
www.crewes.org

Using GPUs in Pre-stack AVO Inversion
for Performance Improvement

Arthur Lee

CREWES Weekly Friday Morning Meeting
Feb 8, 2019

2

Outline

1. Objective and Motivation
2. Pre-stack AVO Inversion (Hampson et al., 2005) using Conjugate Gradient
3. Software Engineering Solutions to a Large Data Problem
4. Using GPUs in Conjugate Gradient
5. What is GPU Programming
6. Results
7. Conclusion
8. Discussions

3

Acknowledgements

Dan Hampson, CGG

CREWES
Kevin Hall, University of Calgary

Jorge Monsegny Parra, University of Calgary
Daniel Trad, University of Calgary
Larry Lines, University of Calgary

4

Objective and Motivation

Reflection Seismic Method

Acquisition  Processing  Interpretation and Reservoir Characterization

Acquisition  Processing  Interpretation:

Acquisition  Processing  Pre-stack AVO Inversion  Elastic Properties (Zp, Zs, and Density)

Purposes: (1) Reconnaissance Analysis and
(2) Detailed Rock/Fluid Property Estimation

Requirements: Interactive and Fast, and …
Faster

Would GPU help?

INPUT:
Pre-stack migrated, or NMO-corrected, and
AVO friendly processed
Angle gathers
(AVO -> AVA)

OUTPUT:
Simultaneously solves for elastic properties:

P-Impedance,
S-Impedance and
Density.

Incident
Angles at CDP

Pre-stack AVO Inversion
Seismic Inversion is “to extract geological model information from data”. (Lines, Chapter 16)

Available tools (linear/non-linear):
1. Artificial Intelligent
2. Statistical
3. Deterministic

7

Pre-stack AVO Inversion – Assumptions

The Forward Model Development …

Equation:

𝑇𝑇 = 𝐖𝐖𝑅𝑅

𝑇𝑇 = 𝐖𝐖 𝑐𝑐1𝑅𝑅𝑃𝑃 + 𝑐𝑐2𝑅𝑅𝑆𝑆 + 𝑐𝑐3𝑅𝑅𝐷𝐷

𝑇𝑇 = 𝐖𝐖 1
2
𝑐𝑐1𝐃𝐃𝐿𝐿𝑃𝑃 + 1

2
𝑐𝑐2𝐃𝐃𝐿𝐿𝑆𝑆 + 𝑐𝑐3𝐃𝐃𝐿𝐿𝐷𝐷

-- Convolutional Model

-- Linearization

-- Reflectivity as small changes in Elastic Parameters

Assumptions:

8

Additional assumption by Hampson et al., 2005

Model parameters 𝑍𝑍𝑆𝑆 and 𝜌𝜌 are related to 𝑍𝑍𝑃𝑃.

𝐿𝐿𝑆𝑆

𝐿𝐿𝑃𝑃

Δ𝐿𝐿𝑆𝑆

𝐿𝐿𝐷𝐷

𝐿𝐿𝑃𝑃

Δ𝐿𝐿𝐷𝐷

𝐿𝐿𝑆𝑆 = 𝑘𝑘 𝐿𝐿𝑃𝑃 + 𝑘𝑘𝑐𝑐 + Δ𝐿𝐿𝑆𝑆
𝐿𝐿𝐷𝐷 = 𝑚𝑚 𝐿𝐿𝑃𝑃 + 𝑚𝑚𝑐𝑐 + Δ𝐿𝐿𝐷𝐷

Assume:

𝐃𝐃𝐿𝐿𝑆𝑆 = 𝑘𝑘 𝐃𝐃𝐿𝐿𝑃𝑃 + 𝐃𝐃Δ𝐿𝐿𝑆𝑆
𝐃𝐃𝐿𝐿𝐷𝐷 = 𝑚𝑚 𝐃𝐃𝐿𝐿𝑃𝑃 + 𝐃𝐃Δ𝐿𝐿𝐷𝐷

Then:

-- Convolutional Model

-- Linearization

-- Reflectivity as small changes in Elastic Parameters

-- Elastic Parameters are related.

-- Invert for elastic parameter changes from a trend.

9

Pre-stack AVO Inversion – Assumptions by Hampson et al., 2005.

