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ABSTRACT

Nonstationary deconvolution operators can be designed directly from the seismic

data and applied to the data using nonstationary filtering techniques. Such operators can

be continuously time-variant and have any desired amplitude or phase spectra. The

operator design uses time-variant Fourier spectra measured directly from the seismic

data, which are smoothed, inverted and combined with a minimum-phase spectrum, if

desired. This method of nonstationary deconvolution (NSD) approximately corrects the

seismic data for the effects of anelastic attenuation, frequency dispersion, and source

signature. The result is a one-dimensional nonstationary operation that extends the range

of stationary deconvolution to a type of data-driven inverse-Q filter.

NSD has been applied to real seismic data and the results have been compared to

results from Wiener deconvolution and inverse-Q filtering. The datasets deconvolved

with NSD show improved vertical resolution and improved reflection character as

compared to results from the other methods.
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STRUCTURE OF THESIS

This thesis begins with a review of the fundamental concepts required to

understand why a technique such as nonstationary deconvolution is needed and how it

works. The concepts of attenuation, quality factor Q, nonstationarity, and digital

minimum phase are reviewed. Two methods similar to nonstationary deconvolution,

stationary deconvolution and inverse-Q filtering, are also introduced at this stage and

their strengths and weaknesses are described. Next, two specific techniques that are

employed in the NSD algorithm are described: nonstationary filtering and time-variant

spectra. There are several alternatives to time-variant spectra, such as instantaneous

frequency, the Wigner distribution and the wavelet transform, and these are discussed.

After this background has been provided nonstationary deconvolution can be

introduced. The first stage in the development of nonstationary deconvolution is to

present a nonstationary spectral model. From this spectral model the algorithm of NSD is

developed and explained. The NSD algorithm has two extensions that have been

designed to increase efficiency and improve the final result. These different extensions of

NSD are described. Next, NSD is illustrated on synthetic examples and some of the

parameters used in the algorithm are tested. Then NSD is tested on real data examples

and compared to synthetic seismograms created from well log data. Lastly, conclusions

are drawn and future work described.



CHAPTER 1: INTRODUCTION

1.1 Overview of the introduction

The purpose of this introduction is to provide a review of fundamental concepts

associated with nonstationary deconvolution, also called NSD. The concepts of anelastic

attenuation, Q, dispersion, additional forms of attenuation, nonstationarity, stationary

convolutional model, multiples, spectral ratio method of Q estimation, surface consistent

model, minimum-phase, digital minimum-phase estimation, stationary deconvolution and

inverse-Q filtering will be presented and described in this chapter.

1.2 Anelastic attenuation

In this section, anelastic attenuation will be defined and a description of a wave

travelling in an anelastic medium will be given. Two parameters, Q and a, describing

anelastic attenuation will be defined and the relationship between them will be derived.

In addition, there will be a discussion on how Q varies with frequency and how time and

frequency losses are related. Finally, a discussion on minimum-phase dispersion is

presented.

As a wave propagates through an anelastic medium, some of its energy becomes

converted to heat by the internal friction of the medium and is irreversibly lost. This

process of energy loss is called absorption and it is an intrinsic property of the medium in

which the wave is travelling. Absorption, also called intrinsic attenuation or internal



friction, refers to a variety of physical processes. Two examples of these processes are

shear heating at grain boundaries or movements along mineral dislocations (Waters,

1992). Absorption is commonly described by the coefficient of attenuation, a, or the

quality factor, Q.

A plane wave propagating through a 1-D homogenous medium can be described

as

) , (1.1)

where k is wavenumber and f is frequency. Attenuation can be introduced into this

model by allowing the frequency or wavenumber to be complex. Allowing the

wavenumber to be complex results in

A(x,t) = A0e-axe27t i (kRX- f t ), (1.2)

where a is the attenuation coefficient and kR is the real part of the complex wavenumber.

The units of the attenuation are the same as that of the wavenumber, m"1, when the

wavenumber is allowed to be complex.

Alternately, attenuation can be described by the dimensionless value, Q. There

are several different equations used to describe Q (see Johnston and Toksov, 1981, for a

description) however the most common is that Q is the ratio of the peak stored energy in

a cycle to the dissipated energy per cycle



" -AE (1.3)

where E is the peak stored elastic energy and -AE is the energy loss per cycle of the

wave.

The following derivation shows how Q is related to the attenuation coefficient. A

point, P, has position (X1,11) on a travelling wave,

P^Y t ̂  A p.-axip27t i(kRxi- f ti> (\ A\l ^ A i , l i y — jTV C C . ^l .T-^

A point, P(x2,12), occurs at the same phase, one cycle later than P(X1^1). The period of

the wave is given by T and x2=x,+vT and t2=t,+T, where v is the phase velocity. The

point P(x2, t2) can be written as

P(x2,t2)-A0e-a(x '+vT)e27t i (kR(x '+vT)- f ( t '+T)). (1.5)

Since the phases of P(X1,11) and P(x2, t2) are equal

k R x 1 - f t = k R ( x 1 + v T ) - f ( t 1 + T ) . (1.6)

Simplifying Equation (1.6) leads to

kRvT-fT = 0, (1.7)

so that



(1.8)
'R

P(x2,12) can be expressed in terms of P(X,, t,):

Pf x t "i — P(x t V"avT n Q^r V A 2 ' L 2 / ~ r V A l ' L 1 / C ' \ l - y )

Energy is proportional to the square of the physical amplitude of the wave:

E(X1 ,11)-P(X1 , t , )2 . (1.10)

E ( X 2 , t 2 ) o c p ( x 2 , t 2 ) 2 . (1.11)

Substituting Equations (1.10) and (1.11) into Equation (1.3) yields

,_______271
E(x, , t 1 ) -E(x 2 , t 2 ) P(X1 ,11^-P(X1 ,
——-.^1,..,—— = ————7—'-- =—=^_. (1.12)

^- •^i ' x 1^' N ^^' \ 2 r>/._ * \2^-2avT i ^-2avT v '

The exponential in Equation (1.12) can be expanded with a Taylor series

x2

(ex = 1 + x + — + ....) approximation to give

Q« ——. (1.13)
avT

Replacing period, T, with inverse of frequency in Equation (1.13) and rearranging gives

an approximate relationship between the coefficient of attenuation and Q:
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a = —. (1.14)
vQ

It is uncertain how Q varies with frequency and this relationship cannot be

determined from Equation (1.14) because the attenuation coefficient may also be

dependent on frequency. Ricker (1977) postulates that Q is proportional to the inverse of

frequency. The constant Q theory (Kjartansson, 1979) postulates that Q is independent of

frequency. Futterman (1962) proposes that Q is constant over the range of seismic

frequencies. This theory is often called the nearly constant Q theory because of the

limited frequency range. Knopoff (1964) concluded that Q is approximately independent

of frequency for homogenous solids. For the purposes of this work, a frequency

independent Q model has been chosen. This seems reasonable if NSD is applied to data

from solid media within the band of seismic frequencies.

The essence of constant Q theory is that anelastic losses are time and frequency

dependent and therefore spectral attenuation and amplitude (time-domain) decay are two

manifestations of the same problem. The joint time-frequency dependence of the

attenuation is obvious when Equation (1.14) is substituted into Equation (1.2). The

exponential describing attenuation in Equation (1.2) becomes exp(-7rfV-1Q-1X). It can

be seen from this exponential that attenuation depends on frequency, f, and traveltime

(x/v). This joint dependence means that absorption causes a seismic pulse to broaden and

decrease in amplitude in the time domain while losing spectral bandwidth in the



frequency domain. Some typical values of Q for P waves (intrinsic attenuation), taken

from Waters (1992) are shown in Table 1.1.

Table 1.1: Typical Q values for P waves in different rock types

rock type

basalt
diorite
granite

marble
quartzite
slate

dolomite
limestone
chalk
oolitic limestone
shelly limestone

Solenhofen sandstone
Amherst sandstone
Berea sandstone
Homewood sandstone
Old red sandstone
Pierre shale
Sylvan shale

Q

561
179
311

547
392
219

192
203
136
46
68

679
24

130
69
93
17
72

Absorption is necessarily accompanied by minimum-phase dispersion in a

linear, causal medium (Futterman, 1962). For a definition of minimum phase see Section

1.8.1. Dispersion is the property that different frequency components travel at different

velocities, called phase velocities. This means that Equation (1.1) is actually incomplete.

An additional term, (|)(f), representing phase associated with absorption must be added to

the phase of the wave to have a linear, causal physical theory. Solving Equation (1.8) for



wavenumber, substituting it into Equation (1.2), rearranging and adding a phase term,

<t>(f), associated with minimum-phase absorption gives the following equation

-i2jrf(t—H
(1.15)

where (j)(f) is given by (Kjartansson, 1979)

<Kf) = —In
TlQ (1.16)

Phase velocity can be inferred from the phase of the wave by equating a wave's phase to

zero and solving for velocity (x/t)

X
t + — •

V
(1.17)

Substitute ())(f) from Equation (1.16) into Equation (1.17)

x t ,t — + — In
V TlQ

This yields the dispersion relation (Aki and Richards, 1980)

(1.18)

f (1.19)

where fo is an arbitrary reference frequency and v(f0) is the phase velocity associated with

the reference frequency.



1.3 Additional attenuative mechanisms

In practice it can be difficult to isolate the effects of anelastic attenuation from the

effects of other attenuative mechanisms. Geometrical spreading (spherical divergence),

transmission loss, mode conversions, intrabed multiples, refractions, and scattering of

acoustic energy all contribute to the degradation of seismic reflections. Each of these

attenuative mechanisms will be briefly explained and it will be stated if the mechanism is

dependent on time or frequency or both. A relationship will be given between the Q of

intrinsic attenuation and other time and frequency-dependent attenuative mechanisms.

Amplitude decay due to geometrical spreading results from the conservation of

energy. In a homogenous medium the total amount of energy in an expanding spherical

wavefront at any given time must be constant. Since the wavefront is growing

continually and is spread over the surface area of 4TiR2, the energy per unit area (a

function of the square of the amplitude) must decrease and the wave amplitude decays as

1/R, where R is the radius of curvature of the wavefront (Sheriff and Geldart, 1995).

Losses due to spherical divergence are dependent on traveltime and not on frequency.

Another attenuative mechanism, transmission loss, occurs because some of the

energy from a downward-travelling wave is transmitted at a layer interface. Thus energy

available to illuminate deeper targets decreases with each interface transmission. These

losses can be large (Schoenberger and Levin, 1974). Transmission losses are dependent

on time and not frequency.



Mode conversions cause attenuation. Seismic energy is continually being

converted between P and S waves at impedance contrasts. For example, an incident P

wave will be reflected at an interface as a P and S wave and transmitted as a P and S

wave. If an S or P wave arrives at a geophone that records only the vertical component of

ground motion, it will generally not be recorded fully (unless the P-wave is travelling

vertically). Some of the information about the wave will be lost. In addition, S waves are

more attenuated than P waves because anelastic attenuation results partly from shear

movement along grain boundaries (Lay and Wallace, 1995). Therefore an S wave will

have a lower frequency content than a P wave arriving at the same time. If the S wave

energy leaks onto a P wave dataset, the low frequency content of the S wave will

contribute to the low frequencies of the dataset. Attenuation due to mode conversions

can be classified as time dependent attenuation, although the topic is well outside the

scope of this thesis.

Intrabed multiples are a persistent form of attenuation. Multiples are events that

have undergone more than one reflection (Sheriff and Geldart, 1995). Multiples often

interfere destructively with primary energy and cause signal degradation through

incoherent superposition of seismic events. Losses due to intrabed multiples are time and

frequency dependent for two reasons. Since Q generally increases with depth, multiples

are expected to experience more attenuation than primary reflections possessing the same

traveltime (Trorey, 1962). Therefore if intrabed multiples interfere with primary

reflections they boost the low frequencies of the primary reflections (Schoenberger and
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Levin, 1974). In addition, ghosts are shallow multiples in the near surface. They follow

the source waveform closely and have a reversed polarity. The frequency spectrum of a

ghost multiple contains periodic notches (Hatton, Worthington, and Makin, 1986). In a

superposition of many ghost multiples the notches degrade the spectrum of the primary

reflectors.

Seismic waves reflected at 90 degrees from the normal to the interface are called

refracted waves (Sheriff and Geldart, 1995). Refracted waves travel along an interface.

Energy is not transmitted and therefore not available to provide deeper information about

the subsurface. Losses due to refraction are dependent on the incident angle of the wave

and the impedance of the medium on either side of the interface and not on time or

frequency.

Scattering is another type of seismic attenuation. Seismic waves are scattered by

small-scale heterogeneities into a sequence of arrivals that distorts the primary wavefield

(Lay and Wallace, 1995). Scattering is frequency dependent and high frequencies are

selectively attenuated through incoherent superposition.

Some of the aforementioned attenuative mechanisms can be collectively referred

to as stratigraphic filtering (Schoenberger and Levin, 1974). Stratigraphic filtering is

attenuation due to stratigraphic layering and includes transmission losses, intrabed

multiples and mode conversions.
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Interference effects such as intrabed multiples, scattering and mode conversions

are dependent on both time and frequency as explained above. Although the physical

mechanism of interference differs strongly from anelastic attenuation, their effects on

seismic data can be difficult to distinguish. A measurement of Q cannot separate the

effects of interference attenuation from the effects of absorption, and therefore the

measurement of Q is often called the effective Q. The effective Q, Qeff, is composed of

both the anelastic absorption Q, Q1, and the apparent attenuation Q, Qapp, (Tonn, 1991)

1 _ 1 1
Q^~Q^+Q~ d-20)

The intrinsic attenuation, Q1, is minimum-phase as discussed in Section 1.2, however the

apparent attenuation, Qapp is constrained in the same manner.

1.4 Nonstationarity

In this section, the terms nonstationary and nonstationary convolutional processes

are defined. "Nonstationary" is a general term used to describe a property that is variant

with time. In contrast, stationary refers to a property that is time invariant. In practical

applications, the term nonstationary is meaningful only when used in reference to a time

scale. For example a time series of reflection coefficients fluctuates randomly

corresponding to geology. On a small scale, these fluctuations of the reflection

coefficients could be described as nonstationary, however reflectivity may be described

as stationary because the large scale averages do not systematically change. The term
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nonstationary can be used to describe a property that is time-variant and in the context of

this thesis, the two words are interchangeable.

Attenuation based on constant Q model is a nonstationary convolutional process

(Margrave, 1998). Nonstationary convolutional processes are filtering processes that

depend on both time and frequency. A constant Q filter superimposed with a source

waveform can be applied through nonstationary convolution to a series of reflectivity

coefficients. Nonstationary convolution is described more thoroughly in Chapter 2.

1.5 The stationary convolutional model and source signature

The convolutional model is a widely accepted model upon which many

deconvolution algorithms are based. First, the stationary convolutional model is

described in both the time and frequency domain. Then the goal of a deconvolution

process is briefly discussed in the context of the stationary convolutional model. Next,

the inadequacy of convolutional model in modeling nonstationary effects, such as

nonstationary multiples is mentioned, with a discussion of how nonstationary multiples

could arise.

The convolutional model, in its simplest terms, states that a seismic trace is a

convolution of the source waveform and its multiple train with the earth's reflectivity.

Each layer boundary is superimposed with a scaled version of the source waveform and

its associated multiples. A l -D seismic trace, s(t), is modeled as (Sheriff and Geldart,

1995)
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s(t) = r ( t )*m(t )*w( t )>

where r(t) is the reflectivity of the earth, m(t) is multiples, w(t) is the embedded wavelet

and * denotes convolution. The reflectivity is a function of depth in the earth; however it

can be converted to time if the velocity of the wave is known, such as through a sonic

log. In the frequency domain, convolution becomes multiplication (the convolution

theorem (Karl, 1989)) and Equation (1.21) becomes

S(f)=R(f)M(f)W(f), (1.22)

where R(f) is the spectrum of the earth's reflectivity, M(f) is the spectrum of the multiple

content of the seismic trace and W(f) is the spectrum of the source signature. Figure 1.1

is a diagram showing how an impulse response is created by convolution of a reflectivity

series with an impulse and its multiple train. In this example there is only one multiple,

of reversed polarity, after the primary reflection. The impulse response is the response of

a system when the input is a unit impulse (Sheriff and Geldart, 1995).
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Figure 1.1: An illustration of the convolutional model. The impulse response (upper left)

is a result of the convolution of the earth's reflectivity series with multiple effects. This

impulse response is then convolved with a wavelet to produce a seismic trace.

From Equation (1.21) and Figure 1.1 it can be seen that the source signature

(wavelet) obscures the reflection coefficients. It is desirable to collapse the source

waveform and multiples so the layer boundaries can be seen more clearly and an estimate

of the reflectivity can be recovered. Removal of the source signature increases the

vertical resolution of the seismic data. This procedure is called deconvolution.
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The convolutional model is inadequate to describe nonstationary effects in

seismic data. This can be seen as Equations (1.21) and (1.22) are dependent on only time

or frequency, and not both. One nonstationary effect often contained in seismic data is

nonstationary multiples. Schoenberger and Houston (1998) define a multiple as stationary

if all primaries generate multiples with fixed delay. A multiple associated with a deep

primary reflector at moderate offsets will be nearly vertical and so will its primary.

Multiples at large offsets and shallow reflectors have a travelpath more vertical than the

travel path of the primary. Its separation time from the shallow primary will be less than

the separation time of the deep primary reflector and it's multiple. If a multiple occurs

above the zone of deconvolution operator design the convolutional model can still be

used to model the seismic trace by modifying the input wavelet to include the multiple

effects (Waters, 1992). However, if the multiples occur in the middle of the zone of

operator design, the convolutional model is no longer applicable because the effective

wavelet changes with time.

1.6 Spectral ratio method of Q estimation

NSD and inverse-Q filters both require an estimate of Q. The spectral ratio

method is the most common method of Q estimation. In this method, Q is estimated from

the ratio of the power spectra of a wave at two different times (White, 1992). This

method is unable to distinguish apparent attenuation from intrinsic attenuation, as

discussed in Section 1.3. First the spectral ratio method is described, followed by a

description of how reliable estimates of Q based on this method can be.
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The amplitude spectrum of a pulse experiencing Q attenuation is given by

I A ( t , f ) H A 0 ( f ) l e -left/Q (1.23)

where t is the traveltime of the pulse, A0(O is the amplitude spectrum of the source

signature of the pulse and IA(t,f)l is the attenuated amplitude spectrum of the pulse at

some time t. Using the convolutional model and ignoring multiple effects, the power

spectrum of the seismic data, IS(t,f)l2, is related to the power spectrum of the reflectivity,

\~oft m21™IR(O)I2 by

I S ( t , f ) l 2 = I A ( t , f ) l 2 I R ( t , f ) l 2 . (1.24)

Equation (1.23) at some time, t2, is divided by the same equation at an earlier time,

A(t 2 , f ) I _ - jrf( t2- t , ) /Q
— C

*) ' (1.25)

Equation (1.24) at some time, t2, is also divided by the same equation at an earlier time, I1,

and then the natural logarithm is taken. It is assumed that the spectral coloring of the

reflectivity does not change or has been compensated for (White, 1992).

In I S ( I 2 , f ) = 21n A(t 2 , f )
A(t , , f ) (1.26)

Substituting Equation (1.25) into Equation (1.26) to obtain
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Equation (1.27) is the equation of a straight line. Q is calculated from the slope of the

least squares regression against frequency of the spectral ratio.

The spectral ratio method of estimating Q is well known and regarded as being

optimal if true amplitudes are not available (Tonn, 1991). The estimates of Q determined

from the spectral ratio method are regarded as reliable provided the data is noise-free,

however these estimates may not be satisfactory in the presence of noise (Tonn, 1991).

The estimates are improved if the time separation between samples is large, if a large

bandwidth is used and if the value of Q is small (White, 1992). White (1992) suggests

that it is unreasonable to expect a reliable estimate of Q over depth intervals as short as

most reservoir intervals.

1.7 Surface consistent model

Often the earth's effects in a seismogram can be broken down into two categories:

near surface effects and subsurface effects. First, near surface effects and subsurface

effects are described. This is followed by a discussion of how Q attenuation is classified

in this model.

The distinction between near surface and subsurface is not always clear, and is

usually described as the base of the weathering layer. The near surface effects are those

effects which depend only on source and receiver position. This includes source
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signature, static corrections, surface waves, source ghosts, receiver arrays, etc.

Subsurface effects depend on midpoint and offset and include Q attenuation, reflectivity,

residual moveout, spherical divergence and most classes of multiples.

