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ABSTRACT 

 

        Nonstationary wavelet simulation and estimation methods are closely related to 

nonstationary seismic modeling and nonstationary deconvolution. Conventional wavelet 

estimation and deconvolution do not deal with the nonstationarity of the wavelet. This 

thesis begins with an investigation of the methods for nonstationary wavelet simulation that 

can be used to generate realistic synthetic seismograms. Then this thesis examines methods 

of wavelet estimation using 1-D attenuated synthetic data and real data. These estimation 

approaches are the basis for Wiener deconvolution (time domain), Wiener deconvolution 

(frequency domain), and Gabor deconvolution. For comparison, the wavelet is also 

estimated from downgoing waves isolated from a VSP experiment which gives direct 

recordings of the nonstationary wavelet. Finally, a new approach is provided for evaluating 

the accuracy of the nonstationary wavelet estimates by the VSP downgoing wavelets. This 

result shows that the wavelets estimated from Gabor deconvolution are more stable and 

closer to the wavelet estimates from VSP data than those from multi-window Wiener and 

frequency-domain spiking deconvolution. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Why revisit wavelet estimation 

 

      Currently, demands of amplitude control and accuracy are drastically increasing to face 

new challenges in classical topics such as wavelet estimation (Tygel and Bleistein, 2000). 

Amplitude control and accuracy improvement are fundamental requirements for the 

processes such as AVO attribute extraction, seismic inversion and reservoir 

characterization. In all cases, we hope the amplitude variation is consistent with real 

reflectivity. This objective can be reached only after the wavelet embedded in the seismic 

trace can be accurately estimated. The more accurate the wavelet estimate, the closer the 

reflectivity estimate is to the real one. 

 

      A seismic wavelet whose Fourier spectrum does not change as it propagates is said to 

be stationary. In all other cases, the wavelet is said to be nonstationary. There are two 

common assumptions about the wavelet in the deconvolution of seismic data. One is the 

assumption of minimum phase for impulsive sources and the other one is that of 

stationarity. The first assumption has been frequently challenged and many alternatives to 

non-minimum phase wavelet estimation and deconvolution have been suggested (Foster at 

el., 1997, Porsani and Ursin, 1998). Many authors recognized the second assumption would 

cause problems in deconvolution and then proposed several different inverse-Q filters to 

correct wavelet variation caused by attenuation (Hale, 1981; Bickel and Natarajan, 1985; 

Hargreave and Calvert, 1991, Wang, 2002). Alternatively, the nonstationarity of the 

wavelet can be addressed in the deconvolution algorithm. Nonstationary deconvolution 

(Margrave, 1998, Schoepp and Margrave, 1998; Grossman et al., 2002) provides a new 

approach based on a nonstationary convolution model of the seismic trace. Nonstationary 

deconvolution, specifically Gabor deconvolution, has been compared with those of the 

Wiener and inverse-Q filtering and the former shows improved vertical resolution and a 

better reflectivity character (Margrave el al, 2003). However, the accuracy of the 

nonstationary wavelet estimate needs further validation. The objective of this thesis is to 
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validate the wavelet estimates from the surface data by the wavelets measured in VSPs 

based on the fact that both of them are nonstationary.  

 

1.2 Wavelet estimation  

 

      In its broadest sense, the wavelet-estimation problem means the determination (and 

removal) of the effects of the source signature and receiver response from the seismic trace, 

as well as all undesired propagation effects that are not related to the reflectivity series of 

the target reflectors. The basic framework is the convolutional model (as described in 

Sheriff and Geldart, 1982), in which a seismic trace consists of a wavelet convolved with 

the impulse response (or reflectivity) plus additive noise. If the wavelet is known, the 

reflectivity can be inverted for. Wavelet estimation approaches are classified into two 

categories: deterministic and statistical methods. 

 
      A deterministic approach may be taken by measuring the source signature when it is 

effectively free of the earth response. Ziolkowski (1991) suggested a method for the 

extraction and removal of the source wavelet from the surface seismic recordings by a 

source-scaling law. However, Ziolkowski’s method requires a fundamental change in field 

technique and does not address nonstationary. A more useful method is to extract wavelets 

from VSP data. A VSP experiment can actually measure the seismic wavelet at different 

depths. The deterministic approaches make few assumptions about the wavelet properties. 

The measured wavelet usually is more realistic than that from the statistical method. The 

shortcoming of the wavelet estimates from VSP data is that they only represent the wavelet 

change in a limited zone since we can not drill wells everywhere.  

 

      Statistical wavelet estimation has both stationary and nonstationary approaches. The 

stationary wavelet estimation involves making the assumption that the data are the result of 

convolving a wavelet (whose shape does not change with propagation) with a random 

reflectivity. More specifically, the impulse response of the earth is usually assumed to be 

white, random and stationary (Robinson and Treitel, 1980). Nonstationary wavelet 
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estimation is based on a nonstationary trace model in which the trace is the result of 

nonstationary convolution between a time-variant wavelet and a random reflectivity. 

Nonstationary wavelet estimation is the framework for nonstationary deconvolution and 

also is helpful in AVO analysis and reservoir characterization. 

 

1.3 Nonstationary wavelet models 

 

       In this thesis, a seismic wavelet will be called stationary if its Fourier spectrum (both 

amplitude and phase) does not change as the wavelet propagates. We specifically include 

constant scaling as a stationary effect. Conversely, a seismic wavelet whose Fourier 

spectrum changes as it propagates will be called nonstationary. These definitions are based 

on physical considerations and are appropriate for the deconvolution problem. The 

stationary wavelet is a convenient model in deconvolution but it is not physically realistic 

because the real wavelet changes shape continually due to the existence of factors such as 

noise, source signature inconsistency, reflection/transmission, anelastic attenuation and 

multiples. Wavefront divergence (geometrical spreading) is a simple frequency-

independent scaling of the wavelet and is considered as a stationary effect in this thesis.  

 

1.3.1 Inhomogeneous and homogenous nonstationary wavelet 

 

      This theory is adapted from Aki and Richards (1980). Assume that a plane wave 

),( txw  propagates in the direction of increasing x  and that the wavefront for anelastic 

media first arrives at position 0=x  at time 0=t . At 0>x , each Fourier components of 

),( txw  can be factored as  

 ( ) ( ) ( )xKiwxw ⋅−= expˆ,ˆ ωω ,  (1.1) 

where ( )ωŵ  is spectrum of the source signature and ( )ω,ˆ xw  represents the nonstationary 

wavelet in the space-frequency domain. K  is a complex valued wavenumber that can be 

written as 
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 AiPK −= , (1.2) 

with P  being the propagation vector and A  being the attenuation vector. From equation 

(1.2), we also can derive 

 γcos2
222

APiAPK ⋅−−= , (1.3) 

whereγ  is the angle between P  and A . If the direction of propagation is different from 

that of the attenuation, which means 0≠γ , the wavelet is called inhomogeneous. If 0=γ , 

the wavelet is called homogenous and the wavenumber can be written as 

 [ ( ) ( ) ] ( )b
v

bia
v

K
CH ω
ωω

ω
ω =−= , (1.4) 

where ( )ωCv  and ( )ωHv  are called complex velocity and phase velocity. b denotes a unit 

vector of direction. ( )ωa  is called attenuation coefficient that can be calculated by (Aki and 

Richards, 1980)  

 ( ) ( )Qv
a

H ω
ωω

2
= , (1.5) 

where Q  is the quality factor of rocks, which is the ratio of π2  times the power stored to 

the power dissipated (O’Connell and Budiansky, 1978). Here we assume that Q  is exactly 

independent of frequency, which is called constant Q  model (Kjartansson, 1979). The 

relation between ( )ωCv  and ( )ωHv  can be derived from equations (1.4) and (1.5)  

 ( ) ( ) 







−=

Q
i

vv HC 2
111

ωω
. (1.6) 

Substituting equations (1.4) and (1.6) into equation (1.1), the Fourier spectrum of the 

wavelet at location 
→
x  is 

 ( )ωω wxw ˆ,ˆ =





→

( ) ( ) 







⋅−








⋅−

→→→→
xb

v
ixb

Qv HH ω
ω

ω
ω exp

2
exp ,  (1.7) 

where the phase velocity is expressed by (Futterman, 1962) 
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 ( )










+=

ref
refH Q

vv
ω
ω

π
ω ln11 ,  (1.8) 

where refω  and refv  are reference frequency and the velocity at this frequency. Substituting 

equation (1.8) into (1.7) and dropping the term of the second power of Q1  , equation (1.7) 

becomes 

 ( ) ( )ωω wxw ˆ,ˆ = ( )









 ⋅−























−⋅−

refrefref v
xbi

Q
i

Qv
xb ω

ω
ω

π
ωω expln

2
sgnexp ,  (1.9) 

which represents a homogenous nonstationary wavelet by a constant-Q model in which the 

frequency-independent Q  can change with the traveltime or the position of the waves. In 

equation (1.9), the first term on the right is the Fourier spectrum of the stationary source 

signature, the second term describes the amplitude dissipation and phase delay caused by 

attenuation and the third term determines the position of the wavelet propagation in the 

space.  

 

1.3.2 1-D nonstationary wavelet 

 

      On the other hand, the relation between the real and imaginary parts of the wavenumber 

can be expressed by (Aki and Richards, 1980) 

 ( ) ( )( )ωω
ω

ω aH
vvH

−=
∞

, (1.10) 

where ∞v , the limit of ( )ωHv  as ∞→ω , is identified in terms of the elastic modulus, µM , 

and density, ρ  ,via ( ) 2
1

/ ρµMv =∞ . H denotes the Hilbert transform. When the 

propagating wavelet only depends on its traveltime or the distance traveled, we can replace 

the vectors b  and x  by 1 and x . Substituting equation (1.10) into equations (1.4) and (1.1) 

yields 

 ( ) ( ) ( ) ( )( ) x
v

iaiHawxw 







−+−=

∞

ωωωωω expˆ,ˆ .  (1.11) 

By substituting equation (1.5) into (1.11), we have 
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 ( ) ( )ωω wxw ˆ,ˆ = ( ) ( ( ) ) 







−








+−

∞v
xi

Qv
x

iH
Qv

x

HH

ω
ω

ω
ω

ω
exp

22
exp , (1.12) 

which is called the 1-D nonstationary wavelet. For each Fourier component, the traveltime 

is 

 ( )ω
τ

Hv
x= . (1.13) 

Substituting equation (1.13) into (1.12) yields 

 ( ) ( )ωω wxw ˆ,ˆ = ( ) 







−








+−

∞v
xiH

Q
i

Q
ωωττ

ω
exp

22
exp . (1.14) 

In equation (1.14), the second term on the right hand is an attenuation transfer function. By 

dropping the third term representing the position of the wavelet, Margrave and Lamoureux 

(2001) defined a nonstationary wavelet as 

 ( ) ( ) ( ) ( )ωωταωωτα www ˆ,ˆ,ˆ == ( )







+− ωττ

ω
H

Q
i

Q 22
exp ,  (1.15) 

where α  represents the attenuation transfer function. Thus, the nonstationary wavelet is 

defined as the product of the Fourier spectrum of the source signature and the attenuation 

transfer function. In the time domain, the nonstationary wavelet is written as 

 ( ) ( ) ( ) ωωωτ
π

τ αα dtiwtw exp,ˆ
2
1, ∫= .  (1.16) 

If ∞→Q , ( )tw ,τα  will not change with traveltime,τ . That means the wavelet is stationary. 

 

      Equations (1.1), (1.9), (1.12) and (1.14) all represent the nonstationary wavelet with 

different assumptions. At the same time, all of them are wavefield extrapolators for a plane 

wave traveling in an anelastic medium, but corresponding to inhomogeneous, 3-D 

homogeneous and 1-D homogeneous waves respectively. They also can be used as forward 

or inverse-Q filters. The inverse-Q filter can be implemented in the same way as wavefield 

extrapolation (Hargreave and Calvert, 1991; Wang, 2002) 
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1.4 Brief review of the nonstationary problem 

      Lines and Ulrych (1977) shown that seismic wavelets and deconvolution operators 

should be estimated in a time-adaptive sense due to the nonstationarity of seismic trace. 

They concluded that the maximum-entropy approach is preferred for time-adaptive 

deconvolution. The usual approaches to reduce the nonstationarity of seismic data are 

inverse-Q filtering (Bickel and Natarajan, 1985; Hale 1981) before deconvolution and 

TVSW (Yilmaz, 1987) after stacking. The effectiveness of the inverse-Q filtering depends 

on the accuracy of the Q  estimation. In most cases, a Q  estimate from surface data is 

problematic (White, 1992). TVSW can reduce the nonstationarity by designing and 

applying the time-variant whitening operator in frequency domain, but can not accurately 

compensate the constant-Q attenuation because it loses a phase correction. Margrave (1998) 

provided the concept of a nonstationary filter and gave a nonstationary convolution and 

combination model. This framework made a foundation for nonstationary deconvolution 

and wavelet estimation. In nonstationary deconvolution the attenuation effect is 

incorporated into the deconvolution operator and can be implemented with or without 

knowledge of Q  (Schoepp, 1998). The performance of nonstationary deconvolution 

depends on the accuracy of the wavelet estimates. Usually people verify the accuracy of the 

wavelet estimates by comparing the result of deconvolution to the convolution of a 

stationary wavelet and a reflectivity from log data. This wavelet is often supposed to be 

zero-phase Ricker wavelet. Another approach for verifying the wavelet estimates is to 

compare the nonstationary wavelet estimates from the surface data to the windowed VSP 

downgoing waves which are direct measurements of the nonstationary wavelets.  

 

1.5 Original contribution in this thesis 

 

The original contribution in this thesis is described as follows: 

 

1.  The several nonstationary wavelet models were provided and the nonstationary 

wavelet model proposed by Margrave and Lamoureux (2001) is theoretically verified.   
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2. the synthetic offset VSP downgoing wavelets were generated in horizontally layered 

anelastic media by complex ray tracing, and also the Ganley’s method (1981) for VSP 

synthetic seismograms with attenuation was extended to generate the zero-offset VSP 

synthetic seismograms for a many-layered model derived from a real sonic and density log.  

 

3. It is first shown that the wavelet estimate by Gabor deconvolution on a synthetic 

nonstationary trace is quite close to the input nonstationary wavelet.  

