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ABSTRACT 

    Practical parallel implementation of the nonstationary integral wavefield extrapolators is 

presented.  Two approaches, the windowed split-step algorithm and full integral 

algorithm, were implemented.  The integral extrapolators are suitable for large-step 

wavefield extrapolation, even when lateral velocity variations are strong, provided that the 

static phase-shift and the focusing phase-shift velocities are replaced by time-average and 

depth-average velocities, respectively.  Linear vertical wavefield interpolation between 

reference wavefields produced by large-step extrapolation algorithms can be used to 

compute the intermediate depth image.  This dual algorithm significantly reduces the run 

time of the integral wavefield extrapolators.  

    Nonstationary extrapolators are found to be very capable of imaging shallow events at 

large dipping angles as well as at deep events, even when severe topography variations 

and high near-surface velocity is present.  The Marmousi synthetic data set and the Alberta 

Foothills synthetic data set were migrated and superior depth images were achieved.  

    P-P prestack depth imaging techniques can be conveniently applied to converted-wave 

data based on the primary-only P-S wave propagation model.  Prestack P-S shot gather 

migration with the dual algorithm produced a very good depth image for the 1997 

Blackfoot 3C-2D survey.  

    The concept of downward-continuation migration velocity analysis (DMVA) is 

proposed. It can be used to partially eliminate the assumption of laterally invariant velocity 

in the established migration velocity analysis techniques and hence provide a better 

velocity estimation.  
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INTRODUCTION 

 

1.1 INTRODUCTION 
 

Prestack depth-imaging in regions of complex geology requires accurate migration 

algorithms.  Modern seismic acquisition can produce large amounts of data that require 

high-speed algorithms.  A fast and accurate algorithm is often hard to achieve due either 

to the limitation of the approximation embedded in the algorithm or to inadequate 

computing resources.  Selecting a practical algorithm often requires a trade-off between 

accuracy and speed.  Conventional Kirchhoff migration algorithms are fast; however, 

they often have difficulty handling caustics, multiple arrivals, shadow zones and extreme 

lateral velocity variation that leads to chaotic rays (Fei et al., 1996; Audebert et al., 1997).  

More accurate ray tracing methods that take into account multi-pathing and computes 

correct amplitudes for each arrival are computationally expensive and more difficult to 

implement.  Although theoretically the Kirchhoff migration algorithms allow “true 

amplitude,” the theory is often difficult to enact.  Normally, Kirchhoff algorithms 

compute traveltime solution by solving the eikonal equation with ray tracing. Amplitude 

scaling factors are applied to correct the amplitude loss due to geometric spreading.  For a 
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true-amplitude algorithm, the energy-transport equation must be solved (Hubral, 1983). 

Methods based on full wave equation are capable of providing solutions for arbitrarily 

complex media since all reflections including all multiples are involved in computing 

(Baysal et al., 1985; Wapenaar et al., 1987).  Steep reflections can be imaged very well.  

Unfortunately, such approaches are extremely time-consuming and a high degree of 

migration noise is inevitable.  The Fourier-domain one-way wave-equation migration 

algorithm is exact and as fast as the Kirchhoff migration algorithms in constant-velocity 

media (Stolt, 1978); however it becomes slower in laterally varying media.  However, 

one-way wave-equation migration techniques allow energy to propagate along all 

possible ray paths and are less problematic in complex velocity models.  

Seismic migration can be conceptually perceived as a spatial deconvolution that 

removes wave propagation effects.  The wavefield at depth 0z , normally at the Earth’s 

surface, in response to the wavefield at depth level Nz , can be written as 

 )(),()()( 0000 zDzzHzSzP N= , (1.1) 

where )( 0zP  is the wavefield response at depth 0z , )( 0zS  is the source response and 

)( 0zD  is the receiver-array response.  ),( 0 NzzH  is the operator that includes the 

downward-propagation effects from 0z  to Nz , reflection response )( NzR  and the upward 

propagation effects from Nz  to 0z .  ),( 0 NzzH can be written as 
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 ),()(),(),( 000 zzWzRzzWzzH NNNN = , (1.2) 

where ),( 0 NzzW  and ),( 0zzW N  are propagation operators from 0z  to Nz  and from Nz  

back to 0z .  Equation (1.2) can be formulated as a spatial convolution and the inverse 

problem, which removes the propagation effects ),( 0 NzzW  and ),( 0zzW N , can be 

formulated as a spatial deconvolution (Berkhout, 1980). When the medium is 

inhomogeneous, both the forward and inverse filters become dependent on the spatial 

coordinates.  

The concept of downward continuation is evident in Fourier-domain depth migration 

algorithms.  Recorded seismic wavefields at the surface or a seismic source signature can 

be recursively extrapolated backward to the surface or forward into the Earth’s interior 

with a known velocity model.  The extrapolation process is based on a one-way wave 

equation and can be explicitly expressed as ‘filtering’ (Berkhout, 1981).  Varying 

approximations to the scalar wave equation result in filters of different accuracy and 

speed.  These filters are called extrapolators.  Seismic reflectivity can then be estimated 

by the ratio between the backward-extrapolated receiver wavefield and the forward-

extrapolated source wavefield immediately above a certain depth level, where the 

traveltime becomes zero.  This is called an ‘imaging condition’ (Claerbout, 1971). 

In media of extreme lateral velocity gradients, a highly accurate wavefield 

extrapolator is required in order to carry the wavefield at one depth to another.  Typical 

wavefield-extrapolation techniques, such as phase-shift-plus-interpolation (PSPI) 

(Gazdag and Sguazzero, 1984), split-step (Freire and Stoffa, 1986; Stoffa et al., 1990) 

and phase-screen (Wu and Huang, 1992), use approximate solution and small 
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extrapolation steps to achieve efficiency and acceptable accuracy.  For example, 

Gazdag’s PSPI uses a set of constant reference velocities to compute reference 

wavefields using constant-velocity phase-shift and the extrapolated wavefield is 

computed by ),( xω domain interpolation between the reference wavefields.  The split-

step extrapolator decomposes the slowness field into a constant reference field and a 

scattering field.  This method was developed based on the perturbation theory and is not 

very capable of handling strong lateral velocity variations.  Instead of decomposing the 

slowness field, Jin and Wu (1998) proposed the phase-screen algorithm that decomposes 

the velocity field into a constant reference field and a perturbation field.  This method, 

too, is not capable of adequately handling large lateral velocity variations.  

 In the extreme form, when all velocities are used to compute the extrapolator, 

Gazdag’s PSPI becomes a nonstationary combination filter (Margrave, 1998) that 

performs an inverse Fourier transform simultaneously with wavefield extrapolation 

(Margrave and Ferguson, 1999a). This limiting form is also called PSPI to emphasize the 

relation to Gazdag’s original PSPI concept.  NSPS is a transpose form of PSPI that 

performs a simultaneous forward Fourier transform with wavefield extrapolation.  A 

natural combination of NSPS and PSPI leads to a symmetric phase-shift extrapolator 

(SNPS) of higher accuracy and better stability (Margrave and Ferguson, 1999b).  The 

three above-noted integral algorithms were implemented by Ferguson and Margrave 

(1999) with a windowed split-step Fourier approach. 

Explicit solutions to the one-way wavefield extrapolators in laterally varying media 

have recently been recognized as pseudo-differential operators (Margrave and Ferguson, 

1997; 1999a; Grimbergen et al., 1998).  Pseudo-differential operators are generalization 
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of translation-invariant (stationary) operators to approximately translation-variant 

(nonstationary) operators (Stein, 1993: 231).  Generalizing a stationary operator, such as 

the constant velocity phase-shift method of Gazdag (1978), to a nonstationary operator 

allows extrapolation of seismic wavefields through strongly heterogeneous media.  This 

is especially advantageous for the imaging problems in regions of complex geology, such 

as the Canadian Rockies. 

A small extrapolation step is required when the wavefield is extrapolated through 

laterally varying media. The wavefield propagation can thus be locally treated as 

homogeneous within a lateral distance comparable to the extrapolation step size.  A 

piece-wise-constant-velocity model is often used in Fourier-domain wavefield 

extrapolation.  The eigenvalue decomposition algorithm (Yao and Margrave, 2000) is 

accurate when the extrapolation step is large, but is too slow for practical application.  Mi 

et al. (2000) show that large-step extrapolation with Padé approximation is slightly less 

accurate but a much faster algorithm, compared with the eigenvalue decomposition 

algorithm.  However, the lack of speed is unsatisfactory.  Mi and Margrave (2001a) have 

shown that a relatively large extrapolation step can be taken by the nonstationary integral 

extrapolators as long as appropriate replacement velocities are used for the static phase-

shift and the focusing phase-shift.  The large-step algorithm allows a much faster Fourier-

domain wavefield extrapolation and can be used to generate reference wavefields at depth 

levels coarser than imaging steps.  The wavefields at each imaging step can be computed 

with vertical linear interpolation between adjacent reference wavefields.  This approach 

significantly reduces the run time of integral extrapolators without a significant loss of 

image quality.  
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The Alberta Foothills region is important to the Canadian oil and gas industry.  

Topographic variation often exceeds several hundred meters.  High near-surface 

velocities in addition to these topographic variations present great difficulty for 

conventional statics correction that is based on the assumption of near-surface vertical 

raypaths.  Though wave-equation redatuming (Berryhill, 1979; Shtivelman and Canning, 

1988) is often very effective, correction to any artificial migration datum below the 

topography results in a loss of near-surface images.  Imaging from topography thus 

becomes advantageous in such a case of severely varying topography (Gray and Marfurt, 

1995; Lines et al., 1996).  Kirchhoff-type migration-from-topography algorithms can be 

implemented by computing traveltime from topography; however, difficulties previously 

discussed endure.  Fourier-domain imaging techniques have many advantages over 

Kirchhoff algorithms; however, these methods require that seismic data be acquired on a 

flat datum so that plane wave decomposition can be performed with a double Fourier 

transform.   One common way to perform Fourier-domain imaging from topography is by 

continuously muting the energy above the topography and including data recorded on the 

topography in each imaging step.  Another method is to directly incorporate the laterally 

varying extrapolation step size in to the nonstationary wavefield extrapolator (Margrave 

and Yao, 2000). 

Converted-wave (P-S) exploration is often effective in areas where the P wave 

methods encounters difficulties.  Converted-wave depth-imaging also produces shear-

wave velocity information that is often crucial in determining physical properties of rock.  

The elastic wavefield-extrapolation theory has existed for more than a decade (Haime and 

Wapenaar, 1989; Wapenaar and Haime, 1990, 1991; Haime and Wapenaar, 1991); 
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however, it is not yet popularly used in seismic processing. This is due to the fact that 

acquisition techniques that highlight converted shear waves have not existed for long 

enough to prove worthiness and the cost is often prohibitively high.  Converted-wave 

data processing is fundamentally different from conventional P-P wave data processing.  

Algorithms found to be effective and simple on P-P data, such as the DMO, become quite 

complex with P-S data.  An advantage of Fourier-domain wavefield extrapolation is that 

P-P algorithms can be conveniently applied to converted wave data without significant 

complications.  

Prestack depth-imaging is sensitive to velocity errors.  Migration velocity analysis 

(MVA) utilizes this sensitivity and often provides better estimations of velocity than 

conventional velocity analysis techniques.  The core technology in any MVA algorithm is 

the update method of the velocity model.  Well established MVA methods include 1)  

iterative profile migration, which updates the model parameter by minimizing the event 

curvature in common-image-gathers (CIG) (Al Yahya, 1989), 2) stacking power 

optimization, which is analogous to conventional velocity analysis in that it uses a 

variety of subsurface models to migrate and stack the data to obtain a semblance 

spectrum (Tieman, 1984) and 3) focusing analysis, which utilizes the best focusing point 

as a criterion to judge the velocity model (Yilmaz and Chambers, 1984; MacKay and 

Abma, 1992).  The aforementioned methods, however, assume that velocity is laterally 

invariant.  The most appropriate means is tomographic inversion, which performs 

traveltime inversions for each event.  Lateral velocity variation is allowed and handled 

well with this method.  It is, however, much slower than other non-inversion methods due 

to intensive involvement of human interpretation. 
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1.2  INTRODUCTION TO THE THEORY OF NONSTATIONARY FILTERING 
 

The concept of nonstationary convolution and time-variant filtering was first 

formulated by Pann and Shin (1976) and Sheuer and Oldenburg (1988).  Margrave (1998) 

used a more complete formulation and showed two fundamental types of nonstationary 

filters: nonstationary convolution and nonstationary combination.  A time-domain 

nonstationary convolution can be written as  

 ∫
+∞

∞−
−= ττττ dhtatg )(),()( , (1.3) 

where ),( ττta − is the time-variant impulse response with t symbolizing the time of a 

particular impulse response and τ  denoting time tracking the variation of the impulse 

form, )(τh  is the stationary time series; for example, reflectivity sequences, to be 

convolved and )(tg is the nonstationary convolution result.  The Fourier-domain 

counterpart can be written as 

 ∫
+∞

∞−
−= dFFffAFHfG ),()()( , (1.4)  

where )( fG  and )(FH  are the ordinary Fourier spectra of )(tg  and )(τh  respectively. 

They are given by  
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 ∫
+∞

∞−

−= dtetgfG iftπ2)()(  

and  

 ∫
+∞

∞−

−= τdeτhFH τiFπ2)()( .  

Also in equation (1.4), ),( FffA −  is the frequency connection function, a 2D Fourier 

transform of ),( ττta − . It is written as 

 dudveevuaqpA iqvπipuπ∫ ∫
+∞

∞−

−−= 22),(),( , 

with τtu −= , τv = , fp =  and Ffq −= . 

 The time-domain nonstationary combination and its Fourier counterpart can be 

written as 

 ∫
+∞

∞−
−= τττ dhttatg )(),()( , (1.5) 

and  

 ∫
+∞

∞−
−= dFFfFAFHfG ),()()( . (1.6) 

The symbols are similar to those defined in the nonstationary convolution.  An 

overhead bar denotes nonstationary combination.  Margrave (1998) showed that a time-

domain nonstationary convolution is equivalent to a Fourier-domain nonstationary 

combination, and vice versa.  The nonstationary convolution corresponds to a 
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windowing-then-filtering process and the nonstationary combination corresponds to a 

filtering-then-windowing process (Margrave, 1998).  

The nonstationary filtering concept can be easily illustrated with the construction of a 

seismic trace with a minimum phase Q attenuation effect.  Figure 1.1 shows the 

nonstationary convolution between a random reflectivity series and a time-variant 

wavelet.  The wavelet experiences a Q=40 anelastic attenuation as it propagates.  Each 

column of the matrix on the left of the graphic equation is a wavelet at time τ  after 

atenuation.  The nonstationary convolution is merely a replacement of each spike at time 

τ with with the wavelet at time τ scaled by the amplitude of the spike. 

        
                             
Figure 1.1 A synthetic seismic trace is created by nonstationary convolution. The nonstationary 
convolution can be implemented by multiplication of a time-variant wavelet matrix with stationary 
reflectivity vector (Margrave, 1998). 

Margrave (1998) applied the nonstationary filtering theory in the context of 1D time-

variant deconvolution.  Schoepp (1998) presented more technical details of the 

nonstationary deconvolution (NSD) algorithm and Mi and Margrave (1999) further 

combined the homomorphic deconvolution and the nonstationary deconvolution 
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algorithm for better estimation of the reflectivity. Details of the homomorphic 

nonstationary deconvolution technique can be found in Mi and Margrave (1999). 

Figure 1.2 compares the (a) original reflectivity, (b) synthetic seismic trace, (c) band-

limited reflectivity (5-10-75-80 Hz Buttworth) and (d) the trace deconvolved by the 

homomorphic nonstationary deconvolution algorithm.  Note the similarity between the 

band-limited reflectivity and the deconvolution results. 

               (a)                             (b)                               (c)                               (d) 
Figure 1.2 An example of the homomorphic nonstationary deconvolution algorithm. (a) 
reflectivity, (b) synthetic trace with Q=40 attenuation, (c) band-limited reflectivity by convolving a 
5-10-70-85 (same bandwidth as the deconvolved trace) Ormsby wavelet with the reflectivity and 
(d) deconvolved trace. 

 

1.3 APPLICATION OF NONSTATIONARY FILTERING THEORY IN 
FOURIER-DOMAIN PRESTACK DEPTH IMAGING  

 

Margrave (1998) suggested a natural extension of the nonstationary filtering theory to 

seismic imaging to best handle large lateral velocity variation.  Margrave and Ferguson 

(1997; 1999a) developed the combinational extrapolator (PSPI) and the convolutional 

extrapolator (NSPS).  They recognized that these extrapolators are pseudo-differential 
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operator solutions to the wave equation with variable coefficients.  These two 

extrapolators were applied to depth-imaging using a windowed split-step Fourier method 

approach.  The relative computational efficiency of the two extrapolators was examined 

by Ferguson and Margrave (1997) and found to be equivalent.  A Taylor-series derivation 

of the PSPI and the NSPS extrapolators showed that first-order error terms opposed each 

other and a symmetric extrapolator (SNPS) can be formed by combining the two 

(Margrave and Ferguson, 2000).  This combination has higher accuracy and stability than 

either PSPI and NSPS alone. 

Black et al. (1984) and Fishman and McCoy (1985) provided similar analysis of  

Fourier-domain algorithms, which accommodate lateral velocity variations.  However, 

Black et al. (1984) provided little insight into the nature of their extrapolator and Fishman 

and McCoy (1985) didn’t recognize theirs as Gazdag’s PSPI in nonstationary limitations. 

 

1.4 THESIS STRUCTURE 
 

The objective of this thesis is to further develop theoretical and practical aspects of 

integral nonstationary wavefield extrapolators.  Chapter 2 reviews three types of integral 

nonstationary wavefield extrapolators (PSPI, NSPS and SNPS) and provides full integral 

implementation as well as an approximate implementation of windowed, split-step 

Fourier algorithm.  Various computing issues relating to the full integral implementation 

are  discussed since the volume of data requiring computation has been the factor most 

deterring the practical implementation.  Details on parallel implementation of these 
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algorithms on the Compaq Alpha cluster workstation at the University of Calgary is also 

given.  The parallel environment provided by the Multimedia Advanced Computational 

Infrastructure (MACI) at the University of Calgary is the primary facility used to 

compute most of the results of this thesis. 

