
Important Notice

This copy may be used only for
the purposes of research and

private study, and any use of the
copy for a purpose other than
research or private study may
require the authorization of the
copyright owner of the work in

question. Responsibility regarding
questions of copyright that may
arise in the use of this copy is

assumed by the recipient.

UNIVERSITY OF CALGARY

The application of multivariate statistics and neural networks to the prediction of
reservoir parameters using seismic attributes

by

Brian Henderson Russell

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF GEOLOGY AND GEOPHYSICS

CALGARY, ALBERTA

SEPTEMBER, 2004

 Brian Henderson Russell 2004

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled “The application of multivariate

statistics and neural networks to the prediction of reservoir parameters using seismic

attributes” submitted by Brian Henderson Russell in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

 __
 Supervisor, Dr. Laurence R. Lines, Geology and Geophysics

Dr. R. James Brown, Geology and Geophysics

__
Dr. Gary F. Margrave, Geology and Geophysics

__
Dr. Robert R. Stewart, Geology and Geophysics

__
Dr. Michael P. Lamoureux, Mathematics and Statistics

__
Dr. Matthew J. Yedlin, University of British Columbia

Date

ii

ABSTRACT

 In this dissertation, I develop a number of new ideas for the statistical

determination of reservoir parameters using seismic attributes. These ideas combine the

classical techniques of multivariate statistics and the more recent methods of neural

network analysis. I apply these techniques to both full seismic volumes and to maps

derived from intervals averaged through these volumes, largely using the Blackfoot

dataset from central Alberta. I show that multilinear regression often provides too simple

a solution to the parameter estimation problem, and that the traditional feedforward

neural network often provides a solution that is overly complex. My proposed solution is

to use radial basis function neural networks for the prediction of reservoir parameters,

since this approach combines the power of the multilinear regression technique with the

nonlinearity of neural networks. I also show how the radial basis function neural network

can be considered as a generalization of the generalized regression neural network, which

has been previously used in this type of parameter estimation. My conclusions are

illustrated using both an AVO classification problem and the Blackfoot seismic and well

log dataset.

 In addition to the application of the radial basis function neural network to the

prediction of reservoir parameters, several new ideas are presented for the analysis of

well log and seismic data. First, I derive an improved regression formula for the

prediction of S-wave sonic logs from combinations of other logs. Second, I apply a new

approach to data clustering, which I call Mahalanobis clustering, to the interpretation of

AVO crossplots and to the delineation of optimal clusters for the radial basis function

neural network with centres method. Finally, I develop a new approach to map analysis

that combines geostatistics with multiattribute transforms. This technique uses

multivariate statistics and neural networks to improve the secondary dataset used in the

collocated cokriging technique.

iv

PREFACE

 Although this dissertation was technically written over the last four years (2000-

2004), it is really the product of my thirty years in geophysics, both as a student and as a

practitioner of the science. During this time I have worked as a field geophysicist, a

seismic interpreter, a seismic processor and, most recently, as a seismic software

developer. The thread that ties all this work together is my interest in seismic inversion.

Initially this meant deterministic inversion using the convolutional model, applied to both

poststack and prestack seismic data. These methods form the basis of Chapter 2 of this

study. Thanks to the work of Ronen et al. (1994) and Jim Schuelke and his colleagues at

Mobil (now ExxonMobil) I was introduced to the idea of statistical inversion. The latter

approach was implemented by Hampson-Russell Software as the EMERGE program

(Hampson et al., 2001) and I was closely involved with testing and training on this

product. The most important motivation for me in developing the ideas that form the

basis of this dissertation was in trying to reconcile the generalized regression neural

network proposed by Hampson et al. (2001) with the radial basis function approach of

Ronen et al. (1994). This is the basis of Chapters 6 through 8 in this study. However, to

understand the building blocks upon which these methods are based, I was further

motivated to study the areas of multivariate statistics and the single and multi-layer

perceptron, which form the basis of Chapters 3 through 5 of the study. The result has

been a period of intense, but satisfying, work on this area of exploration geophysics,

which I hope will motivate others to use these tools.

v

ACKNOWLEDGEMENTS

 First and foremost I want to acknowledge my partner in life, Elaine, who not only

suggested that it was not too late for me to go back to university to fulfill a lifelong

dream, but also gave me emotional support through four arduous years and acted as my

literary editor (as she said: “Some days I wish I could turn your thesis upside down and

shake out all those superfluous commas like a bunch of annoying insects”.)

 Second, thanks go to my longstanding business partner and colleague, Dan

Hampson, who has been a daily source of inspiration and ideas for the last twenty years.

Dan also acted as my tutor for the C++ programming skills that allowed me to write the

source code for the RBFN method.

 Third, I want to acknowledge my thesis advisor, Dr. Larry Lines, who has been

instrumental in guiding me towards the completion of this dissertation. Larry has been

easy going enough to let me largely go my own way, firm enough to push me when

necessary, and always totally free with his time, even when he took on the onerous task

of Department Head.

 Finally, I want to thank all my colleagues at both Hampson-Russell and the

CREWES project who have provided a great intellectual environment for me over the last

four years. In particular, I want to acknowledge two individuals. Jon Downton, Larry’s

other “mature” Ph.D. student, has been a constant source of inspiration to me through our

discussions of both his research and my own. And Chris Ross at Hampson-Russell gave

me an idea that led to many of the examples in this dissertation when he pointed out that

my analysis of the XOR function and how it could be solved was virtually identical to the

analysis of an AVO class 3 anomaly.

vi

DEDICATION

 This dissertation is dedicated to my amazing wife, Elaine; to my wonderful

children, Michelle and David; and to my magical grandchildren, Tyson and Avery.

vii

TABLE OF CONTENTS

ABSTRACT.. iii
PREFACE ..iv
ACKNOWLEDGEMENTS...v
DEDICATION ...vi
TABLE OF CONTENTS.. vii
LIST OF TABLES ...xi
LIST OF FIGURES... xiii
CHAPTER 1 : INTRODUCTION...1

1.1 The fundamental objective ...1
1.2 A qualitative example ..2
1.3 Classification and regression..5
1.4 Function approximation ...9
1.5 Bias and variance ...10
1.6 Introduction to artificial neural networks..15

CHAPTER 2 : SEISMIC ATTRIBUTES..17
2.1 Introduction ...17
2.2 Instantaneous attributes..20
2.3 Windowed frequency attributes..23
2.4 Recursive attributes..25
2.5 Bandpass attributes ..28
2.6 Coherency attributes ..30
2.7 AVO Attributes..32
2.8 Model-based attributes ...37

2.8.1 The convolutional model ...37
2.8.2 Acoustic impedance inversion ...40
2.8.3 Inversion of the AVO attributes...43

2.9 Fluid property discrimination with model-based attributes44
2.9.1 Introduction...44
2.9.2 Extracting fluid and rigidity terms ...46
2.9.3 Well log example ..48
2.9.4 A seismic example ..50

2.10 Conclusions ...53
CHAPTER 3 : MULTILINEAR REGRESSION...55

3.1 Introduction ...55
3.2 A word about notation..55
3.3 Multivariate statistics ...57

3.3.1 Univariate statistics ...58
3.3.2 Bivariate statistics ...61
3.3.3 The covariance matrix ...63

3.4 The multivariate normal distribution ..65
3.4.1 The general case..65

viii

3.4.2 The univariate case..66
3.4.3 The bivariate case..67
3.4.4 The trivariate case ...70
3.4.5 Eigendecomposition of the multivariate normal distribution72

3.5 Multivariate regression...74
3.5.1 Introduction to multivariate regression ..74
3.5.2 Solving for the weights in the two-dimensional case......................................76
3.5.3 The general multivariate case ..79
3.5.4 Multilinear regression with convolutional weights...81

3.6 A practical methodology ..84
3.6.1 Introduction...84
3.6.2 Finding the best attributes..85
3.6.3 Cross-validation ..86

3.7 A multi-attribute case study ...87
3.7.1 Introduction...87
3.7.2 Predicting S-wave curves from other log curves ..88
3.7.3 Seismic analysis, inversion, and AVO ...97
3.7.4 Creating S-wave pseudo-logs over the seismic volume................................103
3.7.4 Creating P-wave pseudo-logs over the seismic volume................................105

3.8 Principal components analysis..108
CHAPTER 4 : LINEAR METHODS FOR CLASSIFICATION114

4.1 Introduction ...114
4.2 Bayesian classification ...115

4.2.1 Theory...115
4.2.2 Two cluster example ...117

4.3 Linear discriminant functions...120
4.4 The Fisher linear discriminant ..121

4.4.1 Theory of the Fisher linear discriminant ..121
4.4.2 Applying the Fisher linear discriminant to porosity classification123

4.5 The single-layer perceptron..129
4.5.1 Basic theory of the single-layer perceptron..130
4.5.2 An AVO classification problem...131

4.6 Computing the neural network weights ..137
4.6.1 The perceptron learning rule..137
4.6.2 Hebb’s rule and associative memory ...141

4.7 The generalized linear discriminant..146
CHAPTER 5 : THE MULTI-LAYER PERCEPTRON ...148

5.1 Introduction ...148
5.2 The multi-layer perceptron...149

5.2.1 The general multi-layer perceptron model ...149
5.2.2 The multi-layer perceptron applied to AVO classification153

5.3 Computing the weights for the multi-layer perceptron..156
5.3.1 The backpropagation algorithm ...156
5.3.2 An AVO classification example ..159

ix

5.3.3 A sine wave example...166
5.4 Advanced methods for backpropagation...173

5.4.1 Introduction...173
5.4.2 The gradient descent method ...175
5.4.3 The conjugate gradient method..179

5.5 A multi-layer feedforward neural network case study...183
5.6 Neural networks using a linear function ...194

CHAPTER 6 : BASIS FUNCTION NEURAL NETWORKS196
6.1 Introduction ...196
6.2 Probability density estimation ..197

6.2.1 Parametric statistics...197
6.2.2 Non-parametric statistics and the histogram...197
6.2.3 Kernel-based density estimation ..199

6.3 An introduction to kernel-based neural networks..203
6.4 The probabilistic neural network..205

6.4.1 Theory of the probabilistic neural network ..205
6.4.2 Application of the probabilistic neural network to porosity classification.....209

6.5 The generalized regression neural network (GRNN) ..214
6.5.1 Theory of the GRNN...214
6.5.2 Optimization of sigma in the GRNN method ...216
6.5.3 Application of the GRNN to P-wave velocity prediction217

6.6 The radial basis function neural network (RBFN) ..223
6.6.1 Theory of the RBFN..223
6.6.2 Optimization of sigma for the RBFN method ..225

6.7 The relationship between the RBFN and the GRNN methods.............................227
6.8 RBFN/GRNN Comparison for two simple functions ..229
6.9 Comparison of the RBFN and the GRNN methods on a real data example236
6.10 Conclusions ...245

CHAPTER 7 : RBF NETWORKS WITH BASIS CENTRES.....................................246
7.1 Introduction ...246
7.2 Theory of RBF networks with basis centres ...247
7.3 An AVO classification example ...250
7.4 Data clustering methods...255

7.4.1 Introduction to clustering...255
7.4.2 K-means clustering..256
7.4.3 Mahalanobis clustering..262

7.5 AVO Crossplot clustering ..264
7.6 K-means clustering with the radial basis function neural network.......................269
7.7 Mahalanobis clustering applied to the RBF network...274
7.8 Parameter optimization in the RBFN with centres method..................................275
7.10 Conclusions ...276

CHAPTER 8 : GEOSTATISTICS AND MULTIATTRIBUTE TRANSFORMS.........278
8.1 Introduction ...278
8.2 Channel Sand Case Study ..279

x

8.3 Map-based geostatistics ...284
8.4 Map attributes ..293
8.5 The multiattribute transform...295
8.6 Neural network mapping..301
8.7 Conclusions ...308

CHAPTER 9 : SUMMARY AND CONCLUSIONS...309
9.1 Summary ...309
9.2 Conclusions ...311
9.3 Suggestions for future research ..316

REFERENCES..317
APPENDIX 1: A note on terminology ...324
APPENDIX 2: The least-squares method...328

A2.1 A geometrical development of the least-squares method..................................328
A2.2 Alternate derivations of the least-squares method ..330
A2.3 Adding a zero weight to the least-squares problem ..332
A2.4 The effect of pre-whitening ...333

APPENDIX 3: Digital Multichannel Filtering..335
APPENDIX 4: Bayes’ Theorem ..341

A4.1 Introduction...341
A4.2 A simple example of Bayes’ Theorem...341
A4.3 Bayes’ theorem with probability functions ..345

APPENDIX 5: Associative Networks ..348
A5.1 Introduction...348
A5.2 Autoassociative learning ...349
A5.3 Autoassociative Learning Example ...350
A5.4 The LMS algorithm...353
A5.5 Eigendecomposition and singular value decomposition (SVD)........................356
A5.6 The LMS algorithm and SVD..359
A5.7 Heterassociative example ..362
A5.8 LMS and heteroassociative learning ..363
A5.9 Example..363
A5.10 SVD and LMS for heteroassociative learning ..364
A5.11 The pseudo-inverse ...365

APPENDIX 6 Derivation of the radial basis function approach..................................366

xi

LIST OF TABLES

Table 2.1: A table of values for c ranging from 3 to 1 1/3 and showing the equivalent

values for the various elastic constant ratios. ..48
Table 3.1. The univariate statistics of the target and attribute vectors shown in Figure 3.1.

..60
Table 3.2 . The correlation coefficients between the target and attribute vectors shown in

Figure 3.1. ...63
Table 3.3: Regression parameters for well 04-16..91
Table 3.4: Regression parameters for well 08-08..92
Table 3.5: Regression parameters for well 12-16..93
Table 3.6: Regression parameters for all three wells...93
Table 3.7: The numerical results of the analysis shown in Figure 3.16.94
Table 3.8: The numerical results when nonlinear functions were applied to both the target

and the attribute in the analysis of Figure 3.16. ..95
Table 3.9: The computed attributes for the creation of pseudo-S-wave logs by multilinear

regression. ...103
Table 3.10: A list of the attributes used to predict P-wave velocity...............................106
Table 4.1: The attributes used in the porosity classification, with their training and

validation error. ...126
Table 4.2: The outputs from the perceptron models of Figure 4.18..............................137
Table 5.1: The computed output values from the multi-layer perceptron in Figure 5.4 for

the gas and wet models of Figure 4.12, where y(2) shows that the gas sand values
(+1) have been separated from the wet sand values (-1)..155

Table 5.2: The list of attributes used in the training for this problem.186
Table 6.1. The optimum attributes for predicting P-wave velocity, computed using the

multilinear regression approach with a seven-point convolutional operator.218
Table 6.2. The σ values computed for each of the first six attributes shown in Table 6.1.

..219
Table 6.3: The list of attributes determined by cross-validation analysis of multilinear

regression. ...240
Table 7.1. The input values and basis function values for the AVO classification

problem. ..254
Table 8.1: The correlation coefficients for the seven attribute slices.296
Table 8.2. The training and validation errors for the attribute slices used in the

multiattribute computation. ..297
Table 8.3. The weights used in the multiattribute computation.298
Table 8.4: A cross-validation analysis of the errors at each well using each of the

mapping methods...307
Table 9.1: A cross-validation analysis of the porosity error at each well from Figure 8.1

using each of the mapping methods discussed in Chapter 8.315

xii

Table A4.1: A table of ten cores samples as a function of porosity and lithology, where
 SS = Sandstone, LS = Limestone, LP = Low porosity, and HP = High
 porosity…………………………………………………………………………342
Table A4.2: The joint probabilities P(A,B) and unconditional probabilities P(A) and P(B)
 of the events in Table A4.1, where P(A,B)=P(B,A)…………………………….342
Table A4.3: The conditional probabilities P(A|B) of the events in Table A4.1………...343
Table A4.4: The conditional probabilities P(B|A) of the events in Table 4.1…...……..343

xiii

LIST OF FIGURES

Figure 1.1: A target sonic log is shown on the left and three seismic attributes, extracted

at the same location, are shown on the right. The dots represent time samples.2
Figure 1.2: A 4 x 4 matrix of crossplots, where the target log and each of the attributes

shown in Figure 1.1 have been crossplotted against each other.................................3
Figure 1.3: “Blowup” of (a) the Target vs Attribute 1, and (b) Attribute 2 vs Attribute 1

crossplots from Figure 1.2..5
Figure 1.4: The classification problem, where classes A and B have been defined based

on the target log. ..6
Figure 1.5: The basic multilinear regression problem, where we want to predict tj from xj.

..7
Figure 1.6 : The concepts behind (a) linear regression, and (b) linear classification,

applied to the crossplots of Figure 1.3 ..8
Figure 1.7: A sinusoid (heavy black line) corrupted with three realizations of random

noise of variance 0.2. ...11
Figure 1.8: Polynomial fits to the first noise corrupted sinusoid of Figure 1.7, where (a)

shows the three polynomial fits, and (b) displays the three error plots.12
Figure 1.9: Polynomial fits to the three noise corrupted sine waves of Figure 1.7, where

(a) is a first order fit, (b) is a third order fit, and (c) is a tenth order fit. In each case,
the true curve is shown as a heavy line. ..13

Figure 1.10: Errors between the actual sinusoid and the polynomial fits to the three noise
corrupted sine waves of Figure 1.9, where (a) is the first order, (b) is the third order,
and (c) is the tenth order error. ...14

Figure 2.1. A map view of the Blackfoot dataset, with wells annotated.19
Figure 2.2. The input seismic line used to display the various attributes in this section.