The Forward Model

Equation:

𝑇𝑇 = 𝐖𝐖𝑅𝑅

𝑇𝑇 = 𝐖𝐖 𝑐𝑐1𝑅𝑅𝑃𝑃 + 𝑐𝑐2𝑅𝑅𝑆𝑆 + 𝑐𝑐3𝑅𝑅𝐷𝐷

𝑇𝑇 = 𝐖𝐖 1
2
𝑐𝑐1𝐃𝐃𝐿𝐿𝑃𝑃 + 1

2
𝑐𝑐2𝐃𝐃𝐿𝐿𝑆𝑆 + 𝑐𝑐3𝐃𝐃𝐿𝐿𝐷𝐷

𝑇𝑇 = 𝐖𝐖 �𝑐𝑐1𝐃𝐃𝐿𝐿𝑃𝑃 + �𝑐𝑐2𝐃𝐃Δ𝐿𝐿𝑆𝑆 + �𝑐𝑐3𝐃𝐃Δ𝐿𝐿𝐷𝐷

Assumptions:

10

Pre-stack AVO Inversion (Hampson et al., 2005)

The equation in Matrix Notation for one angle gather:
(with M angle traces per gather, and N samples per trace)

𝑇𝑇 𝜃𝜃1
⋮

𝑇𝑇 𝜃𝜃2
⋮
⋱

𝑇𝑇 𝜃𝜃𝑀𝑀
⋮

=

𝐖𝐖𝟏𝟏 𝜃𝜃1 … 𝐖𝐖𝟐𝟐 𝜃𝜃1 … 𝐖𝐖𝟑𝟑 𝜃𝜃1 …
⋮ ⋮ ⋮

𝐖𝐖𝟏𝟏 𝜃𝜃2 … 𝐖𝐖𝟐𝟐 𝜃𝜃2 … 𝐖𝐖𝟑𝟑 𝜃𝜃2 …
⋮ ⋮ ⋮
⋱ ⋱ ⋱

𝐖𝐖𝟏𝟏 𝜃𝜃𝑀𝑀 … 𝐖𝐖𝟐𝟐 𝜃𝜃𝑀𝑀 … 𝐖𝐖𝟑𝟑 𝜃𝜃𝑀𝑀 …
⋮ ⋮ ⋮

𝐿𝐿𝑃𝑃
⋮
Δ𝐿𝐿𝑆𝑆
⋮

Δ𝐿𝐿𝐷𝐷
⋮

𝑇𝑇 = 𝐀𝐀𝑚𝑚 The basic equation.

Wavelets and linearized AVO
coefficients combined at
different angles.

12

Pre-stack AVO Inversion (Hampson et al., 2005)