Q effects are usually considered midpoint consistent and not as near surface

effects, even though the near surface is highly attenuative. This distinction occurs for

two main reasons. The first reason is related to the relatively shallow depth of the near

surface layer as compared to the depth of the target area. The near surface is not very

thick, perhaps on the order of 10's of meters. Therefore, the near surface is only

represented by a few samples on a seismic trace. It is difficult to measure and correct for

attenuation based on these small numbers of samples.

The second reason Q effects are not considered for the near surface is because

near surface absorption can be considered stationary. Near surface absorption changes

the shape of the wavelet before the zone of interest, and so near surface Q effects can be

considered effectively as part of the source signature.

The surface consistent approach can be very powerful. It is used in amplitude

analysis, deconvolution and residual statics estimation. In addition it takes advantage of

the redundancy of seismic data in common midpoint, source, and receiver gathers to

reduce noise (Levin, 1989).
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1.8 Minimum phase

Like many other deconvolution methods, it is assumed in NSD that the wavelet

embedded in the seismogram is minimum phase. The minimum-phase wavelet is

generated through physical means (Futterman, 1962) and during processing a digital

operator is designed to remove it. This assumption of minimum phase and subsequent

digital estimation of the phase limits the procedure, and the phase cannot be perfectly

removed from the input data. This section begins with a definition of minimum phase

and the minimum-phase assumption. Next, digital minimum phase estimation as

computed from the Hilbert transform is described. Finally the problems associated with

estimating a minimum-phase spectrum using a digital Hilbert transform are discussed.

1.8.1 Definition of minimum phase

A minimum-phase wavelet can be defined as a stable and causal wavelet with a

stable, causal inverse (Eisner, 1984). In the time domain a minimum-phase pulse has

energy arriving earlier than all other causal pulses, giving it a front-loaded appearance.

This property of a minimum-phase pulse having the least energy delay is referred to as

Robinson's energy delay theorem (Robinson, 1966). As a corollary, the minimum-phase

spectrum can be uniquely determined for a given amplitude spectrum (Eisner, 1984).

1.8.2 The minimum-phase assumption

It is commonly assumed that the source signature and earth filter (earth effects,

such as absorption and nonstationary multiples, can be regarded as a filter which acts on
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seismic waves) are minimum phase. If these assumptions hold, then the convolutional

model suggests that the wavelet recorded at the receivers is also minimum phase because

convolution of minimum-phase components results in a minimum-phase output.

However, seismic data is digitized before recording and this presents

complications in the minimum-phase assumption and estimation as explained more fully

in Section 1.8.4. The sample rate chosen for digitization is very important because it

determines the upper frequency limit of the digitized signal. The highest frequency that

the digitized signal can properly describe is called the Nyquist frequency, fNyq, and it is

related to the sample interval by

(1.28)
2At'

where At is the time sample interval. If the data is sampled too coarsely, high frequencies

are folded back onto the spectrum and are manifested as lower frequencies. This

phenomenon is called aliasing (Karl, 1989). By definition, a minimum-phase signal

must have an inverse, therefore it must be nonzero at all frequencies. This condition

ensures that a digitized minimum-phase signal will always contain frequencies above the

Nyquist frequency and aliasing will occur. Conversely, a bandlimited signal can never be

minimum-phase.

The assumption that the wavelet in the recorded seismic section is minimum

phase is controversial. Ziolkowski (1991) argues that most sources do not produce a
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minimum-phase source wavelet, although he concedes that a dynamite source on land

may produce such a wavelet. He argues that because the source waveform is not

necessarily minimum-phase then creating a minimum-phase spectrum from the amplitude

spectrum of a wavelet with a method such as the Hilbert transform (described in Section

1.8.3) is purely a mathematical convenience. Others dispute this opinion. Hargreaves

(1992) states that an air-gun array signature is minimum-phase and its phase spectrum

can be derived from the Hilbert transform and Robinson (1966) says that minimum-delay

pulse trains can be expected in a layered earth.

1.8.3 Estimation of minimum-phase spectrum

The minimum-phase spectrum of a signal can be estimated with a Hilbert

transform, H. The minimum-phase spectrum, (])(f), corresponding to a specific amplitude

spectrum, A(f), is determined by (Karl, 1989)

<Kf)=H[ln(A(f))], (1.29)

or more explicitly:

= lT ln(A(fl))df.n f - d-30)

Equation (1.30) is equivalent to a convolution (represented by *) of the natural logarithm

of the amplitude spectrum with the Hilbert kernel, (TDf)"1, shown in Figure 1.2
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= ln(A(f))* —. (1.31)
Ttf

It can be seen from Equations (1.30) and (1.31) that the low values of the amplitude

spectrum are very significant in the Hilbert integral (the logarithm goes to negative

infinity as A(f) goes to zero). This means that the low amplitude frequencies, where

noise is likely to dominate, are very important and will cause large phase problems.

- Nyquist O +Nyquist
frequency frequency frequency

Figure 1.2: The Hilbert operator. The Hilbert operator, (Tcf)'1, has a discontinuity at O

Hz and a very steep gradient near O Hz.

1.8.4 Problems associated with digital minimum-phase estimation

There are several problems associated with estimating a minimum-phase

spectrum from an amplitude spectrum using a digital Hilbert transform. These problems

will be briefly listed in this paragraph and then discussed in more detail in this section.

The first problem is that the integration to infinite limits in the analogue version
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(Equation (1.29)) is replaced with summation to finite limits in the digital version. In

addition, the amplitude spectrum of the trace and the Hilbert operator are sampled.

Another complicating factor is that seismic trace may be windowed before estimating the

amplitude spectrum. In addition, multiplying the amplitude spectrum by a constant will

cause a phase rotation. The digital phase operator can only be an approximation of the

analogue phase operator because of these factors. These problems with digital minimum-

phase estimation are explained in this section and then an example of how sampling

affects the estimated phase of a time-domain pulse is shown.

One of the main problems with the digital Hilbert transform is the replacement of

the integration of the analogue equation with summation in the digital version. The

infinite limits of integration are changed to the Nyquist interval in the digital procedure

and the contribution of frequencies beyond the Nyquist interval is lost. In addition, the

digital procedure is awkward because of the discontinuity of the Hilbert operator at zero.

In order to get a reasonable digital phase estimate with the Hilbert transform

method, the digital amplitude spectrum must strongly resemble the analogue amplitude

spectrum between O Hz and Nyquist frequency (fN). This requires sufficient sampling of

the amplitude spectrum in the frequency domain and dominance of reflected signal over

noise. From digital processing theory, the frequency sample interval is inversely related

to the length of the trace the spectrum is calculated from (Karl, 1989). Outside the bounds

of O Hz to positive fN, the digital amplitude spectrum will be a periodic function that folds

back on itself at integer multiples of fN, unlike the analogue amplitude spectrum.



24

The Hilbert transform must also be sufficiently sampled in the frequency domain.

The Hilbert transform can be calculated by convolving the Hilbert operator ((TCf)"1) with

the function, ln(A(f)), (Karl, 1989), as seen in Equation (1.31). The Hilbert operator has

steep gradients close to the frequency origin that are hard to represent with sampled data

(Kets, 1987) as shown in Figure 1.2. Therefore sampling the Hilbert transform in

frequency also causes problems with the digital phase estimate.

Another complication occurs if the seismic trace is windowed to provide a

localized amplitude spectrum. Application of a rectangular (boxcar) window in the time

domain is a convolution with a sine function in the frequency domain. Therefore taking a

finite portion of a signal smoothes the frequency spectrum. The minimum-phase

estimation from the smoothed amplitude spectrum will differ from the minimum-phase

spectrum of the unsmoothed amplitude spectrum. (Hargreaves, 1992). Therefore

smoothing introduces a systematic bias into the phase estimation.

The minimum-phase spectrum is sensitive to changes in the amplitude spectrum.

If the amplitude spectrum has been multiplied by a constant, a phase rotation is

introduced into the phase spectrum. This is because multiplication of the amplitude

spectrum by a constant will become addition when the natural log of the amplitude

spectrum is taken. This problem is significant in seismic data because the amplitudes of

seismic data are scaled by an uncontrolled factor. This scaling factor could be in the

recording stage, such as scaling due to geophone coupling.
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Figure 1.4 illustrates how digital sample rates affect the estimated phase of an

amplitude spectrum. Several digital constant Q impulse responses (Kjartansson, 1979)

were created with varying values for the reference frequency, which determines the

sample rate (Equation (1.28)). Since changing the phase spectrum of the pulse changes

the position of the pulse in time (Karl, 1989), the phase differences between the resulting

time-domain pulses can be analyzed by examining their relative positions.

Figure 1.3 shows a dispersion curve, described by Equation (1.19), for a constant-

Q pulse. For digital approximations the reference frequency is taken to be the Nyquist

frequency. Six different values for Nyquist frequency and the corresponding phase

velocities were selected from the dispersion curve and a pulse in time was created for

each. Pulse A was created with a Nyquist frequency of 1000 Hz. Essentially this is an

analogue pulse relative to the other pulses. Pulse B has a Nyquist frequency of 800 Hz,

Pulse C 600 Hz, Pulse D 400 Hz, Pulse E 250 Hz and Pulse F 200 Hz. Since Nyquist

frequency is inversely related to the sample interval, a higher Nyquist frequency means

the pulse is sampled more finely in time. The pulses are shown in Figure 1.4. The

minimum-phase pulse that most closely resembles an analogue pulse (Pulse A) is more

delayed in time than the other digital pulses. Therefore the Nyquist frequency and

subsequent sample rate have a dramatic effects on the digital phase estimates which is

manifested as an incorrect delay. The pulses corresponding to a higher Nyquist frequency

(and therefore smaller sample interval) are delayed farther in time. The pulse shapes are
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similar. Therefore, there will be a residual delay left in seismic data after minimum-phase

deconvolution (Hargreaves and Calvert, 1991).
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Figure 1.3: A dispersion curve for a constant Q pulse.
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Figure 1.4: The minimum-phase pulses corresponding to different sample rates. The

most finely sampled pulse (Pulse A) has been shifted in time the farthest. The most

sparsely sampled pulse (Pulse F) has been shifted in time the least.

1.9 Deconvolution and inverse-Q filtering

The ultimate goal of seismic data processing is to recover the reflection

coefficients of the subsurface. Part of the processing involved in achieving this end is the

removal of source signature and correcting for anelastic attenuation. A method is desired

that will restore the diminished amplitudes, correct for the phase rotation and compensate

for the attenuated frequencies. Two methods commonly used to treat this problem are a

combination of gain and stationary deconvolution, and inverse-Q filtering. A third

method, nonstationary deconvolution (NSD), will be described in detail as the subject of

this thesis.
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7.9.7 Stationary deconvolution

Stationary deconvolution is a very common technique in seismic data processing.

It is based on the convolutional model described in Section 1.5 (Equation (1.21)). The

convolutional model has one known variable, the seismic trace, and two unknowns, the

wavelet and the reflectivity series. This makes the deconvolution problem an ill-posed

problem and assumptions must be made to solve it. There are several different algorithms

for stationary deconvolution and one, Fourier-domain deconvolution, will be described in

detail because of its similarity to NSD. The inadequacies of stationary deconvolution

when applied to anelastically attenuated data will also be discussed.

Frequency-domain deconvolution (Yilmaz, 1987) is a type of stationary

deconvolution. As the name suggests, the deconvolution operator is designed and applied

in the frequency domain. It is assumed that the reflectivity is random and therefore its

spectrum has constant power at all frequencies (a white spectrum). In reality, there is

usually a low-frequency roll-off associated with reflectivity from sonic logs (Margrave,

1998), so this assumption is not strictly valid. The assumption of white reflectivity can be

avoided if well control is available. Since the spectral color of the reflectivity is assumed

to be white, all spectral 'character1 of the seismic trace can be attributed to the wavelet.

That is the general shape of spectrum of the input trace is thought to be similar to the

unknown wavelet and the detail of the spectrum is due to the earth's reflectivity.). Figure

1.5 shows a random time series (which represents reflectivity), a wavelet, a trace (created

by convolving the wavelet with the random time series) and their amplitude spectra. The
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amplitude spectrum of the reflectivity has a flat shape. The amplitude spectrum of the

trace seems to have the general shape of the wavelet with detail superimposed from the

random time series.

random time series amplitude spectrum of random time series

trace

amplitude spectrum of wavelet

frequency (Hz)

amplitude spectrum of trace

Figure 1.5: A random time series, wavelet, and trace (created by convolving the random

time series and wavelet) and their spectra.

The first step in calculating the frequency-domain deconvolution operator is to

calculate the power spectrum of a segment of the seismic trace. A segment of the trace

that has a relatively high signal to noise ratio and includes the exploration target should

be selected. The power spectrum of the segment, IS(f)l2, is smoothed by convolution with
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a smoother, a(f), in an attempt to remove the spectral content of the reflectivity from the

spectrum:

I F ( f ) l 2 = I S ( f ) l 2 * a ( f ) . (1.32)

The square root of Equation (1.32) is the estimated amplitude spectrum of the source

wavelet. It is called the amplitude spectrum of the forward operator

F(f)«|W(f) | + n w . (1.33)

where nw is a constant that has been added to stabilize the logarithm calculation of

Equation (1.34) and the inversion of Equation (1.36). The constant is determined by

multiplying the maximum of IW(f)l with a small number, typically between 10"' and 106.

Conceptually, the constant is the Fourier transform of random noise.

At this point, a minimum-phase spectrum may be constructed for the forward

operator using Equation (1.30):

(1.34)

The phase estimate from Equation (1.34) will not be a perfect estimation of the analogue

minimum-phase spectrum of the forward operator. As mentioned in Section 1.8, the

minimum-phase estimation from a smoothed amplitude spectrum will differ from the

minimum-phase estimation of the unsmoothed amplitude spectrum.
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The amplitude and phase spectra of the estimated source wavelet form the

forward operator, F(f).

F ( f )=IF( f ) l e i < t ) ( f ) . (1.35)

The forward operator, F(f) is then inverted and applied to the entire seismic trace. The

spectrum of the input trace, S(f), modeled by Equation (1.22), is divided by the forward

operator of Equation (1.35) to obtain an approximation of the reflectivity, R(f),

R(f)- ——. (1.36)
F(f)

Wiener (spiking) deconvolution (Robinson, 1967) is the time-domain equivalent

of frequency-domain deconvolution. A matrix equation involving the autocorrelation of

the seismic trace is set up to determine the deconvolution operator in the time domain.

The autocorrelation must be windowed to a pre-determined length and this windowing is

equivalent to the smoothing process of frequency-domain deconvolution.

Predictive deconvolution (Peacock and Treitel, 1968) is a very important

extension of Wiener deconvolution. A prediction operator is used to estimate a time-

delayed prediction of the input trace. This time-delayed estimate is then subtracted from

the input trace. The difference between the two time series is called the error series and it

represents the unpredictable part of the trace, that is the reflectivity. The predictable part

of the trace (which has been subtracted from the input trace) is the wavelet and multiple

content.
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Predictive deconvolution is a general type of deconvolution, of which spiking

deconvolution is a special case. If the prediction operator is used to estimate a prediction

of the input trace that is time-delayed by one sample, spiking deconvolution results.

Predictive deconvolution is an effective tool in stationary multiple suppression. The

prediction lag parameter, which determines how time-delayed the predicted estimate of

the input trace will be, can be varied to compress the wavelet to varying degrees and

bandlimit the signal.

Stationary deconvolution can approximately correct seismic data for source

signature and frequency attenuation, however, it is not an ideal approach. It does not take

the time-variant manner of attenuation into account. This means that it only treats the

frequency domain problems associated with attenuation, such as broadening of the

seismic pulse, and spectral decay. The time domain problems, such as amplitude decay,

must be corrected for with a gain operator. The undesirable effects in the time and

frequency domains were created through the same process and a method that

compensates for them both simultaneously would be advantageous.

1.9.2 Inverse-Q filtering

Inverse-Q filters are deterministic nonstationary filters that attempt to remove the

effects of anelastic attenuation. In general, inverse-Q filters explicitly model the anelastic

attenuation and attempt to correct seismic data for the amplitude and phase effects.

Unfortunately such methods generally have a high reliance on an estimate of Q, which is
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notoriously difficult to estimate, as discussed in Section 1.6. In addition, a deconvolution

must be applied separately to remove the effects of source signature. In this section, one

method of inverse-Q filtering, will be explicitly described as an example of this type of

technique and then several other methods will be described very briefly.

Hale (1981 and 1982) has developed several inverse-Q algorithms and one

method, simply called an inverse-Q filter will be outlined here as an example of this type

of technique. In this paper, Hale begins with a development of a forward Q filter. It is a

method of modeling the spectrum of an anelastically attenuated waveform recorded at the

surface. The Q matrix is a lower triangular time-variant matrix that describes the

absorption. The matrix is lower triangular to represent the causality of the waveform.

The Q matrix, Q, is calculated by sampling the following function

, , TT^ , - T C l f l Tq(t,T) = IFTf_Jexp
Q0

(1.37)

where IFT represents an inverse Fourier transform, f is the frequency, Q0 is an estimate of

Q, T is the two-way travel time and ty is the phase. The time coordinate, t, is mapped into

the columns of Q. The phase is computed as the Hilbert transform of the natural

logarithm of the amplitude spectrum at constant T, as in Equation (1.29).
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Absorption can then be applied to the earth's reflection coefficients (the column

vector R) via a matrix multiplication with a Q matrix, Q. This matrix multiplication

yields a column vector of the earth's impulse response, Y

Y-QR. (1.38)

A seismic section can then be modeled as the vector containing the impulse response

of the earth multiplied with a Toeplitz matrix containing the source waveform, F

Z = FY = FQR, (1.39)

where Z is the seismic trace.

To retrieve the reflection coefficients, R, from Equation (1.39), the section must

be deconvolved to remove the source waveform and inverse-Q filtered to remove the

effects of anelastic absorption. Examining Equations (1.38) and (1.39) it can be seen

that, strictly speaking, the source waveform should be removed first and then the inverse-

Q filter applied. However, it may be more practical to apply the inverse-Q filter first and

then estimate the source waveform from the hopefully stationary seismic section.

However, the deconvolution filter and the inverse-Q filter do not strictly commute and it

would be desirable to apply them in the opposite order.

To obtain the inverse-Q filter, Q"1, a matrix P is first calculated by sampling the

following function,



35

p(t, T) = IFTf exp
Q0

(1.40)

The time coordinate, t, is mapped into the rows of P. Note that the matrix P is not the

inverse of Q . A matrix S is defined such that;

= Q-'P , (1.41)

and then the inverse of the Q matrix is calculated as

Q-1= SP. (1.42)

Once the inverse-Q matrix, Q"1, has been calculated it can be applied to Equation (1.39),

before or after deconvolution. Inverse-Q filtering in conjunction with deconvolution

yields a bandlimited approximation of the earth's reflection coefficients.

Several other inverse-Q filters have been proposed. Hale (1982) developed a

routine called Q-adaptive deconvolution as an alternative to time-variant prediction error

filtering. It is a combination of conventional prediction error filtering and inverse-Q

filtering. Gelius (1987) essentially extended Kale's theoretical framework from Q-

adaptive deconvolution into a frequency-domain inverse-Q filtering method where the

filter is described by a Taylor series. Bickel and Natarajan (1985) propose reverse

propagating superpositioned plane waves as a general inverse to the earth's attenuation

filter. This filter is an outgoing propagating wavelet which increases with distance. The

wave is propagated through reverse time with Q replaced by -Q. Hargreaves and Calvert
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(1991) developed a Fourier-domain inverse-Q filter that is closely related to migration.

Attenuation and dispersion are incorporated into the downward continuation operator.

The wavefield is backward propagated to the surface to remove the effects of absorption.

Inverse-Q filters have several advantages and weaknesses. If the constant-Q

model applies, inverse-Q filters remove absorption and increase the stationarity and

resolution of a seismic section. In addition, some methods are more capable than others

of correcting for dispersion. The weaknesses include a high reliance on the parameter, Q.

The inverse-Q filters are, in general, deterministic and tend to apply a theoretical model

to a seismic section. A deconvolution operator must be applied to a dataset in

conjunction with the inverse-Q filter and the order of application is an issue.

