removing the amplitude effects of spherical spreading and transmission loss is called 

gain correction. However, if the velocity only varies weakly, such that reflection coefficients are 

all small, transmission pairs 2

1, , 1 11 1n n n n nT T R     tend toward unity, such that 
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 '

i iR R  , 1.10 

and the equation 1.8 can represent the reflectivity function as 

 
1 1 2 2( ) ( ) ( ) ...R t R t R t        . 1.11 

 

Figure 1.2 The normal incident ray paths associated with primaries. 
0 0Z   represents the surface 

and it has been assumed that the source and receiver are located at the same point. 

1.3 Acoustic impedance 

In equation 1.3 and 1.4, the product of P-wave velocity and density is called acoustic 

impedance which is dependent on the porosity (and other elastic properties) of the rock and it 

shown by I. For instant the hydrocarbon filled rocks usually have high porosity which tend to 

produce lower impedances than similar rocks (Dolberg, et al., 2000). Thus, finding the impedance 

variation in depth or time for the subsurface rocks can be a good clue for hydrocarbon exploration. 

Measuring the rock properties directly can be done at the well locations using well log data which 

means geophysicists are able to calculate the acoustic impedance at the well location. However, 

having wells at every single locations of the field not only is impossible, but also is massively 

expensive and impractical. Seismic reflection surveys are a commonly used exploration method 

that produces an image of the subsurface. This type of survey measures reflection coefficients that 
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are an interface property instead of layer property like impedance. The estimation of acoustic 

impedance from a reflectivity function is called seismic impedance inversion. 

Back to the equation 1.6, the reflection coefficient in terms of acoustic impedance becomes 

 2 1

2 1

I I
R

I I





, 1.12 

and generally, for layer n it becomes 

 1

1

n n
n

n n

I I
R

I I









, 1.13 

where  

 
n n nI v . 1.14 

The equation 1.13 can be expressed in terms of reflectivity by 

 
1

1

1

n
n n

n

R
I I

R


 
  

 

, 1.15 

where the next layer in the sequence is dependent on the impedance of layer above it. As assumed, 

the variation of velocity and density are such that the reflection coefficients are much less than 

one. Using the mathematical approximation that 1nR , this equation becomes 

          
1 2

1 1 1 11 1 1 1 1 1 2n n n n n n n n n n nI I R R I R R I R I R


             , 1.16 

and applying the same procedures into the 
1nI 
 it becomes 

 
1 2 1(1 2 )n n nI I R    . 1.17 

This can be done for every next layers and putting all in equation 1.16 such that  

 
1 (1 2 )

n

n j

j

I I R   1.18 

and applying 
2

(1 2 ) jR

jR e   approximation to 1.18 



 

8 

   1

2
2

1 1

n

j

j j

Rn
R

n

j

I I e I e 


  , 1.19 

where 
1I is the impedance at the first layer. Equation 1.19 also known as the impedance recursion 

formula and all that is needed to calculate the acoustic impedance for subsurface is having 

reflectivity function either in time or depth and value of impedance at the first layer. To estimate 

acoustic impedance as precisely as possible, the reflectivity should have broadband frequency 

which means it contains all significant power at all frequencies. However, as it will be seen, in the 

real world the reflectivities only contain a limited range of frequencies. 

1.4 Seismic data and convolutional model 

The simplest model to introduce the seismic data is the convolutional model which 

represents the seismic data as a convolution of the wavelet and the reflectivity. In mathematics, 

the convolution is an operation that expresses the amount of overlap of one function g as it is 

shifted over another function f (Margrave, 2002). 

 
j k j k

k

c f g

c f g 

 

 , 1.20 

and this is  a good approximation for gain corrected field data. When the wavelet, w , propagates 

in the earth and goes down through the earth’s layers, regardless of the effect of geometrical 

spreading, transmission losses, a simple geophysical model can be introduced by a convolutional 

model. Note that because of stationary property of convolutional model which means it does not 

change with time, the an-elastic absorption and multiple reflections which are nonstationary cannot 

be modeled with convolutional model. The stationary property is basically means that the wavelet 

does not evolve in time as it propagates. Seismic data recorded by a receiver are towel modelled 

by a convolution of earth’s reflectivity function with a known wavelet (Sheriff and Geldart, 1995).  
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 ( ) ( ) ( )s t r t w t  , 1.21 

and for continuous functions this equation becomes 

 ( ) ( ) ( )s t r w t d  




  . 1.22 

With a simple mathematical calculation it is possible to show that the convolution operator 

has commutative property which means 

 s r w w r    . 1.23 

For discrete functions it is also possible to show the equation 1.23 in matrix representation. 

For instance 
0s and 

1s can be written such that 

 0 0 0 1 1 2 2

1 1 0 0 1 1 2

s w r w r w r

s w r w r w r

 



    

    
 ,  1.24 

which means for n  elements of s it becomes 

 

0 1 2 3 0 0

1 0 1 2 1 1

2 1 0 1 2 2

3 2 1

0 1 1m nn m m n

w w w w r s

w w w w r s

w w w w r s

w w w

w r s

  

 



  

     
     
     
     

     
     
     
     
          

. 1.25 

The equation 1.25 is the matrix representation of convolution of reflectivity and wavelet 

and W matrix is convolution operator. The symmetry of the W matrix is clear in this equation and 

also each column contains the wavelet with the zero time sample aligned on the main diagonal 

which means that the wavelet is shifting in time along the each column (e.g. stationary) 

(Figure 1.3). This fact is one of the basic and important assumptions in the developing of 

convolutional model for seismic data which is not strictly true in the real world where the wavelet 

includes attenuation and more other effects. 
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Figure 1.3 Schematic of matrix representation of convolution. The symmetry of W matrix shows 

that this process is stationary and is not changing in time (Margrave, 2002). 

The seismic traces are always recorded in time. However, for better understanding of their 

properties and also for processing them, it is useful to look at them in other frameworks. In 

mathematics, any function ( )f t  be built out of sin’s and cos’s or identically complex exponentials 

such that 

  
1

( ) ( )
2

i tf t F e d 






  , 1.26 

where 

 ( ) ( ) i tF f t e d 






  . 1.27 

The equation 1.26 and 1.27 are called inverse and forward Fourier transform. The forward 

Fourier transform equation computes the complex coefficients, ( )F  , of the complex sinusoids 

which, when summed (integrated), will yield ( )f t . Usually ( )F   is decomposed into two separate 

real functions 
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 amplitude spectrum:       
2 2

( ) ( ) Re ImA F F F       1.28 

 phase spectrum:  
  
  

1
Im

( ) tan .
Re

F

F


 




 

  
 
 

 1.29 

One of the most important and fundamental applications of Fourier transform in all of 

signal processing is the Fourier transform of convolution. Consider ( )h t is the convolution of two 

functions ( )f t and ( )g t  such that 

 ( ) ( ) ( )h t f g t d  




  . 1.30 

It is possible to show (Yilmaz, 1987) that the Fourier transform of ( )h t  is a normal 

multiplication of spectrum of ( )f t  and ( )g t which means 

 ( ) ( ) ( )H F G   , 1.31 

where 

 

( ) ( )

( ) ( )

( ) ( )

i t

i t

i t

H h t e dt

F f t e dt

G g t e dt











































, 1.32 

This is a very remarkable result which leads to an extremely fast algorithm for performing 

the digital Fourier transform which called Fast Fourier Transform (FFT). Using the FFT a 

convolution of two functions can be done by multiplying their spectra and inverse Fourier 

transforming the results. 

1.5 Bandlimited seismic data 

Rock properties measured from the log data at the borehole contain a very broad bandwidth 

of frequency information. However, seismic data that have been recorded at the earth’s surface 
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have a much more limited frequency band. The bandlimited nature of the source, the internal 

structure of the geophone which records the data, and also the complexity of the subsurface 

because of the attenuation and other properties are some of the reasons of losing most of the data 

bandwidth during the seismic survey. For example, the seismic field system, including sources, 

receivers and recording instruments, is responsible for removing low frequencies from the signal, 

whereas earth effects, sources, and the recording system are responsible for removing (or not 

generating) the high-frequencies (Aki and Richards, 2002).  

The other issue is the data are contaminated with noises and represented by signal to noise 

ratio (SNR). There are different methods to suppress the noise effect for either random noise 

(Canales, 1984) or coherent noise (Larner, et al., 1983) or improve the SNR such as band-pass 

filtering, F-K filtering, and stacking (Yilmaz, 1987). Furthermore, the choice of seismic data 

acquisition methods can affect the SNR (Bagaini, et al., 2010). Figure 1.4 shows synthetic seismic 

data affected by random noise. The left hand side of this figure shows the amplitude spectrum of 

two noisy traces with different SNR and the right hand side plot shows the same data in time 

domain. As shown, as this ratio increases, the high frequencies are less contaminated and the time-

domain data is higher quality. Consider the application of frequency filters at specific frequencies 

to reduce noise (Yu, et al., 1984). For example, looking at the amplitude spectrum of noisy data at 

Figure 1.4 shows that the data higher than 150Hz for 5SNR  data and higher than 100Hz for

2SNR  data need to be filtered. Also, in low frequencies, Figure 1.5, frequencies lower than 2Hz 

and 5Hz should be filtered for 5SNR  and 2SNR  data respectively. 
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Figure 1.4 (left) the amplitude spectrum of noisy data with different seismic to noise ratio in 

decibels. Their spectrum show -25db and -35db noise level for the data with 2SNR  and 5SNR 

and (right) the same data in time domain.  

 

Figure 1.5 Zooming at low frequency area to illustrate the effect of noise with different SNR on 

seismic data 

Figure 1.6 illustrates the result of filtering the noisy data in both frequency and time domain 

with the mentioned cut-off frequencies. Denoising of the filtered data can cause the elimination of 

some other useful information from original data. For instance, after removing different noises 

from the real seismic data the result are very bandlimited sometimes between 20 to 70Hz and 

consequently a lot of information of data in low and high frequencies is lost.  
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Figure 1.6 Frequency filtering noisy seismic data due to reduce noise effects. Lower SNR needs 

large low frequency and small high frequency to be filtered in comparing with higher SNR. 

1.6 Simple seismic model 

To understand the importance of frequency bandwidth reduction, especially low 

frequencies, examining a simple model can be helpful. As previously mentioned, in a very simple 

case, based on convolutional model a seismic trace is a convolution of earth reflectivity function 

and wavelet  

 ( ) ( ) ( )s t r t w t . 1.33 

The model was created with 10 layers with varying velocity and density values 

(Figure 1.8). Using the equation 1.13, the reflectivity function can be calculated for each layer and 

as shown in the figure, it can be represented as a trace of spikes (equation 1.11) which means the 

modeled reflectivity is broadband. The reason is because a single spike has an amplitude spectrum 

equal to 1 at all frequencies and because the Fourier transform is a linear operator, the Fourier 

transform of a spike sequences is the sum of the transforms of a set of shifted spikes which become 

broadband (Figure 1.7). 
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Figure 1.7. The single spike function in time domain and its amplitude spectrum in frequency 

domain. The Fourier transform of a single spike is broadband. 

Based on equation 1.21 to create the normal incident synthetic seismic trace the calculated 

reflectivity from velocity and density log can be convolved with minimum-phase wavelet with 15 

Hz dominant frequency and 2 milliseconds sample rate (Figure 1.9). The reason for choosing a 

minimum-phase wavelet and what exactly the minimum-phase wavelet is will be discussed later 

(chapter 2). The computed synthetic trace is a simple example that the geophone records in the 

field and the geophysicist’s goal is estimating the reflectivity and then the impedance from the 

known seismic trace.  
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Figure 1.8 A simple 10 layers P-wave velocity model. The density was calculated from Gardner 

rule and the normal incident reflectivity is computed from equation 1.21. 

 

Figure 1.9 The synthetic seismic trace created with convolving of reflectivity and minimum-phase 

wavelet.  

