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ABSTRACT 
 

 

Two transforms (the Gabor transform, based on the Fourier transform, and the 

wavelet transform) are investigated and employed to achieve an increased temporal 

resolution of the seismic data. Unlike the Fourier transform, which maps a time series 

into a totally abstract domain, called the frequency domain, or the Fourier domain, the 

Gabor transform maps the time series into a joint time-frequency domain, called the 

Gabor domain. The Gabor domain, is suitable to analyze the data simultaneously in time 

and frequency, and to design, test, and evaluate new processing techniques. The 

hyperbolic smoother designed in the Gabor domain represents the main achievement of 

this thesis. It is shown that the Gabor deconvolution with the hyperbolic smoother 

successfully corrects the seismic data for the effects of anelastic attenuation and source 

signature, and effectively restores the relative amplitudes. 

Two methods of using the wavelet transform in seismic signal analysis are also 

investigated in this research. The wavelet transform spectral whitening technique is a 

method introduced and investigated for the first time, similar to the classical time variant 

spectral whitening method. The second method, the wavelet transform filtering by 

semblance weighting, represents also a new technique, which demonstrates that the 

wavelet domain is suitable for suppressing random noise and enhancing the resolution of 

subtle stratigraphic features. 

 

 
 
 
 
 
 
 

 



            

   iv 
 

 
 
 
 

ACKNOWLEDGEMENTS 
 

 

I would like to thank my supervisor Dr. Gary Margrave for his encouragement 

from the beginning and enthusiastic support through the end of finishing the thesis. His 

insightful guidance, and serious academic attitude go through all my thesis research. I can 

never thank him enough for his professional leadership and time spent with me during my 

entire research.  

Thanks to sponsors of the CREWES project (The Consortium for Research in 

Elastic Wave Exploration Seismology) with the University of Calgary for their financial 

support. Discussions with Ms. Han-Xing Lu and Mr. Dave Henley of CREWES have 

been very helpful and led to valuable conclusions during this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 



            

   v 
 

 

 

 

TABLE OF CONTENTS 

 

 

TITLE PAGE  ................................................................................................................i 

APPROVAL PAGE  .................................................................................................... ii 

ABSTRACT  ............................................................................................................... iii 

ACKNOWLEDGEMENTS  ........................................................................................iv 

TABLE OF CONTENTS  .............................................................................................v 

LIST OF FIGURES  ................................................................................................. viii 

 

CHAPTER 1.  STATIONARY DECONVOLUTION  ................................................1 

      1.1 Introduction .........................................................................................................1 

      1.2 Wiener spiking deconvolution. .............................................................................1 

             1.2.1 The stationary convolutional model ............................................................2 

             1.2.2 Wiener spiking filter...................................................................................3 

             1.2.3 Frequency domain equivalent of the Wiener spiking filter ..........................8 

      1.3 Minimum-phase assumption versus zero-phase ..................................................11 

             1.3.1 Minimum-phase wavelet ..........................................................................11 

             1.3.2 Zero-phase wavelet...................................................................................15 

 

CHAPTER 2. ATTENUATION CONCEPT AND THE COMPLEX TRACE 

ANALYSIS ..................................................................................................................17 

      2.1 The attenuation concept ....................................................................................17 

      2.2 Complex trace analysis.......................................................................................24 

             2.2.1 The instantaneous frequency and the amplitude attribute ..........................24 



            

   vi 
 

 

CHAPTER 3. GABOR DECONVOLUTION ............................................................30 

      3.1 Mixed domain nonstationary deconvolution, operator based...............................30 

      3.2 Gabor domain nonstationary deconvolution, transform based.............................35 

             3.2.1 Gabor transform .......................................................................................35 

             3.2.2 Gabor deconvolution ................................................................................43 

                     3.2.2.a The boxcar smoother......................................................................44 

                      3.2.2.b The hyperbolic smoother...............................................................45 

      3.3 Two methods of spectral estimation ..................................................................47 

      3.4 Application on synthetic data of the Gabor deconvolution..................................50 

             3.4.1 Discussion and conclusions for the synthetic case ....................................57 

      3.5 Application on real data of the Gabor deconvolution .........................................59 

             3.5.1 Acquisition parameters and a brief geological description.........................60 

             3.5.2. Gabor deconvolution parameters .............................................................61 

             3.5.3 Spiking deconvolution & TVSW parameters ............................................67 

             3.5.4 Processing flows.......................................................................................67 

             3.5.5 Discussion and conclusions for Gabor deconvolution ..............................71 

             3.5.6 Comparison of Gabor deconvolution and Wiener spiking deconvolution to 

                      synthetic  seismograms.............................................................................76 

 

CHAPTER 4. WAVELET TRANSFORM WITH APPLICATIONS TO SEISMIC 

REFLECTION DATA ................................................................................................81 

      4.1 Mathematical background .................................................................................81 

            4.1.1 The CWT ................................................................................................82 

              4.1.2 The DWT and multi-resolution analysis ..................................................84 

      4.2 Applications of the wavelet transform in seismic processing ..............................89 

             4.2.1 Basis selection and decomposition level ...................................................89 

             4.2.2 Example on synthetic trace of the WT whitening method .........................91 

             4.2.3 The WT filtering by semblance weighting ................................................94 



            

   vii 
 

      4.3 Conclusions of the WT filtering by semblance weighting ...................................98 

 

CHAPTER 5. CONCLUSIONS AND FUTURE WORK.........................................102 

      5.1 Conclusions .....................................................................................................102 

      5.2 Future work .....................................................................................................104 

 

REFERENCES ..........................................................................................................105 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



            

   viii 
 

 
LIST OF FIGURES 

 
Figure 1.1 Trace representation in time domain...............................................................3 

Figure 2.1 3D representation of a complex seismic trace...............................................25 

Figure 2.2 Quadrature filter, truncated to nineteen points ..............................................27 

Figure 3.1 Trace representation in time domain, attenuated ..........................................32 

Figure 3.2 Wave packet ................................................................................................39 

Figure 3.3 A set of the normalized Gaussians ...............................................................39 

Figure 3.4 Synthetic attenuated (Q=25) trace in time domain .......................................48 

Figure 3.5 Gabor-MEM magnitude spectrum ...............................................................48 

Figure 3.6 Gabor-DFT magnitude spectrum..................................................................48 

Figure 3.7 Time domain results of the Gabor deconvolution .........................................51 

Figure 3.8 Nonstationary bandpass filter in Gabor domain ............................................52 

Figure 3.9a Gabor-magnitude spectrum (DFT estimation) ............................................53 

Figure 3.9b Gabor-magnitude spectrum (Burg estimation) ...........................................53 

Figure 3.10 Gabor magnitude spectrum (DFT estimation).............................................53 

Figure 3.11a Smoothed Gabor magnitude spectrum (DFT estimation) ..........................53 

Figure 3.11b Smoothed Gabor magnitude spectrum (Burg estimation)..........................53 

Figure 3.12a Gabor magnitude spectrum (DFT estimation)...........................................55 

Figure 3.12b Gabor magnitude spectrum (Burg estimation) ..........................................55 

Figure 3.13a.Smoothed Gabor magnitude spectrum (DFT estimation) .........................55 

Figure 3.13b Smoothed Gabor magnitude spectrum (Burg estimation)..........................55 

Figure 3.14a Gabor magnitude spectrum (DFT estimation)...........................................56 

Figure 3.14b Gabor magnitude spectrum (Burg estimation) ..........................................56 

Figure 3.15a Frequency magnitude spectrum of a trace.................................................57 

Figure 3.15b Frequency magnitude spectrum of a trace.................................................57 

Figure 3.15c Frequency magnitude spectrum of a trace ................................................58 

Figure 3.15d Frequency magnitude spectrum of a trace ................................................58 



            

   ix 
 

Figure 3.16 Schematic stratigraphy of the Blackfoot area..............................................61 

Figure 3.17 Real trace from Blackfoot data ..................................................................62 

Figure 3.18a Gabor magnitude spectrum (DFT estimation) of a real trace ....................62 

Figure 3.18b Gabor magnitude spectrum (Burg estimation, order 5) of a real trace ......62 

Figure 3.19a Gabor magnitude spectrum (DFT estimation) of a real trace ....................63 

Figure 3.19b Gabor magnitude spectrum (Burg estimation, order 5)  of a real btrace ....63 

Figure 3.20a Gabor magnitude spectrum (DFT estimation) of a real trace ....................64 

Figure 3.20b Gabor magnitude spectrum (Burg estimation, order 5)  of a real trace ......64 

Figure 3.21a Gabor magnitude spectrum (DFT estimation) of a real trace.....................64 

Figure 3.21b Gabor magnitude spectrum (Burg estimation, order 5) of a real trace .......64 

Figure 3.22 Gabor magnitude spectrum (Burg estimation, order 12)  of a real trace ......65 

Figure 3.23 The processing flow of the Wiener spiking deconvolution..........................68 

Figure 3.24 The processing flow of the Gabor deconvolution sections ..........................69 

Figure 3.25 Raw shot # 81. ...........................................................................................71 

Figure 3.26 Shot # 81 after Wiener deconvolution. .......................................................71 

Figure 3.27 Shot # 81 after Gabor/Burg boxcar smoother deconvolution.......................71 

Figure 3.28 Wiener/TVSW final section .......................................................................72 

Figure 3.29 Gabor/Burg boxcar smoother, final section.................................................73 

Figure 3.30 Gabor/Burg hyperbolic smoother, final section...........................................73 

Figure 3.31 Wiener/TVSW, final section, detail. ...........................................................74 

Figure 3.32 Gabor/Burg boxcar smoother, final section, detail ......................................75 

Figure 3.33 Gabor/Burg hyperbolic smoother, final section, detail ................................75 

Figure 3.34 A comparison of the 09-08 synthetic seismogram to results from Wiener 

Spiking deconvolution ...................................................................................................78 

Figure 3.35 A comparison of the 09-08 synthetic seismogram to results from Gabor 

deconvolution -boxcar smoother ....................................................................................79 

Figure 3.36 A comparison of the 09-08 synthetic seismogram to results from Gabor 

deconvolution -hyperbolic smoother ..............................................................................80 

Figure 4.1a Haar scaling function of an arbitrary scale and position. .............................86 



            

   x 
 

Figure 4.1b Haar analyzing function at the same scale and position as the scaling 

function. ........................................................................................................................86 

Figure 4.2 Scheme of the wavelet domain for four levels of decomposition ..................88 

Figure 4.3a Haar scaling function in frequency domain ................................................90 

Figure 4.3b Haar analysing function in frequency domain ............................................90 

Figure 4.4a Battle-Lemarie scaling function .................................................................90 

Figure 4.4b Battle-Lemarie analysing function .............................................................90 

Figure 4.4c Battle-Lemarie scaling function in frequency domain .................................91 

Figure 4.4d Battle-Lemarie scaling function in frequency domain.................................91 

Figure 4.5 The time variant spectral whitening (TVSW) algorithm. ..............................92 

Figure 4.6 The wavelet transform spectral whitening (WTSW) algorithm. ....................93 

Figure 4.7 The input trace  and TVSW, WTSW results ................................................94 

Figure 4.8 The Blackfoot stacked section......................................................................95 

Figure 4.9 The Blackfoot Stacked section decomposed with Mallat’s algorithm to level 

2, with the Battle-Lemarie wavelet ................................................................................97 

Figure 4.10 The Blackfoot stacked section after TVSW ................................................99 

Figure 4.11 The Blackfoot stacked section after the WT filtering and TVSW..............100 

Figure 4.12 The Blackfoot stacked section after the WT filtering and TVSW..............100 

Figure 4.13 The Blackfoot stacked section after the WT filtering and TVSW..............101 

 

 

 
 
 



  

 

1

1.1 Introduction 
 
 One of the most important steps in a seismic processing flow is the deconvolution 

process. Deconvolution appeared very early in the development of the digital signal 

processing methods. The deconvolution process was not present in the analog processing 

era and for this reason is considered a relatively modern technique (Robinson and Osman, 

1996). A novel approach of deconvolution will be presented in this thesis, along with 

several classical methods for comparison. The classical approach of deconvolution uses 

approximations that hold for time-invariant convolutional models within limited temporal 

regions (i.e., time gates), or employ complementary techniques, such as time variant 

spectral whitening (TVSW) or gain correction. As a counterpart to these robust methods, 

in this work several time-varying methods of deconvolution are presented, as well as 

signal enhancement techniques based on nonstationary transforms such as short time 

Fourier transform (STFT), also called Gabor transform or windowed Fourier  transform, 

and the wavelet transform (WT).  

 

1.2 Wiener spiking deconvolution 
 

The least-squares concept of the Wiener spiking deconvolution for a stationary 

seismic waveform will be herein explained. A seismic signal (e.g. recorded trace) is the 

result of a superposition of wavelets of constant shape (in the stationary case) weighted 

by the reflectivity series (Robinson and Treitel, 1980), thus it can be modeled as a 

convolution between the source signature (the embedded wavelet) and the reflectivity 

series. The purpose of deconvolution is to remove the embedded wavelet and thereby, 

maximize the vertical resolution of the seismic image (Berkhout, 1996). The 
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convolutional model used in the Wiener spiking deconvolution method is the simplest 

accepted model for the 1-D seismogram, however, this is not the only option to model a 

seismic trace. An extension to the convolutional model presented here is the surface 

consistent model, where the seismic trace is decomposed into the convolutional effects of 

source, receiver, offset, and earth’s reflectivity (Taner and Coburn, 1981). Later in this 

thesis a nonstationary extension of the convolutional model that describes attenuation 

will be also presented. 

 

1.2.1 The stationary convolutional model 
 

The mathematical representation of the stationary convolutional model without 

noise and multiples is  

( ) ( ) ( ) ( ) )()()( trwtrtwdrtwts •=•≡−=∫
∞

∞−
τττ ,    (1.1) 

 
where “•” denotes convolution, ( )tw  - represents the source signature, also called the 

embedded wavelet, and ( )tr  represents the reflectivity. 

 Stationary means that the shape of the wavelet doesn’t change as it propagates 

through the medium. Computationally, Equation (1.1) can be represented by a 

multiplication between a Toeplitz matrix (representing the wavelet) with a time series 

vector representing the reflectivity series (shown in Figure 1.1) (e.g. Margrave, 1999). 
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Figure 1.1.: Trace representation in time domain. The trace (column vector, on the left) 
is the result of the convolution (the convolution in time domain is seen as a matrix 
multiplication) between a minimum-phase seismic wavelet (time-shifted in the Toeplitz 
matrix, the square matrix in the center) and the reflectivity series (the column vector, on 
the right), (after Margrave, 1998). 

 
When the signal is directed at normal incidence upon an interface between two 

media, the reflectivity coefficient  r, relates incident and reflected trace amplitudes 

(Robinson and Treitel, 1980) 

2211

1122

ρρ
ρρ

vv
vvr

+
−

= ,      (1.2) 

 
where the product between the velocity ( iv ) and the density ( iρ ) represents the acoustic 

impedance of a rock layer. From Equation (1.2) it can be observed that each boundary 

between different layers, with different impedances, generates a nonzero reflection 

coefficient. 

 

1.2.2 Wiener spiking filter 
 

The goal of the deconvolution is to estimate the reflectivity series, ( )tr , given the 

seismic trace ( )ts , and therefore, increase the resolution of the seismic image. Equation 
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(1.1) is considered the main model for stationary deconvolution and asserts that the 

wavelet, w(t) is stationary. Recently, the theory of deconvolution evolved toward a more 

realistic, time-variant case explained in chapter 2. Here, the stationary case will be 

discussed. 

 The spiking deconvolution filter is designed such that the error between the real 

reflectivity and the estimated reflectivity is minimum. According to Robinson and 

Treitel, (1980) the least-squares error has the form: 

 
( ) ( )( )∑ −=

t
est trtrI 2 ,     (1.3) 

 
where ( )tr  is the desired output and ( )trest  is the estimated reflectivity (i.e., the spiking 

filter output) and I denotes the error. The spiking filter output represents the convolution 

between the trace, ( )ts , with an unknown filter, the deconvolution operator, ( )tdop , 

which is basically the inverse of the wavelet, ( )tw , in the least square sense. 

Thus,  

( ) ( ) ( )tdtstr opest •= .      (1.4) 

 
  The deconvolution operator (the inverse filter) and the wavelet should satisfy the 

equation 

 ( ) 1)( =• tdtw op .      (1.5) 

 
where “1” denotes a vector with value of one for the first sample and zeros for all other 

samples. 