1.9.3 NSD

This thesis proposes a data-driven nonstationary deconvolution method, NSD,

that approximately corrects for anelastic attenuation, phase distortion and source

signature. The purpose of NSD is to correct for time and frequency-domain effects

simultaneously, in accordance with our understanding of how earth processes created

these effects in the data. NSD has been developed from a model of a wavelet

propagating through a 1-D earth which suffers frequency-dependent attenuation and

dispersion along its travelpath. NSD estimates and removes the time and frequency

domain effects of attenuation as well as the effects of source signature thereby increasing

resolution and boosting the amplitude of events at later times. In a lossless medium (Q
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approaches infinity) the propagating wavelet is time-invariant and the NSD process

becomes stationary frequency-domain deconvolution and only removes the source

signature. NSD can be considered as a type of data-driven inverse-Q filter with

additional capability of being able to remove the source signature simultaneously.

NSD has two stages: operator design and operator application. The design phase

must estimate the nonstationary amplitude spectrum of the attenuation and source

signature and design an inverse operator. Once the inverse is known, it is applied as a

nonstationary convolutional filter (Margrave, 1998). It will be shown that the operator

design in NSD is less sensitive than inverse-Q filtering to variations in the estimate of Q.
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CHAPTER 2: NONSTATIONARY FILTERS AND TIME-FREQUENCY
ANALYSIS METHODS

2.1 Introduction

Nonstationary filtering and time-frequency analysis are techniques fundamental to

NSD. Nonstationary filter theory (Margrave, 1998) is the method used to apply the NSD

operator once it has been constructed. It will be explained, as it pertains to NSD, in this

chapter. Time-frequency analysis of a seismic trace is required in the operator design

stage of NSD. Several methods of time-frequency analysis of a seismic signal are

available, such as time-variant spectra (TVS), instantaneous attributes, Wigner

distribution and the wavelet transform. Each method will be described and their strengths

and weaknesses will be discussed in relation to their suitability for NSD. For reasons

explained in Section 2.3.1, the TVS approach has been chosen as the time-frequency

analysis technique most appropriate for NSD.

2.2 Nonstationary filtering

Nonstationary filtering (Margrave, 1998) is a filtering technique that applies a

time-variant filter continuously to seismic data. Nonstationary filtering is an extension of

stationary convolution. The stationary convolution integral is given by

(2.1)

where g(t) is the filtered trace, h(i) is the input trace, and a(t-T) is the impulse response of

the filter. The integration limits are from negative infinity to infinity. The time variable,
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t, is the output time and the variable, T, tracks the input time. Equation (2.1) can be

modified for nonstationary applications by letting the impulse response of the filter, vary

arbitrarily with time. If the filter is allowed to vary with the input time, T, then

nonstationary convolution results

g(t) = Ja(t - T, T)h(T)dT. (2.2)

Equation (2.2) corresponds to the linear superposition of scaled impulse responses of a

nonstationary filter. The other possible form of nonstationary filtering is called

nonstationary combination and the impulse response of the filter is allowed to vary with

output time.

g(t) = Ja(t-T,t)h(T)dT.. (2.3)

It does not correspond to a linear superposition of scaled impulse responses, but it is

advantageous in that the filter is allowed to change abruptly as a function of output time,

t.

The operator in Equations (2.2) and (2.3) is designed and applied in the time

domain. From stationary filtering it is known that the time domain is not always optimal

for computational efficiency or filter design. Therefore, nonstationary convolution and

nonstationary combination have been reformulated in the Fourier domain, as well as the

mixed Fourier-time domain. Only the alternate forms of nonstationary convolution will
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be shown here. For a more complete treatment of this subject see Margrave (1998). The

full Fourier domain representation of nonstationary convolution becomes

G(f) = jH(F)A(f,f-F)dF j (2.4)

where H(F) and G(f) are Fourier transforms of g(t) and h(i). A(f,F) is the frequency

connection matrix and is the 2-D Fourier transform of a(t,T)

A(f ,F) = JJa(t,T)e-27riV2raTFdtdT (2 5)

The mixed domain formulation of nonstationary convolution is

27dftdT? (2.6)

where a(f,t) is the nonstationary transfer function. The nonstationary transfer function is

related to a(t,T) by

cc(f,T) = Ja(t,T)e-2)tiftdt (27)

It may be easier to build the operator in the mixed domain where it can be stated

explicitly in both time and frequency and move it to the Fourier domain for application.

This is the case in NSD where a(f,T) is estimated directly from the seismic trace, as an

operator designed to remove the effects of source signature and attenuation.
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2.3 Time-frequency decomposition techniques

For NSD, a two-dimensional time-frequency operator, oe(f,T), is desired for

application to seismic data. The operator is a time-frequency matrix containing the

inverse of the undesirable effects that should be removed, in particular the source

signature and attenuation effects. The estimation of this operator directly from the data

can be accomplished by decomposing a seismic trace onto a time-frequency grid and

processing the decomposition. Therefore a means of decomposing seismic data onto a

time-frequency grid is required for NSD. It is important that the time-frequency

decomposition can be easily interpreted for physical meaning. There are several methods

of joint time-frequency analysis and four will be examined: time-variant spectra,

instantaneous frequency attributes, the Wigner distribution, and the wavelet transform.

Each method has particular strengths and weaknesses related to its suitability for NSD.

2.3.1 Time-variant spectra

One method of building a time-frequency grid of an input trace is with a time-

variant amplitude spectrum (ITVSI) or alternately with a time-variant power spectrum,

called the spectrogram (Cohen, 1995). First, the method of calculating the ITVSI will be

explained. Next, the effects of two parameters, window increment and window length,

on the ITVSI will be described. Finally advantages and disadvantages of ITVSI will be

discussed, along with its suitability for NSD.
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A TVS is basically a decomposition of a time series onto a time-frequency matrix.

Each spectrum, localized at a particular time, TVS(l,f), is calculated by taking the short-

time Fourier transform (Cohen, 1995),

:.f) = J -'2rftTVS(t,f) = x(t)h(t-T)e-'™'dt
J , \A°/

where x(t) is the trace and h(t-T) is a time-shifted window. A window is a function whose

magnitude is localized near the origin and decays rapidly elsewhere. It is designed to

suppress the signal at distant times and leave it unaltered around the time, t=T. When

multiplied with a signal a window serves to localize the properties of that signal in time.

The time-variant amplitude spectrum, ITVSI(i,f), can be calculated by taking the

magnitude of Equation (2.8). The amplitude spectrum, ITVSI(T,f), becomes a row in the

time-frequency grid at time, T, and it measures the frequency distribution localized

around that time. The window is incremented along the trace, with an overlap of

typically 70-90% between windows, and the ITVSI(T,f)is calculated for each window

increment. Each amplitude spectrum will form a row in the resulting grid. Figure 2.1

depicts how the ITVSI is calculated. In the grey level ITVSI display, black represents

large positive numbers and white is zero.
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Figure 2.1: Calculation of a ITVSl from an input trace. The trace is windowed and the

Fourier transform of each windowed segment is calculated. The resulting amplitude

spectmm forms a row in the resulting ITVSI grid. In the grey level ITVSI display, black

represents large positive numbers and white is zero.

The trace in Figure 2.1 is a synthetic trace created by applying a Q filter (Q=25)

superimposed with a minimum-phase wavelet, to a reflectivity series. The ITVSI is

therefore composed of the time-variant spectra of the source signature, reflectivity and

attenuation. The source waveform is stationary and bandlimited. It is the broad spectrum

at early times and is marked by the absence of very low frequencies as can be seen from

Figure 2.1. From Figure 2.1 it can also be seen that this initial spectrum decays rapidly in

both time and frequency. This exponential attenuation dominates the ITVSI and the

effects of reflectivity provide detail in the ITVSI.
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The window increment is an important parameter in the ITVSI computation

because it is essentially the time sample interval of the ITVSI. In addition, the window

increment is inversely proportional to the computation time of the ITVSI. Therefore this

parameter must be chosen carefully so that the computation time of the ITVSI is

reasonable and the time-variant effects which are to be examined are faithfully recorded

in the ITVSI. This is a concern for NSD as the steep exponential attenuation inherent in

an anelastically attenuated input trace may be distorted or aliased if the trace is sampled

too coarsely.

Another important parameter in the calculation of the ITVSI is the window length.

The resolution of the ITVSI in time and frequency is determined by window length as

governed by the uncertainty principle (Cohen, 1995). The uncertainty principle is given

by

TB > constant (2.9)

where T is the duration of a signal and B is the bandwidth of its spectrum. The duration

of the signal is determined from the length of the window that has been applied to the

seismic trace. A detailed proof of the uncertainty principle can be found in Cohen

(1995). In a few words, the uncertainty principle is the property that a narrow time-

domain signal will have a broad bandwidth and a broad time-domain signal will have a

narrow bandwidth. The bandwidth and duration of a signal cannot both be made

arbitrarily narrow simultaneously.
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The choice of window length has important implications regarding the time and

frequency resolution of the ITVSI. A ITVSI created with a long window will have

excellent resolution in frequency but poor temporal resolution, and a ITVSI created with a

short window will have greater time resolution at the expense of frequency resolution.

Figure 2.2 demonstrates how window length affects the time and frequency resolution of

the ITVSI, according to the uncertainty principle. Two ITVSI were created from the same

seismic trace, one with a small window (ITVSI a) and the other with a larger window

(ITVSI b). ITVSI a looks smeared parallel to the frequency axis, but shows fine variation

parallel to the time axis. This indicates that this ITVSI has poor resolution in frequency,

and good resolution in time. In contrast, ITVSI b looks smeared parallel to the time axis

and shows variation parallel to the frequency axis. From this it can be inferred that this

ITVSI has poor resolution in time and good resolution in frequency. The ITVSI cannot

have ideal time and frequency localization simultaneously therefore a decision must be

made about the purpose of the ITVSI and whether time or frequency resolution has

priority, when choosing a window length.
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frequency frequency

Figure 2.2: Example of how window length affects the time and frequency resolution of

the ITVSI. The uncertainty principle dictates that as the resolution in time increases the

resolution in frequency decreases. Two ITVSI were calculated from a seismic trace using

differing window lengths. The windows are shown to the right of each ITVSl. ITVSI a

has a small window length and therefore a high resolution in time at the expense of a

frequency resolution. ITVSI b was created with a larger window and has a greater

localization in frequency and poor localization in time.

There are several disadvantages associated with the ITVSI approach. As can be

seen from Equation (2.8) a spectrogram mixes energy and information from both the

window and the signal. The instantaneous energy cannot be calculated by summing the

energy distribution for all frequencies at a particular time because of the entangled

window function (Cohen, 1995). In addition, when constructing a spectrogram from a

finite signal, care must be taken to compensate for windowing off the ends of the signal.
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The ITVSI has been chosen as the most suitable method of time-frequency

decomposition for the NSD algorithm. TVS provides a grid in both time and frequency,

and the familiarity of the Fourier transform and the ease of interpretation are the main

advantages. As described, the entanglement of the window function and signal is the

biggest drawback to this method, as applied to NSD.

2.3.2 Instantaneous frequency

Nonstationary spectral information can also be calculated with the instantaneous

frequency attribute. Instantaneous frequency provides a localized estimate of the mean

frequency of a spectrum as a function of time. It can be calculated from a complex

representation of a real seismic trace and is associated with a specific point in time.

To calculate instantaneous frequency a complex trace must be synthesized from a

real trace. Two methods of calculating the complex trace are discussed below. Next, the

calculation of instantaneous frequency from the complex trace is shown. Finally, the

advantages and disadvantages with instantaneous frequency are discussed and its

appropriateness to NSD.

There are two motivations for constructing a complex trace from a real seismic

trace. The primary goal is to calculate the instantaneous frequency. It will be shown

later, in Equation (2.21), that the instantaneous frequency is the first time derivative of

the instantaneous phase of the complex trace. Therefore a method must be devised for
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estimating a temporal phase related to the seismic data. One method of doing this is with

complex trace analysis.

The second motivation to construct a complex trace is related to the symmetry of

the Fourier spectrum of a real trace. The spectrum of a real trace, Sr(f), has Hermitian

symmetry, that is, it is conjugate anti-symmetric about the zero frequency

Sr(-f>Sr*(f), (2.10)

where * denotes complex conjugate. Thus

|S r(-f) |=S r(f) |- (2.H)

This property makes it difficult to calculate meaningful frequency averages for real-

valued traces, as they will equal zero (Cohen, 1995). A trace that has zero amplitude for

the negative frequencies would therefore be advantageous. This can be done by allowing

the real trace to be the real part of a suitable complex trace.

The complex seismic trace, z(t), is written as

z(t)=sr(t)+iSi(t) = Ac(t)e^(t) (2.12)

where sr(t) is the real seismic trace and S1(I) is the imaginary part of the trace, which must

be determined. Requiring the negative frequencies to be zero leads to a unique form for

the complex trace (Cohen, 1995). The imaginary part of the complex trace is related to

the real component by the Hilbert transform, H:
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S l(t) = H[sr(t)]= fsr (T)-UlT. (2.13)
J t-T

The amplitude of the complex trace, Ac(t), and the phase of the complex trace, (|)(t), are

given by

(2.14)

f s (O^tan'1 -^-L (2.15)

Given a real trace, its complex equivalent can also be calculated in terms of

Fourier integrals (Taner et al., 1979). The process is mathematically equivalent to using

the Hilbert transform (Cohen, 1995), however, the method using Fourier integrals clearly

demonstrates some of the concepts associated with the complex trace. The first step in

this method is to calculate the Fourier transform of the real trace. Next, the amplitudes of

the negative frequencies are set equal to zero and the amplitudes of the positive

frequencies are doubled, so that the real part of the complex signal will be equal to the

original seismic trace. The inverse-Fourier transform of the modified spectrum is

calculated to realize the complex trace, z(t):



50

z(t)=—Lfs r(f)e2 7 r i f tdf
V27UJ . (2.16)

where Sr(f) is the Fourier spectrum of the real trace. For comparison, the inverse Fourier

transform of the real trace is

(2.17)

Equations (2.16) and (2.17) differ by the limits of integration and the coefficient of 2 in

front of the integral of Equation (2.16). In this manner, a complex trace that has zero

amplitude for negative frequencies can be calculated.

To derive the formula for instantaneous frequency, a definition of average Fourier

frequency, (f), is required

(f) = 27cff I S r ( f ) l 2 df
J , (2.18)

where f is the stationary Fourier frequency, and ISr(f)l2 is the normalized power spectral

density. To avoid the slow and unnecessary calculation of the spectrum, Sr(f) Equation

(2.18) can be written in terms of the normalized energy per unit time, lsr(t)l2, using the

1 dfrequency operator, Q = —— (Cohen, 1995):
i dt
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ArW , (2.19)

where * denotes complex conjugate, Ar(t) is the amplitude of the real trace, (|)(t) is the

phase, and the prime symbol (') denotes a derivative with respect to time. The imaginary

term, [—i—-——Ar (t)dt, is zero because average frequency is purely a real function.J A r(0

Therefore, Equation (2.19) becomes

. (2.20)

Comparing Equation (2.20) to Equation (2.18) it can be seen that in Equation (2.20)

some function, (|)'(t)is being averaged to obtain the average frequency. This function is

appropriately named the instantaneous frequency and is related to the instantaneous phase

by

(2.21)
2TC

where f.(t) is the instantaneous frequency and the phase, <j)(t), is given by Equation (2.15).

Taking the derivative of the arctangent of Equation (2.15), Equation (2.21) can be

rewritten as
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f ( t )_ s > i (Qs r ( t)-s ' r(t)S l(t)
2rcAc

2(t) ' (2.22)

The results from the calculation of instantaneous frequency must be examined

closely and judged whether they are physically meaningful. Cohen (1995) explains

several paradoxes related to the instantaneous frequency that causes distrust in this

spectral measurement. In general, the instantaneous frequencies may be vastly different

from the frequencies contained in the Fourier spectrum. For instance, the instantaneous

frequency may contain frequencies outside of the Fourier spectrum. Also, the

instantaneous frequency may be negative although the spectrum of the complex signal is

zero for negative frequencies, or the instantaneous frequency may be outside the

bandwidth of a bandlimited signal. Another paradox is that the instantaneous frequencies

may be continuous and range over infinite values for a discrete line spectrum.

Instantaneous frequency is a tool to examine the nonstationary spectral character

of seismic data, however it is not appropriate for use in designing the NSD operator. The

temporal resolution of instantaneous frequency is infinite, and therefore by the

uncertainty principle the frequency resolution must therefore be zero. NSD requires a

time-frequency analysis technique that has adequate resolution in both time and

frequency. Instantaneous frequency does not provide a time-frequency grid. In addition,

instantaneous frequency can be noisy and the paradoxes associated with it make

interpretation difficult.
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2.3.3 Wigner distribution

The Wigner distribution is another form of time-frequency analysis. It is a time-

frequency characterization achieved through a bilinear transform. The Wigner

distribution (WD) can be applied to continuous signals with the continuous Wigner

distribution (CWD), or to sampled signals with the discrete Wigner distribution (DWD)

(Claasen and Mecklenbrauker, Part II, 1980). First, the CWD will be described and then

some properties of the CWD will be discussed. Finally the advantages and disadvantages

of the CWD and its suitability for NSD is discussed.

The CWD, W(t,f), is given by

W(t,f) =
V271 (2.23)

or

z L , (2.24)

where s(t) is a signal, S(f) is its Fourier transform and * represents the complex conjugate.

If S1 and S2 are the same signal, and S1 and S2 are its Fourier spectrum, the above equations

are said to be the auto-Wigner distribution (Claasen and Mecklenbrauker, Part I, 1980). If

S1 and S2 are not the same signal, then the equations are called the cross-Wigner

distribution. The WD calculated from the time-domain signal as in Equation (2.23), and
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the WD from the spectrum of the signal (Equation (2.24)) are equivalent and this reflects

the symmetry between the time and frequency domains.

The process of calculating the auto-Wigner distribution is like folding the signal,

at some time, t, onto itself. The properties in the overlapped section will be present in the

transform at the time corresponding to the fold. This explains why the WD is a noisy

distribution. Noise that is present for a short duration in the time signal will be present at

many times in the resulting WD because it will occur in many of the overlaps of the

signal. Figures (2.3) and (2.4), both taken from Cohen (1995), illustrate how this works.

Figure 2.3: Cosine signal containing noise of a short duration. If the signal is folded

about time I1, there will be no noise contained in the overlap and therefore no noise will

be contained in the WD at time t,. However if the signal is folded over at time t2, the

noise will be present in the overlapped signal and present in the WD at time t2.
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FREQUENCY —

Figure 2.4: A Wigner distribution showing noise. The WD is noisy even where no noise

existed in the original signal. The original signal is shown on the left.

Unlike some other forms of time-frequency analysis, the WD only exists for the

same time as the signal exists. It is zero before the signal starts and after it ends.

Similarly for a bandlimited signal, the WD only exists for the bandwidth of the signal.

The WD is said to have finite support because of this property. However, for a signal

that is turned off for a finite amount of time and turned back on, the WD will not

necessarily be zero in the time interval where there is no signal.

One of the greatest advantages of the WD is that meaningful measurements can

be calculated from the WD itself. For instance the energy density and the energy density

spectrum can be calculated from the WD through the following equations
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27cfw(t,f)df =ls(t)l :

2icfw(t,f)dt=IS(f)l J

(2-25)

(2.26)

The average time, (t) f , and average frequency, (f ) t , can be calculated from the WD

using

(2.27)

W '=^TpJ tW(t 'f)dt
I Oil I I •/ (2.28)

The energy of the signal and spectrum can be computed by integrating over the WD,

however it is important to remember that the WD itself only roughly reflects the energy

in the signal or spectrum. For this reason, the WD must be interpreted carefully.

The interpretation of the Wigner distribution can be difficult, in part due to a

phenomenon known as cross terms in the distribution. The cross terms can be seen by

taking the WD of a signal, s(t), expressed as the sum of two other signals

s(t) = s,(t) + s2(t)
(2.29)

The WD of s(t) becomes
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W(t,f)=W11(t,f)+W22(t,f)+W12(t,f)+W2,(t,f). (2.30)

Since W21=W12*, Equation (2.30) can be re-written as

W(t,f>W11(t,i>W22(t,f)+2Re{W12(t,f)}. (2.31)

It can be seen from Equation (2.31) that the sum of two signals is not simply the sum

of their WD. The additional term 2Re{W12(t,f)}is called the cross term or interference

term. The cross terms can produce disturbing effects. They can show up in the time-

frequency plane where they are not expected and often do not conform to the physical

model.