Based on equation 1.31 the Fourier transform of equation 1.21 becomes 

 ( ) ( ) ( )S f R f W f  1.34 

where ( )S f , ( )R f  and ( )W f are the amplitude spectrum of seismic data, reflectivity and wavelet 

respectively. Also, here only the seismic trace is known and both earth reflectivity and wavelet are 
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unknown and the estimation of both functions are related to each other. It means that in equation 

1.34 there are infinitely many possibilities for reflectivity and wavelet to give the same result in 

the left hand side. However, as will be discussed in the next chapter, by making certain 

assumptions about the nature of both the wavelet and the reflectivity, a very acceptable solution 

can be found. This is called deconvolution. In mathematics, deconvolution is an algorithm-based 

process used to reverse the effects of convolution on recorded data and the frequency domain 

deconvolution method is one of the simplest deconvolution methods. This deconvolution method 

will be discussed detailed on the next chapter. By applying the frequency domain deconvolution 

method to the seismic trace the reflectivity can be estimated. Figure 1.10 illustrates the estimated 

and the real reflectivity. As shown in this figure, all the reflectivity spikes have been estimated in 

the right positions and approximately right amplitude. However, there are also extra weak spikes 

in the estimated reflectivity which the actual one does not have.   

 

Figure 1.10 Reflectivity estimation using frequency domain deconvolution algorithm.  

Using the equation 1.19 and computed reflectivity and also the first layer’s impedance from 

multiplying its P-wave velocity and density, the acoustic impedance of the model can be 
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calculated. The result has been shown in Figure 1.11 and compared with the real acoustic 

impedance.  

 

Figure 1.11 The acoustic impedance estimation computed from recursion formula compared with 

real estimation. The lack of low frequencies cause the misestimation of acoustic impedance.  

The small errors in reflectivity estimation seems to be affecting significantly the impedance 

estimation. To understand why the acoustic estimation failed with using equation 1.19, it is good 

to look at the amplitude spectrum of both real and estimated reflectivity which the impedance 

computed from it. Figure 1.12 shows their amplitude spectrum in frequency domain. Except for 

frequencies below than 10 Hz, in the other frequencies both real and estimated reflectivity have 

nearly the same spectrum which means the low frequencies in the estimated data have not been 

properly recovered. Comparing two previous figures (Figure 1.11 and Figure 1.12) shows that the 

low frequency components determine the trend of data (Lindseth, 1979). 
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Figure 1.12 The amplitude spectrum of estimated reflectivity which is not broadband and its low 

frequency components have been removed.  

 

Figure 1.13 A broad band data may be considered to be the sum of a detailed data (10-250 Hz) and 

a gross data (0-9 Hz) 

The deconvolution algorithm computes the reflectivity by estimating the embedded 

wavelet. Thus, the reason of the lack of low frequencies in estimated reflectivity can be found in 

estimated wavelet. Figure 1.13 shows the estimated wavelet in time domain and its amplitude 
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spectrum in frequency domain compared with the real wavelet. In the frequencies below than 10 

Hz the differences can be seen. Note that based on equation 1.34 misestimation in amplitude 

spectrum of wavelet can causes the same frequency bandwidth reduction in the amplitude spectrum 

of estimated reflectivity.  

 

Figure 1.14 Estimated wavelet and its amplitude spectrum compared with source wavelet. The 

results in frequency domain shows in low frequency the real and estimated wavelets are not 

matching each other which is causing the lack of low frequencies in reflectivity estimations. 

As shown, the loss of the low frequencies most greatly hampers interpretation of the 

derived acoustic impedance, and for this reason a number of methods for inserting those 

frequencies have been developed. Galbraith and Millington (1979) used the acoustic impedance 

measured at a nearby well. Lavergne and Willm (1977) and Lindseth (1979) both added low 

frequencies derived from velocity analysis. In 1996, Ferguson and Margrave created the BLIMP 

(BandLimited IMPedance) inversion algorithm which extracts the low frequency data from well 

log data. This algorithm has been used to extract the low frequency components from the real 

impedance and apply to the estimated impedance. BLIMP was created as an example of what has 

become standard practice to use well information to provide the low frequencies. The results 

illustrated in Figure 1.15. 
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Figure 1.15 Recovering low frequency components using BLIMP algorithm with extracting the 

low frequency components from the real impedance.  

The example here shows that even in a very simple case, the computed reflectivity is 

bandlimited because of the bandlimited property of wavelet and an apparent failure of the 

deconvolution algorithm to correctly estimate the low frequencies. In the real seismic data other 

effects such as noise contamination, multiples, transmission losses, complex subsurface structures 

as well as nonstationary effect can cause the wavelet estimation to become even more difficult. In 

the frequency domain deconvolution, the deconvolution method has been used here, there are 

number of assumptions need to be consider. One of the assumptions is that the spectrum of the 

reflectivity should be white. A white spectrum is one that has constant power at all frequencies, 

the same case represented here. However, Walden and Hosken (1985) showed that the most 

reflectivities from wells sourced all over the world do not have white spectra.   

1.7 Overview of chapters 

This thesis is presented in 5 chapters. 
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Chapter 2 will be focused on how the wavelet estimation process can be done. In this 

chapter the frequency domain deconvolution which is one of the deconvolution methods will be 

discussed and we will investigate if the smoother type is changed in the deconvolution operator 

how it can affect the reflectivity estimation. 

In chapter 3 the Hussar well log data will be used and it will be essentially tried to design 

an operator to correct the errors of whitening deconvolution operator. This includes designing three 

different models and applying them to the normal incident synthetic seismic trace.  

In chapter 4 the real seismic data will be introduced and then the effect of applying the 

color operators which designed in chapter 3 on seismic data will be discussed.    

Chapter 5 will be summarized the conclusions from chapter 2-4. 

1.8 MATLAB software 

The main software used in this thesis is MATLAB® which is a high-level programming 

language developed by MathWorks. This software is optimized for matrix algebra, which is ideal 

for seismic data. CREWES (Consortium of Research in Elastic Wave Exploration Seismology) 

developed a toolbox with a variety of processing, modeling and utility functions that can be used 

for seismic data processing. This toolbox was used extensively in this thesis. 
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CHAPTER TWO: FREQUENCY DOMAIN DECONVOLUTION AND REFLECTIVITY 

ESTIMATION PROCESS 

2.1 Introduction 

Seismic reflectivity estimation is aimed at obtaining the true underground reflection 

information and improving the seismic vertical resolution, which is mainly restricted by the 

bandlimited source wavelet. As mentioned previously, for stationary wavelet assumption, based 

on the convolutional model it is possible to estimate the reflectivity via deconvolution algorithm 

(Oldenburg et. al., 1983). This technique can be done by various algorithms. Frequency domain 

deconvolution (Margrave 2002), Wiener spiking deconvolution (Leinbach, 1995), Vibroseis 

deconvolution, Burg (maximum entropy) deconvolution (Burg, 1975) and Gabor deconvolution 

(Margrave and Lamoureux, 2002) are different types of deconvolution algorithms. The application 

of frequency domain deconvolution has been shown in the previous chapter for a very simple case. 

In this chapter, it will be demonstrated how frequency domain deconvolution method estimates 

the reflectivity via wavelet estimation. 

2.2 Frequency domain deconvolution algorithm 

To start to create the deconvolution operator, a number of mathematical assumptions need 

to be set: 

 The wavelet should be causal and minimum-phase. 

 The wavelet spectrum should be smooth. 

 The wavelet should be stationary. 

 The reflectivity is assumed to be random, thus its amplitude spectrum is white. 

 Any noise is additive, white and stationary. 
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The model based on these assumptions is illustrated in Figure 2.1. The reflectivity is 

random and the wavelet is minimum-phase with 15 Hz dominant frequency and 2 milliseconds 

sample rate. The normal incident synthetic seismic trace has been created using equation 1.21.  

 

Figure 2.1 The normal incident synthetic seismic trace created from pseudo random reflectivity 

and minimum-phase wavelet.   

Comparing the amplitude spectrum of seismic trace and the wavelet shows that the 

amplitude spectral shape of the seismic trace is essentially similar to the spectral shape of the 

unknown wavelet which means the amplitude spectrum of the unknown wavelet can be estimated 
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by smoothing the amplitude spectrum of the seismic trace. Mathematically, the perfect 

deconvolution operator can be defined as (Oldenburg et. al., 1983) 

 ( ) ( ) ( )w t d t t , 2.1 

where ( )d t is the convolutional inverse of ( )w t and ( )t is delta Dirac function. By substituting 

the inverse of ( )w t  into equation 1.21, ( )r t  becomes 

 ( ) ( ) ( )r t s t d t , 2.2      

where ( )r t  is the exact reflectivity function. But in practice, because of the bandlimited nature of 

wavelets and the unavoidable presence of noise, even if we could find ( )d t  as a function to make 

equation 2.1 equal to ( )t , such an operator would simply produce noise at frequencies where 

noise dominates signal. This important fact leads us to the concept that the estimated wavelet is 

never exactly the same as the true wavelet. Mathematically, the deconvolved seismic trace can be 

written as  

 ( ) ( ) ( )d ds t r t w t , 2.3  

where ( )ds t  is the deconvolved trace which is also the estimated reflectivity, and ( )dw t can be 

represented as 

 ( ) ( ) ( )dw t w t d t , 2.4 

where ( )dw t  is the  embedded wavelet after deconvolution and is an approximation of a Delta 

function. The wavelet estimated by deconvolution is the convolutional inverse of ( )d t  and will 

always differ from the true wavelet. As shown previously, Figure 1.14 is illustrating an example 

of an actual wavelet and its estimation in the time and frequency domain. According to the 

Figure 2.1 the equation 1.34 leads to 
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  ( ) ( ) ( )S f R f W f , 2.5 

where the vertical bars (e.g. ( )S f ) denote absolute values or amplitude spectra. Note that by 

using amplitude spectra, we are discarding the possibility of estimating the wavelet phase directly 

from the data. The white reflectivity assumption means 

 ( ) 1,R f   2.6   

where the overbar indicates smoothing. Therefore, the amplitude spectrum of an estimated wavelet 

can be expressed as 

 ( ) ( ) ( )
est

W f S f W f  . 2.7 

The equation 2.7 demonstrates that the amplitude spectrum of estimated wavelet is similar 

to smoothing of amplitude spectrum of seismic trace. There are many possible smoothing 

techniques and we postpone this discussion until later. Because, the deconvolution algorithm tries 

to remove the effect of wavelet from seismic trace, the amplitude spectrum of the deconvolution 

operator is just the algebraic inverse of equation 2.7 

  
1 1

( ) ( )
( )est

est

D f W f
W f


   2.8 

In equation 2.8 if the wavelet is very weak at some frequency, then it is likely that noise is 

significant at that frequency. Therefore, inverting the wavelet at such frequencies will cause 

unacceptable noise enhancement. It is customary to add a small constant to the estimated wavelet’s 

amplitude spectrum prior to inversion to avoid division by zero (i.e. singularities). Then the 

equation 2.8 becomes  
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max

1
( )

( )
est

D f
W f A




 2.9 

where   is called stability factor or white-noise constant and is a small positive number usually 

between 0.01 and 0.000001 and  max max ( )
est

A W f . Once the amplitude spectrum of 

deconvolution operator is calculated, its phase spectrum needs to be computed. One of the 

aforesaid assumptions was that the wavelet should be minimum-phase. Notice that the minimum-

phase wavelet does not refer to a particular phase spectrum which, if preserved, maintains a 

dataset’s minimum-phase. Instead, the minimum-phase refers to a particular mathematical 

relationship existing between the amplitude and phase spectra so that knowledge of either one is 

sufficient to compute the other one. Because of causality property of minimum-phase signal, its 

real and imaginary parts form a Hilbert transform pair such that (Margrave, 2002) 
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( )
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i
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r
i

F f
F f d f

f f

F f
F f d f

f f
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


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
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











, 2.10 

where ( )rF f  and ( )iF f  are real and imaginary part of ( )F t  respectively. He also showed, under 

certain circumstance instead of using the real and imaginary part of minimum-phase signal the 

amplitude and phase spectrum of it can be relate each other as: 

    ( ) (ln( ( )))f A f  , 2.11 

where ( )f and ( )A f  are phase and amplitude spectrum of minimum-phase signal respectively 

and  is the Hilbert transform. Equation 2.11 is the relationship between phase spectrum and 

amplitude spectrum and using this equation the phase spectrum of deconvolution operator becomes 
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  ( ) (ln( ( ) ))D f D f  . 2.12 

Finally, the calculated amplitude spectrum and phase spectrum can easily transform from 

frequency domain into the time domain via inverse Fourier transform.  