 

4. The nonstationary wavelets were estimated from the seismic data obtained via a joint 

VSP and surface seismic acquisition. The VSP wavelets were extracted from the separated 

downgoing waves and the surface wavelets were estimated by Gabor deconvolution on the 

pre-processed surface data. 

 

5. Nonstationary wavelets were also estimated by time-domain and frequency-domain 

Wiener methods on gained data in temporally short analysis window that were moved 

down the traces in increments. 

 

6. The phase of the nonstationary wavelet with a vibroseis source was examined on 

both synthetic and real data, and was found to be close to minimum phase.  

 

7. A novel method for evaluating nonstationary wavelet estimates was developed. This 

method verified the wavelet estimates from surface data by the wavelet estimates from VSP 

data based on the fact that both of them are nonstationary and the latter are directly 

recorded in the downgoing waves.  

 

8. It is verified that Gabor deconvolution can accurately estimate the nonstationary 

wavelet embedded in real seismic records. Therefore, the accuracy of Gabor deconvolution 

was validated. 

 



 9

9. The result also shows that Gabor deconvolution is superior to Wiener methods in 

wavelet estimation.  
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CHAPTER 2 NONSTATIONARY WAVELET SIMULATION 

 

      Synthetic seismograms in an anelastic medium can be generated by ray tracing or finite 

difference approaches (Kjartannson, 1979; Ganley, 1981; Ursin and Arntsen, 1985; Hearn 

and Krebes, 1990; Carcione, 1993). Nonstationary wavelet simulation is different from the 

creation of synthetic seismograms in that it only deals with the attenuation effect on the 

wavelet when it travels through the medium. This attenuation may or may not be associated 

with the direction of wavelet propagation depending on the purpose of the simulation. For 

the comparison of the simulated wavelets received in the well and those recorded on the 

surface at the far horizontal offset, the difference in the direction of attenuation and 

propagation should be considered. This means we need to simulate an inhomogeneous 

wavelet. The complex ray tracing method is chosen for the wavelet comparison since it can 

handle the attenuation angle and propagation angle by the stationary ray approach (Hearn 

and Krebes, 1990). There are many approaches for simulating homogeneous wave 

propagation. The investigation of homogeneous VSPs and surface wavefields in a constant-

Q medium is also presented in this Chapter.  

 

2.1 Nonstationary wavelet simulation using complex rays 

 

      Unlike conventional ray tracing methods, the complex ray method traces the seismic 

ray in attenuating media with the complex velocity. Therefore the factors associated with 

the complex velocity, such as ray parameter, wavenumber and traveltime, are complex also. 

The original code for calculating synthetic seismograms using the complex ray was kindly 

provided by Dr. Krebes. It was modified in this research to perform the nonstationary 

wavelet simulation measured on the surface and in the borehole. Comparison of the 

simulated VSP wavelets and surface wavelets will be discussed in Chapter 5. 
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2.1.1 Simulating nonstationary wavelets recorded on surface 

 

      When a wavelet passes through a sequence of anelastic horizontal layers, it is 

inhomogeneous and nonstationary. Thus equation (1.1) should be used for this wavelet 

simulation. This equation can also be expressed as (Hearn and Krebes, 1990)    

 ( ) ( )ωωτ ww C ˆ,ˆ = ( )Ciωτ−exp ,  (2.1)  

where complex traveltime is 

 ( ) zp
v

pxxK

C
C

2
1

2
2

1








−+=⋅=

→→

ωω
τ  , (2.2) 

with ( )ωCv  being complex velocity expressed by equation (1.6) and p being complex 

ray parameter expressed as 

 ( )ω
θ

Cv
p sin= ,  (2.3) 

where θ  is complex angle. The complex ray parameter is solved as an independent 
parameter in ray tracing. With the assumption of linear superposition, the nonstationary 
wavelet, passing through a sequence of anelastic horizontal layers, can be simulated by 

 ( ) ( ) ( )[ ] ωτωω
π

ττα dtiwtw CRR −=− ∫
∞

∞−

expˆ
2
1,   (2.4) 

where Rτ  is real part of Cτ , which represents the traveltime of nonstationary wavelet. By 

summation over m layers, Cτ is expressed as  

 
( )

2
1

2
2

1

1










−+= ∑

=

p
v

hpX
Cj

m

j
jC ω

τ , (2.5) 

where jh  and ( )ωCjv  are the thickness and complex velocity of the thj  layer. m is the total 

number of layers and X is the half horizontal offset between the source and the receiver. To 

find minimum traveltime, let 0=dpd Cτ , and then  X can be written as 

 ( ) 2
122

1

1
−

=

−=∑ Cjj

m

j
Cj vphpvX .  (2.6) 
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      To simulate the wavelet, we first give jj QhX ,, , ( )jvref  and calculate ( )ωCjv  by 

equation (1.6). Then solve for p  from 

 ( ) 01 2
122

1

=−−
−

=
∑ Cjj

m

j
Cj vphpvX . (2.7) 

and substitute p  into equation (2.5) to compute complex traveltime, Cτ . Finally we 

simulate the wavelet, ( )RR tw ττα −, , by equation (2.4) from given source signature, ( )ωŝ . 

 

2.1.1.1 An example of a three-layered model 

 

      By solving equation (2.7) using Newton-Raphson method (Hearn and Krebes, 1990), 

we can create an ideal nonstationary wavelet section without the effect of reflection, 

transmission and geometrical spreading. Table 2.1 shows the parameters of the anelastic 

model where h, v, ρ and Q  are the thickness, reference interval velocity, interval density 

and interval Q  values. Figure 2.1 shows the zero-phase source signature and its spectrum 

with bandwidth ranging from 10 to 90 Hz. Horizontal offsets between source and receivers 

are from 60 to 900 m at 60 m spacing. 
 

Layer h(m) v(m/s) ( )3/ cmgρ  Q 

1 500 1800 2.0 40 

2 1000 2300 2.1 50 

3 1000 3000 2.2 60 

Table 2.1 The subsurface model parameters. 

 
Figure 2.1 The source signature and its spectrum which is a zero-phase sinc function with 

two tapers added at the ends of the spectrum. 
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      Figure 2.2 (a) shows the nonstationary wavelet (total response) on which the waveform 

variation is caused only by constant-Q attenuation. Although the source signature is zero-

phase, the propagating wavelet is gradually close to the minimum phase with increasing 

traveltime. This phenomenon will be further verified in Chapters 3 and 4.  Figure 2.2 (b) 

shows the vertical components of the nonstationary wavelet. Figure 2.2 (c) shows the 

vertical components of the nonstationary wavelet with the geometrical spreading and 

Figure 2.2 (d) shows the vertical components of the nonstationary wavelet including the 

geometrical spreading and transmission/reflection effects, which is actually the synthetic 

seismogram in the attenuating media. In wavelet estimation we need to transform the traces 

shown in Figure 2.2 (d) into the nonstationary wavelet shown in Figure 2.2 (a). The 

amplitude spectra of wavelets along the first and the second events as well as that of the 

source signature are shown in Figure 2.3. The slope of the amplitude spectrum becomes 

higher and higher with increasing horizontal offset and traveltime. This is the result of the 

constant-Q attenuation. The amplitude decay along the first event is more severe compared 

to the attenuation along the second event. This decay increases directly with increasing 

traveltime.  
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                                  (c)                                                                     (d)    

Figure 2.2 Simulated nonstationary wavelet (total response) (a), vertical components of 

displacement of the wavelets (b), vertical components with geometrical spreading decay (c) 

and vertical components including geometrical spreading and transmission/reflection 

factors (d).  

 
Figure 2.3 Amplitude spectra of the nonstationary wavelet along the first (red) and the 

second (blue) reflection events shown in Figure 2.2 (a), and amplitude spectrum of the 

source signature (black). 
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2.1.1.2 Amplitude analysis 

 

       To compare the nonstationary wavelet from the surface and VSP data, it is necessary to 

analyze the possible factors associated with amplitude variation. Geometrical spreading, 

reflection and transmission, source-receiver directivity and anelastic attenuation contribute 

to the amplitude variation.  In our computation, the analytical formulas for computing the 

geometrical spreading, vertical component conversion and the reflection/transmission 

factors are given by Krebes (1984), Hearn and Krebes, (1990). Each of these factors was 

included in the amplitude computation step-by-step to see its effect. All the factors depend 

on frequency since the velocity and traveltime are frequency-dependent. Figure 2.4 shows 

five different amplitude spectra corresponding to the source signature, the nonstationary 

wavelet, the vertical component of this wavelet, the vertical component with the 

geometrical spreading, and the reflected vertical component with the geometrical spreading. 

All of them are reflected from the first reflector and received at an offset of 420 m. The 

decay of the amplitude spectrum with frequency is caused by the constant-Q attenuation. 

The other factors perform like constant scaling to the entire frequency spectrum and are 

independent of the frequency. This property will be helpful in the comparison of the 

wavelet estimates where we will assume that all the factors but the constant-Q attenuation 

are frequency-independent.  

 

       Figure 2.5 shows the log spectral ratio (from Tonn,1991) from the first reflection event 

shown in Figure 2.2 (a) with the reference spectrum being the amplitude spectrum of the 

first trace.  The average Q  between the surface and the first reflector is estimated by the 

spectral ratio method (White, 1992). The Q  estimate is nearly equal to the given value in 

Table 2.1 at the offset from 250 m to 800 m. It shows the amplitude of the simulated 

wavelets is correct. 
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Figure 2.4 Amplitude spectra of the wavelet at offset of 420 m, its vertical component, 

vertical component with spreading loss and reflection/transmission as well as the amplitude 

spectrum of the source signature.  

 
Figure 2.5 Log spectral ratio (top) from the first event shown in Figure 2.2 (a) and Q 

estimates from the same event (bottom). 

 

2.1.2 Simulating zero-offset VSP wavelets by complex rays. 

 

      Suppose the receiver is located in the thk  layer. As shown in Figure 2.6, the horizontal 

offset from source to borehole can be expressed as 
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, (2.8) 

where Cjv  and jh is the complex velocity and the thickness of the thj  layer. Z∆ is the 

vertical component of the ray vector in the thk  layer, which can be calculated by 

 







−=∆ ∑

−

=

1

1

k

j
jhZZ  , (2.9) 

where Z is the depth at which the receiver located. The traveltime of downgoing waves 

from source to each receiver at depth of Z  is 

 
2

1

2
2

2
1

2
2

1

1

11








−⋅∆+










−+= ∑

−

=
p

v
Zp

v
hpX

CkCj

k

j
jCτ  , (2.10) 

 
      The steps for VSP wavelet simulation are similar to those for surface wavelet 

simulation. Figure 2.7 shows the simulated vertical downgoing wavelets. The VSP 

wavelets were simulated with the same medium model and source signature as those in the 

surface wavelet simulation. The source was located 30 m apart from the specified well and 

14 receivers located in the well at depths from 200 to 1500 m at 100 m spacing. The energy 

dissipation with the high frequency component attenuation is caused only by the constant-Q 

attenuation. 

 

      Figure 2.8 shows the amplitude spectra of VSP downgoing wavelets in dB down. For 

shallow wavelets, the difference in dB down is bigger than that in deep wavelets since the 

velocity is slower in the first layer than that in the second layer. 
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Figure 2.6 Geometry of VSP wavelet simulation. Only downgoing waves are simulated. 

 

 
Figure 2.7 VSP downgoing wavelets. The source signature and media parameters are the 

same as those used in surface seismogram. The reflectors are located 500 m and 1500 m 

respectively. 

 
Figure 2.8 Spectra of VSP downgoing wavelet shown in Figure 2.7.  
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      Figure 2.9 shows the log spectral ratio from the spectra shown in Figure 2.8 and Q  

estimates by the spectral ratio approach. The amplitude spectrum of the first wavelet is used 

as the reference spectrum. The average Q  is close to the input interval Q  in the first layer 

and then gradually approximates to the interval Q  given in the second layer. That means 

the variation in the amplitude spectra of the simulated wavelets is reasonable. 

 
Figure 2.9 Log spectral ratio and average Q  estimates from spectra shown in Figure 2.8.  

 

2.2 Zero-offset VSP wavelet simulation by 1-D wavefield extrapolation 

 

      The seismogram obtained using complex rays is accurate for inhomogeneous waves. In 

our practice, sometimes, in the case of a multi-thin bed model, ray tracing is very slow to 

converge. The solution of the equation (2.7) may converge to another root or diverge if the 

initial guess is poor in the Newton-Raphson method. For normal-incidence waves, we 

consider an alternate method under the condition of 0=γ , that always gives a solution. 

Considering a plane, compressional wave normally incident in a horizontally layered 

anelastic medium, from equation (1.7) the Fourier component of the wavefront at depth z  

can be expressed as  
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where )(ωD is the Fourier spectrum of the downgoing source signature and ( )ωU  is the 

Fourier spectrum of the upgoing source signature. The source is considered to be buried 

within the first layer. Equation (2.11) was also given by Ganley (1981). Here his method is 

extended to generate zero-offset VSP synthetic seismograms for a many-layered model 

derived from a real sonic and density log.  

 

      If ),( ωzD is the Fourier spectrum of the downgoing wavelet at the depth z , then the 

downgoing wavelet at zz ∆+  is given by 

  ( ) ( ) ( ) ( )
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where z∆  is the depth step which should be much less than the minimum thickness of any 

layer in the model, and ( )ω,zvH is the phase velocity. In the same manner, the upgoing 

wavelet, ( )ω,zzU ∆+ , is expressed by  
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where 0>∆z for the downgoing waves and 0<∆z for the upgoing waves. Equation (2.12) 

is used to move the primary wavefield downward while equation (2.13) moves the reflected 

primary wavefield upward. Multiples are not modeled. 

 

     For the normal-incidence VSP in n layers over a half space, we can include reflections 

and transmissions in the zero-offset VSP seismogram in anelastic media as follows. First 

the layer depths of the model are all shifted slightly to fall exactly on a depth step. This 

causes minimal error if z∆ is much smaller than the layer thickness. Then we use equations 

(2.12) and (2.13) to extrapolate the downgoing wavefield and the upgoing wavefield. If the 

wavefield reaches the thj  interface, the downgoing wave transmitted to the next layer is 

given by 
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 ( ) ( ) ( ),,1, ωω jjj hzDRhzD =−==′  (2.14) 

and the upgoing wave starting in the next layer is 
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where D ′ and U ′  are the downgoing wavefield and the upgoing wavefield in the next layer. 
jh is the depth of the thj  interface and jR  is the complex reflection coefficient at the thj  

interface, which is written as (Ganley, 1981) 
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where ( )ωCjv  is the interval complex velocity that can be calculated by equation (1.6) and 

jρ is the interval density. 