Assuming that the wavelet is causal (see section 1.3 for a definition of causality) 

and using the matrix notation for discrete signals, Equation (1.5) can be written 
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The zeros above the main diagonal in the wavelet matrix express the causality property of 

the wavelet. As explained in section 1.3, the inverse filter, denoted by the column vector 

“di,” is also causal. Equations (1.5) and (1.6) also hold for the deterministic case where 

the wavelet is known (i.e., recorded source signature) and its inverse can be calculated 

without considering the least square problem presented from the beginning in this 

section. The difference between the inverse filtering and least-squares inverse filtering is 

that in the inverse filtering situation, the source waveform is assumed to be known, 

whereas in the Wiener deconvolution case the source waveform is unknown and the 

solution to the deconvolution problem is optimal in the least square sense (Yilmaz, 1987). 

Therefore, the terminology refers to the inverse filtering using the recorded source 

signature as the deterministic deconvolution whereas the Wiener type of deconvolution is 

known as the statistical deconvolution.  

To obtain an exact solution in the statistical case, when the source signature is not 

known, an infinite number of rows are necessary in Equation 1.6. This problem can 

become meaningful for computation on a digital computer if we limit the number of 

coefficients of the filter (Robinson and Treitel, 1980), respectively the number of 

equations, obtaining an approximate solution for the inverse filter. The size of the inverse 

operator in samples is chosen smaller than the size of the wavelet (the number of rows in 

the wavelet matrix), therefore in Equation 1.6 there are more equations than unknowns, 

leading to the least squares approach in finding the terms of the inverse filter. Equation 

1.6 can be written in a matrix form as 

 
UDW =  ,     (1.7) 
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where W is the wavelet matrix, D is the inverse filter (or the deconvolution operator), and  

U is the unit vector, representing the desired unit spike at the zero lag. The normal 

equations are formed by multiplying from left by WT, the transposed W matrix 

 
UWDWW TT = .     (1.8) 

 
In matrix notation, the multiplication by the transposed wavelet matrix, WT, means that 

on the left hand side results the autocorrelation of the wavelet that multiplies the inverse 

filter.  On the right hand side, instead of the unity vector the result is a scaled vector. 

Next, the scaled vector on the right is set to 1, 

 

0 1 2 0

1 0 1 1

2 1 0 2

1
0
0

d
d
d

Φ Φ Φ     
     Φ Φ Φ     ≅
     Φ Φ Φ
     
     

L

L

L

M M M O M M

.   (1.9) 

 
 
In the system of Equations 1.9 the number of equations equals the number of unknowns 

(e.g., form a square set), therefore, is suitable for determination of the deconvolution 

operator, d. To conclude the derivation so far, starting from the system of equations (1.6), 

after several manipulations, in equations (1.9) only the autocorrelation of the unknown 

wavelet is necessary to determine its inverse, within a scale factor. Next, the 

autocorrelation of the wavelet can be approximated with the autocorrelation of the trace if 

the white noise assumption of the reflectivity is invoked. The autocorrelation of the trace 

can be obtained by convolving the trace by the time-reversed version of the trace 

 
( ) ( )tststss −•=Φ )( .      (1.10) 

 
Following from the convolutional model (Equation 1.1), the autocorrelation of the trace 

can be further developed  
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( ) ( ) ( )[ ] ( ) ( )[ ]trtwtrtwtss −•−••=Φ .    (1.11) 
 

Regrouping the terms,  

  
( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )tttrtrtwtwt rrwwss Φ•Φ=−••−•=Φ .  (1.12) 

 
Assuming the reflectivity is a random sequence (has statistical properties of a random 

noise), its autocorrelation function has the form 

 
( ) ( )0δPtrr =Φ ,     (1.13) 

 
where ( )0δ  is a spike (e.g. a unit impulse also called a delta distribution) at zero lag, 

scaled by its power, P. In the terminology proposed by Robinson and Treitel (1980), the  

power of a white noise series (the reflectivity series in this case) means the sum of 

squares of its amplitudes divided by the elapsed time, as time becomes infinite 

 

( )22
1

2
0

2
1

2
1

2 ......
12

1lim TTTT
rrrrrr

T
P +++++++

+
= −+−−∞→

,    (1.14) 

 
where, T is the sampled observation time which tends to infinity and r is the reflectivity 

assumed as an infinitely long realization. Thus, we can estimate the autocorrelation of the 

wavelet from the autocorrelation of the trace by choosing a certain number of lags 

(windowing the autocorrelation) for the autocorrelation of the trace. The number of lags 

must be large enough such that, the power of the white noise denoted by P in relations 

(1.13) and (1.14) represents a scaling factor close to 1 (P ≅ 1). Therefore, Equation (1.12) 

becomes 

 
( ) ( ) 0, max >≤Φ≅Φ ttwherett ssww .   (1.15) 

 
By windowing the autocorrelation a finite number of equations is included in the 

solution of the Wiener filter and the number of equations defines the length of the 

deconvolution operator in a deconvolution algorithm. 
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In Equation (1.9), the deconvolution operator can be determined using a 

windowed version of the autocorrelation of the trace. It follows that an estimate of the 

reflectivity can be obtained using Equation (1.4).  

In the Wiener deconvoluion case, the only assumptions necessary in deriving the 

deconvolution operator are that the wavelet and its inverse are causal and the reflectivity 

has statistical properties of white noise (e.g. is random). It turns out that a causal wavelet 

with a causal inverse has the minimum-phase spectrum. 

The minimum-phase wavelet can be reconstructed using the Hilbert transform. 

Often, the concept of minimum phase-lag refers to the frequency domain whereas in time 

domain the equivalent terminology uses the term “minimum delay” (Robinson and 

Treitel, 1980).  There are at least two ways to compute the minimum phase wavelet. One 

way, is to compute the minimum phase wavelet from its autocorrelation function 

(Leinbach, 1996), using the autocorrelation function of the trace as described above. 

Another way is to compute the phase of the minimum-phase wavelet from its Fourier 

amplitude spectrum, then, using the inverse Fourier transform, the wavelet in the time 

domain is obtained. A detailed description of the minimum-phase concept is presented in 

section 1.2.4. 

 

1.2.3 Frequency domain equivalent of the Wiener spiking filter 
 
In the frequency domain, the convolutional model described by Equation (1.1) is  

 

( ) ( ) ( )frfwfs
∧∧∧

= ,     (1.16) 
 

where ( )fs
∧

, represent the Fourier spectrum of the trace ( )ts , ( )fw
∧

 is the Fourier 

spectrum of the source signature, and ( )fr
∧

 represents the Fourier spectrum of the 

reflectivity series, ( )tr . It can be observed from Equation (1.16) that the deconvolution 
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can be explained through a spectral factorization problem. In Equation (1.16), there are 

two unknowns ( ( )fw
∧

 and  ( )fr
∧

) and only one known, respectively ( )fs
∧

). Thus, ( )fs
∧

 

must be separated into its factors, ( )fw
∧

 and ( )fr
∧

. In order to solve this equation for the 

reflectivity, some assumptions, which come from statistical properties explained in 

section 1.2.2, are reqiured. 

In the frequency domain the wavelet is characterized by its amplitude and phase 

spectrum. In designing the deconvolution operator in the frequency domain only the 

absolute values (meaning the amplitude spectrum) of the spectra in Equation (1.16) are 

used  

( ) ( ) ( )frfwfs
∧∧∧

= .    (1.17 ) 

 
Windowing the autocorrelation in time domain (described in the previous section) 

is equivalent to smoothing the power spectrum (squared amplitude spectrum) in 

frequency domain. Commonly the smoothing operation is performed on the Fourier 

amplitude spectrum instead. To make Equation (1.17) meaningful, the reflectivity is 

considered finite in time and bandlimited in frequency. Thus, a smoothed version of the 

reflectivity magnitude spectrum will be close to a constant, which can be set to 1 for all 

frequencies in the bandwidth, ( ) 1ˆ ≅fr  (the overbar denotes a smoothed term). Then, 

similar to section 1.2.2, smoothing the magnitude spectrum of the trace an estimate of the 

magnitude spectrum of the wavelet will be provided. The length of the smoother in 

frequency is inversely related to the length in time of the autocorrelation window in the 

Wiener deconvolution case. Thus, the deconvolution operator (denoted by Dop in the 

following equation) in the frequency domain can be determined similarly to the time 

domain ignoring the influence of the reflectivity series on the filter design 

  

( ) )ˆ(
1

maxAfs
Dop

µ+
= ,    (1.18) 
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where µ is a small real number and Amax  is the maximum value of the smoothed Fourier 

spectrum introduced to avoid any division by zero. In Equation (1.18) the wavelet and the 

reflectivity function have no common support, and therefore by smoothing the amplitude 

spectrum of the trace only an approximation of the embedded wavelet will be provided. 

More precisely, the inequality 

( ) ( ) ( )frfsfw ˆˆˆ ≠ ,      (1.19) 

 
can be approximated as an equality in many useful situations. 

For the phase calculation of the deconvolution operator, the minimum-phase 

assumption is used. Therefore, the minimum-phase spectrum is given by 

 
( ) ( )( )[ ]fsHf ˆln=φ ,      (1.20) 

 
where H denotes the Hilbert transform (see section 1.3 for a review of the minimum-

phase concept). 
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1.3 Minimum-phase assumption versus zero-phase 
 

1.3.1 Minimum-phase wavelet 

Any filter (e.g. the wavelet or its inverse, the ideal deconvolution operator) is 

characterized by its transfer function (Robinson and Treitel, 1980). The transfer function 

is defined as the ratio of the output over the input (in the frequency domain). In the time 

domain, the equivalent of the transfer function is the impulse response of the filter 

(Sheriff, 1997). In the frequency domain, the magnitude of the transfer function is the 

filter’s magnitude spectrum whereas the phase of the transfer function is known as the 

filter’s phase spectrum. When referring to the phase of a filter, the “phase delay” is often 

used rather than the term “phase” (Robinson and Treitel, 1980). In this work also, any 

time when the term “minimum-phase” is used it must be understood as “minimum-phase 

delay” in the sense that Robinson and Treitel proposed. Writing the transfer function in 

polar form, the phase and the magnitude spectrum of the filter are given explicitly  

 
( ) ( )ωψωω ieww ˆ)(ˆ = ,     (1.21) 

 
where ω is the angular frequency, ( )ωŵ  is the magnitude spectrum of the filter, and 

( )ωψ , is the phase spectrum of the filter. The phase lag spectrum is defined as the 

negative of the phase spectrum (Robinson and Treitel, 1980) 

 

( ) ( ) ( )( )
( )( ))ˆRe

ˆIm(tan 1

ω
ωωψωφ

w
w−−=−= ,    (1.22) 

 
and Equation (1.21) is written as  

( ) ( )ωφωω ieww −= ˆ)(ˆ .     (1.23) 
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In many situations, the field data approximate the convolutional model presented 

in section 1.2.1 but most of the time the real data is more complex, e.g. it can include 

more than one embedded wavelet. For example a surface waveform can interfere with a 

minimum phase reflection wavelet and the resulting seismogram will be in a non-

minimum phase state. The convolutional model is also violated by multiple waves, 

commonly present in the field data. A more precise convolutional model would also 

include the background noise, which is considered as an additive signal. Thus, the 

seismogram in the stationary case is more completely represented by  

 
( ) ( ) ( ) ( ) ( )tntwtmtrts +••=  ,    (1.24) 

 
where r(t) and w(t) are the same as in Equation (1.1), m(t) represents the multiple 

operator and n(t) is the background noise. The multiple suppression process is not 

investigated in this thesis and all data are considered multiple free. However, it is 

important to mention that the minimum phase assumption is mandatory in removing the 

multiples using prediction-error filters (an extension of the Wiener filter presented in 

section 1.2.2) and is linked to the causality property also invoked in the development of 

the constant Q model of attenuation (explained in section 1.4). At the same time, zero 

phase filtering can suppress undesired waveforms to move the data towards the minimum 

phase state as an operation applied before the deconvolution in situations where the 

signal to noise ratio is very low (the background noise is very high), (Margrave, 1999). 

A wavelet is defined as minimum phase if it is causal, has finite energy and its 

inverse is also causal and has finite energy (Robinson and Treitel, 1980). Thus, the 

minimum phase concept includes three important properties: causality, invertability and 

finite energy.  

Causality is expressed mathematically by the Heaviside step function:  

 
( ) ( ))sgn1(2

1 tth += ,     (1.25) 

where, 
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 =)sgn(t        

01
00
01

<−
=
>

tfor
tfor
tfor

.     (1.26) 

 
A wavelet is considered to be causal if it vanishes for t < 0, and therefore  

)()()( thtwtw = .    (1.27) 
 

The finite energy concept arises in physics in the context of energy density. 

Mathematically, finite energy functions are L2 functions. A function (e.g. seismic 

wavelet) is said to be of finite energy if it satisfies the equation: 

( ) ∞<∫
∞

∞−

dttw2 .     (1.28) 

The inverse of the wavelet is the perfect deconvolution operator, and is described by the 

equation  

)()()()()( tdtwdtdwt •=−= ∫
∞

∞−

τττδ ,    (1.29) 

 
where )( tδ is the Dirac delta distribution. As specified above, the deconvolution 

operator, (e.g., the inverse of the embedded wavelet), must also satisfy the conditions 

(1.27) and (1.28). It can be shown (Claerbout, 1976, Margrave, 1999) that any wavelet 

satisfying (1.27), (1.28), and (1.29) is necessarily minimum phase. This is often stated in 

another way that “a causal, stable inverse is minimum phase” (Karl, 1989). 

Many distinct filters share the same amplitude spectrum (or the same 

autocorrelation) but have different phase spectra. The spectral factorization method finds 

a minimum-phase wavelet that has a given amplitude spectrum (Claerbout, 1976). The 

minimum-phase concept implies that the wavelet has the least amount of phase delay 

possible as a function of a given frequency content. Thus, the principal characteristic of 
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minimum-phase is that the energy is compressed towards the front. Robinson’s energy 

delay theorem states that starting from zero to any time t, the energy summed over that 

time interval is greater or equal to that of any other wavelet with the same spectrum 

(Claerbout, 1976).  

Mathematically, energy delay theorem has the form 

 
( ) ( )ττ ww EE ≥

min
,    (1.30)  

where E ( )twmin  is the partial energy of the minimum-phase wavelet, E ( )tw  the partial 

energy of a non-minimum-phase wavelet with the same amplitude spectrum. The partial 

energy of the wavelet has the form 

( ) ( )dttwEw ∫=
τ

τ
0

2 .    (1.31) 

 
A proof of this theorem for the discrete case can by found in Claerbout (1976). 

Using the Hilbert transform pair in the frequency domain, the phase of the 

minimum-phase causal wavelet with finite energy, can be estimated from the logarithm 

of the amplitude spectrum (or from the autocorrelation function) and vice versa, the 

logarithm amplitude spectrum can be estimated from its minimum-phase spectrum 

(Sheriff and Geldart, 1995) 

( )
( )( )

ω
ωω

ω

π
ωφ d

w
∫
∞

∞− −

−
=

ˆln1 ,     (1.32) 

and  

( )( ) ( ) ω
ωω

ωφ
π

ω dw ∫
∞

∞− −
=

1ˆln ,     (1.33) 
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where ω  (andω ) denotes the angular frequency, ( )ωŵ denotes the amplitude spectrum 

and φ(ω) the phase spectrum of the wavelet, w(t). The integrals in (1.32), and (1.33) are 

Hilbert transforms and are improper integrals because of the singularity in the 

denominator. They should be understood as limits of the Cauchy’s principal values of an 

improper integral: 









+= ∫ ∫∫

−

∞−

∞

+
=

∞

∞−

εω

εω
ε 0lim .     (1.34) 

Thus, any given wavelet can be converted to a minimum phase equivalent, which has the 

same amplitude spectrum and a phase spectrum computed with the Hilbert transform 

described by Equation (1.32). Minimum-phase filters are often encountered in causal 

systems. For example, the dynamite source on land produces such a wavelet with the 

minimum-phase property (Robinson, 1966).  Hargeaves (1992), states that the air-gun 

signature array is minimum phase for marine data. In these cases, the phase spectrum can 

be derived from the logarithm amplitude spectrum using the Hilbert transform. However, 

the minimum-phase assumption is controversial. For example, Ziolkowski (1991) argues 

that most marine sources are non-minimum phase, but admits that the dynamite source on 

land is minimum phase. 