So far, the deconvolution operator has been calculated for noise-free seismic data. 

However, the seismic data is always contaminated with different type of noises depending on the 

field properties and the acquisition instruments quality. The reasonable model for random noise is 

that should be additive, white, and stationary. Here the term ‘stationary’ means that the statistical 

properties of the noise (its mean and standard deviation) are not time variant. If the seismic trace 

contaminated with such random noise, the equation 1.21 becomes 

 ( ) ( ) ( ) ( )s t r t w t n t  , 2.13 

and its amplitude spectrum in the frequency domain becomes 

 ( ) ( ) ( ) ( )S f R f W f N f  . 2.14 

 

Figure 2.2 The amplitude spectrum of noisy seismic data compared with noise-free data. There is 

an specific frequency area which the noisy and noise free data are the same and can use the same 

method to extract deconvolution operator. 

Figure 2.2 shows that for a specific range of frequency ( min maxf f f  ) the ( ) ( )R f W f  

term dominates over ( )N f and the noisy and noise-free seismograms are closely similar which 
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means for this frequency region all previous procedures to compute the deconvolution operator are 

valid. All we need to do is to apply low-cut and high-cut frequency filters to remove the data lower 

than minf  and higher than maxf . This filtering process makes the data more bandlimited and so 

causing the reflectivity estimation less accurate.   

As discussed, to calculate the deconvolution operator, the amplitude spectrum of seismic 

trace must be smoothed. On the other hand, transforming data from the time domain to the 

frequency domain by Fourier transform leads data to be expanded in negative and positive 

frequencies.  However, the negative frequencies are often suppressed because they are redundant 

(they can be calculated from the positive frequencies) and if we try to smooth the spectrum in only 

positive frequencies, the smoother gets significant errors at very low frequencies.  Thus the power 

spectrum of data should be unwrapped first, then smoothed and then wrapped again for the inverse 

FFT. 

There are two common methods to smooth the data: convolutional smoothing and 

smoothing by data fitting. The convolutional smoothing can be done for instance with moving 

average (boxcar) and Gaussian function which both are the same but differing in the nature of the 

convolution function. Furthermore, since the convolutional smoothing becomes windowing in the 

time domain, it seems plausible that we might wish to have a convolutional frequency smoother 

whose width changes with frequency.  In this study two different convolutional smoothers, boxcar 

and Gaussian, with constant and frequency dependent length will be examined and in the next 

chapter the data fitting smoother will be used to design color operator. 
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2.3 Different smoothing methods 

2.3.1 Boxcar smoother (BS) 

The simplest form of smoothing is the "moving average" which simply replaces each data 

value with the average of neighboring values. To avoid shifting the data, it is best to average the 

same number of values before and after where the average is being calculated. In equation form, 

the moving average is calculated by 

    
1

2 1

M

j M

x i x i j
M 

 

 . 2.15 

Another term for this kind of smoothing is "boxcar smoothing". It can be implemented 

by convolving the input data with a box-shaped pulse with the length of 2 1n M  which implies 

n should be an odd number. The smoother with the length of n  when applied to the input data, 

those points of data are located inside of smoother, are used to compute the average (Figure 2.3).  

 

Figure 2.3 Boxcar smoothing procedure for the random dataset. 
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2.3.2 Constant Gaussian smoother (CGS) 

The Gaussian smoother is another type of convolutional smoother which is based on 

Gaussian distribution. In one dimension, the Gaussian function of zero mean is  

 

2

22

2

1
( )

2

x

G x e 





 , 2.16 

where  is the standard deviation of the distribution. Shown graphically, we see the familiar bell 

shaped Gaussian distribution (Figure 2.4). 

 

Figure 2.4 Gaussian distribution for using Gaussian smoother. 

The standard deviation of the Gaussian function plays an important role in its behavior. 

The above figure shows that the values located between   account for 68% of the set, while 

2 from the mean account for 95% (2×13.6+2×34.1), and 3 account for 99.7% so the 

distribution has approached very close to zero at about three standard deviations from the mean. 

This means we can normally limit the kernel size to contain only values within 3 of the mean. 

If the value of  (i.e. Gaussian smoother’s length) remains constant during the applying Gaussian 

distribution on specific data, it is called Constant Gaussian Smoother (CGS).  



 

32 

 

Figure 2.5 Constant Gaussian smoothing procedure for the random dataset. 

In the above two Gaussian smoothers with different , one with 1  and the other one 

with 2  , are centered at the middle data point and have been applied to the indicated area. The 

same procedure is applied to every single point and the final smoothed data are shown in the last 

figure. 

2.3.3 Frequency-Dependent Gaussian Smoother (FDGS) 

If the smoother length (the value of  ) varies with frequency, we call it frequency-

dependent Gaussian smoothing (FDGS).  

  

Figure 2.6 Schematic of changing Gaussian smoother length with frequency. 
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2.4 The effect of different smoothers on frequency domain deconvolution 

To investigate how these different smoothers can affect the deconvolution results, the 

pseudo random reflectivity which was mentioned in this chapter has been used. A normal incident 

synthetic seismic trace has been created by convolving these random data with 15 Hz minimum-

phase wavelet with 2 milliseconds sample rate (Figure 2.1). 

2.4.1 The results with Boxcar smoother 

The first choice of deconvolution operator uses the boxcar smoother. As mentioned before, 

the number of points of boxcar function is the smoother length. First we need to choose the best 

smoother length. To do this, a series of tests were conducted in which the smoother length was 

varied over a reasonable range and the resulting reflectivity estimates were crosscorrelated with 

the known reflectivity. The results, plotted in Figure 2.7 shows the best length of smoother in 

frequency for the normal incident synthetic seismic trace to be about 6 Hz. Since the length of the 

synthetic is 1secT  , the smoother width in Hz is related to the number of points in the smoother 

by 

 smooth
smooth smooth

n
f n f

T
    2.17 

where 
smoothf  and 

smoothn  are length of smoother in frequency and smoother length in point number 

respectively. Also, Figure 2.8 illustrates the smoothed power of amplitude spectrum of seismic 

trace with the appropriate boxcar smoother (with length of 6 Hz) in frequency domain. 

The deconvolved trace which is the estimated reflectivity is shown in Figure 2.9 in time 

domain and also its amplitude spectrum in Figure 2.10. 
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Figure 2.7 Searching the optimum value for the boxcar smoother length in the frequency domain. 

The plot shows the best choice for the smoother length is 6Hz. 

 

Figure 2.8. Smoothing the power of seismic spectrum using boxcar smoother with 6Hz of length. 
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Figure 2.9. The result of reflectivity estimation using the boxcar smoother with 6Hz of length. 

 

Figure 2.10. Comparing the amplitude spectrum of pseudo random reflectivity and it estimation in 

frequency domain. Zooming the results in low frequencies (0-20Hz) demonstrate the 

misestimation of the reflectivity after deconvolution with boxcar smoother.  

2.4.2 The results with constant Gaussian smoother 

The next option of smoother in deconvolution operator is a constant Gaussian smoother. 

As mentioned before, the Gaussian smoother is defined by equation 4 and its length indicated by

. is half width of Gaussian distribution which the value of Gaussian reaches to 1 2e  of its 

maximum. The mathematical equation of Gaussian smoother we are using in this study is 
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where kA  is the unsmoothed amplitude spectrum, jA  is the smoothed spectrum, and  

 

2 2/ fk f

kg e
 2.19 

in which
f

 is the standard deviation in Hz. 

Here 
f

 is the length of smoother in frequency. Again it is possible to search the best 

length of smoother for deconvolution algorithm. The curve of maximum correlation between 

deconvolved trace and reflectivity and length of smoother is illustrated in Figure 2.11. According 

to this figure the maximum correlation will achieved if the length of smoother is 11 Hz.  

 

Figure 2.11. Searching the optimum value for the Gaussian smoother length in the frequency 

domain. The plot shows the best choice for the smoother length is 11Hz. 

If the Gaussian distribution with 11 Hz length is chosen as the smoother, the smoothed 

amplitude spectrum of seismic trace became as Figure 2.12. 
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Figure 2.12. Smoothing the power of seismic spectrum using Gaussian smoother with 11Hz of 

length. 

Applying this deconvolution operator to the seismic data gives us the deconvolved trace or 

the estimated reflectivity. The result has been shown in Figure 2.13 in time domain and its 

amplitude spectrum in Figure 2.14.  

 

Figure 2.13. The result of reflectivity estimation using the constant Gaussian smoother with 11Hz 

of length. 
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Figure 2.14. Comparing the amplitude spectrum of pseudo random reflectivity and it estimation in 

frequency domain. Zooming the results in low frequencies (0-20Hz) demonstrate the 

misestimation of the reflectivity after deconvolution with constant Gaussian smoother. 

2.4.3 The results with frequency dependent Gaussian smoother 

As previously mentioned, the idea of changing smoother length with frequency comes from 

the consideration that spectral smoothing must be time-domain windowing and lower frequencies 

should require longer temporal windows.  This implies that the frequency domain smoother should 

decrease as frequency tends towards zero.  So we will define a smoother length which becomes 

short in low frequencies and long in high frequencies. We do this in a similar fashion to equation 

2.19 except that we set 
f

 to depend on frequency according to 

 
f

f k f

n n
 2.20 

where n  is a deconvolution input parameter and indicates the rate of variation of smoother length 

and its best value can be find similarly to the two previous methods. Figure 2.15 shows the 

maximum correlation between reflectivity and deconvolved trace versus n .    
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Figure 2.15. Searching the optimum value for n in frequency dependent Gaussian smoother length. 

n  is a deconvolution input parameter and indicates the rate of variation of smoother length 

This figure shows that the best value for n is 9. So the smoother length can be varied by
9

f
 

in different frequencies. For instance the Gaussian distribution is shown for 20Hz and 150 Hz in 

Figure 2.16.  

 

Figure 2.16.  Gaussian distribution length variation with frequency. Smoother length becomes 

short in low frequencies and long in high frequencies. 
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Figure 2.17. Smoothing the power of seismic spectrum using frequency dependent Gaussian 

smoother with 9n . 

The result of applying deconvolution operator with frequency dependent Gaussian 

smoother to the seismic data to calculate the reflectivity estimation shows on Figure 2.18 and also 

its amplitude spectrum on Figure 2.19.  

 

Figure 2.18. The result of reflectivity estimation using the frequency dependent Gaussian smoother 

with 9n . 
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Figure 2.19. Comparing the amplitude spectrum of pseudo random reflectivity and it estimation in 

frequency domain. Zooming the results in low frequencies (0-20Hz) demonstrate the 

misestimation of the reflectivity after deconvolution with frequency dependent Gaussian 

smoother. 

Comparing the results of three different techniques, especially their amplitude spectrum 

results, show that changing the smoother type can affect the recoverable frequency band in 

estimated reflectivity. The results show using the frequency dependent Gaussian smoother in 

deconvolution algorithm contains more frequency information with compare two other smoother 

type. The result of maximum correlation between estimated reflectivity and real reflectivity 

presented in table 2.1 which can show the differences.       

Smoother type Boxcar smoother Gaussian smoother Frequency dependent 

Gaussian smoother 

Maximum correlation 0.9473 0.9449 0.9681 

Table 2.1 The maximum correlation values between pseudo random reflectivity and estimated 

reflectivity calculated from different deconvolution algorithms. The values show the choice of 

frequency dependent Gaussian smoother can be best option. 

Computing the acoustic impedance can be helpful to investigate the effect of using different 

smoother in deconvolution algorithm. Figure 2.20 shows the plot of impedance estimation which 

calculated from recursion formula (equation 1.19) from each deconvolution algorithm. As can be 

seen from this figure, in the frequency domain deconvolution algorithm when the seismic data are 
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smoothed with frequency dependent Gaussian smoother, the impedance results are significantly 

improved. The result shows in this case (pseudo random reflectivity) by using the frequency 

dependent Gaussian smoother not only the estimated impedance contains more details (high 

frequencies), also it contains the background trend (low frequencies). However, as it will be seen 

in the next two chapters in the real case where the spectrum of the reflectivity is non-white 

(colored) and hence, one of the deconvolution assumptions is not met, the reflectivity estimation 

becomes more challenging and that will show that the errors involved in smoothing are not as 

important as those created by ignoring spectral color. 