      The source signature, shown in Figure 2.10, is a minimum-phase waveform. The 

receivers were located in a vertical well at depths from 320 m to 1800 m with a receiver 

interval of 20 m. The model for synthetic data can be constructed from sonic and log data 

by making equal time layers (Margrave, 1996). The log data for the velocity and density 

calculations come from a well at Rosedale nearby Drumheller. Figure 2.11 shows the log 

data and impedance curve from the horizontal layers with equal traveltime of 0.002 second. 

Q  for each layer is 50.  

      Figure 2.12 shows the synthetic VSP data from the given model. This data consist of 

both the primary downgoing and the primary upgoing waves which are attenuated with 

increasing travel distance. Figure 2.13 shows Fourier amplitude spectra of the downgoing 

wavelets in which the dominant frequency is shifted toward low frequency and the high 

frequency components are attenuated with the increasing depth. Figure 2.14 shows the 

impedance of the given model and the deconvolved upgoing waves. The deconvolution 

operators were designed from downgoing waves and applied to the upgoing waves 

recorded at the same level on trace-by-trace basis (Ross and Shah, 1987). The variation in 
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impedance is consistent with the amplitude change in the upgoing waves where the peaks 

of the first arrivals are coincident with increasing in the impedance.  

      Figure 2.15 shows the corridor stack of the deconvolved upgoing waves and well-log 

synthetic seismograms with Ricker wavelet which has the same dominant frequency as the 

source signature shown in Figure 2.10. The corridor stacking over the deconvolved and 

flattened upgoing waves is similar to the nonstationary deconvolution of the zero-offset 

seismic trace recorded on the surface. Our result shows that the corridor stack of the 

deconvolved VSP upgoing waves tied quite closely to the well-log synthetic trace. It also 

shows that the deconvolution procedure can not completely remove the effect of the 

attenuation since these two traces display different gain factors. 
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Figure 2.10 A minimum-phase source signature and its amplitude spectrum. 
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Figure 2.11 The simultaneous velocity from sonic log, density log, impedance and 

impedance model with the equal traveltime within each layer.  

 
Figure 2.12 VSP synthetic seismogram including constant-Q attenuation. 
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Figure 2.13 Amplitude spectra of the downgoing wavelets. 

 
Figure 2.14 Impedance model and the flattened and deconvolved VSP upgoing waves. 

Major reflection events are consistent with the rapid changes in the impedance.   
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Figure 2.15  Well-log synthetic seismogram with Ricker wavelet and corridor stack of the 
deconvolved upgoing waves.  

 

2.3 Nonstationary wavelet simulation by finite difference method 

 

      If the medium is not horizontally layered, it will be difficult to use ray tracing to 

simulate the nonstationary wavelet since the angle between attenuation and propagation 

will vary with the dip of the subsurface. The easy way to simulate the nonstationary 

wavelet in 2-D is to include the attenuation directly in the wavefield extrapolation formula 

under the assumption of 0=γ  (Kjartansson, 1979, Hargreaves and Calvert, 1991, and 

Wang, 2002). A frequency-space domain wavefield extrapolation approach is a reasonable 

choice for nonstationary wavelet simulation since the effect of energy dissipation and 

velocity dispersion can be easily included in the extrapolator.  

 

      In a 2-D medium, the wave equation for compressional waves in space-frequency 

domain can be written as  
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 P
vx

P
z
P

2

2

2

2

2

2 ω−
∂
∂−=

∂
∂ ,  (2.17) 

where ),,( ωzxPP = represents the pressure wavefield , ),( zxvv =  is the velocity and ω  is 

the angular frequency. The minus sign convention in forward Fourier transform is chosen. 

Equation (2.17) is a two-way wave equation. If we directly use it in wavefield continuation, 

multiples will be generated when the velocity is not a continuous function of space. Thus, a 

one-way equation is useful if multiples are not wanted. The square root equation can be 

directly derived from equation (2.17), that is 

 
2 2

2 21P i v P
z v x

ω
ω

∂ ∂= ± +
∂ ∂

,  (2.18) 

where the plus sign on the right side of the equation represents the wave traveling toward 

the source and the minus sign means the wave going away from the source. Based on the 

exploding reflector concept (Claerbout, 1976), the zero-offset reflected wave recorded at 

the surface can be simulated by an upward continuation of the wavefield from the 

exploding reflector using a half velocity. Thus we chose the minus sign in equation (2.18). 

      To approximate equation (2.18) with a finite-difference equation, we use the continued 

fraction method (Lee and Suh, 1985). Suppose 

 1)1( 2
1

−+= SY ,  (2.19) 

where  

 2

2

2

2

x
vS

∂
∂=

ω
. (2.20) 

The thn  order approximation of Y can be given by 
 

 
12 −+

=
n

n Y
SY  . (2.21) 

The nd2  order approximation of equation (2.18) for the downgoing wavefield can be 

written as a conventional 45-degree equation (Lee and Suh, 1985) 
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where 00 =Y . Substituting equation (2.23) into equation (2.22) yields  
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The wavefield P  is related to time-shifted wavefield 'P (Yilmaz, 1987) 

 v
zi

epP
ω−

= ' , (2.25) 

where 
v
z  is the retarded time at depth z.  The derivative of P over z is  
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P ωω −






 ′−′

∂
∂=

∂
∂

  (2.26) 

Substituting equations (2.25) and (2.26) into equation (2.24) then it can be written as 
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If the horizontal velocity variation can be ignored, vv ≈ , equation (2.27) can be expressed 

as 
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After getting the solution ( )ω,,' zxP  from equation (2.28), we then use equation (2.25) to 

shift the wavefield from depth z  to surface. The synthetic data is ),0,( tzxP =  , which is 

the inverse Fourier transform of the final solution from equation (2.25).  

      Now we need to include the effect of the constant-Q attenuation in Equations (2.25) and 

(2.28). The constant-Q theory of Kjartansson and others is the simplest attenuation theory. 

It can be easily incorporated in the wavefield continuation. The relationship between the 

dispersion and constant-Q attenuation given by Kjartansson (1979) is   
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
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where 0ω  is the reference frequency, refv is the phase velocity at the reference frequency 

and 

 




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
= −

Q
1tan1 1

π
ζ  . (2.30) 

Let 10 =ω . Then the complex velocity can be written as 
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If 1>>Q , the equation (2.30) can be approximated by 

 
Qπ

ς 1≈ . (2.32) 

Substituting equation (2.32) into equation (2.31) and then replacing the velocity v  in 

equations (2.25) and (2.28) for ( )ωCv  yield  
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and 
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where 
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Usually refv is chosen as the real interval velocity.  

      Using the Crank-Nicolson difference method (Smith, 1978), the solution for equation 

(2.34) can be represented with the finite difference equation 
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with the notations of: 
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The computing process includes several steps:  

1. Given a model in ),( zx  domain as well as a exploding reflector ( )0,,' =tzxP . 
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2. From maximum depth level, for each depth step, solve the equation (2.36) to get the    

monochromatic wavefield at a given depth and then shift the wavefield upward to    surface 

by equation (2.33). 

3. At depth 0=z , transform the wavefield ( )ω,0, =zxP  to the time domain. 

      Figure 2.16 is the minimum-phase source signature which is assumed to be located on 

the interfaces shown in Figure 2.17. Q  for all the layers is 40. Figure 2.18 shows the 

resulting seismic section. The wavelets broadening along the dipping reflector show the 

dispersion effect. The amplitude of the wavelet does not change along the horizontal event 

for the zero-offset synthetic data, but decays greatly along the dipping event due to the 

constant-Q attenuation.  

 

Figure 2.16 Minimum-phase source       Figure 2.17 A model including a horizontal 

signature and its amplitude spectrum.            interface and a dipping reflector. 
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Figure 2.18  Nonstationary wavelet which is zero-offset section. Grid size is 10(m)*10(m) 

in finite difference computing and Q equals to 40 for all the layers. 

 

2.4 Chapter summary 

 

      The constant-Q attenuation causes a loss of high-frequency energy with increasing 

arrival time and also a time-varying distortion of wavelet phase. This process has been 

simulated with three methods: the inhomogeneous wavelet simulation by complex ray 

tracing in a simple constant-Q attenuation medium, zero-offset VSP seismic wavefield 

extrapolation in a horizontally many layered constant-Q medium, and the frequency-space 

domain 45-degree wave equation extrapolation in a 2-D viscoacoustic medium. The 

amplitude spectra of the simulated wavelets show that the high frequency components 

decay exponentially with increasing frequency. The attenuation factor was introduced into 

the wave propagation by replacing the frequency-independent velocity for the frequency-

dependent phase velocity or complex velocity. Therefore, the phase dispersion causes the 

phase variation of the wavelet toward minimum phase with increasing traveltime, which 

will be verified by real VSP data in Chapter 5. All these methods extend the stationary 

wavelet traveling in an elastic medium to the nonstationary wavelet propagating in a 

constant-Q medium.  
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CHAPTER 3 NONSTATIONARY WAVELET ESTIMATION 

 

      Unlike stationary deconvolution, nonstationary deconvolution requires different 

operators at different traveltime. Otherwise some parts of the deconvolved trace will be 

over compressed while the other parts of the traces are less compressed. Figure 3.1, shows 

what will happen if we deconvolve an attenuated trace with a stationary operator. The 

attenuated trace displayed in the bottom of the figure was produced by the complex ray 

method in horizontally layered media with a constant-Q attenuation. The deconvolution 

operator is designed within each window denoted by W1, W2, W3 and W4. Applying each 

operator to the whole trace respectively, we observed that the pulse is best compressed with 

the operator derived from the pulse itself. The pulses at earlier time are over compressed 

while those at later time are less compressed. The best results are shown in the oval 

displayed in Figure 3.1 in which the attenuated pulses are compressed into spikes. So it is 

clear that if we can accurately estimate and deconvolve the nonstationary wavelets, the 

resolution of the seismic trace can be truly improved. 

Nonstationary trace by 

complex ray method

Operator from data in 
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Operator from data in 
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Reflectivity
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Windows

 
Figure 3.1 A simple attenuated trace, stationary convolved trace and reflectivity. The pulses 

are less compressed. 
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      The key step in nonstationary deconvolution is how to estimate the nonstationary 

wavelets. At first we need to consider the assumptions in wavelet estimation. Although the 

nonstationary wavelet is closer to the real wavelet than the stationary one, it is still a 

theoretical model. All the assumptions made in the stationary wavelet estimation, except 

that of stationarity, are required in the nonstationary wavelet estimation. These assumptions 

include (Yilmaz, 1987) 

1. The compressional plane wave impinges on layer boundaries at normal incidence. 

This means the wavelet estimation is a 1-D inversion problem. 

2. The wavelet is temporally short or equivalently it has smooth amplitude spectrum. 

3. Reflectivity is a random process. It implies that the seismogram and the seismic 

wavelet have similar autocorrelations and amplitude spectra. We hope that we can 

estimate the amplitude spectrum of the wavelet by smoothing the amplitude 

spectrum of the seismogram because the smoothed amplitude spectrum of the 

reflectivity is roughly constant. 

4. The seismic wavelet is zero or minimum phase. Therefore we can recover the phase 

of the wavelet estimate from its amplitude spectrum, usually by Hilbert transform.  

 

      In addition to these assumptions, nonstationary wavelet estimation further requires that 

these above assumptions are satisfied within the specified window and the wavelet changes 

very little within the window. So the stationary deconvolution methods can be used in the 

nonstationary wavelet estimation from the windowed data. 

 

      In Section 3.1, two seismic traces, one from a dynamite source and the other from a 

vibroseis source, will be generated from the nonstationary convolution model, and will be 

used in wavelet estimation. Section 3.2 will focus on the wavelet estimation by the multi-

window Wiener deconvolution. Section 3.3 will talk about the wavelet estimation by multi-

window frequency domain spiking deconvolution. In Section 3.4 the wavelet estimation by 

Gabor deconvolution will be investigated. Section 3.5 will show the wavelet estimates and 

then compare them with the given wavelets imbedded in the synthetic trace. Finally, in 

Section 3.6 the wavelet estimates from the trace with vibroseis source will be discussed.  
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3.1 Synthetic nonstationary trace 
 

      The nonstationary trace can be expressed by (Margrave, 1998) 

 ( ) ( ) ( ) ( ) ττωταωω ωτ derwx i−∫= ,ˆˆ ,  (3.1) 

where ( )ωx̂  and ( )ωŵ  are the Fourier spectra of the trace and the source signature, r  is 

reflectivity, and α is the time and frequency dependent attenuation function defined by 

equation (1.15). The time domain nonstationary trace from a given source can be obtained 

by an inverse Fourier transform to equation (3.1), which can be written as 

 ( ) ( ) ( ) ( )[ ] ωττωταω
π

ωωτ dederwtx tii
d

−∫∫= ,ˆ
2
1 ,  (3.2) 

where dx denotes the synthetic nonstationary trace in time domain. Equation (3.2) can also 

be written as 

 ( ) ( ) ( ) ( ) ( ) τωωταω
π

τ τω ddewrtx ti
d 



= −∫∫ ,ˆ

2
1 ( ) ( ) ττττ α dtwr ,−= ∫ ,  (3.3) 

which is the nonstationary convolution of the nonstationary wavelet, αw , and the 

reflectivity.  

 

      Figure 3.2 shows the procedure of the trace creation in the time domain as equation 

(3.3). The trace was generated by using a minimum-phase source signature with the 

dominant frequency equal to 50 Hz and quality factor being 50. The reflectivity is obtained 

from the real log data.  

