

Towards continuous geophysical monitoring for CO₂ injection

Marie Macquet and Don Lawton

CREWES Tech talk January 31st 2020

Field Research Station

 \Rightarrow Injection of a small amount of CO₂ (<400/tons per year) at shallow depth (300m) to simulate a leakage

Developed by CMC Research Institutes Inc and University of Calgary

- A site for development and demonstration of MMV technologies for carbon capture and storage (CCS) as well as general containment and conformance monitoring for other applications.
- Undertake controlled CO₂ release at 300 m (Phase 1) & 500 m (Phase 2) depth; up to 400 t/yr.
- Determine CO₂ detection thresholds at shallow to intermediate depths.
- Develop and assess technologies for continuous reservoir, cap rock, overburden, and groundwater monitoring.
- University & industry field training.

Main goal – Early detection of possible leakage

CCS is a safe technology but what if ?

How can we detect possible leakage ?

How fast ?

Active seismic methods – Pro and con

Gordon and Lawton 2018

(Semi) continuous seismic source

Spackman and Lawton 2018

Active seismic surface

and magnetometric resistivity surveys

and cross-well seismic and electromagnetic

And more

Seismic continuous data

Since October 2015 - 7 broadband stations

Since June 2019 - 24 geophones

Since couple of weeks Possibility to recorded continuously on the 24 3C downhole geophones 10 days of data

Seismic continuous data

Downhole data

- to study the *possible microseismicity* linked to CO₂ injection
- to study the possibility of using the *ambient noise correlation method* as a tool for CO₂ injection monitoring

Events detection

A ST	
	HHZ
1 March	
	.HHZ
	.HHZ
GoogleEarth	

South America Earthquake; March 1, 2019

GoogleEarth

물급

	('Origin time: ', '2019-03-01T08:50:42.620000Z, dist	t: 74, depth: 267km, 7.0 mww, BP filter: 0.01-6Hz')
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Marchar watter
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	W/www.www.www.www.www.www.www.www.www.ww
HHZ]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mm. Marine Ma
[.HW004HHZ]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Www.www.www.www.www.www.www.www.www.www
[.HW005HHZ]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WWWWWWWWWWWWWWWWWWW
[.HW006HHZ]	- www.www.www.www.www.www.www.www.www.ww	hpurson have
[.HW007HHZ]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Www.www.
[.HW008HHZ]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.
[.HW009HHZ]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.www.
[.HW010HHZ]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Alberta
.HW011HHZ	~~	
2019-03-01T09:01:48	09:02:03	09:02:18

Red Deer AB, Earthquake; March 4, 2019

MMM MANY MMANY MANY MANY MANY MANY MANY	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
MMM MAN MAN MAN MAN MAN MAN MAN MAN MAN	
MM MAN MM MAN MAN MAN MAN MAN MAN MAN MA	
M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.	
M. M	
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	
Mr MMM Man Man Mar	
MMMM ANN MANNA	
MMMMM monor man	
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	
21118 21118 21118	01122 01124

Principle : reconstruct the Green's function by correlating the continuous ambient noise recorded between two captors.

For tomography

Surface waves

- \Rightarrow dispersion curves
- \Rightarrow inversion
- \Rightarrow elastic models

For monitoring

If the medium changes, the result of the Green's function will change

Monitoring with ambient noise correlation

If the medium changes, the result of the Green's function will change

A -> B

A 🄶 B

MWCS method (or doublet method, *Poupinet* et al., 1984, Clarke et al. 2011)

> Time shift between reference correlation and current correlation

Daily correlations	Ref. correlation
Daily correlations	Ref. correlation
$2016 \cdot 0^{2} \cdot 0^{6}$ $2016 \cdot 0^{8} \cdot 2^{4}$ $2017 \cdot 0^{3} \cdot 1^{2}$ $2017 \cdot 0^{9} \cdot 2^{8}$ $2018 \cdot 0^{4} \cdot 1^{6}$ $2018 \cdot 1^{1} \cdot 0^{2}$ $2019 \cdot 0^{5} \cdot 2^{1}$	0

Velocity variations

- Moving-Window Cross
 Spectrum Analysis, [0.1-1]Hz
 frequency range, from 0.5 to 5s
- good correlation between the smoothed dv/v curve and the average temperature

 CO₂ injection periods seem to correspond to periods of velocity variation decreasing

ERT at the FRS

Permanently installed electrodes :

- 16 in obs#2, between 245 and 320 m depth, 5m spacing
- 112 along the trench, 1.1km, 10m spacing

ERT semi continuous dataset

13

(Very) preliminary results

(Very) preliminary results

Cumulative injection (kg)

Conclusions and future work

Continuous monitoring with ambient noise correlation

Clear effect of ambient temperature, possible effect of CO_{2} injection.

Future work includes:

- Better understand the effect of each variable on the velocity variation
- Add the 24 geophones which are recording since June 2019
- Events detection

Semi-continuous monitoring with ERT

Seems to detect the CO₂ injection.

Future work includes:

- Developing a semi-continuous routine to apply to the raw data to be able to quickly detect any CO2 saturation changes;
- Inverting the dataset to get an electrical resistivity tomography of the subsurface.

Second goal – Monitoring of the plume

Geophysics data => CO_2 saturation and pressure

What is working at the CaMI Field Research Station can work for any reservoir type

CO₂ saturation

Conclusions and future work

Integration of the different geophysical data

Joint inversion to get CO2 saturation and pressure response of the reservoir

Acknowledgments

- CREWES sponsors ;
- CaMi.FRS JIP subscribers ;
- Anna Storke and Mike Kendall
- Dennis Rippe and Cornelia Schmidt-Hattenberger
- CREWES staff and students
- This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund;
- NSERC -grant CRDPJ 461179-13 ;
- Cenovus Energy and Torxen Energy for providing access to the site.

This research was undertaken, in part, thanks to funding from the Canada First Research Excellence Fund

bristol.ac.uk

