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Introduction

This study investigates the approach to imaging and inversion based upon
the paper by Clayton and Stolt (1981) using inverse scattering methods.

They discuss two cases, Imaging/inversion in a constant and variable
background.

Here we treat the 2D constant background case only.

In this study:
Created synthetic data for 2D targets as input for the 2" step,

o Test a prototype inverse scattering algorithm using a single parameter only
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(velocity) as a check on the correctness and accuracy of this algorithm.
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Forward Modeling

* Creation of a synthetic 2D velocity model
using a gui based tool AFD_VELCREATE.

* @Generate the scattered field:

(1) Forward model in the reference medium
(constant velocity)

(2) Forward model in the layered medium
using the CREWES FD routine
AFD_SHOTREC to generate 2D shot
records.
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Synthetic Selsmic Shot Direct Wave Only atx= 0m

Forward Modeling

 Convolve with a Ricker wavelet.

e Generation of a background and model
shotpoint gather from the background '
and model velocity profiles for each |
receiver.
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* repeated shot gathers created for each R —
receiver point along the desired seismic
line with the desired receiver spacing.
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Basic Scattering Theory

Lippmann-Schwinger Equation

G(rg|rs;w) — Gr(rglrs;w) = Gy (rg|r’;w)V (r')G(x'|rs; w)dV’
V’

Inhomogeneous Helmholtz equation

2
LG = (“’— +V- 1V)G. = 5(r —rs),

K p
2
W 1
L.G, = <— +V- —V> G, = —(5(1‘, _ rS)?
K, Pr
V is called the scattering potential
w?  w? 1 1 w? a,

where ag,a, are

o=z -1) o= (65 -1)
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Basic Scattering Theory

Born-Neumann Series p \ { 7\

v a

mp_v,\\/ /\J \R

qjscattered(r) = G — G, — data TZ.:Td“P;]] - f\ \; T

G=G,+G VG, +G.VG. VG, + ..

We define the scattered field as:

Born Approximation: |1/)3cattered‘ << Wmc|

wscattered ~ /V Gr(r|rl)v(rl) [¢inc(r’) + (wscattered(r,) — O) dV’

In operator form the linearized series becomes

G =G, +G,VG,,

o
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Inversion
— (G - G,)S(w) = (G,VG,)S(w),

—1 D(km,kh,w)
pr Sw)+e

D' (kp kn, k) = Deconvolve the source wavelet from data.

Fourier transform from z,, s coordinates to source-receiver wavenumbers
kg, ks.

D(k,, ks,w) = /dacg/ dx e o 99 D(x 4, T, w)e thss

:/d:c'/dz'G+ kg, 0|2, 2 s w)V (2, 2 w)GE (2!, 2 ks, 0); w) S (w),

:Cg+ws —mg_ajs
2 7$h_

Inversion is driven by mapping the spectrum of the data to the spectrum of the
model.

km = kg — ks bk =kyg+ ks 20 =

—prS(w)  [w?
D kmakzak - kmakz F kmakmk kmakz
(s e ) = e | el ) 4 F s e ) )
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Inversion

When transformation variables are substituted in and simplified we obtain
the system of equations which need to be inverted.

D(km; kz; kh) = —Pr [Z A@(km; kh; kz)afi(kma kz)] S(w)a

=1

1 (k2 +kp) (k7 + k)
4 Kr-k2kP

After the deconvolution stage we are left with

1 (k7 = ki) (K2 + k7))
4 k' —K2kF

Al = (k’m,kh,kz) = AZ — (kmakhakZ) —

D' (ko bz k) = [ZA ks ks ks az(km,k)]

of which we need to determine the a;(k,,, k,) through perhaps a least squares
method.
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Synthetic Examples

* Forward modelling:

x line length of 2500m , Max depth of 1000m (t=0.8 sec),
source/receiver spacing of 10m, sampling time of 4ms.

F-D calculations:time step is 0.5ms computation grid of 10mx10m.

A band limited Ricker wavelet at 30Hz and 0.1 seconds was also added.

YV V VYV V VY

Scalar(1 parameter acoustic) model.

Pre-processing:

> Deconvolution (already know the type of wavelet).

> Subtraction of direct wave from input dataset.

* I|nversion:

> Direct Fourier transform of the dataset.

> Fillin model spectra on a regulark,,, k, grid

> Inverse Fourier transform back intothe image space x,z.
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Four layer horizontal model

velmodel_flat.mat

1
3000 3200

File is not @ valid welocity moded

Synthetic seismic shot with Ricker wavelet at x= 1195 m
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Figure 1: Four Layer Horizontal Velocity Model

Figure 2: Four Layer Shot Profile w Ricker wavelet
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Four layer horizontal model

Plotimage(11)

-7500 ' -2000 -1500 ~1000 -500
Meters

Image Controls have heen shut off
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Four layer horizontal model

Deconvolved synthetic shot at x= 1185 m

RE Figure 3: Four Layer, Deconvolved w/o Direct Wave
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Four layer horizontal model