 

      The other trace was generated to simulate the vibroseis signal. Following the physical 

procedure of the real vibroseis seismogram, first the sweep was attenuated in an anelastic 

medium. Like the nonstationary wavelet defined in equation (3.3), a constant-Q attenuated 

sweep is calculated by 

                                   ( ) ( ) ( ) ( ) ωωταω
π

ττ τω destw ti
sweepsweep

−∫=− ,ˆ
2
1,  ,                      (3.4) 
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where sweepw  is attenuated sweep and sweepŝ  is the Fourier spectrum of the pilot sweep. The 

second step carried out the nonstationary convolution between the attenuated sweep and the 

the reflectivity, which is expressed by 

 ( ) ( ) ( ) ττττ drtwtx sweeprec ,−= ∫ ,  (3.5) 

where ( )txrec  is a model for uncorrelated vibroseis data. Finally the correlated vibroseis 

trace was produced by 

 ( ) ( ) ( ) τττ dstxtx sweeprecv += ∫ ,  (3.6) 

which is the cross-correlation between uncorrelated vibroseis data and the pilot sweep. 

 

      Figure 3.3 shows that the uncorrelated vibroseis trace is the nonstationary convolution 

of the attenuated sweep and the reflectivity. Figure 3.4 shows the nonstationary trace is the 

cross-correlation of the uncorrelated data and the pilot sweep.  

 

      The nonstationary wavelet from a vibroseis source can be generated by    

 ( ) ( ) ( ) tdtsttwtw sweepsweep ′′′+−=− ∫ ττττα ,, ,  (3.7) 

which is the cross-correlation of the attenuated sweep, ( )ττ ,−′tw  and the pilot sweep. The 

procedure for the generation of the nonstationary wavelet is shown in Figure 3.5. 

 
Figure 3.2 Synthetic nonstationary trace by the nonstationary convolution of nonstationary 

wavelet and reflectivity (Adapted from Margrave (1998)).  
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Figure 3.3 Uncorrelated vibroseis signal (right) is the nonstationary convolution of the 

nonstationary sweep (left) and reflectivity (middle). 
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Figure 3.4 The correlated vibroseis trace (right) is the cross-correlation of the received 

seismic signal (left) and the pilot sweep (middle). 
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Figure 3.5 Nonstationary wavelet is the cross-correlation between the nonstationary sweep 

and pilot sweep. 

 

      To examine the phase property of the nonstationary wavelet simulated from the 

vibroseis source, we applied Wiener deconvolution to the nonstationary wavelet shown in 

Figure 3.5. If the result is close to a zero-phase spike, we can infer that the wavelet 

approximates to minimum phase. Figure 3.6 shows the selected wavelets and the output of 

the Wiener deconvolution. Operator length in Wiener deconvolution is 0.16 s and the 

stabilization factor is 0.0001. Figures 3.6 (a) and 3.6 (b) show the simulated vibroseis 

wavelets and deconvolved wavelets. The output of the deconvolution is close to the band 

limited zero-phase spike. Thus we believe that the simulated nonstationary wavelet from 

the vibroseis source signature approximates to the minimum phase. 
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Figure 3.6 Simulated wavelets from a vibroseis source (a) and the output of the Wiener 

spiking deconvolution (b). 

 

3.2 Nonstationary wavelet estimation by multi-window Wiener deconvolution  
  

      This is a theoretical, numerical simulation of standard industry practice. Before 

deconvolution, the trace is windowed with a boxcar and gained by AGC method. We 

assume that the wavelet estimate represents the average wavelet in the window. Within 

each window the Wiener-Levinson algorithm is used twice for solving two normal 

equations. In the thn  window, the first equation is 
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where ( )τφn  is autocorrelation of the seismic data within the thn  window , which is given 

by 

 ( ) ( ) ( )∑
−

=
+=

1

0

T

t
nnn txtx ττφ  ,     1...2,1,0 −= Lτ ,  (3.9) 

where T is the length of the trace segment to be used for operator design and L  is operator 

length. nx  denotes the seismic data in the window. After solving equation (3.8), the 

deconvolution operator, na , can be obtained and then be used for estimating the wavelet by 

equation 
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where ( )τψ n , the autocorrelation of the deconvolution operator obtained from equation 

(3.8), is expressed as 

 ( ) ( ) ( )laal
L

nnn += ∑
−

=
ττψ

τ

1

0
,   1...2,1,0 −= Ll ,  (3.11) 

where nw  is the wavelet estimate over the thn  window. It should be noticed that the value 

of stabilization factor,ε , and operator length should be the same in equations (3.8) and 

(3.10) to maintain consistency in wavelet estimation. 

3.3 Nonstationary wavelet estimation multi-window frequency domain spiking 
deconvolution 

 

      Frequency-domain spiking deconvolution is the Fourier equivalent to Wiener 

deconvolution (Margrave, 2001). Both of them are spiking deconvolution but use different 

approaches to estimate the wavelet. It is necessary to investigate the differences caused by 
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these approaches. In multi-window, frequency-domain spiking deconvolution, we also 

assume the wavelet changes very little within a boxcar window and the wavelet estimate 

represents the average wavelet in this window. The trace was also gained before the 

deconvolution.  

 

      The Fourier amplitude spectrum of windowed data within the thn  window can be 

expressed by 

 ( ) ( ) [ ]rwgrgwrwgx nnnnnnn ˆˆ,ˆˆˆˆˆˆˆˆ •+•=•≈  ,  (3.12) 

where “ • ” denotes convolution. nĝ  and nŵ  are the Fourier spectra of the thn  boxcar 

window and the wavelet within this window. [ ]rwg nn ˆˆ,ˆ • is called the commutator and can 

be ignored (Margrave and Lamoureux, 2001) in some cases (it will be further discussed in 

next section). To estimate the wavelet we need to smooth the Fourier amplitude spectrum 

of nx  by 

 ( ) [ ] ( )[ ] rgwBrgBwrgwBx nnnnnnn ˆˆˆ,ˆˆˆˆˆˆˆˆˆˆ ••+••=••≈ ω ,  (3.13) 

where B̂ is a boxcar smoother in Fourier domain and nx̂  denotes the smoothed Fourier 

amplitude spectrum of the trace within the thn  window. Again we ignore the commutator, 

( )[ ] rgwB nn ˆˆˆ,ˆ ••ω  , and then assume the reflectivity within the window is white. Thus, the 

smoothed reflectivity is a unit, that is 

 1ˆˆˆ ≈•• rgB n ,  (3.14) 

and the Fourier amplitude spectrum of the wavelet estimate is 

 nestn xw ˆˆ ≈ .  (3.15)  

Under the assumption of minimum-phase wavelet, the phase spectrum can be obtained 

from the smoothed amplitude spectrum by Hilbert transform 

 ( ) ( )( )
ω

ωω
µ

ωϕ ′
′−

+
= ∫

∞

∞−

d
xx nn

n

ˆmaxˆln
. (3.16) 

Finally the wavelet in the thn  window can be given by 
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 ( ) ( )∫
∞

∞−

= ω
π

ωωϕ deextw tii
nn

nˆ
2
1 . (3.17) 

 
 

3.4 Nonstationary wavelet estimation by Gabor deconvolution 
 
3.4.1 Approximation to Gabor spectrum of the seismic trace 

 

      The Gabor spectrum of the seismic trace, ( )tx , is expressed as (Margrave and 

Lamoureux, 2001) 

 [ ]( ) ( ) ( ) dtetgtxxG tiωτωτ −
∞

∞−

−= ∫, ,  (3.18) 

where g  is the Gabor analysis window and τ is the window centre. ( )tx  is defined in 

equation (3.2). Equation (3.18) can be factorized as (Margrave et al, 2003) 

 [ ] ( ) ( ) [ ]rwgrgwrwgxG ˆˆ,ˆˆˆˆˆˆˆ ατταατ •+•=•≈  ,  (3.19) 

where [ ]rwg ˆˆ,ˆ ατ •  is the commutator which is just the difference between applying the 

operations in one order and then the other. Nonstationary wavelet, αŵ , is defined in 

equation (1.15). It has been justified that the product of the nonstationary wavelet and 

Gabor spectrum of the reflectivity is close to the first asymptotic term of the Gabor 

spectrum of the seismic trace (Margrave and Lamoureux, 2001). Following from equation 

(3.19) by neglecting the commutator, we have 

 [ ]( ) ( ) [ ]( )ωτωτωτ α ,,ˆ, rGwxG ≈ .  (3.20) 

An example for approximation to a Gabor amplitude spectrum of the attenuated seismic 

trace is shown in Figure 3.7 where .X is a symbol of pointwise multiply.  
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Figure 3.7 Gabor amplitude spectrum of the seismic trace is close to the product of the 

time-frequency domain amplitude spectrum of the nonstationary wavelet and the Gabor 

amplitude spectrum of the reflectivity. 

 

      Given the source signature, the attenuation function and the reflectivity, we can 

calculate the Gabor amplitude spectrum of the seismic trace, ( )rwg ˆˆˆ ατ •  , and its 

approximation, ( )rgw ˆˆˆ •τα . Figures 3.8 (a) shows Gabor amplitude spectrum of the 

seismic trace. Here the half width of the Gaussian window is 0.2 s and Q  in the 

attenuation function is 50. The source signature is a minimum-phase wavelet with 

dominant frequency being 50 Hz. Figures 3.8 (b) shows Gabor amplitude spectrum of the 

approximation that is the same figure as shown in Figure 3.7. The shape of the amplitude 

spectra in Figures 3.8 (a) and (b) is very similar, which means equation (3.20) is accurate 

in this case. Figure 3.8 (c) shows the absolute value of the commutator, which is much less 

than that shown in Figure 3.8 (a) or (b) at the same position. 
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Figure 3.8 Gabor amplitude spectrum of the seismic trace (a), approximation to the Gabor 

amplitude spectrum of the seismic trace (b) and the absolute value of the commutator (c). 

 

      The accuracy of the equation (3.20) depends on the commutator which varies with the 

window length and Q  (Margrave et al., 2003). The ratio of the commutator energy and the 

total energy can be written as 

 ( )
( ) ( )( )

( )( )∑∑

∑∑

•

•−•
=

l Q

l Q

rwg

rgwrwg
lQD

2

2

ˆˆˆ

ˆˆˆˆˆˆ
,

ατ

ταατ

,  (3.21) 

where l  is the half width of the Gaussian window. τ denotes window center time.  

 

      Figure 3.9 shows the total energy, the commutator energy and the ratio of the 

commutator energy and the total energy, ( )lQD , , varying with different Q  and the half 

width of the window, l . With the small Q , the commutator energy decreases with 

increasing window length. Since the total energy decreases more quickly than the 

commutator energy, the ratio of the energy tends to increase with the increasing window 

width. It is observed that for a big Q there is an optimal window length. 
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Figure 3.9 The total energy (a), the commutator energy (b) and the ratio of the commutator 

energy and the total energy (c). 

 

3.4.2 Nonstationary wavelet estimation by Gabor deconvolution 

 

      The main idea in nonstationary wavelet estimation is the factorization of [ ]( )ωτ ,xG  

into ( )ωτα ,ŵ  and [ ]( )ωτ ,rG . The key step in the factorization is smoothing [ ]( )ωτ ,xG  

under the assumption of white reflectivity. Different smoothers will result in different 

wavelet estimates. Here we investigate two smoothers, boxcar and hyperbolic smoothers, 

for wavelet estimation. 

 

      Smoothing a Gabor amplitude spectrum of a seismic trace by a 2-D boxcar can be 

expressed as 

 [ ] [ ] [ ] [ ] [ ]rGwBrGBwrGwBxG ααα ˆ,ˆˆˆˆ •+•=•≈ , (3.22) 

where                        

                         ( )




=
0
1

,ˆ ωτB               
00

00

,

,

ωωττ
ωωττ

>>

≤≤
,                                         (3.23) 
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here 0τ and 0ω  are the boxcar lengths in the time and the frequency domain. If we ignore 

the commutator, [ ] [ ]rGwB αˆ,ˆ •  , and assume the Gabor spectrum of the reflectivity is 

white, the smoothed Gabor amplitude spectrum of the reflectivity is approximately unity 

and the Gabor amplitude spectrum of the wavelet estimate can be written as  

 ( ) [ ]( )ωτωτα ,,ˆ xGw
est

≈ .  (3.24) 

Under the assumption of minimum phase, the phase spectrum of the wavelet estimate can 

be calculated by the Hilbert transform  

 ( ) [ ]( )
ω

ωω
ωτ

ωτϕ ′
′−

= ∫
∞

∞−

d
xG ,ln

, .  (3.25) 

Thus, the nonstationary wavelet in the time-frequency domain is expressed as 

 ( ) [ ]( ) ( )ωτϕωτωτ ,,,ˆ i
est exGw ≈ ,  (3.26) 

where ( )ωτ ,ˆ estw denotes the nonstationary wavelet estimate.  

 

      Unlike the boxcar smoother, the hyperbolic smoothing method attempts to estimate 

both the magnitude of the attenuation function and the source signature from Gabor 

spectrum of seismic trace. Following the procedure provided by Iliescu and Margrave 

(2002), given a family of hyperbolae  

 k=ωτ      , Kk ....3,2,1= ,  (3.27) 

where k  is constant with respect to ω and τ . The magnitude of attenuation function 

estimate is expressed as  

 ( )
[ ]( )

k
est l

dkxG
k

N

∫
=

ω

ωωω
α 0

,/
,  (3.28) 

 

where kl represents the length of the thk  hyperbola and Nω denotes the Nyquist frequency. 