𝐀𝐀T𝐀𝐀𝑚𝑚 =

𝐃𝐃T𝐆𝐆𝟏𝟏𝟏𝟏𝐃𝐃 𝐃𝐃T𝐆𝐆𝟏𝟏𝟏𝟏𝐃𝐃 𝐃𝐃T𝐆𝐆𝟏𝟏𝟏𝟏𝐃𝐃
⋮ ⋮ ⋮

𝐃𝐃T𝐆𝐆𝟐𝟐𝟐𝟐𝐃𝐃 𝐃𝐃T𝐆𝐆𝟐𝟐𝟐𝟐𝐃𝐃 𝐃𝐃T𝐆𝐆𝟐𝟐𝟐𝟐𝐃𝐃
⋮ ⋮ ⋮

𝐃𝐃T𝐆𝐆𝟑𝟑𝟑𝟑𝐃𝐃 𝐃𝐃T𝐆𝐆𝟑𝟑𝟑𝟑𝐃𝐃 𝐃𝐃T𝐆𝐆𝟑𝟑𝟑𝟑𝐃𝐃
⋮ ⋮ ⋮

𝐿𝐿𝑃𝑃
⋮

𝛥𝛥𝐿𝐿𝑆𝑆
⋮

𝛥𝛥𝐿𝐿𝐷𝐷
⋮

=

𝐃𝐃T𝐆𝐆𝟏𝟏𝟏𝟏𝐃𝐃 𝐿𝐿𝑃𝑃 + 𝐃𝐃T𝐆𝐆𝟏𝟏𝟏𝟏𝐃𝐃 𝛥𝛥𝐿𝐿𝑆𝑆 + 𝐃𝐃T𝐆𝐆𝟏𝟏𝟏𝟏𝐃𝐃 𝛥𝛥𝐿𝐿𝐷𝐷
⋮

𝐃𝐃T𝐆𝐆𝟐𝟐𝟐𝟐𝐃𝐃 𝐿𝐿𝑃𝑃 + 𝐃𝐃T𝐆𝐆𝟐𝟐𝟐𝟐𝐃𝐃 𝛥𝛥𝐿𝐿𝑆𝑆 + 𝐃𝐃T𝐆𝐆𝟐𝟐𝟐𝟐𝐃𝐃 𝛥𝛥𝐿𝐿𝐷𝐷
⋮

𝐃𝐃T𝐆𝐆𝟑𝟑𝟑𝟑𝐃𝐃 𝐿𝐿𝑃𝑃 + 𝐃𝐃T𝐆𝐆𝟑𝟑𝟑𝟑𝐃𝐃 𝛥𝛥𝐿𝐿𝑆𝑆 + 𝐃𝐃T𝐆𝐆𝟑𝟑𝟑𝟑𝐃𝐃 𝛥𝛥𝐿𝐿𝐷𝐷
⋮

where: 𝐆𝐆𝐣𝐣𝐣𝐣 = ∑𝑖𝑖𝑀𝑀 �𝑐𝑐𝒋𝒋 𝜃𝜃𝑖𝑖 𝐖𝐖𝑇𝑇 𝜃𝜃𝑖𝑖 𝐖𝐖 𝜃𝜃𝑖𝑖 �𝑐𝑐𝒌𝒌 𝜃𝜃𝑖𝑖

RHS:

Basic Equation: 𝑇𝑇 = 𝐀𝐀𝑚𝑚
Normal Equation: 𝐀𝐀T𝑇𝑇 = 𝐀𝐀T𝐀𝐀𝑚𝑚

Autocorrelation

13

Pre-stack AVO Inversion (Hampson et al., 2005)

Conjugate Gradient Algorithm by Hestenes and Stiefel (1952) as mentioned by Scales (1989):
Initialize {

Model Parameters Vector: 𝑚𝑚 = 0 0 0 T (With zero initial guess.)
Residual Vector: 𝑟𝑟 = 𝐀𝐀T𝑇𝑇 − (𝐀𝐀T𝐀𝐀)𝑚𝑚
Error Squared, a scalar: 𝑟𝑟T𝑟𝑟 (Is a least squares solution.)
Search Vector: 𝑝𝑝 = 𝑟𝑟
Search Multiplier, a scalar: 𝛽𝛽 = 0
}

For all iterations {
If not the first iteration {
𝛽𝛽 = 𝑟𝑟T𝑟𝑟/ 𝑟𝑟T𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 (Calculate error and save for the next iteration.)

𝑝𝑝 = 𝑟𝑟 + 𝛽𝛽 𝑝𝑝 (Modify the search vector.)

}
𝛼𝛼 = �𝑟𝑟T𝑟𝑟 𝑝𝑝T(𝐀𝐀T𝐀𝐀)𝑝𝑝 (Obtain a model step size. Stop if denominator is 0.)

𝑟𝑟 = 𝑟𝑟 − 𝛼𝛼 (𝐀𝐀T𝐀𝐀)𝑝𝑝 (Update residual error.)
(Stop if error 𝑟𝑟T𝑟𝑟 increases.)

𝑚𝑚 = 𝑚𝑚 + 𝛼𝛼 𝑝𝑝 (Update model parameters with a gradient step.)

}

Basic equation: 𝑇𝑇 = 𝐀𝐀𝑚𝑚
Normal equation: 𝐀𝐀T𝑇𝑇 = 𝐀𝐀T𝐀𝐀𝑚𝑚

14

Pre-stack AVO Inversion (Hampson et al., 2005)