 

Figure 2.20. Acoustic impedance estimation which used different smoothers in their deconvolution 

algorithms.  

2.5 Summary 

 Seismic reflectivity estimation is aimed at obtaining the true underground reflection 

information and improving the seismic vertical resolution, which is mainly restricted by 

the bandlimited source wavelet. 

 Frequency domain deconvolution method assumes some fundamental assumptions such as: 
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 The wavelet should be causal and minimum-phase. 

 The wavelet spectrum should be smooth. 

 The wavelet should be stationary. 

 The reflectivity is assumed to be random, thus its amplitude spectrum is white. 

 Any noise is additive, white and stationary. 

 The minimum-phase wavelet does not refer to a particular phase spectrum which, if 

preserved, maintains a dataset’s minimum-phase. Instead, the minimum-phase refers to a 

particular mathematical relationship existing between the amplitude and phase spectra so 

that knowledge of either one is sufficient to compute the other one. The mathematical 

relation between phase spectrum and amplitude spectrum can be found in equation 2.12. 

 To calculate the frequency domain deconvolution operator, the amplitude spectrum of 

seismic trace must be smoothed to get the wavelet estimation. This can be done with 

different smoother types. Boxcar smoother, constant Gaussian smoother and frequency 

dependent Gaussian smoother have been used. 

 Applying different frequency domain deconvolution operators to the pseudo random data 

demonstrate significant improvement in impedance results when the frequency dependent 

Gaussian smoother has been used (Figure 2.20).  
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CHAPTER THREE: MINIMUM-PHASE COLOR OPERATOR 

3.1 Introduction 

In September 2011, CREWES with cooperation of Husky Energy initiated a seismic 

experiment with the goal of pushing the low-frequency content of seismic down as low as possible. 

This project was located near Hussar, Alberta, which is about 100km east of Calgary, Alberta. The 

line was 4.5km long and intersected three wells, 12-27, 14-27 and 14-35, shown in Figure 3.1. The 

Figure 3.2, Figure 3.3 and Figure 3.4 illustrate the P-wave velocity log, density log and calculated 

reflectivity for each mentioned wells. Note that for all three wells the logs start from around 200 

meter depth and as we shall see later, for better tying between the synthetic data and the seismic 

data, an overburden model needs to be added at top of each well.  

 

Figure 3.1. (top) Hussar is located at east of Calgary, Alberta (Google map) and (bottom) the 

location of the line and wells (Heather Lloyd, 2013). 



 

45 

 

Figure 3.2. The P-wave velocity log and density log of well 12-27 from Hussar experiment located 

at east of Calgary as well as its reflectivity calculated form equation 1.13. 

 

Figure 3.3. The P-wave velocity log and density log of well 14-27 from Hussar experiment located 

at east of Calgary as well as its reflectivity calculated form equation 1.13. 



 

46 

 

Figure 3.4. The P-wave velocity log and density log of well 14-35 from Hussar experiment located 

at east of Calgary as well as its reflectivity calculated form equation 1.13. 

The reflectivity calculated from well log data is in depth and has very detailed information. 

This reflectivity needs to be correlated with real seismic data which is in time domain and has 

much less information (bandwidth). The correlation is the process of matching well depth to 

seismic times and requires the estimation of the seismic wavelet. Thus the synthetic data need to 

be created in time domain and to do this, the reflectivity needs to be converted into the time domain 

using 2-way time-depth table. By default, the time-depth table is automatically calculated from the 

sonic log velocities using the two way travel time equation for each layer 

  
1

2*
i

j

i

i j

d
t

v

  , 3.1 

where 

 
it  two way time to layer i  

 
jd  thickness of layer j  

 
jv  velocity of layer j  

and *represents the conventional multiplication operator.  
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The time corresponding to a particular depth, depends on all the velocities above that depth 

including the first velocity to the surface. But as mentioned, because logs are not recorded near the 

surface, the shallow velocity is unknown and is often approximated by extrapolating the first 

measured velocity back to the surface (although this is a poor approximation because the velocity 

gets much slower in the very near surface). The time-depth table calculated from the sonic log in 

this method is never exactly correct because of various reasons such as   

• The seismic data and log data may be different. 

• The shallowest velocities are not logged. 

• Errors in the sonic log velocities produce cumulative errors in the calculated travel-times. 

There are many software packages which can apply a manual correction to the well time-

depth curve to optimize the correlation between well depths and seismic times. Heather Lloyd 

introduced a Matlab based program designed to allow the user to choose knee points and then add 

or subtract slowness from the sonic log to produce the time-depth relationship (Lloyd, 2013). In 

this method a robust way to pick the match points and produce the time-depth curves is to match 

the Hilbert envelopes of the synthetic and real seismic traces.  

Once the time-depth curve is created, the calculated reflectivity from P-wave velocity log 

and density log can be converted into the time domain. The time-depth curves for well 12-27, 14-

27 and 14-35 have been illustrated in Figure 3.5, Figure 3.6 and Figure 3.7 respectively.  
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Figure 3.5. The computed time-depth curve for well 12-27. The association of t=0 with z=200 (the 

first logged depth) means that no overburden model is included. 

 

Figure 3.6. The computed time-depth curve for well 14-27. The association of t=0 with z=200 (the 

first logged depth) means that no overburden model is included. 

 

Figure 3.7. The computed time-depth curve for well 14-35. The association of t=0 with z=178 (the 

first logged depth) means that no overburden model is included. 
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The reflectivity function in time for each wells are illustrated in figures 3.8, 3.9 and 3.10 

in both time domain and frequency domain which are converted from depth coordinate based on 

calculated time-depth curves. This reflectivity has been converted to time at a time-sample interval 

of 2 milliseconds.  This is about twenty times larger than the average time between depth samples 

in the well log so an antialias filter is required to reject frequencies above 250 Hz.  This filter 

causes the roll off in high frequencies in Figure 1.12 that begins around 130 Hz. 

 

Figure 3.8. The converted reflectivity of well 12-27 from depth domain into the time domain using 

time-depth curve are illustrated in both time domain (left) and frequency domain (right).  The 

decrease in amplitude in the frequency domain above 130 Hz is due to antialias filtering. 

 

Figure 3.9. The converted reflectivity of well 14-27 from depth domain into the time domain using 

time-depth curve are illustrated in both time domain (left) and frequency domain (right).  The 

decrease in amplitude in the frequency domain above 130 Hz is due to antialias filtering. 
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Figure 3.10. The converted reflectivity of well 14-35 from depth domain into the time domain 

using time-depth curve are illustrated in both time domain (left) and frequency domain (right).  

The decrease in amplitude in the frequency domain above 130 Hz is due to antialias filtering. 

Comparing the amplitude spectrum of all these reflectivity functions with the amplitude 

spectrum of pseudo random reflectivity which was mentioned in the last chapter shows a 

significant difference on their amplitude spectrum. The other way to see the difference, calculating 

the autocorrelation of real and pseudo random reflectivities (figure 3.11).  

 

Figure 3.11. The autocorrelation of pseudo random reflectivity and the reflectivity from well 12-

27. The large negative value at lag=2 indicates the non-whiteness property of real reflectivity. 

The autocorrelation values at lag 2 indicate large negative values. The negative values at 

small lags are characteristic of the autocorrelation function of reflection sequences generated from 

well logs (O’Doherty and Ansety, 1971) which implies the non-whiteness spectrum (e.g. “color 
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spectrum”). Walden and Hosken (1985) demonstrated that the reflection coefficients from a wide 

variety of rock sequences around the world are colored. They showed that the reflection sequences 

are pseudo-white only above a corner frequency, below which their power spectrum falls away 

according to a power law f  , where is between 0.5 and 1.5 by analyzing 8 wells from a wide 

variety of geographical and geological sequences. The positive value of the exponent implies the 

low-cut behavior of reflection coefficient series.   

Therefore, in the reality that the earth reflectivity does not have a white spectrum, the 

whiteness assumption of deconvolution algorithm is not met. To understand the effect of colored 

reflectivity on frequency dependent deconvolution results, the normal incident synthetic seismic 

trace created with “seismo” algorithm in Matlab CREWES toolbox. “Seismo” computes a 1-D 

seismic model from well log information. It uses the sonic log to build a time-depth curve, calculate 

the reflectivity function in the time domain using the computed time-depth curve and then 

convolving it with the given wavelet to create a synthetic seismic trace. The ideal seismic source 

would be a spike which has maximum amplitude at every frequency (broadband). Unfortunately, 

this cannot be realized in practice and the actual wavelet always contains a very limited range of 

frequencies. The other important concept is causality which means the concentration of energy of 

the wavelet should be near time zero (the initiation time). In this case it will be zero before time 

zero. The commonly chosen one would be minimum-phase wavelet. Here, the well 12-27’s log 

information have been used to compute the reflectivity function and the minimum-phase wavelet 

with 15 Hz dominant frequency and 2 milliseconds sample rate has been used. Figure 3.12 

illustrates the resulted synthetic seismic trace modeled with seismo.  
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Figure 3.12 The normal incident synthetic seismic trace created from well 12-27 reflectivity and 

minimum-phase wavelet with 15Hz dominant frequency. 

The seismic data illustrated in the Figure 3.12 is a simple example of recorded data in the 

field by geophones. Note that the synthetic data calculated here is based on a very simple model 

without considering any of the geometrical spreading effects, transmission losses, multiple 

reflections, noises and other non-stationary effects. By considering this simple model, to estimate 

the reflectivity from seismic trace, all we need to do is apply the deconvolution operator to the 

seismic data. To estimate the reflectivity, the deconvolution algorithm tries to remove the effect of 

wavelet from seismic trace. To do this, as discussed in chapter 2, the amplitude spectrum of 

wavelet can be estimated via smoothening of seismic spectrum and then the amplitude spectrum 

of deconvolution operator is proportional to inverse of amplitude spectrum of estimated wavelet 

(equation 2.9). Also, because the deconvolved trace should be minimum-phase its phase spectrum 

can be calculated via Hilbert transform of logarithm of its amplitude spectrum (Equation 2.12).  
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The result of applying frequency domain deconvolution with boxcar smoother on seismic 

data which gives us the estimated reflectivity illustrates on Figure 3.13. From this figure the 

amplitude spectrum of estimated reflectivity for frequencies between 5 Hz to 130 Hz is closely 

white. For frequencies higher than 130 Hz the rolling off of the spectrum is because of the anti-

alias filter. Therefore any result from conventional deconvolution will not estimate the reflectivity 

properly and this is because, when the deconvolution operator with assumption of white spectrum 

reflectivity is applied to the seismic data which resulted from colored spectrum reflectivity, the 

color effects are removed. 

 

Figure 3.13. When the frequency domain deconvolution with the assumption of white spectrum 

reflectivity applying to the seismic data which resulted from colored spectrum reflectivity (well 

reflectivity), the deconvolved trace cannot does not include the color effects. (top) the well 

impedance and deconvolved trace in time domain and (bottom) their amplitude spectrum in 

frequency domain. 

Equation 1.19 tells us to calculate the acoustic impedance the reflectivity function and the 

first layer’s impedance are needed. For the real seismic data, as it has been seen, after 
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deconvolution the estimated reflectivity not only has white spectrum which mismatched with the 

spectrum of real reflectivity, also because of the bandlimited seismic data it is also so bandlimited. 

