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Consider the discrete full waveform inversion (FWI) problem in frequency domain:

. 1 .
min J(m, u) = ~||Pu—d|jz + pr(m),

s.t. A(m)u = (w?Im+ L)u =g, 0 < a < min(m) < max(m) < b.

(1)

Here,

» uc CNe = U is the wavefield in the earth. m € RV» = M is the physical
parameter which value is between a and b. d € RV is the received data. g € CNe
Is the source term which is known in the problem.

» P is the projection operator, measures the wavefield at the location of receiver.
And A(m) is a numerical Helmholtz operator, here / is the identity matrix and L is
the discrete Laplace operator with proper boundary condition or perfectly matched
layer.

» r(-) is a regularization term which we do not consider in this talk.
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Full Waveform Inversion Problem

The wavefield u can be solved through the Helmholtz equation, we can have the
corresponding reduced problem,

AN

min J(m) = J(m, u(m)) = 5]|PACD(m)q — d3 + pur(AC (m)a).

s.t. 0 < a < min(m) < max(m) < b.

(2)

Since we only have the equality restriction in the full problem (1), we can have the
Lagrangian,

L(m,u,v) = > |[Pu— d[ +vT (A(m)u — q). (3

Here v is the Lagrange multiplier, which is also the solution of adjoint equation in FWI
problem.
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First Order Necessary Optimality Condition

A solution (m, &, v) is a stationary point of equation (3) as,

[ (e
VL(m,a,v)=|Ly| = Am)'v+ P (Pa—d)| — 0. (4)
_Lv_ | A(fﬁ)L_l— q |

Remarks:
1. The Lagrange multiplier exists (proved by the KKT theory).

2. The discrete frequency domain FWI problem has an optimal solution (m, i, v)
which satisfies the first order necessary optimality condition.

N

3. Reduced problem J(m) = L(m, u(m), v), then we have the adjoint method.
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Consider a reduced penalty problem [van Leeuwen and Herrmann, 2015],

. 1 ;A ,
min J(m, u) = 5| Pu— d|}3 + S| A(m)u — ql3. (5)

Remarks:
» As A — oo, the penalty problem (5) will coincide with the constraint problem (1).

» Comparing to the reduced problem (2), problem (5) enlarges the feasible space
from subspace of M to subspace of M x U.

» The problem (5) is similar with the Lagrange function of problem (1). In that
case, we can explain the term v = A(A(m)u — q) as the Lagrange multiplier.

Gradient of the objective function:

el [ A (%) (Am)u - q) ]
V= [J] - [PT(PU<— §)+)AA(m)T(A(m;7“_q) |
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We can solve the reduced penalty problem in an iterative way,

1. Let J, =0, solve uy with an augmented linear system,

pAmTAm), _ M)

2. Fix uy, optimize m with J,,,

=\ (W‘g;)”) (A — ) = (aAg;)“A) "

where v is the Lagrange multiplier.

This method is called waveform reconstruction inversion (WRI) in some literature.
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Theory of Reduced Penalty Problem

Assume (m*, u¥, vF) is a minimizing sequence of reduced problem (2), and

(m*, u¥, v¥) is a minimizing sequence of the penalty problem (5).

Reduced Problem

Recall in the reduced problem, at each iteration we assume ||L,(m*, uX, v¥)||» = 0 and
[L,(m¥, u¥, vk)||2 = 0. The gradient J,,(m*) = Ln(m*, u¥, v¥).

e % i

Theorem 1 (|van Leeuwen and Herrmann, 2015

At each iteration of the reduced penalty method (5), the iterates satisfies

Ly (m*, uk vi)|l2 = 0 and ||L,(m¥, uk, v¥)|l2 = O(A1). Moreover if the reduced
penalty method (5) terminates successfully at m for which ||Lp,(m, dx, vy)||2 < €, then
we have |V L(m, iy, 7|2 < € + O(A(TD).
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Numerical Result

true model

initial model

10 20 0 10
x (km) x (km)

F

WI result WRI result with A =0.1

-

20
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=
N
4
10 20 0 10
x (km) x (km)

Grid size: 401 by 101
99 sources and 100 receivers on the first line.
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* Current Work: Partial Penalty Method
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Suppose the state space can be divided two parts U = U; @& U, we minimize the cost
function in a smaller space M x Us.

One spacial case is U is the data space. In this case, we fix i = (d, uz). And from the
projection operator P : U — U;, we have d = Pil.

Replace u with & in the penalty problem:

. P ST A "
min J(m, @) = 51|Pd — d|3 + S A(m)a - qll3.

Then we have a new problem,

. A . 2 _ A 2
meIBz J(m, uz) = 5 |A(m)d — ql|3 = > |A(m)(d, u2) — ql|3

A

e PG
— SIAmRTRa—ql = 3104 A2) () - alB
2

Here R is a pivoting matrix, (A; A2) = A(m)RT and (j) =1 R,
2

10
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Gradient of the cost function in partial penalty problem (6),

Jun Ard 4+ Ard — g

vs= 2] - [/\ (2Am2) " (Am)a q)l |

To solve the problem (6), we can use an iterative way,

1. Let J,, =0, we can solve uy with

Axup = q — Ard,

then iy, = RT <d>
uz

2. Fix 4y, optimize m with J,,,

11
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Grid size: 101 by 101

101 sources on the second column and 101 receivers on the 100th column.



@ Numerical Example

(2) Partial Penalty System

(3) Difference Between (1) and (2)

-

(1) Solution of A(m0O)u=q.
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(5) Difference Between (1) and (4)

6
15
20 10 20 20 Ed
5 2
40 0 40 40
0
-5
2
60 b 60 60
15 -4
80 80 80
20 %
100 5 100 100 8
20 40 60 80 100




»< 4:
\Qk

Numerical Example

Penalty Method
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Iterate 10 times.
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CPU time for penalty method: 8.505432 s.
CPU time for partial penalty method: 7.5864 s.

2050

2040

2030

2020

2010

2000

20

40

60

80

100

20

Difference

40

60

80

100

14



AVL
A, '1
9

Future Work

Future work:
» Add the penalty parameter \. Consider i = (Auz, u2).

» Enlarge the space Uj, to increase the numerical efficiency and keep the stability at
the same time.

» Analytical results between partial penalty method and reduced method.

» Consider the regularization term.

15
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Thank Youl
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