The Wigner distribution has properties that make it appealing to use in the NSD

algorithm, however the disadvantages associated with it outweigh the advantages. The

Wigner distribution provides a time-frequency matrix from which energy measurements

can be calculated. In addition, the WD is computed to have the same time interval as the

input signal or the same frequency interval as the input Fourier spectrum and so end

effects are avoided. The WD has good joint time-frequency resolution, avoids the use of

windows and, unlike the spectrogram, meaningful estimates of energy density can be

measured from the WD. However, the WD is unsuitable for NSD because it is only a

rough characterization of the energy in the signal or spectrum. In addition, the bilinear

nature of the WD causes surprising values, called cross terms, in the representation. The
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WD is also noisy because it distributes the noise at a particular time in the signal

throughout the WD.

2.3.4 Wavelet transforms

The wavelet transform is a time-scale analysis technique that has been designed to

provide greater joint resolution than methods based on the Fourier transform. A wavelet

transform, WT, decomposes a signal into time-scale space by using a set of basis

functions, called wavelets. All of the wavelets in the basis are scaled and translated

versions of a prototype wavelet called the mother wavelet. The decomposition from the

wavelet transform can be displayed as a time-scale grid or converted to a time-frequency

grid. The wavelet transform is reversible and the original signal can be regenerated from

the transform coefficients.

A basic introduction to the continuous wavelet transform will be provided. First,

some background information, relating to basis functions, compact support, wavelets,

mother wavelets, scaling and translation, is explained. Then, methodology of the forward

transform is presented, followed by a discussion of how scale relates to Fourier

frequency. Next, how TVS achieves better resolution through scale analysis than

methods based on the Fourier transform is explained. Finally the advantages,

disadvantages and aptness of WT for NSD are discussed.

Any vector in a complete vector space can be decomposed by a linear

combination of linearly-independent basis vectors of that space. For instance, any vector
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in Euclidean two-space can be built from a linear combination of the vectors [O 1] and [1

O]. The idea of a basis can be expanded to functions by representing any function as a

linear combination of basis functions. For example, sine and cosine functions (the

complex exponential) are the basis functions of a Fourier transform. The basis functions

for a wavelet transform are wavelets.

A wavelet is an oscillatory signal that is simultaneously localized in both the time

and frequency (Fourier) domains. A wavelet with compact support, meaning that it must

be zero outside a certain radius, is desirable for the WT. The wavelets in the basis of a

WT have a special relationship to each other; each wavelet is derived through a

translation and scaling of a prototype wavelet called the mother wavelet. This type of

basis is called a scale-varying basis (Graps, 1995). There are infinite possibilities of

mother wavelets to choose from and it is best to find a wavelet that "fits" your data. The

selection of the mother wavelet strongly affects the output from the WT and is therefore

very important.

Scale and translation are important concepts associated with the WT. Scale is

inversely related to frequency and describes the duration or width of a wavelet. Changing

the scale of the mother wavelet is analogous to either compressing or dilating it in time.

The wavelet transform, as will be shown later, analyzes the signal repeatedly with

wavelets of varying scale. The scale is varied to extract different information from the

data. Large scales correspond to a global view of the signal's structure and small scales
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show detail. Translation of a wavelet is a shift along the time axis in the wavelet's

position relative to its original position.

The continuous wavelet transform maps a time series with equal time sampling,

x(t), into translation-scale space, £(T,S) using the following integral (Polikar, 1994)

(2.32)^" fs

where s is the scale, T is the translation, t is the running time of the time series, and

is the mother wavelet. The asterisk (*) indicates the complex conjugate. The wavelet is

also referred to as the window, because it isolates a section of the time series. The output

from Equation (2.32), £(T,s), is called the wavelet coefficient.

The equation governing the forward WT states that the wavelet (at varying scales)

is compared to the signal at each time. Starting at the beginning of the time series, t=T=0,

and at a single low scale, the wavelet is multiplied with the signal and integrated over all

time. This result is the wavelet coefficient for a scale, s, and a translation, T. The

wavelet is then translated repeatedly and the integral computed at each new position of

the wavelet, until the end of the time series is reached. These calculated wavelet

coefficients fill a row in the WT grid (also called a wavelet map). The scale is

incrementally increased and the process repeated until the entire grid has been filled.
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The wavelet coefficients represent the similarity of the signal to the wavelet. If

the signal has a spectral component that corresponds to the current value of the scale at a

particular translation, then the wavelet coefficient will be high at this translation and

scale. If the spectral component that corresponds to a particular scale is absent at a

particular translation, then the coefficient will be low or zero. The narrowest wavelet of

the WT should have a width similar to the highest frequency component of the signal.

Thus, the WT can be thought of as shrinking and stretching a wavelet along the time axis

and comparing the shape of the signal to that of the wavelet at each time (Lewalle, 1995).

Figure 2.5 shows the process of comparing a wavelet of a certain scale to a signal.
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Figure 2.5: The wavelet of scale, s, is compared to the signal (2.5a) at various

translations. The coefficient will be large when the wavelet is at the position shown in

2.5b because the wavelet at this position and scale are similar. In 2.5c, the wavelet and

signal are at a similar scale but the translation of the wavelet lines up the wavelet's peak

to the zero crossing of the signal and therefore a lower coefficient is calculated. The

scale of the wavelet does not match the signal in case 2.5d and the wavelet coefficient

would be very small.

For use in NSD, the scale of Equation (2.32) must be converted to Fourier

frequency. A quick and rough way of achieving this is by interpolating the time-scale

grid of the WT and mapping it into a grid of time and inverse-scale. The wavelet chosen

for the WT will directly determine the success of this effort. Scale approximates Fourier
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period more closely for some wavelets than others. Wavelets similar to sine or cosine

functions, such as the wavelet shown in Figure 2.5, have scale similar to Fourier

frequency (Torrence and Compo, 1998).

A more precise way of relating scale of a WT to equivalent Fourier period for a

particular wavelet function is by inputting a cosine wave of known frequency into

Equation (2.32). The relationship between wavelet scale and Fourier period can be

determined by computing the scale at which the wavelet power spectrum (the squared

magnitude of the wavelet transform) reaches a maximum (Torrence and Compo, 1998).

The WT has increased time-frequency resolution relative to the TVS because of

the special nature of its basis functions. The most suitable wavelets are compactly

supported and bandlimited. These characteristics, in addition to varying the wavelets with

scale in the WT allow for excellent joint localization in time and frequency (Graps,

1995).

Scale variation is advantageous for analyzing different spectral components.

High frequencies usually occur in short periods of time and therefore good time

localization is desirable when studying these frequencies. This localization is achieved

through employment of a narrow window or increased scale. Increased time localization

is at the expense of frequency localization as governed by the uncertainty principle, and

therefore high frequencies will be analyzed at a lower frequency resolution. This is a

compromise of frequency resolution, however it allows good time localization.
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Good time localization is not necessary for low frequencies because they usually

last for the duration of the signal. Therefore there is no advantage to increasing the time

resolution and limiting the frequency resolution by applying a narrow wavelet. The scale

can be decreased to widen the wavelet and the low frequencies can be analyzed at an

appropriate time and frequency resolution. In short, a broad examination of the structure

of a signal is undertaken when the wavelet is large and when the analysis window,

wavelet, becomes narrow, the detailed properties of the signal can be seen (Chakraborty

and Okaya, 1995). The strength of a WT is a compromise of temporal and spectral

localization due to the varying window widths.

An important difference between a WT and a ITVSI is that the wavelets of a WT

vary with scale and the windows of ITVSI are equally sized, as can be seen by comparing

Equations (2.8) and (2.31). Since window length determines resolution, the resolution of

the WT and the ITVSI will be different. The grid of a spectrogram is comprised of square

tiles of equal time frequency resolution and the grid of a WT is comprised of rectangles

of changing dimensions and therefore changing resolution. The rectangles must have

equal area because of the fixed relationship between time and frequency. Figure 2.6

shows the square tiles of the spectrogram and the rectangles of the WT.
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Figure 2.6: A comparison of the resolution of the ITVSI and wavelet transform. The

ITVSI is comprised of square tiles (2.16a) and the resolution is constant everywhere. The

wavelet map of the WT is comprised of rectangles (2.6b) and has changing resolution

with frequency.

The WT is a good candidate for use in NSD. It provides a time-scale grid that can

be converted to a time-frequency grid and interpreted physically. The choice of mother

wavelet and scale offer a flexible approach, and the high resolution in time and frequency

is also advantageous. The most significant advantage of the WT is increased resolution in

time and frequency. Wavelet transforms are also better for analyzing discontinuous data

because of the increased time localization. Using a WT in the operator design stage of

NSD merits further investigation.

2.3.5 Section summary

TVS is the most suitable time-frequency decomposition method for NSD. It

provides a grid in time and frequency that can be easily interpreted. In addition its close

relationship to the familiar Fourier transform is an advantage.
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Instantaneous frequency is unsuitable for the purposes of NSD because it does not

provide a time-frequency grid and spectral measurements have zero frequency resolution.

In addition, the results may be difficult to interpret and the frequency resolution is zero.

The WD is also unsuitable for NSD. It provides a time-frequency grid with good joint

resolution. However, the main drawback to the WD is that physical interpretation can be

difficult.

The WT is an alternative time-frequency distribution for NSD. It offers a time-

frequency grid with excellent joint resolution. It can be interpreted physically and the

choice of wavelet and scale allow for flexibility. Further investigation of designing the

NSD operator using a WT would be interesting.
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CHAPTER 3: NSD

3.1 Introduction

The NSD (nonstationary deconvolution) algorithm is developed in this chapter.

The chapter begins with a discussion of the spectral model on which NSD is based and

some of the assumptions associated with it. Next, the NSD algorithm is developed from

the spectral model and finally, three different extensions of NSD are described. The

extensions of NSD are designed to increase flexibility and efficiency.

3.2 Nonstationary spectral model and assumptions

3.2.1 Nonstationary spectral model

The purpose of NSD is to recover the reflectivity from a seismic trace by

removing the source signature and nonstationary propagation effects. To achieve this a

model that relates the ITVSI of the input trace to those effects which should be removed is

required. In this section, the nonstationary convolutional model of the input trace will be

developed from the stationary convolutional model.

As mentioned, an extension of the stationary convolutional model, Equation

(1.22), into the nonstationary realm is postulated. The nonstationary (dependent on time

and frequency) spectrum, S(t,f), of a raw 1-D seismic trace can be modeled as
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S(t,f) = R(t,f)M(t,f)W(f)e-ra(t>f)ft+i<l'(t'f) (3.1)?

where R(t,f) is the TVS of the earth's reflectivity function, M(t,f) is the nonstationary

spectrum describing multiple reflections, W(f) is the stationary spectrum of the source

signature including stationary near surface effects, a(t,f) is a generalized attenuation

function, and (|)(t,f) is the minimum-phase spectrum associated with attenuation

(Futterman, 1962). If a=l/Q(t), the exponential attenuation becomes the constant Q

model of attenuation (Kjartannson, 1979). The magnitude of Equation (3.1) can be taken

to obtain a relationship between the amplitudes of each component:

I S(t,f) I = I R(t,f) Il M(t,f) Il W(f) I e"™0'0*. (3.2)

Note that if the time dependence of Equation (3.2) vanishes, then the stationary

convolutional model, Equation (1.22), results. Thus the nonstationary convolutional

model can be considered 'locally1 stationary.

The ITVSI of the physical forward operator can be inferred from Equation (3.2).

The physical forward operator is called the propagating wavelet and it acts on the

reflectivity. Its nonstationary amplitude spectrum, IWp(t,f)l, can be modeled as

I Wp (t ,f) I = I M(t,f) Il W(f) I e-m(t 'f)ft. (3.3)

IW (t,f)l gives the Fourier amplitude spectrum of the propagating wavelet for a fixed time,

t. The propagating wavelet contains the attenuation and source effects and it physically



69

represents a wavelet propagating through a 1-D earth, attenuating with time, and

accumulating a multiple train.

3.2.2 Assumptions associated with NSD

The assumptions that have been made to develop the nonstationary spectral model

limit the NSD procedure. Assumptions regarding anelastic attenuation, minimum-phase

attenuation and estimation, multiple effects and others will be discussed. These

assumptions arise from the ill-posed nature of the deconvolution problem and are

common in other deconvolution methods.

In practice any method will have difficulty isolating the effects of anelastic

attenuation from the effects of other attenuative mechanisms, as discussed in Section 1.3.

NSD, as presented in this thesis, is also unable to distinguish the effects of anelastic

attenuation from other nonstationary attenuation effects.

The assumption that attenuation is minimum-phase is only valid for anelastic

attenuation. Attenuation other than anelastic attenuation is not constrained to be

minimum-phase. Therefore, if attenuation other than anelastic attenuation is present in

the data, then the assumption of minimum phase is not necessarily valid. In addition, the

minimum-phase computations in the NSD algorithm are handled with a digital Hilbert

transform. Since minimum-phase attenuation is created in the earth through physical

means, removal of this phase through digital means is incomplete (Ellender, 1986), as

described in Section 1.8.
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As with stationary deconvolution, NSD cannot correct for all multiple effects,

although it can potentially handle a wider class of multiples. Stationary deconvolution is

incapable of handling multiples that cause nonstationary attenuation effects, as discussed

in Section 1.5. NSD may be able to remove these sorts of multiples more effectively

because it has been designed to correct for nonstationary attenuation effects. As

described in Sections 1.3 and 1.5, one method whereby multiples cause nonstationary

attenuation is intrabed multiples that originate within the deconvolution design zone.

However, the issue of NSD's effectiveness in multiple removal is not investigated in this

thesis. All data presented in this thesis is assumed to be multiple-free.

There are also several other assumptions. One-dimensional wave propagation is

assumed and therefore spherical divergence corrections must be applied prior to NSD. It

has been assumed that the attenuation depends only on traveltime and not raypath

geometry. It is also assumed that the reflectivity, R(t,f) is random and therefore white in

f. This assumption can be circumvented if well control is available.

3.3 Operator design and application

3.3.1 Overview

A nonstationary operator, designed directly from the input data, containing the

source signature as well as undesirable characteristics related to anelastic attenuation is

desired. This operator will be called the forward operator. The nonstationary forward

operator will be estimated in a manner similar to the estimation of a stationary
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deconvolution operator in stationary Fourier domain deconvolution (described in Section

1.9.1). It is assumed in both methods that the reflectivity effects can be removed from

the power spectrum of the input trace through smoothing and that the smoothed power

spectrum will be an estimate of the forward operator. In NSD, the nonstationary power

spectrum, (ITVSI2) will be smoothed instead of the stationary power spectrum.

Two methods of smoothing have been investigated for NSD. The first method,

called the simple-smoothing method, smoothes the ITVSI2 of the gained input trace

directly. The second method, the residual-smoothing method, removes an approximate

attenuation/gain surface from the ITVSI of the gained input trace, squares the result and

smoothes the resulting residual power spectrum. The approximate attenuation/gain

surface is restored to the square root of the residual power spectrum (the amplitude

spectrum) after smoothing. As with stationary deconvolution techniques, both smoothing

methods will imperfectly remove reflectivity effects and bias the amplitude spectrum of

the embedded wavelet, although the bias should be lessened in the residual-smoothing

method. It is unclear what the smoothing does to IM(t,f)l.

After smoothing, the forward operator can be left as zero phase or coupled with a

minimum-phase spectrum, which seems reasonable as the earth is expected to have

minimum-phase attenuative processes. The forward operator is then inverted and applied

to the data using nonstationary filter theory (as described in Section 2.2).
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Examples will be shown where applicable, of the different stages in the operator

design. The examples were created from a synthetic input trace. The synthetic trace was

calculated by applying a Q filter (Q=50) combined with a minimum-phase 'source'

wavelet to a reflectivity series. In the grey-level plots of the ITVSI, grey represents small

positive numbers and black represents large positive numbers.

3.3.2 Gain of input trace

The first step of the NSD algorithm is to apply an approximate and deterministic

exponential gain to the input trace. This is done to reduce aliasing of the steep decay

surface of the input trace when it is windowed during the calculation of the ITVSI. As

described in Section 2.3, the ITVSI window increment determines the time sample rate.

A single row of the ITVSI represents a sample in time. ITVSI 3.1a was created from the

synthetic trace with a large window increment and is therefore coarsely sampled in time.

ITVSI 3.1a is composed of fewer rows and cannot adapt well to the exponential decay in

time. ITVSI 3.1b has been created with a small window increment and is sampled more

finely in time. ITVSI 3.1b has many rows and the exponential time decay is more clearly

represented in the time-frequency matrix.

If an exponential decay surface is sampled too coarsely in time via the window

increment, it will be aliased and not accurately represented in the resulting ITVSI.

Sampling finely in time (with a small window increment) reduces the amount of aliasing,
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however it increases the run time of the ITVSI calculation because each row in the ITVSI

matrix requires an integration of Equation (2.8).

Figure 3.2 shows an exponential decay curve in time (3.2a) and its Fourier

spectrum (3.2b). The Nyquist frequency as given by Equation (1.28) must be larger than

all frequencies contributing significantly to the exponential surface or severe aliasing

occurs and the ITVSI does not properly represent the signal. If the Nyquist frequency is

chosen to be 100 Hz, then a sample rate, of 5ms is required in the ITVSI calculation. A

trace with 2002 samples, will require 400 integrations of Equation (2.8) and the resulting

ITVSI will have 400 rows. However, if the decay curve is gained (as in Figure 3.2c), the

Nyquist frequency chosen from its spectrum (3.2d), can be smaller. In this example, the

Nyquist frequency could be chosen to be considerably less than 25 Hz and the sample

rate of the ITVSI will be equal to or greater than 0.2s. The ITVSI calculation time for the

gained signal (3.2c) will be much faster and the matrix of the ITVSI will be smaller.

Therefore, by gaining the input trace to NSD (and reducing the exponential

decay) the sample rate can be coarser and the aliasing of the ITVSI will be less severe. In

the case of NSD, the input trace has exponential decay in both time and frequency.

Therefore exponential gain will only produce a flat gained curve like 3.2c at one

frequency. Other frequencies are under-corrected or over-corrected. Exponential gain of

the input trace is a computational convenience and allows the ITVSI to be sparsely

sampled in time.
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Figure 3.1: The window increment of the ITVSI calculation determines the time sample

rate of the ITVSI. ITVSI 3.1a was created with a large window increment from a synthetic

trace. As a result, ITVSI 3.1a is very coarsely sampled in time. In contrast, ITVSl 3.1b

has been calculated with a small window increment is sampled more finely in time.
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Figure 3.2: A steep exponential decay curve (3.2a) is shown with its Fourier spectrum

(3.2b). The curve has been gained (3.2c) and the spectrum of the gained curve is shown

in (3.2d).

3.3.3 Calculation of I TVS\

After gain has been applied to the input trace, its ITVSI is calculated. This ITVSI

will be processed to form the NSD operator. Values for the window length and window

increment must be chosen for the ITVSI calculation. Window length is related to the

resolution of the ITVSI as described in Section 2.3.1 and window increment is related to
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the time sample rate of the ITVSI as described in Section 3.3.2. These parameters are

important because they influence the shape of the ITVSI and the resulting NSD operator.

The effects of variations in these parameters, will be discussed in Chapter 4.

A model for the ITVSI of the gained input trace, IS(t,f)l, follows from Equation

(3.2) (assuming constant-Q attenuation) as

I S(t,f) I = I R(t,f) Il M(t,f) Il W(f) I e~+t , (3.4)

where K is an exponential gain constant. The nonstationary power spectrum of the gained

input trace, IS(t,f)l2 , is calculated by squaring Equation (3.4)

I S(t,f) 1 = I R(t,f) I I M(t,f) I I W(f) I e " t + . (3.5)

Figure 3.3 shows the ITVSI of a synthetic input trace, (3.3a) created by applying a

Q filter of Q=50, together with a minimum-phase wavelet, to a reflectivity time series.

Also shown are the spectra of the other elements of Equation (3.4) that make up the input

trace (ignoring multiple effects). The exponential Q decay in both time and frequency

(3.3b) is prominent in the ITVSI of the ungained input trace (3.3a). The source waveform

(3.3c) contributes the original bandwidth in the ITVSI of the input trace (at time O) and

the reflectivity (3.3d) adds the detailed character. The ITVSI of the gained trace (3.3e) is

created by applying an exponential gain to the input trace and recomputing its ITVSI.
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Figure 3.3: The ITVSI of an ungained synthetic input trace to NSD (3.3a), Q surface

(Q=50) (3.3b), stationary source spectrum (3.3c) and bandlimited reflectivity (3.3d). The

ITVSI of the gained trace is shown as 3.3e.