Chapter 3 discusses the dual algorithm, which utilizes the integral nonstationary 

wavefield extrapolator to computing reference wavefields at coarse depth levels and 

vertical interpolation to compute the wavefields at imaging steps.  A key issue in the dual 

algorithm is selection of appropriate replacement velocities for the static and focusing 

phase-shift terms.  Both zero-offset extrapolation tests and prestack depth-imaging 

examples are provided. 

Chapter 4 presents the algorithm for prestack depth-imaging from topography with 

the nonstationary wavefield extrapolators.  A comparison between the images generated 

by other algorithms and the dual algorithm is given. 

Chapter 5 reviews the elastic wavefield extrapolation theory and gives the dual 

algorithm solution to the P-S shot gather prestack depth-imaging problem.  The Blackfoot 

1997 3C-2D data set was used for testing the algorithm.  Both the vertical and radial 

components are migrated with the dual algorithm for correlation analysis. 

There has been significant interest in wave-equation migration and development of 

computationally efficient 3D prestack depth migration algorithms based on the scalar 

wave equation (Biondi and Palacharla, 1996; Biondi, 1997; Mosher et al., 1997).  

Corresponding progress in the development of wave equation migration velocity analysis 

(MVA), however, has been little.  Since most established MVA algorithms assume 
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laterally invariant velocity, when velocity varies laterally, good estimations of velocity 

can only be provided when the following two conditions hold true: 1) analysis aperture is 

small and  2) the wavefield is recorded close to the reflector. Chapter 6 discusses an 

innovative MVA method that utilizes downward continuation of the wavefields to reduce 

the analysis aperture and the distance to the reflectors.  
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CHAPTER 2 

 

 

 

 

IMPLEMENTATION OF INTEGRAL WAVEFIELD 
EXTRAPOLATORS 

 

2.1 SIGN DEFINITION IN FOURIER TRANSFORMS AND WAVEFIELD 

EXTRAPOLATION 

 

The ‘signs’ of kernel function in the time- and spatial-Fourier transform must be 

defined before delineating the direction of wavefield extrapolation.  The convention of  

Fourier transforms used in this thesis is as follows  

I. Time-to-frequency transform 

 ∫
+∞

∞−

−= dtetgG tiωω )()( . 

II. Frequency-to-time transform 
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 ∫
+∞

∞−

= ω
π

ω defGtg ti)(
2
1)( . 

g(t) and G(ω) are the signal and the corresponding Fourier transform, where ω is the 

circular frequency defined a ω=2πf. 

III. Spatial-coordinate-to-wavenumber transform 

 ∫
+∞

∞−

= dxexhkH xik
x

x)()( . 

IV. Wavenumber-to-spatial-coordinate transform 

 ∫
+∞

∞−

−= x
xik

x dkekHxh x)(
2
1)(
π

. 

Functions h(x) and H(kx) are the signal and the corresponding Fourier transform, where kx  

is the spatial wavenumber defined as kx = 2π/λx. λx is the apparent horizontal wavelength. 

Only  the 1D case is considered.  Note that the signs in the spatial transform are opposite 

to those used in time-frequency transforms. 

     According to the foregoing sign convention, a time function g(t) after advancing t∆  in 

time can be written as  

 ∫
+∞

∞−

∆+=∆+ ωω
π

ω deGttg tti )()(
2
1)( . 

This corresponds to a linear phase-shift in the frequency domain.  
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      In seismic migration, the z-axis points downward. Downward extrapolation from z to 

zz ∆+ of a mono-frequency wavefield, ( )zωkφ x ,, , in a constant-velocity medium can be 

written as 

 ( ) ( ) zik
xx

zezkzzk ∆=∆+ ,,,, ωφωφ , 

where ( )zωkφ x ,,  is transformed with 2D Fourier transform, following the sign 

convention defined before. ω  is the angular frequency ass defined before and zk  is the 

vertical wavenumber defined as 2
2

2

xz k
v

k −±=
ω , where v is the medium velocity, ‘+’ 

denotes downward extrapolation and ‘–‘ denotes upward extrapolation.  

 

2.2 WAVEFIELD EXTRAPOLATION BY PHASE-SHIFT-PLUS -

INTERPOLATION 

 

Considering only the 2D case, the derivation of the phase-shift-plus-interpolation 

(PSPI) algorithm (Gazdag and Sguazzero, 1984) begins with the scalar wave equation    

 ( ) 2

2

22

2

2

2

,
1

t
p

zxvx
p

z
p

∂
∂

=
∂
∂

+
∂
∂ , (2.1) 

where p = p(x,z,t) is the pressure wavefield field and v=v(x,z) denotes the earth velocity 

field.  
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The pressure field p(x,z,t) can be expressed as a double Fourier transform of its  

( )xk,ω -domain counterpart 

 
( )

ωddkeωzkP
π

tzxp x
tωxki

x
x∫ ∫

+∞

∞−

+∞

∞−

−= )(
2 ),,(

2
1),,( . (2.2) 

Substituting equation (2.2) into equation (2.1) leads to  

 
( )

0),,(
),(

),,(
),,(

2
1 )(

2

2
2

2

2

2 =







+−

∂
∂

∫ ∫
+∞

∞−

+∞

∞−

− ωddkeωzkP
zxv

ωωzkPk
z

ωzkP
π x

tωxki
xxx

x x . 

  (2.3) 

When v(x,z) is set to constant, the terms outside the square parentheses can be stripped 

off so that  equation (2.3) becomes    

 ),,(),,(
2

2
2

2

2

ωωω zkP
v

k
z

zkP
xx

x








−=

∂
∂ . (2.4) 

For a constant velocity, the vertical wavenumber is written as  

 2
2

2

xz k
v
ωk −±= . (2.5) 

Equation (2.4) is an ordinary differential equation    
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Pk

z
P

z
2

2

2

−=
∂
∂

, (2.6) 

whose analytical solution includes waves propagating in both positive and negative 

directions, 

 ( ) ( ) ( ) zik
x

zik
xx

zz ezkPezkPzzkP ∆−
−

∆
+ +=∆+ ωωω ,,,,,, . (2.7) 

 This is the theoretical basis on which phase-shift migration algorithms are established.  

For laterally variant media, Gazdag and Sguazzero (1984) proposed to extrapolate the 

wavefield, one depth-interval at a time with several reference velocities, then, to inverse 

Fourier transform the extrapolated wavefields to the space domain and interpolate for 

each point along the x-axis.  In other words, starting with equation (2.4), consider several 

constant velocities (v1, v2,...) in the intervals [vmin, vmax] and downward extrapolate the 

wavefield ( )ω,, zkP x  to ( )ω,, dzzkP x +  with each velocity. The resulting wavefields are 

( ) ( )( ),...,,,,, 21 ωω dzzkPdzzkP xx ++ . 

They are then inversely transformed to the ( )x,ω  domain  

( ) ( )( ),...,,,,, 21 ωω dzzxPdzzxP ++ . 

The wavefield at each spatial location is then computed by interpolating the two 

reference wavefields of closest reference velocity values.  For example, using spatial 

location x with velocity v(x), v1 < v(x) < v2, the amplitude and phase of the wavefield at 

this location can be computed as 
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 ( ) ( ) ( )ωωω ,,)(,,)(,, 1
21

2
2

21

1 dzzxP
vv

xvvdzzxP
vv
vxvdzzxPx +

+
−

++
+
−

=+  (2.8) 

and  

 ( ) ( ) ( )ωωω ,,)(,,)(,, 1
21

2
2

21

1 dzzx
vv

xvvdzzx
vv
vxvdzzxx +Φ

+
−

++Φ
+
−

=+Φ . (2.9) 

The resulting wavefield shifted by v(x) can then be approximated as 

 ( ) ( ) xi
xx edzzxPdzzxP Φ+=+ ωω ,,,, . (2.10) 

All locations with velocity v(x) can then be extracted from ( )ω,, dzzxPx +  by a 

windowing process. 

 

2.3 INTEGRAL WAVEFIELD EXTRAPOLATORS 

 

With the use of a complete velocity set, the PSPI algorithm becomes an integral over 

horizontal wavenumber kx, which performs wavefield extrapolation simultaneously with 

an inverse Fourier transform.  It can be written as (Margrave and Ferguson, 1999b) 

 
( ) ( ) ( )∫

+∞

∞−

−= x
xik

xx dke,k,zx,kzx xωϕωα
π

ωψ ,0,
2
1,,

, (2.11) 

where ( )ωα ,,zx,k x  is the nonstationary wavefield extrapolator that carries the wavefields  

from depth  0  to z or vice-versa.  This is provided by 
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( )

2
)(2

2

,
xk

xv
iz

x e,zx,k
−±

=
ω

ωα
, (2.12) 

where ( )ωψ ,, zx  is the ( )x,ω -domain expression of the wavefield at depth z and 

( )ωϕ ,0,kx  is its ( )xk,ω -domain expression. Instead of using P to represent the wavefield 

in both ( )xk,ω  and ( )x,ω  domains, ψ  and ϕ  will be used consistently throughout the 

rest of this thesis to represents the wavefields in ( )x,ω  and ( )xk,ω domains, respectively. 

The plus and minus signs denote downward and upward extrapolation.  

Equation (2.11) has a transposed form, called nonstationary phase-shift (NSPS), which 

performs wavefield extrapolation simultaneously with a forward Fourier transform 

 
( ) ( ) ( )∫

+∞

∞−

= x0,,, xk de,ωx,,zx,kzk xi
xx ψωαωϕ

, (2.13) 

where ( ),z,ωx,kxα  is expressed by equation (2.12). 

Equation (2.11) can be computed using matrix-vector multiplication when the velocity 

field is piece-wise constant  

 0
ϕψ A

z
=

, (2.14) 

where a single underscore represents vectors and a double underscore denotes the matrix. 

0
ϕ and z

ψ  are, therefore, column vectors representing a mono-frequency wavefield in  

the ( )xk,ω  domain at depth 0 and the extrapolated wavefield in the ( )x,ω  domain at 

depth  z, respectively.  Both 0
ϕ and z

ψ  are referred as “frequency slices” in this thesis. 
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Matrix A  is the array product of the PSPI wavefield extrapolator matrix and the inverse 

Fourier-transform kernel matrix  
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  (2.15) 

Similarly, equation (2.13) can also be written in a matrix-vector product form 

 0
ψBφ

z
=

, (2.16) 

where 
0

ψ and 
z

ϕ  are column vectors representing a mono-frequency wavefield in the 

( )x,ω  domain at depth 0 and the extrapolated wavefield in the ( )xk,ω  domain at depth  z, 

respectively.  Matrix B  is the array product of the NSPS wavefield extrapolator matrix 

and the forward Fourier-transform kernel matrix 
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  (2.17) 

The plus and minus signs in both equation (2.15) and (2.17) denote downward and 

upward extrapolation.  

When z=0, matrix A  becomes the forward spatial Fourier-transform kernel and 

matrix B becomes the inverse spatial Fourier-transform kernel. The are transposed to 

each other. 

Margrave and Ferguson (1999b) showed that the NSPS and PSPI can be naturally 

combined into a symmetric wavefield extrapolator (SNPS) by first performing NSPS for 

the upper half z and PSPI for the lower half z within an extrapolation step.  A Taylor-

series derivation of PSPI and NSPS and related error analysis show that the first-order 

errors of PSPI and NSPS oppose one another; thus, that SNPS has a smaller error and 

higher stability than either PSPI or NSPS alone (Margrave and Ferguson, 2000).  
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2.4 IMAGING CONDITION FOR PRESTACK DEPTH MIGRATION 

 

Prestack depth-imaging requires that both the recorded wavefield on the Earth’s 

surface and the seismic source impulse be extrapolated downward into the Earth, utilizing  

a velocity model.  The sign convention for source extrapolation adheres to that defined in 

section 2.1, while that of receiver extrapolation needs be reversed.  Estimation of   

reflectivity from wavefields at a certain depth level is called an imaging condition, of 

which there are two types: 

I. The deconvolution imaging condition estimates reflectivity by the ratio between the 

receiver and source wavefields.  This process involves both phase- and amplitude-

correction.  Geometric-spreading energy-loss from both the source and the receiver are 

automatically corrected.  Each frequency slice produces a frequency-dependent 

estimation of the reflectivity and all are averaged to eliminate frequency-dependence. The 

deconvolution imaging condition can be written as (Claerbout, 1971) 

 ( ) [ ]
( )
( )

( ) ω
ωψ
ωψ

ωω

ω

ω

de
x,z
x,z,

x,zr x,z,ωx,z,ωi

S

R SR∫ Φ−Φ

−
=

max

min

)()(

minmax
decon ,

1 ~ , (2.18) 

where maxω  and minω  are the maximum and minimum frequencies used in migration.  

II. The crosscorrelation imaging condition sets the amplitude of the source wavefield 

to a constant value, normally 1.0, which leads to the crosscorrelation imaging condition.  

This process involves only the phase- and geometric-spreading corrections to the receiver 

wavefield.  Source-side geometric spreading loss is ignored. It can be written as 

(Claerbout, 1971) 
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 ( ) [ ] ( ) ( ) ωωψ
ωω

ω

ω

ωω dex,zx,zr x,zx,zi
R

SR∫ Φ−Φ

−
=

max

min

),(),(

minmax
xcorr ,1 ~ . (2.19) 

The frequency-dependent reflectivity is averaged to eliminate frequency dependency.   

      The deconvolution imaging condition is a true-amplitude algorithm and, theoretically, 

more appropriate in terms of true-amplitude processing.  It is, however, unstable for real 

seismic evaluations due to the embedded noise and is often accompanied by a very noisy 

background.  The crosscorrelation imaging condition is more stable and the image quality 

can be superior to the deconvolution imaging condition.  All depth images in this thesis 

have been computed with the crosscorrelation imaging condition.  A prestack shot gather 

depth-imaging algorithm with SNPS is shown in Figure 2.1.  

 

 

 
Figure 2.1 Computational steps of the SNPS prestack depth-imaging algorithm. 
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2.5 REVIEW OF SPLIT-STEP FOURIER ALGORITHM 

 

A precise solution to the one-way scalar wave equation exists only in a medium of 

constant velocity.  The split-step Fourier method provides an accurate numerical solution 

to the variable-coefficient wave equation in weakly inhomogeneous media (Hardin and 

Tappert, 1973).  This is based on the perturbation theory and has been widely used in 

studies of acoustic wave propagation in oceans (for example, McDaniel, 1975).  Stoffa et 

al. (1990) introduced this method to seismic imaging. Several variations, such as the 

phase-screen and pseudo-screen methods (Wu and Huang, 1992; de Hoop and van 

Stralen, 1997), were developed in later literatures.  A brief review of the split-step 

algorithm is given below. 

The 2D propagation of acoustic waves in a constant-density medium can be expressed 

by the wave equation 

 
02

2
22 =
∂
∂

−∇ p
t

sp
, (2.20) 

where  p(x,z,t) is the pressure field and s = s(x,z) is the slowness field of the media, which 

is defined as the inverse of half the propagation velocity s(x,z) = 2/(v(x,z)).  This 

consideration is mandated by the exploding reflector model when zero-offset or post-

stack data are migrated. For prestack depth-imaging, since both the source and receivers 

are extrapolated downward, this slowness field should be defined as the inverse of the 

true propagation velocity.  
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Taking the Fourier transform of equation (2.20) gives the frequency-domain 

expression  

 0222 =+∇ PsP ω , (2.21) 

where  

 ∫
+∞

∞−

−= dtetzxpωzxP tωi),,(),,( . (2.22) 

The slowness field can be decomposed to a constant component and a perturbation 

component  

 ),(∆),(),( 0 zxszxszxs += . (2.23) 

 

The constant reference slowness field ),(0 zxs  is normally specified as the mean of 

),( zxs  and the perturbation slowness field ),(∆ zxs  accommodates all velocity field 

variations.  Thus, the homogeneous wave equation is transformed into an 

inhomogeneous, constant-slowness wave equation 

 ),,(2
0

22 ωω zxSPsP −=+∇ , (2.24) 

where P denotes the Fourier-transformed wavefield and ),,( ωzxS  is a source-like term 

given by 
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 [ ] ),,(),,(∆),,(∆2),,( 2
0

2 ωzxPωzxsωzxssωωzxS += . (2.25) 

Ignoring the second-order term ),,(∆ 2 ωzxs  in the square brackets, the split-step 

Fourier method can be performed with the following three steps, 

I. Spatial Fourier-transform the previously extrapolated wavefield at depth nz  to 

the wavenumber domain  

 dxeωzxPωzkP xik
nnx

x∫
+∞

∞−

−

= ),,(),( , . (2.26) 

The overhead bar indicates that the wavefield is in wavenumber domain.  

II. Apply phase-shift based on the vertical wavenumber, computed using the 

reference slowness for all frequencies and wavenumbers  

  zik
nxnxr zeωzkPωzzkP ∆0),,(),∆,,(

−−

= , (2.27) 

where  

 ( )2
00

22
0

2 /1
0

sωksωksωk xxz −=−= . (2.28) 

0s is the mean slowness within the extrapolation step. 