All these make the impedance inversion calculation becomes complex and challenge full. The 

recursion formula works perfectly for the broadband seismic data but when it has been used for 

bandlimited data it totally fails. The other method is using colored inversion method (Lancaster 

and Whitcombe, 2000). The colored inversion method is a simple and fast technique to invert the 

band-limited seismic data to relative impedance. This is done by generating a single operator to 

match the average seismic spectrum to the shape of the well log impedance spectrum. From their 

observation, the AI spectra can be written as power law such as 

 AIS f  , 3.2 

where f is frequency and the  term is a negative constant number. The  can be found for a 

field by curve-fitting to AI logs then the amplitude spectrum of the inversion operator is 

determined as being that which maps the seismic spectrum to a curve of form f  . Once the 

inversion operator has been derived it should be applied to the deconvolved trace to create the 

acoustic impedance. This can be done by convolving each seismic trace with the colored inversion 

operator (equation 3.3)as  

 ( ) ( ) ( )I t s t CI t  , 3.3 

where   represents the convolution operator and ( )I t , ( )s t  and ( )CI t  are acoustic impedance, 

seismic trace and colored inversion operator in time domain respectively. Finally, the acoustic 

impedance from equation 3.3 needs to be scaled to match well impedance. Note that the colored 

inversion operator creates the bandlimited acoustic impedance. For example, Figure 3.14 shows 

the performance of this method in comparison with the recursion formula method for impedance 
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estimation of well 12-27 where 10Hz low cut-off frequency applied for the well impedance and 

recursion formula impedance. 

       

Figure 3.14. Comparing the acoustic impedance results using recursion formula and colored 

inversion method with well impedance. The 10Hz high pass filter has been applied to the well 

impedance and recursion formula impedance in this example.  

Our observation of colored inversion operator shows this operator is proportional to -90 

degree phase rotation of seismic data. This can be seen from the comparison of amplitude spectra 

of -90 degree phase rotated seismic data and colored inversion method’s result (Figure 3.15). 

Notice that we would not expect a -90 degree phase rotation to show anything on the amplitude 

spectrum. Also in the next figure (Figure 3.16) both data balanced with the bandlimited well 

impedance (13Hz high pass filtered applied to the well impedance) to compare them with the 

bandlimited well impedance. 
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Figure 3.15. The amplitude spectrum of the seismic data one after applying colored inversion 

operator and the other after applying -90 degree phase rotation. 

  

Figure 3.16. Comparing the colored inversion method and -90 degree phase rotation on seismic 

data in time domain. 

3.2 Designing the color operator  

The results in Figure 3.13 showed that the deconvolved real seismic data need color 

correction because of color properties of real reflectivity. This can be done by designing a suitable 

color operator to be applied after deconvolution. The objective of the color operator is to create a 

model that represents the color trend in the spectrum without reproducing the specific 

characteristics of reflectivity that must be preserved in the seismic; such as the reflections to be 
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interpreted. Thus, the operator should depend only on the observed spectral shape of the 

reflectivity. Also, this operator needs to correct the error of minimum-phase whitening 

deconvolution operator, therefore it must be minimum-phase. The desired color operator can be 

designed in many different ways. The main concept is to use real reflectivity which is available in 

well locations and its Fourier transformation in frequency domain. A method was introduced by 

Hunt et. al. (1993) based on autocorrelation function of well reflectivity and then the designed 

color operator can be applied into the deconvolved trace. The operator derivation can be done by 

multiplying the specific window to the reflectivity autocorrelation and that means in frequency 

domain it is equivalent to the smoothed power spectrum of reflectivity. Once the amplitude 

spectrum of the operator was found its phase spectrum can be calculated as a minimum-phase and 

the time transferred color operator can be applied to the deconvolved trace. For instance, here the 

Gaussian window has been used to derive the operator of each reflectivity in Hussar well locations. 

We call these operators the AutoCorrelation (AC) color operator. The AC color operators for all 

three well have been shown in figures 3.15, 3.16 and 3.17. Note, the phase spectrum can be 

calculated by Hilbert transform of the logarithm of the amplitude spectrum. The result of applying 

these color operators to the data will be shown later. 
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Figure 3.17. The calculated amplitude spectrum of AC color operator from multiplying Gaussian 

function with the autocorrelation of reflectivity of well 14-35 in frequency domain.  

 

Figure 3.18. The calculated amplitude spectrum of AC color operator from multiplying Gaussian 

function with the autocorrelation of reflectivity of well 14-27 in frequency domain. 
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Figure 3.19. The calculated amplitude spectrum of AC color operator from multiplying Gaussian 

function with the autocorrelation of reflectivity of well 12-27 in frequency domain. 

Using the same idea but different methods, other types of color operator can be designed. 

In this case, to design the color operator first its amplitude spectrum needs to be extracted by fitting 

appropriate curve on the amplitude spectrum of reflectivity and once its amplitude spectrum 

calculated, its phase spectrum can be computed using Equation 2.12 (minimum-phase spectrum). 

It needs to be noticed that from examination of Figure 3.13 we are not interested in the spectral 

shape of the reflectivity for frequencies higher than 130Hz since these frequencies are shaped by 

an anti-alias filter. The real reflectivity from the well has a very high sample rate which in time is 

roughly around every 0.1 milliseconds. However the sample rate of seismogram is usually around 

one or two milliseconds and therefore the well log data must be downsampled. Whenever a signal 

goes from more samples to fewer samples, an anti-alias filter is required. Thus the creation of a 

synthetic seismogram from well log requires an anti-alias filter. A typical anti-alias filter has an 

amplitude spectrum which begins to roll off at 50% to 60% of Nyquist frequency and reaches very 

large attenuation at Nyquist frequency. That is why the amplitude spectrum of reflectivity starts to 

decay after 130Hz in Figure 3.13. For example the Hussar well 12-27 reflectivity with three 
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different sample rates, 0.002; 0.001 and 0.0005, in time and frequency domain are shown in 

Figure 3.20. Using higher sample rates shifts the anti-alias filter effect to higher frequencies, 

revealing an essentially flat spectrum. 

 

Figure 3.20 A comparison of well log reflectivity for Husky Hussar well in the time and frequency 

domains.  The frequency domain views show clearly the effect of the anti-alias filter which begins 

its roll off at ½ of the Nyquist frequency.  The low frequency roll off is essentially independent of 

sample rate and is similar in all sample rates.  This low frequency roll off is what is modelled by 

our color operators. 

We will investigate several curve-fitting models for spectral color like the arctan function 

or sigmoid function and these color operators should be applied to the seismic data right after 

deconvolution process to shape the whitened result from deconvolution into the reflectivity’s 

colored spectrum. Once this is done the trace is said to be colored and further processing including 

inversion can proceed. Again, once the amplitude spectrum of a color operator is calculated its 

phase can be calculated by Hilbert transform of the logarithm of the amplitude spectrum. We will 

design a color operator that has a very smooth spectrum in the hope that it will have wide 

applicability. 
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Considering the reflectivity of Hussar well 12-27 (Figure 3.8), one possible function to fit 

on reflectivity’s amplitude spectrum based on this figure is the arctan function. Mathematically, 

for fitting arctan function into the reflectivity function we can write 

 arctan( ) ( )a b f R f   3.4 

where a  and b  are constants and should be determined and ( )R f  is the amplitude spectrum of 

reflectivity function in term of frequency. In matrix representation, equation 3.4 can be written as 

 
2 1

2 1

[1 arctan( )]n n

a a
f A R

b b
 



   
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where 1 in the left hand side is 1n by   matrix and n  is the length of frequency ( f ). Note that 

A  is just substituted with 2[1 arctan( )]nf   in this equation. To find a  and b  in equation 3.5, both 

sides should be multiply by inverse of   from the left 
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By finding a  and b  the appropriate arctan function related to the well reflectivity can be 

determined. We call this color operator the arctan color operator. For example for the Hussar well 

12-27 a  and b  become 0.1623 and 0.9854 respectively. In the Figure 3.21 the color operator and 

its amplitude spectrum in frequency domain are shown. 

 

Figure 3.21 The minimum-phase arctan color operator of Husky Hussar well 12-27 in time domain 

(left) and its amplitude spectrum in frequency domain (right) 
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Examination of the frequencies below than 10Hz shows this part has a locally flattened 

shape which is not well modelled by the arctan function. Another possible model for color 

operator’s amplitude spectrum including the horizontal part at low frequencies is fitting a 

sigmoidal function into the earth reflectivity amplitude spectrum. The mathematical form of the 

sigmoid function is 

 0

2
0

a+bs
( ) ; ,

1+s

f f
S f s

f


   3.7 

where again a  and b  are the constants and the frequency 0f  is the inflection point of the sigmoid 

function. Given 0f , finding a  and b  is accomplished by ordinary least squares. All three 

parameters are found by scanning over the range of likely frequencies for 0f , in increments of 0.5 

Hz. The scan for 0f  is done from 10 Hz to half Nyquist and the minimum norm found in this scan 

determines 0f . For instance, the sigmoidal color operator has been calculated for Hussar well 12-

27 with 17.3914a   , 7.6129b   and 0 34f  Hz. This color operator and its amplitude spectrum 

are illustrated in Figure 3.22. As can be seen from this figure, the amplitude spectrum of sigmoidal 

color operator can fit much better on the amplitude spectrum of reflectivity in frequencies below 

than 10Hz.  

 

Figure 3.22. The sigmoidal color operator of Husky Hussar well 12-27 in time domain (left) and 

its amplitude spectrum in frequency domain (right) 
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 The same procedure can be done to derive the sigmoidal color operator for Hussar wells 

14-27 and 14-35. The calculated values for a , b  and 0f  for well 14-27 are -15.7434, 7.8106 and 

39Hz and for well 14-35 are -15.8890, 6.8429 and 24Hz respectively. Figure 3.23 and Figure 3.24 

compare the arctan and sigmoidal color operators for all three wells of Husky Hussar project in 

both time and frequency domain.  

 

Figure 3.23. The arctan color operator has been designed for three Hussar well. Their comparison 

shows the differences are minor along the studied area.   

 

Figure 3.24. The sigmoidal color operator has been designed for three Hussar well. Their 

comparison shows the differences are minor along the studied area. 

Any of these color operators can be applied to the data right after deconvolution process 

and as it will be shown later these color operator can improve the color effects of reflectivity 

significantly. 

3.3 Deconvolving the synthetic seismic data 

To investigate the performance of color operator and its ability to correct the color effects 

of deconvolved data, the normal incident synthetic seismic data created from the reflectivities of 
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each Husky Hussar wells data. Then the both color operators of each reflectivities applied to the 

deconvolved data right after deconvolution process.  

The reflectivity functions of each well which have been computed in time and showed in 

the Figure 3.8, Figure 3.9 and Figure 3.10 are convolved with a minimum-phase wavelet with 15 

Hz dominant frequency and 2 milliseconds sample rates (Figure 3.25) and the results are the 

synthetic seismic traces related to each well (Figure 3.26). This means, in case of the source and 

receiver are located at the well location, the recorded seismic trace via receiver will be the same 

that calculated from convolution. Note that the created seismic data has been calculated based on 

a very simple model without considering any of the geometrical spreading effects, transmission 

losses, an-elastic absorption, multiple reflections and noises.  

 

Figure 3.25 The minimum-phase wavelet with 15Hz dominant frequency and 2 milliseconds 

sample rate. In the left this wavelet is shown in time domain and the right is the amplitude spectrum 

of the same wavelet in decibels. 
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Figure 3.26 The reflectivity functions related to each Husky Hussar well and their computed 

normal incident synthetic seismic trace.  

In the previous chapter, three different algorithms have been defined for frequency domain 

deconvolution. These three algorithms were based on different smoother types for deconvolution 

algorithm and they have been classified as Boxcar Smoother (BS), Constant Gaussian Smoother 

(CGS) and Frequency Dependent Gaussian Smoother (FDGS) and their results after applying to 

the pseudo random reflectivity data illustrated in chapter two. The results showed significant 

improvement especially in the impedance calculation when the FDGS has been used as a smoother 

in deconvolution algorithm. Here, first of all, it will be tried to find the best deconvolution method 

for synthetic data resulted from the real reflectivity and then the effect of each color operator 

methods will be investigated. To do this, frequency domain deconvolution with three different 

smoother types have been applied to each synthetic data from Hussar wells and the results are 

shown in Figure 3.27, Figure 3.28 and Figure 3.29 for well 14-35, 14-27 and 12-27 respectively. 
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Figure 3.27 Reflectivity estimation of Husky Hussar well 14-35 using different deconvolution 

algorithm. BS, CGS and FDGS represent boxcar smoother, constant Gaussian smoother and 

frequency dependent Gaussian smoother.  