 
1.3.2 Zero-phase wavelet 
 

The zero-phase wavelet has another important property. Berkhout (1974), 

demonstrated that the zero-phase wavelet is the shortest wavelet having a certain 

bandwidth. Any wavelet has an equivalent zero-phase wavelet with the same amplitude 

spectrum. The conversion from any wavelet to its zero-phase equivalent can be easily 

demonstrated (Ziolkowski, 1984). The Fourier transform of the wavelet is 
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 ( ) ( ) dtetwfw iftπ2ˆ −
∞

∞−
∫= .     (1.35) 

 
The amplitude and phase spectrum are computed from the Fourier spectrum as follows 

 
( ) ( ) ( )fi Wefwfw φˆˆ = .     (1.36) 

Setting the phase to zero, ( )fŵ , can be converted to its zero phase correspondent. Using 

the inverse Fourier transform, the zero-phase (equivalent) wavelet has the form 

 

( ) ( ) dfefwtw iftπ2
0 ˆ∫

∞

∞−

= .    (1.37) 

 
From Equation (1.36) also the negative frequency can be used in the inversion formula 

(1.37), resulting  

 

( ) ( ) ( ) ( )twdfefwdfefwtw iftift
0

22
0 ˆˆ =−==− ∫∫

∞

∞−

−
∞

∞−

ππ   (1.38) 

 
Equation (1.38) asserts that the zero-phase wavelet is symmetric (Ziolkowski, 

1984). Subsequently, it results that the zero-phase wavelet is also noncausal, as opposed 

to a minimum-phase wavelet. The only signal that is both minimum- and zero-phase is 

the Dirac delta function which is also symmetric. The purpose of the deconvolution is to 

increase the resolution, and therefore to move the data toward the perfect zero-phase 

state.  
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The most significant definitions related to the seismic attenuation are reviewed in 

this chapter. The dominant idea in this chapter is the constant Q model of attenuation, 

which, will be used as a base to construct synthetic traces that decay in time and diminish 

in bandwidth as the wavefront propagates through the medium. The complex trace 

analysis represent useful tools that can provide quantitative measures of the seismic 

attenuation, such as, reflection strength, also called the amplitude of the envelope. 

 

2.1 The attenuation concept 
 

Attenuation refers to the amplitude decay observed in wave propagation. There 

are many attenuation mechanisms associated with the seismic wave propagation such as, 

absorption, spherical divergence, transmission losses, mode conversion, scattering 

effects, refractions and critical angles. Among these, absorption presents a special interest 

in this study because it is both, time and frequency dependent and will be described in 

detail, whereas for all other attenuation processes just a general definition along with a 

formula (if any) for compensating the undesired effect will be provided. 

Spherical divergence, also known as geometric spreading, can be easily 

compensated for, using the total energy conservation principle. This states that the energy 

on the wavefront surface should be constant as the wavefront is traveling through 

medium. As the wavefront propagates through the medium, the surface of the wavefront 

(considered as a sphere in a homogenous medium) becomes greater and the wave 

amplitude decays with 1/R, where R is the radius of curvature of the wavefront (Sheriff 
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and Geldart, 1995). It follows that to compensate for the geometric spreading it is 

sufficient to apply the equation 

)()( 0
tR

utu = ,     (2.1) 

 
where u is the wave amplitude (u0 for t = 0), and R(t) can be considered as the distance 

traveled in the case of a constant velocity medium. As can be seen in Equation (2.1) the 

spherical divergence is independent of frequency (it is dependent on time only). The 

geometrical spreading of the wavefront is the most obvious mechanism of amplitude 

decay.  

In the transmission losses mechanism, part of the wavefront energy is lost at layer 

interfaces, thereby, the more interfaces there are, the more energy is lost due to 

transmission losses. This effect is very difficult to explicitly define and depends on local 

geology in the sense that the energy loss is higher when the material grains of the 

medium are not elastically bonded. The transmission losses mechanism is dependent on 

time only and is usually compensated by the correction for the inelastic attenuation 

discussed below or it can be ignored. 

A particular case of the transmission losses mechanism is the loss due to 

refractions and the associated critical angles, which are mostly present at the base of the 

weathering layer. As it results from the Snell’s law, only a fraction from the total energy 

is transmitted below the weathering layer, the rest of it is reflected back (total reflection) 

to the surface as post-critical reflections and refractions (head waves). However, 

refractions are also present along deeper interfaces, depending on the incident angle of 

the wave and the medium impedance on both sides of the interface. Through these 

effects, part of the transmitted energy cannot be recorded, and therefore, constitutes an 

energy loss. 
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The mode conversion mechanism occurs since the seismic wavefield energy is 

converted from P to S waves at every impedance contrast (e. g. reflection point). More 

precisely, if the angle of incidence is greater than zero, an incident P wave will produce 

both, P and S reflected and transmitted waves. This phenomenon is called mode 

conversion. It is similar to the transmission losses but more general in the sense that it 

includes also the reflected waves. Mode conversion is only time dependent. Lay and 

Wallace (1995) explain that S waves are more attenuated than the P waves because of 

shear movement along grain boundaries. When only the vertical (P) component is 

recorded (as in conventional seismic), there is no direct information regarding the mode 

conversion effect and consequently, no correction can be applied. 

The scattering effect is due to small heterogeneities present in geologic 

formations and causes the dispersion of the high frequency energy of the recorded 

wavefield. The scattering effect produces an apparent energy loss and sometimes can be 

visualized on 3D data, after migration. The scattering effect is highly dependent on 

sedimentation conditions and therefore, upon local geology. 

Absorption is also known as inelastic attenuation. Part of the energy of the 

propagating wavefield is transformed into heat due to internal friction between the rock 

particles. The general subject of wave attenuation due to internal friction is also called 

intrinsic attenuation (Aki and Richards, 1980). In seismic theory, anelastic attenuation is 

often characterized by three essentially equivalent parameters, α, the attenation factor, δ, 

the logarithmic decrement, and Q, known as the quality factor.  

A propagating 1-D plane wave is given as a function of the initial amplitude and phase 

 
( ) ( )

0, i kx tA x t A e ω−= ,      (2.2) 
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where A0 is the reference amplitude, at t = 0 x = 0, ω is the angular frequency, and k is the 

wavenumber. Attenuation may be introduced by allowing the wavenumber or the 

frequency to be complex (Aki and Richards,1980). 

When the wavenumber is complex  (k = kr+iα) equation (2.2) becomes 

 
( ) ( ) ( )( )

0 0, r ri k i x t i k txA x t A e A e eα ω ωα+ − −−= = ,    (2.3) 

 
where α is the attenuation parameter. It can be observed from Equation (2.3) that the 

amplitude decay is of exponential form. 

If only the spatial dependence is considered, Johnston and Toksoz (1981), define the 

amplitude of an attenuated waveform as 

xeAxA α−= 0)( .     (2.4) 

Following that, α can be written as 

( )
( ) ( )xA

dx
d

dx
xdA

xA
ln1

−=−=α .   (2.5) 

 
Considering that the wavefront passes through positions x1 and x2 having the amplitudes 

A(x1) and respectively A(x2),  

( )
( )






−

=
2

1

12

ln1
xA
xA

xx
α .    (2.6) 

 
The logarithmic decrement is defined as  









=

2

1ln
A
A

δ ,      (2.7) 
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 where A1 and A2 are the amplitudes of two consecutive cycles of an oscillating system in 

free decay.  

The relation between the attenuation factor and the logarithmic decrement is 

given by 

f
vααλδ ==  ,    (2.8) 

 
where λ is the wavelength, f is the frequency, and v is the velocity. 

The Q factor was previously defined as the ratio between the peak stored energy 

over the energy lost during one cycle of deformation. O’Connell and Budiansky (1978) 

observed that this definition is not valid for large losses and proposed that mean stored 

energy be used instead of the maximum energy 

 

E
EQ

∆
= π4  ,     (2.9) 

 
where Q is the quality parameter, E is the mean stored energy (measured in 

Joules/second), ∆E is the energy loss during one cycle of sinusoidal deformation. The Q 

parameter is dimensionless (see Equation 2.9). If the energy loss is zero, the quality 

factor goes to infinity and this means that the medium is perfectly elastic. Using the 

definition from Equation (2.9), Kjartansson (1979) shows that 1/Q can be equivalently 

defined as  

βtan1
=

Q
,     (2.10) 

 
where, β is the phase lag of strain behind the stress.  
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A relation between the quality factor Q, and the attenuation coefficient is given by 

Hamilton (1972), 

f
vf

v
Q

π
απ

α

4

1
22

−
= .    (2.11) 

 
In anelastic media, the velocity, v and the quality factor Q, are functions of 

frequency (see Equations 2.8 and 2.11). The frequency dependence of v and Q causes the 

dispersion of the waveform, which tends to broaden as it propagates through the medium. 

Many studies have shown that the frequency dependence of Q is very weak within the 

bandwidth of interest (0 – 70 Hz), compared with the frequency dependence of velocity. 

These observations were exploited by Kjartanson (1979) in building the constant Q 

model of attenuation. Kjartansson developed the constant Q model of attenuation based 

on Equation (2.10) which states that Q is a function of the phase angle between stress and 

strain. In this model constant Q means that Q is independent of frequency (over the 

seismic bandwidth) but depends upon the medium. This model is based on two 

assumptions: causality and linearity. Both assumptions are valid for the range of 

deformations that occur in the nearly elastic media during the wave propagation. In this 

work, a frequency independent model of attenuation based on Kjartansson’s theory has 

been chosen. 

In Equation (2.11), the term f
v

π
α

4
22 can be dropped under the low-loss assumption, 

(Johnston and Toksoz, 1981) with the result 

 

f
v

Q π
α

≈
1  .     (2.12) 

 
Therefore, α becomes 

Qv
fπ

α = .      (2.13) 
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Equation (2.3) can be rewritten replacing α 
 

( ) ( )tki
x

Qv
f

reeAtxA ω
π

−
−

= 0, .    (2.14) 

 

Further, replacing x/v with the traveltime, t, and ω with 2π f, we get 

 
 

( ) ( )tfkiQ
ft

reeAtxA π
π

2
0, −

−

= .    (2.15) 
 
 

`The attenuation function is represented as an exponential decay that depends on 

traveltime, t, the frequency, f, and the quality factor, Q (see Equation 2.15). This time-

frequency dependence of the attenuation shows that the wavelet loses the bandwidth as it 

travels in the media. In Equation (2.15) the third term denotes the combined phase of the 

propagating wave and attenuation function. It can be shown that under the causality 

condition (Aki and Richards, 1980) the phase spectrum of the attenuation function has the 

form  
































=

−
Q
ft

r eAHk
π

0ln ,     (2.16) 

 
where H denotes the Hilbert transform over f at constant t, used in calculating the phase 

spectrum of the attenuation function. The Hilbert transform implies that the attenuation is 

a minimum delay function (see section 1.3). 

Thus, the attenuation function can be written as: 

 

( )
)(

, Q
ft

iH
Q
ft

etfa
ππ

−−
= ,     (2.17) 

 
which has an amplitude spectrum defined by 
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( ) Q
ft

etfa

π
−

=, .      (2.18) 

 
 

2.2 Complex trace analysis 
 

The complex trace facilitates a useful separation of envelope amplitude and phase 

information (Taner et al., 1979). The envelope amplitude represents a basis for 

calculating the decay function of a trace affected by the attenuation (as in section 2.1.1) 

whereas the phase information is a basis for instantaneous frequency measurement. 

 

2.2.1 The instantaneous frequency and the amplitude attribute 
 

The instantaneous frequency and the envelope attributes can be used to examine 

the nonstationary character of the data.  In order to calculate the instantaneous frequency 

and the envelope attributes, the analytic signal should be derived from a real signal.  

A complex signal is defined by 

scomplex(t)=s(t)+ i s*(t)=A(t)eiφ(t),    (2.19) 

 

where s(t) is the real part of signal and s*(t) represents the imaginary part of the signal. 
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Figure 2.1.: 3D representation of a complex seismic trace (from an East Texas survey, 
after Taner et al., 1979) 

In the Figure 2.1, both the real and quadrature signals are identical except phase 

shifted by 900.  The imaginary part can be derived in two ways: by the quadrature method 

(Taner et al., 1979) and analytic signal method (Cohen, 1995). The conclusion of both 

procedures is that the complex signal has an amplitude spectrum twice as large as that of 

the real signal for positive frequencies and zero for the negative frequencies.  

The quadrature method employs the use of the Fourier transform in calculating 

the conjugate (also called imaginary) component of a complex trace (Taner et al., 1979). 

Assuming that s(t) is the real part of a complex trace and -∞ < t < ∞, the complex trace 

can be computed by zeroing the amplitudes for negative frequencies and doubling the 

amplitudes for positive frequencies in the Fourier domain (Taner et al., 1979),. Thus, if 

the inverse Fourier transform of a real trace is 

( ) ( ) ωω ω dests ti∫
∞

∞−

= ˆ      (2.20)  

this is equivalent to 



  

 

26

( ) ( ) ( ) ωωφωω dtsts )cos(|ˆ|2
0

+= ∫
∞

,     (2.21) 

 
where φ(ω) represent the phase spectrum of the real trace for positive frequencies, ω > 0. 

Then, the quadrature trace is  

 

( ) ( ) ( ) ( ) ( ) ωωφωωωπωφωω dtsdtsts )sin(|ˆ|2)
2

cos(|ˆ|2
00

+=++= ∫∫
∞∞

∗ ,  (2.22) 

 
and the complex trace is 

( ) ( ) ( )( ) ωω ωφω dests ti
complex

+
∞

∫=
0

|ˆ|2 .     (2.23) 

 
Alternately the complex trace can be computed using the Hilbert transform, that 

is, the imaginary part is related to the real part by the Hilbert transform over time, 

denoted by H (Taner et al, 1979) 

 

s*(τ)=H[s(t)]= dt
t

ts∫
∞

∞− − τπ
1)(1

.    (2.24) 

 
Computationally, the Hilbert transform can be accomplished by a convolution in 

time domain between the trace and the quadrature filter (the Hilbert kernel) (Claerbout, 

1980). This yields the quadrature signal, 

( ) ( )
n

n

tnts
n
etntsts

ni 








∆−=
−

∆−= ∑∑
∞

∞−

∞

∞−

∗ 2
sin

211)(

2 π

ππ

π

.   (2.25) 

 
 
Thus, the Hilbert kernel is of the form (see Figure 2.2): 
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Figure 2.2.: Quadrature filter, truncated to nineteen points. 

The Hilbert kernel in time domain is characterized by the following properties 

(Claerbout, 1976): 

- does not vanish for negative samples 

- has a singularity at n = 0 

- it needs future samples for the present output (it is nonrealizable).   

In practice, because all the samples are known it can be applied, usually in a modified 

truncated version (Taner, et al. 1979) 

The time dependent amplitude of the complex signal (also called envelope) is 

given by  

)(*)()( 22 tststAc += ,    (2.26) 

 
 

 and the time dependent phase by 
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)
)(
)(*(tan)( 1

ts
tst −=φ      (2.27) 

 
which is time domain equivalent of relation (1.22) in section 1.3. 

The envelope of the trace (as in Equation 2.26) is a useful tool to measure the 

decay in time of the embedded wavelet, assuming that the envelope of the plain 

reflectivity is stationary. The envelope of the trace is used in designing the gain functions 

used in the time variant spectral whitening (TVSW) method (explained in section 4.2.2.).  

The  real part of the signal (in time domain) can be expressed by the formula: 

 

s(t)=Ac(t) cos(φ(t)),    (2.28) 
 

and the imaginary part by 

 

s*(t)= Ac(t)sin(φ(t)).     (2.29) 
 
 

Ac(t) is also called the reflection strength, and φ(t) the instantaneous phase (Bracewell, 

1965).  

For the analytic signal, the rate of change of the time-dependent phase gives a 

time-dependent frequency, named instantaneous frequency (ωι(t)). 

 

)(2)())(( tft
dt

td
ii πωφ

== ,     (2.30) 

 
The envelope is a physically meaningful tool however, careful use of the 

instantaneous frequency attribute is recommended in applications. Cohen (1995) has 

encountered several paradoxes related to the instantaneous frequency. Some of them are: 

1) the instantaneous frequency can be negative although the spectrum of the analytic 

signal is zero for negative frequencies; 2) the instantaneous frequency may be continuous 
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and range over infinite values for a spectrum consisting of only a few sharp frequencies; 

3) the instantaneous frequency at a time t is of nonlocal nature since in calculating the 

analytic signal we have to know the signal for all time.  
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Two types of nonstationary deconvolution will be presented in this section. First, 

an operator based nonstationary deconvolution, which is chronologically, a predecessor 

of the Gabor deconvolution, will be reviewed. Secondly, the principles of Gabor 

deconvolution, which is transform based, will be presented in detail, along with the new 

smoothing technique implemented in this work. 

In this section, the nonstationarity of the signal is considered in the deconvolution 

process. As shown in section 1.4, the anelastic attenuation is time and frequency 

dependent. A successful attempt to compensate for the undesired effect of attenuation 

employs methods based on nonstationary linear filtering theory (Margrave, 1998). For 

this reason a basic idea of the nonstationary convolutional model will also be reviewed. 