3.3.4 Smoothing

The next step in the NSD process is to attempt to separate the reflectivity from the

source waveform and attenuation. The nonstationary power spectrum of the gained input

trace (IS(t,f)l2) is smoothed two-dimensionally (in time and frequency). This is consistent

with Fourier domain deconvolution, where it is assumed that the general trend of the

power spectrum is due to the source signature and the detail in the power spectrum is

from the reflectivity, as described in Section 1.9.1. In stationary deconvolution the power
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spectrum is smoothed one-dimensionally (in frequency) in an attempt to remove the

reflectivity, however in NSD two-dimensional smoothing is required.

Two options of smoothing the nonstationary power spectrum in an attempt to

eliminate the reflectivity have been examined. These are the simple-smoothing method

and the residual-smoothing method. In the simple-smoothing method, IS(t,f)l2, as

described by Equation (3.5) (multiple effects set to unity), is smoothed directly. The

smoothing is achieved through a one-dimensional convolution of IS(t,f)l2 with a

normalized, suitable smoother in time and then again in frequency. The order of

smoothing does not matter, as convolution is commutative. The smoothed nonstationary

power spectrum of the gained input trace, I S(t,f ) I , can be represented by

I S(t,f ) I2 = I R(t,f ) I 2 I W(f ) I2 e"27rft/Q+2Xt ]* a(f ) * b(t) , (3.6)

where * represents convolution, a(f) is a frequency smoother and b(t) is a time smoother.

The lengths of the time and frequency smoothers can be specified individually. A

comparison of different smoother geometries and discussion regarding optimal smoother

lengths is contained in Chapter 4.

The smoothers in the simple- smoothing method of Equation (3.6) act on the

reflectivity, multiples (if present), source signature and exponential attenuation and gain

surface. Smoothing these other components as well as the reflectivity biases the estimate

of the forward operator. A bias is a systematic error. For instance, in NSD the spectrum

of the input trace is smoothed in an attempt to estimate the spectrum of the source
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wavelet. If the spectrum of the source wavelet is the input to a reflectivity suppression

process an unbiased process would not change it. A smoothing process, however,

changes the spectrum even though it is the desired output and therefore the process and

output are referred to as biased.

The smoothing process of Equation (3.6) approximately removes the reflectivity

and it follows by assumption that

2 -i s(t,f) r -I w(f) r e-/7mM^At. (3.7)

Next, the square root of Equation (3.7) is calculated and a constant, nw, is added for

stability during the operator inversion. This constant is calculated by multiplying the

maximum of I W(f) I e~rft /Q+Itby a small number, called the stability factor. The

resulting amplitude spectrum, I F(t,f) I , is estimate of the multiple-free forward operator

with gain applied (compare to Equation (3.3))

I F(t,f) I H W(f) I e-*"^" + nw . (3.8)

The propagating wavelet is the physical forward operator. It contains the source

waveform and attenuation effects, essentially Equation (3.8) with the exponential gain

removed:
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I W p ( t , f ) I M W ( f ) l e - J r f t / Q

(3.9)

Figure 3.4 shows a propagating wavelet from the simple-smoothing method at two

different color scales. In 3.4a, white represents zero and black is large positive numbers.

In 3.4b, grey is zero and black is large positive numbers. In this example, the features of

the propagating wavelet are easier to see in Figure 3.4b, and Figure 3.4a has been

included because it uses the same color scale as the other figures of ITVSI in this thesis.

The propagating wavelet decays in both time and frequency and the decay appears to

have a generally exponential shape. The ITVSI of the propagating wavelet is not

completely smooth and still contains some of the reflectivity character.
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Figure 3.4: Both ITVSI are the propagating wavelet from the simple-smoothing method.

In Figure 3.4a, white is zero and black is large positive numbers, and 3.4b, grey is zero

and black is large positive numbers. Figure 3.4a has been included for comparison to

other ITVSI in this thesis and 3.4b is included because it shows the detail in the

propagating wavelet more clearly. The propagating wavelet approximates the source

waveform and attenuation effects but is also biased by the smoothing of the attenuation

surface.

The second method of smoothing is called the residual-smoothing method. In this

method, the steep Q/gain surface is removed from the ITVSI of the gained input trace

before smoothing to reduce the bias of the operator. An estimate of Q is required for this

type of smoothing.

Constant-Q attenuation can be modeled as an exponential surface in frequency

and time whose shape is determined by the quality factor, Q (assumed to be constant in

frequency and slowly time-variant). Figure 3.3b shows a Q surface for Q=50. Assuming
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that an estimate of Q, Q , is available, and setting IM(t,f)l to unity (to ignore multiple

effects), the attenuation/gain surface can be removed approximately from IS(t,f)l of

Equation (3.4) to produce a residual amplitude spectrum, I p(t,f ) I ,

I R C t H — • (3-10)

where nQ is the maximum of the exponential decay/gain surface multiplied by a small

constant. The constant, nq, is added to increase stability in the division caused by lack of

numerical precision. The constant is typically small, between IxIO 4 and 1x1 O6.

Equation (3.10) can be written approximately as

l p ( t , f ) l « I R ( t , f ) I I W ( f ) l . (3.11)

The residual amplitude spectrum, lp(t,f)l, is mostly free from attenuation effects and is

dominated by the amplitude spectra of the source signature and reflectivity. This residual

amplitude spectrum is squared to form a power spectrum and then smoothed two-

dimensionally with time and frequency smoothers to remove the reflectivity and estimate

p( t , f ) l M R ( t , f ) n W ( f ) l 2 *a(f)*b(t), (3.12)

where I p(t,f) I is the residual power spectrum after smoothing, * denotes convolution,

a(f) is the frequency smoother and b(t) is the time smoother. The smoothers may be
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different from the smoothers in the simple-smoothing method. The determination of

optimal smoother lengths requires parameter testing and judgement and will be discussed

in Chapter 4.

By removing the Q/gain surface, the reflectivity effects can be suppressed in the

ITVSI while reducing the bias from smoothing. Therefore, by assumption, the amplitude

spectrum of the smoothed residual can be written as

I p(t ,f) I M W ( f ) l . (3.13)

From Equation (3.13) it can be seen that p(t,f) is an estimate of the stationary source

amplitude spectrum and it is shown in Figure 3.5. Figure 3.6 shows the amplitude

spectrum of the known source signature of the synthetic input trace (3.6a) superimposed

with two rows of p(t,f) , one at 0.4s (3.6b) and the other at 1.6s (3.6c). These rows are

shown as black lines on Figure 3.5.

Figures 3.5 and 3.6 show that the smoothing process is imperfect. Some

reflectivity effects remain and |p(t,f )| is not stationary. Figure 3.5 can be compared to

the ITVSI of the bandlimited reflectivity of Figure 3.3d. The high amplitude area at early

times is from the reflectivity that has not been completely suppressed. The smoothing

process in both the residual and simple-smoothing methods is limited by the use of finite

length smoothers. Smoothers of infinite length would perfectly remove reflectivity.
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Figure 3.5: The residual amplitude spectrum after smoothing in time and frequency from

the residual-smooth ing method. Each row in the ITVSI is an approximation of the

amplitude spectrum of the stationary source waveform. The black lines show the rows

have been used for comparison in Figure 3.6.

O.
E

frequency (Hz)

Figure 3.6: A comparison of the amplitude spectrum of the source waveform (a) and its

estimation from the residual-smoothing method. The estimated amplitude spectrum of
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the source waveform is a row of the ITVSI of the residual amplitude spectrum after

smoothing (Figure 3.5) at 1.6s (b) and 0.4s (c).

After the residual-smoothing process, the attenuation/gain surface is restored to

p(t ,f) . This yields an estimate of the amplitude spectrum of the gained forward

operator, IF(t,f)l:

IF( t , f ) l « lp ( t , f ) l e - r a t / y + "+n w , (3.14)

where nw is a constant added for stability in the inversion of Equation (3.18). The

constant, nw, is determined by multiplying the maximum of I p(t , f) I e"7Cft/Q+^tby a small

number, typically between 10' and 10"6. The quantity,! p(t , f) I e~7t f t /Q+Xt, will contain

noise if it has been calculated from real data. The constant is added to prevent noise in

areas of low signal strength from dominating IF(t,f)l after the inversion and influencing

the phase as discussed in Section 1.8.

As in the simple-smoothing method, the physical forward operator is called the

propagating wavelet and it contains the source waveform and attenuation effects,

I W _ ( t , f ) l « l p ( t , f ) l e - * f t / Q

(3.15)

The propagating wavelet differs from the forward operator in that it does not have

exponential gain.
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In Figure 3.7 the propagating wavelet from the residual-smoothing method (3.7a

and 3.7c) is compared to the theoretical propagating wavelet (3.7b and 3.7d) computed

from the source waveform and the exponential decay surface. The two ITVSI are shown

at two different grey scales. In 3.7a and 3.7b, white corresponds to zero and black is

large positive numbers. These two plots can be compared to other ITVSI in the thesis.

Figures 3.7c and 3.7d show more detail. In these figures, grey corresponds to zero and

black is large positive numbers. The propagating wavelet from residual-smoothing is

generally smooth, although it still contains some features associated with reflectivity. In

addition, the propagating wavelet has the characteristic exponential decay in both time

and frequency of Q attenuation.

The propagating wavelet from residual-smoothing can also be compared to the

propagating wavelet from simple-smoothing, Figure 3.4. The result from residual-

smoothing (3.7a and 3.7c) is visually more similar to the theoretical result (3.7b and 3.7d)

than the result from simple-smoothing (in Figure 3.4a and 3.4b). The propagating

wavelet from residual-smoothing shows stronger exponential decay at early times

(approximately O to 0.5s). In addition, the high amplitude (black) areas on both

propagating wavelets seem shifted to a higher frequency relative to the theoretical result.

This may be a result of the smoothing. This indicates that the residual-smoothing method

may provide a more appropriate forward operator than the simple-smoothing method.
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Figure 3.7: The propagating wavelet (3.7a and 3.7c) from the residual-smoothing method

and the theoretical propagating wavelet (3.7b and 3.7d) calculated from the source

signature and decay/gain exponential. Both propagating wavelets are shown at two

different greyscales. In Figures 3.7a and 3.7b, white is zero and black is large positive

numbers. In Figures 3.7c and 3.7d, grey is zero and black is large positive numbers.

Figures 3.7c and 3.7d have been added because they show more detail. The ITVSI of the

propagating wavelet approximates the source waveform and the anelastic attenuation.

This figure can be compared to Figure 3.4, the propagating wavelet from the simple-

smoothing method.



3.3.5 Phase computation, inversion, and application of the operator

The operator from either smoothing method may be left as zero phase or

combined with a minimum-phase spectrum. Although each row of the 'zero-phase'

operator is zero phase, such operators will generally change both the amplitude and the

phase of a trace when applied through Equation (2.6) (Margrave, 1998). The minimum-

phase spectrum is calculated with a one-dimensional Hilbert transform, H, over

frequency at constant time of the natural logarithm of the amplitude spectrum, as

described in Section 1.8:

<|>(t,f) = H[ ln lF( t , f ) l ] , (3.16)

From Equations (3.14) and (3.8), it can be seen that the forward operator contains a small

constant to prevent the logarithm in Equation (3.16) from becoming unstable. The

operation of Equation (3.16) is performed on each row of the time-variant amplitude

spectrum to create a time-variant minimum-phase spectrum. The amplitude spectrum,

IF(t,f)l of Equations (3.14) and (3.8), and the phase spectrum, <|)(t,f), of Equation (3.15)

can be combined to produce the complex-valued forward operator, F(t,f)

F ( t , f ) = I F ( t , f ) l e " ( l f ) . (3.17)

To complete the process, the forward operator, F(t,f), is inverted and applied to

the trace using nonstationary filter theory (Margrave, 1998) as described in Equation

(2.6). In this manner, the time-variant operator is applied continuously to the input trace
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and windowing is avoided in the operator application. The spectrum of the reflectivity

estimate, R(f), is given by

R(f) = fs(t)F-1(t,f)e-2"Ufdt
J , (3.18)

where s(t) is the input trace and F '(t,f) is the inverse operator that is the simple algebraic

inverse of F(t,f). The forward and inverse operators are related for all t and f by

F(t,f)F '1CLf)=I (3.19)

An inverse Fourier transform is applied to R(f) to obtain the reflectivity estimate in the

time domain.

The success of the inversion in NSD is partly limited by numerical precision.

Lack of numerical precision causes amplitude distortion of the most severely attenuated

frequencies. These amplitude distortions are magnified by inversion and are manifested

as noise in the final result from NSD. The bandwidth of R(f) must be limited by

applying a bandpass filter after NSD to suppress frequencies affected by this lack of

numerical precision. The bandpass filter should be chosen to encompass frequencies that

may be contained in the spectrum of the source waveform and suppress all frequencies

greater than Nyquist frequency.

In real data, noise may dominate the signal where it is severely attenuated, such as

at high frequencies. This noise may be magnified during the phase computation or

operator inversion, if insufficient amounts of white noise, nw, have been added.
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3.4 Further extensions of NSD

3.4.1 Introduction

Modifications have been made to the original trace-by-trace version of NSD in an

effort to improve efficiency and allow more flexibility. Two different extensions of NSD

are explored, profile-mode NSD and profile-mode NSD with random windows (fx-NSD).

Profile-mode NSD allows a single operator to be applied to an ensemble of traces.

Profile-mode NSD with random windows (fx-NSD) also allows a single operator to be

applied to an ensemble of traces. However, it allows the window length to fluctuate

randomly when creating the ITVSI of the input ensemble. Examples of the extensions of

NSD will be shown in Chapter 5.

As described in Section 3.3, NSD designs and applies an operator separately for

each trace. This trace-by-trace version of NSD is slow. Approximately 80% of the run-

time is spent designing the operator and 20% is spent applying it. The following chart

breaks down the run-time of minimum-phase residual-smoothing NSD approximately.
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Table 3.1: Breakdown of trace-by-trace minimum-phase residual-smoothing NSD run-

time

Operator design: 80%
build initial ITVSI 10%
residual smoothing 45%
inversion of operator and phase computation 20%
miscellaneous 5%

Operator application 20%
Total 100%

3.4.2 Profile-mode NSD

The first extension of NSD, profile-mode NSD, designs a single operator and

applies it to an entire ensemble of traces. This option is designed to increase the

efficiency of the algorithm and minimize trace to trace changes induced by the operator.

In addition, a physical model of the data may indicate that a single operator is more

appropriate for an entire ensemble. For example, a surface-consistent approach may

require that a single operator be applied to an entire CMP gather.

The operator in profile-mode NSD is created by calculating a ITVSI for each trace

in the ensemble and averaging them to produce a single ITVSI. This resulting ITVSI is

processed as the ITVSI of any input trace is processed in trace-by-trace NSD.

Specifically, the average ITVSI is smoothed (with either simple-smoothing or residual-

smoothing), coupled with a minimum-phase spectrum if desired, and inverted to form the

NSD operator. However in the profile-mode approach, the single NSD operator (created

from the average ITVSI) is applied to each trace in the ensemble. Profile-mode
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deconvolution is a great advantage in that approximately 65% of the computation time of

trace-by-trace NSD would only be performed once for an ensemble of traces.

3.4.3 Profile-mode NSD with random windows (fx-NSD)

The second extension of NSD is also a profile-mode approach. However, it has

an option which allows the length of the window, used to calculate the ITVSI, to fluctuate

randomly with each trace while remaining centered on a particular time. In this extension

of NSD, one row of the average ITVSI is calculated at time. A temporal window of

randomly fluctuating length is applied to each trace in the ensemble. Then the TVS of

each windowed segment of the ensemble is calculated. This process of windowing and

calculating the TVS is represented by

t max

0(x,t,f) = IV(x, t V(x, t-tV27dft'dt', (3.17)
tmin

where 1F(X5I') is the ensemble of traces, w(x,t-t') is the ensemble of randomly varying

windows and tmin and tmax are the start and end times of the temporal windows. The

complex-valued matrix, <I>(x,t,f), is called the f-x spectra (Margrave, in press). Random

windows are used because a summation over x is expected to reduce window artifacts as

they will be incoherent.
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Next, the magnitude of the f-x spectra is calculated to produce the amplitude

spectra. The amplitude spectra are averaged to produce a row, at time t, in the average

ITVSA(t,f)l:

ITVSA(t , f ) l=— f|0(x,t,f)|dx, (3.18)
N j

where N is the number of traces in the ensemble. This procedure of calculating the f-x

spectra and averaging is repeated for each row until ITVSA(t,f)l is filled.
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CHAPTER 4: PARAMETER TESTING

4.1 Introduction

There are many parameters in NSD and testing must be performed to determine

the relationship between parameter choice and the result from NSD. The parameters may

be related to ITVSI, such as the window length, window increment, and trace padding for

the Fourier transform. Other parameters are more general, such as the exponential gain

constant applied to the input trace and the stabilization factor. Some parameters, such as

the length and geometry of the time and frequency smoothers, method of smoothing, and

the estimate of Q are directly related to operator design. Finally, the phase of the

operator and the filter specifications for filtering the output trace must be chosen.

In this chapter, all tests will be performed on a multiple-free, synthetic input trace.

The synthetic trace is noise-free unless specified otherwise. It was created by applying a

Q filter (Q=SO) combined with a minimum-phase wavelet, of dominant frequency 15 Hz,

to a reflectivity series. The synthetic has analog (theoretical) minimum-phase so results

from NSD are generally expected to have residual delay. As explained in Section 1.8,

digital minimum-phase estimates calculated with a digital Hilbert transform are

imperfect. Therefore a phase correction based on these estimates will not completely

remove time shifts due to velocity dispersion.

As explained in Section 3.3, the result from NSD must be bandpass filtered to

reduce noise that arises from the lack of numerical precision. A bandpass filter of 10-60
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Hz has been applied to all output traces from NSD in the examples of this chapter. The

Nyquist frequency, 250 Hz in these examples, is greater than the high frequency cutoff of

the bandpass filter so aliased frequencies are removed by the filter.

There are many different parameters to test in the NSD algorithm. Not all

permutations can be included in this thesis. Successive testing has favored the minimum-

phase residual-smoothing version of NSD and therefore all testing, unless otherwise

specified, will be performed on this version of NSD. Each parameter test suggests an

optimal parameter. The testing process is iterative, and the best parameters from

previous tests will be used in subsequent tests. These optimal parameters have been used

in all of the tests. The parameter tests include testing the sensitivity of NSD to:

1. time and frequency smoother lengths (minimum-phase simple-smoothing)

2. time and frequency smoother lengths (minimum-phase residual-smoothing)

3. smoother geometry (minimum-phase simple and residual-smoothing)

4. errors in the estimate of Q

5. window length in the calculation of the ITVSI of the input trace

6. window increment in the calculation of the ITVSI of the input trace

7. exponential gain constant applied to the input trace

In addition, the following comparisons and tests will be made:
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8. comparison of combination of Wiener deconvolution and gain, and time-variant

spectral whitening to minimum-phase simple and residual-smoothing NSD, and zero-

phase simple and residual-smoothing NSD

9. comparison of bandlimited reflectivity with constant phase rotations to the

result from minimum-phase residual-smoothing

10. effects of finite numerical precision on NSD

The results from each parameter test are compared to the bandlimited, input trace,

and their ITVSI. The reflectivity has been bandlimited to 10-60 Hz to provide a

comparison to the results from NSD. To judge the performance of the parameters,

compare the features in the trace and ITVSI of the bandlimited reflectivity to the other

traces. In the time domain, such features as the peak at 0.25s and the trough at 0.8s can

be used for comparison, as can be seen from Figure 4.2. It is best to compare the earlier

times of the output traces with the bandlimited reflectivity. In the ITVSI there are several

features, some of which are pointed out with arrows on Figure 4.3. There is a dark zone at

0.7s, a light zone at 1.0s, and a dark band starting at 1.2s. In the grey-level plots of the

ITVSI black is a large positive number and white is zero. Therefore a white spectrum

(high amplitudes at all frequencies) would appear black in a grey-level plot. The ITVSI

grey level plots are normalized with respect to each other for easier comparison.
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4.2 Length of time and frequency smoothers

The length of time and frequency smoothers affects the results significantly and

there are several factors to consider before choosing a smoother length. The uncertainty

principle, duration of reflectivity packages, method of smoothing and physical model

must be considered as the smoothers are chosen. First, theoretical constraints regarding

time and frequency smoothers will be outlined and then examples of how changing the

smoother lengths affects a synthetic trace will be shown.

The relationship of the smoother lengths in the time and frequency domain must

considered. The length of a smoother in one domain is inversely proportional to its

length in the other domain, as stated by the uncertainty principle (Equation (2.9)). In

addition, smoothing in the time domain becomes windowing in the frequency domain and

vice versa. Therefore smoothing in the frequency domain with a long frequency

smoother causes windowing in the time domain with a short window.

