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ABSTRACT

In the Canadian Beaufort Sea, high-quality conventional P-wave reflection seismic
data are difficult to obtain because of a severe screening effect of a shallow layer of ice-
bearing permafrost. Multiconverted reflections (PSPPSP) were studied in this thesis
project in order to evaluate images of réﬂections underlying a high-velocity layer. Acoustic
seismic physical modeling and numerical modeling experiments were undertaken for
multiconverted reflection (PSPPSP) recognition and analysis. Both the physical and
numerical modeling results indicate that values of the S-wave velocity in the high-velocity

.layer and of the P-wave velocity in deeper layers are the most important quantities affecting
the multiconverted PSPPSP reflection amplitude. Based on these investigations, two lines
of field data (datasets A and B) from the Canadian Beaufort Sea were processed. From this
field data study, it was concluded that analysis of the multiconverted reflections is very

critical for the data interpretation in this environment, especially for the shallow section.
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Chapter 1: Introduction

1.1 Introduction

In some sedimentary basins of the world, a high-velocity layer (e.g., carbonate,
salt, volcanics, anhydrite or permafrost) occurs at or near the surface. Seismic data
quality is usually degraded by this high-velocity layer due to many factors, such as
energy scattering and reverberation in the high-velocity layer, seismic wave reverberation
in a low-velocity layer which may overlie the high-velocity layer, and weak energy
transmission through the high-velocity layer.

During Pleistocene glacial cycles, sea level in the Canadian Beaufort Sea was up
to 100 m below present sea level (Poley et al., 1989). Delta plain deposits were thus
exposed to Arctic climatic conditions. As a result, sediments on the Canadian Beaufort
Sea shelf became ice-bonded to a depth varying from 10 m to 600 m (Poley et al., 1989).
The P-wave velocity in the ice-bearing permafrost can be twice as much as that in the
surrounding sediments. Seismic data recorded in areas affected by ice-bearing permafrost
are generally of poor quality. Poor penetration (between the high-velocity ice-bearing
permafrost and the low-velocity surrounding sediments) and reverberation (between the
top and the bottom of the ice-bearing permafrost layers) are two factors causing poor data
quality (Poley et al., 1989).

In some areas of the Canadian Beaufort Sea, several ice-bearing permafrost layers
overlie one another (Poley and Lawton, 1991). Due to the high impedance contrast at the
top of the shallowest layer of ice-bearing permafrost, it is not easy to image the bottom of
this layer, nor to image the top and bottom of the second (and deeper) layers of ice-
bearing permafrost. It is desirable to obtain improved reflections from the permafrost
sequence because the distribution of permafrost has a strong influence on gravel mining

and drilling in this area (Poley, 1987; Poley et al., 1989).



1.2 Imaging methods over high-velocity surface layer

Young and Lucas (1988) suggested that integrated geophysical techniques can be
used to determine the basement horizon and the major structural trends in some areas
with a high-velocity surface layer. These integrated techniques mainly include gravity,
magnetolluric, aeromagnetic, and seismic methods. Fuller et al. (1988) showed that it is
possible to reject linear reverberations by the application of a velocity filter. However,
processing cannot solve the fundamental problem of the field data quality by itself.
Meaningful data must be recorded if a meaningful result is to be obtained (Sheriff, 1991).

Since 1983, much attention has been paid to seismic data acquisition in areas with
a high-velocity near-surface layer. The suggested solutions to the problem can be
summarized as: the seismic array approach (Embree and Roche, 1983; Meister et al.,
1989; Pritchett, 1991); receiver patches (Pritchett, 1991); wide-aperture seismic (Jarchow
et al., 1991); stack array (Anstey, 1986a; Anstey, 1986b; Pritchett, 1991), and converted-
wave and shear-wave programs (Purnell, 1992; Pritchett, 1991). These last workers
suggested that better energy transmission with the S-waves in the high-velocity layer and
P-waves elsewhere could be observed. Fix et al. (1983) showed some successful
examples of using S-waves to get interpretable reflection data in areas with a high-

velocity near-surface layer.