The synthetic seismogram from a nearby well (08-08) is shown at Xline 42...........19
Figure 2.3. The Hilbert transform of the seismic section shown in Figure 2.1.................21
Figure 2.4. The amplitude envelope of the seismic section shown in Figure 2.1. The

integrated P-wave sonic log from a nearby well (08-08) is shown at Xline 42 on both
seismic displays. ..21

Figure 2.5. The instantaneous phase of the seismic section shown in Figure 2.1.............22
Figure 2.6. The cosine of the instantaneous phase section shown in Figure 2.5.22
Figure 2.7. The instantaneous frequency section derived from the seismic section shown

in Figure 2.2...23
Figure 2.8. The dominant frequency along a sliding window of the seismic section shown

in Figure 2.1...24
Figure 2.9. The spectral decomposition of the full seismic volume shown in Figure 1,

where (a) shows the 16 Hz slice, (a) shows the 32 Hz slice, (a) shows the 48 Hz
slice, and (a) shows the 64 Hz slice. ...25

Figure 2.10. The first derivative of the seismic section shown in Figure 2.2.26
Figure 2.11. The second derivative of the seismic section shown in Figure 2.2.27
Figure 2.12. The integration of the seismic section shown in Figure 2.2.........................28

xiv

Figure 2.13. A low frequency filter slice (5/10-15/20) of the seismic section shown in
Figure 2.2. ...29

Figure 2.14. A high frequency filter slice (55/60-65/70) of the seismic section shown in
Figure 2.2. ...29

Figure 2.15. Mode conversion from an incident P-wave arrival at the interface between
two elastic media. ..32

Figure 2.16. Extraction of AVO attributes using the amplitudes from a seismic gather
picked at time t. ...34

Figure 2.17. The seismic gathers that were used to create the stacked section in Figure
2.2, with the P-wave sonic log from well 08-08 spliced in at the intersecting
location. ...35

Figure 2.18. Extraction of the RP attribute from the gathers of Figure 2.17.....................36
Figure 2.19. Extraction of the RS attribute from the gathers of Figure 2.17.36
Figure 2.20. An illustration of convolution using a Ricker wavelet and well-log derived

reflectivity, where (a) shows convolution in the time domain (left to right: the
wavelet, reflectivity, and seismic trace), and (b) shows the convolution in the
frequency domain (top to bottom: the amplitude spectrum of the wavelet, the
amplitude spectrum of the reflectivity, and the amplitude spectrum of the seismic
trace). (Russell, 1988). ...39

Figure 2.21. An illustration of the Lindseth (1979) inversion technique. Left to right, the
original seismic trace is inverted using equation (2.30) to produce the second trace,
and then added to the low frequency component to produce the final inverted log.
(from Hampson and Russell, 1992). ...41

Figure 2.22. The bandlimited inversion of the seismic line shown in Figure 2.2.41
Figure 2.23. The model-based inversion of the seismic line shown in Figure 2.2...........42
Figure 2.24. The model-based inversion of the RP attribute shown in Figure 2.18.43
Figure 2.25. The model-based inversion of the RS attribute shown in Figure 2.18...........43
Figure 2.26: In Biot-Gassmann theory, a cube of rock is characterized by four

components: the rock matrix, the pore/fluid system, the dry rock frame, and the
saturated frame. ...45

Figure 2.27: The Vs, VP, ρ and porosity logs over the producing zone in the Whiterose
L-08 well. ..49

Figure 2.28: A crossplot of ρf vs ρs for the Whiterose L-03 well for (a) c=2.0, and (b)
c=2.333..49

Figure 2.29: The P-wave impedance, ZP, found by inverting the RP estimate of a gas sand
in Alberta...50

Figure 2.30: The S-wave impedance, ZS, found by inverting the RS estimate of a gas sand
in Alberta...50

Figure 2.31: The ρf section found by combining the ZP and ZS inversions of Figure 2.29
and 2.30 using a c value of 2.333. ..51

Figure 2.32: The ρs section found by combining the ZP and ZS inversions of Figure 2.29
and 2.30 using a c value of 2.333. ..52

Figure 2.33: A crossplot between the sections of the previous two figures over the
productive zone..52

xv

Figure 2.34: The portion of the seismic section corresponding to the gas and non-gas
zones. The "red" gas region is exactly where expected. ...53

Figure 3.1: The basic multilinear regression problem, showing the sample vector xj,
attribute vector aj, and the target value tj. ...56

Figure 3.2: Histograms of the target and attributes shown in Figure 3.1, where (a) is the
histogram of the target log, (b) is the histogram of attribute 1, (c) is the histogram of
attribute 2, and (d) is the histogram of attribute 3. In each figure, the x’s represents
the position of the mean value, and the o’s represent the position of the mean plus
and minus the standard deviation, respectively. ..59

Figure 3.3: A 4 x 4 matrix of crossplots, where the target log and each of the attributes
shown in Figure 3.1 have been crossplotted against each other...............................61

Figure 3.4: The histograms shown in Figure 3.2 have been fitted with the normal
distributions based on their means and standard deviations, where (a) is the
distribution of the target log, (b) is the distribution of attribute 1, (c) is the
distribution of attribute 2, and (d) is the distribution of attribute 3, all from Figure
3.1 ...66

Figure 3.5: Crossplots of (a) the target versus Attribute1, (b) Attribute1 versus Attribute2,
(c) Attribute1 versus Attribute3, and (d) Attribute2 versus Attribute3, with elliptical
contours corresponding to c = 1 and 2 in equation 3.32..69

Figure 3.6: The trivariate crossplot and normal distribution contours corresponding to
attributes 1, 2 and 3, showing levels corresponding to exp(-0.5) and exp(-1.0). The
lines from the origin show the principal axes values, discussed in the next section. 72

Figure 3.7: Crossplots of the attributes shown in Figure 3.1, where (a) shows the first
two attributes, and (b) shows all three attributes. Each point in the crossplots can be
thought of as a vector xj without the zeroth term. ...76

Figure 3.8: The regression lines for the target and first two attributes from Figure 3.1,
where (a) shows the values themselves and (b) shows the two-dimensional
regression, which takes the form of a plane. ...80

Figure 3.9: A schematic example of the difference between (a) the single point weights
given by equation (3.65) and (b) the convolutional weights given by equation (3.66)
(from Hampson et al., 2001). ...81

Figure 3.10: The map from the Blackfoot area showing the nine wells used in the study.
Wells 08-08, 04-16 and 12-16 contain S-wave sonic logs.......................................87

Figure 3.11: Wells (a) 04-16, (b) 08-08, and (c) 12-16, all displaying the density, P-
wave, S-wave, and gamma ray log curves. ...88

Figure 3.12: The application of equation 3.76 using the coefficients derived by Castagna
et al. (1985), where (a) shows well 04-16, (b) shows well 08-08, and (c) shows well
12-16. In all cases the blue line shows the original S-wave log and the red line
shows the computed S-wave log. ...89

Figure 3.13: The regression fits to the S-wave log from the curves shown for well 04-16
(Figure 3.21(a)), between the Mannville and Mississippian tops, where (a) is versus
density, (b) is versus gamma ray, and (c) is versus P-wave velocity.90

xvi

Figure 3.14: The regression fits to the S-wave log from the curves shown for well 08-08
(Figure 3.12), between the Mannville and Mississippian tops, where (a) is versus
density, (b) is versus gamma ray, and (c) is versus P-wave velocity.91

Figure 3.15: The regression fits to the S-wave log from the curves shown for well 12-16
(Figure 3.21(b)), between the Mannville and Mississippian tops, where (a) is versus
density, (b) is versus gamma ray, and (c) is versus P-wave velocity.92

Figure 3.16: The multi-regression fits to the S-wave log from the curves from wells 12-
16, 08-08, and 04-16, between the Mannville and Mississippian tops, where the
training error is shown by the black dots and validation error is shown by the red
dots)...94

Figure 3.17: The result of applying the training results for (a) equation (3.72), and (b)
equation (3.71), where the black lines show the original logs and the red lines show
the computed logs. ...96

Figure 3.18: The result of applying the validation results for (a) equation (3.72), and (b)
equation (3.71), where the black lines show the original logs and the red lines show
the computed logs. ...96

Figure 3.19: The supergathers from inline 27 on the map in Figure 3.1098
Figure 3.20: The stack of the supergathers from inline 27 shown in Figure 3.19. The

elliptical region highlights an area that will be compared later to the RP section in
Figure 3.34...99

Figure 3.21: (a) The extracted wavelet from the stack of Figure 3.20, and (b) the
amplitude (blue) and phase (red) spectra of the wavelet. ..99

Figure 3.22: The log correlation procedure for well 08-08. The sonic and density logs
are shown on the left, and the seismic tie is shown on the right.100

Figure 3.23: The P-wave intercept (RP) of the supergathers from inline 27 shown in
Figure 3.19. The elliptical region highlights a difference with the stack in Figure
3.20..101

Figure 3.24: The pseudo-S-wave (RS) section derived from the supergathers from inline
27 shown in Figure 3.19...101

Figure 3.25: The inverted P-wave impedance section derived from the RP volume in
Figure 3.23. The colour bar on the right displays impedance values in units of
m/s*g/cc. ...102

Figure 3.26: The inverted S-wave impedance section derived from the RS volume in
Figure 3.24. The colour bar on the right displays impedance values in units of
m/s*g/cc. ...102

Figure 3.27: The training error (black dots) and validation error (red dots) for the
creation of pseudo-S-wave logs by multilinear regression103

Figure 3.28: The creation of pseudo-S-wave logs at the well ties, showing (a) the training
result and (b) the validation result. The black curves are the true logs, and the red
curves are the predicted logs. ...104

Figure 3.29: The predicted pseudo-S-wave velocity section for line 27. The colour bar
on the right displays impedance values in units of m/s. ..105

xvii

Figure 3.30: The multi-regression analysis for the creation of pseudo-P-wave logs, where
the training error is shown by the black dots and the validation error by the red dots.
..106

Figure 3.31: The creation of pseudo-P-wave logs at the well ties, where (a) shows
training result with all wells, and (b) shows the validation result. The black curves
are the true logs, and the red curves are the predicted logs....................................107

Figure 3.32: The predicted pseudo-P-wave velocity section for line 27. The colour bar
on the right displays impedance values in units of m/s. ..108

Figure 3.33: The red trace on the left shows the well log curve to be predicted and the
seven curves on the right show the extracted attributes...112

Figure 3.34: The red trace on the left shows the well log curve to be predicted and the
seven curves on the right show the principal components computed from the seven
attributes of Figure 3.33. These principal components are ordered from largest to
smallest..113

Figure 4.1: A simple classification example, where (a) shows two four point clusters in
two dimensions, and (b) shows the calculated decision boundary shown.118

Figure 4.2: Two further classification examples, where (a) shows two clusters with equal
variance, and (b) shows two clusters where cluster 1 has larger variance than cluster
2. ...120

Figure 4.3: The distribution of wells used in this study. This map is from the Blackfoot
oilfield of Alberta...123

Figure 4.4: The well log curves from well 08-08, whose location is shown in Figure 4.3.
..124

Figure 4.5: Line 95 from the 3D seismic volume shown in Figure 4.3..........................125
Figure 4.6: For three of the wells, the classified porosity log is shown on the left, the

extracted seismic trace in the middle, and the extracted inverted trace is shown on
the left. The analysis zone is shown by the horizontal lines.125

Figure 4.7: The application of the classification procedure to the three classified logs
shown in Figure 4.6, where (a) shows the training result, and (b) shows the
validation result. ..127

Figure 4.8: The classified porosity values on line 95 from Figure 4.5...........................128
Figure 4.9: The classified porosity shown over a slice that was picked 20 ms below

Horizon 1, shown on the section in Figure 4.8..129
Figure 4.10: The figure above shows the perceptron neural network for (a) M inputs and a

single output, with a bias weight fed directly into the summation, and (b) M+1
inputs and a single output, where the bias weight is applied to a zeroth attribute
which is equal to all ones. ..130

Figure 4.11: This figure shows a graph of (a) the hyperbolic tangent function of Equation
(4.27), and (b) the symmetric step function of Equation (4.28).131

Figure 4.12: Two simple geological models where (a) shows a wet sand between two
shale layers and (b) shows a gas sand between the same two shales......................132

Figure 4.13: This figure shows the AVO responses from the top and base interfaces of the
wet and gas sands shown in Figure 4.12. ..133

xviii

Figure 4.14: Intercept versus gradient crossplots, where (a) shows the crossplot of the A
and B values from the wet and gas models of Figure 4.12, crossplotted after being
scaled by a factor of 10, and (b) shows a Gulf of Mexico real data example.134

Figure 4.15: The perceptron adapted to the AVO problem of Figure 4.14(a), where the
inputs are the intercept (A) and gradient (B) and the function is the symmetrical step
function. ..134

Figure 4.16: The perceptron decision boundary. Note that either w0 or w1 and w2 must be
negative to make the resulting intercept value on the A and B axes positive.135

Figure 4.17: The AVO problem from Figure 4.12(b) with decision boundaries, where (a)
shows separation of the base of the gas sand and (b) shows separation of the top of
the gas sand. ..136

Figure 4.18: Perceptron implementations for separating the (a) top of gas, and (b) base of
gas. ..136

Figure 4.19: A conceptual illustration of the neural network used to solve for the A-B
crossplot example. ...138

Figure 4.20: A 3D scatter plot of the perceptron weights after each iteration.140
Figure 4.21: A conceptual illustration of the use of the linear associator to solve for the

A-B crossplot example. The only difference with Figure 4.13 is that the applied
function is linear. ...142

Figure 5.1: A multi-layer perceptron with M inputs, K perceptrons, and a single output.
..149

Figure 5.2: A graph of the logistic function..152
Figure 5.3: The multi-layer perceptron for the gas-water sand model of Figure 4.12. ...153
Figure 5.4: A crossplot of the outputs of the two perceptrons of Figure 4.18.154
Figure 5.5: The final multi-layer perceptron weights...155
Figure 5.6: The inputs and desired outputs for the AVO classification problem............160
Figure 5.7: Convergence of the backpropagation algorithm for the AVO classification

problem using the first example given above..163
Figure 5.8: Convergence of the backpropagation algorithm for the AVO classification

problem using the second example given above. ..164
Figure 5.9: Convergence of the classification values in backpropagation algorithm, where

(a) shows the case from Figure 5.7, and (b) shows the case from Figure 5.8.165
Figure 5.10: The 1-2-1 neural network, used in this section to interpolate a sine wave. 166
Figure 5.11. Interpolation of a sine wave using the backpropagation network shown in

Figure 5.10, where (a) shows the error convergence after 10,000 iterations, and (b)
shows the correct answer as open blue circles, the training points as four black
squares, the predictions as open red squares, and the error between the predicted and
true values as a solid blue line. ...170

Figure 5.12. The estimate of each of the four sine wave values (the black squares in
Figure 5.11(a)) after each iteration of the neural network.171

Figure 5.13: Same as Figure 5.12, except that five separate interpolations have been done
using different sets of random initial weights. ..171

Figure 5.14. Same as Figure 5.13, except that the training points have been shifted by
π/8. ..172

xix

Figure 5.15. The estimated sine wave values after each iteration of the neural network.
..173

Figure 5.16. The elliptical function used for the explanation of optimization methods,
showing (a) the contours of the function, and (b) a perspective plot of the function.
..175

Figure 5.17. The convergence of the gradient descent method using α values of (a) 0.1
and (b) 0.6..178

Figure 5.18. The gradient descent algorithm with line minimization, where (a) shows the
iterative solution and (b) explains the first two steps of (a) in more detail.............179

Figure 5.19. An illustration of the conjugate gradient algorithm with line minimization,
where (a) shows the iterative solution and (b) shows an annotation of (a). Note that
the algorithm converges in two steps..182

Figure 5.20. A base map showing the wells and limits of the 3D seismic data used in this
study. The red vertical line shows line 95, which is displayed in the next figure. .183

Figure 5.21. Line 95 from the 3D survey shown in Figure 5.23, where the wiggle traces
show the seismic amplitudes, colour shows the inverted impedance, and the P-wave
sonic log has been inserted at trace 25..184

Figure 5.22. The average impedance from a 10 ms window that was shifted 20 ms below
Horizon 1 in Figure 5.21. ...184

Figure 5.23. The P-wave sonic, extracted seismic trace and inverted impedance for wells
08-08 and 09-08. The zones of interest are marked by the horizontal red lines......185

Figure 5.24. The crossplots of (a) inverted impedance, and (b) seismic amplitude against
the P-wave sonic logs over the zone of interest in all wells...................................185

Figure 5.25. The graphical error for the attributes, where the red curve shows the
validation error and the black curve shows the total error.186

Figure 5.26. A comparison of the predicted P-wave logs (red) to the actual P-wave logs
(black), where (a) shows the training result and (b) shows the validation result. ...187

Figure 5.27. The crossplot of P-wave sonic log values predicted using the multilinear
transform against true P-wave sonic log values, for all wells.188

Figure 5.28. The predicted P-wave sonic logs from multilinear regression over line 95,
taken from the predicted P-wave logs over the complete seismic volume.189

Figure 5.29. The extracted P-wave slice over the complete seismic survey, averaged over
a 10 ms window that was shifted 20 ms below Horizon 1 in Figure 5.31.189

Figure 5.30. A comparison of the predicted P-wave logs (red) to the actual P-wave logs
(black) from the MLP network, where (a) shows the training result and (b) shows
the validation result..191

Figure 5.31. The crossplot of P-wave sonic log values predicted using the MLP network
against true P-wave sonic log values, for all wells. ...192

Figure 5.32. The predicted P-wave sonic logs from the MLP network over line 95, taken
from the predicted P-wave logs over the complete seismic volume.193

Figure 5.33. The extracted P-wave slice over the complete seismic survey, averaged over
a 10 ms window that was shifted 20 ms below Horizon 1 in Figure 5.35.193

Figure 5.34. A multi-layer perceptron that uses a linear function..................................194

xx

Figure 5.35. The equivalent single-layer perceptron to the multi-layer perceptron shown
in Figure 5.34...195

Figure 6.1. Histograms for Attribute 3 of Figure 3.2, for (a) 5, (b) 10, (c) 50, and (d) 100
bins, respectively. ..198

Figure 6.2. The Parzen estimator applied to the dataset shown in Figure 6.1, where we
have used σ values of (a) 10, (b) 100, (c) 250, and (d) 1000.200

Figure 6.3: The 1D Parzen windows for the six points described in the text, where we
have used σ values of (a) 5, (b) 10, (c) 20, and (d) 40...201

Figure 6.4: The 2D Parzen windows for the six points described in the text, where we
have used σ values of (a) 5, (b) 10, (c) 20, and (d) 40...202

Figure 6.5: An illustration of the differences between the training vectors, si and sj, in
which the output samples ti and tj are known, and the application vector xk, in which
the output sample yk is not known. ...203

Figure 6.6: A schematic graph of the vectors, si, sj, and xk, from Figure 6.5, where the
coordinate axes represent attribute amplitude rather than Cartesian distance.........204

Figure 6.7: A simple example of the PNN neural network, using two classes with three
points in each class, and two attributes. ..207

Figure 6.8: The computed basis functions for the example shown in Figure 6.7, where (a)
and (b) represent the un-normalized functions for the two classes, and (c) and (d)
represent the normalized probability functions. ..208

Figure 6.9: The application of the PNN algorithm to the three wells shown in Figure 4.6,
where (a) shows the training error, and (b) shows the validation error.210

Figure 6.10: The application of the PNN to porosity classification on the seismic line of
Figure 4.5. ...212

Figure 6.11: The Fisher linear discriminant results of porosity classification originally
shown in Figure 4.8..212

Figure 6.12: The application of the PNN to porosity classification in a window across the
complete seismic survey area. ..213

Figure 6.13: The Fisher linear discriminant results of porosity classification originally
shown in Figure 4.9..213

Figure 6.14: An illustration of the two-dimensional Parzen kernel estimator (adapted
from Bishop, 1996). ...214

Figure 6.15: The attribute vectors and target values used in the GRNN and RBFN
methods ...216

Figure 6.16. The P-wave sonic, extracted seismic trace and inverted impedance for wells
08-08 and 09-08. The zones of interest are marked by the horizontal red lines......217