 

3.1 Mixed domain nonstationary deconvolution, operator based 
 

The mixed-domain (the term “mixed” refers to simultaneous time and frequency 

dependence and will be defined later in this section) nonstationary deconvolution, 

operator based, is referred to as the nonstationary deconvolution (NSD), by Schoepp 

(1998). Nonstationary deconvolution compensates for the earth’s attenuation effect acting 

on the source waveform. Anelastic attenuation is the main mechanism that causes 

frequency-dependent amplitude decay of the propagating waveform (See section 2.1 - 

The attenuation concept - for definition and a brief review of similar processes). Based on 

the nonstationary filter theory (Margrave, 1998), mixed-domain nonstationary 

deconvolution uses the time-frequency analyses to design the deconvolution operator 
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(Schoepp, 1998). In this section, a short review of the nonstationary filter theory will be 

provided prior to explaining the mixed-domain nonstationary deconvolution method.  

Nonstationary filtering theory can be explained as an extension of the stationary 

convolution described in section 1.2.1. Alternately, stationary convolution can be viewed 

as a particular case of nonstationary filtering theory. Starting from the stationary case, if 

the filter is altered in time (due to the attenuation mechanism for example), the time 

dependence should be explicitly specified in the convolution integral 

 
( ) ( ) ττττ drtwts ∫

∞

∞−
−= ,)( ,    (3.1) 

 
 

where ( ),w t τ τ− , shows the filter dependence on both input and output times, τ and t, 

and r(t) represents the reflectivity series, as explained for Equation (1.1) and can be 

understood as the input signal,  s(t) is the output trace which can be viewed as the filtered 

signal. Computationally, Equation (3.1) can be represented by a multiplication between a 

nonstationary impulse response function (e.g. the attenuated wavelet) with a time series 

vector representing the reflectivity series. In Figure 3.1, an arbitrary wavelet (from the 

matrix in the middle) chosen at some time t = v measured on the vertical from the top of 

the matrix (considered as the input time), represent the time-shifted impulse response 

w(u-v, v) and is defined as a function of both, input and output time (denoted by u). 
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Figure 3.1.: Trace representation in time domain (Equation 2.1). The trace (column 
vector, on the left) is the result of the nonstationary convolution (matrix multiplication) 
between an attenuated minimum-phase seismic wavelet (represented in the square matrix 
in the middle) and the reflectivity series (the column vector, on the right). The 
nonstationary impulse response function was obtained by multiplying the stationary 
waveform of Figure 1.1 (the Toeplitz matrix) by a minimum-phase impulse response of 
a constant Q medium, (after Margrave, 1998). 

Another version of the nonstationary filtering concept is called nonstationary 

combination and the filter dependence is linked to the output time 

 

( ) ( ) ( ) τττ drttwts ∫
∞

∞−
−= ,~ ,     (3.2) 

 
where ( ),w t tτ− , shows the filter dependence on the output time, t , and ( )ts~  is the 

result of the nonstationary combination in the time domain. The relation between the 

nonstationary convolution and the nonstationary combination is of reciprocity, in the 

sense that in the Fourier domain, the nonstationary convolution becomes a nonstationary 

combination and vice versa, the nonstationary combination becomes a nonstationary 

convolution in frequency domain. A detailed mathematical demonstration can be found in 

Margrave (1998), here just the final results are shown. Thus, in the frequency domain,  

the nonstationary convolution becomes a nonstationary combination 
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( ) ( ) ( )dFFrfFfwfs ˆ,ˆ~̂
∫

∞

∞−
−= ,   (3.3) 

 

and the nonstationary combination becomes a nonstationary convolution, 

 

( ) ( )ˆ ˆ ˆ( ) ,s f w f F F r F dF
∞

−∞
= −∫ ,   (3.4) 

 
where, in Equations (3.3) and (3.4), )(ˆ fs represent the Fourier transform of the )(ts , 

)(ˆ fr is the Fourier transform of the )(tr ,  F is the input frequency and f is the output 

frequency. The dependence of the input filter in the nonstationary convolution or 

combination on either input or output frequency is similar to the time domain case. In 

Equation (3.3), ˆ ( , )w f F is called the frequency domain connection function and is the 2D 

Fourier transform of the filter ( )τ,tw  

 

( ) ( ) 2 2ˆ , , ift F tw f F w t e e dtdπ π ττ τ
∞ ∞

− −

−∞ −∞

= ∫ ∫ .  (3.5) 

 
The mixed domain expression of the nonstationary convolution (as in Equation 3.1), is 

 

( ) ( ) ( ) τττ τπ derffs if2,ˆ −
∞

∞−
∫Ω= ,    (3.6) 

 
where  

( ) ( ) dtetwf iftπττ 2,, −
∞

∞−
∫=Ω ,     (3.7)   

 
is called the nonstationary transfer function defined in the mixed time-frequency domain 

which is equivalent to a nonstationary wavelet (e.g. nonstationary impulse response) 

defined in the time domain. 

The output of the mixed-domain convolution belongs to the frequency domain 

whereas the nonstationary transfer function is defined in the mixed time-frequency 
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domain. There is also a mixed domain formulation for the nonstationary combination (as 

in Equation 3.2) with the output in the time domain, (see Margrave, 1998 for a 

mathematical description). 

  For the deconvolution problem in the nonstationary case, similar to the stationary 

deconvolution case, an inverse filter should be designed from the data to recover the 

reflectivity series. As in the stationary case, in the Fourier domain deconvolution, the 

inverse filter can be obtained by smoothing the data in the mixed, time-frequency 

domain, using the nonstationary convolution approach. For example, the smoothed 

version of the amplitude spectrum (of an attenuated trace) in the time-frequency domain 

is an estimate of the transfer function described in Equation (3.7).  Based on similar 

assumptions related to the statistical properties of the reflectivity (assuming a white 

reflectivity spectrum, in the time-frequency domain) the smoothed version of the 

amplitude spectrum can be inverted to form the deconvolution operator. The 

nonstationary transfer function contains two components, the source signature and the 

character of the attenuation function. The deconvolution operator can be designed 

minimum- or zero-phase. The relation between the deconvolution operator, D(t,f) and the 

forward nonstationary transfer function as described in Equation (3.7) is  

 
 

( ) ( ) 1,, =Ω tftfD ,       (3.8) 
(Schoepp, 1998). 

 
An estimate of the reflectivity is obtained in the frequency domain applying the 

deconvolution operator to the trace in the mixed time-frequency domain 

 

( ) ( ) ( ) 2ˆ , if
estr f D f s e dπ ττ τ τ

∞
−

−∞

= ∫ ,   (3.9) 

 
where s(τ) is the attenuated trace in time domain which should be understood as the 

inverse Fourier transform of the nonstationary convolution (in the mixed domain) 
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between the nonstationary transfer function (the attenuated impulse response) and the 

reflectivity series (as in Equation 3.6)  

 

( ) ( ) ( ) ( ) ( ) dfderfdfefss fif ''', '22 ττττ ττπτπ −
∞

∞−

∞

∞−

∞

∞−
∫ ∫∫ Ω== .   (3.10) 

 
The last step of the mixed domain nonstationary deconvolution is an inverse 

Fourier transform applied in order to obtain the reflectivity estimate in time domain.  

There are several limitations related to this method of deconvolution. The main 

drawbacks of the method come from the fact that the smoothing techniques act not only 

on the reflectivity character (ideal case) but also on the source signature, multiples (if 

present), and attenuation function. In order to avoid a biased result (affected by a 

systematic error), the multiples should be removed and an estimate of Q is required a 

priori. In addition the results of the mixed time domain deconvolution, (operator based) 

are limited by numerical precision (Schoepp, 1998).  

 

3.2 Gabor domain nonstationary deconvolution, transform based 
 
 In this section a particular case of forward and inverse Gabor transform is 

presented. First, the continuous case will be shown followed by a discrete implementation 

of the theory. This particular Gabor transform uses a set of normalized, translated 

Gaussians in slicing the seismic signal (Margrave and Lamoureux, 2001).  Based on this 

Gabor transform, a robust algorithm of the time-variant deconvolution will be presented.  

 

3.2.1 Gabor transform  
 

The classical Fourier spectrum of a signal that belongs to L2 (functions of finite 

energy, or square integrable functions, presented in section 1.3 – Equation 1.28) shows 

the frequencies occurring in the signal but it does not contain any information on the time 
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of occurrence. In order to recover the time information, the Gabor transform (also called 

windowed Fourier transform or short time Fourier transform, STFT) is used. The essence 

of the windowed Fourier transform is that the signal is masked by a moving window g(t) 

 

dtetgtsfs ift∫
∞

∞−

−
∧

−= πττ 2)()(),(  ,  (3.11) 

 

where ),( fs τ
∧

represent the Gabor spectrum of a signal, s(t). 

The windowed Fourier transform is therefore a regular inner product, like the 

classical Fourier transform. Generally, an inner product assigns a complex number to two 

signals. The physical interpretation of the inner product is that it represents a measure of 

the similarity between the signal s(t) and an elementary function, g(t - τ) e-2πift. 

The window function g(t -τ), named the analysis function, is centered at time τ 

and  is usually a real, even function. Multiplying the signal by the window function, the 

result is a modified signal that is a function of two times, the fixed time,τ, and the 

running time t. 

The inner product can be written with the help of an operator, gυ  as follows,  

 

ˆ( , ) ( , ) ,g fs f s f s M T gττ υ τ= = .   (3.12) 
 

The operator gυ , is composed by two sub-operators, a translation operator and a 

modulation operator, 

 

Tt g(τ) = g(τ - t) ,      (3.13) 
 



  

 

37

Mf g(τ) = e-2πιfτ g(τ ) ,     (3.14) 

 
where, T represent the translation operator, and M the modulation operator. 

The inverse transform, can be written in the same way as the forward transform 

with the help of a synthesis function, γ (t), as follows, 

 

dfdetftsts if
g ττγυ τπ2)(),(ˆ)( −= ∫ ∫

∞

∞−

∞

∞−

.   (3.15) 

 
In particular, g and γ  should satisfy the condition (Mertins, 1999) 

 

 ∫
∞

∞−

=1)()( duuug γ .      (3.16) 

 
This condition can be demonstrated replacing the term ),( ftsgυ in the reconstruction 

relation by substituting Equation (3.11) into (3.15) 

 

∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

− −−= dfdetdegsts iftif ττγττττ πτπ 2'2 )(')'()'()( ,  (3.17) 

 
interchanging the order of integration 

 

dfdesdtgts tif ')'(])()'([)( )'(2 ττττγττ τπ∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

−−−= ,  (3.18) 

 
and solving the integral depending on  f 

 

∫ ∫
∞

∞−

∞

∞−

−−−= ')'()'(])()'([)( ττδτττγττ dtsdtgts ,   (3.19) 
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recognizing that 

 

 )'()'(2 τδτπ −=∫
∞

∞−

− tdfe tif .     (3.20) 

 

Changing the variable u = τ’− τ, in the inner integral and using the sifting property of the 

δ distribution, the identity is proved 

 

.)()()()()''()()(')'()'(])'()([ ∫∫∫∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

==+−=−+− tsduuugtsduuugtsdstduutug γττγτττδτγ  

         (3.21) 

For the practical application of this theory, the discrete case of a particular case of 

the Gabor transform developed by Margrave and Lamouroux (2001) will be described. 

In the discrete case, the window chosen to slice the signal is a normalized 

Gaussian (see Figure 3.2) of the form  

 
22 )()( ∆−−= kt

k eXtg α

π
     (3.22) 

 
where 1/α - represents the width of the window and ∆ represents the time increment 

between two consecutives windows, and X is a normalization parameter which will be 

determined subsequently. 
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=

 
 

Figure 3.2.: The result of the multiplication between a seismic signal and a Gaussian 
(top) yields a sliced signal (bottom) also called wave packet. 

 

The normalization constant (X), is computed in such a way that the overlapped 

windows sum to unity for every location in time. The set of the normalized Gaussian 

windows (shown in Figure 3.3) form a partition of unity (ideal case) (Margrave and 

Lamoureux, 2001), given by   

 
1)( =∑ tg

k
k      (3.23) 

 
Figure 3.3.: A set of the normalized Gaussians form an approximate partition of unity 
(the summation curve at the top, after Margrave and Lamoureux, 2001). 

The normalization step is performed to simplify the inverse Gabor transform, 

which in this case becomes an ordinary inverse Fourier transform after summing the 

Time - s

Gaussian

Trace

Wave Packet
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Gabor spectrum over the frequency axis (this observation holds also for the continuous 

case (Equation 3.15) and is demonstrated in the subsequent relations for the discrete 

case). 

A signal s(t) can be written as a sum of windowed signals 

 
 )()()()( tstgtsts

k k
kk∑ ∑== ,    (3.24)  

 
where sk should be understood as the product between the signal, s and the window 

centered at position k, denoted by gk. 

Denoting the forward Fourier transform by ℑ , and applying the Fourier transform to 

Equation (3.24) results 

 

)())(()()]([ fsfsfsfs
k k

kk∑ ∑
∧∧

=ℑ==ℑ ,    (3.25) 

 
and the inverse windowed Fourier transform becomes an ordinary inverse Fourier 

transform of the windowed spectrum which is discrete in time and continuous in 

frequency  

)](ˆ[)](ˆ[)( 11 ∑−− ℑ=ℑ=
k

k fsfsts .    (3.26) 

 
 Equation (3.23) can be written as the convolution of the Gaussian with a comb 

function of the form  

 
∑ ∆−=

k
kttc )()( δ ,      (3.27)  

 
where δ is the Dirac distribution, k, is the time sample of the Gaussian’s center, and ∆ is 

the time increment between two consecutive Gaussians. 

The result of the convolution represents a new function, h (t) 
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( ) )()( thtgc =• .      (3.28) 

 
It is desirable to choose X in Equation (3.22) such that h (t) =1 for all t. It is more 

convenient to calculate h (t) in Fourier domain (using the property of the convolution 

theorem). Thus, in the frequency domain, the convolution of the Gaussian and the comb 

functions becomes a product 

 

)()()( fcfgfh
∧∧∧

= .     (3.29) 
 

 
The Fourier transform of the Gaussian and the comb function are (Brigham, 1974): 
 

2

22

)( α
π f

eXfg
−∧

= ,      (3.30)  
 

       
and 

( ) )(1ˆ ∑ ∆
−

∆
=

n

nffc δ .     (3.31) 

 

Returning to time domain, the inverse Fourier transform of the )( fh
∧

 yields h(t) 

 

)]([1)](1[)]([)( 2

22
111 2

2

∆
−

−
ℑ

∆
=

∆
−

∆
ℑ=ℑ= ∑∑ −

−
−− nffeXnfXefhth

nn

f

δ
α
πδα

π

. (3.32) 

 
Writing the inverse Fourier transform explicitly, h(t) has the form 

 

∑∑ ∫ ∆
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In the relation (3.33), the largest term occurs for n = 0, and then the next largest terms are 

the terms for n= +/- 1, +/- 2, and so on. Thus, the series (3.33) can be written as: 
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where the first term is defined for n = 0, the second for n = 1, the third for n = - 1, and the 

remaining terms are implied. In the current context only the first term is desired whereas 

the reminder (the second,  third, and so on…) estimate a residual or “error”.  In the 

continuous case when ∆ 0→ , the error 0→ . Τhis observation leads to the conclusion 

that h(t) = 1, if X in relation (3.22) takes the value of ∆, (X = ∆), which is exactly the 

increment between two consecutive windows.  

Denoting 
T
1

=α , the Gaussian will have the form 

 

2

2)(

)( T
kt

k e
T

tg
∆−−∆

=
π

.    (3.35) 
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3.2.2 Gabor deconvolution 
 

The Gabor deconvolution is presented in relation with the nonstationary filtering 

theory presented in section 3.1. The nonstationary convolutional model is that described 

by Equation (3.1). Taking the Gabor transform of such a trace (the attenuation model is 

based on the constant Q theory developed by Kjartanson, 1979, see section 2.1 for 

details) and considering just the absolute values of the Gabor spectrum denoted by the 

modulus symbol, we get 

 

( ) ( ) ( ) ( )frfafwfs ,,|,| τττ )) ∧

≅ ,   (3.36) 

 

where ( )fs ,τ)  is the magnitude of the Gabor spectrum of a trace, ( )fw
∧

 - the 

magnitude of the Fourier spectrum of the source signature (stationary), ( )fa ,τ  is the 

magnitude of the attenuation function, and ( )fr ,τ)  is the magnitude of the Gabor 

spectrum of the reflectivity. 

 The relation between the attenuation function a in Equation (3.36) and the quality 

factor Q is (see section 2.1 for a description of the quality factor) 

 

( ) Q
f

efa
τπ

τ
−

=, .    (3.37) 
 
 
 In order to estimate the reflectivity from the trace, first, we estimate the source 

signature and the attenuation function.  Assuming that the reflectivity series has the 

statistical properties of random white noise such that ( ) 1, =fr τ)  (where the overbar 

denotes smoothing), a smoothed version of the magnitude Gabor spectrum of the seismic 

signal will give an estimate of the product of the embedded wavelet and the attenuation 
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function. This is similar to the frequency domain deconvolution explained in section 

1.2.3, and also, to the NSD operator based described  in section 3.1. Two techniques of 

smoothing have been tested in Gabor deconvolution. First the boxcar smoother will be 

discussed and second, hyperbolic smoothing will be presented. 