1.3 Concept of multiconverted reflections

This thesis discusses the acquisition, processing and interpretation of seismic data
in a marine environment with a high-velocity permafrost layer within the top 60 m to 300
m below the sea floor. A simplified model of this environment is shown in Figure 1.1, in
which layers 1 and 3 are water layers representing low-velocity unconsolidated
sediments, and layers 2 and 4 are composed of high-velocity material representing
permafrost layers. Rays 1, 2 and 3 are single-mode reflections, i.e., no mode conversion

occurs at any part along the raypaths. Ray 1 (PP) is the P-P reflection from the top of



3
layer 2 (the first ice-bearing permafrost layer); ray 2 (PPPP) is the P-P reflection from the

top of layer 3; and ray 3 (PPPPPP) is the P-P reflection from the top of layer 4 (the
second ice-bearing permafrost layer). Due to the fact that the P-wave velocities of the
ice-bonded layers (layers 2 and 4) are about twice as much as those of layers 1 and 3, the
absolute acoustic impedance difference between layer 1 and layer 2 is large. Therefore, a
large amount of incident energy is reflected back at the top of the first ice-bearing
permafrost layer (layer 2). This is one reason why reflections from the bottom of the first
ice-bearing permafrost layer (top of layer 3), as well as from deeper reflectors, are not as
strong as those from the top of layer 2.

At large offsets, efficient conversion to and transmission of S-wave energy
through layer 2 occurs at the top of layer 2. This results in converted-mode energy in
layer 2. The converted energy is reflected from the bottom of the first ice-bearing

permafrost layer. This reflected S-mode energy is converted back to P-mode wave at the

v/ v/ v/
1 2 13 4 5 6
Pl IP\P P |P P P P
Layer 1
7 7
P

S

Layer 2

Layer 3

Layer 4

FIG. 1.1. Schematic diagram showing nonconverted and multiconverted reflections in
marine environments. Layers 1 and 3 are water layers; layers 2 and 4 are high-
velocity layers, such as the ice-bearing permafrost in Canadian Beaufort Sea.

* = source; V = receiver; P = P-wave mode; S = S-wave mode.



4
interface between layer 1 and layer 2, resulting in a PSSP multiconverted reflection (ray 4

in Figure 1.1).

Ray 6 is another multiconverted reflection in this environment. The S-wave in
layer 2 can be converted back to a P-wave upon transmission into layer 3. The P-mode
energy is reflected from the top of the underlying substrate (layer 4). Double conversion
can also occur for the upgoing wave, resulting in the PSPPSP arrival (ray 6) in Figure 1.1.

Other two kinds of multiconverted reflections (PSPP and PPSP, ray 5) are also

shown in Figure 1.1 but are not discussed in details in this thesis.

1.4 Thesis objectives and structure

Purnell et al. (1990) demonstrated the potential of salt imaging in the Gulf Coast
area offshore Louisiana by using the multiconverted PSSP wave. They found the S-wave
velocity in salt to be a fairly close match to the P-wave velocity of the surrounding
sediments and good energy coupling between the S-wave in salt and P-wave elsewhere
was observed. Based on this work (Purnell et al., 1990), it was proposed that better
penetration may be observed between S-waves in the ice-bearing permafrost and P-waves
elsewhere in the Canadian Beaufort Sea. The P-wave velocity of the ice-bearing
permafrost layer is about as twice as much as that in the surrounding sediments.
Therefore, good energy coupling between the S-wave in permafrost and the P-wave
elsewhere could be expected (Chen and Lawton, 1992a and 1992b).

This thesis reports on multiconverted reflection modeling and processing of field
data from the Canadian Beaufort Sea. The first purpose of this study has been to evaluate
images of reflections underlying a high-velocity layer using multiconverted reflections
(PSSP and PSPPSP). The second goal has been to undertake AVO (amplitude-versus-
offset) analysis for multiconverted reflections (PSPPSP) in marine environments with the
ice-bearing permafrost layers. In order to fulfill this study objective, seismic modeling

(both physical and numerical) and processing of seismic field data were undertaken.
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Physical and numerical modeling results are described in chapters 2 and 3,

respectively. The numerical modeling results were used to evaluate and confirm the -
results from physical modeling in terms of event traveltimes and amplitudes. An
advantage of the numerical modeling is that the physical parameters can be changed
easily. Chapter 4 discusses the processing procedure and results for multifold physical
modeling data. Chapter 5 includes mostly data processing of the field data, with a focus
on both the shallow reflections (dataset A: high-resolution site survey data) and the deep
reflections (dataset B: conventional exploration data). Conclusions and recommendations

from this study are summarized in chapter 6.