III. Inverse Fourier-transform the phase-shifted data to the space domain  
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 dkezzkPzzxP xik
nxrnr x∫

∞+

∞−

−

∆=∆ ),,,(
2
1),,,( ω
π

ω ,  (2.29) 

then apply a static phase-shift to correct for slowness perturbation in the extrapolation 

interval  

 zzxsi
nrn ezzxPzxP ∆∆

+ ∆= ),(
1 ),,,(),,( ωωω . (2.30) 

Integrate ),,( 1 ω+nzxP  over all the frequencies of interest to obtain the migrated data  

 
ωω

π
dzxPzxp nn ∫

+∞

∞− ++ = ),,(
2
1)0,,( 11

. (2.31) 

To be consistent with derivations in later sections, replace the wavefield symbol P in 

equation (2.21) with a general symbol ψ  that can be any of a pressure field, a 

displacement field or a velocity field, the extrapolation from depth z  to zz ∆+  with 

split-step Fourier method can be written as 

 
( ) ( ) ( ) x

∆zikx'ikzzxsiω dkedx'ex',z,ωe∆z,ωx,z zx∫ ∫
+∞

∞−

+∞

∞−

∆∆









=+ 0, ψψ

. (2.32) 

The integrals in the above equation correspond to the ( )xk,ω -domain constant-velocity 

extrapolation while the term outside the integrals corresponds to a ( )x,ω -domain  

slowness-perturbation correction.  kz0 is the vertical wavenumber of the wave propagating 

at background velocity v0.  The resulting wavefield is exact in vertical traveltime while 

approximately focused.  



 30

 

2.6 DERIVATION OF SPLIT-STEP EXTRAPOLATOR FROM 

NONSTATIONARY PHASE-SHIFT OPERATOR 

 

As expressed in the nonstationary filter (2.12), the vertical wavenumber kz in 

heterogeneous media can be written as  

 
2

2

2

)(
),( xxz k

xv
xkk −=

ω

, (2.33) 

which in the discrete case can be written as a matrix with xk  and x as coordinates.  For 

simplicity’s sake, only the positive sign is considered.  Add, then subtract 2
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     The second term under the square root in (2.34) can be much smaller than 1 when v(x) 

is close to v0 , a binomial expansion and truncation of the higher-order terms of equation 

(2.34) leads to 
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Note that the first term on the right side of equation (2.35) is a ( )xk,ω -domain 

homogeneous phase-shift.  Similar to the computation of integral extrapolators, the 

second term can also be written as a matrix with x and kx as coordinates.  By 

approximating 
0zk  with 

0v
ω

 in the second term on the right of equation (2.35), the 

sequence becomes a ( )x,ω -domain static phase-shift that is independent of 

wavenumbers. Equation (2.35) can thus be written as 
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Using the approximation 11
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 since v(x) is close to v0, a split-step 

operator can be obtained  
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The wavefield extrapolation from z  to zz ∆+ can then be written as  
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The term in the parentheses is a forward spatial Fourier-transform.  Since 
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This equation is the same as equation (2.32). 

By direct using equation (2.36), equation 2.38 becomes  
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This gives a slightly more accurate form of split-step method 
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2.7 APPROXIMATION OF PSPI, NSPS AND SNPS AS WINDOWED SPLIT-

STEP FOURIER ALGORITHMS 

 

The PSPI integral extrapolator is written as  
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but is generally too slow for practical application.  A faster while less accurate 

approximation is to break the lateral velocity function into small windows (1,2,…,j), in 

which the velocity variation is small in term of percentage of the local mean value (for 

example, no more than 15%), so that the split-step Fourier method remains accurate 

locally.  The percentage velocity variation within a spatial window is defined as 
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Considering that the PSPI integral is a nonstationary combination filter, which 

corresponds to a filtering-then-windowing process, the extrapolation of the overall 

wavefield can be written as a combination of all wavefield extrapolations within each 

lateral window.  Reducing the window size to a single, spatial location leads to the exact 

PSPI integral.  Considering extrapolation from z = 0 to depth z, the PSPI integral can be 

approximated by a localized split-step algorithm (Ferguson and Margrave, 1999)  
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where ( )ωα ,,' zk xj  is the local wavefield extrapolator applied to the overall wavefield so 

that the wavefield in spatial window j can be best approximated.  ( )ωϕ ,0,xk  is the 

( )xk,ω -domain wavefield at depth 0.  The windowing function is  
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Following the split-step Fourier method, ( )ωα ,,' zk xj  can be written as a constant 

reference based on the mean velocity with the addition of a slowness-perturbation factor 

due to the velocity variation within the spatial windows. The overall extrapolated 

wavefield can be written as  
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where ( )ωα ,, zk xj  and βj(x,ω) are wavefield extrapolators with constant velocity, relevant 

to a ( )xk,ω -domain focusing phase-shift and a (x,ω)-domain vertical traveltime 

correction, respectively.  These can be written as   
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and  
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Similarly, the NSPS integral can be approximated as  



 35

 
( ) ( ) ( )∫∑

+∞

∞−

Ω= dxexxzkzk xik
jj

j
xjx

x),(,0,,,,, ωβωψωαωϕ
, (2.49) 

which first performs a ( )x,ω -domain windowing  and slowness correction based on the 

reference velocities in each window and then a ( )xk,ω -domain constant velocity 

wavefield extrapolation.  

Kessinger (1992)  gave an extended split-step Fourier method similar to equation 

(2.46) to accommodate large lateral velocity variation. However, he did not realize the 

existence of the the NSPS form of the windowed split-step Fourier method, which is 

roughly a transposed form of the algorithm he proposed. 

A recursive, symmetric and windowed wavefield extrapolator can be formulated by 

combining equations (2.46) and (2.49).  

Computing equations (2.46) and (2.49) is much faster than the corresponding integral 

operators when the number of  spatial windows is small.  The performance of both 

algorithms is discussed in section 3.9.  A Matlab version of the localized split-step 

Fourier algorithm expressed in equation (2.39) for prestack shot gather depth-imaging 

was implemented by Ferguson (2000) and rewritten by the present author in Fortran 90 

(Mi and Margrave, 2000a).  The Fortran 90 version is stand-alone software that accepts 

data in standard IEEE SEG-Y format.  The split-step Fourier algorithm expressed in 

equation (2.41) was also implemented.  An in-depth and detailed description of this 

software can be found in Mi and Margrave (2000a). 
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Figure 2.2 shows the migration of shot gather 120 from the Marmousi synthetic data 

set (Bourgeois et al., 1991) with localized split-step Fourier algorithm using a set of 

reference velocities 100 m/s apart.  Each original shot gather contains 96 traces with 25-

m receiver spacing.  The nearest offset is 200 m.  The geometry simulates typical, one-

sided, marine data acquisition.  In consideration of the complexity of the velocity model, 

each of the shot gathers was padded to 256 traces of split-spread geometry in order to 

accommodate the migrated energy on both sides of the source.  Each trace has 512 

samples at a 4-ms sampling interval.  Migration of each shot produced local images of the 

subsurface; and overlapping all migrated shot gathers produces a complete subsurface 

image.  The overlapping process is equivalent to common-image-gather (CIG) sorting 

and stacking, a procedure in which all traces belonging to a certain receiver location are 

gathered and stacked.  Figure 2.3 shows the Marmousi velocity model.  Figure 2.4 

shows the CIG-stack section produced with a set of reference velocities 100 m/s apart and 

with the ( )x,ω -domain slowness corrections described in equation (2.39) and equation 

(2.41), respectively.  Both structures in the middle of the model and the flat spot at depth 

2550 m from the CIG at 6000 m to the CIG at 7500 m are slightly better imaged with 

equation (2.41). 
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(a) 

(b) 
Figure 2.2 Marmousi synthetic shot gather 120 located at the middle of the velocity model (a) 
before and (b) after migration. The migration is performed with the localized split-step Fourier 
algorithm as an approximation of the SNPS integral algorithm.  Reference velocities of 100 m/s 
apart and slowness correction described in equation (2.39) were used. 
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Figure 2.3 Marmousi P-wave velocity model. 

 

2.8 PARALLEL IMPLEMENTATION ON THE MACI ALPHA CLUSTER 

 

Computing each frequency with matrix-vector multiplication is an ( )2NO  algorithm, 

where N is the number of traces in a shot gather. Assuming that the number of 

frequencies to be computed, Nω , is of the same order as N, each step of SNPS is an N3 

algorithm.  If the number of depth steps is Nz and the number of shots is Ns, the total 

computation required for imaging is of the order NsNzN3. Computing equations (2.39) and 

(2.41) is much faster than the integral operators, since the N2-order matrix-vector 

multiplication for each frequency is replaced by a Fourier transform of order NlogN.  If 

only one reference velocity used,  the total computation becomes the order of NsNzNlogN.  

For large lateral velocity gradients, more than one reference velocity must be used; so 
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that the total computation becomes an algorithm of order NsNzNvNlogN, where Nv is the 

average number of reference velocities within each depth step. 

 
(a) 

 
(b) 

Figure 2.4 Marmousi CIG stacks (a) with slowness correction described in equation (2.39) and 
(b) with slowness correction described in equation (2.41).  The structures and the flat spot are 
imaged slightly better in (b). 
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Both the integral nonstationary operators and the localized split-step Fourier algorithm 

were implemented on the Multimedia Advanced Computational Infrastructure (MACI) 

Alpha Cluster at the University of Calgary (Mi and Margrave, 2001c).  MACI is a 

collaborative project of the Universities of Alberta, Calgary, Lethbridge and of Manitoba 

to provides high-performance computing resources to researchers and educators.  The 

Alpha Cluster at the University of Calgary is part of the high-performance computing 

facility of the MACI project.  The Cluster consists of approximately 117 Compaq Alpha 

workstations; the total number of CPUs was 173 at the time this thesis was written.  A 

general network configuration of the Alpha Cluster is shown in Figure 2.5.  Photographs 

of the three major machine types are shown in Figure 2.6. 

The two types of parallel implementation used include the Message Passing Interface 

(MPI).  MPI is a programming library that consists of communication functions mainly 

written in C language and callable by FORTRAN programs.  Each computing node was 

assigned a single shot-gather migration task.  The master C++ main program performs 

data I/O and parallel message distribution and collection operations. The shot-gather 

imaging kernel function was written in FORTRAN 90 to achieve high performance. 

Messages passing from the master node to the slave nodes included a shot gather and the 

corresponding velocity model, as well as migration parameters.  Messages returned from 

the slave nodes contain only the migrated shot gather.  Figure 2.7 shows a general 

topology of the parallel program.  
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Figure 2.5. The general network configuration of the Alpha Cluster computer at the University of 
Calgary (Courtesy of MACI, University of Calgary). 
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The second is a pseudo-parallel implementation that assigns a multi-shot-gather 

migration task to each computing node.  Each node performs its own data I/O and the 

actual computing.  The output from each node is written onto separate disk files and 

assembled before post-migration processing.  The first approach is user friendlier while 

the second approach is more flexible and especially useful for testing purposes.  Most of 

the imaging done for this thesis used the latter approach since intensive algorithm testing 

was carried out.  

 
(a) 

 
(b) 

 
(c) 

Figure 2.6 Photographs of the three types of Alpha workstations  (a) XP1000, (b) PWS 500 and 
(c) ES40 machines (Courtesy of MACI, University of Calgary). 
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Figure 2.7 The general topology of the parallel program.  Black lines denote data flow between 
the master node and the slave nodes. 

 

2.9 COMPUTING ISSUES 

 

As mentioned beforehand, the shot gathers in the Marmousi synthetic data were 

padded to 256 traces of split-spread acquisition geometry to accommodate migrated 

energy.  Each trace has 512 samples, at a sample rate of 4 ms.  Three hours were required 

to migrate a single shot gather on a 128 Mb memory XP1000 Alpha workstation with 

direct computation of equations (2.14) and (2.16).  Such lack of speed is unacceptable for 

production purposes. Several processes exist with which to make algorithms perform 

considerably faster: 

1) The square matrices in both equation (2.14) and (2.16) can be expressed by array-

products of the extrapolation matrices and the inverse and forward Fourier 

transform kernel matrices.  The exponential of large imaginary numbers, which 

results from large offsets in the transform kernel, would consume substantial 
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computing time if equations (2.14) and (2.16) were to be computed at each depth 

step. Precomputation of the inverse and forward Fourier transform matrices 

significantly reduces the run time. 

2) The wavefield extrapolation matrix is symmetric about column N/2+1, if the 

horizontal wavenumber is arranged in such a way as to vary from 0 to kxnyq and then 

from –kxnyq to –dkx with the first element (kx=0)  excluded,  where kxnyq  is the 

Nyquist wavenumber.  Computing time of the wavefield extrapolation matrix can 

then be further reduced by 50% since the values of the corresponding negative 

wavenumbers are duplicates of the corresponding positive wavenumbers.  

3) Computation of the scalar exponential function is a heavily involved process.  The 

intrinsic exponential function in FORTRAN 90 is accurate, but slow.  The Padé 

approximation to the scalar exponential function is much faster but slightly less 

accurate.  The accuracy can be adjusted by selecting appropriate expansion 

parameters to fit the requirement of wavefield extrapolation.  The Padé 

approximation to the scalar function ze  is defined by Golub and Van Loan (1989) 

as  
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Note that when q is zero, equation (2.50) reduces to the pth order Taylor-series 

expansion 
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Compared with the Taylor-series expansion, the Padé-approximation converges 

more quickly and more accurately at the same order.  The choice of p = q = 2 is 

capable producing sufficiently accurate and fast results when z is a small number 

close to zero.  This can be written as 
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    The Padé approximation is only accurate near the origin and the computing 

procedure should be altered to mmzz ee )( /= , where m is a power of 2, for a high 

degree of efficiency.  mze /  is the first step in the computation. Golub and Van 
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Loan (1989) showed that error can be minimized by choosing equal  p and q values 

and an appropriate m value (Golub and Van Loan, 1989).  

4) In cases where velocities repeat in a model layer, which is generally true even for a 

model as complicated as the Marmousi, the extrapolation portion of the array 

elements in equations (2.15) and (2.17) need not be recomputed for repeated 

velocities. Blocking the velocity field with a small velocity value, 10 m/s, for 

example, can significantly increase the number of repeated velocity values without 

causing noticeable error.  It will be shown that a 75 m/s blocking factor has very 

little impact on the image quality; however, the computing time can be further 

reduced by 75%.  Figures 2.8a and b show the number of velocities at each depth 

step when using 1) a 10 m/s velocity blocking factor and 2) a 75 m/s velocity 

blocking factor. Velocities would number 256 at each depth step without blocking.  

Note that numbers have been significantly reduced.  

        A more reasonable procedure would be to use a dynamic velocity-blocking 

factor determined as a percentage of the minimum velocity within each depth step. 

Figures 2.8c and d show the number of velocities requiring computing in each 

layer when the blocking factors are 1% and 2% of the minimum velocity.  This 

approach produces roughly the same number of velocity values, but in a more 

reasonable manner. 

Figure 2.9 shows the CIG at 6200 m of the migrated Marmousi data set, computed by 

(a) the localized split-step Fourier algorithm discussed in section 2.7, (b) integral SNPS 

extrapolator with a 75-m/s velocity-blocking factor and (c) integral SNPS extrapolator 
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with a 5-m/s velocity-blocking factor.  The integral SNPS extrapolator dramatically 

improved the CIGs. Apparent improvements are:  

II. Shallow events have clearer expression across the gather.  The events from 400 

m to 1200 m were confined between the shot point (middle of the shot gather) 

and channel 159 in the localized split-step algorithm, while between channel 

89 and channel 159 with the integral SNPS approach.  These results are to be 

expected since waves propagating at large angles can be more accurately 

computed using the SNPS integral operator.  Also, note that the vertical 

resolution of the shallow events has improved. 

III. There is less residual moveout.  Note that about 50 m of residual moveout 

remains for the event at 1250 m in the localized split-step Fourier algorithm 

approach;  this residual moveout eventually degrades image quality.  These 

events are nicely aligned in the integral SNPS extrapolator approach, even 

when the blocking velocity is as large as 75 m/s. 

IV. There is greater continuity of the deeper events: for example, the events at 

1700 m and 2500 m, have improved.  

Figure 2.10 shows the reflectivity of the Marmousi P-wave velocity model.  The 

reflectivity function was smoothed with a 0-20 Hz zero-phase bandpass wavelet so that it 

is comparable with a depth image.  The challenges presented by the Marmousi data set to 

depth imaging technologies are 1) shallow events throughout the section, 2) high-angle 

faults in the middle of the model and 3) images of flat spots at depths of  2550 m from 

6000 m to 7500 m.  Figures 2.11-2.13 show the images computed by the localized split-
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step Fourier algorithm approach with a group of reference velocities 100 m/s apart, the 

images computed by the SNPS extrapolator with 75 m/s and 5 m/s velocity blocking 

factors, respectively.  In comparing the band-limited reflectivity and the computed image, 

it is clearly evident that the foregoing imaging problems are easily resolved using the 

SNPS integral extrapolator.  Shallow events are generally better imaged and the vertical 

resolution is improved.  Fault planes are clearer, and the reservoir flat spot is especially 

well imaged.  The localized split-step Fourier algorithm approach produced slightly 

inferior images; for example, the upper boundary of the wedge on the left at depth 2400 

m.  

 

2.10 CHAPTER SUMMARY 

 

In this chapter, two forms of windowed split-step Fourier algorithms were introduced 

as an approximation to the PSPI and NSPS integral extrapolators.  The approximation to 

PSPI integral extrapolator is similar to that proposed by Kessinger (1992). A better 

slowness-correction algorithm for perturbation was discussed and produced a better 

image than the standard split-step slowness correction.  The integral SNPS extrapolator, 

though slow, significantly improved image quality.  Several means to speed up 

computation were presented; these included utilizing symmetric properties of the 

matrices, precomputation of the Fourier transform kernel matrices, the Padé 

approximation to scalar exponential function and velocity-field blocking.  Application of 

all the above techniques significantly reduces the run time.  The imaging test also showed 
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that a fairly large velocity-blocking factor (75 m/s) could be used to produce reliable 

depth images.  This is especially valuable for larger data sets, such as the Foothills 

synthetic data used in Chapter 4.  