 

3.2.2.a The boxcar smoother 
 

Smoothing the Gabor magnitude spectrum of the seismic trace through a 2D 

convolution with a 2D boxcar tends to suppress the reflectivity information and will 

therefore, estimate the source signature of the spectrum times the attenuation function (this 

method was previously implemented by Schoepp and Margrave, 1998, in the mixed 

domain deconvolution case, and Margrave and Lamoureux, 2001, in the Gabor 

deconvolution case). Using the boxcar smoother, the attenuation and the source signature 

are estimated as a single entity and the size of the boxcar, in time and frequency, 

significantly affects the result. The frequency dimension of the smoothing window 

determines the number of the points to be smoothed along the frequency axis and controls 

the temporal size of the assumed source signature estimate. Shorter source signatures have 

smoother spectra. The time dimension of the smoothing operator determines the number of 

spectral points to be smoothed in time. This parameter controls the nonstationarity of the 

deconvolution. The greater this value, the more stationary the deconvolution becomes. 

Assuming that r (t,f) is a rapidly varying function with a white spectrum, while w(f) and 

a(t,f) are slowly varying functions, smoothing the magnitude Gabor spectrum will yield a 

combined estimate of the source signature and the attenuation function 

 
 

  ( ) ( ) ( ) estfafwfs },ˆ{, ττ ≅) .   (3.38) 
 
Thus, the magnitude spectrum of the deconvolution operator will have the form 
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 ( ) ( ) ( )
1

max},{,
−

∧











+= AfafwfD est εττ ,  (3.39) 

 
where ε is a small real number and Amax  is the maximum value of the smoothed Gabor 

spectrum (Equation 3.38) introduced to avoid any division by zero. 

The phase information is calculated from the amplitude spectrum of the 

deconvolution operator with the Hilbert transform, assuming the minimum-phase 

condition, thus the deconvolution operator becomes 

 

 ( )
( )( )

( ) max

,ln

,)(
,

Afafw

efD
fDiH

ετ
τ

τ

+

=
∧

−

,   (3.40) 

 
 
and the deconvolution equation in the Gabor domain has the form 

 
 ( ) ( ) ( )fsfDfr est ,,, τττ )) = .   (3.41) 

 
This estimate of the Gabor transform of the reflectivity can be inverse 

transformed  to give the reflectivity in the time domain. 

 

3.2.2.b The hyperbolic smoother 
 

This method is a novel approach developed in this work for the first time. The 

attenuation function described in Equation (3.37) is constant for =fτ  constant, that is, 

along a hyperbola in the time–frequency plane. Therefore, an average of Equation (3.36) 

along such a hyperbolic contour will estimate the magnitude of the attenuation function 

provided that the reflectivity and source signature terms average to unity along the 

contours. Without further justification, it is assumed that this is nearly the case.  
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Hyperbolic smoothing is achieved by calculating the average of the Gabor 

magnitude spectrum on constant time-frequency hyperbolae contours. Let fτσ =  be a 

hyperbolic contour of =fτ constant. Then, let ( ) ff /στ = , and the hyperbolically 

smoothed Gabor spectrum is given by 

 ( )
( )( )
( )

( ) estHyp
fa

dff

dfffs
fs ,

,
, τ

τ

τ
τ ≡=

∫
∫
)

)
.   (3.42) 

 
 
In equation (3.42), ( ) estfa ,τ  denotes the hyperbolically smoothed spectrum, an 

estimate of the attenuation surface. Smoothing the magnitude spectrum on hyperbolic 

contours means that, along every hyperbola on the time-frequency plane, an average 

value is computed.  

Dividing the Gabor magnitude spectrum by the hyperbolically smoothed 

spectrum, the attenuation information is removed and the source signature can now be 

estimated. Let  ( )fτµ ,   denote this non-attenuated spectrum,                                               

                 

 ( ) ( )
( ) estfa

fs
f

,
,

,
τ

τ
τµ

)

= .   (3.43) 

 
 
The (stationary) source signature can be estimated after averaging ( )fτµ ,  over time, as 

 

 ( )
( )

max

0

max

,

τ

ττµ
τ

df
fw

est

∫
=

∧

.    (3.44) 

 
 

Smoothing this result by convolution with a frequency boxcar will improve the source 

signature estimate. 
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Next, the deconvolution operator is derived by multiplying the source signature 

(Equation 3.44) at all times with the hyperbolically smoothed spectrum, the estimated 

attenuation described by Equation (3.42), and inverting the result 

 

 ( ) ( ) ( )
1

max,,
−

∧














+= AfafwfD est

est
εττ ,    (3.45) 

 
where εAmax  is the same as in Equation (3.39).  

The minimum-phase information and the estimated reflectivity can be calculated in 

the same way as in the boxcar smoother case (Equations 3.40 and 3.41). 

 

3.3 Two methods of spectral estimation  
 
 A detailed discussion of the Burg spectral estimation is given by Robinson and 

Treitel (1980). In this section just a brief description of the spectrum is presented, along 

with some useful comments regarding this method.   
The method of spectral estimation used in calculating the Gabor magnitude 

spectrum can be a straightforward discrete Fourier transform (DFT) or the Burg spectrum 

of the windowed signal. A synthetic trace is represented in time domain in Figure 3.4. 

The differences between the two methods of spectral estimation can be observed 

comparing Figure 3.5 (Gabor/ Burg magnitude spectrum) with Figure 3.6 (Gabor / DFT 

magnitude spectrum). 
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Figure 3.4.: A synthetic attenuated (Q=25) trace in time domain.  

 

 
Figure 3.5.: Gabor-MEM magnitude spectrum of the trace in Figure 3.4. 

 
Figure 3.6.: Gabor-DFT magnitude spectrum of the trace in Figure 3.4. 
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The Burg method is also called the maximum entropy method (MEM), where 

entropy is a measure of disorder or unpredictability. The Burg method of calculating the 

spectrum produces a power spectral estimate corresponding to the most random and least 

predictable time series (Robinson and Treitel, 1980). In comparison to the 

straightforward DFT method, the Burg spectrum does not require a “window” geometry 

(Margrave, 1999). Another important characteristic of the Burg method is the smoothness 

already achieved when calculating the spectrum (see Figure 3.5 for the Burg estimate of 

the trace calculated with a prediction error filter (PEF) of order 5). This smoothness is 

controlled by the PEF length. Smoother filters yield smoother spectra estimates. Thus, the 

Burg method uses a PEF to achieve the predictability of a signal beyond its definition 

time, or off the ends. In the discrete Fourier transform case the frequency resolution of 

the data is limited by the assumption that the data contains all of its energy within an 

interval ∆T, which implies that the energy of the signal is zero outside this interval 

(Claerbout, 1976). In the frequency domain this statement is equivalent to saying that the 

energy of the signal is contained in a bandwidth of ∆f ≥ 1/ ∆Τ. In conformity to the 

Heisenberg’s uncertainty principle, the frequency resolution is in the best case, equal to 

1/ ∆T. Using the Burg method of spectral estimation, theoretically, a finer frequency 

resolution can be achieved when the signal is predicted beyond the interval ∆t (i.e., ∆f < 

1/ ∆T). 

The Burg spectral estimate of a signal has the form 

 

( )
( ) 2

2

ˆ
ω

σ
ω

m

m
B

P
s = ,      (3.46) 

 
 
where ( )ωBŝ , represent the MEM spectral estimate, 2

mσ  is the prediction error variance 

for an m + 1-length filter, and Pm is the PEF which has the coefficients determined 

directly from the data (Robinson and Treitel, 1980). In Equation (3.46), the spectrum of 

the input signal is represented indirectly by the inverse of the spectrum of the PEF. 
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According to Claerbout (1978), narrow spectral peaks are more easily represented by a 

denominator than by a numerator and this implies that the Burg method of spectral 

estimation provides superior frequency resolution in cases where such peaks occur. 

 

3.4 Application on synthetic data of the Gabor deconvolution 
 

This section is focused especially on the results. Even though the Gabor 

deconvolution parameters were previously tested prior to select the best of them, to avoid 

repeatability, they are explained and exemplified in detail in section 3.5  (Application on 

real data of the Gabor deconvolution). In summary, the parameters used in this section 

were: 1) the width of the Gaussian window was 0.2 ms; 2) the increment between two 

consecutive analysis windows was 0.05 ms; 3a) the frequency dimension of the boxcar 

smoother is 10 Hz; 3b) the corridor width of the hyperbolic smoother is 4Hz-sec ; 4a) the 

time dimension of the boxcar smoother was 0.5 seconds; 5) the phase of the 

deconvolution operator was minimum phase in both cases; 6) in the Burg spectral 

estimation case, the Burg order was 5; 

 
Figure 3.7A illustrates a random reflectivity that has a low amplitude interval 

located between 1.5 – 3 seconds. The minimum-phase source signature convolved with 

this reflectivity model was attenuated with a constant Q filter (Q=25). This represents the 

input trace, before deconvolution (Figure 3.7G, same as in Figure 3.4). In Figure 3.7B, is 

illustrated the reflectivity after a nonstationary minimum-phase bandpass filter (8 - 13-

180 (at 1 second) – 240 (at 1 second) Hz) has been applied in the Gabor domain (see 

Figure 3.8).  
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Figure 3.7.: Time domain results. Trace A is the exact reflectivity; trace B is the 
bandpass filtered version of the trace A (using the filter of Figure 3.8). Trace C is the 
result of the deconvolution using a boxcar smoother, DFT spectral estimation. Trace E is 
the result of the deconvolution using a boxcar smoother, Burg spectral estimation. Trace 
D is the deconvolution result from the  hyperbolic smoother algorithm in the DFT case. 
Trace F is the deconvolution result from the hyperbolic smoother algorithm in the Burg 
case .Trace G is the attenuated trace (Q=25) that was input to the deconvolutions. 

 
The high-cut value of the filter was set to a maximum 0.7 of the Nyquist 

frequency, this value decreasing hyperbolically (on a contour of =τf constant) for 

longer times (Figure 3.8). This bandlimited reflectivity will be compared with the 

deconvolution results. Since the frequency bandlimit tracks along a hyperbolic path in 

time-frequency domain, it corresponds to some constant power level in the attenuation 

function. Given a constant power background noise, we expect the signal to drop below 
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noise level along such a contour. The deconvolution results are also bandpass filtered 

with the same filter.  

 
Figure 3.8.:  Nonstationary bandpass filter in Gabor domain. Black is 1 and gray is 0, 
(filtered area). 

In Figures 3.9a and 3.9b are represented the Gabor magnitude spectra (calculated 

with the DFT and Burg methods) of the attenuated trace (Figure 3.7G). The Burg spectral 

estimation is smoother than the straightforward DFT. Figure 3.10. represents the 

magnitude Gabor spectrum (DFT estimation) of the filtered reflectivity (Figure 3.7B), the 

reference plot to compare the results of the Gabor deconvolution. In both Figures 3.9a 

and 3.9b, the effect of the constant Q attenuation function can be easily observed. 
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Figure 3.9a.: Gabor-magnitude spectrum 
(DFT estimation) of the attenuated trace 
(Figure 3.7E). This is displayed with a 
high gain to show subtle detail but the 
amplitude roll-off below 10 Hz is 
suppressed. Black represents positive 
numbers and light gray is 0. 

 

Figure 3.9b.: Gabor-magnitude spectrum (Burg 
estimation) of the attenuated trace (Figure 
3.7E). This is displayed with a high gain to 
show subtle detail but the amplitude roll-off 
below 10 Hz is suppressed. Black represents 
positive numbers and light gray is 0. 

 

 
Figure 3.10.: Gabor magnitude spectrum (DFT estimation) of the filtered reflectivity  
(trace B in Figure 3.7). Black represents positive numbers and light gray is 0. 
 
 

In Figures 3.11a and 3.11b (3.11a - DFT spectral estimation, 3.11b - Burg spectral 

estimation) is illustrated the product ( ) ( ) estfafw },ˆ{ τ , as described by Equation 

(3.38). These are the smoothed magnitude spectra in the boxcar case. The time dimension 

of the boxcar was set to 0.5 seconds and the frequency dimension was 10 Hz. 
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Figure 3.11a.: Smoothed Gabor magnitude 
spectrum (DFT estimation) in the boxcar case 
(Equation 2.38). This is displayed with a high 
gain to show subtle detail but the amplitude 
roll-off below 10 Hz is suppressed. Black 
represents positive numbers and light gray is 0. 
 

 
 
Figure 3.11b.: Smoothed Gabor magnitude 
spectrum (Burg estimation) in the boxcar 
case (Equation 2.38). This is displayed with 
a high gain to show subtle detail but the 
amplitude roll-off below 10 Hz is 
suppressed. Black represents positive 
numbers and light gray is 0. 
 

The results of the deconvolved traces using the boxcar smoother are illustrated in 

Figures 3.12a and 3.12b.  The spectra of Figures 3.12a and 3.12b are obtained by dividing 

the spectra of Figures 3.9a and 3.9b by those of Figure 3.11a and 3.11b. Analyzing 

Figures 3.10, 3.11 and 3.12, as well as the traces in the time domain (in Figure 3.7, trace 

3.7B to be compared with 3.7C-DFT, 3.7E-Burg), it is apparent that the boxcar has 

equalized the amplitudes in the weak and strong reflectivity zones in both cases of the 

spectral estimation. It is concluded that the boxcar has an effect similar to an AGC (or 

TVSW) operator applied to the trace, whereas, as it will be discussed below, the 

hyperbolic smoother more accurately restored the relative amplitudes. 
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Figure 3.12a.: Gabor magnitude spectrum 
(DFT estimation)  of the deconvolved trace, 
boxcar smoother, size 0.5 sec. x 10 Hz in time 
domain trace at position 3.7C in Figure 3.7). 
Black represents positive numbers and light 
gray is 0. 

 
Figure 3.12b.: Gabor magnitude spectrum 
(Burg estimation)  of the deconvolved trace, 
boxcar smoother, size 0.5 sec. x 10 Hz in 
time domain trace at position 3.7E in Figure 
3.7). Black represents positive numbers and 
light gray is 0. 

 
Figures 3.13a (DFT spectral estimation) and 3.13b (Burg spectral estimation) 

represent the results of the product ( ) ( ) estest fafw ,ˆ τ , as described by Equation 

(3.42) before inversion.  

 
 
Figure 3.13a.: Smoothed Gabor magnitude 
spectrum (DFT estimation), hyperbolic 
smoother case. Equation (3.42) before 
inversion. Black represents positive numbers 
and light gray is 0. 

 
 
Figure 3.13b.: Smoothed Gabor magnitude 
spectrum (Burg estimation), hyperbolic 
smoother case. Equation (3.42) before 
inversion. Black represents positive numbers 
and light gray is 0. 
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A (physically) valid estimate of the product ( ) ( )fafw ,ˆ τ must show steadily 

decreasing power with increasing time. In particular, the estimates of Figures 3.11a and 

3.11b cannot be physically correct because the power increases abruptly at about 3 

seconds. The low power zone from approximately 1.5 seconds to 3 seconds is a residual 

imprint of the reflectivity that was not removed by the boxcar smoother in either case of 

spectral estimation, DFT or Burg. The estimates of Figures 3.13a and 3.13b are much 

more plausible though it is not mathematically proved in this work that hyperbolic 

smoothing will always give a correct result. 

In Figures 3.14a.  (DFT spectral estimation) and 3.14b (Burg spectral estimation) 

are the results of the hyperbolic smoother (Gabor domain), the traces at positions D and F 

in Figure 3.7.  The spectra of Figures 3.14a and 3.14b were obtained by dividing the 

spectra of Figure 3.9a and 3.9b by that of Figures 3.13a and 3.13b. 

 
Figure 3.14a.: Gabor magnitude spectrum 
(DFT estimation) of the deconvolved trace, 
hyperbolic smoother. Compare to Figure 3.10. 

 
Figure 3.14b.: Gabor magnitude spectrum 
(Burg estimation) of the deconvolved trace, 
hyperbolic smoother. Compare to Figure 
3.10. 
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3.4.1 Discussion and conclusions for the synthetic case 
 

The relative amplitudes of the particular model, tested in this section, are more 

correctly restored by the Gabor deconvolution performed with a hyperbolic smoother. In 

the boxcar smoother case the restoration of the relative amplitudes is poor and this 

constitutes a major drawback of this type of smoother. The temporal size of the smoother, 

as well as the length in frequency are important parameters in designing the 

deconvolution operator but in any case, the result of the boxcar smoother will be limited 

by the fact that it cannot provide simultaneously a satisfactory whitening level and 

amplitude restoration. 