Smoothing the power spectrum is equivalent to windowing the autocorrelation

function. A window is needed in the time domain that will encompass the majority of the

embedded wavelet in the spectrogram. Since a typical wavelet is approximately 0.2s

duration, the frequency-domain smoother would need to be at least 5 Hz to encompass it.

Smoothing is intended to suppress the reflectivity in the NSD operator. The

earth's reflectivity manifests itself as banding in time on the ITVSI. Time smoothers must

equalize the power of the ITVSI in time and therefore must be long enough to encompass
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the bands of similar reflectivity character in order to remove the reflectivity from the

ITVSI.

The two methods of smoothing, simple and residual, are different and may require

different lengths of smoothers. The simple-smoothing method directly smoothes the

nonstationary power spectrum of the gained input trace. Therefore long temporal

smoothers are not desirable because they will distort the exponential decay surface. The

residual-smoothing method smoothes the residual power spectrum, (which does not

contain exponential decay), therefore long time smoothers will be less problematic.

Theoretically, temporal smoothers of infinite length are needed to remove the reflectivity.

While testing one smoother the other must be held constant. The values of the

smoother held constant have been chosen based on the considerations outlined above, as

well as through an iterative testing process. The time smoother must be long enough to

encompass the reflectivity packages in both smoothing methods. In the examples shown

in this chapter, the reflectivity bands are approximately 0.2-0.4s in length, so the time

smoother should fall somewhere beyond this range. From the above considerations, it

can be seen that the frequency smoother is best kept fairly short in both the residual-

smoothing and simple-smoothing methods, perhaps 5 to 10 Hz.

4.2.1 Frequency smoother lengths for simple-smoothing NSD

One way to evaluate frequency smoother lengths is to examine their effects in the

time domain. The frequency-domain smoothing process is equivalent to windowing the
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autocorrelation of the seismic trace. As mentioned previously, the length of the frequency

smoother is inversely related to the duration of the window in the time domain. The

autocorrelation of the wavelet and seismic trace are thought to be similar in shape at early

lags and differing at later lags because the autocorrelation of the seismic trace will have

reflectivity at later lags. Therefore the autocorrelation of the seismic trace must be

windowed to approximate the autocorrelation of the wavelet. The window must be long

enough to include the portion of the autocorrelation of the seismic trace that is similar to

the autocorrelation of the wavelet but short enough to exclude the reflectivity. The

autocorrelation of the input trace, and window lengths corresponding to several frequency

smoothers of different lengths are shown in Figure 4.1. It can be seen from this figure that

the window corresponding to Af=SO (corresponding to line 4.Ib) windows the

autocorrelation prematurely. In this example, a window length corresponding to 4.1d or

4.1e may be more appropriate.

From Figures 4.2 and 4.3 it can be seen that the simple-smoothing method of

NSD seems to perform slightly better when used with small frequency smoothers, such as

5 or 10 Hz. As explained previously, long frequency smoothers bias the exponential

attenuation surface and distort the operator. There are subtle differences in the traces of

Figure 4.2 and the ITVSI of Figure 4.3. An arrow on Figure 4.2 points out a zone,

between 1.0 and 1.3s, in the output traces that is resolved better with the short frequency

smoothers than the long frequency smoothers. The ITVSI corresponding to the long

frequency smoothers (20 and 30 Hz) are lacking power at high frequencies and later
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times. An arrow in Figure 4.3 points out a zone in the ITVSI corresponding to Af=30 Hz,

that is relatively unwhitened. Small frequency smoothers are favored for the minimum-

phase simple-smoothing method based on reflectivity character of the output traces,

whiteness of their ITVSI and theoretical reasons.

0.03 0.05 0.067 0.1 0.15
time (s)

Figure 4.1: The autocorrelation of the input trace. The dashed lines indicate where the

autocorrelation would be windowed for frequency smoothers of different lengths. The

dashed line labeled 4.1a corresponds to 30 Hz, 4.1b corresponds to 20 Hz, 4.1c

corresponds to 15 Hz, 4.1d to 10 Hz and 4.1e to 5 Hz.
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input trace bandlimited Af=SHz Af=IOHz Af=ISHz Af=20Hz Af=30Hz
reflectivity

Figure 4.2: Test of the sensitivity of minimum-phase simple-smoothing version of NSD

to frequency smoother length. The length of the time-smoother was held constant at 1 .Os

while the length of the frequency smoother, Af, was changed from 5 to 30 Hz.
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Figure 4.3: ITVSI of traces in Figure 4.2. The ITVSI of the resultant traces from the

frequency-smoother tests of the minimum-phase simple-smoothing version of NSD. The

time smoother was held at 1.0s while the frequency smoother was varied.
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4.2.2 Time smoother lengths for simple-smoothing NSD

Figures 4.4 and 4.5 show the results of the time smoother tests for minimum-

phase simple-smoothing NSD. Small time smoothers, such as 0.05 and O.ls, seem to

provide poor results. For example, the doublet trough just below 0.8s on the bandlimited

reflectivity, pointed out by an arrow in Figure 4.4, is poorly represented on the traces

corresponding to small time smoothers. These time smoothers are too small to span the

reflectivity packages and remove them from the forward operator. Therefore reflectivity

is removed from the output trace during the inversion. A reflectivity package is a time

zone of similar reflectivity character, such as the zone of 1.2 to 1.5s on the bandlimited

reflectivity.The ITVSI of the shortest time smoother is distorted, as can be seen in Figure

4.5. An arrow points to an area on this ITVSI that has more energy at early times and less

energy at later times as compared to the ITVSI of the bandlimited reflectivity.

The reflectivity character between 0.7s and l.ls, pointed out with arrows on

Figure 4.4, is best reproduced by time smoothers of intermediate length, such as 0.5 to

1.0s. The ITVSI corrresponding to the longest time smoother, 1.5s, looks less whitened, as

pointed out by arrows in Figure 4.5. The ITVSI corresponding to the 0.5s or 1.0s time

smoother best resembles the ITVSI of the bandlimited reflectivity. Intermediate length

time smoothers work best in the simple-smoothing method. The time smoothers must be

long enough to remove the reflectivity, but not so long that they distort the ITVSI. In

conclusion, intermediate length time smoother (of approximately 0.5s) is preferred for
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minimum-phase simple-smoothing based on theoretical considerations, reflectivity

character and the whiteness of the ITVSI.

bandlimited
reflectivity

At=0.5 s At=LOs At=1.5s

Figure 4.4: Test of the sensitivity of minimum-phase simple-smoothing version of NSD

to the time smoother length. The length of the frequency-smoother was held constant at

10 Hz while the length of the time smoother, At, was changed from 0.05 to 1.5s.
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Figure 4.5: ITVSI of traces in Figure 4.4. The ITVSI of the resultant traces from the time-

smoother tests of the minimum-phase simple-smoothing version of NSD. The length of

the frequency smoother was held at 10 Hz while the length of the time smoother was

varied.
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4.2.3 Frequency smoother lengths for residual-smoothing NSD

The traces in Figure 4.6 and the ITVSI of Figure 4.7 show the results of the

frequency smoother test from minimum-phase residual-smoothing NSD. The reflectivity

of the traces corresponding to the small frequency smoothers seems to match the

bandlimited reflectivity better. There seems to be little difference in the output traces

using smoothers of different lengths. The 10 Hz frequency smoother is favored in this

example of the residual smoothing method based on theoretical considerations.
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input bandlimited Af=SHz Af=IOHz Af=ISHz
trace reflectivity

Af=20 Hz Af=30 Hz

Figure 4.6: Test of the sensitivity of minimum-phase residual-smoothing version of NSD

to frequency smoother length. The length of the time-smoother was held constant at 1 .Os

while the length of the frequency smoother, Af, was changed from 5 to 30 Hz.
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Figure 4.7: ITVSI of traces in Figure 4.6. The ITVSI of the resultant traces from the

frequency-smoother tests of the minimum-phase residual-smoothing version of NSD.

The time smoother was held constant at 1 .Os while the frequency smoother varied.
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4.2.4 Time smoother lengths for residual-smoothing NSD

The preferred time smoother for the minimum-phase residual-smoothing method

is 1.0s or greater based on Figures 4.8 and 4.9. The reflectivity character of the traces

corresponding to the long time smoothers matches the bandlimited reflectivity more

closely. For example the trough below 1.0s, pointed out by an arrow on Figure 4.8, is

most faithfully reproduced in the traces corresponding to smoothers of 1.0 or 1.5s. The

quiet zone at 0.5s, also pointed out by an arrow, is also reproduced most accurately with

long time smoothers. In addition, the ITVSI corresponding to the short smoothers are

dissimilar to the ITVSI of the bandlimited reflectivity. For example, the ITVSI of the trace

smoothed with 0.05s time smoother has greater energy at early times than the ITVSI of

the bandlimited reflectivity, as pointed out by arrows on Figure 4.9. This may be because

the short time smoothers are smaller than the reflectivity packages, which in this example

are approximately 0.4s. The reflectivity package was not adequately smoothed out by the

short time smoother and was removed when the operator was applied. The time smoother

of 1.0s is preferred because is the trace shows better reflectivity character, its ITVSI

compares more favorably to the ITVSI of the bandlimited reflectivity, and because of

theoretical expectations (as described previously).
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input bandlimited At=0.05s At=O. Is
trace reflectivity

At=0.5s At=LOs At= 1.5s

Figure 4.8: Test of the sensitivity of minimum-phase residual-smoothing version of NSD

to the time smoother length. The length of the frequency-smoother was held constant at

10 Hz while the length of the time smoother, At, was changed from 0.05 to 1.5s.
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Figure 4.9: ITVSI of traces in Figure 4.8. The ITVSI of the resultant traces from the time-

smoother tests of the minimum-phase residual-smoothing version of NSD. The length of

the frequency smoother was held constant at 10 Hz while the time smoother was varied.
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4.3 Smoother geometry

In this section, a comparison is made of using different smoother geometries in

the smoothing process of NSD. Two different smoother geometries were tested, the

Hanning smoother (shown in Figure 4.1Oc) and the boxcar smoother (4.1Oa) in both the

residual-smoothing method and simple-smoothing method. The Fourier transform of a

boxcar is a sine function (4.1Ob), which has significant sidelobes, slow decay and poor

dynamic range. The Fourier transform of the Hanning smoother (4.1Od) decays much

more sharply , has smaller sidelobes, and more dynamic range.

Convolution can be thought of as a replacement process. The smoother is scaled

by a sample of the ITVSI and replicated at the location of the sample. Each output sample

receives multiple contributions that are summed. A signal with greater dynamic range,

such as the Hanning smoother, can adapt to sharp changes better in the convolution

process. Therefore the results from smoothing with the Hanning smoother are expected to

be superior to the results from the boxcar smoother.

The results from simple-smoothing NSD are expected to be more sensitive to the

change in smoother geometry than the results from residual-smoothing NSD. The ITVSI

to be smoothed in the simple-smoothing method is more steep than the ITVSI smoothed

in the residual-smoothing method. Therefore a smoother is needed that can approximate

sharp changes in the simple-smoothing method. As described above, the Hanning

smoother is better suited to this than the boxcar smoother. Since the residual spectrum is
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not as steep, the smoother geometry may not make as much of a difference in the

residual-smoothing method.

The smoother lengths used in the residual and simple-smoothing methods are

10Hz for both the Manning and boxcar smoothers based on the tests of Section 4.2. This

length may not be optimal for the boxcar smoother because, as can be seen from Figure

4.10, the boxcar smoother does not have tapered ends and is effectively longer than a

Manning smoother of the same specified length. All of the smoothers have been

normalized.
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Figure 4.10: The boxcar smoother (4.1Oa) and its Fourier transform (4.1Ob) have very

little dynamic range. In contrast the Hanning smoother (4.1Oc) has a spectrum (4.1Od)

with a greater dynamic range.

4.3.1 Smoothing geometry in simple-smoothing NSD

The traces of Figure 4.11 and the ITVSI of Figure 4.12 were created with simple-

smoothing NSD using either the Hanning or the boxcar smoother. The result from the

boxcar smoother seems to be 180° rotated in phase, as compared to the output trace from

the Hanning smoother and bandlimited reflectivity. The ITVSI of the output trace

corresponding to the boxcar smoother appears less whitened at higher frequencies and

later times, as pointed out by an arrow in Figure 4.12. As previously described, the
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boxcar smoother cannot approximate the steep slopes of the ITVSI and the ITVSI becomes

flattened in the smoothing process. Then, when the operator is inverted, not enough of

the attenuation surface is removed.

bandlimited
reflectivity

banning
smoother

boxcar
smoother

Figure 4.11: Comparison of minimum-phase simple-smoothing results created with

different smoother geometries (Hanning smoother or boxcar smoother) in the simple-

smoothing method.
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Figure 4.12: The ITVSI of the traces in Figure 4.11.

4.3.2 Residual-smoothing and smoother geometry

The traces in Figure 4.13 and the ITVSI in Figure 4.14 both support the conclusion

that the Manning smoother provides better results than the boxcar smoother in the

residual-smoothing method. For example, the doublet trough on the bandlimited

reflectivity at approximately 0.8s (shown by the arrow in Figure 4.13) is best

approximated by the results from the Hanning smoother and is a spike, not a doublet, on

the result from the boxcar smoother. The peak just below 0.8s on this trace may be
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rotated in phase and correspond to the doublet trough of the bandlimited reflectivity. The

ITVSI of the results from NSD smoothed with the boxcar and Manning smoothers look

similar although, the ITVSI of the trace associated with the boxcar smoother has less

energy at later times. As predicted, the residual-smoothing method, especially in regard

to phase, seems less affected by the difference in smoother geometry.
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smoother

boxcar
smoother

Figure 4.13: Comparison of minimum-phase residual-smoothing results created with

different smoother geometry (Manning smoother or boxcar smoother) in the residual-

smoothing method.
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Figure 4.14: The ITVSI of the traces in Figure 4.13.

4.4 Sensitivity of NSD to Q

The NSD operator is determined statistically from the data and not designed

explicitly on a value of Q. The Q estimate, Q, in NSD is only used to remove an

approximate attenuation/gain surface from the ITVSI of the gained input trace. This

residual spectrum is squared to form the residual power spectrum. The attenuation/gain

surface is replaced after the residual power spectrum has been smoothed. This suggests

that residual-smoothing NSD may be relatively insensitive to errors in Q. Q is difficult
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to estimate in practice, and being able to remove attenuation without an exact value of Q

would be advantageous.

If Q is estimated to be too large, then not enough exponential attenuation

is removed in the formation of the residual spectrum, and it will have residual decay. If
y\

Q is estimated to be too small, then too much exponential attenuation will be removed

and the ITVSI of the residual spectrum will have an exponential growth in time and

frequency. In either case, the residual spectrum will not be flat and smoothing will cause

A.

distortion. It is better, however, to estimate Q too large, than too small. This can be

seen by expanding the exponential remaining after the estimated Q surface has been

removed

'Q-QV-W+- (4J)

«l-7rft—i. (4.2)
QQ

The estimate of Q should be chosen to minimize the second term of Equation (4.2),

8OTift—^-. A Q estimated too large will make the second term of Equation (4.2) smaller
QQ

than a Q estimated too small by the same amount. The graph in Figure 4.15 shows how

the value of the second term of Equation (4.2) varies with Q for Q=50. From the graph it
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can be seen that the magnitude of the second term of Equation (4.2) increases more

rapidly with Q too low than Q too high.

reft SQ
QQ

O 20 40 60 80 100 120 140 160 180 200

Figure 4.15: Sensitivity of the decay exponent to estimates of Q. For perfect removal of

the exponential surface, the decay exponent (the term on the y-axis of the graph) must be

zero. It can be seen that an estimate of Q too large is better than an estimate of Q too

small by the same amount.

Figure 4.16 shows a synthetic trace, created with Q=50, that has been

deconvolved several times with Q ranging from 12.5 to 200. The ITVSI of each of the

traces is shown in Figure 4.17. The output traces are progressively worse as the error in

Q increases. For example, the doublet troughs at 0.8s and at 1.0s (pointed out by arrows)



122

match the reflectivity poorly when Q is very low (such as 12.5) or very high (200). As

predicted, the trace corresponding to Q=12.5 seems to match the bandlimited reflectivity

worse than the trace corresponding to Q=IOO or 200. This is obvious at early times,

such as 0.4s to 0.6s as pointed out with arrows on Figure 4.16.

The ITVSI of the trace deconvolved with Q=12.5 appears distorted compared to

the ITVSI of the bandlimited reflectivity. Its energy seems concentrated in two areas as

pointed out by arrows in Figure 4.17. The ITVSI of the trace deconvolved with the

largest estimate of Q (200) looks lacking in energy at later times. However, the ITVSI

corresponding to Q=12.5 compares less favorably to the ITVSI of the bandlimited

reflectivity than the ITVSI corresponding to Q =200, even though the error in the estimate

of Q is greater in the latter case. This effect has been predicted by theory and confirmed

by the examples of the traces and ITVSI.

The results from NSD are best if Q is correct, although the differences in the

A /V

output traces between using the correct Q and an erroneous Q are relatively small. The

output from NSD is worse if Q is estimated to be too small than if it is estimated to be

too large by the same amount.
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Figure 4.16: Test of the sensitivity of NSD to errors in the estimate of Q, Q. The input

trace has been created with attenuation corresponding to a Q value of 50 and then

s\
deconvolved with minimum-phase residual-smoothing NSD with different values of Q.
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Figure 4.17: The ITVSI of the output traces from Figure 4.16.

4.5 Window length in the ITVSI calculation

The window length in the ITVSl calculation is an important parameter and is

related to the time and frequency resolution of the ITVSI, as described in Section 2.3.1. A

short window length provides detailed time information in the ITVSI at the expense of
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frequency resolution and a long window provides the opposite. When choosing a

window length, the size of the embedded wavelet must be considered in addition to

resolution issues. The window must be long enough to encompass the seismic wavelet

which is typically approximately 0.2 s in length. The window length was varied in the

calculation of the ITVSI of the input trace in the minimum-phase residual-smoothing

version of NSD to see how this parameter affected the results.

The ITVSI of the gained input trace calculated with different window lengths are

shown in Figure 4.18. At small window lengths, the ITVSI looks poorly resolved in

frequency and well-resolved in time and at large window lengths, it looks poorly resolved

in time and well-resolved in frequency. It is obvious from these plots that the window

length has a significant role in the shape of the ITVSI.

The output traces from window length tests are shown in Figure 4.19 and the

ITVSI are shown in Figure 4.20. The NSD results from the examples with very small

window lengths (0.05 to O.ls) are quite poor. The traces in Figure 4.19 look as if they

were lacking high frequencies, especially at later times, such as 1.4s and greater (pointed

out by an arrow). The ITVSI in Figure 4.20 do not look whitened at later times. A zone

on these ITVSI that is particularly lacking in frequency content is pointed out by arrows.

The reason the traces and the ITVSI corresponding to small window lengths look lacking

high frequencies is because frequency information has been lost due to the low resolution

in frequency of the ITVSI of the input trace.
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The traces corresponding to the large window lengths, 0.5s and 1.0s, have a

nonstationary appearance and the ITVSI do not look whitened at later times. The reason

for this nonstationarity is related to the poor resolution in time of the ITVSI of the input

trace. The ITVSI of the input trace corresponding to a window length of 1.0s (from

Figure 4.18) shows that time information past 0.8s has been lost. Therefore its

corresponding output trace (from Figure 4.19) and its ITVSI (from Figure 4.20) look

highly nonstationary after 0.8s.

A moderate window length of 0.2s was chosen as the default for NSD in the

calculation of the ITVSI of the input trace. It provides a compromise between time and

frequency resolution and encompasses the embedded wavelet.
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Figure 4.18: Comparison of the ITVSI of the gained input trace for varying window

lengths.
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Figure 4.19: Output traces from NSD that have where the ITVSI of the ungained input

trace has been calculated with different values for the window length.
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Figure 4.20: The ITVSI of the traces from Figure 4.19.
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4.6 Window increment in the ITVSI calculation

The window increment dictates the time sampling rate for the ITVSI, as described

in Section 3.3.2. A small sample rate will most accurately reproduce the time-frequency

characteristics of the trace in the ITVSI, but will also increase the run-time of the

program. A large sample rate aliases steep time-frequency effects. As discussed in

Section 3.3.2, the input trace has been gained to help prevent aliassing, however it is still

a concern.