 

(a) (b) 

(c) (d) 
Figure 2.8 The number of velocity values need to be computed at each depth step when the 
blocking factor is (a) 10 m/s,  (b) 20 m/s, (c) 1% of minimum velocity within layer and (d) 2% of 
minimum velocity within layer.  
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(a) 

(b) 
Figure 2.9 (Continues) 
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(c) 
Figure 2.9 CIG at 6200 m (a) CIG computed by the localized split-step Fourier algorithm 
approach, (b) CIG computed by the SNPS integral extrapolator with a blocking factor of 75 m/s 
and (c) CIG computed by the SNPS integral extrapolator with a blocking factor of 5 m/s.  

 

 

Figure 2.10 Reflectivity of the Marmousi model from 2500 m to 9100 m. The reflectivity is filtered 
to 0-20 Hz by treating depth as time to highlight the benchmark reflectors. 
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Figure 2.11 Marmousi image from 2500 m to 9100 m, computed by the localized split-step 
Fourier algorithm.  

 

 
Figure 2.12 Marmousi image from 2500 m to 9100 m, computed by recursive SNPS integral 
extrapolator with a blocking velocity of 75 m/s. 
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Figure 2.13 Marmousi image from 2500  to 9100 m, computed by SNPS integral extrapolator with 
a blocking velocity of 5 m/s. 
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CHAPTER 3 

 

 

 

 

LARGE-STEP WAVEFIELD EXTRAPOLATION AND THE DUAL 
ALGORITHM 

 

3.1 INTRODUCTION 

   

Complex geology requires increasing the number of reference velocities for Gazdag’s 

PSPI and the number of windows for the localized split-step Fourier algorithm. This 

significantly increases the amount of computing time required. As mentioned in Chapter 

2, the full integral algorithms are of the order NsNzN3
 and the localized split-step Fourier 

approach is an NsNzNvN2logN algorithm.  N, Ns, Nz and Nv represent the number of traces 

in a shot gather, the number of shot gathers in a data set, the number of extrapolation 

steps and the average number of reference velocities in each velocity layer, respectively.  

When the number of reference velocities exceeds the limit NNNv log/lim = , the full 

integral algorithm becomes faster. In practice, limNv  is often less than NN log/ , due to 

other windowing-related computational costs in the localized split-step approximation.  

In regions of complex geology, the lateral velocity gradient often exceeds the vertical 

velocity gradient, especially in regions adjacent to faults of large throw.  More accurate 
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algorithms, such as integral extrapolators, are required at every imaging step for proper 

wavefield propagation. However, they are too costly to perform. 

With small vertical and lateral velocity gradients, the extrapolation step can be large 

without resulting in noticeable errors.  Ng (1994) demonstrated that a large time step 

could be used in PSPI time migration.  In this Chapter, a dual algorithm is developed to 

demonstrate that a large extrapolation step can be used to speed up the nonstationary 

integral extrapolators for depth imaging.  The resulting wavefields are accurate as long as 

proper replacement velocities are used.  The intermediate wavefields for imaging can be 

produced by interpolation between the reference wavefields computed with large-step 

extrapolation. 

 

3.2 STATIC AND FOCUSING PHASE-SHIFT IN COMPLEX MEDIA 

 

In media of constant velocity, considering only downward extrapolation, the overall 

phase-shift that carries the wavefield from 0 to z can be split into the sum of a static 

phase-shift in the ( )x,ω  domain and a focusing phase-shift in the ( )xk,ω  domain  
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where staticΦ  is applied in ( )x,ω  domain, and the focusing term sΦfocu  is applied in the 

( )xk,ω  domain.  

Equation (3.1) is exact for homogeneous media.  It is also approximately applicable 

for )(zv  media by replacement of the focusing velocity with a root-mean-square (RMS) 

velocity.  Equation (3.1) can be generalized to media with lateral velocity variation.  Both 

the static and the focusing phase-shift become a function of spatial location, that is, 
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Similar to the case of constant velocity, the static phase-shift static)(xΦ  is applied in the 

( )x,ω  domain, which corresponds to a spatially varying vertical traveltime.  The focusing 

phase-shift focus)(xΦ  is applied in the ( )xk,ω  domain, which handles the propagating 

energy at all possible angles. 
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In the case of forward extrapolation, substitution of equation (3.1) into equation (2.2) 

gives a split nonstationary operator  

 ( ) ))(Φ)(Φ( focusstatic, xxi
x e,zx,k +−=ωα . (3.3) 

The PSPI and NSPS integral extrapolators can then be written as  

 ( )
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and  
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Φ−= x0,', xstatic k)(
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respectively.  ( )ωα ,' ,zx,kx  is the nonstationary focusing operator 
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Equations (3.4) and (3.5) can be written, approximately, in the form of matrix-vector 

multiplication with the ( )x,ω -domain static phase-shift applied before (for NSPS) and 

after (for PSPI) application of the nonstationary focusing term.  
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3.3 LARGE-STEP FORMULAE FOR PSPI AND NSPS 

 

For )(zv  media, both the static and focusing phase-shifts are independent of spatial 

location and can be accumulated over depth.  The accumulated static phase-shift is 

written as 
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'
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== ∫ . (3.7) 

The accumulated focusing term can be written as 
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Note that equations (3.7) and (3.8) together give a WKBJ solution for v(z) media.  For 

media with lateral velocity variation, equation (3.7) remains valid, while equation (3.8) 

does not, since PSPI and NSPS integrals do not perform exact inverse- or forward- spatial 

Fourier transforms.  PSPI and NSPS thus become local integral operators that do not 

directly accumulate over depth.  However, for weak lateral-velocity variation, the 

focusing phase-shift accumulates approximately, and equation (3.8) can be generalized to 
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The static phase-shift remains an exact accumulation 
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Binomial expansion of the square-root term in equation (3.9) leads to 
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Note that the depth-average velocity (mean velocity) is defined as  
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. (3.12) 

Bringing equation (3.12) in to (3.11) suggests that equation (3.11) can be approximated 

by  
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Binomial expansion of equation (3.13) then subtraction of equation (3.11) lead to the 

error term of the focusing phase-shift 
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This error can generally be ignored when 1) the propagation angle is small or 2) the depth 

step z is small or 3) the lateral-velocity gradient is small. 
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Defined the average velocity as ( ) 'dz
)'z(v

/zzv
z
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1 . For large-step extrapolation, 

equations (3.4) and (3.5) become 
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where ( )ωα ,,z,' xmean kx  is now the mean nonstationary focusing operator 
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Similar to the recursive SNPS algorithm (Ferguson and Margrave, 1999b), equations 

(3.15) and (3.16) can also be naturally combined to provide a symmetric wavefield 

extrapolator.  For example, a one-step symmetric large-step extrapolation from depth 0 to 

z can be formulated as 
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where 
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The symbols ( )2/0 z→  and ( )zz →2/   denote depth intervals from 0 to z/2 and z/2 to z. 

Equations (3.18) and (3.19) require the same amount of computational effort as the 

recursive PSPI and NSPS integrals described before.  They allow, however, a much 

larger extrapolation step.  The maximum allowable depth-step under certain phase-error 

conditions is dependent upon the complexity of the velocity field and the maximum angle 

to be imaged. 

A simple test of accuracy involves inverting the accurately modeled data with the 

large-step algorithm and examining the quality of the focal points.  Figure 3.1 shows the 

Marmousi model of a 4-m (vertical) by 25-m (lateral) grid.  The testing velocity zones are 

highlighted: zone 1 (0-160 m) and zone 2 (1200-1360 m).  Figure 3.2 shows the overall 

average and mean velocities of these two velocity zones.  Note that the maximum-

percentage average-velocity variation is about 20% for velocity zone 1, and about 50% 

for velocity zone 2.  
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Figure 3.1 Two velocity zones with different lateral velocity variations are chosen to test the 
large-step PSPI integral wavefield extrapolator. 

Zero-offset forward modeling was performed with recursive application of the PSPI 

integral to produce accurate synthetic data.  For each velocity zone, 11 impulses were 

recursively forward extrapolated through 20, 30 and 40 steps at 4 m each.  The quality of 

the inverse extrapolation with the large-step PSPI integral [equation (3.18)] of the three 

synthetic data sets indicates how robust the algorithm is when different lateral velocity 

variations are present.  

Figure 3.3 shows the extrapolation test in velocity zone 1.  11 impulses are forward 

extrapolated through the velocity model with 4-m step size recursive PSPI integral, to the 

depth of 80 m (20 layers) (Figure 3.3a), 120 m (30 layers) (Figure 3.3b) and 160 m (40 

layers) (Figure 3.3c). Inverse extrapolation with a 40-m step size PSPI large-step 

extrapolator show that the impulses are very well focused in all the three cases. This 

suggests that even larger extrapolation steps can be used.  
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(a) 

 
(b) 

 Figure 3.2 The mean-velocity and average-velocity in a 160-m depth interval within velocity 
zones 1 (a) and 2 (b). Solid black lines denote average velocities and gray lines denote mean 
velocities. 
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(a) (d) 

(b) (e) 

(c)         (f) 
Figure 3.3 Extrapolation test in velocity zone 1. (a), (b) and (c) are results of forward modeling by 
recursive PSPI integral though 20, 30 and 40 layers. The step size is 4 m. (d), (e) and (f) are 
inverse extrapolation of (a), (b) and (c) using a 40-m PSPI large-step extrapolation. 
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(a) (d) 

(b) (e) 

(c) (f) 
Figure 3.4 Extrapolation test in velocity zone 2. (a), (b) and (c) are forward modeling by recursive 
PSPI integral though 20, 30 and 40 layers. The step size is 4 m. (d), (e) and (f) are inverse  
extrapolation of (a), (b) and (c) using a 40-m step PSPI large-step extrapolation.  
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(a) (b) 
Figure 3.5 Inverse extrapolation of Figure 3.3c and Figure 3.4c with 4-m-step recursive PSPI 
integral.  

(a) (b) 
Figure 3.6 Zero-offset wavefields at 760 m of Marmousi model. (a) extrapolation with a 40-m 
large-step PSPI integral extrapolator and (b)  extrapolation by recursive PSPI integral of  4-m step 
size.  

Figure 3.4 shows the extrapolation test in velocity zone 2 and similar conclusions can 

be drawn.  Figure 3.5 shows the results of inverse extrapolation of Figure 3.3c and 

Figure 3.4c with recursive PSPI integral extrapolator.  Note that the inverse extrapolation 

with large-step PSPI integral extrapolator in both the shallow and deep parts of the model 

produces very similar results to that of the 4-m PSPI integral extrapolator.  
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Figure 3.6 shows the comparison of zero-offset extrapolation of 11 impulses to 760-m 

depth of the Marmousi model with a 40-m step size large-step PSPI integral extrapolator. 

The wavefields are very similar to each other; however, computation for Figure 3.6a is 

10 times faster than that for Figure 3.6b. 

 

3.4 THE DUAL ALGORITHM 

 

For recursive Fourier-domain imaging algorithms, the error caused by approximation 

to the theory accumulates at every depth step.  The integral wavefield extrapolators are 

accurate, but computationally quite costly.  One means of increasing computation speed 

is to compute relatively accurate reference wavefields over a depth grid coarser than the 

imaging depth grid and computing intermediate wavefields from these reference 

wavefields.  A linear interpolation between these reference wavefields, with proper 

vertical traveltime correction applied, can produce an intermediate wavefield with correct 

vertical traveltime, though slightly misfocused when the distance and the velocity 

variation between the reference wavefields are small.  Figure 3.7 depicts a schematic of 

the dual algorithm. 
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Figure 3.7 The dual algorithm uses accurate nonstationary integral extrapolators to produce 
relatively accurate reference wavefields over a depth grid coarser than the imaging depth grid. 
Intermediate wavefields can then be computed by quick interpolation. 

Consider two ( )x,ω -domain mono-frequency reference wavefields at z1 and z2, 

( )ωψ ,z,x 1 , ( )ωψ ,z,x 2 , computed by the large-step PSPI integral extrapolator.  An 

intermediate wavefield between z1 and z2, ( )ωψ ,z,x ,  can be computed by either forward 

extrapolation from the wavefield at z1 or by inverse extrapolation from the wavefield at 

z2.  Computation of the focusing term is, however, time-consuming; it requires the same 

computing effort as that of a normal PSPI or NSPS integral extrapolator.  Since the 

velocity variation and distance between the upper and lower reference wavefields are 

small, the upper reference wavefield becomes an underfocused version of the 

intermediate wavefield and the lower reference wavefield becomes an overfocused 

version, after the vertical traveltime correction.  The error in focusing terms can be 

roughly cancelled if appropriate weighting factors are applied.  

Vertical traveltime correction of the upper and lower reference wavefields produces 

two approximations to the intermediate wavefield ( )ωψ ,z,x .  They can be written as  
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where vave1 and vave2  are average velocities from z1 to z and z to z2.  

Equation (3.20) and (3.21) are merely vertical time corrections.  Another approach, 

though slightly slower, is to use a single-reference-velocity split-step Fourier algorithm to 

approximately correct for the focusing error.  

The intermediate wavefield can be computed by linear interpolation between 

( )ωψ ,z,x'
1  and ( )ωψ ,z,x'

2 .  If the difference between vave1 and vave2 is small, this roughly 

cancels the focusing error, so that 
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The weight of the reference wavefields in the intermediate wavefield decreases linearly 

as the distance increases. For a larger difference between vave1 and vave2, correction for the 

focusing term is required.  This can be achieved with a single-reference-velocity split-

step Fourier algorithm.  



 70

(a) 
 

(b) 
Figure 3.8 Zero-offset wavefield extrapolation of 11 impulses to depths of both (a) 560 m and (b) 
600 m of the Marmousi model.  

Figure 3.8 and Figure 3.9 show the zero-offset forward-extrapolation of 11 impulses, 

starting at 0.25 s through the shallow part of the Marmousi model, using the dual 

algorithm. Two reference wavefields, at 560 m and 600 m, were computed utilizing the 

large-step PSPI integral extrapolator with a 40-m step size (Figure 3.8).  The 

intermediate wavefields at 564 m, 572 m, 580 m, 588 m and 596 m were computed using 

equation (3.22).  

The quality of the intermediate wavefield degrades slightly as the wavefield 

approaches the middle of the interval.  The inverse of these intermediate wavefields using 

the accurate 4-m step size integral algorithm indicates the accuracy of these intermediate 

wavefields.  The inverse of Figure 3.9, from a through e inclusive, with a 4-m recursive 

PSPI integral extrapolator is shown in Figure 3.10.  The slight differences between the 

focal images indicate that these wavefields are accurate.  
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(a) (b) 

(c) (d) 

 
(e) 

Figure 3.9 Intermediate wavefields at (a) 564 m, (b) 572 m, (c) 580 m, (d) 588 m and (e) 596 m 
were computed by linear interpolation between the reference wavefields at 560 m and 600 m. 
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3.5 DEPTH IMAGING OF MARMOUSI WITH THE DUAL ALGORITHM 

 

Figure 3.11 shows the imaging test with a 40-m step size PSPI dual algorithm. Phase 

corrections with both the vertical traveltime correction and the single-reference-velocity 

split-step Fourier algorithm are tested.  Note that the split-step corrections produce a 

better image [Figure 3.11(b)].  Figure 3.12 shows a Marmousi depth-image computed 

with a 16-m PSPI dual algorithm with vertical traveltime correction before interpolation.  

As a result of the focusing phase error introduced by the large-step extrapolation and 

linear interpolation, the events on the middle left of the image of Figure 3.11 a, marked 

as ‘poor image,’ are discontinuous.  The quality of the image produced with the 16-m 

dual algorithm is, however, quite comparable with that generated by the recursive SNPS 

algorithm (Figure 2.12).  The computational cost of achieving Figure 3.12 is about 1/4 

that of Figure 2.12.   Only three minutes were required to migrate a shot gather using a 

single-CPU Alpha XP1000 workstation. 
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(a) (b) 

(c) (d) 

 
(e) 

Figure 3.10 Inverse extrapolation of the intermediate wavefields at (a) 564 m, (b) 572 m, (c) 580 
m, (d) 588 m and (e) 596 m with the 4-m step recursive PSPI integral operator.  
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(a) 

 
(b) 

Figure 3.11 Marmousi CIG image computed with a 40-m dual algorithm by (a) linear interpolation 
of static phase-shift-corrected wavefield and (b) linear interpolation of wavefields corrected with 
the single-reference-velocity split-step algorithm.  Note: the phase error generated by the large-
step extrapolation on high-angle reflections in (a) and the improvement in (b).  
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Figure 3.12 Marmousi CIG image computed with a 16-m dual algorithm. The image is very 
comparable to Figure 2.12, computed with recursive SNPS algorithm. 

 

3.6 LARGE-STEP EXTRAPOLATION BY EIGENVALUE DECOMPOSITION  

 

Although the integral wavefield extrapolators are accurate, their dip limit is 

determined by the downward-continuation step and by the lateral velocity-block size of 

the piece-wise velocity model.  Waves propagating travel though the boundary between 

velocity blocks do not comply with isotropic wave propagation theory. For the recursive 

PSPI algorithm with 25=∆x m and 4=∆z  m, the dip limit is about o1 80
4
25

≈





−tan .  In 

this section, an eigenvalue-decomposition algorithm that provides a more accurate 

solution to wavefield propagation across the velocity-block boundaries, is discussed. 
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The 2D wave equation can be written in the Fourier-domain as the Helmholtz 

equation 
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where v(x) is the laterally varying velocity field and ( )ωψ ,z,x  is a mono-frequency 

wavefield.  The boundary condition for the wavefield extrapolation problem is 

),(|),,( 00 ωω xzx z Ψ=Ψ = , where ),(0 ωxΨ  is assumed to consist of the upgoing wavefield 

only. 

Yao and Margrave (2000) showed that the extrapolated wavefield at depth z could be 

written as 
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Symbols with a single underscore are vectors and those doubly underscored are matrices. 

2C  is a Toeplitz matrix  defined as 
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In the above matrix, ns  in the above matrix is defined as the forward spatial Fourier 

transform of 2)(
1
xv

, such that 
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In a laterally varying velocity field, it contains off-diagonal components.  In the constant-

velocity field, the matrix is diagonal.  