Substituting equations (3.20) and (1.15) into equation (3.28) yields  
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where ( )kρ  represents the error in the attenuation function estimate. It depends on the 

result of the integral in equation (3.29). Under the assumption of stationary source signature 

and white reflectivity, this integral will change with k  very little. Thus, we have 

 ( ) 0ρρ ≈k = constant.  (3.30) 

Therefore the magnitude of the attenuation function estimate can be approximated as  

 ( ) ( ) Q
k

estest
e 2

0,
−

== ρωταωτα .  (3.31) 

The Gabor amplitude spectrum of the source signature estimate is given by (Iliescu and 

Margrave, 2002) 

 ( ) [ ]( )
( ) τ

ωτα
ωτ

τ
ω

τ

d
xG

w
est

est ∫=
max

0max ,
,1ˆ  ,  (3.32) 

which means the amplitude spectrum of the source signature estimate is equal to the time 

average of the ratio between the Gabor spectrum of the trace and the estimated attenuation 

function. Then ( )
est

w ωˆ is further smoothed by 

 ( ) ( ) ( )ωωω Bww
estest

*ˆˆ = ,  (3.33) 

where ( )ωB  is a boxcar smoother in frequency domain. Finally the Gabor amplitude 

spectrum estimate of nonstationary wavelet is given by  

 ( ) ( ) ( )
estestest

ww ωωταωτα ˆ,,ˆ ≈ .  (3.34) 

Under the minimum phase assumption, the Gabor spectrum of the nonstationary wavelet 

estimate can be expressed as 

 ( ) ( ) ( )[ ]estwiH

estest eww ωτ
α

αωτωτ ,ˆ,ˆ,ˆ =  ,  (3.35) 

here H  denotes Hilbert transform.  
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3.5 Comparison of the wavelet estimates and simulated wavelets 
 

      The synthetic trace was the convolution of the nonstationary wavelet and the 

reflectivity. Thus the closer the wavelet estimate to this simulated nonstationary wavelet, 

the more accurate the wavelet estimate is. In this section, four methods shown in Sections 

3.2, 3.3 and 3.4 were applied for wavelet estimates from the same synthetic trace displayed 

in Figure 3.2. The wavelet estimates were compared with the simulated wavelets as shown 

in Figure 3.10 to evaluate the accuracy of each method. In Figure 3.10, every eighth 

wavelet is shown while the amplitude spectra of all the wavelets are shown for better 

display. As the traveltime increases the various frequency components that constituted 

original source signature have been attenuated differently and have traveled at different 

speeds. The dominant frequency of the simulated nonstationary wavelet becomes lower 

with increasing traveltime and the phase relationships amongst the frequency components 

change.  
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Figure 3.10 Simulated wavelets (left) and their Fourier amplitude spectrum (right). Only 

every eighth wavelet is shown while the amplitude spectra of all the wavelets are shown for 

display purposes. 

 

3.5.1 Wavelet estimates from the multi-window Wiener deconvolution methods    

 

      Like the conventional deconvolution procedure, the multi-window time-domain Wiener 

deconvolution and the multi-window frequency-domain spiking deconvolution (frequency 
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domain Wiener deconvolution) were done on the gained data in temporal boxcar window 

that was moved down the trace in increments.  

      Figure 3.11 shows the wavelet estimates and the Fourier amplitude spectrum estimates 

from the time-domain Wiener deconvolution. Since the trace was gain corrected with AGC 

before wavelet estimation, the amplitude of the wavelet estimate does not decay with the 

increasing traveltime. The high frequency components shown in the simulated wavelets 

were not properly recovered in the wavelet estimates. For both the wavelet estimates and 

simulated wavelets the dominant frequency decreases as the traveltime increases. 
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Figure 3.11 Wavelets (left) and their Fourier amplitude spectrum (right) by the multi-

window Wiener deconvolution. 

 

      Figure 3.12 shows the wavelet estimates and the amplitude spectrum estimates by the 

multi-window frequency spiking deconvolution. This method is equivalent to the multi-

window time-domain Wiener deconvolution. The same parameters such as stabilization 

factor and window length were used in both approaches. Thus, the wavelet estimates from 

the frequency-domain spiking deconvolution are close to those from the time-domain 

Wiener deconvolution while the amplitude spectra of the former change more smoothly 

than those of the latter.  
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Figure 3.12 Wavelets (left) and their Fourier amplitude spectrum (right) by the multi-

window frequency domain spiking deconvolution. 

 

3.5.2 Wavelet estimates by the Gabor deconvolution 

 

      The Gabor deconvolution was done on the data without gaining because its algorithm 

includes a gaining operation. To estimate wavelets with Gabor deconvolution, both the 

boxcar and the hyperbolic smoothers are applied. With the boxcar smoother, we apply the 

Gabor transform using Gaussian windows with a 90 percent window overlap, and then 

smooth the Gabor amplitude spectrum by a time-frequency domain boxcar to estimate the 

Gabor amplitude spectrum of the wavelet estimate. In the hyperbolic smoothing method, 

we smooth the Gabor magnitude spectrum of the seismic trace along hyperbolae 

( ft • =constant) to estimate the magnitude of the attenuation function. The source 

signature is then estimated by dividing the Gabor amplitude spectrum by the attenuation 

estimates, and averaging over time. The Gabor amplitude spectrum of the wavelet estimate 

is the production of the attenuation surface and the amplitude spectrum of the source 

signature estimate. A Hilbert transform over frequency at constant time, applied to the 

logarithm of the Gabor amplitude spectrum of the wavelet estimates, provides the 

associated minimum phase estimate. 

 

      Figure 3.13 shows the wavelet estimates and the amplitude spectra by Gabor 

deconvolution with a time-frequency domain boxcar smoother. Here the frequency 
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components within 10 dB are close to those of the simulated wavelets but the gain is not 

exactly same as that in the simulated wavelets. The difference in the gain depends on the 

window width and the smoother length (which will be further discussed in next Chapter). 

The high frequency components are also enhanced especially at an early time, but are not 

high enough to the level as shown in the amplitude spectra of the simulated wavelets. 
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Figure 3.13 Wavelets (left) and their Fourier amplitude spectrum (right) by Gabor 

deconvolution with boxcar smoother. 

 

      Figure 3.14 shows the wavelet estimates and the amplitude spectra by the Gabor 

deconvolution with a hyperbolic smoother. The amplitude variation of the wavelet 

estimates is very close to that of the simulated wavelets and the amplitude spectrum 

estimates are the best approximation to the amplitude spectra of the simulated wavelets. 
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Figure 3.14 Wavelets (left) and their Fourier amplitude spectrum (right) by Gabor 

deconvolution with hyperbolic smoother. 
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      Figure 3.15 shows cross-correlations of the wavelet estimates from four deconvolution 

methods with the simulated wavelets. It is shown that the wavelets estimated by Gabor 

deconvolution are most similar to the simulated wavelets but with a little bit phase shift 

shown by the lags of maximum cross-correlation.  
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Figure 3.15 Normalized maximum cross-correlations between wavelet estimates and 

simulated wavelets (top), and the lags of the maximum cross-correlation (bottom). 

 

3.6 Vibroseis wavelet estimation by the Gabor deconvolution 

 

      As showed in Section 3.1, the wavelets recorded in VSP downgoing waves from a 

vibroseis source are approximately minimum-phase. Here we apply the minimum-phase 

nonstationary deconvolution to estimate the wavelets from the synthetic trace shown in 

Figure 3.4.  
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      Figure 3.16 shows the Gabor amplitude spectrum of the nonstationary wavelet estimate 

from the synthetic trace shown in Figure 3.4, and the Fourier amplitude spectra of the 

simulated nonstationary wavelet shown in Figure 3.5. After 0.5 s, these two spectra are 

roughly similar to each other. Figure 3.17 shows the wavelet estimates from Gabor and 

multi-window Wiener deconvolution. The trace was gained with 0.1s length AGC before 

the Wiener deconvolution and the wavelet estimates were rescaled with the same AGC 

function. Gabor deconvolution includes the gain effect in its algorithm so that this approach 

was directly applied to the synthetic trace. The given wavelets are also shown in the figure. 

At an earlier time, the wavelet estimates show a different waveform from the given 

wavelets, but they gradually resemble each other at later time. The similarity between the 

wavelet estimates and the given wavelets is also shown in the maximum crosscorrelation 

displayed in the bottom of the Figure 3.17. The wavelet estimates from Gabor 

deconvolution are closer to the input wavelets than those from the Wiener deconvolution at 

later time. 

Frequency in Hz

(a) (b)
 

Figure 3.16 Gabor spectrum of the nonstationary wavelet estimate (a) and Fourier 

amplitude spectrum of the simulated nonstationary wavelets shown in Figure 3.5 (b).  
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Figure 3.17 Wavelet estimates by Gabor and multi-window Wiener deconvolution from a 

synthetic vibroseis trace. 

 

3.7 Chapter summary 

 

      In this chapter, the four different methods for nonstationary wavelet estimation are 

described. The first two approaches are the traditional time-domain Wiener deconvolution 

and frequency-domain Wiener deconvolution. Following the standard practice, in Wiener 

deconvolution, the wavelets are estimated on the gained and windowed synthetic 

nonstationary trace. Here the window is the boxcar. The other two methods are the Gabor 

deconvolution with boxcar smoothing and the Gabor deconvolution with hyperbolic 

smoothing. The wavelets are estimated on the same nonstationary trace but windowed by 

Gaussian function. All the wavelet estimates are then compared with the input 

nonstationary wavelet. We find that the wavelet estimates from the Gabor deconvolution 

with hyperbolic smoothing are the closest to the input wavelets. This means they are the 

most accurate among all the wavelet estimates.  
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      Gabor amplitude spectrum of the seismic trace is usually approximated as the product 

of the Fourier amplitude spectrum of nonstationary wavelet and the Gabor amplitude 

spectrum of the reflectivity. This approximation depends on the Q value and the width of 

the analysis window. Our result shows that for small Q the commutator energy decreases 

with the increasing window width, but for big Q there is an optimal window length.  
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CHAPTER 4 NONSTATIONARY WAVELET ESTIMATION FROM REAL DATA 

 

      Wavelet estimation from real data is much more difficult than what we have done from 

synthetic data since the mechanism of the real data is more complicated. The major factors 

related to wavelet estimation from surface data include the following items: 

      1. Physical factors including transmission, spreading, absorption, mode conversion, 

intra-bed multiples and near surface effects. 

      2. Acquisition factors such as source type and strength, receiver coupling, coherent and 

ambient noise, offset range, and instrumentation. 

      3. Processing factors: noise reduction, spreading correction and wavelet estimation. 

The physical and acquisition factors associated with wavelet estimates from VSP data are 

the same as those in surface data. The special factors in VSP wavelet estimation consist of 

wavefield separation, gain recovery and downgoing wave windowing.  

 

      This research only considers noise reduction, spreading correction, wavefield separation 

and wavelet estimation. 

 

4.1 Survey and data quality 

 

      A simultaneous VSP and 2-D surface seismic survey was provided by EnCana for this 

research. The data acquisition was carried out in 1995 at Rosedale, located about 130 km 

Northeast of Calgary in Alberta. The recording geometry is shown in Figure 4.1. Receivers 

were positioned between 322 and 1820 m depth at a receiver interval of 20 m for a total of 

75 receiver locations within the borehole. An additional 78 geophones were placed between 

30 and 2310 m from the borehole at a 30 m interval on the surface. Five source points were 

used for this survey, located 27, 430, 960, 1350 and 1700 m from the borehole. The source 

was vibroseis with a 12 s, 10-96 Hz linear sweep. The recording was 16 second 

uncorrelated surface shot records and VSP records at a 2 ms sample rate. 
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Figure 4.1  Geometry of a joint survey.  

 

      Figure 4.2 shows the gain-corrected vertical components of VSP data with the source 

location being 27m from the well. A 200 ms length AGC was applied for the purpose of 

display. The primary downgoing waves are seen as linear events traveling from left-to-right 

while upgoing waves travel up from left-to-right. Figure 4.3 shows the scaled vertical 

components of the surface data sharing the same source point as the VSP data shown in 

Figure 4.2. The surface data includes both reflected waves and noises. To identify these 

noises, we applied band pass filters with different frequency bands to the data gather shown 

in Figure 4.3. This is also called frequency scan. Figure 4.4 shows the filtered gathers with 

different band passes. Four kinds of the noises including ground roll, air blast, linear 

coherent noise and random noise can be easily observed from the data with different 

bandpass. Shallow refraction arrivals and guided waves, which are considered as noise in 

wavelet estimation, are also evident. All these noises need to be suppressed before the 

wavelet extraction. There are many strong reflections located between 0.8 and 2 s. The 

band width of the signal is from 10 to 50 Hz with high frequency components locating in 

shallow area and low frequency components extending to deep area. This frequency 

variation with the traveltime represents the nonstationarity of the seismic signal. 
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Unfortunately, the signal within near offset traces is buried in the ground roll so the 

wavelets have to be estimated from the middle offset area. 

Primary downgoing 
waves

Primary upgoing
waves

Multiple downgoing
waves

 

Figure 4.2 Vertical components of the zero-offset VSP section. A 200 ms length AGC was 
applied.  

 

Figure 4.3 Vertical components of a raw source gather (surface data). A 400 ms AGC was 
applied. 
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Figure 4.4 Panels of frequency scanning. A 400 ms length AGC was applied. 
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4.2 Wavelet estimation from VSP data 

 

      Wavelet estimation from VSP data is easier than from surface data; however, intensive 

data processing is still required. Many factors in processing can affect the wavelet estimates.  

 

4.2.1 Wavelet estimation from VSP data 

 

      Figure 4.5 shows the flow chart for the VSP data processing before wavelet estimation. 

The major steps are vertical stacking, geometrical spreading correction, wavefield 

separation and downgoing wavefield windowing. 

Field recording

Cross-correlation with pilot sweep

Vertical stack

Geometrical spreading correction

Downgoing wave separation

Windowing downgoing waves

For phase test

Wavelet estimates

Wiener spiking 
deconvolution

 

Figure 4.5 Flow chart for VSP data processing and wavelet estimation. 

      For each receiver position in the well 5 independent recordings were made. The direct 

sum of these recordings is called vertical stacking and reduces random noise. Figure 4.6 
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shows the VSP section before and after vertical stacking. The random noise was suppressed 

by vertical stacking. 

 
Figure 4.6 VSP section before (top) and after (bottom) vertical stacking displayed with a 

200 ms length AGC. 

 

      The geometrical spreading correction removes the energy decay relating to spherical 

divergence. The velocity function used in the geometrical spreading correction was 
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estimated by velocity analysis from surface data so as to make the energy consistent 

between VSP and surface data. Figure 4.7 shows the effect of the geometrical spreading 

correction without scaling. Comparing the data before the correction and the data after 

correction, we observed that the energy of the trace at greater times and depths was 

enhanced by the geometrical spreading correction.  