The window increment should be specified as a percentage of the window size of

the ITVSI calculation to avoid gaps between spectral measurements. Typically 80 to 90%

overlap between windows is desired.

The window length in these experiments is 0.2s. The window increment in the

initial ITVSI calculation in the operator design stage of NSD was varied from 0.01s

(overlap of 95%), 0.04s (overlap of 80%), O.ls (overlap of 50%) to 0.2s (overlap of 0%)

to determine how it affects the results from minimum-phase residual-smoothing NSD.

Figure 4.21 shows the ITVSI of the gained input trace calculated with these differing

values of the window increment. The ITVSI calculated with the smallest window

increment (0.01s) looks more finely sampled in time than the ITVSI calculated with the

largest window increment (0.2s). As the window increment increases, the ITVSI becomes

more blocky.
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The traces are shown in Figure 4.22 and the ITVSI in Figure 4.23. The traces and

ITVSI look very similar to each other. Only very slight differences in the traces, such as

can be seen just above 0.6s (marked by an arrow), can be discerned. Based on the ITVSI

of Figure 4.21, a window increment of 0.04s (80% overlap of the window) has been

chosen as the default value for NSD.
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O

0.4
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O 20 40 AO 80 100 (I 20 40 60 80 100 ' O 20 40 60 80 100
frequency IHz) frequency (Hz) frequency (Hz)
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•§0.8

1.2
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frequency (Hz)

Figure 4.21: The ITVSI of the input trace created with varying window increments.
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Figure 4.22: Test of the sensitivity of minimum-phase residual-smoothing NSD to the

window increment of the ITVSI calculation in the operator design stage.
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Figure 4.23: The ITVSI of the traces in Figure 4.22.

4.7 Exponential gain factor

As described in Section 3.2.2, the trace input to NSD needs to be gained. The

gain is required so that the steep exponential decay surface of the input trace is well

approximated by the ITVSI. However, if the exponential gain constant is too large,

frequencies at later times of the ITVSI will be much stronger and become distorted during

the smoothing process.

The input trace was gained with varying values and then deconvolved with

minimum-phase residual-smoothing NSD to determine how sensitive NSD is to the
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exponential gain constant. The gained input traces are shown in Figure 4.24. The input

traces gained with an exponential gain constant of Os"1 or 0.5s"1, still show amplitude

decay. The traces with gain constants that are too large, such as 2s"1 or 3s'1, show

exponential growth. The gain constant of Is"1 approximately corrects for the amplitude

decay and is expected to produce the best results in NSD.

The output traces from NSD are shown in Figure 4.25 and the ITVSI in Figure

4.26. Using a gain constant that is too large seems to distort the output trace relative to

the bandlimited reflectivity, but using a gain constant that is too small does not seem to

adversely affect the output trace. The phase seems affected when the gain constant is too

large. The traces gained with large constants do not compare well to the bandlimited

reflectivity. For example, the peak or trough at approximately 1.5s on the bandlimited

reflectivity, pointed out by an arrow, is best approximated by the traces with small and

intermediate gain constants. It looks reverse polarity on the traces with large gain

constants. The ITVSI grow more distorted as the gain constant increases past Is"1. Small

and intermediate gain constants provide reasonable results. For this input trace a gain

constant of Is ! has been chosen.
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X=Os-1

Figure 4.24: Input trace gained with different values of the exponential gain constant.
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Figure 4.25: Test of sensitivity of minimum-phase residual-smoothing NSD to the

exponential gain of the input trace.
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Figure 4.26: The ITVSI of Figure 4.25.
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4.8 Comparison of NSD to stationary deconvolution

Figure 4.27 shows the results from four possible versions of NSD (minimum-

phase or zero-phase, simple-smoothing or residual-smoothing). They are compared to

the input trace, bandlimited reflectivity, results from time-variant spectral whitening

(TVSW), and results from a combination of and gain and Wiener decon volution. Time-

variant spectral whitening (Yilmaz, 1987) is a technique to compensate seismic data for

attenuation, but not for dispersion. The operators in both the simple-smoothing and

residual-smoothing methods were smoothed with 10Hz frequency smoothers and 1.0s

time smoothers. In NSD, a stabilization factor of 0.001 was used. The Wiener operator

was designed on the first 0.3 seconds of the input trace and 25 autocorrelation lags were

used in the operator design. The number of autocorrelation lags was chosen to be

consistent with the smoothers used for nonstatioanry decon volution, so that a comparison

could be made of the two methods. Windowing at this autocorrelation lag is equivalent

to a frequency domain smoother of 10 Hz. Wiener deconvolution had a stabilization

factor of 0.0001 (the fraction of the zero lag of the autocorrelation) added before

inversion of the operator.

The residual-smoothing process seems more effective than simple-smoothing.

The minimum-phase residual-smoothing result has better reflectivity character than the

minimum-phase simple-smoothing result. This is most obvious between 0.8s and 1.4s on

the traces. For example, the doublet trough at 1.0s (pointed out by an arrow) in the

bandlimited reflectivity is best reproduced by the result from minimum-phase residual-
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smoothing. The peak at 0.8s on the bandlimited reflectivity (pointed out by an arrow)

also compares most favorably to the result from minimum-phase residual-smoothing.

The ITVSI reinforce the idea that residual-smoothing NSD provides better results

than simple-smoothing NSD. The ITVSI of the simple-smoothing results do not show the

pattern in the ITVSI of the bandlimited reflectivity clearly. The ITVSI have been

whitened but without the proper reflectivity character.

The improvement in performance of the residual-smoothing method over the

simple-smoothing method is related directly to the removal of the exponential attenuation

surface before smoothing. The exponential decay surface is distorted by any smoothing,

although smaller smoothers have been used in an attempt to minimize this effect.

The minimum-phase output in both versions of NSD is more favorable than the

zero-phase outputs. The result from the minimum-phase versions have better reflectivity

character, as compared to the bandlimited reflectivity, than the results from the zero-

phase operator. This can be seen by a comparison of the features at 0.8s and 1.0s on the

minimum-phase and zero phase results. Although the minimum-phase methods produce

results better than the zero-phase methods they do not completely correct for phase

rotation. This is because, as mentioned in Section 1.8, digital minimum-phase estimation

with a Hilbert transform is imperfect.

Deconvolution based on the zero-phase simple-smoothing version of NSD yields

results similar to that of TVSW, as can be seen from Figure 4.27. The ITVSI of the output
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from TVSW is strongly whitened however it does not match the TVS of the bandlimited

reflectivity well at low frequencies, especially at later times. A zone in the ITVSI of the

trace deconvolved with TVSW that does not match the ITVSI of the reflectivity is pointed

out by an arrow on Figure 4.28. The last trace of Figure 4.27 is a result of the

combination of gain and Wiener deconvolution and represents conventional processing.

This trace still exhibits reflections that broaden in time, indicating that the effects of

attenuation have not fully been removed. The ITVSI of gain and Wiener deconvolution

(Figure 4.28) exhibits a corresponding strong loss of bandwidth with time. All of the

deconvolved traces show an erroneous phase rotation just below 0.2s, pointed out by

arrows on Figure 4.27. This may be an error caused by edge effects.
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Figure 4.27: A comparison of output traces from various deconvolution algorithms. The

four combinations of NSD are displayed next to each other in the middle of the diagram.
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Figure 4.28: A comparison of the ITVSI of various deconvolution techniques, input trace

and bandlimited reflectivity.
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4.9 Comparison of NSD to bandlimited reflectivity with constant phase rotations

As explained in Section 1.8.4, a constant multiplied with the amplitude spectrum

of a trace, S(f), can cause a constant phase error in the digital phase estimation. The

digital minimum-phase estimate is computed as in Equation (1.29)

<Kf) = H[In(C *A(f))] (4.3)?

where C is the constant multiplier. Therefore,

(|>(f) = H[In(C)]+ H[ln(A(f))]. (4.4)

In real data it is unknown if the amplitude spectrum has been multiplied by a constant or,

if it has, what that constant may be.

The bandlimited reflectivity has been rotated with constant phase rotations of 45°

and compared to the output trace from minimum-phase residual-smoothing to determine

if there is a constant phase shift in the NSD output. Based on Figure 4.29, the output

from minimum-phase residual-smoothing NSD matches the zero-phase bandlimited

reflectivity most closely. The trace from NSD seems to be shifted later in time with

respect to the bandlimited reflectivity by approximately 0.15s. It would seem that the

minimum-phase residual-smoothing version of NSD corrects the synthetic input trace

reasonably well for minimum-phase rotation and dispersion. Although there is no phase

rotation associated with the deconvolved synthetic data, real data may have a phase
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rotation if the amplitude spectrum has been multiplied by a constant as previously

explained.

NSD phase phase phase phase phase phase phase phase
-135° -90° -45° 0° 45° 90° 135° 180°

Figure 4.29: Comparison of minimum-phase residual-smoothing NSD to bandlimited

reflectivity that has been phase rotated from -135 to 180 °.
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4.10 Comparison of how finite numerical precision affects NSD

The NSD inversion procedure is limited by the finite numerical precision of the

computing facilities, as explained in Section 4.1. Frequencies that have decayed beyond

a certain limit are irretrievably lost. A test has been performed to examine how finite

numerical precision affects minimum-phase residual-smoothing NSD.

Three synthetic traces were created with different Q values, 12.5, 25, and 50.

These three traces were deconvolved with NSD (using the correct estimate of Q) and the

output traces compared to the input trace and bandlimited reflectivity in Figure 4.30. The

ITVSI are compared in Figure 4.31. Constant Q attenuation is dependent on t, f and Q

(e~rof/Q). Therefore, if finite numerical precision is a problem, it should be manifest itself

on each trace and ITVSI at the same ratio of t, f and Q.

The results from the three different Q values, shown in Figure 4.30, each show a

lack of high frequency content after certain times. It is difficult to tell if these times are

roughly multiples of each other, as predicted. The trace corresponding to Q= 12.5

compares well to the bandlimited reflectivity only at very early times, approximately

0.3s. The trace corresponding to Q of 25 compares well to approximately 0.8s and after

this time, it seems to have a low frequency appearance. The trace corresponding to Q of

50 seems to correspond to the bandlimited reflectivity well until late times.

The ITVSI of each output trace, (Figure 4.31) shows a diagonal distinction which

separates the early area of the ITVSI which has power, from the later area of the ITVSI
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that seems to be lacking power. The diagonal line has been roughly drawn on each ITVSI

and occurs earlier for ITVSI of lower Q values. NSD seems unable to compensate for

values attenuated past some unspecified threshold perhaps because of finite numerical

precision.
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Figure 4.30: Comparison of traces created with different values of Q and deconvolved

with minimum-phase residual smoothing NSD.
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Figure 4.31: ITVSI of trace in Figure 4.30.

4.11 Chapter 4 summary

Various parameters in NSD have been tested in this chapter. Reasonable default

parameters have been ascertained based on these examples. The sensitivity of NSD has

been investigated with respect to time and frequency smoother lengths, smoother

geometry, errors in the estimate of Q, window length and window increment in the

calculation of ITVSI, and exponential gain constant. Table 4.1 shows default parameters

for parameters where defaults can be chosen.
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Table 4.1: Default parameters chosen for NSD

parameter default

parameter

frequency smoother length (Hz) 5

time smoother length- simple smoothing 0.5

(s)
time smoother length- residual smoothing 1

(s)
window length (s) 0.2

window increment (s) 0.04

window geometry Hanning

NSD seems to be more sensitive to the length of the time smoother than the

frequency smoother. Intermediate time smoothers, such as 0.5s or 1.0s, work best for the

simple-smoothing method and long time smoothers, such as 1.0s or 1.5s, work best for

the residual-smoothing method. Short frequency smoothers work best for both methods.

An intermediate length time smoother is a smoother that is similar in length or slightly

longer than the reflectivity packages. A reflectivity package is a time zone of similar

reflectivity character. A long time smoother is considerably longer than the reflectivity

packages.

Hanning smoothers were found to give superior results as compared to boxcar

smoothers. Although, the test was biased because an optimal length had not been

determined for the boxcar smoothers. The Hanning smoother may have performed better



150

because its Fourier transform has smaller sidelobes and greater dynamic range than the

Fourier transform of the boxcar smoother. The simple-smoothing method was more

sensitive to changes in smoother geometry than the residual-smoothing method.

Residual-smoothing NSD performs best when the correct value of Q is used

although, when erroneous values of Q are used in residual-smoothing NSD, the results

are similar to results from NSD with the correct value of Q. As Q is difficult to estimate

in practice, the 'forgiving' nature of NSD with respect to Q is a strength of the method.

NSD provides better results with a Q value estimated to be too high, rather than too low

by the same amount.

The window length in the ITVSI calculation had a strong effect on the results from

NSD. Window length determines the time and frequency resolution of the ITVSI. A

relatively short window length of 0.2s was found to be suitable for this example.

Window increment in the ITVSI calculation is another important parameter in

NSD. The window increment affects the time sample rate of the ITVSI. The window

increment must be short enough to reduce aliassing in the ITVSI, however if it is too short

the run time of the ITVSI calculation will be very long. In addition, the window increment

must be shorter than the window length to avoid gaps in the spectral measurements. A

window increment of 0.04s, which corresponds to an overlap of 80% between windows

provides good results.
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The trace input to NSD is gained before deconvolution to help reduce aliassing.

The gain should be determined visually to balance the amplitudes of the trace.

Four versions of NSD (minimum-phase and zero phase, residual-smoothing and

simple-smoothing) have been compared to TVSW and a combination of gain and Wiener

deconvolution. Minimum-phase residual smoothing seems to provide the best result from

the deconvolution methods investigated here. The success of the minimum-phase

residual-smoothing version of NSD is related to the physical model on which the operator

is designed, as well as the data-driven nature of the operator.

Minimum-phase residual-smoothing NSD has been compared to a bandlimited

reflectivity trace with constant phase rotation. This version of NSD seems to produce a

zero-phase deconvolved trace on synthetic data. Real data may have a constant phase

rotation after deconvolution as described in Section 4.9.

Finally, an investigation was made of the effects of finite numerical precision on

the results from NSD. NSD may be unable to compensate for extreme attenuation.

Since constant Q attenuation is dependent on ft/Q, NSD may be ineffective at low Q

values and moderate Q values at later times.
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CHAPTER 5: EXAMPLES

5.1 Introduction

NSD has been applied to the Blackfoot broadband survey to test performance on

real data. The Blackfoot broadband 2D survey was acquired in 1995 over the Blackfoot

Field near Strathmore, Alberta. The target in this area is glauconitic channel sands, up to

35m in thickness, deposited in the Lower Cretaceous as incised valley fill (S tew art et al.,

1996). The channel sands overlie carbonates of Mississippian age. The processing goal

is to delineate the channel boundaries and image the target.

First, optimal parameters for NSD for the Blackfoot broadband dataset were

determined. Some of the parameters have been determined already in Chapter 3. Other

parameters however, such as time and frequency smoother lengths, stab factor, phase of

operator, and method of smoothing must be determined specifically for this dataset.

These parameters are determined by varying them and then comparing the results to

synthetic seismograms. The parameter valuess that give the result best matching the

synthetic seismogram are chosen for and used in NSD for this dataset.

After the parameters have been determined the data was processed. The data was

processed several times, as described in Section 5.1.1 to allow for several comparisons.

In Section 5.3, a dataset deconvolved with gain and Wiener deconvolution will be

compared to a dataset deconvolved with Wiener deconvolution and inverse-Q filtering,

and a dataset deconvolved with NSD. In Section 5.4, trace-by-trace NSD is compared



153

with profile-mode NSD and fx-NSD. The comparisons of the deconvolved data will

involve:

1. entire stacked datasets

2. average ITVSI of datasets

3. comparison of the area thought to contain the channel

4. comparison of deconvolved traces to the synthetic seismograms of 14-09 and 4-16

5.7.7 Processing the Blackfoot Broadband survey

All examples in this chapter have been created with basically the same processing

flow. Variations have been made to this basic flow only to accommodate different

deconvolutions: Flow 1 is the NSD flow, Flow 2 is the Wiener deconvolution flow and

Flow 3 includes Wiener deconvolution and inverse-Q filtering. NSD is applied separately

in all forms: trace-by-trace NSD, profile-mode NSD, and fx-NSD. Therefore, five

different datasets will result.

An estimate of Q is required for NSD and inverse-Q filtering. This estimate was

calculated to be 100 with the spectral ratio method, described in Section 1.6. This Q

value seems consistent with the lithology of the region (sands, shales, dolomites and

limestones) based on Table 1.1.
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NSD was applied post-stack for computational ease. This is acceptable because

constant-Q attenuation is expected to be midpoint consistent based the surface-consistent

model of Section 1.7. Therefore NSD can be applied to data stacked by common

midpoint. Wiener deconvolution and inverse-Q filtering were also applied post-stack to

provide a fair comparison with NSD.

Below is a description of the processing flow. Each processing technique was

applied to every dataset unless specified otherwise.

1. mute A top mute was applied first to the shot records to remove the refracted

arrivals and near surface noise.

2. spherical divergence corrections This is a correction of energy loss due to an

expanding spherical wavefront as described in Section 1.3. These corrections were based

on a function of time and velocity ((tv)"2).

3. gain (Flows 1 and 2) A gain correction of 6dB/s was applied to the Wiener

deconvolution dataset and the NSD dataset. The gain will be removed from the NSD

dataset during the NSD process. Gain was not applied to the dataset that was inverse-Q

filtered.

4. elevation statics These correct for the effects of topography and move the shot

and receiver locations to a level datum (Yilmaz,1987). The datum was chosen to be

965m and the replacement velocity is 2500m/s.
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5. residual statics These static corrections are for velocity variations in the near

surface. Correlation autostatics were used in all of the processing flows.

6. bandpass filter A zero-phase Ormsby bandpass filter of 8-12-90-120 Hz was

applied to the datasets.

7. normal moveout (NMO) correction Normal moveout refers to the time

difference between a reflector on a non-zero offset trace and the same reflector on a zero

offset trace. Normal moveout must be eliminated before stacking (Sheriff and Geldart,

1995).

8. stack The traces are sorted by common midpoint and averaged. This increases

the signal to noise ratio.

9. NSD (Flow 1) The minimum-phase residual-smoothing version of NSD with a

1.0s time smoother and a 10 Hz frequency smoother was applied. A stabilization factor

of 0.01 was used in the algorithm. A time-variant filter with a high cut of 160 Hz at Os

and 70 Hz at 2s was applied to the NSD datasets. A Q value of 100 was used in the NSD

algorithm.

10. Wiener deconvolution (Flows 2 and 3). A minimum-phase Wiener

deconvolution was applied to one of the datasets. An operator of 100ms in length and

0.01 stabilization factor was used. The operator was designed on the time zone of 500-

1500ms. Again, these parameters were chosen to be consistent with NSD.
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11. inverse-Q filtering (Flow 3) This is Promax's Q compensation algorithm

which is based on Kale's algorithm (1982). Inverse-Q filtering was applied to only one

dataset. A Q value of 100 was used for all traces at all times.

12. trace equalization This is a trace to trace amplitude balancing function. A

scalar is applied to the entire trace.

13. FX spatial prediction In this processing technique, the traces are Fourier

transformed and then a prediction filter is applied spatially to reduce noise. A Wiener-

Levinson algorithm was used with 0% white noise, a spatial operator of 60 traces, and 5

samples in the prediction filter. The windows are 300ms in length with a 30ms overlap.

Frequencies below 5Hz and above 160Hz were attenuated.

14. phase shift migration Migration involves repositioning data elements to make

their locations appropriate to the locations of the associated reflectors and diffracting

points (Sheriff and Geldart, 1995). Phase shift migration is a downward continuation in

the frequency domain. The data was migrated from CDP 260 to CDP 550 to avoid end

effects. Frequencies of O to 160 Hz were migrated.

15. automatic gain control (Flow 2) This was applied to the dataset with gain and Wiener

deconvolution only for display purposes. Automatic gain control is a time-variant gain. It

is computed by applying a window to a trace and calculating a scale factor for that

window based on the mean amplitudes in the window. The scale factor is then applied to
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the center sample. The window is then incremented along the trace. A 500 ms gate was

used in the gain and Wiener deconvolution flow in these examples.

5.2 Determination of parameters for the Blackfoot broadband survey

Two wells near the Blackfoot broadband survey containing sonic and density

logs, 14-09-023-23W4 and 4-16-023-23W4, allow for the construction of synthetic

seismograms. Figure 5.1 is a map showing the location of the two wells in relation to the

line. The two wells are pointed out in Figure 5.1 by arrows.