2K  is a diagonal matrix with the square of horizontal wavenumbers populating the 

main diagonal 
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With eigenvalue decomposition, equation (3.24) can be written as 

 ( ) ( )



 == −Λ−− ,ωx,zxFDeDxF,z,x

zi /

011
21

ψωψ . (3.28) 

22 KC −  can be decomposed as 

 122 −Λ=− DDKC , (3.29) 

where Λ  is a diagonal matrix with eigenvalues of the matrix 22 KC − populating the 

main diagonal. D  is a matrix whose columns are corresponding eigenvectors. 
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3.7 LARGE-STEP EXTRAPOLATION WITH PADÉ APPROXIMATION TO 

MATRIX EXPONENTIAL 

 

The direct solution of the wave equation discussed above involves computing the 

matrix exponential with eigenvalue decomposition. The resulting reference wavefields 

are more accurate than those generated by the large-step nonstationary integral 

extrapolators.  By using the direct solution, waves propagating through velocity-block 

boundaries can be accurately computed and a velocity-field approximation is the only 

source of error.  This resolution is suitable for both practical forward seismic modeling 

and depth imaging, as long as computation can be quickly performed.  In the case of 

depth-imaging, if the step size is too small, the algorithm is no faster than the recursive 

integral algorithm. Computing the matrix exponential and the square-root functions in 

equation (3.28) is significantly slower than computing the integral operators. 

Matrix exponential computing techniques are well described in the literature of 

mathematics (Golub and Van Loan, 1989, for example).  The eigenvalue decomposition 

approach and Padé approximation algorithms are typical.  In large-step wavefield 

extrapolation, an approximate wavefield extrapolator such as the Padé approximation can 

be used.  The Padé approximation is slightly less accurate than the eigenvalue 

decomposition algorithm but is sufficiently accurate to map the wavefield to the next 

depth through a laterally varying velocity field. 
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Matrix exponential function and its Padé approximation  

A matrix function )(Af  can be defined from a scalar function f(z) by simply 

replacing the variable z with matrix A .  A matrix exponential function is defined as 

 AeAf =)( . (3.30) 

In our case, A  is the phase-shift and wavenumber-mixing matrix defined in equation 

(3.24), 22 KCizA −±= .  All approximation rules applicable to the scalar function 

ze can be applied to function Ae , directly. 

Similar to the Padé approximation to a scalar exponential function as described in 

Chapter 2, the Padé approximation to the matrix exponential function can be 

conveniently written as 

 ),()()( 1 ANADARe pqpqpq
A −=≈  (3.31) 
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and 
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Note that when q is zero, equation (3.31) reduces to the pth-order Taylor-series 

expansion 

 !/...1)(0 pAAAR p
p +++= . (3.34) 

For a commonly used case p = q = 2, equations (3.32) and (3.33) can be written as 
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and  
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Similar to that of the Padé approximation to the scalar exponential function, the 

computing procedure should be altered as ( )mm/AA ee ⇒ , where m is a power of 2, in 

order to achieve efficiency (Golub and Van Loan, 1989). 

Padé approximation to the wavefield-extrapolation matrix 

Equation (3.24) can also be written as 
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 ),z(xFexF),z( A ωψωψ 01 == − ,  (3.37) 

where A  is the wavefield extrapolation matrix defined by BizA ±=  and B  is defined as 

the square root of the matrix 22 KC − , such that 

 222/12/1 KCBB −= . (3.38) 

The wavefield extrapolation matrix Ae  can then be computed with the Padé 

approximation.  Computation of the matrix square-root function is also time-consuming, 

though much faster than the matrix exponential functions; it is thus not discussed in this 

context.  

 

3.8 NUMERICAL EXAMPLES FOR LARGE-STEP EXTRAPOLATION WITH 
THE PADÉ APPROXIMATION 

 

Figure 3.13 shows a two-block velocity model used for the zero-offset 

forward/inverse extrapolation test with the eigenvalue decomposition algorithm and the 

Padé approximation algorithm.  The forward synthetic by eigenvalue decomposition can 

be accurately inverted by the Padé approximation algorithm and vice versa (Figure 3.14). 

Random lateral velocity variation and a large extrapolation step present a significant 

challenge to wavefield extrapolation algorithms.  Figure 3.15 shows an extreme test.  

The lateral velocity variation of adjacent velocity blocks exceeds 75%.  Forward 

modeling is performed with the eigenvalue-decomposition algorithm and the synthetic 
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data can be perfectly inverted by the Padé-approximation algorithm.  The sizes of the 

focal points are directly related to the velocity of the block in which they reside. 

Compared to the direct eigenvalue decomposition algorithm, the Padé approximation 

solution is about three times faster, though still slow for practical application. 

 

 
Figure 3.13 Two-block model to test zero-offset extrapolation with Padé approximation.  The star 
indicates the position of the source and black triangles are receiver locations. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 3.14 Forward  and backward extrapolation of an impulse through a two-block model as 
shown in Figure 3.13. (a) The forward extrapolation of a single spike computed with the Padé 
approximation; (b) The inverse extrapolation of (a) with the eigenvalue decomposition algorithm; 
(c) The forward extrapolation a single spike computed with eigenvalue decomposition; (d) The 
inverse extrapolation of (c) computed the Padé approximation algorithm. 
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(a) (b) 

(c) (d) 
Figure 3.15 Zero-offset forward extrapolation with the eigenvalue decomposition algorithm and 
inverse extrapolation with the Padé approximation algorithm through a randomly varying velocity 
media. (a) Random velocity model. The thickness of the model is 400 m; (b) 11 impulses, starting 
at 0.25 s; (c) Forward extrapolation of the 11 impulses in (b) with eigenvalue decomposition; (d) 
Inverse extrapolation of (c) computed with  the Padé approximation algorithm. 

 

3.9 COMPARISON OF SPEED AND LIMITATIONS OF ALGORITHMS 

 

The NSPS, PSPI and SNPS are NsNzN3 algorithms.  The order of other Fourier-domain 

prestack depth-imaging methods can be computed in a similar way.  For the single-

reference-velocity split-step Fourier method or phase-screen method, ignoring the 

computation time for vertical traveltime correction (since computing the focusing term 

consumes most of the computer time), the cost function can generally be written as 

NsNzN2logN.  For a localized split-step approach, the computer time-cost function can be 
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written as NsNzNwN2logN, where Nw is the number of spatial windows.  Gazdag’s PSPI 

approach is roughly in the same order of a localized split-step Fourier method and the  

computing cost function can be written as NsNzNvN2logN, where Nv is the number of 

reference velocities.  For the dual algorithm, the cost function can be written as 

NsNzN3/NL, where NL is the number of intermediate steps in a large-step extrapolation. 

When the condition NvlogN > N/NL is satisfied, the dual algorithm becomes faster than 

the localized split-step Fourier method and Gazdag’s PSPI approach.  Numerical tests on 

zero-offset synthetic data showed that the eigenvalue-decomposition method is 

significantly slower than the integral operators are and not at all practical.  The Padé 

approximation is about three times as fast as the eigenvalue-decomposition method; 

however, more research is required before implementation would be practical.  The cost 

functions of these two methods are not examined here. 

Table 3.1 shows the relative performance and capability of different Fourier-domain 

wavefield extrapolators. This is a rough estimation only and should only be considered in 

a relative sense.  
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Algorithms Ability to Handle Large 
Lateral Velocity Gradient  

Order of Algorithm Relative Speed 

NSPS, PSPI and SNPS 
integrals 

Strong NsNzN3
  Slow. 

Dual algorithm Strong NsNzN3/NL Very fast. 

Split-step / Phase-screen Weak NsNzN2logN  Very fast. 

Localized split-step / 
Phase-screen  

Strong when sufficient 
numbers of windows are 
used. 

NsNzNwN2logN  Slow when the number of 
windows exceeds N/logN. 

Gazdag’s PSPI Strong when sufficient 
number of reference 
velocities is used. 

NsNzNvN2logN  Slow when number of 
reference velocities 
exceeds N/logN. 

Eigenvalue decomposition Very strong N/A Very slow. 

Padé approximation Very strong. N/A Slow, but three times faster 
than Eigenvalue 
decomposition. 

Table 3.1 Summary of the performance of Fourier-domain imaging techniques. 

 

3.10 CHAPTER SUMMARY 

 

A dual algorithm is presented in this chapter and is an efficient way to speed up 

integral extrapolation algorithms.  The size of the large step is directly related to the 

lateral velocity variation.  Less lateral velocity variation permits a relatively large step 

and, hence, a more efficient algorithm.  In dealing with a more rapid lateral velocity 

variation with a large-step extrapolation, an accurate algorithm such as the eigenvalue 

decomposition, though very slow, should be used.  As an alternative, the Padé 

approximation algorithm can be used to produce results sufficiently accurate for our 

purposes.  
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CHAPTER 4 

 

 

 

 

PRESTACK DEPTH IMAGING FROM TOPOGRAPHY WITH NSPS 
AND PSPI 

 

4.1 INTRODUCTION 

 

Fourier-domain imaging algorithms require that seismic data be corrected to a flat 

datum.  Statics correction, assuming near-surface vertical ray-paths, is often not 

sufficiently accurate to produce correct wavefields at the datum when near-surface 

geology is complicated.  Wave-equation redatuming is often required (Berryhill, 1979, 

1984; Shtivelman and Canning, 1988).  In mountainous areas such as the Canadian 

Rockies, topographic variation often exceeds several hundred meters and redatuming 

inevitably results in the loss of near-surface image, which is often important for 

correlation analysis between a seismic image and actual geological outcrops.  Direct 

imaging from topography improves this situation.  The problem in this specific region has 

been addressed by several authors (Gray and Marfurt, 1995; Lines et al., 1996).  

Imaging from topography with wave-equation methods is a natural extension of wave-

equation redatuming techniques in that both are established on the wavefield 
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extrapolation theory.  This chapter addresses the issue, with the nonstationary phase-shift 

theory.   

 

4.2 PSPI EXTRAPOLATION FROM TOPOGRAPHY 

 

Figure 4.1 shows the basics of wave-equation redatuming.  In place of applying a 

vertical time-shift to the traces, the energy at each receiver location is allowed to 

propagate at all possible angles.  For a complex velocity model, Fourier-domain 

redatuming requires recursive wavefield extrapolation, continuous muting of energy 

above the topography as the result of extrapolation and inclusion of data recorded at 

current depth levels.  The final datum is often flat below the lowest point of topography.  

For less complex media and with relatively small topographic variation, recursive 

wavefield extrapolation can be approximately replaced by a single-step nonstationary 

wavefield extrapolation with both velocity and extrapolation step sizes varying with 

spatial location (Margrave and Yao, 2000) (Figure 4.2). For example, a PSPI 

nonstationary redatuming algorithm can be formulated as, 

 ( ) ( ) ( )∫
+∞

∞−

−= x
xik

xx dke,k,zx,kzx xωϕωα
π

ωψ ,0,
2
1,, ,  (4.1) 

with the nonstationary redatuming wavefield extrapolator ( )ωα ,x ,zx,k  written as 
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Note that both the velocity and the extrapolation step size are now x-dependent.  Plus and 

minus signs denote backward and forward extrapolation. 

 
Figure 4.1 Wave-equation redatuming allows the energy at each receiver location to propagate 
along all possible angles.  Dotted grid lines denote depth steps. 

Note that equation (4.1) is a large-step algorithm; however, different from that in 

Chapter 3.  The average velocity is used to compute both static phase-shift and focusing 

phase-shift terms.  According to the large-step-extrapolation algorithm in Chapter 3, 

equation (4.2) can be split into static-phase-shift and focusing-phase-shift terms. The 

extrapolation can be written as 

 ( ) ( ) ( ) 







= ∫

+∞

∞−

−−
x

xik
xx

xiΦ dke,zk,zx,kex,z xωϕωα
π

ωψ ,,'
2
1, static)( , (4.3) 

 

where staticΦ is the static phase-shift defined as 
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The nonstationary, focusing phase-shift operator can be written as 
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where both the average and the mean velocities are computed from the topography to the 

flat datum.  Note that only the forward-extrapolation case is considered. 

Figure 4.2 Single-step Fourier-domain redatuming with nonstationary wavefield extrapolator.  
Both the extrapolation step size and the velocity are functions of spatial location.  

For more severe topographic variation and strong lateral-velocity variation, an 

accurate large-angle propagator is desirable.  Equation (4.3) can be applied recursively 

with the x-dependent depth-step function being a slice of the overall topography z(x) in 

each step; however, a spatial mute function must be applied in order to eliminate the 

extrapolated wavefield above the topography.  Data recorded at the current depth-step is 

included for the next phase of extrapolation.  For a large-step PSPI implementation, the 

thinner the slice, the more accurate the algorithm.  For a PSPI implementation, each step 

of extrapolation can be written as 
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where PSPI denotes the PSPI integral algorithm. ( )ωϕ ,0,zk x  and ( )ωψ ,, 0 zzx ∆+  denote 

the (ω,kx)-domain wavefield at depth z0 and the  (ω,x)-domain wavefield at depth 

zz ∆+0 , respectively.  W(x,z0) represents the spatial-windowing function, defined as 
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)( xzψ  denotes the wavefield recorded on the topography z(x).  The extrapolation depth-

step function in the nonstationary phase-shift operator (equation 4.5) is now defined as  

 

 )()()( 12 xhxhxh −= ,                         (4.8) 

where h1(x) and h2(x) are the x-dependent topographic functions at 0z  and zz ∆+0  is 

defined as 

 
[ ]
[ ]zzxzxh
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∆+=

=

02

01

),(max)(
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,                 (4.9) 

and z(x) is the topography. 

Figure 4.3 shows a zero-offset forward extrapolation of 11 impulses through a 

complex velocity model.  The impulses are placed uniformly at the bottom of the model 

and receivers are placed at each spatial location on the topography.  Forward modeling is 
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done by recursive application of the PSPI integral extrapolator with a step size of 4 m.  

The velocity model has a maximum 100% lateral velocity variation and roughly 110 m of 

topographic relief, within a distance of 750 m.  Comparison of the downward 

extrapolation with large-step PSPI extrapolation algorithm against the recursive PSPI 

integral algorithm highlights the robustness of the large-step algorithm.  Figure 4.4 

depicts the inverse extrapolation with the recursive 4-m step-size PSPI integral and large-

step algorithm with various step sizes.  Note that the quality of the focal points degrades 

only slightly when the step size is increased to 80 m.  
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(a) 

 
(b) (c) 

Figure 4.3. Zero-offset forward extrapolation with recursive PSPI integral of 4-m step size. (a) the 
velocity model, (b) the 11 impulses and (c) the zero-offset synthetic. 
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(a) (b) 

(c) (d) 
Figure 4.4 Accuracy comparison of inverse extrapolation: (a) Recursive PSPI integral 
extrapolator with 4-m step size, (b) inverse extrapolation with 20-m PSPI integral extrapolator, (c) 
inverse extrapolation with 80-m PSPI integral extrapolator and (d) inverse extrapolation with 120-
m integral extrapolator. 
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4.3 NSPS EXTRAPOLATION FROM TOPOGRAPHY 

 

The NSPS counterparts of equation (4.1) can be written as 

 ( ) ( ) ( )∫
+∞

∞−

= dxex,,zx,k,zk xik
xx

xωψωαωϕ ,0,, ,  (4.10) 

with the nonstationary wavefield extrapolator ( )ωα ,,zx,k x  expressed in equation (4.2). 

Similarly, the NSPS counterpart of equation (4.3) can be written as, 

 ( ) ( ) ( )∫
+∞

∞−

−= dxeex,z,zx,k,zk xikxiΦ
xx

xstatic)(,,', ωψωαωϕ , (4.11) 

where staticΦ is the static phase-shift defined as in equation (4.4) and the focusing phase-

shift ( )ωα ,' ,zx,k x  is defined as in equation (4.5).  For multi-step extrapolation through 

topography, the extrapolated process involves similar muting of the extrapolated 

wavefield above topography and inclusion of recorded data at current depth levels. 

The spatial Fourier transform requires that the seismic data be recorded on a flat 

datum.  Both equations (4.1) and (4.3) violate this assumption in that they require the 

wavefield recorded on a non-flat datum be transformed from x coordinate to kx 

coordinate. The same discrepancy exists with equation (4.10). Equation (4.11) is 

advantageous in that the wavefield is first vertically shifted to a flat datum with an 
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average interval velocity equivalent to a standard statics correction and then extrapolated 

and forward-transformed to the kx domain.  

Figure 4.5 shows forward- and inverse-extrapolation tests similar to those shown in 

Figure 4.4.  Note that the difference between modeled data with the PSPI integral 

(Figure 4.3c) and the NSPS integral (Figure 4.5a) is minor; however, the energy of the 

events around x = 750 m, corresponding to the highest point of the topography and 

greatest lateral-velocity contrast, is more complete.  Figure 4.5b-d depict large-step 

inverse extrapolation of Figure 4.5a with 80-m, 120-m and 160-m NSPS integral 

extrapolators. The source impulse at x=750 m is missing in the PSPI extrapolation test 

(Figure 4.4) due to severe topographic variation and high lateral velocity contrast; 

however, NSPS quite ably recovers the source impulse, even when the extrapolation step 

size is increased to 160 m.  

For depth imaging, the wavefield at each depth-step within the topography can be 

computed by either recursive extrapolation or the dual algorithm, with the spatial muting 

function W (equation 4.7) applied and field data recorded at the current depth-level, 

added.  
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(a) (b) 

(c) (d) 
Figure 4.5 Zero-offset extrapolation test with large-step NSPS. (a) Recursive NSPS with 4-m 
step-size, (b) inverse extrapolation with 80-m step-size NSPS, (c) inverse extrapolation with 120 
m NSPS and (d) inverse extrapolation with 160 m NSPS. 
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4.4 A VELOCITY MODEL OF THE CANADIAN ROCKY MOUNTAIN REGION 
AND SYNTHETIC DATA 

 

Figure 4.6 shows a geologic cross-section representation of northeastern British 

Columbia, where large topographic variation and high-angle thrust faults are common.  