Figure 6.17. A comparison between the computed (red) and original (black) well logs for
wells 08-08, 09-08, and 09-17, where (a) shows the training result and (b) shows the
validation result. ..220

Figure 6.18. A crossplot of the predicted P-wave logs from the GRNN approach against
the original logs. ..221

Figure 6.19. The predicted P-wave sonic logs over line 95 using the generalized
regression neural network. ...222

xxi

Figure 6.20. The extracted P-wave slice over the complete seismic survey, averaged over
a 10 ms window that was shifted 20 ms below Horizon 1 in Figure 6.19.222

Figure 6.21. An illustration of the parabolic search method (adapted from Press et al.,
2002) ...226

Figure 6.22: A graph of the sine function in equations (6.40) and (6.41), where the
training samples are shown by dots, and the true values of the validation function by
the solid curve..230

Figure 6.23: The GRNN and RBFN results of the sampled sine wave shown in Figure
6.21, for σ values of (a) 1.0, (b) 0.1, (c) 0.01, and (d) 0.001.231

Figure 6.24: The errors for the GRNN and RBFN results shown in Figure 6.23, for (a) σ
= 1.0, (b) σ = 0.1, (c) σ = 0.01, and (d) σ = 0.001...232

Figure 6.25: A graph of the step function in equation (6.42), where the training samples
are shown by dots, and the true values of the validation function by the solid curve.
..233

Figure 6.26: The GRNN and RBFN results of the sampled square wave shown in Figure
6.25, where the scale values are (a) σ = 1.0, (b) σ = 0.1, (c) σ = 0.01, and (d) σ =
0.0001..234

Figure 6.27: The errors for the GRNN and RBFN results shown in Figure 6.25, for (a) σ
= 1.0, (b) σ = 0.1, (c) σ = 0.01, and (d) σ = 0.0001..235

Figure 6.28. Application of the GRNN algorithm to four of the P-wave sonic logs in the
twelve log suite, using all the training samples in the prediction...........................236

Figure 6.29. Application of the RBFN algorithm to four of the P-wave sonic logs in the
twelve log suite using all the training samples in the prediction............................237

Figure 6.30: Validation of the four P-wave sonic logs from Figure 6.27 using the GRNN
algorithm, where the predicted well has been left out of the training.238

Figure 6.31: Validation of the four P-wave sonic logs from Figure 6.28 using the RBFN
algorithm, where the predicted well has been left out of the training.238

Figure 6.32: Application of the GRNN algorithm to line 95 of the 3D volume, after
training using all the wells. ..239

Figure 6.33: Application of the RBFN algorithm to line 95 of the 3D volume, after
training with all the wells. ..239

Figure 6.34: The error results of the multi-attribute training. ..240
Figure 6.35: Application of the GRNN algorithm to the three P-wave sonic logs used in

the training, where all the training samples are used in the prediction...................241
Figure 6.36: Application of the RBFN algorithm to the three P-wave sonic logs used in

the training, where all the training samples are used in the prediction...................241
Figure 6.37: Validation of the GRNN algorithm to the three P-wave sonic logs used in

the training, where the each log has been successively left out of the training.......243
Figure 6.38: Validation of the RBFN algorithm to the three P-wave sonic logs used in

the training, where the each log has been successively left out of the training.......243
Figure 6.39: Application of the GRNN algorithm to line 95 of the 3D volume, after

training using only three of the wells..244
Figure 6.40: Application of the RBFN algorithm to line 95 of the 3D volume, after

training using only three of the wells..244

xxii

Figure 7.1: The attribute vectors and target values used in the RBFN method.247
Figure 7.2: Computing the means for a 4 cluster, 18 point example..............................250
Figure 7.3. Intercept versus gradient crossplot from the wet and gas models of Figure

4.6, both (a) before and (b) after application of the multi-layer perceptron.251
Figure 7.4: The AVO classification problem, where (a) shows the original problem in

intercept-gradient space and (b) shows the same problem in φ1-φ2 space.253
Figure 7.5: The radial basis function neural network implementation of the AVO

classification problem. ...253
Figure 7.6: The red dots show an set of eighteen points, grouped in four clusters, with the

labels indicating the input order of the two-dimensional attribute vectors.258
Figure 7.7: The results of applying the K-means clustering example to the example in

Figure 7.6, showing (a) the initial calculation, (b) the result of the first iteration, (c)
the result of the second iteration, and (d) the result of the third iteration, which is the
correct answer..259

Figure 7.8: A second input dataset to the K-means clustering algorithm. This dataset
simulates a typical class 3 AVO A-B crossplot...260

Figure 7.9: The application of the K-means clustering algorithm to the input dataset of
Figure 7.8, showing (a) the three output clusters (blue circles, green diamonds, and
red squares), and (b) the cluster centres (black circles) with circles indicating the
mid-point distance between cluster centres...261

Figure 7.10: The application of the Mahalanobis clustering algorithm to the input dataset
of Figure 7.8, where (a) shows the three output clusters (blue circles, green
diamonds, and red squares), and (b) shows the cluster centres (black circles) with the
ellipses showing lines of constant variance...263

Figure 7.11: A seismic line over a know gas zone, with the sonic log from the discovery
well overlain at CDP 330. The gas sand is indicated by the “bright spot” at a time of
630 ms. ..264

Figure 7.12: AVO intercept/gradient crossplot analysis over a window from the seismic
section of Figure 7.17, where (a) is the seismic window, and (b) is the un-interpreted
crossplot. ...265

Figure 7.13: The application of (a) the K-means clustering algorithm, and (b) the
Mahalanobis clustering algorithm to the crossplot of Figure 7.12(b), where the
different shapes and colours indicate the five clusters, the black dots show the
cluster centers, and the ellipses are equal variance lines enclosing the Mahalanobis
clusters...266

Figure 7.14: The application of the Mahalanobis clustering results shown in Figure
7.13(b) to the original crossplot of Figure 7.12(b), showing (a) the crossplot with the
ellipse superimposed, and (b) application to the seismic traces of Figure 7.12(a)..267

Figure 7.15: The application of the Mahalanobis clustering results shown to the complete
seismic line of Figure 7.11. ..268

Figure 7.16: Training the RBFN algorithm, where all the training samples are used in the
prediction. The black lines show the original curves and the red lines show the
predicted curves. ..270

xxiii

Figure 7.17: Training the RBFN algorithm using 25 centers. The black lines show the
original curves and the red lines show the predicted curves.270

Figure 7.18: Validation of the RBFN, where the each log has been left out, in turn, of the
training. The black lines show the original curves and the red lines show the
predicted curves. ..272

Figure 7.19: Validation of the RBFN using 25 centres, where the each log has been left
out, in turn, of the training. The black lines show the original curves and the red
lines show the predicted curves. ...272

Figure 7.20: Application of the full RBFN algorithm to line 95 of the 3D volume.......273
Figure 7.21: Application of the RBFN with 25 centers to line 95 of the 3D volume. ...273
Figure 8.1: The distribution of wells within the 3D seismic survey area, Blackfoot,

Alberta. The annotation shows inline and cross-line numbers..............................279
Figure 8.2. Cross-line 18 from the 3D seismic survey (see profile in Figure 8.1), where

(a) shows the final CDP stack, and (b) shows the impedance inversion.280
Figure 8.3: Sonic and porosity logs from well 14-09, together with synthetic tie, seismic

picks, and tops. ..281
Figure 8.4: The porosity at each well location, averaged between the top and base of the

channel. ...281
Figure 8.5: Map of average acoustic impedance over a 10 ms window below the picked

channel top. ...282
Figure 8.6: Plot of average well porosity against average impedance for all the wells in

the survey area. ..283
Figure 8.7: Map of porosity variations in the survey area. This was derived by the

application of the regression fit from Figure 8.5 to the impedance slice of Figure 8.4.
..284

Figure 8.8: The spatial variogram of (a) the well values and (b) the seismic values. The
variogram is the sum of the squared differences between all the pairs of points
within a given offset value. ..286

Figure 8.9: Map of the survey area produced by kriging the well porosities.288
Figure 8.10: The kriging error for the kriged result of Figure 8.9289
Figure 8.11: The cross-validation errors for the kriged map of Figure 8.9.290
Figure 8.12: Map of porosity in the survey area produced by collocated cokriging

between the averaged well porosities and the impedance slice..............................292
Figure 8.13: Attribute slices derived from the original seismic volume, where (a) shows

seismic amplitude, (b) shows amplitude envelope, (c) shows instantaneous phase,
(d) shows instantaneous frequency, (e) shows integrated trace, and (f) shows total
trace length. The first five attributes consist of an RMS average over a 10 ms
window below the picked channel top..294

Figure 8.14: A pictorial illustration of the multilinear regression method of combining
map attributes. ...295

Figure 8.15: The average error for the best five attribute found by multi-linear
regression, where the bottom curve (black) shows the total error and the top curve
(red) shows the validation error..297

xxiv

Figure 8.16: The application of multi-linear regression using the weights and attributes
shown in Table 8.3...298

Figure 8.17: The crossplot of the actual well-log derived porosity (horizontal axis)
against the estimated porosity in the result shown in Figure 8.15. Note that the
correlation coefficient is 0.85. ..299

Figure 8.18: The recomputed seismic variogram used for collocated cokriging with the
multi-linear result of Figure 8.15 as the secondary dataset....................................300

Figure 8.19: The result of applying cokriging to the multi-linear regression result.300
Figure 8.20: The computed porosity map using the multi-layer perceptron applied to the

first three attributes shown in Table 8.2..301
Figure 8.21: The crossplot of the actual well-log derived porosity (horizontal axis)

against the estimated porosity for the MLP result shown in Figure 8.19. Note that
the correlation coefficient is 0.85. ..302

Figure 8.22: The computed porosity map using the generalized regression neural
network (GRNN) applied to the first three attributes shown in Table 8.2.303

Figure 8.23: The crossplot of the actual well-log derived porosity (horizontal axis)
against the estimated porosity for the GRNN result shown in Figure 8.22. Note that
the correlation coefficient is almost perfect, but this suggests overtraining.304

Figure 8.24: The computed porosity map using the radial basis function neural network
(RBFN) applied to the first three attributes shown in Table 8.2.305

Figure 8.25: The crossplot of the actual well-log derived porosity (horizontal axis)
against the estimated porosity for the RBFN result shown in Figure 8.23. Note that
the correlation coefficient is equal to 0.869. ...305

Figure 8.26: The recomputed seismic variogram used for collocated cokriging with the
RBFN result of Figure 8.24 as the secondary dataset..306

Figure 8.27: The result of applying collocated cokriging using the RBFN result of Figure
8.24 as the secondary dataset..307

Figure A2.1: A geometrical illustration of least-squares, where (a) shows the input and
target vectors a and t, and (b) shows that wa is the closest scaled version of a to t……329
Figure A4.1 An interpretation of (a) the conditional probability function p(x|t) at the fixed
 value t0, and (b) the conditional probability function p(t|x) at the fixed value x0
…………………………………………………………………………………………..346

1

CHAPTER 1 : INTRODUCTION

1.1 The fundamental objective

 The fundamental objective of this dissertation is to study the relationship between

reservoir parameters and seismic attributes. The reservoir parameters will include such

measurements as P-wave velocity, porosity, and water saturation. The seismic attributes

will include instantaneous attributes, windowed attributes, AVO attributes, and

seismically derived impedance, all of which will be described in Chapter 2. Specifically,

I will determine a relationship between a set of seismic attributes and a reservoir

parameter at a number of specific well locations, and then use this relationship to

compute reservoir parameters from sets of seismic attributes throughout a seismic

volume. To address this problem, I will make use of a wide variety of tools, ranging

from deterministic seismic techniques such as impedance inversion and amplitude

variations with offset (AVO), to multivariate statistics and neural networks. This is a

problem that has been discussed by other authors (Ronen et al., 1994; Hampson et al.

2001) and I will utilize many of the techniques that they introduced, as well as introduce

several new approaches.

 The overall structure of this study is as follows. In this chapter I will qualitatively

describe the inter-relationships between seismic attributes and target reservoir

parameters. I will also introduce the bias-variance dilemma, a crucial problem that we

face. In Chapter 2, I will discuss the theory behind the attributes used in the subsequent

chapters. Chapter 3 will deal with the linear regression problem and Chapter 4 will

discuss the linear classification problem. In chapters 5 through 7 I will then apply neural

network techniques to reservoir parameter computation. Specifically, Chapter 5 will

2

utilize the traditional neural network approach, called the feedforward neural network, or

multilayer perceptron, Chapter 6 will utilize the kernel regression technique and neural

networks based on this technique and Chapter 7 will introduce the radial basis function

neural network with cluster centres. Chapter 8 will then discuss the combination of linear

and neural network computation methods with geostatistics. Finally, Chapter 9 will give

a summary of the complete study.

1.2 A qualitative example

 To illustrate the goals of this study more graphically, let us start with a

straightforward example. Figure 1.1 shows a target reservoir log on the left, and three

seismic attributes on the right.

Figure 1.1: A target sonic log is shown on the left and three seismic attributes, extracted
at the same location, are shown on the right. The dots represent time samples.

 The P-wave sonic log shown in Figure 1.1 has been integrated to time and

correlated with the seismic data so that there is a one-to-one correspondence between the

samples on the well log and the samples on the seismic attributes (shown as dots on the

3

display). The log and each attribute contain 69 samples. In the general case (see

Appendix 1) we will have M attributes and N time samples. At the moment, I will not be

concerned with how these particular seismic attributes were chosen, or even which

attributes they are (this will be addressed in the next two chapters), but will instead

consider their inter-relationships. This can be done by cross-plotting the target and

attributes against each other, as shown in Figure 1.2. This type of plot is called a P-

dimensional scatter plot (Johnson and Wichern, 1998) where, in this case, P = 4. In both

Figure 1.1 and Figure 1.2, the target log and attributes have been normalized by

subtracting the mean and setting the largest absolute amplitude to either 1 or -1. This

means that each crossplot has the same scale and is centered on zero.

Figure 1.2: A 4 x 4 matrix of crossplots, where the target log and each of the attributes
shown in Figure 1.1 have been crossplotted against each other.

4

 As will be discussed in Chapter 3, Figure 1.2 contains quantitative information

about the multivariate statistics of our dataset, and can be thought of as the visual

equivalent of the covariance matrix. Before getting to this quantitative analysis, let us

make several qualitative observations about these plots. First, notice that there is a lot of

redundancy in the crossplots shown in Figure 1.2, since the six crossplots in the upper

right triangular part of the matrix use the same pair of variables as the six crossplots in

the lower left triangular part. The only difference between the upper and lower sets of

plots is that the order of the dependent and independent variables are reversed. But there

is quite a different look to the plots and, as I will discuss in Chapter 3, the statistics of the

relationship will change when the order of the dependent and independent attributes is

reversed.

 Notice also that there are three types of crossplots shown in Figure 1.2. The first

type of crossplot, shown on the main diagonal of the figure, represents the autocorrelation

of the target or a particular attribute against itself. This is perfect linear correlation, and

the other crossplots fall short of this ideal to a greater or lesser extent. Although this

crossplot will always give a straight line, the distribution of the points on the line, which

can be continuous or grouped into clusters, will give us information about the

distribution of the values in the dataset being correlated.

 The second type of plot is shown along the top row and left column of the matrix.

These are the crossplots of the target log with each attribute. As discussed in the next

section, these plots introduce the idea of linear regression. Figure 1.3(a) shows a blowup

of the second crossplot on the top row, in which the Target is on the vertical axis, and

Attribute 1 is on the horizontal axis. Note that there appears to be a positive linear

correlation of the target with Attribute 1, suggesting that as Attribute 1 increases, so does

the target value. But there is also a lot of scatter this crossplot, and the linear fit is far

from perfect.

5

 (a) (b)

Figure 1.3: “Blowup” of (a) the Target vs Attribute 1, and (b) Attribute 2 vs Attribute 1 crossplots from
Figure 1.2.

 Finally, the third type of crossplot is the crossplot of each attribute against each

other attribute. This shows the amount of correlation between attributes and will be used

as the basis of classification. Figure 1.3(b) shows a blowup of the crossplot with

Attribute 2 on the vertical axis and Attribute 1 on the horizontal axis. In this figure there

appears to be a negative correlation between the two attributes, and again there is scatter

is similar to that in Figure 1.3(a). By looking again at Figure 1.2, notice that there is

scatter in all of the crossplots. We certainly do not get a good fit between any of the

individual attributes and the target log. This sets the stage for all that follows in this

dissertation, since I will be looking for optimum methods of combining the attributes to

predict the target log.

1.3 Classification and regression

 As mentioned in section 1.1, we can divide the approaches used in this study into

two separate types: classification and regression. The term classification refers to the

subdivision of the input samples into a set of output classes. An example of this would

be the classification of the samples of a 3D seismic volume into a set of lithology classes

(e.g. sand, shale, or carbonate) or fluid classes (e.g. gas, oil, or water). Such a

classification scheme can be either supervised, where we use known classes on the target

6

log to guide the classification of the seismic attributes, or unsupervised, where we look

for natural clusters within the crossplot of seismic attributes. The classification

techniques used in this study will largely be supervised classification techniques. (The

one exception is the K-means clustering technique that will be used in Chapter 7, which is

an unsupervised method.)

 The term regression refers to the mapping of N input vectors (again of dimension

M, where M represents the total number of input attributes) into N output scalar values,

where these scalars represent the values of the reservoir parameter that we wish to

compute. An example would be the computation of a continuous parameter such as

water saturation, density, or resistivity from the same set of N seismic attribute vectors

described in the classification problem. The difference between clustering and

regression, when applied to the data shown in Figure 1.1, is shown in Figures 1.4 and 1.5.

Figure 1.4: The classification problem, where classes A and B have been defined based on the

target log.

 Figure 1.4 gives us a qualitative idea of supervised clustering. In this figure, I

have labelled two zones on the log as Class A and Class B, as determined by their

different characteristics. Our objective in classification is to determine whether the other

7

samples fall into either Class A or Class B (or neither Class), and then apply this

relationship to locations at which the log is not present.

 In Figure 1.5, we see the basic regression problem, again applied to the example

of Figure 1.1. A single sample has been shown just above a time of 1000 ms. The points

in the box enclosing the seismic attributes are an M-dimensional vector xj, where M = 3.

(Figure 1.5 also shows the difference between the vector of attributes, xj, and the attribute

vector ai, which is more fully explained in Appendix 1). The point in the box enclosing

the target log is a scalar value tj. Mathematically, we want to compute the target value

from the attribute vectors for all N samples in the window, where N = 69, since the

sample rate is 2 ms.

 Figure 1.5: The basic multilinear regression problem, where we want to predict tj from xj.

 Comparing Figures 1.4 and 1.5, note that the key difference is that the regression

problem assigns a value to each of the N samples, whereas the classification problem

assigns each of the N samples to one of K classes. Although I will be utilizing both linear

and nonlinear approaches to the solution of the regression and classification problems,

the concept is best understood using the linear methods of Chapters 3 and 4.