 

Figure 3.28 Reflectivity estimation of Husky Hussar well 14-27 using different deconvolution 

algorithm. BS, CGS and FDGS represent boxcar smoother, constant Gaussian smoother and 

frequency dependent Gaussian smoother. 



 

67 

 

Figure 3.29 Reflectivity estimation of Husky Hussar well 12-27 using different deconvolution 

algorithm. BS, CGS and FDGS represent boxcar smoother, constant Gaussian smoother and 

frequency dependent Gaussian smoother. 

In each case the appropriate smoother length have been chosen from the same method 

which we used in the chapter two. Table 3.1 is showing the optimum smoother length in frequency 

for both boxcar and Gaussian smoother at three Hussar wells location. 

 Boxcar smoother length (Hz) Gaussian smoother length (Hz) 

Well 14-35 43 18 

Well 14-27 63 34 

Well 12-27 38 23 

  Table 3.1 The optimum boxcar and Gaussian smoother length for each dataset. The results show 

the Gaussian smoother length is approximately half of the boxcar smoother length.  

To investigate which smoother type can be optimum choice, the error function between 

deconvolved trace calculated from each smoother type and its appropriate well reflectivity can be 

computed. Also the maximum correlation calculation between these two parameters can be 

helpful. Figure 3.30 displays the calculated errors for each well using different smoothers in 
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deconvolution algorithm both in time and frequency domain and Table 3.2 shows the calculated 

maximum correlation deconvolved trace calculated from each smoother type and well reflectivity. 

   

Figure 3.30 The error function between well reflectivity and deconvolved trace calculated for each 

well with three different smoother type in both time and frequency domain. 

                Well 14-35 Well 14-27 Well 12-27 

BS 0.9226 0.8754 0.8770 

CGS 0.9227 0.8756 0.8769 

FDGS 0.9000 0.8464 0.8667 

Table 3.2. Calculated maximum correlation between deconvolved trace and well reflectivity of 

Hussar well. The results show higher correlation value when we use boxcar smoother in 

deconvolution algorithm in compare with the other smoother types.  

From comparing the both maximum correlation results and calculated errors it is possible 

to decide which smoother method can be a good option for frequency domain deconvolution. In 

the Table 3.2 the maximum correlation values in three wells show that using frequency dependent 

Gaussian smoother in deconvolution algorithm leads to small correlation value compared to the 

other smoothers. This result also can be proven from computed errors in frequency domain 



 

69 

observation which shows a significant error differences between using FDGS and two other 

smoothers in frequencies lower than 15 Hz. Note that in time domain it is hard to decide about 

which deconvolution methods work better because the error variation in time domain is too much 

for all three wells.  

However, as it was seen in the previous chapter, this result was completely different when 

the seismic data was created with white reflectivity. This can be clarified if the smoothed power 

of seismic can be compared with the one which came from exact wavelet (The main attempt of 

deconvolution operator is estimating the wavelet as precise as possible). Figure 3.31 to Figure 3.36 

illustrate these comparisons for both pseudo random and well reflectivity data with three different 

smoother types respectively. 

 

 

Figure 3.31. Comparing the smooth of seismic’s power with the case if the actual wavelet has been 

as a smooth of seismic’s power using BC smoother type for pseudo random reflectivity.  
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Figure 3.32. Comparing the smooth of seismic’s power with the case if the actual wavelet has been 

as a smooth of seismic’s power using CG smoother type for pseudo random reflectivity. 

 

Figure 3.33. Comparing the smooth of seismic’s power with the case if the actual wavelet has been 

as a smooth of seismic’s power using FDG smoother type for pseudo random reflectivity. 
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Figure 3.34. Comparing the smooth of seismic’s power with the case if the actual wavelet has been 

as a smooth of seismic’s power using BC smoother type for well reflectivity. 

 

Figure 3.35. Comparing the smooth of seismic’s power with the case if the actual wavelet has been 

as a smooth of seismic’s power using CG smoother type for well reflectivity. 
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Figure 3.36. Comparing the smooth of seismic’s power with the case if the actual wavelet has been 

as a smooth of seismic’s power using FDG smoother type for well reflectivity. 

Comparing these figures and also the result of maximum correlations (Table 2.1 and 

Table 3.2) and errors can clearly demonstrate that when the smoothed power spectrum shape is 

closer to the exact wavelet shape this causes better wavelet estimation and then better reflectivity 

estimation. On the other hand, the high value of maximum correlation in pseudo random 

reflectivity case when deconvolved with FDGS deconvolution algorithm resulted from the 

similarity of smoothed power spectrum and smoothed exact wavelet in this case. The other fact 

can be seen from Figure 3.31 to Figure 3.36 is about very low frequency part (Frequencies between 

0 to 5Hz). At this area the power spectrum of seismic data belonged to the pseudo random 

reflectivity have nearly zero amplitude and that is the reason when it has been trying to smooth 

this part, the smoothed spectrum became so close to the exact wavelet curve. However, in the case 

of real reflectivity, at this region the power spectrum has the value higher than zero which causes 

its smoothed spectrum to differ significantly with the exact wavelet curve. This is a very important 

result that shows the reason that the frequency domain deconvolution is not able to estimate the 



 

73 

reflectivity precisely especially in the low frequencies and that is not only because of the 

smoothening process. The colored spectrum property of the real reflectivity in the low frequencies 

causes any method of smoothening to become unsuccessful in this matter. 

The recent comparison for the deconvolution of well synthetic seismic trace demonstrates 

that using one of the boxcar or constant Gaussian smoother as an optimum smoother type for 

deconvolution algorithm might be good choice rather than using frequency dependent Gaussian 

smoother. Here, the boxcar smoother for all three well data has been selected. As it has been 

mentioned before, once the seismic data are deconvolved, the color operator can be apply to the 

deconvolved data to correct the color effect of reflectivity. For each dataset three different 

minimum-phase color operator which have been derive previously will be applied and the results 

on both time and frequency domain will be shown. 

3.4 Effect of color operator on deconvolved data 

As mentioned previously, the reason to use the color operator is to recover the color effect 

of deconvolved data without reproducing the specific characteristics of reflectivity that must be 

preserved in seismic. At the beginning of this chapter two different color operators have been 

created via curve fitting technique to the spectrum of well reflectivity and these two color operators 

were shown on Figure 3.23 and Figure 3.24 for all Hussar wells. The results of using different 

smoother in the frequency domain deconvolution also showed that using either boxcar or constant 

Gaussian smoother gave better results in frequency domain in comparison with frequency 

dependent Gaussian smoother algorithm. In figures 3.25, 3.26 and 3.27 the result of deconvolved 

traces of well 14-35, 14-27 and 12-27 are shown respectively using the boxcar smoother algorithm.  
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Figure 3.37. The deconvolved trace of synthetic trace created from well 14-35 data using boxcar 

smoother algorithm. 

 

Figure 3.38. The deconvolved trace of synthetic trace created from well 14-27 data using boxcar 

smoother algorithm. 
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Figure 3.39. The deconvolved trace of synthetic trace created from well 12-27 data using boxcar 

smoother algorithm. 

As it was expected, in all three cases when the frequency domain deconvolution with the 

assumption of white reflectivity is applied to the seismic data, the color properties of the data are 

missing and this causes incorrect estimation of low frequencies of the estimated reflectivity. In all 

three cases, as it can be seen, the spectrum of real reflectivity rolls off from frequencies around 60 

Hz. While, the spectrum of estimated reflectivity is trying to remain flat. The color operator was 

designed to correct these white effects of deconvolved data and as it was mentioned, it should be 

applied to the deconvolved data right after deconvolution process. To do this, the deconvolved 

trace needs to be convolved with color operator which was designed for each Hussar well in section 

3.2.  
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Figure 3.40. The result of applying arctan color operator on the deconvolved trace from well 14-

35 in the time and frequency domain and comparing it with the deconvolved trace without applying 

color operator.   

 

Figure 3.41. The result of applying sigmoidal color operator on the deconvolved trace from well 

14-35 in the time and frequency domain and comparing it with the deconvolved trace without 

applying color operator. 
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Figure 3.42. The result of applying arctan color operator on the deconvolved trace from well 14-

27 in the time and frequency domain and comparing it with the deconvolved trace without applying 

color operator. 

 

Figure 3.43. The result of applying sigmoidal color operator on the deconvolved trace from well 

14-27 in the time and frequency domain and comparing it with the deconvolved trace without 

applying color operator. 



 

78 

 

Figure 3.44. The result of applying arctan color operator on the deconvolved trace from well 12-

27 in the time and frequency domain and comparing it with the deconvolved trace without applying 

color operator. 

 

Figure 3.45. The result of applying sigmoidal color operator on the deconvolved trace from well 

12-27 in the time and frequency domain and comparing it with the deconvolved trace without 

applying color operator. 

As can be seen from these figures, applying the color operators to the deconvolved traces 

in all three well locations the reflectivity estimations for frequencies between 10Hz to 60Hz 

significantly improved. These results can be compared with the result of applying AC color 
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operator to the same data. The results are shown in the next three figures for well 14-35, 14-27 and 

12-27 respectively. 

 

Figure 3.46. The result of applying AC color operator on the deconvolved trace from well 14-35 

in the time and frequency domain and comparing it with the deconvolved trace without applying 

color operator. 

 

Figure 3.47. The result of applying AC color operator on the deconvolved trace from well 14-27 

in the time and frequency domain and comparing it with the deconvolved trace without applying 

color operator. 
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Figure 3.48. The result of applying AC color operator on the deconvolved trace from well 12-27 

in the time and frequency domain and comparing it with the deconvolved trace without applying 

color operator. 

The results of maximum correlation between estimated reflectivity and real well 

reflectivity also are shown in Error! Reference source not found. for before and after applying 

ach color operator.  

 

 

 

Before applying 

color operator 

After applying 

arctan color 

operator 

After applying 

sigmoidal color 

operator 

After applying 

AC color 

operator 

Well 14-35 0.8980 0.9743 0.9795 0.9576 

Well 14-27 0.8731 0.9682 0.9780 0.9638 

Well 12-27 0.7926 0.9550 0.9598 0.9267 

Table 3.3. The maximum correlation calculated between estimated reflectivity after using one of 

the color operators and real reflectivity.  

 The results show that applying any type of color operator is a robust method to improve 

the reflectivity estimation. The next step is computing the acoustic impedance for each case and 

compare it with the result of colored inversion as described at the beginning of this part. Note that 
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the recursion formula (Equation 1.19) has been used to calculate each of the acoustic impedances. 

To do this, the corrected calculated reflectivity with color operator can be used in recursion formula 

to calculate the acoustic impedance. The results for the data in all three wells location illustrate in 

figures Figure 3.49, Figure 3.50 and Figure 3.51. 

 

Figure 3.49. The acoustic impedance was calculated for well 14-35 data after and before applying 

color operator to see the effect of different color operators on impedance results. The results show 

improvements when the color operators have been used after deconvolution.  

 

Figure 3.50. The acoustic impedance was calculated for well 14-27 data after and before applying 

color operator to see the effect of different color operators on impedance results. The results show 

improvements when the color operators have been used after deconvolution. 
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Figure 3.51. The acoustic impedance was calculated for well 12-27 data after and before applying 

color operator to see the effect of different color operators on impedance results. The results show 

improvements when the color operators have been used after deconvolution.  

All the impedance plots show the improvements when the color operators have been used 

in compared with not using color operator. However, there are part of low frequency information 

that still misses and its consequence is inaccurate impedance estimation even after applying color 

operators. Thus to get more accurate impedance result the low frequencies from the wells are 

needed. This can been done using BLIMP algorithm which is in CREWES MATLAB toolbox. 

The acoustic impedance has been calculated once more using BLIMP algorithm with different low 

cut-off frequency from data with and without color operator and then the maximum correlation 

between each of estimated impedance and well reflectivity have been calculated. The result of 

computed maximum correlations versus the low cut-off frequency for three Hussar wells have 

been displayed in figures. 
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Figure 3.52. The maximum correlation results between estimated acoustic impedances with 

BLIMP algorithm and well 14-35 impedance. Different low cut-off frequencies have been used in 

BLIMP algorithm. 