The model contains a number of faults and folded layers, as well as about 1600 m of 

elevation relief typical to the Canadian Rockies.  High near-surface velocity presents an 

additional challenge to depth imaging algorithms.  The model is 25 km long.  The highest 

topography is approximately 2 km above sea level and the deepest about 8 km below sea 

level.  The model has P-wave velocity variation from 3600 m/s near the surface to 5900 

m/s near the bottom.  The depth-model sample rate is 10 m.  A total of 278 2D synthetic 

shot gathers were computed with finite-difference modeling.  The data were recorded to 5 

s by a split spread of 480 receivers with offsets ranging from 15 m to 3600 m on both 

sides of the shot points.  The shot spacing is 90 m and the original sample rate is 4 ms. 

The 2D cylindrical-spreading loss is proportional to t-1/2.  A geometrical spreading 

correction should be applied before processing. 

Figure 4.7 shows a shot gather in the middle of the model.  Rapid topographic 

variation, high velocities near the surface and complex structures present significant 

challenges to depth-imaging algorithms.  
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Figure 4.6 A velocity/depth model representation of northeastern British Columbia (after Gray 
and Marfurt, 1995). 

 

4.5 DEPTH IMAGING OF THE FOOTHILLS SYNTHETIC DATA 

 

The dominant frequency content of the original synthetic data ranges from 5 to 40 Hz 

and allows resampling to a 6-ms rate to facilitate computing.  Each shot gather was 

padded to 7.5 s in order to accommodate the energy wrapped around by the extrapolation 

and Fourier transform, which becomes background noise if not properly handled.  A 

more efficient approach is to pad only small amounts of time to the traces and mute the 

padded region after one or several large-step extrapolations, as long as the vertical 

traveltime shift in the extrapolation does not exceed the padded time.  Each shot gather 

was padded to 512 traces, with the source located in the middle, so that 15 padded traces 
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(225 m) on both sides accommodate the energy wrapped around by extrapolation and 

spatial Fourier transforms. The padded traces are muted after each large-step 

extrapolation.  For a step size of 50 m, the padding accommodate a design dip of o78 .  

This is often sufficient for most complex geology settings. 

The algorithm was implemented on the MACI cluster workstation (Mi and Margrave, 

2001b).  A total of 14 computing nodes were used and migration of the data set required 

about 8 hours.  Figure 4.8 shows the shot gather in Figure 4.7 after migration and 

Figure 4.9 shows a CIG at the middle of the line and the final CIG stack. A zoomed near-

surface section is also shown.  Figure 4.10 shows two images produced by other authors, 

a prestack Kirchhoff migration by Gray and Marfurt (1995) and a o75  finite-difference 

prestack migration by H. Lu of the CREWES Project (unpublished), with the prestack 

finite-difference depth-migration module in ProMAX.  The parts corresponding to 

Figure 4.9(c) are also zoomed for more detailed comparison.  The image produced by the 

large-step PSPI integral algorithm (Figure 4.9b) has several improvements, not only in 

terms of near-surface events, but also in terms of migration noise level and image 

resolution.  The Kirchhoff algorithm fails to recover both flanks of the syncline located in 

the middle of the model, at depths from 7000 m to 8000 m (Figure 4.10 (a)).  The major 

near-surface events are clear; however, the degree of migration noise is obvious. The o75  

finite-difference algorithm produced a less noisy section; the image depth, however, is 

slightly incorrect.  This is apparent in that the left end of the section: basement reflection 

should be at 10000 m instead of 10300 m.  The quality of the dominant fault planes on 

the right of the section, as well as the strata on both sides, indicates the algorithm’s ability 
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to image high-angle events.  Apparently, the large-step PSPI integral algorithm produced 

the best result. 

 

4.6 CHAPTER SUMMARY 

 

A Fourier-domain migration-from-topography based on the nonstationary phase-shift 

theory was developed.  Details of both the PSPI and NSPS extrapolation from topography 

were given.  The test on zero-offset synthetic data over a complex-velocity model shows 

that both algorithms are capable of handling extreme lateral-velocity and topographic 

variations.  NSPS is more suitable for large-step extrapolation.  However, given the 

typical large-step size in depth imaging, the difference between the two algorithms is 

minimal.  Prestack algorithms were developed and the Foothills synthetic data set was 

used for testing.  Comparisons between the image produced by the PSPI algorithm 

against those generated with Kirchhoff and finite-difference algorithms indicate that the 

nonstationary phase-shift algorithm is more capable of recovering the near-surface image 

and high-angle fault planes.  
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Figure 4.7 A shot gather located in the middle of the model. 

Figure 4.8 Shot gather of Figure 4.7 after migration from topography with the dual algorithm. The 
extrapolation step is 50 m.  
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(a) 

 
(b) 

Figure 4.9 (continues) 
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(c) 

Figure 4.9 Result of depth imaging from topography with large-step PSPI algorithm. (a) A CIG in 
the middle of the model, (b) CIG stack and (c) a zoomed version of the region highlighted in (b). 

 
(a) 

Figure 4.10 (continues) 
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(b) 

 
(c) 

Figure 4.10 (continues) 
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(d) 

Figure 4.10 Result of prestack depth imaging by other authors.  (a) Kirchhoff migration from 
topography, after Gray and Marfurt (1995), (b) finite-difference prestack migration from 
topography, by H. Lu, courtesy of the CREWES Project, University of Calgary. (c) and (d) show  
the upper-left corners of (a) and (b), corresponding to Figure 4.9 (c). 
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CHAPTER 5 

 

 

 

 

FOURIER-DOMAIN CONVERTED-WAVE PRESTACK  

DEPTH IMAGING  

 

5.1 INTRODUCTION 

 

Shear-wave exploration has certain advantages over conventional P-wave methods. 

Since shear-wave propagation depends almost entirely on the rock matrix, pore fluid 

property has less impact on shear-wave velocity than it does on compressional-wave 

velocity. P-wave signal can be significantly attenuated by the presence of small amount 

of free gas in pore space, while shear-wave signal can pass without being attnuated much. 

However, shear-wave sources often have smaller energy capacity, lower frequency 

content and less depth-penetration, compared to conventional acoustic sources.  The 

inclusion of horizontal components with conventional vertical-component recording leads 

to inexpensive acquisition of valuable mode-converted shear-wave (P-S) data with a 

conventional seismic source.  Converted shear-wave reflections (P-S) have smaller 

reflection angles than P-wave reflections and more information can thus be acquired in a 

relatively smaller aperture.  Shear waves converted from incident P-waves allow 
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estimation of the elastic parameters of the subsurface, which are important in many 

aspects of reservoir exploration, characterization and exploitation. 

The major complexity in processing P-S data is asymmetry of the source-to-receiver 

raypaths.  Conventional common-mid-point (CMP)-based processing techniques can not 

be used.  Instead, common-conversion-point (CCP) binning-based processing should be 

performed.  Birefringence analysis (Harrison, 1993), common-conversion-point (CCP)-

binning, P-S NMO correction and velocity analysis (Slotboom and Lawton, 1989; 

Slotboom, 1990), P-S DMO and migration (Eaton and Stewart, 1991; Harrison, 1993) are 

necessary.   

There has recently been an increased utilization of P-S arrivals in anisotropy analysis 

(Thomsen, 1999; Bale et al., 1998).  Depth-migration of P-S data for subsalt imaging and 

in anisotropic media has been discussed by several authors (Sekulic et al., 1998; 

D’Agosto et al., 1998; Caldwell et al., 1998; Sollid et al., 1996).  True-amplitude prestack 

imaging of P-S data has also been discussed (for example, Nicoletis et al., 1998). 

Extending from land 3C acquisition technology, ocean-bottom-cable acquisition -- which 

consists of 3C geophones and hydrophones -- can directly record P-S data and this 

technology has many advantages over marine acoustic surveys.  The processing 

difficulties caused by water-bottom multiples can be more delicately and accurately 

handled by utilizing the pressure data recorded by hydrophones. 

Converted-wave data acquired over complex geology presents great challenges to 

CCP binning that assumes a laterally invariant velocity field.  Difficulties are also evident 

with P-S DMO and migration.  These conventional processing steps are  reviewed in this 
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chapter, followed by a review of the elastic-wave extrapolation theory.  The Fourier-

domain wavefield extrapolation theory, which has very successfully handled P-wave 

data, can be conveniently applied to converted-wave prestack depth imaging, as this 

chapter shows.  The 3C-2D data set from the 1997 Blackfoot converted-wave survey is 

used for demonstration. 

 

5.2 CONVENTIONAL CONVERTED-WAVE PROCESSING 

 

Figure 5.1 shows a routine P-S processing flow (Harrison, 1993).  The vertical-

component data is routinely processed before P-S processing to provide initial velocity 

information and source-side statics solutions.  For 2D split-spread acquisition, polarity is 

reversed on the recorded radial component on both sides of the source.  Data on either 

side of the source, normally the trailing spread, must be polarity-reversed in order that  

the energy does not stack destructively.  

Velocity anisotropy often causes shear-wave birefringence (Justice et al., 1987; Martin 

et al., 1986; Kramer and Davis, 1991).  With converted-wave data, the presence of 

vertical birefringence can cause shear-wave energy to be recorded on both horizontal 

components (MacBeth and Crampin, 1991), resulting in a decrease in the S/N ratio of the 

radial channel.  The fast and slow components can both contribute energy to a recorded 

radial or a transverse channel.  This can, potentially, cause destructive interference and 

greater difficulty in interpretation.  Various techniques have been developed for shear-

wave birefringence-analysis (e.g., Schulte and Edelmann, 1988; MacBeth, 1990). 
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CCP binning is an important step in P-S data processing.  It is easily shown that, in 

general, the lateral position of a conversion-point varies with depth when the offset is 

constant (Chung and Corrigan, 1985; Tessmer and Behle, 1988; Eaton et al., 1990).  For 

small offset/depth ratios, the asymptotic CCP-binning approximation is usually adequate.  

A more accurate method of CCP-binning utilizes the depth-variant binning algorithm 

(Tessmer and Behle, 1988; Eaton et al., 1990). 

For flat reflections, the P-S moveout curves are hyperbolic to the first order (Tessmer 

and Behle, 1988) and standard velocity analysis tools can be used to obtain a stacking 

velocity function (Taner and Koehler, 1969).  With P-wave velocity obtained from the 

conventional P-P data, the shear-wave velocity can be calculated.  

P-S dipping-moveout correction (P-S DMO) is necessary in regions of complex 

structure in order to reduce the destructive interference caused by dipping events 

(Deregowski and Rocca, 1981).  The algorithm is more complicated than the 

conventional P-P DMO; Harrison (1993) gives a complete description.  

A P-S stack section can be migrated to improve focusing.  The time-coordinate of a 

zero-offset P-S stack section is the zero-offset traveltime with P-wave down and S-wave 

up.  The P-S diffraction curves on a zero-offset P-S section are approximately hyperbolic 

to the first order (Harrison, 1993) and this suggests that the migration can be achieved in 

a fashion similar to conventional P-P zero-offset migration.  

Prestack-migration and migration-velocity-analysis of P-S data have been addressed 

by many authors, recently (e.g., Bale et al., 1998; Nicoletis et al., 1998; Zanzi, 1996;  

Sollid, et al., 1996; Caldwell et al., 1998; Li et al., 1998; Sekulic et al., 1998; D’Agosto et 
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al., 1998; Hoffe and Lines, 1998).  Most approaches are Kirchhoff-summation algorithms 

similar to conventional P-P algorithms. P-S raytracing instead of P-P raytracing is carried 

out to compute the traveltime curves.  Samples along a traveltime curve are then scaled 

by amplitude correction factors and then summed.  In complex media, the difficulties 

encountered in P-P raytracing -- chaotic rays, for example -- are more likely to occur with 

P-S raytracing, since the P-S velocity-contrast is normally larger than P-P velocity-

contrast.  Fourier-domain imaging techniques, which have many advantages in the P-P 

cases, have similar advantages in the P-S case, especially in complex media.   

 

5.3 P-S WAVE REFLECTION AT A SOLID-SOLID BOUNDARY 

 

Consider an incident P and SV wavefield impinging on a solid-solid boundary 

between two isotropic, homogeneous media in welded contact.  The parameters 

describing each of the media are jα , jβ ,   jρ , jλ  and jµ , where j=1 corresponds to the 

upper medium and j=2 corresponds to the lower media. jα , jβ ,   jρ  are P-wave 

velocity, S-wave velocity and density, respectively. jλ  and jµ  are Lamé elastic 

parameters.  The wavefields occurring at the boundary as results of incident elastic wave-

trains from both above and below the boundary,  are shown in Figure 5.2.  Mathematical 

description of these wave modes can be found in much of the literature of elastic 

wavefield propagation (e.g. Aki and Richard, 1980). 
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Figure 5.1 Conventional P-S data processing flow (Harrison, 1993). 
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Acoustic-wavefield extrapolation is a simplification of the elastic-wave propagation 

theory ignoring the shear wavefield.  By further ignoring the multiple wavefield, the 

recorded primary-only acoustic wavefield can be expressed with the WRW model 

(Berkhout, 1981), where W represents the acoustic wave propagator and R represents the 

P-P reflection response. The primary-only converted-wave reflection can be expressed in 

a similar way.  Let WP stand for the downgoing P-wavefield propagator, C stands for the 

P-to-S conversion coefficients and WS stands for the primary upgoing S-wavefield 

propagators, the physical process of P-S conversion can then be expressed as a WPCWS 

model (Figure 5.3)   

 
Figure 5.2 Incidence of a P- or SV-wave from medium 1 or medium 2.  The angles iθ , (i =1, 2, 3, 
4) are related to the ray-parameter or horizontal-slowness p by the relation 

24231211 /sin/sin/sin/sin βθαθβθαθ ====p .  
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(a) 

 
(b) 

Figure 5.3 The WPCWS model (a) for converted-wave reflection at a horizontal boundary;  (b) 
Depth imaging of the boundary involves forward extrapolation of the source signature and inverse 
extrapolation of the recorded, primary-only, P-S data. 

The converted-wave imaging condition has not been discussed in depth in geophysical 

literature.  However, the formula can be expressed in a form similar to that of the P-P 

imaging condition.  For a monochromatic plane wave, at any particular depth, the P-S 

conversion coefficient at a boundary can be expressed as the ratio between the S-

wavefield immediately above the conversion boundary after mode conversion and the P-

wavefield immediately above the boundary before mode conversion.  To avoid 

frequency-dependence, an average of all the conversion coefficients computed from all 

the frequency slices is taken as an appropriate estimation of the conversion coefficients.  

The conversion coefficients can be written as,  
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where Cψ  and Pψ  are the converted shear wavefield and the incident P wavefield. The 

symbol * denotes complex conjugate.  

 

5.4 INTRODUCTION TO THE 1997 BLACKFOOT 3C-2D SURVEY 

 

The Blackfoot 3C-2D high-resolution survey was conducted in 1997 as a joint effort 

between the CREWES Project at the University of Calgary, Boyd PetroSearch 

Consultants Ltd. and PanCanadian Petroleum Ltd.  The Blackfoot field is located about 

50-55 km east of Calgary, near the town of Strathmore, Alberta (Figure 5.4).  The 

producing formation is Lower Cretaceous, cemented glauconitic sand deposited as 

incised channel-fill sediment above the Mississippian carbonates.  The glauconitic 

sandstone lies at a depth of about 1500 m below the surface and is up to 45 m thick.  The 

average porosity in this producing unit is about 18%.  The cumulative production from 

this formation throughout southern Alberta exceeds 200 MMbbls oil and 400 BCF gas. 

Figure 5.5 shows a typical sedimentary sequence of southern Alberta and the blocked P- 

and S-velocity measured from well 0908 located the middle of the 1997 3C-2D line.  

Figure 5.6 shows an isopach of the reservoir and the locations of the wells and the 1997 

3C-2D survey.  
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Figure 5.4 Map showing the location of the Blackfoot field where the high-resolution 3C-2D 
seismic survey was conducted (Courtesy of the CREWES Project, University of Calgary). 

 

The survey involves acquisition of a 3-km 3C-2D reflection profile consisting of a 

combination of conventional and high-resolution receiver intervals.  Figure 5.6 is also 

the acquisition basemap of the region.  Figure 5.7 shows a schematic diagram of the 

acquisition geometry.  The source interval employed for the entire 2D-profile was 20 m, 

shot on the half stations.  The survey also involved simultaneous recording into 63  

buried 3C geophones situated in 6-, 12- and 18-m holes, drilled every 50 m along the 

central kilometer of the profile.  In addition to these buried geophones, a 48-channel 

vertical-hydrophone cable with a 2-m receiver interval was deployed in a 100-m cased 

hole located in the center of the profile.  A walk-away VSP was also simultaneously 

recorded in PanCanadian’s 100/09-08-23-23W4 well, located near the center of the 

spread, by recording the full range of offsets for each tool position.  
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(a) 
 

(b) 
Figure 5.5 (a) The sedimentary sequence of southern Alberta (a) and the blocked Vp and Vs from 
well L0908.  Light gray and dark gray solid lines denote the Vs and Vp, respectively.  (b) Interval 
velocity (Vint)computed from seismic velocity analysis of the P-wave data is also shown as a solid 
black line in. 
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Figure 5.6 Isopach of the Blackfoot Galuconitic incised valley (Miller et al., 1995).  The line of 
dashes represents the isopach; the contour interval is 10 m.  The 1997 3C-2D line is roughly 
perpendicular to the glauconite channel.  Line 950728 was shot in 1995. 
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Figure 5.7 Acquisition geometry of the 1997 Blackfoot survey. 

