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Introduction

* Reverse time migration
e Least-squares migration

* Full waveform inversion
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Forward Modelling

e Time domain LSRTM

Scalar acoustic waves equation in 2D case

azp(xlz) t) azp(x,Z, t) 1 azp(x’z’ t)
axz + aZZ - vz(x’ Z) atz - f(t)5(x - xs) (1)

4% order FD in spatial and 2" order in time
pn+1 — an _ pn—l + Atzszlp" + Atzfn (2)
p"=0,n<0

p™ is the pressure at time step n, L, is the 9-point Laplacian operator and f™ is the source term.
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Imaging Condition

The imaging condition in the LSRTM in 2D case can be expressed as follows:

I(x,z) = z z U'(x,z, t,n))V™ (x,z,t,ng) (3)
t

ng

The U™(x, z,t,n,) and V™(x, z, t, n;) is the source wavefield and receiver wavefield at time
step n and I(x, z) is the image of the model.
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Conjugate Gradient Method

Conjugate gradient (CG) is applied to the linear unconstrained optimization problem:
min{f(x): x € R}
A linear conjugate gradient method generates a sequence X, starting from an initial guess x, € R", using
Xg+1 = X + apdy (4)

where a;, is the step length, and the searching directions d, are generated by the rule:

dg+1 = —9r+1 T Brdk, do = — 9o (5)
Here B is the CG update parameter and g, = Vf(x}). Different CG methods corresponding to different choices for the
scalar Sy.

FR _ 1gk+ll*

Flecher and Reeves, 1964
k ol | )

T
HS _ Gis1Vk

= Hestenes and Stiefel, 1952
k dryk ( )

py _ gkl
k dlyy
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Conjugate Gradient Method

Data
l m, = L"d
Model
l dprea = LM,

m; = L*(d — d,eq) Predicted Original Data
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projections
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Conjugate Gradient Method

m; = LH(d - dpred)
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Conjugate Gradients Box
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Examples
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Forward Modelling

 Frequency domain LSRTM

Scalar acoustic wave equation in frequency domain

02
( + \72> ulx,w,v) = f(w)d(x — xg), (6)

v?(x)

We can rewrite this equation in matrix form

L(x, w; v)u(x, x5, w) = f(w)6(x — Xsg), (7)

w2

v2(x)

where L(x, w; v) = ( + Vz) is the discretized impedance matrix.
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Imaging Condition

Using the adjoint state method (Plessix, 2006), the gradient can be calculated as

gx) =— 7 7 7 Re (a)zf(a))G(xS, X, w)G(x, Xg, w)Ad*(xg, X, w)) , (8)

Xg X5 @

In matrix form, this can be rewritten as (Virieux and Operto, 2009)

glx) = — 7 7 7 ul(xs, Xg, @)V LT (m, w)L(m, w)"1RT Ad*(xs, Xg, w), (9)

Xg X5 @

Ny @) UNIVERSITY OF CALGARY
nserc [
“*CREWES WWW.crewes.org &) usmne 9 LU
V. Department of Geoscience




Imaging Condition

Using the adjoint state method (Plessix, 2006), the gradient can be calculated as

gx) = —ng Yix, 2w RE (a) YG (%, xg,w)Ad*(xg,xS, w)), (8)

2009)

09 =33 30 et o )t 230,

Xg X5 @

In matrix form, this can be rewritten as (Virieux and Operto,

(9)

Back propagated
receiver
wavefields

Source wavefields
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Data space vs model space

The forward modelling process is
Am =d (10)
Usually the objective function is defined in the data domain:

1 2
Jm) == [ld—aml', (A1)

However, we have an image domain objective function:
1
J(m) = |1ATAm — ATd])?,  (12)
The Hessian vector product (Métivier, 2013)
Hyy =u'V, LT (L) RTR(LYH IV, L u*v, (13)

where v is an arbitrary vector, usually setting as zero vector as the initial guess of the conjugate gradient method and R
is the receiver coordinates.
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Examples
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Examples
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Examples

True Velocity RTM image
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Conclusions

e LSRTM need correct background velocity model to produce decent result

e The objective function for time domain LSRTM is in data domain while for frequency
domain LSRTM, the objective function is in imaging domain. Both methods can improve
the image

e Future work: The function of Hessian in the algorithm and compare the Hessian vector
product with Born modelling operator
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