 

 
Figure 3.15a.: Frequency magnitude spectrum 
of the trace deconvolved with a boxcar (DFT 
estimation). A – whole trace, B - windowed 
between 0-1.5 seconds, C - windowed 
between 1.5-3 seconds.  

 
Figure 3.15b.: Frequency magnitude spectrum  
of the trace deconvolved with a boxcar (Burg 
estimation). A – whole trace, B - windowed 
between 0-1.5 seconds, C - windowed 
between 1.5-3 seconds.  
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Figure 3.15c.: Frequency magnitude spectrum 
of the trace deconvolved with the hyperbolic 
smoother (DFT estimation). A – whole trace, 
B - windowed between 0-1.5 seconds, C - 
windowed between 1.5-3 seconds. 

 
Figure 3.15d.: Frequency magnitude spectrum 
of the trace deconvolved with the hyperbolic 
smoother (Burg estimation). A – whole trace, 
B - windowed between 0-1.5 seconds, C - 
windowed between 1.5-3 seconds. 

 
 
 

In Figure 3.15a at position A is the Fourier magnitude spectrum of the entire 

trace deconvolved with the boxcar (Figure 3.7C) and using the DFT approach for spectral 

estimation. At position B is the Fourier magnitude spectrum of the same trace windowed 

between 0 to 1.5 seconds and at position C the Fourier magnitude spectrum of the trace 

windowed between 1.5 to 3 seconds. The whitening achieved by the boxcar filter is 

excellent in all three cases. The same statement can be repeated in the Burg spectral 

estimation case (illustrated in figure 3.15b). In the case of the hyperbolic smoother, the 

whitening level achieved after deconvolution is illustrated in Figure 3.15c (in the DFT 

case), positions A, B, and C. The Fourier magnitude spectrum of the entire trace that was 

deconvolved with the hyperbolic smoother is at position A, whereas positions B and C 

the windowed intervals are between 0 to 1.5 seconds and 1.5 to 3 seconds, respectively. 

In the hyperbolic smoother example, the magnitude spectrum is slightly less white than in 

the case of the boxcar smoother. Similar to the DFT spectral estimation, in the hyperbolic 

Burg case (Figure 3.15d), the magnitude spectrum is slightly less white than in the boxcar 

Burg example. 



  

 

59

The superiority of the hyperbolic smoother comes from the form of the constant Q 

attenuation function in Equation (2.17). Figures 3.13a and 3.13b illustrate the estimates of 

the attenuation combined with the source signature in DFT and Burg cases of the trace in 

the time-frequency plane obtained from the input trace, Equation (3.45), before inversion. 

Physically, these estimates are more plausible than the estimates provided by the boxcar 

smoother (Figures 3.11a and 3.11b). When analyzing the Fourier magnitude spectrum of 

the deconvolved trace on different time intervals, in the hyperbolic smoother case, (see 

Figures 3.15c and 3.15b) it is noted that the degree of whitening is not at the same level as 

in the boxcar smoother case. For all three intervals analyzed (the entire trace in examples 

A, from 0 to 1.5 seconds in examples B, and from 1.5 to 3 seconds in examples C, the 

degree of decaying of the power in frequency domain is relatively constant in all cases.  

 

3.5 Application on real data of the Gabor deconvolution  
 

This section compares, from an interpretation point of view, the results of 

stationary Wiener deconvolution (described in section 1.2) and Gabor deconvolution 

(described in section 3.2.2). The Wiener deconvolution is followed by time variant 

spectral whitening  (TVSW) technique applied to the stacked section as a standard 

procedure to increase resolution. Gabor deconvolution was applied before stacking to the 

raw data, and again after stack, replacing the TVSW technique. 

In the Gabor deconvolution case, either minimum phase or zero phase can be 

chosen whereas the TVSW technique is only a zero phase process. In this test, Gabor 

deconvolution was applied with a minimum-phase operator after stacking and a 

comparison with the Wiener section (Wiener spiking, minimum-phase deconvolution, 

before stacking, and TVSW technique, after stacking) will be presented at the end.  
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3.5.1 Acquisition parameters and a brief geological description 
 

The Blackfoot field is located in Township 23, Range 23, West of the 4th 

Meridian, near Strathmore, Alberta. The line was recorded in 1997 using 3C geophones 

and is oriented east to west in the Blackfoot field. From the three components recorded 

the vertical component was used to test the Gabor deconvolution because it represents the 

industry standard. The receiver interval was 20 m and there were 151 receiver stations in 

total. The stacking fold is about 159 in the middle of the line. The exploration objective 

of this line was to image the incised paleo-valleys within the Glauconitic sandstones of 

the Lower Cretaceous Mannville Group. The Glauconitic sandstones ranges from zero to 

40 m in thickness and are found in structural and stratigraphic traps. Reservoir rocks are 

subdivided in this area into three units corresponding to three phases of incision (Figure 

3.16): Lower Channel, Lithic Channel, and Upper Channel. According to Miller et al. 

(1995), all three units may not be present everywhere. On the seismic displays in this 

section, the incised channels appear between the CDP’s 320 to 380, in the time window 

from 1.05 to 1.1 seconds. 
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Figure 3.16.: Schematic stratigraphy of the Blackfoot area showing the three different 
incised valleys. After Margrave, 2001. 

 

3.5.2. Gabor deconvolution parameters 
 

 Gabor deconvolution was implemented in Promax by Henley and Margrave, 

(2001) and an equivalent presentation of these parameters may be found in the CREWES 

report of 2001 (or in the documentation of the ProMAX processing software under 

CREWES modules).  

The width of the analysis window is an important parameter in the sense that a 

wide analysis window will have excellent resolution in frequency but poor temporal 

resolution and a short analysis window will have greater time resolution but poor 

frequency resolution. There is little physical justification in using a window narrower 

than the length of the embedded wavelet, which is presumed to be within 0.1-0.4 seconds 

in length. A real trace (in time domain) from the Blackfoot data is represented in Figure 

3.17. In Gabor domain, a short analysis window length provides detailed time 
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information at the expanse of the frequency resolution, in conformity to the Heisenberg’s 

uncertainty principle. The Gabor magnitude spectra for an analysis window of 0.2 

seconds are illustrated in Figures 3.18a (DFT spectral estimation) and 3.18b (Burg 

spectral estimation of order 5). 

 
Figure 3.17.: Real  trace from Blackfoot data.  

 

 

 
Figure 3.18a.: Gabor magnitude spectrum 
(DFT estimation)  of the real trace from Figure 
3.17). Gaussian length = 0.2 seconds. Time 
increment = 0.04 seconds. 

 

 
Figure 3.18b.:  Gabor magnitude spectrum 
(Burg estimation, order 5)  of the real trace 
from Figure 3.17). Gaussian length = 0.2 
seconds. Time increment = 0.04 seconds. 
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In Figures 3.19a (DFT spectral estimation) and 3.19b (Burg spectral estimation of 

order 5) are illustrated the Gabor magnitude spectra for an analysis window of 0.4 

seconds. 

 
Figure 3.19a.: Gabor magnitude spectrum 
(DFT estimation)  of the real trace from Figure 
3.17). Gaussian length = 0.4 seconds. Time 
increment = 0.04 seconds. 

 
Figure 3.19b.:  Gabor magnitude spectrum 
(Burg estimation, order 5)  of the real trace 
from Figure 3.17). Gaussian length = 0.4 
seconds. Time increment = 0.04 seconds. 

  

In this application, the length of the Gaussian window was chosen to be 0.4 

seconds.  

Another important parameter is the time increment between analysis windows. 

This parameter controls the redundancy of the Gabor spectrum and directly influences the 

computation time. It also determines the minimum possible time scale on which the 

algorithm can adapt. This parameter depends on the window width described above and it 

should usually be set to less than the analysis window width. In Figures 3.18 and 3.19 the 

time increment between two consecutive windows was 0.04 seconds. In Figures 3.20 are 

shown , for comparison the Gabor magnitude spectra calculated with a time increment  of  

0.1 seconds. The resolution becomes coarser with a larger value for the time increment. 

For the Blackfoot data the time increment was set at 0.04 seconds for computational 

reasons, although the finer resolution is achieved when this parameter is  set to 0.01 

seconds (See Figures 3.21a and 3.21b for DFT and Burg order 5 spectral estimations). 
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Figure 3.20a.: Gabor magnitude spectrum 
(DFT estimation)  of the real trace from Figure 
3.17). Gaussian length = 0.4 seconds. Time 
increment = 0.1 seconds. 

 
Figure 3.20b.:  Gabor magnitude spectrum 
(Burg estimation, order 5)  of the real trace 
from Figure 3.17). Gaussian length = 0.4 
seconds. Time increment = 0.1 seconds. 

 

  
Figure 3.21a.: Gabor magnitude spectrum 
(DFT estimation)  of the real trace from Figure 
3.17). Gaussian length = 0.4 seconds. Time 
increment = 0.01 seconds. 

 
Figure 3.21b.:  Gabor magnitude spectrum 
(Burg estimation, order 5)  of the real trace 
from Figure 3.17). Gaussian length = 0.4 
seconds. Time increment = 0.01 seconds. 

 

The third parameter used in the Gabor deconvolution is the method of spectral 

estimation, which can be a straightforward DFT or the Burg spectrum (Claerbout, 1976) 

of the windowed signal, as discussed in section 2.4. In Figures 3.18 to 3.21 at position a 

is the straightforward DFT spectral estimation whereas at position b, the Burg of order 5. 

In the case of the Burg algorithm, the order of the PEF coefficients used in calculating the 
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Burg spectrum is inversely proportional to the smoothness of the resulting spectral 

estimate. For example, a small coefficient number is similar to using the Fourier 

estimation and applying stronger smoothing. In the processing flow, five coefficients 

were used for the deconvolution of the raw data and twelve for whitening the stacked 

data. The Gabor magnitude spectrum calculated with Burg PEF of order 12 is illustrated  

in Figure 3.22 for a comparison to Figure 3.21b (Burg spectral estimation of order 5). The 

computational time also increases when a larger order is used.  

 
Figure 3.22.:  Gabor magnitude spectrum (Burg estimation, order 12)  of the real trace 
from Figure 3.17). Gaussian length = 0.4 seconds. Time increment = 0.01 seconds. To be 
compared to Figure 3.21b. 

The fourth parameter controls the phase of the deconvolution operator, which can 

be zero phase or minimum phase. Both of these options were tested. Assuming that the 

data is minimum phase, the minimum-phase option is to be preferred to zero phase. This 

was the first option for the Gabor deconvolution applied before and after stack.  

The deconvolution operator can be derived from the magnitude (linear) Gabor 

spectrum or from the logarithmic Gabor spectrum of the data. Both choices were 

examined and the magnitude spectrum was used because it resulted in a stronger 

whitening of the data. 

The number of passes of the smoothing operator is a parameter which determines 

how many times the smoother is applied to the Gabor spectrum for wavelet estimation. 
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This parameter was set to unity for the Fourier and Burg method in the Gabor 

deconvolution applied before stack and 16 for the second application, after stacking. If 

the smoother geometry is a boxcar, applying it many times is similar to smoothing with a 

very large Gaussian. (This is a consequence of the central limit theorem; Claerbout, 

1976.) 

Two types of smoothing of the magnitude spectrum were used, the boxcar 

smoother and the hyperbolic smoother.   

In the boxcar smoother case, the frequency dimension of the smoothing window 

determines the number of the points to be smoothed along the frequency axis. This 

parameter was set to 21 Hz first pass in the flow and 16 Hz second time, after stacking. 

The frequency dimension controls the temporal size of the assumed wavelet estimate. 

Shorter wavelets have smoother spectra. The time dimension of the smoothing operator 

determines the number of spectral magnitude points to be smoothed in time. This 

parameter was set to 0.8 seconds in the first pass in the flow, and 0.5 seconds in the post-

stack process. This parameter controls the nonstationarity of the deconvolution. The 

longer this value, the more stationary the deconvolution becomes. 

In the hyperbolic smoother case, the corridor width of the hyperbolic smoother in Hz and 

seconds is a parameter which set the width of the hyperbolic contour. After several tests it 

was determined that, in the Blackfoot data example, this parameter has no significant 

role, and the final value was set to 4 Hz-seconds. 

The stability factor is similar to adding white noise as in stationary deconvolution, 

to prevent any division by zero. The value was set to 0.0001.  
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3.5.3 Spiking deconvolution & TVSW parameters 
 

In the case of Wiener spiking deconvolution some parameter testing was done and  

the parameters with the best results were established. A detailed description of these 

parameters can be found in Yilmaz (1987) and the documentation of the ProMAX 

processing software. 

The type of deconvolution was minimum phase spiking with a deconvolution 

operator length of 0.24 seconds. The Wiener design gate was set between 700 and 1900 

milliseconds. The white noise level was set to 0.001. 

For the TVSW technique the spectral-balancing scalar length was 1 second and 

12 filter panels were used. The lowest frequency whitened was 10 Hz and the highest was 

100 Hz. Yilmaz (1987) describes this method. 

 
3.5.4 Processing flows 
 

Two similar processing sequences have been used in parallel to test Gabor 

deconvolution and to compare it with the familiar Wiener deconvolution. In the case of 

Wiener spiking deconvolution the flow is shown in Figure 3.23. The Gabor 

deconvolution processing flow is shown in Figure 3.24. Comparing these two processing 

sequences a number of differences become evident. In the case of Gabor deconvolution 

the exponential gain correction was omitted from the flow because the nonstationary 

nature of the process causes it to boost the amplitudes. Second, for velocity analysis and 

residual statics only a bandpass filter was necessary in the Gabor deconvolution case, 

whereas in the Wiener case, automatic gain correction (AGC) was applied to the traces 

before the bandpass filtering. A third difference is after stacking where, in order to 

enlarge the bandwidth of the data (to increase the resolution of the sections), the TVSW 

process was applied to the Wiener spiking section, whereas for the Gabor sections, the 
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Gabor deconvolution was run a second time, with the parameters specified above, in 

section 3.5.2. 
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Figure 3.23.: The processing flow of the Wiener spiking deconvolution. The result of 
this flow is the Wiener/TVSW section. 
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Figure 3.24.: The processing flow of the Gabor deconvolution sections. Four final 
sections can be generated by this flow: Gabor/DFT-boxcar, Gabor/Burg-boxcar, 
Gabor/DFT hyperbolic, and Gabor/Burg – hyperbolic. From these final sections only the 
Gabor/Burg with the boxcar and hyperbolic smoother were selected for a comparison to 
the Wiener deconvolution section. 

 

3.5.5 Discussion and conclusions for Gabor deconvolution  
 

A typical shot record is shown in Figure 3.25. Figure 3.26 displays the result of 

the Wiener deconvolution. The same shot record after the Gabor deconvolution (Burg 

method with boxcar smoother) is illustrated in Figure 3.27. Before Wiener deconvolution, 

exponential gain correction was applied to the data whereas Gabor deconvolution was 
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applied right after the spherical divergence correction without the exponential gain (see 

the processing flows in diagrams 3.23 and 3.24). 

At least three significant differences are observed on these displays. First, Wiener 

deconvolution has overwhitened the data above the deconvolution gate, set between 0.7 

and 1.9 seconds.  A strong reflection can be seen at approximately 0.3 seconds in Figure 

3.27 (Gabor deconvolution) but there is nothing coherent in Figure 3.26 (Wiener 

deconvolution). The overwhitening is a side-effect, typical in stationary processes where 

the operator is designed within a gate and then is applied to the whole data, due to the 

differences in the spectral ratios in different temporal windows. Secondly, in the zone of 

interest (0.8-1.4 seconds), events on Gabor display seem to be tighter and more 

compressed (better resolution). Thirdly, the ground roll has been better suppressed by 

Gabor deconvolution. 
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Figure 3.25.: Raw shot # 81. 

 

Figure 3.26.: Shot # 81 after Wiener 
deconvolution. Trace Equalization (0.8 – 
1.6 seconds) applied for display purpose. 

 

Figure 3.27.: Shot # 81 after Gabor/Burg  
boxcar smoother deconvolution. 

 

 

After deconvolution, elevation and static corrections were applied and a velocity 

analysis was conducted individually in both processing flows. Next, moveout corrections 

were applied using a set of preliminary velocity picks. Then residual statics corrections 

were calculated and applied. The velocity analysis were repeated to update the previous 

velocity picks and NMO corrections were applied again in an iterative process.  
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During the stacking process, the incoherent noise induced in the data by the 

deconvolution process is suppressed. Stacking process alone acts as a signal enhancement 

by attenuating the noncoherent noise. Even an f-k filter was unnecessary for the 

Blackfoot data, because the deconvolution processes (either the Wiener or Gabor) 

provided very good results in suppressing the coherent noise trains (e.g. ground roll). 