 
     Topographic variation across the line is rather mild.  The elevation difference between 

the highest point (west of the line) and the lowest point (roughly around 2100 m from the 

left end of the line) is only about 40 m (Figure 5.8).  However, considering the low near-

surface velocity and the fact that Vs is normally much lower than Vp, the receiver-

elevation statics are often sufficiently large to degrade stacking.  A floating datum is 

often used in such cases.  Migration from topography or from a floating datum is thus 

required for converted-wave prestack depth imaging.  

Figure 5.8 Topographic variation across the line. 
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5.5 PRESTACK DEPTH IMAGING FROM TOPOGRAPHY OF THE VERTICAL 

AND RADIAL COMPONENT 

 

Velocity model 
 

The 3C-2D line acquired in 1997 was previously processed by Cieslewicz and Lawton 

(1998) and several issues were discussed.  Since the geology in the Blackfoot region 

lacks structural deformation and the strata are almost flat, a v(z) velocity function should 

give a fairly good approximation to the velocity field, across the line.  The log from the 

well 09-08 is used to determine the v(z) function.  Since the well log ran from about 220 

m below the topography to a depth of 1560 m, the P-wave velocity function from the 

surface to 200 m and the velocity below 1560 m is approximated with the interval 

velocity computed from the stacking velocity obtained from P-P velocity analysis.  The 

S-wave velocity function outside of the logging interval, however, is determined from a 

statistical relationship between the Vp and Vs within the logging interval.  Figure 5.9 

shows the Vp-Vs cross-plots from the well 09-08.  Note that the cross-plot of the overall 

logging intervals shows two Vp-Vs variation trends.  The dominant trend, as plotted with 

a solid black line, can be written as 

 9.1592p9286.0s −= VV , (5.5) 

where the Vp and Vs are in m/s.  The secondary trend is that Vs does not change much 

while Vp increases dramtically, as highlighted with ellipses, and appears only in the 
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shallow part of the well log.  To illustrate this, the well log is devided into four intervals: 

220 to 550 m, 550 to 900 m, 900 to 1250 m and 1250 to 1560 m.  The Vp-Vs cross-plots 

are also shown in Figure 5.9.  Note that this secondary trend disappears below 900 m.  

The S-wave velocity model outside of the logging interval can then be computed from the 

interval velocity as shown in Figure 5.5. 

 
(a) 

(b) (c) 
Figure 5.9 (continues) 
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(d) (e) 
Figure 5.9 Vp-Vs cross-plots of well log 0908: (a) cross-plot of all the Vp and Vs in the logging 
interval, (b) cross-plot of the interval from 220 to 550 m, (c) from 550 to 900 m, (d) from 900 to 
1250 m and (e) from 1250 m to 1560 m.  The solid black lines depict the dominant Vp-Vs 
relationship. The elliptical line of dashes highlights erroneous measurements.  

Figure 5.10 shows the P- and S-wave velocity-depth model built with both the L09-08 

well log and the seismic interval velocities.  The media are mainly v(z), except for the 

velocities interpolated from 220 m below the well-head elevation to the topography using 

the Vp-Vs relationship previously discussed. 

 

 
Figure 5.10 Vp and Vs velocity-depth models built by combining the log measurement, the interval 
seismic velocity and the statistical relationship of equation (5.5).  Solid white lines denote 
topography. 
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Adjustment of source positions with linear spatial phase-shift 

 

The source locations of the 1997 Blackfoot data acquisition are at half-stations.  This 

created some problems since Fourier-domain algorithms require that source locations 

coincide with receiver stations.  This problem can be approximately solved by spatially 

shifting the source location to an adjacent receiver location by linear  spatial phase-shift 

before downward extrapolation of the source signature.  A spatial shift is equivalent to a 

linear phase-shift in the wavenumber domain.  This is similar to the instance of a static 

time-shift being equivalent to a linear phase-shift in the frequency domain.  A lateral shift 

of a mono-frequency wavefield at the surface can be written as 

 ( ) ( )∫
+∞

∞−

∆+−===∆+ x
xxik

x dkezkzxx x )(0,,
2
10,, ωϕ
π

ωψ , (5.6) 

 

where ( )0,, =zkxωϕ  is the spatial Fourier transform of ( )0,, =∆+ zxxωψ , 

 ( ) ( )∫
+∞

∞−

=== dxezxzk xik
x

x0,,0,, ωψωϕ , (5.7) 

 

and x∆ is the distance of lateral shift.  Figure 5.11 shows a wavelet before and after a 10-

m spatial shift to the right. 



 124

 

 

 

 

 

(a) (b) 
Figure 5.11 A wavelet (a) before and (b) after a 10-m spatial shift to the right. The trace interval is 
20 m. 
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Data preparation 
 

The vertical component has a rather good S/N ratio.  Figure 5.12a shows shot gather 

75, which is located in the middle of the line.  A surface-consistent deconvolution was 

first applied to remove both the source wavelet and the receiver response.  A forward 

shot-gather normal moveout correction is applied to flatten the events so that an f-k filter 

can be applied to remove most of the ground-roll energy.  Time-variant spectral 

whitening is also applied to further enhance vertical resolution, especially for deep 

events.  A surface-consistent residual-statics correction was applied to enhance the event 

coherency.  The long-wavelength statics are removed after residual statics are applied.  

The data from the foregoing can be seen in Figure 5. 14.    

For P-S data, the two horizontal components are rotated first to form the radial 

component. Polarity of the data with a negative offset was reversed so that stacking the 

data with offsets of opposite signs would not cancel each other out.  Figure 5.12b shows 

shot gather 75 in the middle of the line.  Note the low S/N ratio and low resolution.  The 

signal-processing flow applied to the radial component is roughly the same as the P-P 

flow, with parameters adjusted to fit the shear-wave data.  

Since hand statics plays a crucial role in the data processing, they were selected and 

applied after application of the shear-wave elevation statics and refraction statics.  Statics 

corrections bring the data to a floating datum different from the true surface topography.  

Migration from the floating datum, rather than from the topography, was used. The P-S 

data, subsequent to the above processing flow, are shown in Figure 5.15. As a summary, 
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the preprocessing flows for the vertical- and radial-components data are shown in Figure 

5.13. 

 
(a) 

 
(b) 

Figure 5.12 (a) Vertical-component shot gather 75 with 2000 ms AGC and (b) radial component 
shot gather 75 with 1000 ms AGC.   
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(a) 

 
(b) 

Figure 5.13 (a) Preprocessing flow and parameters for the vertical component data and (b) 
preprocessing flow and parameters for the radial component data.  

 

Image processing results 
 

A 40-m-step-size PSPI dual algorithm was used.  About 30 seconds were required to 

migrate a shot gather to a maximum depth of 3500 m using an Alpha-XP1000 

workstation with 128-MB memory.  Figure 5.14 shows vertical-component shot gathers 

10, 75 and 150 after the preprocessing, and the corresponding migration results.  Figure 



 128

5.15 shows the corresponding radial-component shot gathers after the preprocessing and 

migration results.  Figure 5.16 shows three vertical-component CIGs located at 500, 

1500 and 2500 m of the line and Figure 5.17 shows the corresponding radial-component 

CIGs.  Each CIG is stacked to produce the final P-P depth image and P-S depth image. 

Figure 5.18 and 5.19 show the P-P depth image and the P-S depth image, respectively. 

 

5.6 CORRELATION OF P-P AND P-S DEPTH IMAGES  

 

It is usually difficult to correlate a P-P time-section and a P-S time-section given the 

uncertainty in the velocity models.  The same difficulty also exists in depth-section 

correlation analysis because the prestack depth imaging is more sensitive to velocity 

errors.  The events in Figure 5.17a and c still curve slightly upward, and this indicates 

that the modeled shear velocities are probably slower than the actual values.  This can be 

roughly corrected by slightly increasing the shear-wave velocities; a more scientific 

approach is to use migration-velocity-analysis to obtain a more accurate velocity model.  

Figure 5.20 shows the correlation analysis of the P-P image and P-S image.  The central 

part of the P-P image is replaced with the P-S image.  Note that the shallow part has good 

correlation, the events at 300, 950 and 1550 m for example, while the events in the 

deeper part are mistied.  
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5.7 CHAPTER SUMMARY 
 

In this chapter, the theory of elastic wave-propagation at a solid-solid boundary is 

reviewed.  This review provides the theoretical foundation for elastic-wave extrapolation 

and converted-wave imaging.  The WpCWs wave-propagation model for converted-wave 

imaging is proposed.  Automatic common-conversion-point (CCP)-binning occurs in 

each step of the wavefield extrapolation so that the algorithm is very adaptable to Vp/Vs  

varying in both the vertical and horizontal directions at no further computational cost.  

This is potentially better than the raytracing-based CCP-binning with a single Vp/Vs 

value. 

The 1997 Blackfoot 3C-2D line was used for testing.  Data acquisition details are 

provided.  A spatial phase-shift was used to adjust source positions in order to handle 

source geometry irregularity.  Both the log from well 0908 and the interval velocity 

obtained from the stacking velocities were used to build the depth model.  Due to 

different applications of statics correction, the vertical component data was migrated 

from the topography, while the radial component was migrated from the floating datum 

produced by the statics corrections.  The P-P depth image-quality is rather satisfying, 

while the P-S depth-image quality is slightly inferior, due to poor S/N ratios in the 

original data and errors in the velocity model.  The shallow part of the two depth-sections 

shows rather good correlation while the deep parts are mistied.  
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(a) 

(b) 
Figure 5.14 Vertical-component shot gather 10 (a) after the pre-migration processing and (b) 
after migration. 
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(c) 

(d) 
Figure 5.14 (continued) Vertical-component shot gather 75 ( c) after the pre-migration processing 
and (d) after migration. 
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(e) 

 
(f) 

Figure 5.14 (continued) Vertical-component shot gather 150 (e) after the pre-migration 
processing and (f) after migration. 
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(a) 

(b) 
Figure 5.15 Radial-component shot gather 10 (a) after the pre-migration processing and (b) after 
migration. 
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(c) 

(d) 
Figure 5.15 (continued) Radial-component shot gather 75 (c) after the pre-migration processing 
and (d) after migration. 
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(e) 

(f) 
Figure 5.15 (continued) Radial-component shot gather 150 (e) after the pre-migration processing 
and (f) after migration. 
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(a) 

 
(b) 

Figure 5.16 Vertical-component CIGs located at (a) 500 m and (b) 1500 m. 
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(c) 

Figure 5.16 (continued) Vertical-component CIGs located at  (c) 2500 m. 
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(a) 

 
(b) 

Figure 5.17 Radial-component CIGs located at (a) 500 m, (b) 1500 m.  
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(c) 

Figure 5.17 (continued) Radial-component CIGs located at (c) 2500 m. 
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Figure 5.18 Vertical-component depth image. 

 

Figure 5.19 Radial-component depth image. 
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                                        P-P                             P-S                           P-P 

Figure 5.20 Correlation of the P-P and P-S images. 
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CHAPTER 6 

 

 

 

 

DOWNWARD-CONTINUATION MIGRATION VELOCITY 
ANALYSIS 

 

6.1 INTRODUCTION 

 

Seismic imaging is a two-step process of velocity analysis and migration.  As the 

velocity function becomes more complex, the two steps become more interdependent.  In 

complex depth-imaging problems, velocity estimation and migration are often applied 

iteratively.  To assure that this iterative imaging process converges to a satisfactory 

model, it is crucial that the migration and velocity estimation procedures are consistent 

with each other. 

Kirchhoff migration algorithms often produce unsatisfactory results in structurally 

complex areas since the wavefield is severely distorted by lateral velocity variations. As 

the shortcomings of the Kirchhoff migration have become apparent (O’Brien and Etgen, 

1998), interest has been renewed in other migration methods and development of 

computationally efficient 3D prestack depth migration algorithms based on the recursive 

wavefield extrapolation (RWE) (Biondi and Palacharla, 1996; Biondi, 1997; Biondi and 

Sava, 1999; Mosher et al., 1997).  However, there has been little corresponding progress 
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in the development of migration velocity analysis (MVA) that can be used in conjunction 

with any downward-continuation migration algorithms.  

For migration, RWE-based MVA is intrinsically more robust than raytracing-based 

MVA since it avoids the well known problems rays encounter when the velocity model 

has sharp boundaries.  The transmission component of finite-frequency wave propagation 

is mostly sensitive to the smooth variation in the velocity model.  Consequently, wave-

equation MVA produces smooth velocity updates and is more stable.  In most cases, no 

smoothing constraint is necessary to assure that migration and MVA converge.  On the 

contrary, raytracing-based MVA often need smoothing in order to avoid quick 

divergence.  

The key issue in MVA is velocity-model updating.  After each iteration of migration 

with a newer velocity model, ideally, the image will converge to the true subsurface. 

Searching for the better velocity model is intrinsically a traveltime-inversion problem 

(Tieman, 1995) that is normally difficult to solve and time-consuming, when the velocity 

field is complicated.  In this chapter, a simultaneous depth imaging plus downward-

continuation velocity-analysis processing flow is proposed.  Beginning with the recording 

surface, migration velocity analysis based on common-image-point gather is carried out 

and large-step wavefield-extrapolation with nonstationary wavefield extrapolators is 

performed to downward continue the wavefield to a deeper level when the velocity model 

is satisfactory.  
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6.2  PRESTACK MIGRATION VELOCITY ANALYSIS AS A TOOL OF 
VELOCITY ANALYSIS  

 

Prestack depth migration is an attractive tool for accurate velocity estimation in 

geologically complex regions because of its high degree of sensitivity to the velocity 

field.  With an incorrect subsurface model, events in CIGs will exhibit curvature as a 

function of the offset: events curve upward at lower velocity while downward with higher 

velocity. With correct velocity, ideally, curvature should not be observed and events 

should stack coherently (Gardner et al., 1974).  The velocity analysis suggests that when 

velocity is lower than the real velocity, the offset-dependent events should curve upward, 

and downward when velocity is higher than the real velocity (e.g. Lines et al., 1993). 

A velocity-updating scheme is necessary to generate better estimations of the 

subsurface.  Different authors, trying to exploit this migration property, have developed a 

variety of algorithms.  Among these algorithms are:  

I. Iterative profile migration (Al-Yahya, 1989).  This algorithm updates the model 

parameters from event curvature and traveltime inversion.  It first migrates the data with 

an inaccurate subsurface model and then updates the velocity through minimization of the 

event curvature (Tieman, 1995).  In principle, the algorithm requires manual picking of 

event depth.  It is not only a time-consuming process, but also subject to human error.  

An event-picking algorithm similar to scanless velocity-analysis was proposed by Tieman 

(1993) and claimed to be a robust and accurate alternative to manual depth-picking.   
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II. Stacking power optimization (Tieman, 1984).  The algorithm is analogous to 

conventional velocity analysis in that it uses a variety of subsurface models to migrate 

and stack the data to obtain a post-stack semblance spectrum.  The model that results in 

the highest amplitude signal at a particular location and event is the most accurate model 

from the surface to that event.  Typically, the initial models used by such a scheme are 

constant-velocity half-spaces.  Using this type of model results in a very efficient 

migration scheme (Stolt, 1978).  A more advanced technique of building initial 

subsurface models is to multiply the interface depths by a constant, u, and divide the 

interval slowness by the same amount.  This keeps the vertical traveltime to the event 

unchanged.  The parameter updates are computed from those models that maximize event 

energy to give two measurements: the velocity model that maximizes the event energy at 

a certain location and the depth that maximizes the event energy.  

 III. Focusing analysis (Yilmaz and Chambers, 1984; MacKay and Abma, 1992). 

This algorithm originated with Doherty and Claebout (1976) and was intended to exploit 

the velocity sensitivity of prestack migration by relating data-focusing to an iterative 

velocity-updating scheme.  Yilmaz and Chambers (1984) applied this work to the 

prestack time-migration of field data sets.  Aye and Jeannot (1986) generalized this 

algorithm to prestack depth migration in the form of depth-focusing analysis (DFA).   

MacKay and Amba (1989) showed that this algorithm can be used to produce a well-

focused seismic section and their later publication (MacKay and Amba, 1992) showed 

the velocity limitation of DFA is suitable for up to o35  events; events of higher-angle can 

be analyzed by applying a damping factor to avoid velocity-analysis dispersion.  
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A common failure of the above algorithms is that the updating relationship is 

determined through restrictive assumptions about the subsurface; for example, that the 

subsurface velocity is constant or is a v(z) media only.  Any lateral-velocity variations 

will negatively affect the velocity-updating scheme.  To remove structural distortions 

from the focusing analysis, Audebert and Diet (1993) introduce a new focusing-analysis 

algorithm.   

The methods mentioned above often fail in geologically complex regions since the 

velocity-updating scheme is determined by the restrictive assumptions that the subsurface 

velocity is constant or depth-dependent only.  Thus any structure or lateral velocity 

variation that exists in the subsurface will affect the accuracy and robustness of these 

methods.  Several authors attempted to extend migration-velocity-analysis to the media 

with lateral velocity variation. Chauris et al. (1999) used differential semblance 

optimization (DSO) (Symes and Carazzone, 1991) formulated in the migrated-data 

domain with the flatness of events in common-image-gathers as a criterion for velocity 

quality.  The use of DSO is an efficient way to converge to a local solution with a global 

velocity cost-function optimization.  Other existing algorithms which attempt to eliminate 

the restrictive assumptions in established methods include layer stripping (Hadley, 1988) 

and tomographic inversion.  The layer-stripping method recursively solves for deeper 

layers using the overlaying solution.  Localizing the velocity analysis problem to a level 

close to the reflections reduces the effects of complex overburden.  Reflection-

tomography inversion is perhaps the best for velocity analysis/inversion on seismic data 

and has been advocated by many authors (Etgen, 1993; Stork, 1992). Fewer assumptions 
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are made about the velocity model and it therefore has the potential of rectifying 

problems encountered by other methods.  