 

Figure 3.53. The maximum correlation results between estimated acoustic impedances with 

BLIMP algorithm and well 14-27 impedance. Different low cut-off frequencies have been used in 

BLIMP algorithm. 
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Figure 3.54. The maximum correlation results between estimated acoustic impedances with 

BLIMP algorithm and well 12-27 impedance. Different low cut-off frequencies have been used in 

BLIMP algorithm. 

The figures demonstrate that for a specific low cut-frequency the best correlation between 

well impedance and estimated impedance happens when one of the color operators have been 

applied on the deconvolved traces. As mentioned previously, based on Heather Lloyd (2013) 

investigations the optimum low frequency cut off choice for Hussar seismic data is between 3 and 

4 Hz and the results illustrate by using this low cut-off frequency range in BLIMP algorithm we 

can reach better results if the color operators have been applied to the deconvolved traces.  

In the next chapter the Hussar seismic data will be discussed and it will be seen that how 

these minimum-phase color operators can affect the real seismic data and acoustic impedance 

section.   

3.5 Summary 

 The reflectivity calculated from well log data is in depth and has very detailed information. 

This needs to be converted into the time domain using 2-way time-depth table to be able 

correlate with the seismic data.  
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 The reason that the frequency domain deconvolution is not able to estimate the reflectivity 

precisely especially in the low frequencies and is not only because of the smoothing 

process. The colored spectrum property of the real reflectivity in the low frequencies causes 

any method of smoothening to become unsuccessful in this matter. 

 Unlike the random reflectivity which has a white spectrum, the amplitude spectrum of well 

reflectivity at the low frequency part rolls off and this refers to the spectral color. 

 The objective of the color operator is to create a model that represents the color trend in 

the spectrum without reproducing the specific characteristics of reflectivity that must be 

preserved in the seismic; such as the reflections to be interpreted. 

 The color operator should depend only on the observed spectral shape of the reflectivity. 

Also, this operator needs to correct the error of minimum-phase whitening deconvolution 

operator, therefore it must be minimum-phase. 

 Three different color operators have been studied in this thesis. Autocorrelation Color (AC) 

operator which has been calculated from well reflectivity autocorrelation and arctan and 

sigmoidal color operator which have been calculated from curve fitting method.  

 The spectral rolling off effect in the amplitude spectrum of reflectivity at the frequencies 

higher than half of Nyquist frequency is because of applying anti-alias filter which means 

using higher sample rates shifts the anti-alias filter effect to higher frequencies.  

 The color operator can correct the whitening deconvolution errors of deconvolved trace but 

it is not able to recover all the low frequency components. 
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 The BLIMP algorithm is a robust method to calculate more accurate impedance from 

bandlimited seismic data by adding low frequency information from well log data. The 

results showed using color operator can improve the impedance estimation of BLIMP.  
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CHAPTER FOUR: EFFECT OF MINIMUM-PHASE COLOR OPERATOR ON 

HUSSAR REAL DATA 

4.1 Introduction 

As mentioned previously, in September 2011, CREWES with cooperation of Husky 

Energy initiated a seismic experiment near Hussar in Alberta. After the data was collected at the 

field, CGG Veritas implemented a specialized processing flow. Normally a high-pass filter is applied 

to the data to remove noise such as ground roll. This high-pass cut-off of the filter can be as high as 10 

Hz. To preserve the low-frequency reflection signal, a different noise attenuation was needed. Some 

of these methods were as follows: removing sinusoidal noise caused by power lines and pump-jacks, 

attenuating coherent noise and attenuating anomalous high amplitude frequencies. These noise 

attenuation procedures were repeated several times during the processing flow. Scaling was also 

specialized as trace equalization or an AGC was undesired. Geometrical spreading gain recovery and 

surface consistent scaling was implemented instead. Phase coherence, which is an indicator of coherent 

signal at any particular frequency, was measured by CREWES and reflection signal was estimated to 

be present down to frequencies as low as 1 to 5 Hz in the dynamite data (Isaac et al, 2012). The fully 

processed section, (Figure 4.1) when compared to the well reflectivity, has underestimated amplitudes 

from 0 to 1 second. This may be a result of trying to reduce the noise in the near surface and 

inadvertently reducing the signal amplitudes as well. This needs to be corrected for but should not be 

done with conventional scaling operators such as an AGC as this adversely affects the phase coherence 

of the data (Isaac et al, 2012) by boosting noise in the low frequencies that the specialized noise 

attenuation attempted to reduce. An AGC also equalizes the energy on the trace which does not keep 

the true relative reflectivity intact. Scaling was achieved by tying well 14-27, using a bulk shift, to the 

seismic and computing a time variant balancing algorithm with a window size of 50 ms and an 
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increment of 10 ms to balance the seismic data with synthetic seismogram created from well 14-27. 

The resulting seismic section is shown in Figure 4.2. 

 

Figure 4.1. Hussar seismic data processed by CGG Veritas and the location of three wells. 

 

Figure 4.2. The time variant balancing operator applied to the Hussar seismic data.  

4.2 Data preparation 

Before the wells can be tied to the seismic data they must first have an overburden applied. 

The overburden extends the wells to the surface and makes the well tying process easier. An 

overburden was modeled using a linear gradient for the P-wave velocity and density this has been done 
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with the SYNGRAM software which is a CREWES Matlab software. The surface value for the P-wave 

velocity and density was set 1100 m/s and 1500 kg/m3 and the end value of the gradient blended into 

the top of the well log. The P-wave velocity and density logs for well 14-35, 14-27 and 12-27 are 

displayed in Figure 4.3, Figure 4.4 and Figure 4.5 , respectively.   

     

Figure 4.3. P-wave velocity and density logs of well 14-35 from Hussar data. 

 

Figure 4.4. P-wave velocity and density logs of well 14-27 from Hussar data. 
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Figure 4.5. P-wave velocity and density logs of well 12-27 from Hussar data. 

After modeling the overburden area, for tying the wells to the seismic data, the zero-phase 

synthetic data have been created from the well log data. This can be done with “seismo” function 

from CREWES Matlab toolbox which basically convolves the zero-phase wavelet with the time-

domain reflectivity function. Generally, the well tie process includes a time shift and a phase 

rotation and because of attenuation it may contain an extra time shifts at deeper events. This can 

be fixed numerically with a method such as dynamic time warping (DTW) method (Cui and 

Margrave, 2014) or manually by stretching the synthetic trace. Here, after applying 0.002s, 0.044s 

and -0.014s time shift for synthetic seismic traces of wells 14-35, 14-27 and 12-27 respectively, 

the time stretching also needs to be applied to the synthetic data. (Figure 4.6) 
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Figure 4.6 Applying appropriate time shifting (and if applicable phase shifting), because of 

attenuation, different time slices might need different time shifts. This can be done by time 

stretching algorithm. 

As can be seen from this figure, at all three well locations there are good matches between 

seismic traces and synthetic traces. The calculated cross correlations between each synthetic and 

seismic pairs are 0.5561, 0.5370 and 0.5588 for wells 14-35, 14-27 and 12-27 respectively and all 

have been occurred at zero lag. 

4.3 Color operator effects on seismic data and impedance inversion 

Once the synthetic seismic data has been successfully tied to the real seismic data, we can 

apply different color operators to the stacked seismic section. Using two different methods the 

color operators can be applied to the seismic section. We can average three color operators which 

were created from the three Hussar wells and then the averaged color operator can be applied to 

the entire seismic section or, by spatial interpolation between three color operators, a unique color 

operator can be computed for each seismic trace. In this study three color operator types (AC color 

operator, arctan color operator and sigmoidal color operator) have been calculated for the whole 

seismic section using the spatial interpolation method. Once it has been done, each trace of seismic 
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section can be convolved with its related color operator. The result of applying minimum-phase 

AC, arctan and sigmoidal color operators to the seismic section are shown in the 

Figure 4.7,Figure 4.8 and Figure 4.9. At each figure the left hand side one is before applying color 

operator and the right hand side is after applying color operator respectively. 

 

Figure 4.7. The effect of applying arctan color operator on Hussar seismic data. (left) before 

applying color operator and (right) after applying color operator. The results show that the seismic 

data after applying color operator become dim which means their power of amplitude at the low 

frequency part are decreasing. 

 

Figure 4.8. The effect of applying sigmoidal color operator on Hussar seismic data. (left) before 

applying color operator and (right) after applying color operator. The results show that the seismic 

data after applying color operator become dim which means their power of amplitude at the low 

frequency part are decreasing. 
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Figure 4.9. The effect of applying AC color operator on Hussar seismic data. (left) before applying 

color operator and (right) after applying color operator. The results show that the seismic data after 

applying color operator become dim which means their power of amplitude at the low frequency 

part are decreasing. 

The apparent dimming of the seismic data after applying color operator happens because 

the operator suppresses the lower frequencies which were previously equal in strength to the higher 

frequencies because of spectral whitening. This can be proven by looking at the amplitude 

spectrum of an arbitrary trace from the seismic section before and after applying color operator. 

For example, the amplitude spectrum of seismic trace near well 14-27 before and after applying 

color operator have been displayed in figures Figure 4.10, Figure 4.11 and Figure 4.12. 

 

Figure 4.10. The amplitude spectrum of trace from Hussar seismic data near well 14-27 before and 

after applying arctan color operator. 
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Figure 4.11. The amplitude spectrum of trace from Hussar seismic data near well 14-27 before and 

after applying arctan color operator. 

 

Figure 4.12. The amplitude spectrum of trace from Hussar seismic data near well 14-27 before and 

after applying AC color operator. 

These three figures demonstrate that applying any of color operators to the stacked seismic 

traces causes their amplitude spectrum to roll off in low frequency to become similar with the 

spectral shape of well reflectivity. This causes the whole section to become dim as can be seen in 

figures Figure 4.7 to Figure 4.9. More similarity between the spectral shape of seismic trace and 

reflectivity means better estimation of amplitude spectrum which causes the colored seismic 

section to become de-whitened. 
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4.4 Acoustic impedance inversion 

Once the data have been prepared and the color operator has been applied, we are able to 

invert them to the impedance section. As mentioned previously, using the recursion formula 

(equation 1.19) for calculating the acoustic impedance from bandlimited seismic data is not a 

reliable method and cannot estimate the true acoustic impedance. However, to illustrate the effect 

of color operators in acoustic impedance calculation, the impedance section has been computed 

directly from recursion formula using seismic data before and after applying color operator 

(Figure 4.13).     

 

Figure 4.13 Impedance inversion using recursion formula for the seismic data before and after 

applying color operator. 

This result demonstrates the significant changes in impedance inversion section after 

applying color operator. However, to get the correct impedance results, the low frequency 

components need to be inserted from the well log data. This can been done using BLIMP algorithm 

which is in CREWES MATLAB toolbox. As mentioned previously, the BLIMP function has two 

frequency input parameters: low cut off frequency and high cut off frequency. The low cut off 

frequency is the value below which the algorithm suppresses the seismic frequencies and inserts 
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the same frequencies from the well log. However, the frequencies higher than the high cut off 

frequency are totally removed from data via BLIMP algorithm. To compute an accurate inversion 

the low frequency cut off must be chosen with care. If the cut off is too low, low frequency noises 

from the seismic data will contaminate the inversion. If the cut off is too high, the inversion is 

overwhelmed by well information and subtle details from the seismic data cannot be seen. Lloyd 

(2013) discussed in detail the optimum low frequency cut off choice for Hussar seismic data and 

based on the results the best choice of low cut off frequency is between 3 and 4 Hz.  

In this study we used 3.5 Hz as a low cut off frequency and the high cut off frequency is 

varying from 60 to 70 Hz from the side of well 14-35 to the side of well 12-27. The acoustic 

impedance inversion results before and after applying color operator are displayed in Figures 

Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17. 

 

Figure 4.14. The BLIMP impedance inversion without using any color operator. The low 

frequency in BLIMP algorithm was chosen 3.5Hz and the high frequency is linearly varying from 

60Hz to 70Hz from left to the right side of seismic section. 
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Figure 4.15. The BLIMP impedance inversion for arctan color operator. The low frequency in 

BLIMP algorithm was chosen 3.5Hz and the high frequency is linearly varying from 60Hz to 70Hz 

from left to the right side of seismic section. 