8

 As an introduction to these concepts, Figure 1.6 illustrates the difference between

linear regression and classification utilizing the crossplots of Figure 1.3. Figure 1.6(a)

shows the target vector crossplotted against Attribute 1 from Figure 1.1, as shown in

Figure 1.3(a). However, this time I have plotted the regression line of t against a, where

a is a particular attribute. That is, I have computed the best least-squares coefficients to

the regression equation

awwat 10)(+= . (1.1)

 Notice that the fit is not very good in this case, due to the scatter of the points.

We can quantify this scatter using the correlation coefficient, which will also be

discussed in Chapter 3.

 (a) (b)
Figure 1.6 : The concepts behind (a) linear regression, and (b) linear classification, applied to the

crossplots of Figure 1.3

 Figure 1.6(b) shows Attribute 1 crossplotted against Attribute 2 from Figure 1.1,

as shown in Figure 1.3(b). Superimposed on the points is the line that separates two

classes, let’s say C1 and C2. That is, we have computed the coefficients to the equation

22110)(awawwy ++=a , (1.2)

where a = (a1, a2)T, and y can be interpreted from the equation:

2

1

0)(
0)(

Caay
Caay

∈⇒≥
∈⇒<

9

 As we will see in subsequent chapters, equation (1.2) can be interpreted either as a

linear discriminant function or as a single-layer perceptron. (The perceptron is the

fundamental building block of the multilayer feed forward neural network and will be

described in detail in Chapters 4 and 5.) The line in Figure 1.6(b) therefore represents the

boundary between two sets of points, not the regression of the target against the attribute,

as shown in Figure 1.6(a). Thus, although Figures 1.6(a) and (b) look very similar, there

is a big difference in their interpretation, as indicated by equations (1.1) and (1.2).

Equation (1.1) is a one-dimensional regression equation and indicates that the target

values can be computed from a single attribute value. The fact that the fit is not very

good, and that very few of the computed values will correspond to the correct values, is

due to the poor underlying model assumption of the linear fit (more about this in section

1.5). Equation (1.2) is actually a two dimensional fit, and the fact that the line separates

two sets of points implies a third axis pointing away from the two-dimensional plot. The

values on this axis don’t really matter, as long as they are distinct for the two classes. In

many two-class problems, these values are given as 0 and 1, and in other cases they are

given as -1 and +1. Chapter 4 uses an example in which the latter values are used.

1.4 Function approximation

 The distinction between classification and regression is somewhat arbitrary since

classification becomes regression as NK → . (For example, predicting water saturation

with arbitrary accuracy by regression is simply a more precise way of classifying a

sample as being water or gas.) In fact, both can be seen as particular cases of the general

problem of function approximation (Bishop, 1995), in which we try to discover the

underlying function, or model, that relates our observed data to the earth parameters.

That is, we would like to find the function

y = f(x),

where y is our reservoir parameter and x is a vector of seismic attribute values. In the

ideal case, f would be a known function. For example, if x were a two-dimensional

vector, we could find a fit using a function such as

10

)cos()sin(2211 xAxAy += .

 Unfortunately, such analytical functions rarely describe real data, so a more

practical solution is to find an approximate relationship given by

y = f(x; w),

where w is a set of weights, and the function f can represent either membership in a class

(that is, y takes on a set of discrete values such as, in the simplest case, 0 or 1), or some

linear or nonlinear regression function. As can be seen in the previous section, equations

(1.1) and (1.2) represented linear regression and classification functions, respectively.

1.5 Bias and variance

 As just discussed, our goal is to find a relationship that best relates a set of

observed data values to the physical parameters that describe the earth. That is, we are

searching for a model that relates seismic measurements to reservoir parameters.

Because we do not assume a deterministic model, but rather will search for an underlying

statistical relationship, the fundamental question is: how can we judge the validity of the

derived model? On one hand, we do not want a model that is too simple and does not

have the flexibility to ever fit our data points. This is called a model with high bias. On

the other hand, we do not want a model that is too complex and has such a high degree of

flexibility that it overfits the data. This is called a model with high variance. The

optimal model would be complex enough to fit the data values reasonably well, but not so

complex that it fits the noise in the data. This is a common problem in all statistical

methods of data fitting, and is called the bias versus variance dilemma.

 To understand the bias-variance problem, let us consider the problem of trying to

estimate a single period of a sine wave of unit amplitude which has been contaminated

with random noise and sampled N times. That is

iii xxf ηπ +=)sin()(, (1.3)

11

where xi = 0, 1/N, 2/N …, 1.0 and η represents the random noise component. Figure 1.7

shows the sine wave and three different noise contaminated versions, each a different

noise realization with a variance of 0.2. The sine wave has been sampled with N = 21.

Figure 1.7: A sinusoid (heavy black line) corrupted with three realizations of random noise of

variance 0.2.

 To estimate the sine wave from the noise corrupted signals, we will use an Mth

order polynomial fit, given by
M

M xwxwwxy +++= …10)(. (1.4)

For each noise-corrupted signal, I will use polynomial fits of orders 1, 3, and 10.

 Figure 1.8(a) shows the three polynomial fits to the first noisy trace from Figure

1.7, with the original sinusoid and the noisy points plotted for reference. Figure 1.8(b)

then shows the errors between the three fitted polynomials and the original sinusoid. The

first-order fit has the largest error and is therefore not a good model for the sinusoid.

12

This is obvious since a first-order fit is a straight line and can not be expected to fit a

sinusoid. In other words, the first-order fit has a high bias.

 The third- and tenth-order fits show a reasonably good fit to the original sinusoid,

with roughly similar error functions. That is, the third- and tenth-order fits have low bias.

Since the error for the tenth-order fit appears to be slightly lower than the error for the

third-order fit, we may therefore decide to use a tenth order fit to model our data.

 (a) (b)

Figure 1.8: Polynomial fits to the first noise corrupted sinusoid of Figure 1.7, where (a) shows the three
polynomial fits, and (b) displays the three error plots.

 But which of the two fits has the lowest variance, or lack of change between

models? To judge this, we need to look at all three realizations of the data from Figure

1.7. Figure 1.9 therefore shows the three polynomial fits to all three noisy signals, with

the original sinusoid plotted for reference on each set of polynomial fits.

13

(a) (b)

(c)

Figure 1.9: Polynomial fits to the three noise corrupted sine waves of Figure 1.7, where (a) is a first-order
fit, (b) is a third-order fit, and (c) is a tenth-order fit. In each case, the true curve is shown as a heavy line.

 From Figure 1.9(a), it is clear that the first-order fit is too simple a model (i.e. has

high bias) to fit the sinusoid. However, notice that the tenth-order fit (Fig. 1.9(c))

produces a significantly different result for each data realization. This means that the

tenth-order fit is too complex a model, since it tends to honour the noise too well. That is,

the tenth-order fit has too high a variance. To see this even more clearly, look at Figure

1.10, which shows the errors from the three polynomial fits.

14

(a) (b)

(c)

Figure 1.10: Errors between the actual sinusoid and the polynomial fits to the three noise corrupted sine
waves of Figure 1.9, where (a) is the first order, (b) is the third order, and (c) is the tenth order error.

 It is clear in Figure 1.10 that the errors are consistent for the first-order and third-

order fits, as shown in Figures 1.10(a) and (b). However, the errors are highly variable

for the tenth-order fit shown in Figure 1.10(c). Unfortunately, in the real data cases that I

will be using in this dissertation we do not know the underlying model. This means that

we need to find an alternate way to solve the bias-variance dilemma. One of the most

accepted ways of doing this is to use some type of cross-validation procedure, in which

we leave out part of the data, and compare our computed result with the data that has

been left out. This is also often called “blind prediction”.

15

1.6 Introduction to artificial neural networks

 In much of this dissertation, I will be using various types of artificial neural

networks (ANNs) to find the relationship between the target log and the attributes. Thus,

we first need to answer the question: what is a neural network? The simplest answer is

that a neural network is a mathematical algorithm that can be trained to solve a problem

that would normally require human intervention. Although there are many different

types of neural networks, there are two ways in which they are categorized: by the type of

problem that they can solve and by their type of learning.

 Neural network applications in seismic data analysis generally fall into one of two

categories: the classification problem, or the regression problem. In the classification

problem, as discussed in section 1.3, we assign an input sample to one of several output

classes, such as sand, shale, limestone etc. In the prediction problem we assign a specific

value to the output sample, such as a porosity value.

 Neural networks can also be classified by the way they are trained, using either

supervised or unsupervised learning. In supervised learning the neural network starts

with a training dataset for which we know both the input and output values. The neural

network algorithm then “learns” the relationship between the input and output from this

training dataset, and finally applies the “learned” relationship to a larger dataset for which

we do not know the output values. The most common example of the supervised learning

neural network is the multi-layer perceptron, or MLP, which has become almost

synonymous with the term ANN. This method also goes by several other names, such as

the multi-layer feed-forward neural network (MLFN) and the backpropagation neural

network (BPNN). In Chapter 5 I will describe the MLP neural network and apply this

approach to both a simple model, in which we can intuitively derive the weights for the

network, and a real data example. Although the MLP is the most common artificial neural

network, there are many other approaches described in the literature. In this dissertation,

16

I will describe and apply three other neural network approaches: the probabilistic neural

network, or PNN, the generalized regression neural network, or GRNN, and the radial

basis function neural network, or RBFN. The PNN will be used for classification, and

the GRNN and RBFN will be used for nonlinear regression.

 In unsupervised learning, we present the neural network with a series of inputs

and let the neural network look for patterns itself. That is, the specific outputs are not

required. The advantage of this approach is that we do not need to know the answer in

advance. This disadvantage is that it is often difficult to interpret the output. An example

of this type of unsupervised technique is the Kohonen self organizing map (KSOM)

(Kohonen, 2001). In this dissertation, I will be exclusively concerned with neural

networks that use supervised learning.

17

CHAPTER 2 : SEISMIC ATTRIBUTES

2.1 Introduction

 In this chapter, I will discuss the various seismic attributes that will be used to

compute reservoir parameters. A seismic attribute can be defined as a transform, either

linear or nonlinear, of the seismic trace. Seismic attributes can be classified into the

following seven basic types:

 (1) instantaneous attributes, which are derived from a combination of the input

 seismic trace and the Hilbert transform of the trace,

 (2) windowed frequency attributes, in which the amplitude spectrum of seismic

 trace is computed over a running window,

 (3) recursive attributes, which are derived by applying a recursive operator along

 the seismic trace,

 (4) bandpass attributes, which are narrowband filter slices of the seismic traces,

 (5) multi-trace attributes, which are found by applying an operator to a local

 collection of seismic traces in a 3D volume,

 (6) AVO attributes, which are derived from prestack seismic data, and

 (7) model-based attributes, in which an a priori model is included as a

 component of the final solution.

 It should be pointed out that some authors (Chen and Sidney, 1997) do not

include model-based attributes in their definition of seismic attributes. I have chosen to

do so in this dissertation based on the observation that model-based attributes often give

the best overall fit to the reservoir parameter that we are predicting. From this viewpoint,

we can consider the statistical methods to be discussed in the subsequent chapters to be

18

improvements on classical deterministic methods of parameter estimation such as seismic

inversion (Russell, 1988).

 A second distinction when discussing seismic attributes is between sample-based

attributes and horizon-based attributes. Sample-based attributes are computed on a

sample-by-sample basis over the complete seismic volume, whereas horizon-based

attributes are computed as the average over a time window around a seismic horizon

(either at constant time or picked on an event) throughout a 3D volume. The key

difference between sample-based attributes and horizon-based attributes is that there is a

one-to-one correspondence between the samples in a seismic volume and the samples in a

sample-based attribute, whereas there is no one-to-one correspondence in a horizon-based

attribute, which is used in spatial, or map, form. In most of this dissertation I will deal

with sample-based attributes. In Chapter 9, I will discuss horizon-based attributes.

 Examples of all seven types of attributes have been taken from the Blackfoot

dataset, which will be used in several case studies in subsequent chapters (Dufour et al.,

2002). A 3C-3D seismic survey was recorded in this area in October 1995, with the

primary target being the Glauconitic member of the Mannville group. The reservoir

occurs at a depth of around 1550 m, where Glauconitic sand and shale fill valleys incised

into the regional Mannville stratigraphy. The objectives of the survey were to delineate

the channel and distinguish between sand-fill and shale-fill.

 Figure 2.1 shows a map view of the seismic survey and available well coverage,

with the inline and cross-line numbers annotated on the four corners of the map. Seismic

inline 27 is shown as a vertical red line on the map, intersected by well 08-08.

19

Figure 2.1. A map view of the Blackfoot dataset, with wells annotated.

 Figure 2.2 shows the seismic section from inline 27 on the map shown in Figure

1.1. The synthetic seismogram from well 08-08 has been spliced into the section at

crossline 42.

Figure 2.2. The input seismic line used to display the various attributes in this section. The synthetic
seismogram from a nearby well (08-08) is shown at Xline 42.

 In following sections, I will use the seismic section shown in Figure 2.2 to

illustrate the different types of seismic attributes listed above.

20

2.2 Instantaneous attributes

 Instantaneous attributes were first computed from seismic data by Taner et al

(1979), using theory that had been developed for electrical engineering applications

(Bracewell, 1965). The basis of the instantaneous attributes is the complex seismic trace,

which can be written:

() () ()thitstC += (2.1)

where s(t) = the seismic trace, h(t) = the Hilbert transform of the seismic trace, often

called the quadrature trace, and 1i −= . Rewriting equation (2.1) in polar form, we get

()))(exp()(titAtC φ= , (2.2)

where () () ()22 thtstA += is referred to as the amplitude envelope or instantaneous

amplitude, and))(/)((tan)(1 tstht −=φ is referred to as the instantaneous phase. Equation

(2.2) can also be expressed as:

()))(sin()())(cos()(ttiAttAtC φφ += , (2.3)

which tells us that the seismic trace is equal to the product of the amplitude envelope and

the cosine of instantaneous phase, and the quadrature trace is the product of the amplitude

envelope and the sine of the instantaneous phase.

 Figure 2.3 shows the Hilbert transform of the seismic section shown in Figure 2.2.

Since both the seismic section and its Hilbert transform look similar, one way to observe

the difference between the two is to compare their wiggle traces at the well intersection

with the synthetic seismogram from well 08-08. Notice that the synthetic seismogram

differs by a 90 degree phase shift on the Hilbert transformed section, when compared to

the original seismic section of Figure 2.2.

21

Figure 2.3. The Hilbert transform of the seismic section shown in Figure 2.1.

 Figure 2.4 shows the amplitude envelope and Figure 2.5 shows the instantaneous

phase of the same section shown in Figure 2.1. As expected, the amplitude envelope

section of Figure 2.4 emphasizes the amplitude changes from the original seismic section,

and the instantaneous phase section of Figure 2.5 shows the subtle stratigraphic detail.

Figure 2.4. The amplitude envelope of the seismic section shown in Figure 2.1. The integrated P-wave
sonic log from a nearby well (08-08) is shown at Xline 42 on both seismic displays.

22

Figure 2.5. The instantaneous phase of the seismic section shown in Figure 2.1.

 The traces on the instantaneous phase section (Fig. 2.5) show sharp jumps at ±180

degrees, so the colour bar on the instantaneous phase has been designed to be identical at

the two extremes. For a more “seismic-looking” trace than the instantaneous phase,

Equation (2.3) suggests taking the cosine of the instantaneous phase, as shown in Figure

2.6.

Figure 2.6. The cosine of the instantaneous phase section shown in Figure 2.5.

 The cosine of instantaneous phase, shown in Figure 2.6, is a seismic section in

which the amplitude changes have been removed, as if a strong gain control has been

23

applied. Note from Equation 2.3 that the product of the sections in Figures 2.4 and 2.6

gives us the original seismic section of Figure 2.2.

 A third instantaneous attribute can be found by differentiating the instantaneous

phase to get:

()
dt

tdt)(φω = (2.4)

where ω(t) is termed the instantaneous frequency. Figure 2.7 shows the instantaneous

frequency of the same section as in Figure 2.2. Notice the alternately low and high

instantaneous frequency bands between 1050 and 1100 ms.

Figure 2.7. The instantaneous frequency section derived from the seismic section shown in Figure 2.2.

 The amplitude envelope, instantaneous phase and instantaneous frequency are the

three primary attributes, but many more can be derived from these basic three. These new

attributes are usually products of the existing three attributes.

2.3 Windowed frequency attributes

 To compute a windowed frequency attribute, the Fourier transform of the seismic

trace is computed over a window of fixed size around a seismic sample and some

property of the transform is extracted. To compute a sample-based attribute of this type,

24

either the average or dominant frequency is computed and placed at the sample location.

This procedure is then repeated using a running window down the trace. Figure 2.8

shows the dominant frequency attribute from the section shown in Figure 2.2, using a

window size of 64 ms and an increment between samples of 32 ms. The samples in

between the 32 ms increment are then interpolated. As can be seen, this produces a long-

period, smoothly varying estimate of the frequency content of the data.

Figure 2.8. The dominant frequency along a sliding window of the seismic section shown in Figure 2.1.

 To compute a horizon-based attribute based on windowing the data, Partyka et al.

(1999) suggest computing the Fourier spectrum over a window from the complete

seismic volume and then displaying the amplitude spectrum in frequency slices. This is

referred to as the spectral decomposition method, and will show spatial stratigraphic

detail at a zone of interest.

 Figure 2.9 shows the spectral decomposition between the two events picked at

times of 1030 and 1080 on the seismic section of Figure 2.2, over the complete seismic

volume. In this figure I have shown slices at dominant frequencies of 16, 32, 48, and 64

Hz, respectively.

25

 (a) (b)

 (c) (d)
Figure 2.9. The spectral decomposition of the full seismic volume shown in Figure 2.1, where (a) shows the
16 Hz slice, (a) shows the 32 Hz slice, (a) shows the 48 Hz slice, and (a) shows the 64 Hz slice.

2.4 Recursive attributes

 Recursive attributes are computed by applying an operator recursively along the

trace. If we apply a recursive difference operator, the output is the first derivative of the

seismic trace. In practice, this is estimated by taking the difference between adjacent

samples, which can be written:

1−−= iii ssd , (2.5)

where ,N,1i,si …= are the seismic samples. Figure 2.10 shows the first derivative

estimate of the seismic section from Figure 2.2. Notice the extra detail shown in this

figure when compared to Figure 2.2, and also the 90-degree phase shift.

26

 To illustrate this, consider the effect of the derivative on a single frequency

component, written as

fei
dt

de ti
ti

πωω ω
ω

2, == . (2.6)

In equation (2.6), multiplication by i implies a +90 degree phase shift to the original

seismic trace, and multiplication by ω implies a “ramping-up” of the amplitude spectrum.

Figure 2.10. The first derivative of the seismic section shown in Figure 2.2.