The final sections, after the phase-shift migration, are illustrated in Figures 3.28 

(Wiener section), 3.29 (Gabor/Burg with the boxcar section) and 3.30 (Gabor/Burg with 

the hyperbolic smoother). The Wiener deconvolution section (Figure 3.28), with a design 

gate of the deconvolution operator set in the zone of interest (0.7-1.9 seconds), lacks of 

coherence at shallow zones (0-0.4 seconds) compared to the Gabor method. This 

observation is consistent with the idea that the stationary deconvolution can work well 

within its design gate but not elsewhere. Nonstationary Gabor deconvolution is at least 

equal to Wiener in the latter’s design gate and superior elsewhere.  

 
Figure 3.28.: Wiener/TVSW, final section . The Glauconitic channels are displayed in 
the black oval, around 1.1 seconds, between CDP’s # 327-377. 
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Figure 3.29.: Gabor/Burg boxcar smoother, final section. The Glauconitic channels are 
displayed in the black oval, around 1.1 seconds, between CDP’s # 327-377. 

 
Figure 3.30.: Gabor/Burg hyperbolic smoother, final section. The Glauconitic channels 
are displayed in the black oval, around 1.1 seconds, between CDP’s # 327-377. 
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Figures 3.31, 3.32, and 3.33 show in detail the Glauconitic channels (inside the 

black ovals), from the Wiener/TVSW (in Figure 3.28), Gabor/Burg boxcar (in Figure 

3.29), and respectively Gabor/Burg hyperbolic (in Figure 3.30) sections. The difference 

between zero-phase TVSW technique applied in the Wiener flow and minimum-phase 

Gabor deconvolution applied after stacking can be better observed on these detailed 

figures. In the Gabor sections, all horizons are raised to earlier times because the zero-

phase TVSW method applied after stacking cannot remove the residual wavelet phase 

effect, therefore, the events in the Gabor sections must be closer to the right position.  

 

 

 
Figure 3.31.: Wiener/TVSW, final section, detail. The Glauconitic channels are inside 
the black oval. 
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Figure 3.32.: Gabor/Burg boxcar smoother, final section, detail. The Glauconitic 
channels are inside the black oval. 

 
Figure 3.33.: Gabor/Burg hyperbolic smoother, final section, detail. The Glauconitic 
channels are inside the black oval. 
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3.5.6 Comparison of Gabor deconvolution and Wiener spiking 
deconvolution to synthetic  seismograms 
 

A zero-phase wavelet was used to create a set of synthetic seismograms from the 

well 09-08. In this section, the set of synthetic seismograms will be compared to the 

results from Gabor deconvolution (with the boxcar and hyperbolic smoother) and to the 

Wiener spking deconvolution, between 0 to approximately 1.07 seconds.  

Three traces around the CDP # 337 from the Wiener stacked section (in dark 

gray) and three synthetic traces (in light gray) calculated from the well 0908, overlaid on 

the seismic traces are illustrated in Figure 3.34. The crosscorrelation between the 

synthetics and the real traces has been calculated to obtain a quantitative measure of the 

match. The crosscorrelation in the zero phase case (for the synthetics) was of 0.2034. In 

order to find the maximum value of the crosscorrelation the synthetic seismogram is 

rotated with constant phase angles from 0o to 180o. The maximum crosscorrelation in the 

Wiener deconvolution case was obtained for a rotation of 32 degrees (cc=0.2997).  

Figure 3.35 illustrates the traces from the Gabor deconvolution in the boxcar 

smoothing case (in dark gray), overlaid by the synthetics (in light gray) from the same 

well. The crosscorrelation between the real data and the synthetics in the zero phase case 

(for the synthetics) was of 0.2404. The maximum crosscorrelation for the Gabor/Burg 

boxcar case was obtained for a rotation of 6o degrees (cc=0.2419).  

Figure 3.36 illustrates the traces from the Gabor deconvolution in the hyperbolic 

smoothing case (in dark gray) which are overlaid by the synthetics (in light gray). The 

crosscorrelation between the real data and the synthetics in the zero phase case was of 

0.3408. The maximum crosscorellation in this case was obtained for a rotation of 3o 

degrees (cc=0.3422) applied to the synthetics.  
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From these quantitative calculations results that the Gabor/Burg with the 

hyperbolic  smoother deconvolution performed best in this example. This statement is 

based upon the assumption that the deconvolution must yield a zero-phase result, and the 

maximum crosscorrelation value (for a phase rotation of 3o applied to the synthetics) was 

obtained in the Gabor/Burg deconvolution using the hyperbolic smoother. As explained 

in section 1.2.3, the purpose of deconvolution is to increase the resolution thereby the 

data is moved toward the zero-phase state. In this matter, Gabor deconvolution performed 

better in either example, with the boxcar or with the hyperbolic smoother.  
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Figure 3.34.: A comparison of the 09-08 synthetic seismogram(light gray) to results 
from Wiener Spiking deconvolution (dark gray) 
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Figure 3.35.: A comparison of the 09-08 synthetic seismogram (light gray) to results 
from Gabor deconvolution -boxcar smoother- (dark gray). 
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Figure 3.36.: A comparison of the 09-08 synthetic seismogram (light gray) to results 
from Gabor deconvolution -hyperbolic smoother- (dark gray). 
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The wavelet transform (WT) is a relatively new signal analysis and processing 

approach. There are few applications of the wavelet transform in geophysical data 

processing. Most of the examples involve data compression (Donoho et al., 1995), but 

there are also applications to time-frequency analysis, filtering and interpretation using 

plots (Chakraborty and Okaya, 1994), and phase correction (Rodriguez and Mansar, 

1995). The WT of a signal depends on two variables: scale and time. The strength of the 

WT representation is due to its ability to separate a signal into different scale levels. The 

result of the wavelet decomposition consists of coefficients that are influenced by local 

events that can be potentially identified, analyzed, and filtered. In this chapter, the WT is 

used to increase the resolution of seismic data. Two techniques have been implemented 

and tested for this purpose, WT filtering by semblance weighting and a method similar to 

time variant spectral whitening (TVSW) technique, using the WT. In the beginning, a 

summary of the WT mathematical background will be presented.  

 

4.1 Mathematical background 
 

The WT is, like the Fourier transform, an inner product between the signal and a 

set of basis functions. The expansion coefficients measure the similarity between the 

signal and the elementary basis functions. The elementary functions are also called 

CHAPTER 4 

4. WAVELET TRANSFORM WITH APPLICATIONS TO SEISMIC 

REFLECTION DATA 
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analysis functions. The result of the inner product represents the expansion coefficient 

and the set of all expansion coefficients represents the wavelet domain.  

There are two types of WT: the continuous wavelet transform (CWT) and the 

discrete wavelet transform (DWT). 

4.1.1 The CWT 
 

The CWT can be thought of as the inner product of the signal with the basis 

functions ψa,b(t), (Daubechies, 1992 ), (ψ(t) is called the mother wavelet).  

 dttts
a

ttsCWT bababa )()(1)(),( ,,),(
∗

∞

∞−
∫=〉〈= ψψ .   (4.1) 

 
In this expression, ψa,b*(t) is the complex conjugate of 

 

 )(1)(, a
bt

a
tba

−
= ψψ ,     (4.2) 

 
where the scale index, a, is ,very roughly, the reciprocal of the frequency whereas b, 

indicates time shifting (also called translation). For ψ (t) real, ψ* = ψ. The normalizing 

constant a–1/2 is chosen so that the total energy of the wavelet in the time domain is equal 

to the energy in the frequency domain. The wavelet energy can be expressed in the form 

 

 dttdba ∫∫
∞

∞−

∞

∞−

=Ψ= 222
),( )()( ψωωψ ,   (4.3) 

 
where the  ||ψ(a,b)|| represents the Euclidean norm for L2 functions. Equation (4.3) 

represents Parseval's theorem applied to the wavelet and states that the total energy  

should be the integral of 2)(ωΨ , (where Ψ(ω) is the Fourier spectrum of the wavelet) 
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over all frequencies and should equal the total energy of the wavelet in the time domain. 

This property can be extended to the signal in the wavelet domain (Qian and Chen, 1996) 
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where Cψ should satisfy the admissibility condition given by: 
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The Parseval’s theorem applied to the WT states that the weighted energy of the signal in 

the wavelet domain is equal to the energy of the signal in the time domain. When a is 

small, which corresponds to small support length, the wavelet transform picks up higher 

frequency components. If the admissibility condition is not satisfied the reconstruction is 

not possible because the inverse wavelet transform will diverge (Qian and Chen, 1996). 

All coefficients of the CWT measure the closeness of the signal to the wavelet at 

the current scale. If the signal has a major component of the frequency corresponding to 

the current scale, then the wavelet at the current scale will be similar or close to the signal 

at the particular location where this frequency component occurs. Therefore, the CWT 

coefficient computed at this point in the time scale plane will be a relatively large 

number. The definition of the CWT shows that the wavelet analysis is a measure of 

similarity between the basis functions (wavelets) and the signal itself. Here, the similarity 

is in the sense of similar frequency content (Qian and Chen, 1996). 

The inverse transform of the CWT is given by : 

 dtdaCWT
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 A perfect reconstruction of the signal is possible, but depends on the choice of the 

elementary function ψa,b (t). The CWT is highly redundant and therefore is 

computationally time consuming. The DWT computes only those scales and translations 

needed for a complete representation and reconstruction of the signal. For this reason, the 

DWT is more efficient and has been used in this experiment. 

 

4.1.2 The DWT and multi-resolution analysis 
 

In the discrete wavelet transform (DWT), the dilation parameter a and the 

translation parameter b take only selected discrete values. Besides the CWT, another way 

to introduce wavelets is through multi-resolution analysis (MRA) (Mallat, 1999). The 

concept of the MRA is the key to the construction of orthogonal wavelet bases and for the 

fast decomposition of a signal into frequency bands. If s(t) is a signal from a certain 

subspace denoted by V-1 ∈ L2 (R), a decomposition is performed into a high and low-

frequency parts. The low-frequency part, P0S (called the approximation coefficients) is 

obtained by an orthogonal projection into a smaller subspace V0 ⊂ V-1 which contains 

only the smoothed functions of V-1. The orthogonal complement of V0 in V-1 will be 

denoted by W0. The projection of the signal s(t) into W0 will be denoted by Q0S (called 

the detail coefficients). Thus, we have s(t)= P0S + Q0S  (V-1 = V0 ⊕ W0). The procedure 

can be repeated to decompose P0S into a coarser level of approximation and detail and so 

on. The result is an MRA of L2 (R) (the space of finite energy functions) defined as a 

sequence of closed subspaces Vk of L2 (R), k ∈ Z, with the following properties: 

  1.  ... V2 ⊂ V1 ⊂ V0 ⊂ V-1 ⊂  V-2 ... ⊂ L2 (R); 

  2. s(t) ∈Vk  ⇔  s(2k t) ∈V0; 

  3. s(t) ∈Vk  ⇔  s(t+1) ∈  Vk ;    

  4. U
∞

−∞=j
jV is dense in L2 (R) and I

∞

−∞=j
jV ={0}; 
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5. A scaling function φ ∈V0, with a non vanishing integral exists such that 

the set of {φ(t-l) | l ∈Z} is an orthonormal basis for V0.  

  In consequence there exist ψ   such that  

jkZk
kjVV SSPSP

kk
,

,1 ,∑
∈

− 〉〈+= ψψ    (4.7) 

 
  holds (Daubechies, 1992). 

 

Some of these properties are more of a technical nature. The essential properties 

are (2) which expresses the fact that all spaces of an MRA are scaled versions of the base 

space V0. and (5) which implies that φ  and ψ  should be in a complementary relationship. 

Since φ ∈V0 ⊂ V-1 and the φ−1,l(t) = 21/2 φ (2t-l) is an orthonormal basis for V-1 , there 

exist  αl= 21/2 〈φ, φ−1,l〉  so that φ(t)=Σl φ (2t-l). This leads to the relation between φ  and ψ, 

ψ(t)=Σl (-1)lα−l +1 φ (2t-l) (Daubechies, 1992). The space V0.  itself is spanned by shifted 

versions of the so-called scaling function, φ.  

To understand the MRA concept the Haar function is convenient. The Haar 

scaling function is defined as φ(t) = 1 for  0  <  t  < 1,  φ(t) = 0 otherwise. Then there 

exists a function ψ  and a family ψkj defined by  

 )2(2)( 2
, jtt k

k

jk −= −−
ψψ .    (4.8) 
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For k fixed, the ψj 's are orthonormal bases  (they never overlap) of the orthogonal 

complement Wk  of Vk in Vk-1. In Figures 4.1a and 4.1b the Haar scaling wavelet and the 

Haar analyzing function are shown.  

 

Figure 4.1a.: Haar scaling function or father 
wavelet of an arbitrary scale and position. 

 

Figure 4.1b.: Haar analyzing function or 
mother wavelet, at the same scale and 
position as the father wavelet. 

 

The formula (4.8), represents a scaled version the of mother wavelet ψ(t). The set 

ψk,j(t) is a family of wavelet functions generated from the mother wavelet through 

dilatation determined by the parameter k (a in the continuous case) which governs 

frequency and shift controlled by the parameter j which determines translation (b in the 

continuous case). For any scale 2-k, {ψk,j(t)}k∈Z is an orthonormal basis of Wk. For all 

scales, {ψk,j(t)}k∈Z is an orthonormal basis of L2(R), (Mallat, 1999). 

Similarly, φk,j (t), represent the scaling functions. The family {φk,j (t)} k∈Z is an 

orthonormal basis of Vk , (Mallat, 1997).  

The functions in the discrete case φ (t) and ψ (t) are also used to measure the 

signal’s local behavior, (as only “ψ (t) “ in the continuous case) that is: the scaling 



  

 

87

functions φ (t) and analyzing wavelets ψ (t) are localized in both time and frequency. All 

the functions that are used are the dilated (or compressed) and shifted versions of the 

mother wavelet and scaling function. In addition, φ (t) should be consistent with the 

averaging interpretation, that is,  

 ∫ = 1)( dttφ ,      (4.9) 
 

and the analyzing wavelet should be consistent with the differencing interpretation, (ψ(t) 

is a function of zero mean), 

 ∫ = 0)( dttψ .     (4.10) 
 

These properties can be observed in Figures 1a, and 1b of the Haar wavelets. There are 

infinitely many function families that satisfy these conditions and can be used as a 

wavelet basis. The selection of a particular basis is a major and difficult decision in a 

practical wavelet application.  

Using the MRA concept, the DWT can be implemented by high- and low-pass 

filters that successively decompose the input signal by dyadic downsampling (decimated) 

convolutions (Mallat, 1999). An arbitrary signal can be represented in such way by the 

formula 

 ∑ ∑∑+=
j k j

k
j

k
j

k
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k
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For k (level of decomposition) fixed, there are two types of wavelet coefficients, cj and dj, 
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If k = 1, cj
1 represent the coefficients of the projection P1S of s(t) in the space V1 and dj

1 

represents the coefficients of the projection Q1S of s(t)  in the space W1 (Keller, 2000). 
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The variables of g and h represent the coefficients of the high respectively low pass 

filters. The coefficients dj
(1) are already a final result. They are the coefficients of the 

wavelet spectrum of s(t) on the scale 1. In order to obtain the wavelet spectrum on the 

coarser scales 2, 3, 4 and so on, the procedure will be repeated for cj
1. The two equations 

(4.12) and (4.13) constitute the Mallat's algorithm for the fast computation of the wavelet 

coefficients of an arbitrary signal, s(t). This procedure can be described using 

decomposition operators H and G, denoting the signal by c (for level 0 of decomposition)  

 ∑
∈

−==→
Zl

ljlj chHccappliedH }){(: 2 ,   (4.14) 

 
 }){(: 2∑

∈
−==→

Zl
ljlj cgGccappliedG .   (4.15) 

 
This leads to the scheme for the computation of the wavelet spectrum shown in Figure 

4.2. In this example the decomposition goes up to the fourth level, with level 1 containing 

the highest frequency components. 
 

c(1) c(0) c(2) c(3) c(4) 

d(1) d(2) d(3) d(4) 

H 

G 

H H H 

G G G 

coarse 
detail 

approximation 

fine 
detail 

 

Figure 4.2.: Scheme of the wavelet domain for four levels of decomposition. Those 
boxes inside the curve form the discrete wavelet transform (DWT). 

This transform is invertible and the signal is recovered by  
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4.2 Applications of the wavelet transform in seismic processing 
 

Two methods of seismic signal enhancement using the WT are investigated in this 

section. The first method is similar to the conventional time variant spectral whitening 

(TVSW) technique. The second method is an original filtering technique applied in the 

wavelet domain. Both methods are designed to increase the resolution of seismic data. 