 
Figure 4.7 VSP data before (top) and after (bottom) geometrical spreading correction 

without gaining. The curve shown on the top of each figure is the maximum amplitude 

detected within the window shown in the figure. The noise traces were killed on the 

bottom figure. 
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      Wavefield separation refers to the process of isolating the downgoing and upgoing 

wavefield. This was done in three steps. First the first breaks of downgoing waves were 

flattened. Second a median filter (at central time) was run to suppress the upgoing waves 

and thus isolate the downgoing waves. Finally, the upgoing waves were estimated by 

subtraction of the estimated downgoing waves from the flattened record (of step 1). Figure 

4.8 shows the maximum amplitude for each depth of the estimated downgoing waves for 

various median filter lengths. We observe that the length of the median filter has little effect 

on amplitude variation, but the short filter may yield a few irregular amplitude values as 

shown in Figure 4.8. After many experiments, finally the 11-point median filter was chosen 

for the wavefield separation. Figure 4.9 shows the flattened wavefield (a) and separated 

downgoing waves (b) with 0.1 second length AGC applied, and the same wavefield (c) and 

the downgoing waves (d) without AGC.  

      Finally, the downgoing wavelets are estimated by applying a boxcar window to isolate 

the downgoing wave from 0.2 to 0.4 seconds. Figure 4.10 shows the wavelet estimates 

where the change in the wavelet with depth is caused by absorption and transmission 

factors. Figure 4.11 shows the Fourier amplitude spectra of wavelet estimates. Each line 

from the top to the bottom represents the Fourier amplitude spectrum of the wavelet 

estimate from the shallow to the deep receiver level. A progressive decay of the amplitude 

spectrum and a reduction in bandwidth of the amplitude spectrum with increasing depth are 

evident. The notches shown in the amplitude spectra are result of ghosts or downgoing 

multiples. 
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Figure 4.8 Maximum amplitude for each depth versus different median filter lengths. 
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Figure 4.9 Flattened VSP data (a) and separated downgoing waves (b) using 0.2 s length 

AGC, and the flattened VSP data (c) and the downgoing waves (d) without AGC. Gaps 

occur where noisy traces have been deleted.  
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Figure 4.10 Wavelet estimates from VSP downgoing waves. The deleted traces were 

interpolated.  
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Figure 4.11 Fourier amplitude spectra of the wavelet estimates from VSP data. The lines 

represent the Fourier amplitude spectrum estimates at the different depth levels.  

 

4.2.2 Phase characteristics of the wavelet estimates 

 

      The phase property of the wavelet estimate from a vibroseis source is still an important 

topic discussed by many people. Conventionally, the measured uncorrelated data are cross-

correlated with the sweep from the recording truck. The wavelet embedded in the correlated 

data is assumed to be the zero-phase autocorrelation of the sweep (see Brötz et al, 1987; 

Bickel 1982). This assumption has been challenged by Baeten and Ziolkowski (1990) who 

show that the wavelet is not an autocorrelation function but the cross-correlation between 

the pilot sweep and the ground force, which can be determined from measurable vertical 

acceleration of the base plate and the reaction mass. The far field wavelet is equal to the 

cross-correlation between the pilot sweep and the time derivative of the ground force. Thus, 

the wavelet from the vibroseis source propagating in the elastic medium is not zero-phase. 

Ziolkowski’s argument ignores attenuation. Gibson and Larner (1984) attempted to shape 

the vibroseis wavelet to minimum phase by reducing the earth filter effects and phase 

correction. Brittle (2001) stated that the presence of earth-attenuation results in a mixed-

phase wavelet that is the convolution of the Klauder wavelet and the earth-attenuation 

minimum-phase filter, but this assumption is not verified. Therefore, the phase property of 
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the wavelet embedded in the vibroseis trace is still an unsolved problem. The theoretical 

verification of this phase property is very difficult, but it can be examined empirically by a 

minimum-phase deconvolution. In time-domain Wiener spiking deconvolution, if the 

wavelet is minimum-phase and the reflectivity is white, the output of the deconvolution 

would be close to band-limited zero-phase spike. Conversely if the output of this 

deconvolution is close to the band-limited zero-phase spike, we can infer that the wavelet is 

a reasonable approximation to minimum phase. 

      In Section 3.1, we applied Wiener deconvolution to the simulated nonstationary 

vibroseis wavelet and found that this wavelet is close to a minimum-phase wavelet. Here 

Wiener spiking deconvolution was further applied to the wavelet estimates from the real 

VSP data. In Wiener deconvolution, the data for the operator design were chosen in the 

range from 0.2 to 0.3 s which is symmetric about the wavelet location. Operator length was 

0.12 s and stabilization factor was chosen to be 0.0001. Figure 4.12 shows the deconvolved 

wavelets and their amplitude spectra. After deconvolution, the wavelet was compressed 

into band-limited approximation to an impulse. Figure 4.13 shows the wavelets before 

Wiener deconvolution (a) and after Wiener deconvolution (b). All the wavelets were 

normalized for display purposes. The deconvolved wavelets are close to the band-limited 

zero-phase spikes. 

      Therefore, we believe that the propagating wavelet in the VSP data from a vibroseis 

source is effectively minimum phase. This property is very important in wavelet estimation 

from surface data since we can only estimate the amplitude spectra of the wavelets and 

don’t know their phase property. The phase property of the VSP wavelet can help us to 

make a correct phase assumption for the wavelet estimates from surface data.  
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Figure 4.12 Wiener spiking deconvolved wavelets (left) and Fourier amplitude spectra 

(right) where each line represents the Fourier amplitude spectrum of the deconvolved 

wavelet estimated at the different depth level. The deconvolved wavelets approximate to 

the band-limited impulses. 
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Figure 4.13 Wavelets before Wiener spiking deconvolution (a) and after Wiener 

deconvolution (b). All the wavelets were normalized. 
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4.3 Surface data preprocessing and wavelet estimation 

 

4.3.1 Data preprocessing 

 

      The objective of the data preprocessing is to suppress noise, recover amplitude and 

estimate stacking velocity. Figure 4.14 shows the flow chart for wavelet estimation. The 

first part of the figure shows the steps in data preprocessing and the second part is the 

procedure of wavelet estimation.  

      Low frequency and low velocity noise were suppressed by the program called surface 

wave attenuation in ProMAX. This program attempts to remove coherent noise by f-k 

filter. Geometrical spreading was corrected by true amplitude recovery in ProMAX. The 

velocity used in geometrical spreading correction was estimated from common middle 

point gathers. Figure 4.15 shows the source gather before processing (left) and the same 

gather after processing (right) without any gain. After processing, the signal in the deep and 

far-offset areas was obviously enhanced and the noises were suppressed. 

      Figure 4.16 shows the same processed gather as Figure 4.15 with a 400 ms length AGC 

applied. Since the near-offset traces still contain ground roll, we choose traces with much 

less noise from the data within the middle offset range. The traces within the boxcar 

window on Figure 4.16 are selected to estimate the wavelet.  
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Figure 4.14 The flow chart for wavelet estimation from surface data.  

 

 
Figure 4.15 The gather before processing (left) and the same gather after processing (right). 

The processing steps include noise suppression, static correction, geometric spreading 

correction and shallow refraction muting. Both sections were displayed without scaling.  
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Traces used for wavelet estimation

 
Figure 4.16 The same gather as shown on the right of Figure 4.15 , but with a 400 ms 

length AGC applied. 

 

4.3.2 Wavelet estimation and selection 

 

      The principle and method of the wavelet estimation by Gabor deconvolution has been 

introduced in chapter 3 where all the wavelet estimates were extracted under the 

assumptions of white reflectivity and minimum phase wavelet. For the real data, it is said 

that the assumption of white reflectivity brings fewer problems than assumptions in the 

wavelet phase (Dey, 1999). The wavelet estimation requires us to assume the phase 

property of the wavelet at very beginning stage since the phase property determines the 

methods applied in the wavelet estimation. For the wavelet estimates from VSP data, we 

have verified that their phase is close to minimum phase. For the data received on the 

surface they share the same source as VSP data and travel in the same media. Thus, it is 

reasonable to assume the wavelet estimates from surface data are also minimum phase.  

 

      Now we describe how to estimate the VSP-related wavelets from surface data. At first, 

we define a specified reflector model as the horizontally layered medium with interfaces 

located at the position of each receiver in the borehole. We call these interfaces as 
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equivalent reflectors. This definition is reasonable under the random reflectivity 

assumption from which every point in the medium can be considered as a reflection point. 

From the stacked section shown in Figure 4.17, the real medium in our case is close to the 

horizontally layered medium. So the defined medium model is realistic and valid for our 

research. 

 
Figure 4.17 Stacked section from the joint survey shown in Figure 4.1.  

 

      Figure 4.18 shows a simple model as we defined above. Suppose VSP traveltime, 1t , is 

the arrival time to a receiver in the borehole for an offset VSP, and surface traveltime, 2t , 

is the two-way traveltime of a reflection recorded at the surface for a reflector at the same 

depth. The relationship between 1t  and 2t  can be expressed as  

 2

2

2

2
2
12

44
stka v

x
v
ctt +−= ,  (4.1) 

where av  is the average velocity which can be calculated from the first break in VSP 

wavefield at time, 1t , stkv  is the stacking velocity estimated from the surface seismic, c  is 

the horizontal distance between the shot location and the borehole, and x  is the source-

receiver offset on the surface.  
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Figure 4.18 The relationship of the oneway and two-way traveltime. 

 

      From equation (4.1), we know that for a fixed x , there is only one wavelet estimate 

from surface data corresponding to a VSP traveltime. Figure 4.19 shows the VSP 

traveltime, 1t , measured from VSP first break and calculated surface traveltime, 2t , at 10 

horizontal offsets of 10 traces chosen for wavelet estimation. The time difference in the 

shallow area between different traces is bigger than that for deeper data.  
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Figure 4.19 VSP one-way traveltime and corresponding surface traveltimes calculated from 

equation (4.1). 

 

      Although we have suppressed the noises before the wavelet estimation, some residual 

noises or other factors may still distort the shape of the wavelet estimates as shown in 
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Figure 4.20 where ten wavelets were estimated by Gabor deconvolution from the selected 

traces shown in Figure 4.16 without AGC. Most of them are similar to each other, but 

some are different in the waveform. To make the wavelet estimates more reliable and 

stable, the wavelets estimated from each trace were stacked to yield final wavelet estimate. 

The equation in wavelet stacking is given by  

 ( ) ( ) Nxttwttw
N

j
j /,,,

1
22 ∑

=

= ,  (4.2) 

where N is the number of traces to be stacked and jx is the offset of the thj  trace. 
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Figure 4.20 Wavelet estimates at twoway traveltime of 0.8 s from traces show in Figure 

4.16. 

 

      Figure 4.21 shows the final wavelet estimates from surface data by Gabor 

deconvolution with hyperbolic smoothing (a), and corresponding wavelet estimates from 

VSP data (b). In Gabor deconvolution, a Gaussian window with 0.2 s half width and a 

boxcar smoother of 25 Hz length were applied. 

 

      Figure 4.22 show the Gabor amplitude spectrum of the wavelet estimates shown in 

Figure 4.21 (a), and the Fourier amplitude spectra of the wavelet estimates shown in Figure 

4.21 (b). The dominant frequency shown in Figures 4.22 (a) and 4.22 (b) are similar to each 
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other. In an earlier time, the bandwidth of the surface wavelets is wider than that of the 

VSP wavelet. With increasing the time they are close to each other. 

 

      Apparently, the wavelet estimates from the surface data were attenuated much more 

than the wavelet estimates from the VSP data. This difference, caused by constant-Q 

attenuation, will be discussed in Chapter 5. 
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Figure 4.21 Wavelet estimates from surface data by Gabor deconvolution with hyperbolic 

smoothing (a), and wavelet estimates from VSP data (b).  
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Figure 4.22 Gabor amplitude spectrum of wavelet estimates from surface data (a) and 

Fourier amplitude spectra of wavelet estimates from VSP data (b). 

 

4.3.3 Parameter testing of Gabor deconvolution  

 

      In addition to the factors we introduced at the beginning of this chapter, the parameters 

in the wavelet estimation also contribute to the variation in the wavelet estimates. Here we 

will test the effects of the window width and the smoother length on the wavelet estimates 

 

Effect of the window length on the wavelet estimates 

 

      The window length, the half width of Gaussian, will affect the wavelet estimate. The 

stationary deconvolution requires the window length be long enough to make the wavelet 

estimate stable within a quite wide temporal range. A rule of thumb in the industry is that 

the window length should be at least eight times the length of the deconvolution operator 

(Yilmaz, 1987). The window length in the nonstationary deconvolution links with the Q  

value. The higher the Q  value the larger the upper bound on window length can be. 

However the longer the window, the more the wavelet estimate will be averaged. For the 
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nonstationary deconvolution, the window length should be consistent with the expected 

nonstationarity of the wavelets. The optimum length only can be determined by comparison 

of the deconvolved trace or wavelet estimate to the data from well, or by extensive testing 

of a variety of window lengths. 

 

      At first let us see the effect of the window length on the wavelet estimates from Gabor 

deconvolution with the boxcar smoother. Figure 4.23 shows the wavelet estimates and 

their amplitude spectra at four different times with three windows. The longer the window, 

the stronger the high frequency components are. The reason for this phenomenon is that 

the high frequency components in shallower area are stronger than those in deeper area.  
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Figure 4.23 Wavelets (top) and corresponding amplitude spectra (bottom) estimated with 

Gaussian windows of different lengths. 

 

      Figure 4.24 shows the variation in both wavelet estimates and their spectra from Gabor 

deconvolution with the hyperbolic smoother. The change in the frequency components is 

similar to that shown in Figure 4.23.  
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Figure 4.24 Wavelets (top) and corresponding amplitude spectra (bottom) estimated with 

Gaussian windows of different lengths. 

 

Effect of smoothing on the wavelet estimates  

 

      The Gabor spectrum of the wavelet estimate includes the effect of constant-Q 

attenuation. This attenuation surface is a relaxation function in the traveltime and frequency 

domain. The size of the boxcar smoother will affect the attenuation function. The bigger the 

size of the boxcar, the less the estimated attenuation surface changes in time-frequency 

domain. In the extreme case, an smoother with an infinite length would yield a constant 

amplitude spectrum and a wavelet estimate close to an impulse. Therefore, the smoother 

length should be chosen carefully. The optimum smoother length can be obtained by 

comparing the wavelet estimates to the VSP wavelet (as we did in this thesis), or by 

extensive testing of the different lengths of the smoother.  