𝐀𝐀T𝐀𝐀𝑚𝑚 =

𝐃𝐃T𝐆𝐆𝟏𝟏𝟏𝟏𝐃𝐃 𝐃𝐃T𝐆𝐆𝟏𝟏𝟏𝟏𝐃𝐃 𝐃𝐃T𝐆𝐆𝟏𝟏𝟏𝟏𝐃𝐃
⋮ ⋮ ⋮

𝐃𝐃T𝐆𝐆𝟐𝟐𝟐𝟐𝐃𝐃 𝐃𝐃T𝐆𝐆𝟐𝟐𝟐𝟐𝐃𝐃 𝐃𝐃T𝐆𝐆𝟐𝟐𝟐𝟐𝐃𝐃
⋮ ⋮ ⋮

𝐃𝐃T𝐆𝐆𝟑𝟑𝟑𝟑𝐃𝐃 𝐃𝐃T𝐆𝐆𝟑𝟑𝟑𝟑𝐃𝐃 𝐃𝐃T𝐆𝐆𝟑𝟑𝟑𝟑𝐃𝐃
⋮ ⋮ ⋮

𝐿𝐿𝑃𝑃
⋮

𝛥𝛥𝐿𝐿𝑆𝑆
⋮

𝛥𝛥𝐿𝐿𝐷𝐷
⋮

• It employs 9 convolutions which can be running in parallel.

• The implementation should fit well into a typical multi-threading optimization style.

Hampson’s conjugate gradient implementation concentrates on the combined 𝐀𝐀T𝐀𝐀 operator.

15

Software Engineering Solutions to a Large Data Problem

Coarse-grained Parallelization
Multiple Nodes (CPU’s / Machines / Clusters)
Network connection. Non-shared memory.

Medium-grained Parallelization
Multiple threads in one CPU
Threads ~= cores. Shared memory.

Fine-grained Parallelization
Multiple threads (in one CPU)
Multiple GPU cards connected by PCI-e

Ultra-fine-grained Parallelization
Multiple threads in a single GPU card
Array or Vector Processors

Typical software engineering solutions (using existing science):

E.g. MPI

E.g. pthread, OpenMP or MPI

E.g. pthread, OpenMP

E.g. “OpenACC”, “CUDA”,… SIMD

heterogenous

(Not seen anymore in geophysical industry.)

CPU-to-GPU

One CDP Gather

GPU-to-CPU

One CDP

Many, many, many
Wavelet Convolutions,

Sum of Squares, …

What is slow? Conjugate Gradient

16

Using GPUs in the Pre-stack AVO Inversion

Read Process Write
Read Process Write

Read Process Write
Read Process Write

Read Process Write

Read Process Write

Read Process Write
Read Process Write

Read Process Write
Read Process Write

Read Process Write

Read Process Write
Read Process Write

Read Process Write
Read Process Write

Read Process Write
Read Process Write

Read Process Write

Input Pre-stack Seismic Output Inverted ModelPre-stack AVO Inversion

Read a CDP Gather
Read Initial Model

Process a
CDP Gather

Write a Final Model
Write Synthetic

Coarse or
Medium
Grained

Parallelization

All CPU
resources have

been used.

Try to use other
resources, like

a GPU.

Fine Grained
Parallelization

17

Using GPUs in AVO Inversion

Input Pre-stack Seismic Output Inverted ModelPre-stack AVO Inversion Coarse or
Medium
Grained

Parallelization

Fine Grained
Parallelization

using GPUs

Read Process Write
Read Process Write

Read Process Write
Read Process Write

Read Process Write
Read Process Write

Optimally, we want to have one
CUDA device for one CPU thread.

This assumes that our
programming skill is good and we
are capable to fully occupy a GPU!

Unless the CPU program cannot be
multi-threaded.

18

What is a GPU?

CPU

Nvidia Device
Programming Language:

CUDA

PCI-e

Nvidia Device

GPU

- NVIDIA GeForce GTX 1080

19

What is CUDA?

As described in www.nvidia.com,

• parallel computing architecture

• many computing cores mathematical calculations

• supports OpenCL and DirectX

• supports C and Fortran.

In other words, it is a C/C++ pre-processor and compiler which comes with some libraries.

21

A Hard way to explain the Software operations

This is called one GPU or one “device”.

• 4 clusters of 5 = 20 Stream Multi-processors
(SM or MP)

• 8 x 256KB = 2,048KB of L2 cache

• 8 x 32-bit memory controllers
(i.e. 256 bit wide) for channel management
between L2 cache and device global memory
GDDR. Global memory (GDDR) is off-chip and
not shown here.