 

4.2.1 Basis selection and decomposition level 

 
 For applications, such as data compression or noise removal, there are preferred 

classes of wavelet bases, which approximate the signals with few non-zero wavelet 

coefficients (Mallat, 1999). In addition, wavelet bases with this property offer the 

advantage of less computational time. The wavelet bases must be chosen, such that, in the 

wavelet domain a large number of coefficients that are close to zero must be produced. In 

this thesis a different criteria in choosing the optimum wavelet basis was used. 

The Battle-Lemarie (Daubechies, 1992) wavelet was used in this research because 

of its good localization in time and frequency. The wavelet transform provides a time-

frequency picture and a good localization in both variables is desired. The Haar wavelet 

described in the representation of the multiresolution analysis has a poor localization in 

frequency. Figures 4.3a and 4.3b show the amplitude spectrum of the analysing and the 

scaling Haar function.  
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Figure 4.3a.: Haar scaling function in 
frequency domain. 

Figure 4.3b.: Haar analysing function in 
frequency domain. 

 

The Battle-Lemarie wavelets (in Figures 4.4a and 4.4b) are spline functions with fast 

exponential decay in time. Figures 4.4c and 4.4d show the representation of the Battle-

Lemarie scaling and analysing functions in frequency domain. Battle-Lemarie wavelets 

are used in this experiment because in the frequency domain they have a good 

localization.  

Figure 4.4a.: Battle-Lemarie scaling 
function. 

 
Figure 4.4b.: Battle-Lemarie analysing 
function. 
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Figure 4.4c.: Battle-Lemarie scaling 
function in frequency domain. 

Figure 4.4d.: Battle-Lemarie scaling 
function in frequency domain. 

 

4.2.2 Example on synthetic trace of the WT whitening method 
 

First, a brief description of the conventional TVSW technique is provided, and 

next the new filtering method based on the WT will be investigated. This method is 

tested, along with the conventional TVSW method for comparison on the synthetic model 

used to test the Gabor deconvolution in section 3.2.2. 

The TVSW technique was developed to compensate for the frequency attenuation 

effects described in section 2.1. TVSW uses a complete set of band-pass filters to 

decompose a signal (presumed to have the amplitude spectrum attenuated toward the high 

frequencies) into a set of narrow band signals. To describe the decay rates for each 

frequency band, the envelope (as described in section 2.2.1) of the band-pass filtered 

trace is computed (Yilmaz, 1987). The next step is to calculate the inverses of these 

envelope functions and to apply them to the (respectively) narrowband signal. The last 

step is to sum the resultant signals back together to form an enhanced signal with a flat 

spectrum (this algorithm is illustrated in diagram 4.5). The result of the TVSW technique 
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is similar to the zero-phase deconvolution, although there is no theoretical proof of this 

(Yilmaz, 1987). 

TVSW decomposition into narrow-band filters: Fi (Signal)

10 – 20 Hz 20 – 30 Hz 30 – 40 Hz .  .  .  . 80 - 90 Hz

Σ

OUTPUT TRACE (Whitened) Frequency content = 10 – 90 Hz

Compute Envelope: E2 Compute Envelope: En Compute Envelope: E8

Compute: (E1)-1 Compute: (E2)-1 Compute: (E3)-1 Compute: (En)-1 Compute: (E8)-1

Compute Envelope: E1 Compute Envelope: E3

Multiply: F1x(E1)-1 Multiply: F2x(E2)-1 Multiply: Fnx(En)-1 Multiply: F8x(E8)-1Multiply: F3x(E3)-1

INPUT TRACE Frequency content = 2 – 45 Hz

TVSW decomposition into narrow-band filters: Fi (Signal)

10 – 20 Hz 20 – 30 Hz 30 – 40 Hz .  .  .  . 80 - 90 Hz

Σ

OUTPUT TRACE (Whitened) Frequency content = 10 – 90 Hz

Compute Envelope: E2 Compute Envelope: En Compute Envelope: E8

Compute: (E1)-1 Compute: (E2)-1 Compute: (E3)-1 Compute: (En)-1 Compute: (E8)-1

Compute Envelope: E1 Compute Envelope: E3

Multiply: F1x(E1)-1 Multiply: F2x(E2)-1 Multiply: Fnx(En)-1 Multiply: F8x(E8)-1Multiply: F3x(E3)-1

INPUT TRACE Frequency content = 2 – 45 Hz

 
Figure 4.5.: The time variant spectral whitening (TVSW) algorithm. 

In this section, the DWT is used to achieve a kind of TVSW technique described 

above. As explained in section 4.1.2 the wavelet domain provides a time series containing 

the detail found in the signal at that scale. For each scale level, the corresponding signal 

is divided by a smoothed version of its Hilbert envelope, then the enhanced signal is 

inverse transformed from the wavelet domain to the time domain (see Figure 4.6).   
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INVERSE WAVELET  TRANSFORMOUTPUT  TRACE

INPUT TRACE

FORWARD WAVELET  TRANSFORM: Signal in Wavelet Domain
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Level: Ei
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for each Scale 
Level: (Ei)-1

MULTIPLY:

(Ei)-1 x Signal in WD
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INVERSE WAVELET  TRANSFORMOUTPUT  TRACE

INPUT TRACE

FORWARD WAVELET  TRANSFORM: Signal in Wavelet Domain

Compute 
Envelope for 

each Scale 
Level: Ei

ComputeInverse
for each Scale 
Level: (Ei)-1

MULTIPLY:

(Ei)-1 x Signal in WD

 
Figure 4.6.: The wavelet transform spectral whitening (WTSW) algorithm. 

In Figure 4.7, the reflectivity series is at position A. Position B is a filtered 

version of this reflectivity with a bandwidth of 10-90 Hz. The result of the conventional 

TVSW technique is at position C. The result of the WT spectral whitening (WTSW) is at 

position D. At position E is the input trace (Q=25). As explained in section 3.4, in the 

boxcar smoother example, the TVSW technique (trace C) has leveled all the three 

intervals encountered in the reflectivity series (high, low the moderate amplitude 

intervals, compare to trace C). In the WT whitening case, the low amplitude interval 

(from 1.5 to 3 seconds) was better restored and can be identified after the high amplitude 

interval (from 0 to 1.5 seconds), although the moderate amplitude interval (from 3 to 4 

seconds) cannot be recognized.  
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Figure 4.7.: Trace A is the reflectivity series. Trace B is a bandlimited version of trace 
A, for comparison to the whitened traces. The result of the time variant spectral 
whitening is represented by C. The wavelet transform spectral whitening method yields 
trace D. Trace E represents the attenuated trace (input trace), Q=25.  

There is no apparent advantage of the WTSW method compared to the TVSW, 

however, the WTSW is a novel approach in introducing the WT to seismic data 

processing. 

4.2.3 The WT filtering by semblance weighting 
 

The WT is used here to filter seismic data in a time-frequency sense. The primary 

consideration is how can a set of weights be chosen to apply to the WT coefficients. 

There are infinitely many possible schemes for this. In this example the use of a time-

domain semblance measure to prescribe the weights is investigated. 

A
 
 
B 
 
 
 
 
C
 
 
D
 
 
E 
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The filtering was applied to a final stack of a 10Hz array of Blackfoot data 

(illustrated in Figure 4.8), recorded in the Blackfoot field, same data used to test the 

Gabor deconvolution, in section 3.5, here is represented from left to right. 

 

Figure 4.8.: The Blackfoot stacked section. 

 

 In this study, the following procedure was used for filtering. 

1. Select the desired wavelet basis and a level of decomposition. 

2. Calculate multichannel semblance coefficients with smoothing operators of 

different sizes for the stacked section.  

3. Apply the WT to the seismic traces from the stacked section. The decomposition  

level in this example is 2.  

CDP #
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4. Apply the WT to the semblance traces. This should extend to the same level of 

decomposition as for the seismic traces, respectively 2 in this example. 

5. Weight the wavelet coefficients of the seismic traces with the wavelet coefficients 

of the semblance traces, that is multiply their wavelet transforms together. 

6. Inverse transform the filtered wavelet coefficients. 

7. Apply a time variant spectral whitening (TVSW) operator (as described in section 

4.2.2.) to the WT filtered stack. 

Using Mallat's algorithm, the level of decomposition was chosen after 

considerable experimentation. The level of decomposition used for this experiment was 

2. For the level 1 of decomposition, we get 1 set of decomposition coefficients and one 

set of detail coefficients. The highest frequencies of the signal lays in the detail part of 

decomposition whereas the lowest frequencies in the approximation part of the 

decomposition. For the level 2 of decomposition the approximation coefficients of the 

level 1 which represents a smoothed version of the original signal downsampled by 2 is 

again decomposed into another level of detail coefficients which contain the highest 

frequencies for this level and a set of approximation coefficients. Level 2 implies that the 

trace in wavelet domain is composed of the detail coefficients of level 1, detail 

coefficients of level 2 (coarser than 1), and approximation coefficients of level 2. 

The Blackfoot stacked section decomposed for level 2 is illustrated in Figure 4.9. 
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Figure 4.9.: The Blackfoot Stacked section decomposed with Mallat’s algorithm to level 
2, with the Battle-Lemarie wavelet. 

The semblance coefficients are given by the formula 

 
),(][1),(

2

2

tx
aS

aStx
•

•
∆

=σ
,   (4.17) 

 

where a is a small averaging function, S is the seismic data matrix, ∆ is a normalizing 

constant that depends on a, and • denotes a 2D convolution. In this study , a was a 2D 

boxcar n traces wide and N samples high.  

      120       140       160       180       200       220       240       260       280       300
CDP #   
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 Currently, the coherence measurements are used to detect stratigraphic features 

and faults ,therefore, is one of the most important properties of seismic reflection data 

(Bahorich and Framer, 1994). Among the formulations that exist for obtaining coherence 

estimates are cross correlation, semblance, and eigendecomposition of the data 

covariance matrix (Gzerszkorn and Marfurt, 1999). In the Blackfoot experiment a 

semblance algorithm was used. The semblance, as a measure of multichannel coherence 

can be calculated using different sizes of an operator. An operator  higher than 31 

samples (15 ms ) in the case of the Blackfoot data will blur stratigraphy associated with 

both deeper and shallower times about the zone of interest. Of the same importance is the 

width of the semblance operator for the lateral extent of the interest zones. In the case of 

Blackfoot data, a window wider than 25 traces will also smear the lateral extent of the 

zone of interest (i.e. the Glauconitic incised valleys). The semblance operators with good 

results in this experiment are: 9 x 3, 3 x 9, and 5 x 15.  

Subsequently, the sections 3,4,5,6 and 7 from the methodology were applied to the 

Blackfoot data.  

 

4.3 Conclusions of the WT filtering by semblance weighting 

 
Figure 4.10 illustrates the Blackfoot stacked section after the TVSW was applied. 

In Figure 4.11, a semblance operator of 9x3 served in filtering the data. The second 

semblance operator used was a 3x9 boxcar. Figure 4.12 shows similarities with Figure  

4.11, that is  the major events have been preserved and the non-coherent noise has been 

suppressed. The results of the WT filter that uses a 5x15 semblance operator are the final 

test in this study (in Figure 4.13). The valley of the Glauconitic channel can be 

distinguished between the CDP numbers from 170 to 180 in all Figures (4.10 to 4.13.) at 

around 1.19 seconds.  
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In this example, the WT filtering technique was applied to the final stack followed 

by TVSW technique. The resolution seems to be improved as a consequence of the WT 

filtering by semblance weighting. Prior to applying this method, it is essential to 

eliminate the coherent noise such as multiples and shallow reflections. This technique 

increases the resolution of subtle stratigraphic features, such as Glauconitic channels. 

  
 
 
Figure 4.10.: Similar to Figure 4.8 except that the data has been through TVSW. The 
Glauconitic channels can be identified in the black oval, between CDP’s # 180 - 240. 

CDP #
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Figure 4.11.: The TVSW was applied after the WT filtering (9x3 semblance operator) 
(To be compared with Figures 4.10, 4.12, and 4.13). The Glauconitic channels can be 
identified in the black oval, between CDP’s # 180 - 240. 

 
 
 
Figure 4.12.: Same as Figure 4.11, but the semblance operator was 3x9 (To be compared 
with Figures 4.10, 4.11, and 4.13).  

CDP #

CDP #
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Figure 4.13.: Stacked data of Figure 4.8. The TVSW technique was applied after the WT 
filtering (5x15 semblance operator). (To be compared with Figures 4.10, 4.11, and 4.12). 
The Glauconitic channels can be identified in the black oval, between CDP’s # 180 to 
240. 

 

 

 

 

 

 

CDP #
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5.1 Conclusions 
 

The main purpose of this work was to investigate and improve new methods to 

compensate for the nonstationarity of the seismic signals, as well as to enhance the time 

resolution. This goal is achieved by deconvolution (which approximately corrects for the 

source signature and attenuation effects) in the Gabor deconvolution case, and by 

filtering, using a set of semblance weights in the wavelet domain, in the wavelet 

transform filtering case. The Gabor and wavelet transform were employed in this 

research and the mathematics behind these methods was studied.  

The classical approach to overcome the decay in time of a signal uses the 

stationary convolutional model and the time domain Wiener spiking deconvolution 

described in chapter 1 and additional methods, such as successive time gates in 

calculating the deconvolution operator, the TVSW technique, and the inverse Q filtering. 

As an alternative to these methods used currently in the industry the Gabor deconvolution 

(based on Gabor transform) provides superior results in enhancing the resolution of the 

seismic data restoring the relative amplitudes (in the hyperbolic smoothing case) 

encountered in seismic signals. The  more general nonstationary convolutional model 

employed in the Gabor deconvolution case was reviewed and explained in comparison to 

the particular stationary convolutional model. 

 The Gabor deconvolution uses a data-dependent operator, which is derived from 

the Gabor magnitude spectrum. The Gabor magnitude spectrum preserves the time-

variant character of a given signal and thus the Gabor deconvolution is a proven flexible, 

CHAPTER 5 

5. CONCLUSIONS AND FUTURE WORK 
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self-adaptive method, which can handle highly attenuated signals as well as moderately 

attenuated signals.  

The first step in the Gabor deconvolution algorithm is to compute the magnitude 

spectrum of the input trace. In the Gabor domain, the magnitude spectrum of a trace 

contains the reflectivity, the attenuation and the source signature information. The Gabor 

magnitude spectrum is initially smoothed in order to suppress the reflectivity information 

and thus to isolate only the source signature and the attenuation function which are 

inverted to form the deconvolution operator. Then the deconvolution operator is applied 

to the magnitude spectrum of the trace to recapture the reflectivity information, or more 

precisely, an approximation of the reflectivity series. The smoothing technique is 

fundamental for the result of the deconvolution. From the two smoothing techniques, that 

were investigated in the Gabor deconvolution case, the boxcar smoother was previously 

used by Schoepp (1998) in the mixed domain nonstationary deconvolution case 

(explained in section 3.1), while the hyperbolic smoother was derived and applied for the 

first time in this thesis. In either case, the amplitude spectrum of the deconvolution 

operator can be computed as a minimum-phase operator (using the Hilbert transform) or 

left as zero phase. The advantage of the hyperbolic smoother over the boxcar smoother 

resides in the fact that the hyperbolic smoother adapts better to the constant Q model of 

attenuation (described in section 2.4) in the sense that it selects the attenuation 

information more accurately. Thus, for an exponentially decaying signal, the hyperbolic 

smoother offers a physically valid result (it removes the reflectivity information from the 

deconvolution operator), whereas in the boxcar smoother case, an imprint of the 

reflectivity is still present in the deconvolution operator.  This imprint of the reflectivity 

series in the deconvolution operator yields a biased result, similar to an AGC applied to 

restore the attenuated amplitude.   

In the wavelet transform case, a new filtering technique has been tested. This 

method is based on wavelet transform and semblance measurements on a stacked section. 

The resolution seems to be improved as a consequence of this technique. Prior to 
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applying the WT filtering by semblance weighting it is essential to eliminate the coherent 

noise such as multiples and shallow reflections. In a free coherent noise environment, this 

technique increases the resolution of subtle stratigraphic features, such as Glauconitic 

channels, by suppressing random noise. 

 

 

 

5.2 Future work 
 

Even though the basic work was introduced in this thesis, in the Gabor 

deconvolution case, I would propose, for the real data that an automatic first-break 

picking be used prior to designing the deconvolution operator. By using the first break 

picking the deconvolution operator becomes offset dependent and the noise (if present) 

before the first break does not contaminate the process.  

In the wavelet transform case, the two-dimensional wavelet transform can be 

employed to analyze separately, and if desired, filter, different events (vertical, horizontal 

and dipping), before stack, as well as after stacking. Also, the wavelet transform can be 

introduced in the Gabor deconvolution algorithm as a third method to smooth the 

magnitude Gabor spectrum, using a certain level of approximation. 
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