If the difference operation is applied twice to the input, we estimate the second derivative

of the seismic trace, given in equations as

211 22 −−− +−=−= iiiiii sssddd . (2.7)

 Figure 2.11 shows the second derivative of the seismic section from Figure 2.2.

Notice the extra detail shown in this figure when compared to Figure 2.9, and also the

180-degree phase shift. Again, this can be seen by applied the second derivative

operation to a single frequency, or

titi
ti

eeii
dt
ed ωω

ω

ωωω 2
2

2

)(−== . (2.8)

27

Figure 2.11. The second derivative of the seismic section shown in Figure 2.2.

 To compute other attributes, we can also apply the first and second derivative

operations to the amplitude envelope of the seismic trace.

 If we apply a recursive sum to the seismic trace, the output is the integral of the

trace, given as

∑
=

=
n

i
in sI

1
, (2.9)

where the nth integrated value is the sum of all of the samples from the first to the nth. To

remove any bias, the smoothed integrated trace is subtracted from the integrated trace.

Figure 2.12 shows the integrated seismic section of Figure 2.2, where I have used a 50 ms

running smoother to remove the bias. Notice that there is less high-frequency content in

this figure than in the seismic section of Figure 2.2, and also there is a -90-degree phase

shift. To illustrate this, consider the effect of integration on a single frequency

component, written as

tititi eie
i

dte ωωω

ωω
−==∫

1 . (2.10)

28

In equation (2.10), multiplication by -i implies a -90 degree phase shift to the original

seismic trace, and division by ω implies a “ramping-down” of the amplitude spectrum.

Integration can also be thought of as a type of seismic inversion (Lindseth, 1979).

Figure 2.12. The integration of the seismic section shown in Figure 2.2.

 As with the derivative operation, integration can also be applied to the amplitude

envelope of the seismic trace.

2.5 Bandpass attributes

 Bandpass attributes are simply narrow-band filter slices of the seismic data. By

applying a narrow-band filter, we isolate signal components within particular frequency

bands of the seismic data. To ensure that the filter slices can be added together to give

the original data, trapezoidal filters are designed with overlapping 5-Hz slopes. For

example, the first two filter slices could be 5/10-15/20 and 15/20-25/30, where the first

number is the low-cut value, the second is the low-pass value, the third is the high-pass

value and the fourth is the high-cut value, all given in Hertz.

 Figures 2.13 and 2.14 show low frequency (5/10-15/20) and high frequency

(55/60-65/70) bandpass filter slices, respectively, applied to the seismic data of Figure

2.2.

29

Figure 2.13: A low-frequency filter slice (5/10-15/20) of the seismic section shown in Figure 2.2.

Figure 2.14: A high-frequency filter slice (55/60-65/70) of the seismic section shown in Figure 2.2.

 As expected, Figure 2.13 and 2.14 show a lot of “ringing” at both the low and

high ends of the signal spectrum. However, both sections contain valuable information

about the seismic data that will be used by the statistical prediction techniques that will

be explored in subsequent chapters.

30

2.6 Coherency attributes

 Using a window of traces in a 3D seismic volume, information about

discontinuities within the subsurface of the earth, such as faults and fractures, can be

determined. The resulting attributes are called coherency attributes. There have been

three generations of algorithms proposed for extracting the coherency attribute. Bahorich

and Farmer (1995) published the first widely used algorithm, termed cross-correlation

coherency. Their method involved cross-correlating each trace with its in-line and cross-

line neighbour and then combining the two results after energy normalization. Marfurt et

al. (1998) published the second-generation method, based on semblance. Most recently,

Gersztenkorn and Marfurt (1999) published the third-generation approach based on

eigenstructure methods. The latter two methods can be summarized as follows. Let D be

a matrix containing a suite of J seismic traces, each of N samples, which can be written



















=

NJNN

J

J

ddd

ddd
ddd

D

"
#%##

"
"

21

22221

11211

. (2.11)

Using the values in D, the semblance coherency estimate can be defined as

()∑∑

∑ ∑

= =

= =









= N

n

J

j
nj

N

n

J

j
nj

C

dJ

d
S

1 1

2

1

2

1 . (2.12)

.

To derive the eigenstructure estimate, we require the covariance of D, which can be

written as

C = DTD. (2.13)

31

 The eigenstructure coherence estimate is then found by the expression

∑
=

= J

j
j

CE

1

1

λ

λ
, (2.14)

where λ j are the J eigenvalues of the matrix C, ordered from largest (λ1) to smallest (λJ).

As shown by Gersztenkorn and Marfurt (1999), the semblance estimate can also be

written in terms of the covariance matrix and its eigenvalues, as

∑
=

= J

j
j

T

C
CuuS

1
λ

, (2.15)

where



















=

1

1
1

1
#J

u . The numerator of equation (2.15) is often called a variance probe, and

is maximized when uTCu = λ1, the maximum eigenvalue of C. Thus, the eigenstructure

approach to coherency can be seen to be the optimum implementation of the semblance

coherency method.

 Marfurt and Kirlin (2000) extended the concept of coherency to define other

multi-trace attributes such as dip, amplitude gradient, and curvature. In this study I will

not use coherence attributes. However, the concepts of the covariance matrix, the

variance probe and eigenvalues and eigenvectors (and the related topic of principal

components) will be addressed in later chapters.

32

2.7 AVO Attributes

 If we consider an incident P-wave striking the boundary between two elastic half-

spaces at an angle θ, as shown in Figure 2.15, mode conversion results in the creation of

reflected and transmitted P and SV-waves (Aki and Richards, 2002).

Figure 2.15. Mode conversion from an incident P-wave arrival at the interface between two elastic media.

 To derive the amplitudes of the reflected and transmitted waves, note that the

stresses and displacements across the boundary are continuous. This gives four equations

in four unknowns, referred to as the Zoeppritz equations (Zoeppritz, 1919), and written as











































−−

−−
−−

=



















−

1

1

1

1

1

2
1P1

2S2
2

1P1

2P2
1

1P

1S
1

22
1S1

1P2S2
1

2P
2
1S1

1P
2
2S2

1
1S

1P
1

2211

2211

S

P

S

P

2cos
2sin

cos
sin

2sin
V
V

2cos
V
V

2sin
V
V

2cos

2cos
V

VV
2cos

VV
VV

2cos
V
V

2sin

sincossincos
cossincossin

T
T
R
R

φ
θ
θ
θ

φ
ρ
ρφ

ρ
ρφφ

φ
ρ

ρφ
ρ
ρφθ

φθφθ
φθφθ

(2.16)

where RP is the P-wave reflection coefficient as a function of P-wave reflection angle θ1,

RS is the SV-wave reflection coefficient as a function of S-wave reflection angle φ1, TP is

the P-wave transmission coefficient as a function of P-wave refraction angle θ2, TS is the

SV-wave transmission coefficient as a function of S-wave refraction angle φ2, and VPi, VSi,

and ρi are the P-wave velocity, S-wave velocity, and density in the first (i = 1) and

33

second (i = 2) layers, respectively. We can derive the reflected and transmitted angles

from the input angle using Snell’s law, which is written

2S

t

1S

r

2P

t

1P

r

1P

i

V
sin

V
sin

V
sin

V
sin

V
sin

p
φφθθθ

===== , (2.17)

where p is called the ray parameter.

 As shown by Bortfeld (1961), Richards and Frasier (1976), and Aki and Richards

(2002), equation (2.16) can be linearized by expanding it as a Taylor series and keeping

only first-order terms (i.e. neglecting all squares and products). The linearized P-wave

reflection coefficient as a function of angle (or offset) is written

[] []
ρ
ρ∆θγ∆θγ∆

θ
θ 2

S

S2

P

P
2P sin25.0

V
V

sin4
V
V

cos2
1)(R −+−



= , (2.18)

where
2

VV
V

2
VVV,

2
1S2S

S
1P2P

P
12 +

=+=+= andρρρ are the average density and

velocity terms, 1S2SS1P2PP12 VVVVVV, −=−=−= ∆∆ρρρ∆ and are the density and

velocity differences,
2

P

S

V
V









=γ , and

2
ti θθθ +

= is the average angle. Another

equivalent form of equation (2-18), derived initially by Wiggins et al. (1982), and

expanded by Shuey (1985), is written

θθθθ 222
P sintanCsinBA)(R ++≅ , (2.19)

where ,2
V
V

4
V
V

2
1B,

V
V

2
1RA

S

S

p

P

p

P
0P ρ

ρ∆γ∆γ∆
ρ
ρ∆∆

−−=











+== and

p

P

V
V

2
1C ∆= .

(It should be noted that Shuey (1985) added the third term C, although his second term,

B, was a function of Vp, Poisson’s ratio, and density).

 A second equivalent version of equation (2.18) was derived by Fatti et al. (1994),

based on an earlier equation by Smith and Gidlow (1987), and expresses RP as a function

of the zero-offset P and S-wave reflectivity. Their equation is written

34

[] []
ρ
ρ∆θγθθγθθ 



 −−−+≅ 22

0S
2

0P
2

P sin2tan
2
1Rsin8Rtan1)(R , (2.20)

where 







+=

ρ
ρ∆∆

S

S
0S V

V
2
1R .

 Note that equations (2.18) through (2.20) can all be written in the form

332211P P),(fP),(fP)(f)(R γθγθθθ ++≅ , (2.21)

where f1, f2, and f3 are functions of θ and sometimes γ (for example, f3 is a function of γ in

the first and third equations, but not the second), and P1, P2, and P3 are parameters that

are dependent on some combination of ∆VP/VP, ∆VS/VS, and ∆ρ/ρ. Thus, the parameter

terms can be extracted by performing a weighted stack of the prestack seismic

amplitudes. Let us assume that there are N traces in a CMP gather. We can then extract

N amplitudes at time t, as shown in Figure 2.16, and write any one of the previous

equations as a set of N equations with three unknowns, or:

3N32N21N1NP

3232221212P

3132121111P

P),(fP),(fP)(f)(R

P),(fP),(fP)(f)(R
P),(fP),(fP)(f)(R

γθγθθθ

γθγθθθ
γθγθθθ

++=

++=
++=

####
 (2.22)

Figure 2.16. Extraction of AVO attributes using the amplitudes from a seismic gather picked at time t.

 These equations can be written in matrix form as



































=



















2

2

1

N322N1

232221

131211

NP

2P

1P

P
P
P

),(f),(f)(f

),(f),(f)(f
),(f),(f)(f

)(R

)(R
)(R

γθγθθ

γθγθθ
γθγθθ

θ

θ
θ

####
, (2.23)

35

or R = MP, with solution

RM)IMM(P T1T −+= λ , (2.24)

where λ is a prewhitening factor and I is the 3 x 3 identity matrix.

 Since we extract the parameters as a function of offset rather than angle, as shown

in Figure 2.16, we need a relationship between offset and angle. As shown by Walden

(1991) this relationship can be written

,
tV
XV

sin 2
RMS

INT=θ (2.25)

where X = offset, t = two-way traveltime, VINT = interval velocity, and VRMS = RMS

velocity.

 As an example of computing the AVO attributes just discussed, Figure 2.17

shows a subset of the common-depth-point gathers used to create the stack in Figure 2.2.

Figure 2.17. The seismic gathers that were used to create the stacked section in Figure 2.2, with the P-wave
sonic log from well 08-08 spliced in at the intersecting location.

36

 Using the techniques just described, estimates of the RP0 and RS0 AVO attributes

are created. The RP0 estimate is in Figure 2.18 and the RS0 estimate is in Figure 2.19.

Figure 2.18. Extraction of the RP0 attribute from the gathers of Figure 2.17.

Figure 2.19. Extraction of the RS attribute from the gathers of Figure 2.17.

 These two reflectivity estimates will be used as the input to inversion in the last
section in this chapter.

37

2.8 Model-based attributes

 In this section, I will discuss model-based attributes, in which a geological model

is included with some transform of the seismic trace to create an attribute. This is a

deterministic approach to reservoir delineation, because we determine the subsurface of

the earth by assuming that we know the underlying model that fits the seismic data. I will

start by introducing the most common model, which is based on the convolution of a

wavelet with the earth’s reflectivity.

2.8.1 The convolutional model

 The noise-free convolutional model for the seismic trace can be written

 () () ()s t w t r t= ∗ (2.26)

where ()s t = the seismic trace, ()w t = the seismic wavelet, ()r t = the earth’s reflectivity,

and * denotes convolution. The mathematics of convolution are discussed in Appendix

3, where it is shown that convolution can be written as the matrix multiplication

WRS = , (2.27)

where





























=



















=



















=

−+

N

N

N

MMN

w

ww
www

ww
w

Wand

r

r
r

R

s

s
s

S

00

0

0

00

,,

2

12

12

1

2

1

1

2

1

"
#%%#

"
"

%%#
#%

"

##
.

 In equation (2.27), note that the reflectivity is of length M samples, the wavelet is

of length N samples, and the output seismic trace is of length N+M-1 samples. (This

implies that W has M columns and N+M-1 rows).

38

 As a simple example in which the length of both the reflectivity and the wavelet is

two samples, the result is a seismic trace of three samples given as
















+=
























=

















22

2112

11

2

1

2

12

1

3

2

1

0

0

rw
rwrw

rw

r
r

w
ww

w

s
s
s

. (2.28)

 The matrix formulation of convolution is similar to the Z-transform approach,

which leads us to the frequency domain (Claerbout, 1976), where convolution is written:

() () () () () ()))(exp()exp(rws ifRfWfRfWifSfS φφφ +−==−= , (2.29)

where S(f), W(f), and R(f) are the Fourier transforms of the trace, wavelet, and

reflectivity, respectively, | | denotes amplitude spectrum, and φ denotes phase spectrum.

For the complex product, equation (2.29) tells us that the amplitude spectra are

multiplied, and the phase spectra are added. Equations (2.26) through (2.29) are

illustrated graphically in Figure 2.20, which shows the convolution of a ninety-degree

phase rotated Ricker wavelet with a well-log-derived reflectivity.

 In equation (2.26), the reflectivity can be written:

 ,
1

1

ii

ii
i ZZ

ZZr
+
−=

+

+ (2.30)

where ri is the reflection coefficient at the ith geological interface, and Zi is the impedance

at the ith geological layer, after integrating to time. As will be discussed shortly, there are

three different forms that impedance can take: acoustic impedance PP VZ ρ= , shear

impedance SS VZ ρ= , and elastic impedance)sinK1()sinK8(
S

)tan1(
PE

222

VVZ θθθ ρ −−+= , where

VP is the P-wave velocity, VS is the shear wave velocity, ρ is the density, θ is average

angle of incidence and 2
P

2
S V/VK = . By inverting equation (2.30), the impedance can be

recursively derived from the reflectivity. The recursive inversion equation is written

,
1
1

1
i

i
ii r

r
ZZ

−
+

=+ (2.31)

39

Figure 2.20. An illustration of convolution using a Ricker wavelet and well-log derived reflectivity, where
(a) shows convolution in the time domain (left to right: the wavelet, reflectivity, and seismic trace), and (b)
shows the convolution in the frequency domain (top to bottom: the amplitude spectrum of the wavelet, the
amplitude spectrum of the reflectivity, and the amplitude spectrum of the seismic trace), (Russell, 1988).

 Equation (2.31) can also be thought of as integration. To understand this,

consider the effect of inverting M reflection coefficients, which gives

∏
=









−
+

=
M

i i

i
M r

r
ZZ

2
1 1

1 . (2.32)

 Taking the logarithm of equation 2.32, we get

() () ∑
=









++++=

M

i

ii
iM

rr
rZZ

2

53

1 53
2lnln … , (2.33)

where I have made use of the series expansion 







+++=








−
+ "

53
2

1
1ln

53 xxx
x
x . Since the

reflection coefficients ri are typically of the order of 0.1 or less, we can drop all terms

greater than first order in the summation, so that equation (2.33) can be rewritten as

∑
=

=
M

i
iM rL

2
2 , (2.34)

40

where () ()1MM ZlnZlnL −= . Finally, note that equation (2.34) can also be written in

convolutional form as

HRL = , (2.35)

where



















=



















=



















=

−+ 222
022

2
002

and,, 2

1

1

2

1

"
"

#%%
"

##
H

r

r
r

R

L

L
L

L

MMN

.

 Except for a factor of 2, and that the operation is being applied to the reflectivity

rather than the seismic trace, notice that equation (2.34) is identical to equation (2.9).

This suggests that the operation of recursive inversion is equivalent to trace integration if

we replace the seismic trace with the reflectivity. From equation (2.10) this also tells us

that recursive inversion of the reflectivity will apply both a -90-degree phase shift and a

ω -1 frequency-domain scaling (Russell and Lindseth, 1982).

2.8.2 Acoustic impedance inversion

 Acoustic impedance inversion was developed in the 1970’s by making use of

equation 2.30, and substituting the seismic trace for the reflectivity (Lindseth, 1979).

However, as shown in Figure 2.20, the seismic trace is bandlimited by the seismic

wavelet, and the resulting inverted impedance will also be bandlimited. The lack of the

high frequencies will remove detail from the final result. The loss of the low frequencies

will remove the trend from the resulting pseudo-impedance log. The approach proposed

by Lindseth (1979) to recover the low frequency component is to create an impedance

model from well logs, apply a high-cut filter to this model to create a low frequency

trend, and then add back the trend to the pseudo-logs. This technique, which I will call

bandlimited inversion, is illustrated in Figure 2.21.

41

Figure 2.21. An illustration of the Lindseth (1979) inversion technique. Left to right, the original seismic
trace is inverted using equation (2.30) to produce the second trace, and then added to the low frequency
component to produce the final inverted log. (from Hampson and Russell, 1992).

 Figure 2.22 shows the bandlimited inversion of the seismic line shown in Figure

2.2. To create the model for this inversion, I used the sonic and density logs from the

wells shown in Figure 2.1, and stretched this model over the 3D volume using the seismic

picks.

Figure 2.22. The bandlimited inversion of the seismic line shown in Figure 2.2.

 Since the development of the bandlimited inversion technique, many more

approaches to acoustic impedance inversion have been proposed. Two such approaches

are sparse-spike inversion (Oldenburg et al., 1983) and model-based inversion (Hampson

42

and Russell, 1990). In sparse-spike inversion, an estimate of the sparse reflectivity is first

extracted from the seismic data, using a linear programming technique in which

frequency domain constraints are used to recover the low and high ends of the seismic

spectrum lost due to the bandlimited seismic wavelet. Once the sparse reflectivity is

extracted, the reflectivity is integrated and constrained by the initial model. The model is

built as described for the bandlimited approach.

 In model-based inversion, the initial geological model is perturbed so that the

error between the synthetic generated from the perturbed model and the original seismic

data is minimized. Mathematically, this problem is one of minimizing the error function

J given by the following equation:

() () () () ()WRSWRSwHRLHRLwJ TT −−−+−−= 11 1 , (2.36)

where L, H, S, W, and r are as defined in equations (2.27) and (2.35), and w1 and w2 are

weights that satisfy the requirement that w1 + w2 = 1. In equation (2.36), the first term

minimizes the error in the model and the second term minimizes the error in the seismic

trace. Figure 2.23 shows the model-based inversion for the seismic line shown in Figure

2.2. Notice the extra detail that was not seen in Figure 2.22.

Figure 2.23. The model-based inversion of the seismic line shown in Figure 2.2.