Block Diagram of the GP104 chip of GeForce GTX 1090, a 4 cluster card.

= PCI-e to the “host” CPU

22

GP104 Multiprocessor Diagram

Available Cores:
In one Stream Multiprocessor (SM or MP):

• 4 Warps
• Each warp has 4 x 8 = 32 Cores

In one Cluster:
• 5 SM x 4 Warps/SM x 32 Cores/Warps
• = 640 Cores

In one Device:
• 4 Clusters x 640 Cores/Cluster
• = 2560 Cores (or Threads)

Available Memory:
• register file capacity

(16,384x32bit) x 4 = (16Kx4)x4 = 256KB

• 48 KB L1 cache

• 96 KB shared memory

24

CUDA Basics – Write your own kernel function

CPU: C/C++ simple example:

for (int i =0; i < N; i++) { function(i, a, b, c …); }

GPU: corresponding CUDA kernel function:

function<<< Block Dimension, Grid Dimension >>>(a, b, c)
{

//Code for one thread, asynchronous:
int i = (blockIdx.x * blockDim.x) + threadIdx.x;
if (i < N) { …. function(i, a,b,c); }

}

 Row major linear arrangement of blocks of threads.

25

CUDA Basics – Provided kernel functions e.g. FFT

CPU: C/C++ simple example:

:
fftwf_plan d_plan_forward =
fftwf_plan_dft_r2c_1d (myNFFT, d_real, d_complex, FFTW_ESTIMATE);
:
fftwf_execute (d_plan_forward);
:

Corresponding CUDA GPU kernel launches:

:
cufftHandle d_plan_forward = 0;
cufftPlan1d (&d_plan_forward, myNFFT, CUFFT_R2C, N);
:
cufftExecR2C (d_plan_forward, d_real, d_complex);
:

A Batch Option

26

GPU Programming – Only two main ideas are involved

1) Putting serial workloads to the CPU (host) and
parallel workloads to the GPU (device).

Conjugate gradient iterative solver:
Loop (a serial process) in CPU.
FFT, additions and subtractions (parallel data) in GPU.

2) Coalescing data access to avoid memory bandwidth limitations. (To be discussed in the
future.)

27

Results

Current Status and Expectation:

• Similar performance after changing the conjugate gradient from CPU
to GPU. The CPU thread can be freed up for other activities.

• Amazon’s Best CAD$.

• In our tests, the CPU is running in a single core. Two times will roughly
balance the cost only. We hope that the GPU can run ~10 times faster.

Future Work:

• Optimize the conjugate gradient implementation.

• Invert multiple CDPs in parallel.

C$581
Quadro
P2000
1024 cores

C$388
GeForce
GTX 1060
1280 cores

C$1817
Intel
Xeon
W3680
6 cores

28

Conclusion

Converted from CPU to GPU a linearized pre-stack AVO least-squares inversion.

Pros:
Highly parallel and scalable. Suitable for conjugate gradient methods. Work well for a large
number of data samples and number of iterations.

Cons:
Steep learning curve.

Sensitive to hardware setup.
Code changes may easily run --- slower!
Extra attention is needed for performance profiling and tuning.

29

Takeaway – Three steps to deliver.

Three steps to deliver:

1. Profile on CPU, identify and evaluate the performance bottleneck carefully.

2. Code and debug in CUDA environment. Use existing libraries.

3. Analyze and improve core occupancy, memory bandwidth and other GPU resource
usages with tools provided.

30

Takeaway – CUDA Features

The following may interest you:

1. Linear Algebra and Sparse Matrix handling. (cuBLAS and cuSPARSE)

2. Linear Solvers like Cholesky, SVD. Spare and dense matrix. (cuSOLVER)

3. Artificial Intelligent (cuDNN)

4. Shared memory (low latency memory) 
Laplace operator stencils in Finite Difference methods.

5. Texture memory 
trace data interpolation ?

32

Resources

Hardware resources at University of Calgary: barracuda

Source: Wikipedia

Two CUDA enabled graphic cards.

Tesla K10 GK104GL dual Kepler (v3) processors.

Software resources: CUDA API, and YOU to build up
the CREWES library!

	Using GPUs in Pre-stack AVO Inversion �for Performance Improvement
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Pre-stack AVO Inversion
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 21
	Slide Number 22
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 32