1.5 Review of AVO analysis

L3.1 AVO theory

Consider the general case of a seismic plane wave which impinges non-normally
upon a flat interface separating two half-spaces (Figure 1.2). In Figure 1.2,
Py, PR, Sg, Pr, 51 refer to incident P-wave, reflected P-wave, reflected S-wave, transmitted
P-wave and transmitted S-wave, respectively. 6; and 6, are angles of incidence of the
reflected and transmitted P-waves. ¢ and ¢, refer to angles of the reflected and
transmitted S-waves. Vy;, Vi, p; are P-wave velocity, S-wave velocity and density of

layer i(i = 1, 2), respectively. Vy;, Vj; are related by Snell's law:

Voi V.
pi__ _Vsi 1.1
sin@;  sing;’ (1.1
Snell's law for Figure 1.2 can be expressed as:
Vo1 __Va _ Vp2 _ Vs (1.2)

sinB, ~ sing, sin6,  singy’
since the incident and the reflected P-wave velocities are the same, and therefore, the

angles of the incidence and the reflection P-waves are the same (6, in Figure 1.2).
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Assuming conservation of energy, modified by Snell's law and the boundary conditions,

the standard Zoeppritz equations can be obtained (Aki and Richards, 1980). Figure 1.3
shows an example of Zoeppritz plots of a reflected P-wave, reflected S-wave, transmitted
P-wave and transmitted S-wave for a model with two half-spaces. Table 1.1 lists the

physical parameters for the model.

Vo1, Vs1, p1 Half Space 1

Vp2, Vs2, p2 Half Space 2

FIG 1.2. Schematic diagram showing reflection and transmission of a plane wave
incident at the interface between two horizontal layers. Py, PR, Sg, Pr, ST=
incident P-wave, reflected P-wave, reflected S-wave, transmitted P-wave and

transmitted S-wave, respectively; 8, 8, = Angles of the incident (reflected)

and transmitted P-waves; ¢;, ¢ = Angles of the reflected and transmitted
S-waves; Vp;, Vii, pi = P-wave velocity, S-wave velocity and density of
layer i(i =1, 2).
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FIG 1.3. Zoeppritz amplitude plots for reflected P-wave, transmitted P-wave and
transmitted S-wave. Amplitude refers to the absolute value of the displacement
reflection coefficient. Incidence angle refers to the angle of P-wave incidence
upon the interface between two half-spaces.

Table 1.1 Physical parameters for Figure 1.3

V, (m/s) V, (m/s) p (kg/m3)
Half-space 1 1486 0 1000
Half-space 2 2740 1385 1200

In Figure 1.3, incidence angle refers to the angle of P-wave incidence upon the
interface between two half-spaces and amplitude refers to the absolute value of the
displacement reflection coefficient. The physical parameters of half-spaces 1 and 2 are
the same as those of water and Plexiglas, respectively. That is, Figure 1.3 shows the
Zoeppritz plots for a model with water overlying Plexiglas. This kind of model will be

discussed further in chapters 2 and 3.
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In Figure 1.3, the critical angle for P-waves is 31.5°. There is not much amplitude

variation with change of incidence angle for either the reflected or the transmitted P-
waves before the critical angle. However, the amplitude of the transmitted S-wave
increases with increasing incidence angle. This is because there are no transmitted S-
waves at normal incidence. Beyond the critical angle, most incident P-wave energy is
converted to transmitted S-wave. The transmitted S-wave energy was recorded as
multiconverted reflections (PSSP and PSPPSP) in physical and numerical modeling

experiments (chapters 2 and 3).

1 P-wave AV di

As early as 1955, Koefoed (1955) calculated a reflection coefficient as a function
of incidence angle, and noted the importance of Poisson's ratio (or, equivalently, V,/V;)
on AVO anomalies. Koefoed concluded that a positive reflection coefficient at normal
incidence and a positive Poisson's ratio change causes reflection amplitude to increase
with increasing offset. Conversely, a positive reflection coefficient at normal incidence
and a negative Poisson's ratio change cause reflection amplitude to decrease with
increasing offset.

Ostrander (1984) used a three-layer gas-sand model to illustrate AVO effects.
The gas sands that produce the amplitude anomalies have lower impedance than the
encasing shales and have reflections that increase in magnitude with offset. Ostrander
concluded that the change in Poisson's ratio has a strong influence on changes in
reflection coefficient as a function of angle of incidence, and suggested that the analysis
of seismic reflection amplitude versus shot-to-group offset can in many cases distinguish
between gas-related amplitude anomalies and other types of amplitude anomalies.
Rutherford and Williams (1989) further discussed three classes of gas-sand reflectors in
terms of reflection coefficients at normal incidence at the top of the gas sand: class 1 gas

sands have higher impedance than the encasing sediments, class 2 have the same