43

2.8.3 Inversion of the AVO attributes

 As I discussed in the section on AVO attributes, the weighted stack technique

allows us to extract estimates of the P and S reflectivity sections, RP and RS. Inverting the

RP section should give us a better estimate of the P-impedance section. The inversion of

the RP section is shown in Figure 2.24. Figure 2.25 shows the inversion of the RS

attribute.

Figure 2.24. The model-based inversion of the RP0 attribute shown in Figure 2.18.

Figure 2.25. The model-based inversion of the RS0 attribute shown in Figure 2.18

44

2.9 Fluid-property discrimination with model-based attributes

2.9.1 Introduction

 The last model-based attribute to be discussed in this chapter combines AVO and

inversion attributes with rock physics theory in an attempt to extract information about

the fluid content and rigidity of our reservoir rocks (Mavko et al., 1998). This topic has

been addressed by Goodway et al. (1997), Hedlin (2000), Hilterman (2001) and Russell

et al. (2003a).

 To start our discussion, recall that the equations for P velocity in isotropic, non-

porous media can be written in two different forms as

ρ
µ

ρ
µλ 3

42 +
=+=

K
VP , (2.37)

where ρ is density, λ is the 1st Lamé parameter, µ is the 2nd Lamé parameter or shear

modulus, and K is the bulk modulus, or the inverse of compressibility. For these two

forms of the P-wave velocity to hold, we see that the relationship between K and λ can be

written as

µλ 3
2=−K . (2.38)

 The equation for S-wave velocity involves only density and shear modulus, and is

written

ρ
µ=sV . (2.39)

 When we turn our attention to porous, saturated rocks, the situation becomes more

complex. Referring to Figure 2.26, note that a cube of porous rock can be characterized

by four components: the rock mineral, the pore/fluid system, the dry-rock frame, or

skeleton, and the saturated rock itself.

45

Figure 2.26. In Biot-Gassmann theory, a cube of rock is characterized by four components: the rock
matrix, the pore/fluid system, the dry rock frame, and the saturated frame.

The density effects of the saturated rock shown in Figure 2.26 can be computed quite

accurately with the volume average equation as

() ()φρφρφρρ whcwwmsat SS −++−= 11 , (2.40)

where ρsat is the total density value, ρm is the density of the rock matrix, ρw is the density

of water (brine), ρhc is the density of the hydrocarbons, φ is the porosity of the rock, and

Sw is the water saturation.

 The velocity effects of the saturated rock were derived by Biot (1941) and

Gassmann (1951) using apparently different approaches. However, as shown by Krief et

al. (1990), their approaches are identical. Biot used the Lamé parameters and showed that

(Krief et al, 1990) the saturated 1st Lamé parameter could be written

Mdrysat
2βλλ += , (2.41)

where λsat and λdry are the 1st Lamé parameter for the saturated and dry frame, β is the

Biot coefficient, or the ratio of the volume change in the fluid to the volume change in the

formation when hydraulic pressure is constant, and M is the modulus, or the pressure

needed to force water into the formation without changing the volume.

Dry rock frame,
or skeleton
(pores empty)

Saturated rock
(pores full)

Rock Matrix

Pores/Fluid

46

 Gassmann used the bulk and shear moduli, and derived the following relationship

(Krief et al, 1990):

MKK drysat
2β+= , (2.42)

where Ksat and Kdry are the bulk modulii of the saturated and dry rock, and β and M are

the same as in equation (2.41). By equating equations (2.41) and (2.42), and using

equation (2.38), we find that

drysat µµ = , (2.43)

which tells us that the shear modulus is unaffected by the pore fluid.

 Using equations (2.41) and (2.42), we can now write the equation for P-wave

velocity in the saturated case using the two separate forms given by

sat

dry

sat

dry
P

MKM
V

ρ
βµ

ρ
βµλ 2

3
422 ++

=
++

= , (2.44)

or, more succinctly, as

sat
P

fsV
ρ
+= , (2.45)

where f is a fluid/porosity term equal to β2M, and s is a dry-skeleton term which can be

written either as µ3
4+dryK or µλ 2+dry . Note that drysat µµµ == .

2.9.2 Extracting fluid and rigidity terms

 Since I will be applying this method to seismic data, a practical limitation

discussed in section 2.8.2 is that we can estimate only the P and S-wave impedances, ZP

and ZS, where

()sfVZ PP +== ρρ , (2.46)

and ρµρ == SS VZ . (2.47)

 By squaring the impedances we can then find a constant, c, such that

()µρρ csfcZZf SP −+=−= 22 . (2.48)

47

 Referring to equation (2.44), note that c can be written in one of three ways:
2

3
42

dryS

Pdrydry

V
VK

c 







=+=+=

µµ
λ

. (2.49)

 There are several approaches for computing the c term. The first is to estimate the

dry-rock Poisson's ratio, σdry, noting that this is given by:

22
2

22

2

2

2

−
−=

−








−








=
c

c

V
V

V
V

dryS

P

dryS

P

dryσ . (2.50)

 Generally, the accepted value of σdry is on the order of 0.1, which corresponds to a

VP/VS ratio of 1.5, or a c value of 2.25.

 A second approach is to perform laboratory measurements. Murphy et al. (1993)

measured the Kdry/µ ratio for clean quartz sandstones over a range of porosities and found

that this value was, on average, equal to 0.9. This corresponds to a c value of 2.233. If

the Kdry/µ value is rounded to 1.0, this implies a σdry of 0.125, and a corresponding c

value of 2.333.

 Thus, there are a range of values of c that depend on the particular reservoir being

studied. Table 2.1 shows a range of c values and the range of respective elastic constants.

The value of c in this table ranges from a high of 3, which implies that λdry/µ is equal to

1, to a low of 1 1/3, which implies that Kdry/µ is equal to 0 and that we have a negative

Poisson’s ratio. (This last value is therefore probably not physically meaningful).

Goodway et al. (1997) attribute all of the fluid effect to the λ term in equation (2.37),

and thus derive their λρ value as
22 2 SP ZZ −=λρ . (2.60)

48

Note that this means that c is equal to 2, which implies a zero dry-rock Poisson's ratio.

2

dryS

P

V
V

c 







=

dryS

P

V
V










dryσ µ
dryK

µ

λdry

3.000 1.732 0.325 1.667 1.000

2.500 1.581 0.167 1.167 0.500

2.333 1.528 0.125 1.000 0.333

2.250 1.500 0.100 0.917 0.250

2.233 1.494 0.095 0.900 0.233

2.000 1.414 0.000 0.667 0.000

1.333 1.155 -1.000 0.000 -0.667

Table 2.1: A table of values for c ranging from 3 to 1 1/3 and showing the equivalent values for the various
elastic constant ratios.

 Hedlin (2000) incorporated the experimental results of Murphy et al., to arrive at

the Kdry/µ ratio of 0.9 and a c value of 2.233. Finally, Hilterman (2001) assumes that

Kdry/µ is equal to 1.0, which implies a c value of 2.333.

2.9.3 Well-log example

 Our well-log example comes from the Whiterose area of offshore eastern Canada.

Figure 2.27 shows the VS, VP, density and porosity logs over the producing zone, overlain

by a Cretaceous shale. There is 85 m of gas sand, 97 m of oil sand, and 95 m of wet sand.

These well-log curves were converted to the equivalent ρf and ρs curves and crossplotted.

49

Figure 2.27: The VS,, VP, ρ and porosity logs over the producing zone in the Whiterose L-08 well.

 Figures 2.28(a) and (b) show crossplots of ρs versus ρf for values of c equal to 2.0

and 2.333, respectively.

rho*f vs rho*s for c = 2

0.00

1.00
2.00

3.00

4.00

5.00
6.00

7.00

0.00 1.00 2.00 3.00 4.00

rho*f

rh
o*

s

Shale Gas Oil Wet

rho*f vs rho*s for c = 2.333

1.00

2.00

3.00
4.00

5.00
6.00

7.00

8.00

0.00 1.00 2.00 3.00 4.00

rho*f

rh
o*

s

Shale Gas Oil Wet

 (a) (b)
Figure 2.28: A crossplot of ρf vs ρs for the Whiterose L-03 well for (a) c=2.0, and (b) c=2.333.

 In Figure 2.28, each lithology and pore-fluid saturant is indicated by a different

symbol. From our previous discussion, we wish to find the c value that produces the best

ρf separation between the gas and non-gas-saturated zones. When choosing between the

50

two c values, notice that the ρf separation is almost the same. However, the better choice

would appear to be 2.333 since the points with a higher ρs value show better separation.

Also, for the c value of 2.333, the cloud of gas points is closer to zero on the ρf axis.

2.9.4 A seismic example

 Figures 2.29 and 2.30 show the P and S-wave impedance inversions for a shallow

clastic gas sand in Alberta.

Figure 2.29: The P-wave impedance, ZP, found by inverting the RP0 estimate of a gas sand in Alberta.

Figure 2.30: The S-wave impedance, ZS, found by inverting the RS0 estimate of a gas sand in Alberta.

51

 Horizon 2 in both figures is the top of the gas sand. In Figure 2.29 the gas sand

shows a drop in P-impedance with respect to the encasing shale. However the S-

impedance (Fig. 2.30) does not show the same decrease as we move into the gas sand.

This can be understood when we recall that S-wave velocity is insensitive to the fluid,

whereas P-wave velocity shows a sudden decrease when gas is introduced into the

reservoir.

Figures 2.31 and 2.32 show the fluid and skeleton terms (ρf and ρs) computed from

the P- and S-impedance sections of Figures 2.29 and 2.30, where I used a c value of

2.333. These sections behave exactly as we would expect. That is, ρf (Fig. 2.31) shows a

strong decrease in the gas-filled reservoirs, whereas ρs (Fig. 2.32) shows an increase in

the reservoir (since the sand matrix has a higher value than the overlying shale).

Figure 2.31: The ρf section found by combining the ZP and ZS inversions of Figure 2.29 and 2.30 using a c
value of 2.333.

52

Figure 2.32: The ρs section found by combining the ZP and ZS inversions of Figure 2.29 and 2.30 using a c
value of 2.333.

Figure 2.33 shows a crossplot of ρf vs ρs between the productive zones for the two

sections of Figures 2.31 and 2.32, where the gas sand is again clearly visible in the red

region. Figure 2.34 then shows the corresponding zones on the seismic section plotted

from the crossplot of Figure 2.33.

Figure 2.33: A crossplot between the sections of the previous two figures over the productive zone.

53

Figure 2.34: The portion of the seismic section corresponding to the gas and non-gas zones. The "red" gas
region is where expected.

54

2.10 Conclusions

 In this chapter, I discussed the various seismic attributes that will be used in

subsequent chapters. These included single trace attributes, multi-traces attributes, and

model-based attributes. Single trace attributes consist of instantaneous attributes,

windowed-frequency attributes, recursive attributes, and bandpass attributes.

 Multi-trace attributes consist of coherency and AVO. In the coherency method,

we use a window of traces from a 3D seismic volume to extract information about

discontinuities within the seismic volumes, such as faults and fractures. AVO attributes

are extracted from pre-stack traces and generally involve two independent attributes that

relate to information about the fluid content of the reservoir.

 Finally, model-based attributes involved the combination of information derived

from the seismic trace with a geologically based model, and included post-stack seismic

inversion, inversion of AVO attributes. These are also referred to as deterministic

attributes.

55

CHAPTER 3 : MULTILINEAR REGRESSION

3.1 Introduction

 In Chapter 2, I discussed the seismic attributes that will be used in this study. In

this chapter I will begin the analysis of how to optimally combine these attributes in order

to predict reservoir parameters. Specifically, I will focus on the technique of multilinear

regression, which is a generalization of the solution to finding the best least-squares fit to

a straight line. Multilinear regression will be used in two fundamental ways in this work.

First, it can be used as our primary approach for the technique of reservoir parameter

prediction (Russell et al., 1997). As we will see in the case study at the end of the

chapter, this is especially true when we apply this approach to well log prediction using

other well logs. Second, multilinear regression gives us a fast and efficient way to group

our seismic attributes prior to analysis with the more powerful nonlinear neural networks

to be discussed in subsequent chapters (Hampson et al., 2001).

 In this chapter I will start by discussing multivariate statistics. I will consider

both univariate and bivariate statistics, before generalizing to N-dimensional attribute

space. I will then review the multivariate normal distribution, looking at the univariate,

bivariate and trivariate cases before generalizing to N dimensions. I will then discuss

multilinear regression, and show how this technique can be used to solve for the

prediction of reservoir parameters from seismic attributes. Finally, these techniques will

be applied to an actual case study.

3.2 A word about notation

 Before I start discussing multivariate statistics and multilinear regression, it is

important to understand the terminology used in this study when referring to seismic

attributes, and the distinction between the attribute vector and the sample vector (this is

56

given in more detail in Appendix 1). This is best seen in Figure 3.1, which was also

shown in Chapter 1 as Figure 1.5. This figure shows the basic problem of predicting a

target log using multiple seismic attributes.

Figure 3.1: The basic multilinear regression problem, showing the sample vector xj, attribute vector aj, and

the target value tj.

 In Figure 3.1, the ith attribute vector ai represents all N samples of a particular

seismic attribute. In the case shown in the figure there are three attribute vectors.

However, in general, there will be M attribute vectors. In Figure 3.1, notice that I have

shown only a single sample of the target log, written tj. However, there are also N

samples in the target, so we can think of the target log as the vector []N1 tt "=Tt .

The M attribute vectors are the same length as the target vector, and can be

written [] .M,,1i,aa Nii1 …" ==T
ia

 Referring back to Figure 3.1, note that the jth sample vector, xj, is the M-

dimensional vector of attribute values associated with the jth target sample tj, and can be

written as [] .N,,1j,xx jMj1 …" ==T
jx

57

 If we consider the attribute vectors as the columns of this matrix, we get the N

row by M column matrix A, or

[]















==

NMN

M

aa

aa
A

"
#%#

"
"

1

111

M1 aa . (3.1)

 If we consider the sample vectors as the columns of the matrix, we get the M row

by N column matrix X, or

[]















==

MNM

N

xx

xx
X

"
#%#

"
"

1

111

N1 xx . (3.2)

 Note that matrices X and A contain all of the seismic samples that will be used in

the reservoir prediction problem and are the transpose of each other, which can be written

as A = XT. In multivariate statistics, matrices A and X represent what is referred to as a

single multivariate observation (e.g. Johnson and Wichern, 1998, page 117).

3.3 Multivariate statistics

 I will now review the concepts of multivariate statistics using the dataset shown in

Figure 3.1. As already mentioned, this figure shows a target sonic log on the left and

three seismic attributes on the right. Our objective is to combine these attributes in an

optimum way to approximate the target log. The target log is the P-wave sonic log from

well 01-08 in Figure 2.1. To relate the attributes shown in Figure 3.1 to those discussed

in the last chapter, Attribute 1 is inverted seismic impedance using a model-based

inversion algorithm, Attribute 2 is the derivative of the seismic trace with respect to time,

and attribute 3 is the integration of the seismic trace with respect to time. All three

attributes were extracted from the 3D seismic volume shown in Figure 2.1, where the

attribute traces within a one trace radius of the well location have been averaged. The

reason that these particular attributes were chosen will be discussed later in this chapter.

58

3.3.1 Univariate statistics

 Let us start by looking at the statistics of each attribute individually. From a

statistical point of view, each attribute is called a variate, and I will thus first discuss

univariate statistics. To understand the range and distribution of values in the target log

and each of the attributes, it is useful to create a histogram of these values. In a

histogram, we find the minimum and maximum values of each variate, divide this range

into N divisions, and determine how many values fall into each division. Figure 3.2

shows a histogram of each variate, where I have chosen N = 10. There are 69 points in

each of our variates.

 The histograms in Figure 3.2 show us the symmetry (or lack of it) of the

distributions of the values in the target and each attribute, and also the basic statistics of

the variates. The distribution of points shown in Figures 3.2(a), (c), and (d), are

reasonably symmetrical, whereas the distribution in Figure 3.2(b) is slightly skewed. I

will talk more about the shape of these distributions in the next section.

 The two basic statistics that I will derive for each of our variates are the mean and

variance. The mean is the arithmetic average of the sample values and the variance is the

average of the sum of the squared difference between the sample values and the mean.

Using the notation shown in Figure 3.1, the means of the target and attributes can be

written as

 ∑
=

=
N

j
jt t

N 1

1µ , (3.3)

and

∑
=

=
N

j
jii a

N 1

1µ , (3.4)

where I have used the subscript i to represent the ith attribute mean.

59

 (a) (b)

 (c) (d)

Figure 3.2: Histograms of the target and attributes shown in Figure 3.1, where (a) is the histogram of the
target log, (b) is the histogram of attribute 1, (c) is the histogram of attribute 2, and (d) is the histogram of
attribute 3. In each figure, x represents the position of the mean value, and o represents the position of the

mean plus and minus the standard deviation, respectively.

 The mean is also called the first moment. Another important statistic is the

second moment, which is related to the square of the samples. To compute the second

moment, we simply replace the terms after the summation sign in equations (3.3) and

(3.4) with their squared values. A more common measurement is the variance, which is

defined as the second moment away from the mean, and can be written as
2

11

2

1

22 11)(1








−=−= ∑∑∑

===

N

j
j

N

j
j

N

j
ajt t

N
t

N
t

N
µσ (3.5)

for the target, and as
2

11

2

1

22 11)(1








−=−= ∑∑∑

===

N

j
ji

N

j
ji

N

j
ajii a

N
a

N
a

N
µσ (3.6)

60

for the attributes. Notice that the variance can be written either as the normalized sum of

the squared differences between the values and their mean, or as the difference between

the second moment and the square of the mean.

 An alternate expression for the variance involves using vector notation. In this

case we observe that the variance is the scalar product of the vectors, after subtracting the

means, divided by the number of samples. In equations, we write

,2

N
)-()-(t

T
t

t
µµ tt

=σ and (3.7)

 ,2

N
)-()-(i

T
i

i
µµ ii aa

=σ (3.8)

where















=

1

1
#tt µµ and
















=

1

1
#ii µµ , both vectors of length N. An alternate definition of the

variance uses a divisor of N-1, rather than N. There are sound theoretical reasons for this,

since dividing by N-1 leads to an unbiased maximum likelihood estimator (Hogg and

Craig, 1995). However, this only becomes crucial as the value N gets very small, and our

datasets are usually quite large. Also, it is more convenient to use the divisor N when we

discuss the covariance matrix. Another important statistic is the standard deviation, σ,

which is the square root of the variance. In Figure 3.2, both the means and the mean ±

one standard deviation have been shown for the target and attributes. A summary of

these values is given in Table 3.1.