 

      Figure 4.25 shows the influence of the frequency domain smoother length on wavelet 

that was estimated by Gabor deconvolution with a boxcar smoother. Here the half width of 

the widow is 0.2 s and the time domain smoother length is 0.3 s. It is clearly displayed that 
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the smoother extends the bandwidth of the wavelet estimates and also introduce a phase 

rotation. The longer smoother makes the wavelet estimate similar to an impulse. 

 

      Figure 4.26 shows the effect of three different lengths of the boxcar smoothers on the 

wavelet and amplitude spectrum estimates in the case of Gabor deconvolution with 

hyperbolic smoother. The result of smoothing in this case is similar to that shown in Figure 

4.25, but now, only the amplitude spectra of the source signature estimates are smoothed 

and no time smoother is applied. Thus the biases caused by smoothing should be less than 

those by the time-frequency domain boxcar smoother.  
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Figure 4.25 Wavelets (top) and corresponding amplitude spectra (bottom) smoothed by 

boxcars with different lengths in the frequency domain. 
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Figure 4.26 Wavelets (top) and corresponding amplitude spectra (bottom) corresponding to 

the three source signature estimates smoothed by boxcars with different lengths in 

frequency domain. 

 

4.3 Chapter summary 

 

      The real VSP wavelets are extracted from VSP downgoing waves. As the result of the 

phase examination by the time-domain Wiener deconvolution, the wavelet estimates are 

found to be close to minimum phase though the vibroseis source is zero-phase.  Based on 

this phase property, we estimate the wavelets from the real surface seismic traces sharing 

the same source signature with the VSP data. Then the wavelets reflected from the 

equivalent reflector are extracted. Each of these wavelets is corresponding to the different 

wavelet estimates from VSP data. 

 

      The intensive VSP and surface data processing plays a key role in the wavelet 

estimation. The purpose for the data processing is to separate the other factors from seismic 

attenuation and to make the wavelet embedded in the seismic trace be associated only to the 

source signature and the seismic absorption. 
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     The window width and smoother length also influence the wavelet estimates. The wide 

window will enhance the high frequency components in the wavelet estimates and too short 

smoother will make the wavelet vibrate strongly. 
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CHAPTER 5 COMPARISON OF WAVELET ESTIMATES FROM VSP AND 

SURFACE DATA 

 

      The accuracy of the nonstationary wavelet estimates determines the performance of 

Gabor deconvolution. Verifying the accuracy of the wavelet estimates only from surface 

data themselves is difficult. Conventionally, people consider the wavelet estimates are 

correct providing that the deconvolved trace is similar to the band-limited reflectivity 

estimated from log data. Usually this is difficult because the original bandwidths of the log 

recordings and seismic data are very different. On the other hand, VSP and surface data 

usually share similar bandwidth especially in the joint VSP and surface survey. Ever better, 

the nonstationary wavelet is directly recorded by VSP downgoing waves. Thus, it is 

possible to evaluate the accuracy of the surface wavelet estimates by VSP data. 
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Figure 5.1 Flow chart for wavelet estimate comparison. 

 

      In this chapter, first we will describe the differences between the VSP and surface data, 

and also introduce how to reduce these differences so as to make the wavelet estimates 

from VSP and surface data more comparable. Then the wavelet comparison will be 

implemented on the synthetic data and finally the wavelet estimates from real VSP and 
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surface data will be compared.  The strategy of the wavelet comparison is shown in Figure 

5.1 

 

5.1 The difference of the wavelet estimates from VSP and surface data 

 

      Although the wavelets in our VSP and surface data share the same source and travel in 

the same medium, they are not equivalent. The major factors causing these differences 

include 

 

1. Spreading loss 

 

For a point source, the amplitude of the spherical wave traveling through the body 

of a medium decreases inversely as the distance the wave has traveled (Sheriff, 

1991). Thus, the amplitude of the wavelet estimated at surface traveltime, 2t , can be 

written as the function of the amplitude of the wavelet estimated from VSP 

traveltime, 1t , which is 

 ( ) ( )
( ) ( )1

22

11
2 tA

ttv
ttvtA

stk

stk= ,  (5.1) 

where A denotes the amplitude of the wavelet estimates. 1t  and 2t are defined in 

equation (4.2). stkv  denotes the stacking velocity which is estimated from the CDP 

gathers of the surface data. In both surface and VSP data processing, we have 

recovered amplitude decay caused by the geometrical spreading with the program 

called true amplitude recovery in ProMAX system. The results of the geometrical 

spreading correction are shown in Figures 4.6 and 4.14.   

 

2. Transmission loss 

 

For a normal incidence transmission through a set of horizontal layers, the two-way 

transmission loss is  
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where surT  and kR are transmission and reflection coefficients. N is the number of 

layers. The one-way transmission loss for a normal incidence is given by 
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where VSPT represents the transmission coefficients. The ratio of surT and VSPT  is 
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which means that for the same layered sequence we need to amplify the VSP 

wavelet to compensate the difference in transmission loss. From the nonstationary 

trace model expressed by equation 3.3, if we can properly factorize the wavelet and 

reflectivity the wavelet estimates will have no relationship with the transmission 

loss, but the VSP wavelet does experience the amplitude decay caused by the 

transmission loss. In principle, this loss can be calculated from the log data. 

However, compensation for this effect is not considered in this thesis.  

 

3. Geophone directivity 

 

In this thesis, the wavelets were estimated from the vertical components of the 

middle-offset surface and zero-offset VSP data. The amplitude of the wavelet 

estimate at a horizontal shot-receiver offset is given by 

 ( )θcosAV = ,  (5.5) 

where A and V are the amplitude of the wavelet estimate and its vertical component, 

and θ is the emergence angle. For middle-offset surface data, θ  increases with 

increasing offset, while for zero-offset VSP data, θ  is equal to zero. The ratio of the 

vertical components between VSP and surface data is ( )θcos . In the real case, θ  is 

small due to the very low velocity of the near surface layer. Thus in our research, 
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the effect of the geophone directivity is ignored. This may cause large differences 

between the wavelet estimates from shallow surface and VSP data.   

 

4. Difference in constant-Q attenuation 

 

      If Q  is independent of the direction of wave propagation, the nonstationary surface 

wavelet is expressed by 
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where ( )ω,ˆ 2twsur  denotes the spectrum of the wavelet estimate from surface data 

and ( )ωw  is the spectrum of the source signature. The nonstationary VSP wavelet 

can be written as 
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where ( )ω,ˆ 1twVSP  is the spectrum of the wavelet estimate from VSP data. Since 

surface and VSP data shared the same source signature in our case, the spectral ratio 

of the VSP and surface wavelets is given by  
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where traveltime 1t  and 2t  are calculated from equation (4.1). Equation (5.8) is 

actually a Q  filter. Q  can be estimated from VSP downgoing waves. 

 

5.2 Q estimation 

 

      As an intrinsic property of the rock, Q  is a ratio of stored energy to dissipated energy, 

but the Q  estimates from seismic data do not exactly represent this property. The errors in 

Q estimates are closely related to data acquisition and processing. Intrabed multiples, 

scattering and mode conversion also contribute to Q estimation since their effects are 
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similar to Q attenuation (Tonn, 1991). Therefore what we estimate is actually an effective 

Q which includes the intrinsic property of the rock and interference from the other factors. 

Q  estimates from VSP downgoing waves are more reliable than those from the surface or 

log data (White, 1992). Among many approaches available for Q  estimation, the spectral-

ratio method is more reliable and accurate if the data are noise-free (Tonn, 1991). In the 

spectral-ratio method, the relation of the amplitude spectrum ( )fZA ,  of the trace recorded 

at a deeper geophone level, Z, and the reference amplitude spectrum ( )fZA ,00  at a shallow 

level, 0Z , is expressed as 

 ( ) ( ) ( )0,, 00
ZZefZAfZA −−= α ,  (5.9) 

where α is attenuation coefficient given by 

 Qvf /πα = .  (5.10) 

This means  

 ( ) ( )( ) ( ) QTTffZAfZA //,ln 0,00 −−= π ,  (5.11) 

where T and 0T  are the P-wave arrival time at geophone levels, Z and 0Z , respectively. By 

a linear fit to the data points in a crossplot of ( ) ( )( )fZAfZA ,00/,ln   versus f , Q  can be 

estimated from equation (5.11). 

 

      Here we use the amplitude spectra of the VSP wavelet estimates (as shown in Figure 

4.21 (b)) to estimate Q  by a linear fitting to the log spectral ratio between the wavelet 

estimate at each deeper level and the wavelet estimate at the shallowest level. A frequency-

domain boxcar smoother with a 30 Hz length was applied to the log spectral ratio before 

the linear fitting. The linear fitting was done over the frequency range from 8 to 70 Hz.  

Both the log spectral ratios and the fitted straight lines are shown in Figure 5.2 (only every 

second ratio line was shown for display purpose).  

 

      The slope of the fitted straight line increases from the shallow level to the deep level. 

The standard deviation of the slope is given by (Draper and Smith, 1981) 
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 ( ) ( )
xxS

ZSZS =δ ,  (5.12) 

where ( )ZS  is standard deviation of the spectral ratio, which is written as 

 ( ) ( )( ) ( ) ( )[ ]
2

1

1
00 ,/,ln1)( 







 −−= ∑
K

kkk fZbZafZAfZA
K

ZS ,  (5.13) 

where ( )Za  and ( )Zb  are the intercept and the slope of the fitted straight line. They were 

given by  

 ( ) ( ) ( )( ) ( ) ∑∑ −=
K

k

K

kk f
K

ZbfZAfZA
K

Za
11

00
1,/,ln1 ,  (5.14) 

and 

 ( ) ( )
xx

xy

S
ZS

Zb = ,  (5.15) 

where 

 ( ) ( ) ( )( )[ ] ( ) ( )( )∑∑∑ −=
K

kk

K

k

K

kkkxy fZAfZAf
K

fZAfZAfZS
1

,00
11

,00 /,ln1/,ln ,  (5.16) 

and 
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where K is the number of the frequency components within the selected frequency range. 

The error in average-Q estimate caused by the standard deviation of the slope is expressed 

by 

 ( ) ( )
t

QZSZQ
∆

=
π

δδ
2

,  (5.18) 

where t∆  is the traveltime when wave travels from the depth 0Z  to Z .  

  

      The standard deviation in the slope of the fitted straight line and the error in average-Q 

estimate are shown in Figure 5.3 where the deviation grows with increasing depth while the 

error in the average-Q estimate roughly decreases with increasing depth. Figure 5.4 shows 
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the average Q  estimates between the shallowest receiver level and each deeper level. The 

relative error in  Q  estimates is less than 7 percent as shown in Figure 5.4.  
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Figure 5.2 Log spectral ratios and their linear fits in a sense of the minimum square root. 

The dip of the straight line is proportional to Q  estimates. 
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Figure 5.3 Standard deviation in the slope of the fitted straight line (a) and the errors in 

average-Q estimates (b).  
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Figure 5.4 Average Q  estimate and the error in the Q  estimate caused by the error in the 

slope of the fitted straight line.   
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      The attenuation from Q estimates can be applied back to the reference wavelet (the 

wavelet at shallowest level) to generate a group of simulated wavelets. By comparing these 

simulated wavelets with the wavelet estimates, we can assess the accuracy of the 

Q estimates. Figure 5.5 shows the wavelet estimates and simulated wavelets alternately in 

subplot (a), and their corresponding amplitude spectra in subplots (b). Similarity between 

the simulated wavelets and wavelet estimates implies that our average Q estimates are 

reasonable. This is also shown by comparing the amplitude spectra. 
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Figure 5.5 (a) Wavelet estimates and simulated wavelets plotted alternately. The red one is 

the estimated wavelet and the blue one is the simulated wavelet in each wavelet pair. (b) 

Fourier amplitude spectra corresponding to the wavelets shown in (a).  

 

5.3 Comparing wavelet estimates from the synthetic VSP and surface data  

 

      In chapter two, we have simulated both VSP and surface wavelets from the same 

horizontal layered model and source signature, as shown in figures 2.2 (a) and 2.7. Since 
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the effects of reflection, transmission and spherical divergence are not included in the 

synthetic data, any differences between the wavelets are due to the attenuation effect. 

 

      Equation (5.8) was used as a Q  filter to match the VSP wavelets to surface wavelets.  

In this case, 1t  and 2t   are directly measured from the synthetic seismograms and average 

Q was calculated by  

 
∑

∑

=

=

∆

∆
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ii

n

i
i

a

Qt

t
nQ

1

1

/
)( ,  (5.19) 

where aQ  and iQ  are average Q  and given interval Q  (shown in Table 2.1). t∆  and n  are 

interval traveltime and the number of layers. 

 

      To carry out the wavelet comparison, at first we chose the VSP wavelets received at 

the depth level of two reflectors, corresponding to the fifth and fourteenth traces shown in 

Figure 2.7, then design forward Q  filters at different horizontal offsets using equations 

(4.1) and (5.8), and finally apply these filters to selected VSP wavelets. Figure 5.6 shows a 

qualitative comparison of Q-filtered VSP wavelets and wavelets received on the surface. 

The top six wavelets are three Q-filtered VSP wavelets received at 500 m depth and the 

other three wavelets reflected from the first reflector and received on the surface. The 

bottom six wavelets consist of three Q-filtered VSP wavelets received at 1500 m depth and 

three wavelets reflected from the second reflector. Both Q-filtered VSP wavelets and 

surface wavelets are consistent in wave shape although there are small differences with 

increasing horizontal offsets.  

 

      Figure 5.7 shows the amplitude spectra of the Q-filtered VSP wavelets have similar db 

down to these of simulated wavelets on the surface at the same frequency. 
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Q-filtered VSP wavelets               
Simulated surface wavelets

 
Figure 5.6 Comparison of Q-filtered synthetic VSP wavelets to synthetic surface wavelets.  
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Figure 5.7 Amplitude spectrum simulation at 60, 420 and 900 m horizontal offset from 

borehole (left) and amplitude spectra of the Q-filtered wavelet from 500 m depth (right). 