Inversion image

Depth(m)
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Figure 5: Four layer Horizontal Model, Migrated Image
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Shallow low velocity model

valmodal-shallow.mat
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aga Figure 6: Shallow Lens Velocity Model
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Shallow low velocity model
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Figure 8: Shallow Lens, Deconvolved w/o Direct Wave
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Shallow low velocity model
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Figure 10: Shallow, Low Velocity Model, Migrated Image
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Anticline velocity model

velmodel - anticline.mat
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Figure 11: Anticline Velocity Model
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Anticline velocity model

Deconvolved synthetic shot atx= 1185 m

Figure 13: Anticline Deconvolved w/o Direct Wave
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Anticline velocity model

Depth(m)

Inversion image
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Figure 15: Anticline Velocity Model, Migrated Image

Glen Young, CREWES Technical Presentation,
January 27, 2012

19



<
¢

Conclusion

Even with the relatively straightforward algorithm for a constant
background, we are able to image the models to a fairly high degree of
accuracy.

Our simulations have not taken into account real world effects such as
multiples and anisotropic and anelastic media which are variable
background effects.

We need to verify that the amplitudes of the reflections found in these
results are true amplitudes.

Next step incorporate material parameters such as bulk modulus, variable
density into the forward model(true two parameter mode).

test the accuracy of the inversionsin producing the correct and physically
realistic answers.
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Appendix A: Inversion

The complete derivation from the Clayton and
Stolt paper.
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Appendix A: Inversion
D=(G-G)Sw)=(G.VG)S(w).

o —1 D(km, kh,w)

D' (kp, kn, k) = ’ Deconvolve the source wavelet from data.
pr  Sw)+e

The first step: Fourier transform from z,, x, coordinates to source-receiver
wavenumbers kg, k.

1 ; .
D(ky, ks, w) = %/ dxg/ dse= %575 D, 4, w)el o

:/d:c’]dz'Gj(/{g,0|:E',z’;w)V(:U',z’;w)fo(:U',z’\ks,0|;w)5’(w),

with the Green’s operators for a 2D constant background are given by

. —i(kyx'—q4|2|) . i(ksz'+qs|2'])
Lpr € Ukg g /It tpr €
b G;J—(aj 7Z |k3305 w) — bl

\V} 21 QQQ \ 2 2QS

27.2
_ W/ vikg _w v2k?2
g = — — — 5 s s = — — T 5 s
]/T' w l/'r w

-~
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Appendix A: Inversion

w? a K P
V=— i 4 = I = 1
KT aK + V pTV7 aK (K(r,) )7 arp (p(r,) )7

using the definitions for ax and a, then integration by parts we get

_p2 e—i[(kg—ks)a:/—(qg—l—gs)z’)]
D(ky, ks,w) = T/daf’/dz’ X
2T
2

4QQQS
w
ﬁa;((a:', 2) 4 (qeqs — kgks)a,(x’, z')] S(w),
T
The above equation is of the same form as a double Fourier transform in the
2’ and 2z’ variables if we do some rearranging the result of the evaluation yields

2 2
—piS(w) [w
D(ky, ko, w) =—L7 ko — ks, —qo — qs
(kg ks, w) 44,45 [VEGK(Q qQg — qs)
+ (QQ(]S T kgks)ap(kg T ks: _QQ - QS)] )
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Appendix A: Inversion

Change of Coordinates to w, q,, ¢s space

To solve for ax and a, change to midpoint /offset coordinates from the source/receiver
system. We have the midpoint wavenumber k,, = k; — ks, the half offset
wavenumber kj, = k, + k5 which in x,z domain corresponds to

$g+x3 _mg_zs
2 7$h_

ITm —

and a new independent variable, Solving for w, g, and ¢g; we have the expressions

w vik2  w v2k?2
ke =—Qg— Qs =——\/1-—F ——\/1——5,
vy w vy w

vk, k2 ks
w(kmakhzkz):_ 9 \/(1+k_g)(1+k_§)’
k. ko kp, k. kmkn
QQ(kmakhakz) — _?(1 - k—g)a qs(kma khakz) — _7(1 + kg )7
km:kg_ksakh:kg"'_ksaxm:$g+$8a :Uh:xg_msn
2 2
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Appendix A: Inversion

Now that we have expressions for w, g4, g5 the Direct Fourier transform com-
puted in these coordinates and data can be transformed back after the inversion.

—p2S(w) [w?
Dk, ke op) = qu( )[V2 aK(km,kz)—l—(ngs—kgks)ap(km,kz)],
gis T
—prS(w)
C(kmakzakh

When transformation variables are substituted in and simplified we obtain
the system of equations which need to be inverted.

2
D(km,kz,kh) = ) |:L;2 afK(km,kz) + F(kmakzakh)afp(kmakz)]a

D(kmu kz; kh) — —Pr [Z Az(kma khy kz)ai(kma kz)] S(w):

i=1

1 (k2 +Ej) (k2 +E2)
4 KKk

After the deconvolution stage we are left with

1 (k2 —kp)(k2 +k2,)
4 kP —Rk2kE

Al — (km,kh,kz) — A2 — (k’m, kh, kz) —

D' (K, oy ki) = [ZA K kns ke az(km,k)]

of which we need to determine the a;(k,,, k.) through perhaps a least squares
method.
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