 Mean Variance Standard Deviation

Target 3975 m/s 1.303 x 105 (m/s)2 361 m/s

Attribute 1 9903 m/s·g/cc 1.709 x 106 1307 m/s·g/cc

Attribute 2 15.3 7.875 x 105 887

Attribute 3 264 4.187 x 107 6471

Table 3.1. The univariate statistics of the target and attribute vectors shown in Figure 3.1.

61

3.3.2 Bivariate statistics

 The univariate statistics just discussed give us information about the individual

variates, but not about their inter-relationships. The inter-relationships are best shown by

crossplotting each pair of variates, and Figure 3.3 displays the four-by-four matrix of

crossplots shown in Figure 1.2. In each crossplot, the means have been set to zero, and

the values have been scaled so that the largest absolute value is equal to one.

Figure 3.3: A four-by-four matrix of crossplots, where the target log and each of the attributes shown in
Figure 3.1 have been crossplotted against each other.

 The quantitative information contained in a crossplot can be found by computing

the covariance between the two variates, which is a natural extension of the variance.

Notice that there are two types of covariance indicated in Figure 3.3, the covariance

62

between the target and an attribute, which relates to the predictive ability of each

attribute, and the covariance between a pair of attributes, which relates to the

independence of the attributes. Let us first consider the covariance between two

attributes, where the two attributes are ai and ak. The expression for covariance is very

similar to that of variance in Equation 3.6, and can be written in summation form as

















−=−−= ∑∑∑∑

====

N

j
jk

N

j
ji

N

j
jkjik

N

j
jkjjiik a

N
a

N
aa

N
aa

N 1111

111))((1 µµσ . (3.9)

 In equation (3.9) the covariance has been written first as the normalized product

of the differences between the values and their means and, second, as the difference

between the normalized sum of the products and the product of the means. The

normalized sum of the products is called the correlation of the two attributes. This

second expression will be useful in a later section when interpreting the regression

coefficients. It is also clear that the variance written in equation (3.6) is a special type of

covariance, in which i = k. This means that σii = σi
2. The variance is often referred to as

the auto-covariance and can be seen on Figure 3.3 as straight line fits.

 As with the variance, we can also write the covariance in vector form as

,
N

)-()-(k
T

i
ik

µµ ki aa
=σ (3.10)

where again the vector means are simply the product of the scalar means and an N-length

vector of ones. In the same way, the covariance between the target and one of the

attributes can be written as

















−=−−= ∑∑∑∑

====

N

j
j

N

j
ji

N

j
jjit

N

j
jajiit t

N
a

N
ta

N
ta

N 1111

111))((1 µµσ , (3.11)

or as

N
)-()-(i

T
t

ti
µµ iat

=σ , (3.12)

Again, note that the auto-covariance of the target is identical to the variance of the target.

63

 Another useful statistic is the normalized covariance, or the correlation

coefficient, which can be written for two attributes as

ki

ik
ik σσ

σρ = . (3.13)

That is, the correlation coefficient is the covariance between the two vectors divided by

the product of the standard deviations of each vector. Obviously, the correlation

coefficient for auto-covariance is equal to one. A correlation coefficient of 0 would

indicate no correlation between the two vectors but, in this study, I have found that any

value below 0.5 indicates poor correlation. A similar expression for the correlation

coefficient between the target and one of the attributes can be easily written down. Table

3.2 shows the correlation coefficients between the target and attributes of Figure 3.1.

 Target Attribute 1 Attribute 2 Attribute 3
Target 1 0.57 -0.03 0.107

Attribute 1 0.57 1 -0.486 0.513
Attribute 2 -0.03 -0.486 1 -0.289
Attribute 3 0.107 0.513 -0.289 1

Table 3.2 . The correlation coefficients between the target and attribute vectors shown in Figure 3.1.

3.3.3 The covariance matrix

 Table 3.2 can be written as a matrix, called either the covariance matrix or the

correlation matrix, depending on which value is being computed. In the discussion of

this section I will be restricting the discussion to the attribute covariance matrix, but these

remarks are also valid for the situation shown in Table 3.2 if we consider the target vector

to be the first attribute. The covariance matrix for M attributes can be written:



















=

MMMM

M

M

σσσ

σσσ
σσσ

"
#%##

"
"

21

22221

11211

Σ , (3.14)

64

where each of the terms σik in the covariance matrix are computed using equation (3.10).

The correlation matrix can be written



















=

1

1
1

21

221

112

"
#%##

"
"

MM

M

M

ρρ

ρρ
ρρ

ρ , (3.15)

where the terms ρik are as defined in equation 3.13. By combining equations (3.1) and

(3.10), we can show that the covariance matrix can be computed as

00
1 AA
N

T=Σ . (3.16)

where []
















−−

−−
=−−=

MNMN

MM

M

aa

aa
A

µµ

µµ
µµ

"
#%#

"
"

11

1111

10 M1 aa is the zero-mean

equivalent of matrix A. Another way to think of equation (3.16) is as a matrix of vector

inner products, or





















=

M0
T
M020

T
M010

T
M0

M0
T
2020

T
2010

T
20

M0
T
1020

T
1010

T
10

aaaaaa

aaaaaa
aaaaaa

Σ

"
#%##

"
"

N
1 , (3.17)

where ai0 = ai – µi. Equation (3.17) illustrates the basic structure of the covariance

matrix, where each element in the matrix, σik, is the inner product of the zero-mean

attributes ai0 and ak0.

 In the above derivation of covariance I have used the attribute vectors, ai, shown

in Figure 3.1. An alternate way to define the covariance matrix is based on the sample

vectors, xi, also shown in Figure 3.1. To derive the covariance matrix in this way, we

will compute the mean values slightly differently. That is, we compute an M-

dimensional vector of means given by

65



















=







































++



















+



















== ∑
=

M

N

j

MN

N

N

MM

j

x

x
x

x

x
x

x

x
x

NN
µ

µ
µ

##
"

##
2

1

1

2

1

2

22

12

1

21

11

11 xµ . (3.18)

Note that the individual values in the mean vector µ are the attribute means given by

equation (3.4). The computation of the covariance matrix is then found by computing the

sum of the normalized outer products of xj, where j = 1 to N, and dividing by N, or

∑
=

−−=
N

j

T
jjN 1

))((1 µxµxΣ (3.19)

Equation (3.19) will again produce an M x M matrix, which is the same calculation as

TXX
N 00
1=Σ , (3.20)

where []
















−−

−−
=−−=

MMNMM

N

xx

xx
X

µµ

µµ

"
#%#

"
"

1

11111

0 µµ N1 xx .

3.4 The multivariate normal distribution

3.4.1 The general case

 For an M-dimensional vector x, the multivariate normal distribution is written:





 −−−= −)()(

2
1exp

)2(
1)(1

2/12/
µxΣµx

Σ
x T

M
p

π
, (3.21)

where µ is the M-dimensional vector of means defined in equation 3.18 and Σ is the

covariance matrix given by equation (3.14). The term inside the exponential of equation

(3.21), written

)()(12 µxΣµx −−=∆ −T , (3.22)

is called the statistical, or Mahalanobis distance (Bishop, 1995), and measures the

statistical distance from x to µ and defines hyperellipsoids of constant probability density.

66

3.4.2 The univariate case

 The simplest case of equation (3.21) is the univariate normal distribution (M = 1),

which is written:








 −−= 2

2

2
)(exp

2
1)(

σ
µ

πσ
xxp , (3.23)

where the mean µ and variance σ
2

 are as defined in equations (3.3) through (3.7). In

Figure 3.4, the histograms shown in Figure 3.2 have been fitted with normal distributions

based on the means and standard deviations shown in Table 3.1.

 (a) (b)

 (c) (d)

Figure 3.4: The histograms shown in Figure 3.2 have been fitted with the normal distributions based on
their means and standard deviations, where (a) is the distribution of the target log, (b) is the distribution of
attribute 1, (c) is the distribution of attribute 2, and (d) is the distribution of attribute 3, all from Figure 3.1

 From Figure 3.2, it is clear that Figures 3.4(a) and (c), the target log and attribute

2 (derivative of the seismic trace), fit the normal distribution quite well. However,

Figures 3.4(b) and (d), attribute 1 (inverted impedance) and attribute 3 (integrated seismic

67

trace), do not fit the normal distribution very well. Figure 3.4(b) is positively skewed and

would appear to fit better to a log normal distribution, given by









≤

>






 −−
=

0,0

0,))(log(
2
1exp

2
1

)(2

2

x

xx
xxp σ

µ
πσ . (3.24)

But Figure 3.4(b) would appear to fit better to a uniform distribution, given by










>

≤≤
−

<

=

bx

bxa
ab

ax

xp

,0

,1
,0

)((3.25)

 Despite the fact that the normal distribution does not fit our data in all cases, it

usually gives a reasonable fit and will be used as our statistical model.

3.4.3 The bivariate case

 For M = 2, equation (3.21) becomes the bivariate normal distribution, which is the

simplest multivariate example and can be used to help visualize the multivariate normal

distribution. In this case, the covariance matrix can be written as









=

2212

1211

σσ
σσ

Σ . (3.26)

 In equation (3.26), note that the cross-covariance terms σ12 are always equal to

each other, whereas the auto-covariance terms σ11 and σ22 may be distinct. Depending on

the nature of the auto and cross-covariance terms, there are three cases of interest for the

bivariate covariance matrix. In the most general case the cross-covariances are non-zero

(which implies that the attributes are statistically dependent), and the auto-covariances

are distinct. In this case, the inverse covariance matrix can be written









−

−
−

=
1112

1222
2
122211

1
σσ
σσ

σσσ
1-Σ , (3.27)

68

and the bivariate normal distribution can be written:









−

−+−−−−
−

−
=

)(2
)())((2)(

exp
2

1)(2
122211

11
2

2112221122
2

11
2
122211

σσσ
σµσµµσµ

σσσπ
xxxx

p x (3.28)

 Using the normalized variates
1

11
1 σ

µ−= xz and
2

22
2 σ

µ−
=

xz , the covariance

matrix assumes the simple form:









=

1
1
ρ

ρ
Σ , (3.29)

where ρ=ρ12. Equation 3.29 has an inverse given by









−

−
−

=
1

1
1

1
2 ρ

ρ
ρ

1-Σ , (3.30)

and we can therefore re-write equation 3.28 as the standardized bivariate normal density

()







+−

−
−

−
= 2

221
2
122

zzz2z
1

1
2
1exp

12
1)(p ρ

ρρπ
x (3.31)

 Equation (3.31) makes it clear that a contour of constant density for the bivariate

distribution is defined by the equation (Anderson, 1984)

 () 22
221

2
12 2

1
1 czzzz =+−

−
ρ

ρ
, (3.32)

which is an ellipse aligned at either +45o, if ρ > 0, or -45o, if ρ < 0, where c is an

arbitrary constant. For ρ > 0, the lengths of the semi-major and semi-minor axes are

ρ+1c and ρ−1c , respectively, whereas for ρ < 0, the lengths of the semi-major and

semi-minor axes are ρ+1c and ρ−1c , respectively. Returning to the target and

attributes shown in Figure 3.1, Table 3.1 shows that their correlation coefficients are ρta1

= 0.57, ρa1a2 = -0.486, ρa1a3 = 0.107, and ρa2a3 = -0.289. Figure 3.5 shows the

crossplots of these four cases, with elliptical contours corresponding to c = 1 and c = 2,

where (a) shows the target versus attribute1, (b) shows attribute 1 against attribute 2, (c)

shows attribute 1 against attribute 3, and (d) shows attribute 2 against attribute 3.

69

 (a) (b)

 (c) (d)

Figure 3.5: Crossplots of (a) the target versus attribute 1, (b) attribute 1 versus attribute 2, (c) attribute 1
versus attribute 3, and (d) attribute 2 versus attribute 3, with elliptical contours corresponding to c = 1 and 2

in equation (3.32).

 Let us now consider the simpler case in which the attributes are statistically

independent, which means that the cross-covariances are equal to zero, and the auto-

covariances are given by the variances σ1
2 and σ2

2 . In this case, the inverse covariance

matrix becomes









=








=








= −

−−

2
2

2
1

2
1

2
2

2
2

2
1

1

2
2

2
1

0
0

0
01

0
0

σ
σ

σ
σ

σσσ
σ1-Σ (3.33)

and the bivariate normal distribution can be written

70








 −−






 −−=








 −−−−=

2
2

2
22

2
1

2
11

21

2
2

2
22

2
1

2
11

21

2
)(exp

2
)(exp

2
1

2
)(

2
)(exp

2
1)(

σ
µ

σ
µ

σπσ

σ
µ

σ
µ

σπσ

xx

xxp x
 (3.34)

The resulting distribution is the product of two gaussian curves.

 In the simplest bivariate case, the attributes are statistically independent and the

auto-covariances are identical and equal to the variance σ 2. In this case, the ellipses

become circles, the inverse covariance matrix becomes

IΣ 1- 2
2

2

0
0 −
−

−

=







= σ

σ
σ

, (3.35)

and the bivariate normal distribution can be written:








 −+−
−= 2

2
22

2
11

2 2
)()(

exp
2

1)(
σ

µµ
πσ

xx
p x . (3.36)

3.4.4 The trivariate case

 I will next extend our analysis to three dimensions, which is rarely considered in

textbooks because of its complexity and difficulty in being visualized. Let us first

compute the inverse of the covariance matrix, which can be written

,
det
1

2
1222112311131222132312

23111312
2
13331133122313

2213231233122313
2
233322

1

332313

232212

131211

















−−−
−−−
−−−

=















=

−

σσσσσσσσσσσ
σσσσσσσσσσσ
σσσσσσσσσσσ

σσσ
σσσ
σσσ

1-Σ (3.37)

where)()()(det 22132312132313331212
2
23332211 σσσσσσσσσσσσσσ −+−−−= is the

determinant. To make this clearer, the inverse of the correlation matrix can be written

,
1

1
1

det
1

1
1

1

2
12231312132312

231312
2
13122313

132312122313
2
23

1

2313

2312

1312

















−−−
−−−
−−−

=















=

−

ρρρρρρρ
ρρρρρρρ
ρρρρρρρ

ρρ
ρρ
ρρ

1-ρ (3.38)

where 2
23

2
13

2
121323121323131212

2
23 1)()()1(det ρρρρρρρρρρρρ −−−=−+−−−= .

71

 Using correlation coefficients, the symmetry in equation (3.38) becomes more

apparent. Since both the normalized covariance matrix and its inverse are each

symmetric, we can write their general form as
















=

fec
edb
cba

M . (3.39)

 Using equation (3.39) and the normalized variates
2

22
2

1

11
1 ,

σ
µ

σ
µ −=−= xzxz

and
3

33
3 σ

µ−
=

xz , we can write the simplified form of the trivariate normal density as

()



 +++++−= 323121

2
3

2
2

2
1det2

1exp
det2

1)(zezzczzbzfzdzazg
π

x (3.40)

where the terms a through f can be evaluated by comparing equations (3.38) and (3.39).

The terms a, d, and f correspond to the auto-covariances in the main diagonal, and the

terms b, c and e correspond to the cross-covariance terms.

 Thus, the general M-dimensional multivariate distribution will have 2M terms, the

first M terms corresponding to the auto-covariances, and the second M terms

corresponding to the cross-covariances. As will be discussed in the next section, we can

always rotate the covariance matrix back to its principal directions, in which case the

cross-covariance terms disappear.

 Figure 3.6 shows the three-dimensional crossplot of attributes 1, 2, and 3, with the

surfaces corresponding to g(x) equal to exp(-1/2) and exp(-1). The three lines shown in

Figure 3.6 correspond to the three principal components of the trivariate normal

distribution, and will be discussed in the next section.

72

Figure 3.6: The trivariate crossplot and normal distribution contours corresponding to attributes 1, 2 and 3,
showing levels corresponding to exp(-0.5) and exp(-1.0). The lines emanating from the origin show the

principal axes, discussed in the next section.

3.4.5 Eigendecomposition of the multivariate normal distribution

 From our preceding discussion, note that the multivariate normal distribution can

be written:








 ∆−⋅=
2

exp)(
2

sp x , (3.41)

where)()(12 µxΣµx −−=∆ −T is the Mahalanobis distance and 2/12/)2(−−= ΣMs π is a

scale factor. The surfaces of constant probability density of the multivariate normal

distribution are therefore hyperellipsoids defined by constant Mahalanobis distance.

Although we considered the bivariate and trivariate cases in the last two sections, we can

arrive at a fuller understanding of these hyperellipsoids by finding the principal axes of

∆ 2, using the eigenvalue equation

ii uu iλ=Σ , (3.42)

73

where λ i and ui are the ith eigenvalue and normalized eigenvector corresponding to the

covariance matrix Σ. If we consider the inverse covariance matrix, we can write

ii uu 1
i
−− = λ1Σ . (3.43)

However, since by definition we know that ui
Tui=1, we can rewrite equation (3.43) as

1
i
−− = λi

T
i uu 1Σ . (3.44)

 Equating the right-hand side of equation (3.44) to the Mahalanobis distance

defined in equation (3.41), it is clear that 1
i

2 −= λ∆ and that that the principal axes of the

ellipsoids are equal in length to the inverse square root of the eigenvalues. To illustrate

this for the bivariate case we can use the normalized covariance matrix of equation (3.29)

to find that the two eigenvalues are

.1,10)1(20
1

1
21

22 ρλρλρλλ
λρ

ρλ
+=−=⇒=−+−⇒=

−
−

 The eigenvectors associated with λ1 and λ2 are:









−

=







=⇒








=
















⇒−=

1
1

2
1

0
0

1
21

11

21

11
1 u

u
u
u

1u
ρρ
ρρ

ρλ ,

and









=








=⇒








=
















−

−
⇒+=

1
1

2
1

0
0

1
21

11

22

12
2 u

u
u
u

2u
ρρ

ρρ
ρλ .

 We can then write the eigenvector matrix as









−

=







=

11
11

2
1

2221

1211

uu
uu

U ,

and show that the original correlation matrix can be rotated to its principal axes by the

following equation:









+

−
=








−















 −
=Σ=Λ

ρ
ρ

ρ
ρ

10
01

11
11

1
1

11
11

2
1UU T . (3.45)

74

 Notice in equation (3.45) that the rotated matrix Λ corresponds to the diagonal

eigenvalue matrix, and that the principal components of the bivariate ellipse are given by

the square roots of the eigenvalues, as discussed earlier. Since we are using the

normalized covariance matrix, or correlation matrix, the operation in equation (3.45)

corresponds to a 45o rotation. Another way to look at this is to realize that U corresponds

to the rotation matrix given by









−

==⇒







−

=
11
11

2
1)45(

)cos()sin(
)sin()cos(

)(URR o

θθ
θθ

θ .