19
f J E C T I N F O R M A T I

T23R&3W4

10

Figure 5.1: A map showing the location of 14-09 and 4-16 in relation to the Blackfoot

broadband survey. Arrows in the figure point out the two wells.
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Synthetic seismograms are a type of forward modeling based on the convolutional

model of Equation (1.21). Sonic and density logs provide the information needed to

construct a reflectivity estimate. Once the reflectivity is estimated, a wavelet can be

convolved with the reflectivity series to compute the simplest type of synthetic

seismogram. Synthetic seismograms in these examples are one-dimensional and do not

contain multiple effects. The layers are assumed to be horizontal and the raypaths are

assumed to be vertical (and therefore normally incident on the reflectors). In addition,

diffractions and other wave modes are ignored. The wavelet used in the 4-16 synthetic

seismogram is an Ormsby wavelet with corner frequencies of 8-12-90-110 Hz and the

wavelet for the 14-09 synthetic seismogram is an Ormsby wavelet of corner frequencies

8-12-75-90Hz.

Real seismic data may be different than the synthetic seismogram for several

reasons. One reason is the approximations used in the calculation, as discussed above.

Also, seismic wavelengths are so much longer than the distances over which the acoustic

properties can be assumed to be constant and therefore the actual seismic waveform is the

interference composite of many small events (Telford et. al. 1990). In addition, the sonic

log used to calculate the reflectivity is also subject to errors (Telford et. al, 1990).

The frequencies used in sonic logs are on the order of 10's of KHz and are

therefore much higher than the frequencies of seismic data (Waters, 1992). There is a

time delay between two pulses propagating with two different frequencies (Stewart,

1983). Therefore synthetic seismograms must be stretched and shifted to match seismic
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data. The 4-16 sonic log has been check-shot corrected to reduce the time delay between

synthetic seismograms and seismic data. A check-shot survey is a survey with a sonde in

the well and a seismic source at the surface (Waters, 1992). It records velocities down

the well and can be used to attempt to correct a sonic log to seismic velocities.

Parameter testing must be performed to determine optimal parameters for NSD as

applied to the Blackfoot broadband dataset. Some of the parameters determined in

Chapter 3 will be used. The window length for the ITVSI calculation is 0.2s and the

window increment is 0.04s. Manning smoothers are used. The gain was determined to be

0.6908s"1. Other parameters, such as type of smoothing (residual or simple), phase of the

NSD operator, time and frequency smoother lengths, and stab factor will be determined

through testing. The tests will include:

1) comparison of zero-phase residual-smoothing, minimum-phase residual-

smoothing, zero-phase simple-smoothing and minimum-phase simple-smoothing

2) time and frequency smoother lengths were tested for the minimum-phase

residual-smoothing method.

3) constant phase rotations of the synthetic seismograms compared to the

minimum-phase residual-smoothing result

4) stab factor for the minimum-phase residual-smoothing version
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The comparisons in this section will be done only with a zoomed section of the

synthetic seismogram created from the logs of the 4-16 well. This is because the 4-16

synthetic seismogram ties to the seismic data better. The zoomed section is 0.8s to l.ls

and includes the target area. Ten seismic traces centered at the well location of 4-16 are

displayed in each figure and compared to the synthetic seismogram. The synthetic has

been rotated by a constant phase rotation of 90° (this constant phase rotation is shown to

provide the best tie to the deconvolved datasets in Section 5.2.3).

5.2.7 Method of smoothing and operator phase

Figure 5.2 shows a parameter test comparing the minimum-phase residual-

smoothing version with the zero-phase simple-smoothing version, zero-phase residual-

smoothing version and minimum-phase simple-smoothing version. The minimum-phase

residual-smoothing version matches the synthetic seismogram most closely. For

example, the trough doublet at 0.92s on the synthetic seismogram (pointed out by an

arrow on Figure 5.2) is most closely reproduced by the result from minimum-phase

residual-smoothing NSD. The zero phase versions look similar to each other. These

results match with theory and the results of tests on synthetic data in Chapter 4.
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Figure 5.2: A comparison of the 4-16 synthetic seismogram to results from minimum-

phase residual-smoothing NSD, minimum-phase simple-smoothing NSD, zero-phase

residual-smoothing NSD and zero-phase simple-smoothing NSD. The arrow points to a

section of the synthetic seismogram that is best reproduced by the minimum-phase

residual-smoothing method.
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5.2.2 Smoother lengths

Next, the lengths of the time and frequency smoothers of the minimum-phase

residual-smoothing version were varied to determine their influence on the tie to the

synthetic seismogram. The results are shown in Figures 5.3 and 5.4. Variation in

temporal and frequency smoothers has little effect on the data. The reflectivity packages

in this dataset appear to vary between 200ms and 500ms based on the stacked sections,

such as Figure 5.8. Therefore the temporal smoother should be longer than 500ms. A

temporal smoother of 1.0s and frequency smoother of 10 Hz will be used based on the

duration of the reflectivity packages, theory and the conclusions of Chapter 3.
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time
synthetic

Figure 5.3: The time smoother of the minimum-phase residual-smoothing method was

varied from 0.05s to 1.5s and compared to the synthetic seismogram from the 4-16 well.

The frequency smoother was held constant at 10 Hz.
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Figure 5.4: The frequency smoother in the minimum-phase residual-smoothing method

was varied from 5 Hz to 30 Hz and compared to the synthetic seismogram from the 4-16

well. The time smoother was held constant at LOs.

5.2.3 Phase of synthetic seismograms

The Ormsby wavelet used in the creation of the synthetic seismogram was rotated

from 0° to 180° through constant rotations of 45° increments to determine if a phase shift

is present in the NSD deconvolved section. The rotated seismograms and NSD result are

shown in Figure 5.5. The synthetic seismogram created with a 90° rotated Ormsby

wavelet ties best to the section of the minimum-phase residual-smoothing version of NSD

shown. For example, the trough at 0.93s and the time zone between 0.98s to 1.01s



165

(pointed out by arrows in Figure 5.5) on the minimum-phase residual-smoothing method

are best matched by the synthetic seismogram rotated by a constant 90°. The phase

rotation is a result of a constant multiplied with the amplitude spectrum of the seismic

data as described in Section 1.8.4 and Section 4.10. The nature of the constant multiplier

is unknown.

180°

i.o.

minimum-phase
residual-smoothing T]™e

r - - - -o^ee—

- -- -0735—

Figure 5.5: The synthetic seismogram is rotated through constant phase rotations from O

to 180° with 45° increments. The synthetic seismogram rotated by 90° seems to best

match the result from minimum-phase residual-smoothing NSD.

5.2.4 Variation of stab factor

In the NSD algorithm a small constant needs to be added to a matrix in certain

equations for stability. It is added to the Q/gain surface before it is inverted (Equation
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3.10) and to the forward operator before the minimum-phase calculation and inversion

(Equation 3.14). The small constant is the maximum value of the Q/gain surface or ITVSI

multiplied by some number called the stability factor, which is typically between 107 and

10"1. The stability factor must be chosen so that it is small enough to avoid significantly

altering the quantity that it is added to, but it must be large enough to prevent an

operation from becoming unstable. The stability factor is most crucial in real data when

low values in the ITVSI become dominated by noise.

The stab factor was varied from 10"1 to 106 to determine how it affects the results,

which are shown in Figure 5.6. The results with stab of 102, 10"3, 10"4, and 105 seem

strongly similar. The result with stab of 10"1 looks worse in comparison to the synthetic

seismogram than the others results. A stab factor of 0.1 is too large and is affecting the

numerical values of the operator. A stab factor of 102 will be used in the examples of this

chapter.



167

time synthetic
(s) seismogram stab= 10-'

Figure 5.6: The stab factor was varied from 10"1 to 105 in the minimum-phase residual-

smoothing result.

5.2.5 Conclusions from parameter testing

Based on the tests of this section, the minimum-phase residual-smoothing version of

NSD provides a good comparison to the synthetic seismogram. In addition, a time

smoother of 1.0s, a frequency smoother of 10 Hz and a stab factor of 102 also provide

reasonable results. These parameters will be used in the remaining examples.
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5.3 Comparison of NSD to other deconvolution techniques

In this section, the results from profile-mode NSD will be compared to results

from a combination of gain and Wiener deconvolution, and Wiener deconvolution and

inverse-Q filtering. Figure 5.7 shows the stacked data set after pre-stack processing

without application of any deconvolution. The stack with gain and Wiener deconvolution

applied to it is shown in Figure 5.8. The stack with Wiener deconvolution and inverse-Q

filtering is shown in Figure 5.9, and the stack with profile-mode NSD is shown in Figure

5.10. Figure 5.11 shows an average ITVSI for each stacked section. The average ITVSI

were calculated by averaging the ITVSI of traces 50 to 100. A zoom of the area thought

to contain the channel of each of the three stacks is shown in Figure 5.12 and a

comparison of the datasets to the synthetic seismograms is shown in Figures 5.13 and

5.14.

All deconvolved sections show increased resolution as compared to the stack

before post-stack processing (Figure 5.7). The stacked section with post-stack NSD

deconvolution seems to be of better resolution than the other two sections, although

comparison is difficult at this scale. The reflectors in the 1300 to 1600 ms time zone

seem to be more resolved on the NSD section.

The average ITVSI are shown in Figure 5.11. In these grey level plots, white is

zero and black is a large positive number. The average ITVSI of the sections processed

with gain and Wiener deconvolution, and Wiener deconvolution and inverse-Q filtering

are dominated by two separate high amplitude areas. In addition, both average ITVSI are
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lacking high frequencies at later times. In contrast, the average ITVSI of the NSD result

is more even and consistent. The bandwidth is approximately 10 to 110 Hz.

As stated previously, the target in this area is channel sands. Figure 5.12 focuses

in on the area of each of the deconvolved sections thought to contain the target. The

geological feature thought to be the channel is pointed out with arrows. The channel is

difficult to discern on the section deconvolved with post-stack Wiener deconvolution and

on the section that had Wiener deconvolution and inverse-Q filter applied to it. The

section with NSD shows the best image of the target. The channel in the NSD section is

outlined by the underlying Mississippian carbonates. In addition there is an internal

marker in the channel sands at approximately 1060ms in the NSD section that stands out

clearly. This internal marker is absent in the other sections. The vertical resolution of the

NSD result seems improved as compared to the others.

The comparisons of the different processing flows with the 14-09 synthetic

seismogram are shown in Figure 5.13. The 14-09 synthetic seismogram ties reasonably

well to the seismic sections. The NSD section ties better to the synthetic seismogram at

later times, such as 0.7s to 0.8s, than the other seismic sections.

The 4-16 synthetic seismogram ties more closely to the Blackfoot broadband

survey, as can be seen from Figure 5.14. Again, the NSD result matches the synthetic

better than the other two sections. The trough at 0.92s (shown by an arrow in the figure)

on the synthetic seismogram of 4-16 is best approximated by the NSD result. The time
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zone between 0.97s and 1.01s (also pointed out by an arrow) is also best matched by the

NSD result.

NSD has proved effective as applied to the Blackfoot broadband survey. It enhanced

the vertical resolution of the stacked section as compared to the combinations of gain and

Wiener deconvolution, and Wiener deconvolution and inverse-Q filtering. In addition,

the section deconvolved with NSD has improved reflectivity character as compared to the

other techniques. This is evident from the close-up view of the channel (Figure 5.12) and

from the ties to the synthetic seismograms (Figures 5.13 and 5.14). In addition, the

average ITVSI of NSD is more even and consistent than the average ITVSI of the other

methods. NSD delineated the target channel more clearly than the other processing

techniques. The success of NSD as compared to the other techniques is related to the

physical model on which the operator is built and its data-driven nature.
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Figure 5.7: The Blackfoot broadband survey after pre-stack processing and without

application of any deconvolution.
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Figure 5.8: The Blackfoot broadband survey with gain and post-stack Wiener

deconvolution and the complete post-stack processing described in Section 5.4.
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Inverse- q Tillered (post-Mack)

Figure 5.9: The Blackfoot broadband survey with post-stack Wiener deconvolution and

post-stack inverse-Q filtering and the complete post-stack flow described in Section 5.4.
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Figure 5.10: The Blackfoot broadband survey with post-stack profile-mode NSD and the

complete post-stack processing as described in Section 5.4.
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Figure 5.11: The average ITVSI, calculated by averaging the ITVSI of traces 50 to 100, of

the stacked sections from Figures 5.8 to 5.10.
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Figure 5.12: The target area of each of the deconvolved sections. The feature thought to

be the channel is pointed out with arrows in the figure.
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Figure 5.13: The 14-09 synthetic seismogram compared to the result from gain and post-

stack Wiener deconvolution, post-stack Wiener deconvolution and post-stack inverse-Q

filtering and post-stack profile-mode NSD.
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Figure 5.14: The 4-16 synthetic seismogram compared to the result from gain and post-

stack Wiener deconvolution, post-stack Wiener deconvolution and post-stack inverse-Q

filtering and post-stack profile-mode NSD. The arrows point to places on the synthetic

seismogram that tie best with the NSD result.

5.4 Comparison of extensions of NSD

Trace-by-trace mode NSD, profile-mode NSD and fx-NSD were tested on the

Blackfoot broadband survey and compared to each other. NSD was applied post-stack in
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all examples, as described in Section 5.2. The parameters used for NSD are also

described in Section 5.2. The full seismic sections of the Blackfoot Broadband survey

processed with each version of NSD are not shown as they were indistinguishable from

each other. The result from profile-mode NSD is shown in Figure 5.10. The average

ITVSI created by averaging the ITVSI of traces 50 to 100, of each section deconvolved

with NSD, are shown in Figure 5.15. Figure 5.16 is a comparison of a zoom of each of

these sections in the area where the channel is thought to be.

The average ITVSI and the zoom of the channel look very similar for both

versions of NSD. Slight differences however can be seen in the zoomed section of the

comparison to synthetic seismograms in Figures 5.20 and 5.21. The reflectors in the

trace-by-trace NSD result appear less consistent. For example the peak at 0.62s on

Figure 13, as pointed out with an arrow, is more consistent in the profile-mode NSD and

fx-NSD. This is expected because applying a single operator to an ensemble of traces

will reduce trace-to-trace differences. In general, the results from both types of NSD

yield similar results. The advantage of profile-mode NSD lies in statistical leverage and

trace-to-trace stability. In general, the results from all three types of NSD yield similar

results and no single type of NSD stands out as being clearly superior. This similarity is

a strength of the method and indicates that NSD is robust. The advantages of profile-

mode and fx-NSD are the reduction of trace-to-trace differences induced by the operator

and statistical advantage in the operator design.
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Figure 5.15: Average ITVSI of trace-by-trace NSD, profile mode NSD and fx-NSD. The

average ITVSI were calculated by averaging the ITVSl of traces 50 to 100.
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Figure 5.16: A comparison of profile-mode NSD, trace-by-trace NSD and fx-NSD in the

channel zone. The feature thought to be the channel is pointed out with arrows.
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Figure 5.17: The 14-09 synthetic compared to trace-by-trace NSD, profile-mode NSD

and fx-NSD. Ten traces centered at the well for each NSD result are shown.
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Figure 5.18: The 4-16 synthetic compared to trace-by-trace NSD, profile-mode NSD and

fx-NSD.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

NSD has been developed as an extension of stationary Fourier domain

deconvolution. It uses a data-dependent operator derived from the time-variant amplitude

spectrum, ITVSI of the input trace to approximately correct for the effects of attenuation,

dispersion, multiple effects and source signature.

The first step in the NSD algorithm is to calculate the ITVSI of the gained input

trace. This ITVSI is then smoothed in an attempt to separate the reflectivity from the

source signatrue and anelastic attenuation. Two versions of the deconvolution method

are available and they differ in the way the nonstationary spectrum of the input data is

smoothed in the operator design stage. The first version, the simple-smoothing method,

directly smoothes the ITVSI of the input trace. The alternate version, the residual-

smoothing method, is a type of data-driven inverse-Q filter. The residual-smoothing

method removes an estimated exponential attenuation trend from the ITVSI of the input

trace, smoothes the residual spectrum and restores the exponential attenuation trend. The

resulting amplitude spectrum of the forward operator from either version can then be

coupled with a minimum-phase spectrum (computed digitally from the amplitude

spectrum) or left as zero phase before being inverted to form the inverse operator. The
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inverse operator is applied continuously to the data using nonstationary filter theory

(Margrave, 1998).

NSD is limited by the assumptions described in Section 3.2.2 and by the

smoothing process. Smoothing limits the NSD procedure in at least two ways. First, in

the residual-smoothing method, an estimate of Q is required. If this estimate is wrong

then the smoothing biases the exponential decay surface. However, even if the estimate

of Q is correct and the attenuation/gain surface is exactly removed, the smoothing process

is still imperfect because the smoothers are of finite length. Infinite smoothers are

required to perfectly remove attenuation. In addition, the spectrum to be smoothed is of

finite length and so end effects are an issue.

NSD can be applied in two modes, trace-by-trace and profile-mode. In trace-by-

trace mode an NSD operator can be designed and applied separately to each trace in an

ensemble. In profile mode a single operator can be designed from an ensemble and

applied to each trace. The profile-mode NSD approach is useful when a physical model

indicates that a single operator is more appropriate. Profile-mode NSD reduces trace-to-

trace differences induced by the operator and has a statistical advantage in the operator

design.

NSD has many parameters and testing has been performed to see how parameter

changes affect the NSD results. The effects of the time and frequency smoother lengths,

smoother geometry, window length, window increment, exponential gain constant, errors
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in the estimate of Q, minimum-phase or zero-phase NSD operator, residual-smoothing or

simple-smoothing, and sensitivity of NSD to finite numerical precision were investigated.

A brief summary of the results from these parameter tests will be listed. The time

smoothers should be similar in length to the duration of the reflectivity packages for the

simple-smoothing version and much longer than the reflectivity packages in the residual-

smoothing version. The frequency smoother length should be kept very short (~5Hz) for

both simple and residual-smoothing. A Manning smoother appears to perform better than

a boxcar smoother. The window length of the ITVSI calculation should be moderate, to

provide good resolution of the ITVSI in both time and frequency. The window increment

of the ITVSI calculation should very short and provide 80-90% overlap between

windows. The trace input to NSD should be gained so that the trace is balanced and not

growing or decaying with time. A minimum-phase operator appears to correct for

minimum-phase dispersion with more success than the zero-phase operator. The

residual-smoothing version of NSD provides results superior to smoothing with the

simple-smoothing method. NSD cannot correct for amplitudes with extreme decay due

to finite numerical precision of computing facilities.

NSD has proved effective as applied to the Blackfoot broadband survey. It

enhanced the vertical resolution of the stacked section as compared to the combinations

of gain and Wiener deconvolution, and Wiener deconvolution and inverse-Q filtering. In

addition, the section deconvolved with NSD has improved reflectivity character as

compared to the other techniques. This is evident from the close-up view of the channel
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and from the ties to the synthetic seismograms. In addition, the average ITVSI of NSD is

more even and consistent than the average ITVSI of the other methods. NSD delineated

the target channel more clearly than the other processing techniques. The success of

NSD as compared to the other techniques is related to the physical model on which the

operator is built and its data-driven nature.

NSD has advantages over similar processing techniques. It approximately corrects

for anelastic attenuation and source signature simultaneously. In addition, the operator is

continuously time-variant and applied without the use of windows. As well, NSD can

handle nonstationary multiples in addition to stationary multiples. A further advantage is

that the operator is data-driven and based on a strong physical model. It seems to be

robust with respect to errors in the estimate of Q.

6.2 Future work

Although much of the groundwork has been laid out in this thesis there are many

possibilities left to explore regarding NSD. A few ideas for future work are listed below,

although they certainly do not comprise a comprehensive list of possibilities.

A fundamental change to the algorithm would be to design the NSD operator

using a wavelet transform instead of using a ITVSI. The flexibility of the choice of

mother wavelet in the wavelet transform, and the excellent joint time-frequency

resolution of this method may offer advantages for NSD.
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The effectiveness of NSD in nonstationary multiple removal needs to be

investigated. NSD can potentially handle a wider class of multiples than stationary

techniques because the NSD operator is nonstationary.

NSD could be implemented in a surface-consistent deconvolution approach. NSD

could be applied as the midpoint-consistent term to correct for Q attenuation.

As mentioned in the conclusions, the smoothing process of NSD is imperfect.

Well log data, if available, may offer an alternate method in separating reflectivity from

attenuation effects. The ITVSI of the input trace could be divided by the ITVSI of the

reflectivity instead of, or in addition to, smoothing.
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