 

Figure 4.16. The BLIMP impedance inversion for sigmoidal color operator. The low frequency in 

BLIMP algorithm was chosen 3.5Hz and the high frequency is linearly varying from 60Hz to 70Hz 

from left to the right side of seismic section. 



 

98 

 

Figure 4.17. The BLIMP impedance inversion for AC color operator. The low frequency in BLIMP 

algorithm was chosen 3.5Hz and the high frequency is linearly varying from 60Hz to 70Hz from 

left to the right side of seismic section. 

These figures demonstrate remarkable improvement in the acoustic impedance section 

after applying any of color operators related to the one without applying color operator. These 

improvements can be seen in layers resolution as well as matching with the well impedance at the 

well location. This can also be seen from computing the maximum correlation between calculated 

impedance and well impedance at the well locations for all types of color operators (Table 4.1). 

 Well 14-35 Well 14-27 Well  

Before color operator 0.4415 0.4261 0.4169 

After arctan color op. 0.5568 0.6124 0.546 

After sigmoidal color op. 0.5726 0.6088 0.5664 

After AC color op. 0.5726  0.6083 0.5632 

Table 4.1. The maximum correlation calculated for acoustic impedance estimation between the 

well impedance and the traces near those wells before and after applying color operator.   

These results can be compared with the result of colored inversion method which was 

introduced by Lancaster and Whitcombe in 2000. As mentioned previously, this method was based 
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on deriving the spectral shape of well impedance and then the amplitude spectrum of the colored 

inversion operator is determined as being that which maps the seismic spectrum to a spectral shape 

of well impedance. To design this operator for the Hussar seismic data, first the average well 

impedance of three well log data has been calculated and then the appropriate value from fitting 

the f   curve to the amplitude spectrum of averaged impedance was found ( -0.8355  ).   

 

Figure 4.18. The colored inversion operator derivation process which needs to derive the spectral 

shape of well impedance.  

 

Figure 4.19. The designed colored inversion operator from averaged well impedance and averaged 

seismic trace of Hussar data.   
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Once the colored inversion operator was designed, it can be apply directly to the seismic 

section to give us the bandlimited impedance inversion. Figure 4.20 illustrates the result of colored 

inversion method of Hussar seismic data. Note that the calculated impedance has both positive and 

negative values. However, from our knowledge about acoustic impedance since it defines as a 

multiplication of velocity and density, its value cannot be a negative. Thus, the computed 

impedance in this case is only showing the variation of impedance from its trend not its real value. 

 

Figure 4.20. The result of applying colored inversion operator on Hussar seismic data. The 

computed impedance in this case is only showing the variation of impedance from its trend not its 

real value.  

This is the consequence of lacking low frequencies in calculated acoustic impedance. On 

the other hand, as we can see in the Figure 1.13, the broadband impedance inversion can be divided 

into the two separate parts: the low frequency part which defines the trend of broadband impedance 

and the high frequency part which causes the impedance fluctuation. Thus, the results we have 

seen in the Figure 4.20 do not have a low frequency trend. To determine the approximate frequency 

range that includes in the colored inversion result, the amplitude spectrum of the traces near the 

well logs can be compared with the amplitude spectrum of the well impedance. These are shown 
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in Figure 4.21 and it shows the approximate range of frequency that colored inversion method 

contains is 14 to 62Hz at the location of well 14-35, 14 to 68Hz at the location of well 14-27 and 

20 to 70Hz at the location of well 12-27.   

     

Figure 4.21. The amplitude spectrum of colored inversion result near each well and its comparison 

with the real acoustic impedance amplitude spectrum. The approximate range of frequency that 

colored inversion method contains is 14 to 62Hz at the location of well 14-35, 14 to 68Hz at the 

location of well 14-27 and 20 to 70Hz at the location of well 12-27.   

The colored inversion results also can be compared with the result of -90 degree phase 

rotation of seismic data. As mentioned earlier, the colored inversion can be proportional to the -90 

degree phase rotation of seismic data and this can be seen in Figure 4.22. The -90 degree phase 

rotation is the consequence of simple mathematical concept. Equation 1.19 can be written as 

 
2 ( )

1( )
R t dt

I t I e  . 4.1 

Thus, the integral operator applying to the reflectivity function which is roughly a -90 

degree phase rotation. This can be shown mathematically. Consider the signal as 
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In this equation i can be written as 
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and by substituting this value in the equation 4.3, it becomes 
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Equation 4.5 shows that the derivative operation corresponds to multiplying the amplitude 

spectrum by frequency and a +90 degree phase rotation. Since the integral operator is the inverse 

of derivative operator, the integral operator has a phase response that is a -90 degree phase rotation. 
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Figure 4.22. Comparing the result of colored inversion method and -90 degree phase rotation on 

seismic data. 

To compare the result of acoustic impedance inversion calculated from applying different 

color operators it is easy to look at the calculated maximum correlation between well impedance 

and each of the methods near the well locations. The results have been computed for the frequency 

ranges between 14 and 60Hz to be able to compare all possible options. Chart 4.1 showing these 

calculated correlation for each of the methods. The results in the table demonstrate a noticeable 

difference when we are using the minimum-phase color operator. Besides that, to be able to 

compare with the colored inversion method, after applying proper filter to the estimated 

impedances from BLIMP and well impedance the results show using any of the color operators 

have more reliable and accurate result than using colored inversion method.   
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Chart 4.1. The maximum correlation calculated between well impedance and estimated acoustic 

impedance using different methods. The results have been compared for the frequency ranges 

between 14 and 60Hz to be able to compare all possible options. 

4.5 Summary 

 To assist in the well tying process, calculating accurate P-wave velocity and density 

overburdens are necessary. A linear gradient has been used to calculate each of the 

overburdens to prevent artificial coefficients creation.  

 Generally, the well tie process includes a time shift and a phase rotation and because of 

attenuation it may contain an extra time shifts at deeper events. This can be fixed 

numerically with a method such as dynamic time warping (DTW) method or manually by 

stretching the synthetic trace. 

 A deconvolved trace shaped to a white spectrum can be corrected by applying a minimum-

phase color operator after deconvolution. 

 The minimum-phase color operator can be calculated separately for each well and then the 

average color operator can be applied to the whole seismic section or, by spatial 

interpolation between available color operators, a unique color operator can be computed 

for each seismic trace. 
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 Applying any of color operators to the stacked seismic traces causes their amplitude 

spectrum to roll off in low frequency to become similar with the spectral shape of well 

reflectivity. This causes the whole section to become dim. 

 The result of impedance inversion is greatly improved after applying color correction 

because this affects the low frequencies and therefore the trend of the inversion. 

 Colored inversion method is based on deriving the spectral shape of well impedance and 

then the amplitude spectrum of the colored inversion operator is determined as being that 

which maps the seismic spectrum to a spectral shape of well impedance. 

 The colored inversion method is a fast and robust technique to calculate the deviation of 

acoustic impedance from background trend (e.g. no low frequency information) and it is 

similar to a -90 degree phase rotation.  

 Comparing the maximum correlations between well acoustic impedance and estimated 

acoustic impedance from each method including before applying any color operator, after 

applying minimum-phase arctan, sigmoidal and AC color operator, colored inversion 

method and -90 degree phase rotation show that around 20 percent higher correlation can 

be reached if minimum-phase color operator has been applied to the deconvolved seismic 

data. 
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CHAPTER FIVE: CONCLUSION 

 Seismic reflectivity estimation is aimed at obtaining the true underground reflection 

information and improving the seismic vertical resolution, which is mainly restricted by 

the bandlimited source wavelet. 

 Frequency domain deconvolution method assumes some fundamental assumptions such as: 

 The wavelet should be causal and minimum-phase. 

 The wavelet spectrum should be smooth. 

 The wavelet should be stationary. 

 The reflectivity is assumed to be random, thus its amplitude spectrum is white. 

 Any noise is additive, white and stationary. 

 The minimum-phase wavelet does not refer to a particular phase spectrum which, if 

preserved, maintains a dataset’s minimum-phase. Instead, the minimum-phase refers to a 

particular mathematical relationship existing between the amplitude and phase spectra so 

that knowledge of either one is sufficient to compute the other one. The mathematical 

relation between phase spectrum and amplitude spectrum can be found in equation 2.12. 

 To calculate the frequency domain deconvolution operator, the amplitude spectrum of 

seismic trace must be smoothed to aim the wavelet estimation. This can be done with 

different smoother types. Boxcar smoother, constant Gaussian smoother and frequency 

dependent Gaussian smoother have been used. 

 Applying different frequency domain deconvolution operators to the pseudo random data 

demonstrate significant improvement in impedance results when the frequency dependent 

Gaussian smoother has been used (Figure 2.20). 
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 The reflectivity calculated from well log data is in depth and has very detailed information. 

This needs to be converted into the time domain using 2-way time-depth table to be able 

correlate with the seismic data.  

 The reason that the frequency domain deconvolution is not able to estimate the reflectivity 

precisely especially in the low frequencies and that is not only because of the smoothing 

process. The colored spectrum property of the real reflectivity in the low frequencies causes 

any method of smoothening to become unsuccessful in this matter. 

 Unlike the random reflectivity which has white spectrum, the amplitude spectrum of log 

reflectivity at the low frequency part rolls off and this refers to the spectral color. 

 The objective of the color operator is to create a model that represents the color trend in 

the spectrum without reproducing the specific characteristics of reflectivity that must be 

preserved in the seismic; such as the reflections to be interpreted. 

 The color operator should depend only on the observed spectral shape of the reflectivity. 

Also, this operator needs to correct the error of minimum-phase whitening deconvolution 

operator, therefore it must be minimum-phase. 

 Three different color operators have been studied in this thesis. Autocorrelation Color (AC) 

operator which has been calculated from well reflectivity autocorrelation and arctan and 

sigmoidal color operator which have been calculated from curve fitting method.  

 The spectral rolling off effect in the amplitude spectrum of reflectivity at the frequencies 

higher than half of Nyquist frequency is because of applying anti-alias filter which means 

using higher sample rates shifts the anti-alias filter effect to higher frequencies.  
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 The color operator can correct the whitening deconvolution errors of deconvolved trace but 

it is not able to recover all the low frequency components. 

 The BLIMP algorithm is a robust method to calculate more accurate impedance from 

bandlimited seismic data by adding low frequency information from well log data. The 

results showed using color operator can improve the impedance estimation of BLIMP.  

 To assist in the well tying process, calculating accurate P-wave velocity and density 

overburdens are necessary. A linear gradient has been used to calculate each of the 

overburdens to prevent artificial coefficients creation.  

 Generally, the well tie process includes a time shift and a phase rotation and because of 

attenuation it may contain an extra time shifts at deeper events. This can be fixed 

numerically with a method such as dynamic time warping (DTW) method or manually by 

stretching the synthetic trace. 

 A deconvolved trace shaped to a white spectrum can be corrected by applying a minimum-

phase color operator after deconvolution. 

 The minimum-phase color operator can be calculated separately for each well and then the 

average color operator can be applied to the whole seismic section or, by spatial 

interpolation between available color operators, a unique color operator can be computed 

for each seismic trace. 

 Applying any of color operators to the stacked seismic traces causes their amplitude 

spectrum to roll off in low frequency to become similar with the spectral shape of well 

reflectivity. This causes the whole section to become dim. 
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 The result of impedance inversion is greatly improved after applying color correction 

because this affects the low frequencies and therefore the trend of the inversion. 

 Colored inversion method is based on deriving the spectral shape of well impedance and 

then the amplitude spectrum of the colored inversion operator is determined as being that 

which maps the seismic spectrum to a spectral shape of well impedance. 

 The colored inversion method is a fast and robust technique to calculate the deviation of 

acoustic impedance from background trend (e.g. no low frequency information) and it is 

similar to a -90 degree phase rotation.  

 Comparing the maximum correlations between well acoustic impedance and estimated 

acoustic impedance from each method including before applying any color operator, after 

applying minimum-phase arctan, sigmoidal and AC color operator, colored inversion 

method and -90 degree phase rotation show that around 20 percent higher correlation can 

be reached if minimum-phase color operator has been applied to the deconvolved seismic 

data. 
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