  

      We can also simulate the VSP wavelet by inverse Q  filtering of surface wavelet. Since 

equations (1.9) and (1.14) are equivalent when Q  is assumed to be independent of 

frequency, equation (1.9) can be transferred into an inverse Q  filter by simply changing 

the sign of the terms within the parentheses and letting  
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Then we can relate the simulated surface wavelet to the VSP wavelet by 
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2
sgnexp,ˆˆ 2,1 ,  (5.21) 

Figure 5.8 shows the VSP wavelet (most left trace) received at the first reflector and 

inverse Q  filtered surface wavelets reflected from the same reflector. The waveforms of 

the VSP wavelet and inverse Q  filtered surface wavelet are nearly the same. Figure 5.9 

shows the amplitude spectra corresponding to the wavelets shown in Figure 5.8. Again the 

amplitude spectra of inverse Q  filtered surface wavelets are consistent with that of the 

VSP wavelet. 

 

 
Figure 5.8 VSP wavelet (the most left pulse) and inverse-Q-filtered wavelets simulated on 

the surface. 

Offset in meters
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Figure 5.9 Amplitude spectrum of the VSP wavelet (thick curve) and amplitude spectra of 

inverse-Q filtered wavelets simulated on the surface.  

 

      In conclusion of this section, wavelets simulated both in the well and on the surface 

can be transformed into each other by the forward Q  filtering or the inverse Q  filtering if 

only the constant-Q attenuation is included in the wavefield propagation. 

 

5.4 Comparing wavelet estimates from real VSP and surface data 

 

      Up to now we have estimated the nonstationary wavelets from the surface and VSP 

data, and also estimated Q  values from VSP wavelet estimates. Similar to what was done 

on the simulated wavelets in Section 5.3, we will now compare the wavelet estimates from 

the real data.  
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5.4.1 Forward-Q filtering for wavelet comparison 

 

      Since VSP wavelets travel a much shorter distance compared to the corresponding 

surface wavelet estimates, VSP wavelets experience less attenuation than those from 

surface data. Therefore, it is necessary to filter the VSP wavelet estimates for comparison 

of the VSP wavelets and surface wavelets. The Q  estimates, VSP traveltime picked from 

real VSP data and the two-way surface traveltime were used to design forward-Q filters 

from equation (5.8). These filters were then applied to VSP wavelet estimates to make them 

comparable to the wavelet estimates from the surface data.  

 

      Figure 5.10 shows the VSP wavelet estimates and their Q-filtered counterparts (every 

eighth wavelet was shown for display purpose). Figure 5.11 shows the amplitude spectra of 

VSP wavelet estimates and Q-filtered VSP wavelets. After Q filtering, the high frequency 

components were obviously attenuated and dominant frequencies shifted toward low 

frequency direction with increasing traveltime. 
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Figure 5.10 VSP wavelets (top) and Q-filtered VSP wavelets (bottom). 
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Figure 5.11 Amplitude spectra of the VSP wavelets (a) and amplitude spectra of Q-filtered 

VSP wavelets (b). 

 

5.4.2 Comparison of wavelet estimates from surface data and forward-Q filtered VSP 

wavelets 

 

      We follow standard practice to estimate wavelets by the Wiener deconvolution 

approaches. At first, a 0.1 s length AGC was applied to the pre-processed seismic data, then 

the wavelet was estimated on the gained data in a 0.2 s length boxcar window that moved 

down the trace in an increment of 0.02 s. Finally, the wavelet estimates located at the 

surface traveltime corresponding to each VSP traveltime were selected for comparison with 

the Q-filtered VSP wavelets. Figure 5.12 shows the wavelet estimates by both time-domain 

and frequency-domain Wiener deconvolution methods. Only every eighth wavelet was 

shown. The wavelets from both approaches are very similar except that the wavelets from 

the later method are more consistent with each other after the boxcar smoother with the 



 94

width of 10 Hz was applied. Apparently, the gain in the wavelet estimates doesn’t agree 

with that in Q-filtered VSP wavelets since the conventional Wiener methods can not 

exactly estimate the gain function. Figure 5.13 shows Fourier amplitude spectra of the 

wavelets by Wiener approaches. The dominant frequency decreases with the increasing 

traveltime but the band pass doesn’t change with the traveltime, which is different from the 

band pass of the Q-filtered VSP wavelet estimates. 
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Figure 5.12 Wavelet estimates by time-domain Wiener deconvolution (top) and frequency-

domain Wiener deconvolution (bottom). 
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Figure 5.13 Fourier amplitude spectra of the wavelet estimates by the time-domain Wiener 

deconvolution (a) and the frequency-domain Wiener deconvolution (b). 

 

      Gabor wavelets were estimated on the pre-processed seismic data without any gain 

applied, with both the boxcar and the hyperbolic smoother. The procedure of the wavelet 

estimation is the same as we described in Section 3.5.2. A temporally short Gaussian 

window with half length of 0.2 s was used in Gabor method with the hyperbolic smoother. 

The same window was applied in Gabor approach with a time-frequency boxcar smoother 

of 10 Hz long and 0.3 s wide. Figure 5.14 shows the Gabor wavelet estimates with the 

boxcar smoother (top) and the hyperbolic smoother (bottom). The waveform of the wavelet 

estimates agree quite closely with that of the Q-filtered VSP wavelet estimates. Figure 5.15 

shows the amplitude spectra of the Gabor wavelet estimates with two different smoothers. 

The features of the amplitude spectra with the hyperbolic smoother, such as dominant 

frequency variation and the band pass change with the increasing traveltime, are very 
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consistent with those of the Q-filtered VSP wavelet estimates. Therefore we conclude that 

the wavelet estimates by the Gabor deconvolution with the hyperbolic smoother are the 

most accurate among all the wavelet estimates.   
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Figure 5.14 Wavelet estimates by Gabor deconvolution with the time-frequency domain 

boxcar smoother (top) and hyperbolic smoother (bottom). 
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Figure 5.15 Fourier amplitude spectra of the wavelet estimates by Gabor deconvolution 

with the boxcar smoother (a) and with the hyperbolic smoother (b). 

 

      Figure 5.16 shows the maximum values of normalized crosscorrelation between 

wavelet estimates by four methods and Q-filtered VSP wavelets. From the figure, we 

observe that the wavelets from Gabor deconvolution using hyperbolic smoother apparently 

win out especially at a later time.  

 



 98

0.6 0.7 0.8 0.9 1.0 1.1
0.6

0.8

1

Maximum cross-correlation between wavelet 
estimates and Q-filtered VSP wavelet

Surface traveltime (s)

Gabor deconvolution (hyperbolic smoother)
Gabor deconvolution (boxcar smoother)
Multi-window time-domain Wiener deconvolution
Multi-window frequency domain spiking deconvolution

 
Figure 5.16 Maximum crosscorrelation of the wavelet estimates and the Q-filtered VSP 

wavelets. 

 

5.4.3 Comparison of wavelet estimates from VSP data and inverse-Q filtered surface 

wavelet estimates  

 

      Contrary to application of the forward-Q filter to VSP wavelets, we also can process the 

wavelet estimates from surface data by inverse-Q filtering and then compare them with 

VSP wavelet. This inverse-Q filter is designed by equation (5.21).  

 

      Figure 5.17 shows the inverse-Q filtered wavelets from surface data. The top figure 

shows the wavelets by Gabor deconvolution with the boxcar smoothing and the bottom one 

shows the wavelets by Gabor deconvolution with the hyperbolic smoothing. Comparing the 

wavelets in Figure 5.17 to the corresponding wavelets shown on the top in Figure 5.10, the 

dominant frequency and the peak amplitude of the surface wavelet with the hyperbolic 

smoothing is closer to the VSP wavelet.  
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Figure 5.17 Inverse-Q filtered wavelet estimates from Gabor deconvolution with boxcar 

smoothing (top) and hyperbolic smoothing (bottom).  

 

      Figure 5.18 shows inverse-Q filtered amplitude spectra of the surface wavelets. The 

amplitude spectra shown on the top of Figure 18 are calculated from the wavelets estimated 

by Gabor deconvolution with the boxcar smoothing and the bottom spectra are from Gabor 

deconvolution with the hyperbolic smoothing. Comparing Figure 5.18 to Figure 5.11 (a), 

we find that the amplitude spectra after hyperbolic smoothing are more consistent with the 

spectra of VSP wavelets.  

 

      Figure 5.19 shows the maximum crosscorrelation between the inverse-Q filtered surface 

wavelets and VSP wavelets (top), and the lags of the maximum crosscorrelation 

coefficients. It is obvious that the surface wavelets from Gabor deconvolution with the 

hyperbolic smoothing are closer to VSP wavelets than those with the boxcar smoothing. 

The lag curves show that there is no phase shift between the wavelets with hyperbolic 

smoothing and VSP wavelets. 
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Figure 5.18 Inverse-Q filtered amplitude spectra of the wavelets by Gabor deconvolution 

with boxcar smoothing (a) and hyperbolic smoothing (b). 
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Figure 5.19 Maximum crosscorrelation between VSP wavelets and inverse-Q filtered 

surface wavelets (top), and lags of the maximum crosscorrelation coefficients (bottom).  
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5.5 Chapter summary 

 

      First the simulated VSP wavelets and surface wavelets were compared each other. This 

comparison shows that the VSP wavelets can be quite close to the surface wavelets after 

either forward-Q filtering the former or inverse-Q filtering the latter. This result suggests 

that the wavelet estimates from VSP data can be used to evaluate the wavelet estimated 

from the surface data. Then we estimated Q values from the VSP downgoing wavelets and 

compared the forward-Q filtered VSP wavelets to the surface wavelets that were estimated 

by four different methods described in Chapter 3. Finally we compared the VSP wavelets 

with the inverse-Q filtered surface wavelets. Our results are consistent with the hypothesis 

that Gabor deconvolution can accurately estimate the nonstationary wavelets embedded in 

real seismic records. Gabor deconvolution is superior to a multi-window Wiener or 

frequency domain spiking deconvolution. Therefore, the Gabor deconvolution is validated 

by comparison of the wavelet estimates from VSP and surface data. 

 

      The accuracy of Q estimates depends on the slope of the least-square-fitted straight line. 

The result of the error analysis in this chapter is consistent with White’s statement (1992) 

that the error in Q estimates decreases with increasing depth.  
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CHAPTER 6 GENERAL CONCLUSIONS AND POSSIBLE EXTENSIONS 

 

6.1 Conclusions and discussions 

 

      In this thesis, we first simulated the nonstationary VSP and surface wavelets using 

complex ray approaches. We found that the surface wavelets quite closely resemble the 

forward-Q filtered VSP wavelets and also the VSP wavelets were very similar to the 

inverse-Q filtered surface wavelet. This result suggests that the accuracy of the 

nonstationary wavelet estimate can be verified by comparison of wavelet estimates from 

surface and VSP data. Then we extracted wavelets from a simultaneously recorded VSP 

and surface data provided by EnCana and compared the VSP and surface wavelet estimates 

using the same approach as that for the simulated wavelets. The result shows that the 

nonstationary wavelet estimated from Gabor deconvolution agrees more closely with Q-

filtered VSP wavelets than that from the conventional Wiener deconvolution methods. 

Since the nonstationary wavelet is directly recorded in VSP downgoing waves, the 

agreement between wavelet estimates from surface data and VSP wavelets shows that 

Gabor deconvolution can accurately estimate the nonstationary wavelet.  

 

      The second validation is based on the synthetic seismic data which were the 

convolution between the simulated nonstationary wavelet and the reflectivity estimated 

from real log data. The wavelet estimates from the synthetic data by Gabor deconvolution 

are quite close to the simulated nonstationary wavelet. Therefore, the accuracy of the Gabor 

deconvolution is verified by synthetic data also. 

 

      In addition to Gabor deconvolution, conventional time-domain and frequency-domain 

multi-window Wiener deconvolution were also applied in nonstationary wavelet estimation. 

Our results suggest that Gabor deconvolution is superior to Wiener methods. 

 

      Gabor methods include a gain correction which can affect the amplitude of the 

nonstationary wavelet estimates. The parameter testing in wavelet estimation shows that the 
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amplitude of the wavelet estimates changes with the window length. A wider window will 

yield less amplitude decay.  

 

      We also examined the phase property of the real VSP observations from the vibroseis 

source by the time-domain Wiener deconvolution. It is surprising that VSP observations did 

not require a phase rotation to agree with the minimum phase assumptions of the 

deconvolution algorithms. Although the wavelet estimates from the vibroseis recordings 

may be a little bit of departure from minimum phase assumptions, this research shows that 

they can be quite accurately extracted by Gabor deconvolution methods. 

 

      In this thesis, we developed several approaches in nonstationary wavelet simulation 

including the methods for the nonstationary VSP wavelet simulation by complex ray 

tracing, zero-offset VSP seismogram with attenuation by 1-D wavefield extrapolation, and 

extended 2-D frequency-space domain 45-degree wave equation from an acoustic medium 

to a viscoacoustic medium. Each approach in the wavelet simulation has its own 

advantages and weak points. Complex ray tracing method is the most accurate because it is 

a theoretic solution for the plane wave propagating in the horizontally layered anelastic 

medium, but this method doesn’t always guarantee the convergence in the complicated 

medium model. 1-D wavefield extrapolator for zero-offset VSP downgoing and upcoming 

waves is a numeric solution of the 1-D and two-way wave equation for a plane 

compressional wave propagating in the horizontally layered anelastic medium. This 

approach always gives the solution no matter how many layers the model has. As a 

numerical solution, it is less accurate than complex ray methods. 2-D frequency-space 

domain 45-degree wave equation can simulate the nonstationary wavelet in more 

complicated medium with the constant-Q attenuation, but it works slowly if we use the 

finite difference method. 
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6.2 Possible extensions 

 

      Q filtered wavelet estimates from VSP data can be used for shaping the wavelet 

estimates from surface data by a match filter, especially in the case of the joint VSP and 

surface acquisition since the wavelet estimates from surface and VSP data are much more 

comparable. Shaped wavelet estimates can possibly improve the accuracy of the 

nonstationary deconvolution. 

 

      Gabor deconvolution can be implemented in a surface consistent manner based on the 

wavelet estimates from multi-trace gather such as wavelet stacking used in this research. It 

is possible to increase the lateral consistency of the deconvolved trace by using the average 

wavelets estimated from more than one trace. On the other hand, this approach can further 

suppress the noise effect on wavelet estimates. Lateral nonstationarity caused by 

attenuation versus offset can be controlled by the spatial window length. 

 

      The wavefield extrapolator including constant-Q attenuation factor can easily be used in 

seismic migration to obtain more accurate migration amplitude.  
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