 

6.3 DOWNWARD-CONTINUATION VELOCITY ANALYSIS (DCVA) 
 

Conventional semblance-based velocity-analysis assumes constant velocity or depth-

dependent-only velocity functions, so that traveltime curves are hyperbolic.  This 

conventional analysis computes the stacking power within each analysis time-window 

with a range of velocity values.  The correct velocity is the one which produces the 

largest semblance value (Taner, 1969).  For a simple dipping reflector, this technique 

remains applicable; however, the velocity value obtained must be corrected with an angle 

factor to provide true velocity.  This technique is capable in generating an optimum  

stacking seismic section but often fails in giving a true subsurface velocity model when 

structures are present.  

Semblance-based velocity-analysis techniques rely on data with sufficient offset. 

When velocity is a function of depth only, the traveltime curves are approximately 

hyperbolic and the analyzed velocity values are root-mean-square (RMS) values of the 

overburden velocity values.  Both the shallow and deep parts of the analyzed velocity 

function are equally accurate.  When velocity is also a function of lateral position, the 

traveltime curves are non-hyperbolic and the assumptions of semblance velocity analysis 

are no longer strictly valid.  With the increase of event depth, the traveltime curve is more 

likely to be affected by lateral velocity variations.  Compared with the deep events, 
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semblance analysis for shallow events involves less lateral velocity averaging and it  

therefore provides a better approximation to the local velocity function.  However, 

sufficient offset is still required in order to resolve events close to each other.  

Downward wavefield extrapolation can downward continue the recording datum to a 

certain depth-level when the velocity field is known, so that any deep events can be 

turned into shallow events and a local semblance velocity analysis can be performed. 

Downward-continuation velocity-analysis (DCVA) is based on this concept and can be 

performed by the following three steps: 

I. Semblance velocity analysis for shallow events.  RMS velocities of the shallow 

events can be obtained. 

II. Conversion of RMS-velocity to interval-velocity, in depth, to build the velocity 

model for the shallow region. 

III. Downward continue the wavefields to the new recording datum with the 

velocity model generated from the last step.  Velocity scanning by percentage 

variation and examination of the event curvature in the CIGs can be used to 

adjust the velocity model approximately.  Depth image within the depth range 

of the velocity model can also be generated for reference.  

The above three steps can be applied recursively until a desired depth is reached. 

Downward continuation of the receivers and sources to a new recording datum 

involves a traveltime correction.  Two ways to perform traveltime correction include:  
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1) Deconvolution traveltime correction. 
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where ( )ωψ ,, zx , ( )ωψ ,, zxR  and ( )ωψ ,, zxS  are the traveltime- and 

amplitude-corrected data, the downward-continued  receiver and source 

wavefields, respectively.  ),,( ωzxΦR  and ),,( ωzxΦS  are the receiver and 

source phase spectra, from which the traveltime from the surface to the 

current recording datum has been removed.  As both the traveltime and 

amplitude are corrected, this is a true-amplitude algorithm. However, it 

may not be very practical since it is highly sensitive to noise in the data.  

 

2) Crosscorrelation traveltime correction. 

Replacing the source amplitude spectrum with a constant (normally 1.0) in 

equation (6.1) leads to the crosscorrelation traveltime correction.  Although 

it is not a true-amplitude algorithm, it is more stable than the 

deconvolutional traveltime correction due to its low sensitivity to the noise 

in the source spectrum.  The method can be written as 

 ( ) ( ) ( )),,(),,( ,,,, ωωωψωψ zxzxi
R

SRezxzx Φ−Φ= . (6.2) 

The crosscorrelation traveltime correction in this chapter is used for its stability. 
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6.4 AN EXAMPLE – DCVA APPLIED TO THE MARMOUSI SYNTHETIC 
 

As the Marmousi model is more complicated than most geological settings, DCVA is 

applied to the Marmousi synthetic data set for testing purposes.  The final results of the 

DCMVA flow are a depth velocity model and a depth image.  Due to the extensive 

amount of work involved in velocity picking, the recording datum was downward 

continued to only 600 m, with a downward-continuation step size of 200 m.  At the top of 

the original and each extrapolated recording datum, conventional semblance velocity 

analysis was performed to obtain the velocity function close to the recording datum.  The 

velocity-analysis time window was set to a value large enough to accommodate a 400-m 

overlapping zone with the velocity function produced from the next two recording data.  

This reduced the windowing effect between velocity analysis zones and human errors in 

velocity picking.  After all velocity layers are produced, they are averaged to produce a 

final velocity model.  The total depth of the velocity model is 1200 m. 

Figure 6.1 shows three velocity-analysis panels of the CDPs located at 3300 m, 5800 

m and 8300 m from the surface.  Distance is measured from the left of the model.  The 

structural variation in the true velocity model is rather mild at 3300 m and at 8300 m, 

while it is much more complicated at 5800 m.  Note that the corresponding velocity 

semblance is rather dispersive when structures are present in the middle of the model. 

Figure 6.2 shows the 0-600 m velocity model produced by this analysis.  The upper 200 

m of the model is used to downward continue the recording datum to a 200-m depth. 
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As an example, Figure 6.3b shows shot gather 120 after extrapolation to the recording 

datum at 200 m.  The corresponding shot gather recorded at the surface is shown for 

comparison (Figure 6.3a).  Note that the zero-offset traveltime of the major events has 

been shifted upward.  The extrapolated data set can then be used for the next step of 

velocity analysis.  Figure 6.4 shows the velocity analysis panels of the CDPs located at 

3300 m, 5800 m and 8300 m from the data extrapolated to 200-m recording datum and 

Figure 6.5 shows the analyzed velocity model from 200 m to 800 m.  Figure 6.6 and 

Figure 6.8 show the velocity-analysis panels of the corresponding CDPs from data 

extrapolated to 400- and 600-m depth.  Figure 6.7 and Figure 6.9 show the analyzed 

velocity model from 400 m to 1000 m and the analyzed velocity model from 600 m to 

1200 m.  Figure 6.10 shows shot gather 120 after being downward continued to the 400 

m and 600 m recording datum. 

The four velocity models are then overlapped to produce the final velocity model. 

Velocities in the overlapping zones are averaged.  For purposes of comparison, a velocity 

model built with direct velocity-analysis from the surface, the true velocity model after 

being smoothed by a 200 m x 200 m box-car and the model produced by the DCVA are 

shown in Figure 6.11.  The DCVA velocity model looks more similar to the smoothed, 

true-velocity model. 

Figure 6.12 shows three 0-1200-m images of the Marmousi migrated with the 

velocity model in Figure 6.11, accordingly.  The velocity model obtained from DCVA 

produced a far better image than the velocity model obtained from direct velocity-

analysis from surface.  The improvement on the left of the image is obvious.  The faulted 

zone in the middle of the model is also better imaged, though the fault planes are still 
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obscure compared with the image migrated with the true-velocity model.  The depth and 

lateral locations of some the reflections are slightly incorrect and indicate that the DCVA 

velocity model needs further refining. 
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(a) 

(b) 

(c) 
Figure 6.1 Three velocity analysis panels of the CDP gathers located at (a) 3300 m, (b) 5800 m 
and (c) 8300 m.  Velocity-analysis datum is at z=0.  Distance is measured from the left of the 
model. 
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Figure 6.2 Velocity model from 0 to 600 m, built from the velocity analysis from the z=0 recording 
plane. 

 

 

(a) (b) 
Figure 6.3 (a) Shot gather 120 recorded on the surface and (b) after being extrapolated to the 
recording datum at 200 m. 
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(a) 

(b) 

(c) 
Figure 6.4 Three velocity-analysis panels of the CDP gathers located at (a) 3300 m, (b) 5800 m 
and (c) 8300 m.  The data has been downward continued to the 200-m recording datum. Distance 
is measured from the left of the model. 
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Figure 6.5 Velocity model from 200 to 800 m, built with the velocity analysis at the z=200 
recording datum. 
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(a) 

(b) 

(c) 
Figure 6.6 Three velocity-analysis panels of the CDP gathers located at (a) 3300 m, (b) 5800 m 
and (c) 8300 m.  The data has been downward continued to the 400-m recording datum. Distance 
is measured from the left of the model. 
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Figure 6.7 Velocity model from 400 to 1000 m built with the velocity analysis at the z=400 
recording datum. 
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(a) 

(b) 

(c) 
Figure 6.8 Three velocity-analysis panels of the CDP gathers located at (a) 3300 m, (b) 5800 m 
and (c) 8300 m.  The data has been downward continued to the 600-m recording datum. Distance 
is measured from the left of the model. 
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Figure 6.9 Velocity model from 600 to 1200 m built with the velocity analysis at the z=600 m 
recording datum. 

 

 

(a) (b) 
Figure 6.10 The shot gather 120 after downward-continuation to (a) the 400 m and (b) the 600 m 
recording datum.  
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(a) 

 
(b) 

 
(c) 

Figure 6.11 Velocity models from 0 to1200 m of the Marmousi model. (a) True-velocity model 
smoothed with a 200 m x 200 m boxcar; (b) velocity model built with DCVA, and (c) velocity 
model built with velocity analysis from surface with conventional CMP semblance velocity 
analysis.  Note that the model in (b) is much better than that in (c).  
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(a) 

(b) 

(c) 
Figure 6.12 Three 0-1200-m depth images of the Marmousi produced with (a) the true velocity- 
model, (b) the DCVA velocity model and (c) the velocity model obtained from surface velocity 
analysis.  
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6.5 DOWNWARD-CONTINUATION MIGRATION VELOCITY ANALYSIS  
(DCMVA) 

 

Although the depth image produced with the DCVA velocity model is superior in 

quality to that produced with the velocity model generated by surface velocity-analysis, 

the reflections are still not in correct spatial location.  This is due to the lack of velocity-

quality control when the model is built.  The flatness of events in the CIGs can be used to 

adjust the velocity model.  Figure 6.13 shows the CIG at 3300 m after migration with 

80% to 120 % of the velocity model built with the downward-continuation velocity-

analysis method.  The events curve upward and are shallower than the true depth when 

the velocity is lower than true velocity, while curves downward are deeper than true 

depth when the velocity is higher then true velocity.  In Figure 6.13, with velocity 

percentages varying from 80% to 104%, the events gradually flatten and the image depth 

approaches the true depth.  As the velocity further increases from 104% to 120 %, the 

events gradually curve downward.  The correct velocity percentage should be between 

104% and 108% since events curve slightly upward and downward in the two CIGs.  An 

estimated 106% velocity scaling factor is chosen for this location.  The velocity-scaling 

factor can be determined for other locations in a similar way. 

Figure 6.14 shows the velocity-scaling function chosen for CIGs from 2000 m to 

9000 m.  On both sides, the scaling factor varies rather uniformly from 104% to 108%, 

while in the central part, where the fault zone lies, the fluctuation increases -- from 88% 

to 108% -- and suggests a great deal of uncertainty in the velocity model.  
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The model after application of the scaling factor is shown in Figure 6.15.  It is rather 

similar to Figure 6.11b, in a general sense.  Figure 6.16 shows the CIG at 3300 m 

produced with (a) the true velocity model and  (b) the adjusted velocity model.  Note that 

the events continue to curve slightly upward, indicating the velocity is still slightly too 

slow.  Figure 6.17 shows the CIG stack migrated with the adjusted velocity model. 

Compared with the image produced directly with the velocity model, without the scaling 

factor applied, the left and right parts of the image are apparently better focused; 

however, in the central fault zone, the image quality does not seem to be improved. 

Adjusting a velocity model in a 1200-m depth-interval works rather well, on the whole,  

when the event dip angle is not too big; it fails, however, when structures are extremely 

complicated.  A more delicate method involves the downward-continuation velocity-

analysis and performing velocity quality control with updates to the velocity model at 

every downward-continuation step using velocity scanning.  This procedure can 

effectively reduce the error in the downward-continued wavefields, so that the velocity 

analysis in the next step can also be improved.  However, iteration of velocity-analysis 

and velocity-scanning takes a great deal of time and effort and is not further examined in 

this thesis. 
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Figure 6.13 The CIG at 3300 m produced by migration with 80% to 120% of the downward-
continuation velocity model (continues). 
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Figure 6.13 The CIG at 3300 m produced by migration with 80% to 120% of the downward-
continuation velocity model.  Note that the events in the image-gathers with 104%- and 108%- 
velocity tilt slightly upward and downward, which indicates that the correction percentage of 
velocity should be between 104% and 108%.  A 106% velocity-scaling factor is selected at this 
location. 

 

Figure 6.14  The velocity-scaling factor picked along the lines by examining the event flatness in 
CIGs. 
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Figure 6.15 The velocity model after application of the scaling factors. 

 

 

 
(a) 

 
(b) 

Figure 6.16 Comparison of the CIG at 3300 m migrated with (a) the true velocity model and (b) 
the adjusted velocity model.  
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(a) 

(b) 

(c) 
Figure 6.17 The CIG stack produced with (a) unadjusted downward-continuation velocity model, 
(b) adjusted downward-continuation velocity model and (c) the true velocity model.  Note that the 
event depths at both left and right of the section are closer to the true location in (b). 
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6.6 CHAPTER SUMMARY 

 

A number of established migration-velocity-analysis algorithms were reviewed.  The 

conventional semblance velocity analysis can be combined with the wavefield 

downward-continuation concept and the event-curvature-based migration velocity-

analysis technique to provide a new velocity-analysis method suitable for complex media.  

It was shown that the new velocity-analysis scheme produced a satisfactory velocity 

model, well able to image the left and right parts of the Marmousi model, where the 

dipping angle exceeds o35 .  This work suggests that velocity analysis on downward-

continued data can be an effective method for migration velocity analysis. However, 

much more research is required in order to see this as an effective and practical method.  
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CHAPTER 7 

 

 

 

 

CONCLUSIONS 

 

 
Three full integral-wavefield extrapolators based on the nonstationary filtering theory, 

PSPI, NSPS and SNPS were formulated.  It has been shown that the split-step Fourier 

method can be derived from the nonstationary phase-shift operator and a better slowness-

perturbation method of correction is provided.  Parallel computing on the MACI Alpha-

cluster computer enables implementation of the recursive integral wavefield extrapolators 

for prestack shot-gather depth imaging.  As an example, the PSPI integral extrapolator 

was used to process the Marmousi synthetic and the image quality was superior.  Several 

computing techniques, including precomputation of the Fourier-transform kernel matrix, 

computing the exponential functions with the Padé approximation, utilizing matrix 

symmetry and increasing the velocity repeatability with a small blocking factor, have 

significantly improved performance: the recursive integral operators have been made 

practical for application on prestack data.  

The large-step integral wavefield-extrapolator was developed based on the integral 

extrapolators, by using the depth-average velocity (mean velocity) in computing the 
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focusing term approximately and the time-average velocity (average velocity) for 

vertical-traveltime correction.  The dual algorithm further reduces run time of integral 

extrapolators by a factor of NL, where NL is the number of small depth-steps in a large-

step extrapolation. The error in the wavefield is the result of approximation to the 

velocity field and a large extrapolation step; however, the error is minimal when an 

appropriate step size is taken.  Reducing the extrapolation step enables handling of large 

lateral velocity gradients.  

A dual algorithm for prestack depth imaging was developed. The resulting algorithm 

uses the large-step-extrapolation algorithm to produce reference wavefields at a depth-

grid coarser than the imaging depth and linear vertical-wavefield interpolation to generate 

the wavefield at each imaging step. The computational cost function is of the same order 

as the localized split-step algorithm, while its capability in imaging steep structures is 

much better.   

The eigenvalue-decomposition solution to the scalar wave equation was reviewed.  

Approximation to the velocity field is the sole source of error in this algorithm and it is 

more suitable for large-step extrapolation.  It is not practical, however, due to its low 

speed.  The Padé approximation to the matrix-exponential function has significantly 

better performance without degrading the extrapolated wavefields; however, more 

research is necessary to further reduce the run-time, in view of practical application. 

Both the PSPI and NSPS integrals are capable of integrating a laterally varying depth-

step size.  Tests on zero-offset synthetics showed that both produce rather accurate 

results, although the NSPS is slightly superior to PSPI.  However, with the typical step 
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size used in large-step wavefield extrapolation, the difference between the two is 

minimal.  Algorithms for depth imaging from topography with PSPI and NSPS were 

formulated.  A dual algorithm using PSPI for large-step extrapolation was implemented 

on the MACI alpha cluster.  The Foothills synthetic data set was processed.  The 

algorithm is proven to be highly capable of handling high near-surface velocity and 

extensive topographic variation.  The image quality is superior to those processed by 

Kirchhoff and finite-difference algorithms.  

The WRW wavefield-propagation model for prestack P-P depth imaging was extended 

to a WCW model for P-S prestack depth imaging.  Prestack P-S depth imaging, with  

nonstationary wavefield extrapolators, automatically performs CCP binning and is 

capable of handling the case where the Vp/Vs ratio is a function of both horizontal and 

vertical coordinates.  No extra computing effort is necessary and even the lateral Vp/Vs -

ratio gradient is large.  This algorithm is suitable for converted-wave depth imaging in 

complex regions. The 1997 Blackfoot converted-wave data set was used for 

demonstration purposes.  Both the well log and the stacking velocities obtained from 

previous processing were used in building a velocity model.  The P-wave velocity model 

turned out to be rather good, as proven by the superior P-P depth image quality.  The 

shear-wave velocity-model, however, was not very accurate at either end of the survey 

line and resulted in poor images from these locations.  The central part of the P-P and P-S 

image has rather good correlation, in general.  

Downward continuation velocity analysis (DCVA) was proposed.  By restricting the 

velocity-analysis aperture to a small offset, an average velocity near the recording surface 

can be estimated and used to downward continue the recorded wavefields to the next 
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depth level.  DCVA produces a much better velocity model than conventional velocity-

analysis from surface.  

Velocity quality control examined the flatness of events in CIGs and provided a 

simple yet practical approach to migration velocity analysis in regions of complex 

geology.  Ideally, velocity quality control and updating with event curvature in CIGs 

should be performed before each step of downward-continuation to the next recording 

datum.  Even with large and coarse velocity control depth-intervals, the method is 

capable of generating a satisfying velocity model, which enables imaging of the left and 

right parts of the Marmousi data set.  
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