 The preceding discussion can be generalized to M dimensions and also to the un-

normalized covariance matrix, in which case the rotation is through an arbitrary angle.

 An alternate and equivalent interpretation to the one given above is

ΣRRX)R(XR)(XR)XRΛ TTTTT === (, (3.46)

where the rotations are applied to both the original matrix and its transpose.

3.5 Multivariate regression

3.5.1 Introduction to multivariate regression

 As shown in Figure 3.1, I assume that we have a target log t, with N samples, and

that we have M attributes ai, also each with N samples. In general, we have a lot more

samples than attributes, so that M << N (for example, in Figure 3.1, we have three

attributes and 69 time samples). We can then write the fundamental formula for linear

prediction as

MMwww aaat +++= "1100 , (3.47)

where []Nttt "21=Tt , and []iNii aaa "21=T
ia . Note that the zeroth

attribute vector is written []111 "=T
0a .

75

 Equation (3.47) can be written more compactly as

w,t A= (3.48)

where



















=

NMN

M

M

aa

aa
aa

A

"
#%##

"
"

1

221

111

1

1
1

, and



















=

Mw

w
w

#
1

0

w .

 As shown in Figure 3.1, there is a second way to visualize the problem. This is to

consider each value in the target log, tj, as the scalar product of the weight vector and a

vector xj, which is an (M+1)-dimensional vector given by the attribute values at a given

sample. This can be written:

N, , ,1jt j …== ,xw j
T (3.49)

where [] []jMjM xx,www "" 110 1and == T
j

T xw . As discussed in the

previous section, the matrix given by the collection of all N vectors xj is the transpose of

the matrix given by the collection of all M vectors ai. That is worth restating at this point.

That is, we can write the two matrices as

[]


















=





















==



















==

MNN

M

M

T

NMN

M

M

M

xx

xx
xx

X

aa

aa
aa

A

…
#%##

…
…

#
…

#%##
…
…

"

1

212

111

1

221

111

10

1

1
1

1

1
1

T
N

T
2

T
1

x

x
x

aaa (3.50)

 The importance of equation (3.50) for an understanding of the problem to be

solved in this dissertation cannot be overstated. The vectors ai are fundamental to the

regression problem, whereas the vectors xj are fundamental to both classification and

basis function neural networks. Figure 3.7 shows the xj vectors in two- and three-

dimensional space. Notice that the two-dimensional crossplot shown in Figure 3.7(a) can

be thought of as the top-down projection of the three-dimensional crossplot shown in

76

Figure 3.7(b). We could extend this analysis to any number of dimensions but cannot

visualize more than three dimensions.

 (a) (b)

Figure 3.7: Crossplots of the attributes shown in Figure 3.1, where (a) shows the first two attributes, and
(b) shows all three attributes. Each point in the crossplots can be thought of as a vector xj without the

zeroth term.

 Since equation (3.47) constitutes an overdetermined problem (that is, more

observations than unknowns), its least-squares solution can be given as

tw T-1T AI)AA λ+= (, (3.51)

where λ is a pre-whitening factor and I is the M x M identity matrix. A complete

discussion of equation (3.51) is given in Appendix 2.

3.5.2 Solving for the weights in the two-dimensional case

 Before discussing the general case, let us consider the two-dimensional case of

equation (3.47), given by

 10 aat 10 ww += . (3.52)

Equation (3.52) can be written in matrix form as

 


























=



















1

02

1

1

1
1

w
w

a

a
a

t

t
t

NN

2

1

###
 . (3.53)

77

 In the linear problem of equations (3.52) and (3.53), w0 is called the intercept and

w1 the gradient. The solution to equation (3.53) can be computed using the least-squares

solution of equation (3.51), giving (with λ = 0)



















−

−









−

=





































=










































































=









∑∑∑

∑ ∑ ∑∑

∑∑

∑

∑

∑∑

∑

===

= = ==

==

=

=

−

==

=

−

N

j
j

N

j
j

N

j
jj

N

j

N

j

N

j
jjjj

N

j
j

N

j
j

N

j
j

N

j
jj

N

j
j

N

j
j

N

j
j

N

j
j

N

2

1

N

N

N

tataN

taata

aaN

ta

t

aa

aN

y

t
t

aaa
a

a
a

aaaw
w

111

1 1 11

2

2

11

2

1

1

1

1

2

1

1

21

1

2

1

211

0

1

111

1

1
1

111
#"

"
##"

"

 (3.54)

 We can therefore write out the full computation for the intercept as

2

11

2

1 1 11

2

0









−

−
=

∑∑

∑ ∑ ∑∑

==

= = ==

N

j
j

N

j
j

N

j

N

j

N

j
jjjj

N

j
j

aaN

taata
w , (3.55)

and for the gradient as

2

11

2

111
1









−

−
=

∑∑

∑∑∑

==

===

N

j
j

N

j
j

N

j
j

N

j
j

N

j
jj

aaN

tataN
w . (3.56)

 If we divide both the numerator and denominator in both equations by N2, the

denominator is the variance given in equation (3.6). Also, the numerator in equation

(3.56) becomes the covariance from equation (3.11).

78

 For the gradient, we find that

21
a

atw
σ
σ= . (3.57)

which is the covariance of a and t divided by the variance of the independent variable a.

 We can also expand equation (3.55) and show that the intercept can be written as

at ww µµ 10 −= , (3.58)

which is the mean of the dependent variable minus the product of the gradient and the

mean of the independent variable. From this statistical interpretation, two important

points can be made. First, the regression of t on a is generally different from the

regression of a on t. To see this, note that the regression of a on t can be written as:

,*
1

*
0 ta ww += (3.59)

where ,2
*
1

t

atw
σ
σ= and ta ww µµ 1

*
0 −= . It is then obvious that w1

*= w1 only if σa
2 =

σt
2, and that w0

*= w0 only if σa
2 = σt

2and µa = µt. In other words, the gradients will be

identical only if the variances of the target log and seismic attribute are identical, and the

intercepts will be identical only if both the means and the variances of the target log and

seismic attribute are identical.

 Second, recall that the normalized regression coefficient can be written as the

covariance of the target log and seismic attribute divided by the product of the standard

deviations (the square root of the variance) of the target log and seismic attribute, or

ta

at
at σσ

σρ = . (3.60)

Thus, if σa = σt the two gradients are also equal to the regression coefficient.

79

3.5.3 The general multivariate case

 The preceding analysis can be extended to multivariate linear regression (Johnson

and Wichern, 1998). Let us rewrite equation (3.47) as

wt Aw += 0 , (3.61)

where [] []MM21 Xwww aaawT "" 21and == . Then, the solution to the

weights can be given as

tA
1σ−= Σw , (3.62)

and

A
T

tw µw−= µ0 , (3.63)

where





















=





















=

MM a

a

a

A

ta

ta

ta

tA and

µ

µ
µ

σ

σ
σ

##
2

1

2

1

µσ .

 Let us first consider the simplest multivariate case where M = 2. Then, we have

the regression equation

22110 aat www ++= . (3.64)

 From equation (3.62), the second two terms are then given by:









−
−

−
=
















=








=

−

taaataaa

taaataaa

aaaaaata

ta

aaaa

aaaa

w
w

121211

221122

2122112

1

2221

2111

2

1

2

1 1
σσσσ
σσσσ

σσσσ
σ

σσ
σσ

w ,

and the first term by

[] ()
21

2

1
21210 aat

a

a
y wwwww µµµµ

µ
µ +−=








−= . (3.65)

80

 In the case where a1 and a2 are independent, the relationship between the

multivariate case and the univariate case is even more obvious. In this case, we find that



















=















=








−

22

2

11

1

2

1

22

11

1

2

1

0
0

aa

ta

aa

ta

ta

ta

aa

aa

w
w

σ
σ
σ
σ

σ
σ

σ
σ

. (3.66)

 In other words, the weights are given by the covariance of the attribute with the

target divided by the covariance of the attribute. This is identical to the univariate case

but is only valid when the attributes are independent. In the next section, I will discuss

how to transform dependent attributes into independent attributes. As an example of our

discussion, Figure 3.8 shows the regression of the target against the first two attributes

shone in Figure 3.1, where (a) shows the points in three dimensions, and (b) shows the

best-fit plane to these points.

 (a) (b)

Figure 3.8: The regression lines for the target and first two attributes from Figure 3.1, where (a) shows the

values themselves and (b) shows the two-dimensional regression, which takes the form of a plane.

81

3.5.4 Multilinear regression with convolutional weights

 Recall that the multilinear regression equation shown in equation (3.47) used

scalar weights. We can extend this equation by letting the weights be vectors. This can

be written:

MMw awawat ∗++∗+= "1100 , (3.67)

where















=

Nt

t
#
1

t is the target vector,
















−
=

)1(

)0(

Lw

w

i

i

i #w is an L-point weight vector with the

first sample at time t = 0,















=

Ni

i

i

a

a
#
1

a is the ith attribute, where i = 1, … , M, a0 = 1, the

identity vector, and * denotes convolution.

 The difference between equations (3.64) and (3.67) is shown schematically in

Figure 3.9.

 (a) (b)

Figure 3.9: A schematic example of the difference between (a) the single-point weights given by equation
(3.65) and (b) the convolutional weights given by equation (3.66) (from Hampson et al., 2001).

82

 Convolution was discussed in Chapter 2 in the context of the convolutional model

of the earth, and is also covered in detail in Appendix 3, where it is shown that linear

equations 3.65 and 3.66 can both be derived from the general theory of multichannel

digital filtering. As a quick review of convolution, note that if we consider the case in

which we have only one attribute, the full convolutional equation can be written using

matrix notation as

aat 0 Ww += 0 , (3.68)

where the convolutional matrix is written in similar fashion to the one shown in equation

(2.27). However, the matrix W shown in equation (2.27) was of dimension N+L-1 rows

by N columns, so that the output also had N+L-1 points, rather than N points as shown in

equation 3.66. To avoid this problem, we truncate matrix W to N rows, with the term

w(0) in both the upper left and lower right elements of the matrix.

 Let us consider an example in which N = 4, L = 3 and M = 2. That is, we have

two attributes with four values each, and an operator of length three points. This gives us

the equation





































+





































+



















=



















42

32

22

12

221

222

22

2

41

31

21

11

111

111

11

1

0

4

3

2

1

)0()1()2(0
0)0()1()2(
00)0()1(
000)0(

)0()1()2(0
0)0()1()2(
00)0()1(
000)0(

1
1
1
1

a
a
a
a

www
www

ww
w

a
a
a
a

www
www

ww
w

w

t
t
t
t

 (3.69)

 Often, it is preferable to use a symmetrical wavelet, with time zero at the centre,

as shown in Figure 3.19(b). For our three point case of equation (3.68) this would be

written [])1()0()1(+−= wwwTw , and the resulting matrix expression is then given by

the matrix equation

83





































+
−+

−+
−

+





































+
−+

−+
−

+



















=



















42

32

22

12

22

222

222

22

41

31

21

11

11

111

111

11

0

4

3

2

1

)0()1(00
)1()0()1(0

0)1()0()1(
00)1()0(

)0()1(00
)1()0()1(0

0)1()0()1(
00)1()0(

1
1
1
1

a
a
a
a

ww
www

www
ww

a
a
a
a

ww
www

www
ww

w

t
t
t
t

. (3.70)

 Collecting terms, we can rewrite equation (3.69) as

"+



















++



















+



















−+



















=



















31

21

11
1

41

31

21

11

1
41

31

21

10

4

3

2

1 0

)1()0(

0

)1(

1
1
1
1

a
a
a

w

a
a
a
a

w
a
a
a

ww

t
t
t
t

, (3.71)

where I have only considered the first attribute. The interpretation of equation (3.71) is

that the effect of a convolutional operator is to create a new set of attributes that are

simply shifted versions of the original attributes. Thus, the number of effective attributes

in our process is the number of actual attributes multiplied by the operator length L.

 An alternate interpretation of equation (3.71) can be found by re-expressing this

equation with the weighting coefficients in column format, or

"+
















+

−



















+=



















)1(
)0(
)1(

0

0

1

1

1

3141

213141

112131

1121

0

4

3

2

1

w
w
w

aa
aaa
aaa

aa

w

t
t
t
t

 . (3.72)

 Equation (3.72) can be solved using the generalized inverse approach. Dropping

the zero weight and attribute number, and substituting equation (3.71) into equation

(3.51), we get

84
























































































=

















+

−
−

4

3

2

1

321

4321

432

1

34

234

123

12

321

4321

432

1

1

1

0

0

0

0

0

0

)1(
)0(
)1(

t
t
t
t

aaa
aaaa

aaa

aa
aaa
aaa

aa

aaa
aaaa

aaa

w
w
w

, (3.73)

or, in more complete form as

















































=
















+

−

∑

∑

∑

∑∑∑

∑∑∑

∑∑∑

=
+

=

=
−

−

==
+

=
+

=
+

==
+

=
+

=
+

=

3

1
1

4

1

4

2
1

1

3

1

2
3

1
1

2

1
2

3

1
1

4

1

2
3

1
1

2

1
2

3

1
1

4

2

2

1

1

1

)1(
)0(
)1(

j
jj

j
jj

j
jj

j
j

j
jj

j
jj

j
jj

j
j

j
jj

j
jj

j
jj

j
j

ta

ta

ta

aaaaa

aaaaa

aaaaa

w
w

w
. (3.74)

 Equation (3.74) can be extended for all of the attributes and involves nonzero lag

autocorrelations and cross-correlations. It is known as the Wiener-Levinson equation

(Claerbout, 1976), and has Toeplitz structure. In seismic processing terms, we are de-

convolving the attributes to get a better match to the log values.

3.6 A practical methodology

3.6.1 Introduction

 In the preceding five sections, I have discussed the theory of multivariate statistics

and multilinear regression. This gives us the theoretical basis for reservoir prediction

using multiple seismic attributes. In this section, I will describe a practical

implementation of this methodology. This discussion is based on work described by

Russell et al. (1997) and Hampson et al. (2001). The two key problems in the analysis

can be summarized as follows: which attributes should be used, and which of these

attributes are statistically significant? These two questions will be addressed in the next

two sections.

85

3.6.2 Finding the best attributes

 In Chapter 2, I discussed the various seismic attributes that can be used to predict

reservoir parameters. This was only a partial list, as many more attributes can be devised

which are either combinations of those discussed in Chapter 2, or are based on new

algorithms. But how many attributes should we use, and in what order? The procedure

adopted here is to try various combinations of attributes and minimize the least-squares

error between the training samples, which are the values on the logs to be predicted, and

the attributes. The least-squares error criterion is given by

∑
=

−−−−=
N

j
jMMjj awawwt

N
E

1

2
110

2)(1 … . (3-75)

As discussed in section 3.5.4, the weights can also be vectors, which is equivalent to

introducing new time-shifted attributes equal to the number of attributes multiplied by the

length of the operator. The most obvious approach is to find the best set of M attributes

from a total collection of T attributes. If we do this by a procedure called the “exhaustive

search”, in which the least-squares error is found for each possible combination and then

we choose the set with the lowest error, the result is that we must compute a prohibitive

number of cases.

 An efficient method of finding the attributes is a technique called step-wise

regression (Masters, 1995), which consists of the following steps:

(1) Find the best attribute by an exhaustive search of all the attributes, using equation

 (3.75) to compute the prediction error for each attribute (i.e. M = 1) and choosing

 the attribute with the lowest error.

(2) Find the best pair of attributes from all combinations of the first attribute and one

 other. Again, the best pair is the pair that has the lowest prediction error from

 equation (3.75), with M = 2.

(3) Find the best triplet, using the pair from step (2) and combining it with each other

 attribute.

86

(4) Continue the process as long as desired.

 Step-wise regression therefore gives us a very efficient way of finding the best set of

M attributes, since these will have the lowest least-squared error. But how do we choose

the value for M? Actually, this method will indicate that M should be as large as

possible, since increasing the number of attributes will either decrease the error or keep it

the same. (As pointed out by Hampson et al. (2001), if this were not true, all we would

have to do is set the weight of the last attribute to zero to make it true.) In the next

section, we will discuss a method for finding the best value for the number of attributes.

3.6.3 Cross-validation

 Step-wise regression will give us a set of attributes that is guaranteed to reduce

the total error as the number of attributes goes up. So when do we stop? This is done

using a technique called cross-validation, in which we leave out a training sample and

then predict it from the other samples. We then re-compute the error using equation

(3.75), but this time from the training sample that was left out. We repeat this procedure

for all the training samples and average the error, giving us a total validation error. This

computation is done as a function of the number of attributes, and the resulting graph

usually shows an increase in validation error past some small number of attributes such as

five or six. Rather than perform this procedure for all samples, we perform it on a well-

by-well basis. This is a reasonable assumption and speeds up the process on the

computer.

 I will now apply all of this theory to a case study from the Blackfoot area of

central Alberta.

87

3.7 A multiattribute case study

3.7.1 Introduction

 In this section, I will use the multivariate approach just discussed to first predict

well logs from combinations of other well logs, and, second, using these new well logs,

predict well log parameters from multiple seismic attributes over a 3D volume. In both

cases, we will be predicting S-wave sonic logs.

 I will be using a seismic dataset acquired over the Blackfoot area of Alberta. A

3C-3D seismic survey was recorded in this area in October 1995, with the primary target

being the Glauconitic member of the Mannville group. The reservoir occurs at a depth of

around 1550 m, where Glauconitic sand and shale fill valleys incised into the regional

Mannville stratigraphy. The objectives of the survey were to delineate the channel and

distinguish between sand-fill and shale-fill. The well log input consists of nine wells,

each with P-wave sonic, density, and gamma ray, and three with S-wave sonic. Figure

3.10 shows the distribution of wells throughout the 3D survey area, where the three wells

that contain S-wave logs have been indicated with arrows.

Figure 3.10: The map from the Blackfoot area showing the wells used in the study. Wells 08-08, 04-16
and 12-16 contain S-wave sonic logs.

88

3.7.2 Predicting S-wave curves from other log curves

 We will now use the multivariate procedure to predict new pseudo-S-wave logs at

each of the six well locations in which the S-wave curve has not been measured. The

logs from one of the wells in which the S-wave sonic log is present, well 08-08, are

shown in Figure 3.11.

Figure 3.11: Wells 08-08, displaying the density, P-wave, S-wave, and gamma ray log curves.

 The traditional approach to S-wave curve prediction (Castagna et al., 1985) is to

find the linear regression fit between the P-wave and S-wave curves given by

PS bVaV += . (3.76a)

89

 The coefficients derived in the above reference were given as

SP V16.1s/m1360V += , (3.76b)

which can be re-arranged for VS as the dependent variable. Figure 3.12 shows the

application of equation (3.76b) to the P-wave sonic logs from each of the three wells,

with the correct S-wave log superimposed on the computed log. Although the fit for the

wells is reasonable in Figure 3.12, we could do better by finding a local fit. In fact, we

will extend our analysis beyond just a fit between P-wave and S-wave logs.

 (a) (b) (c)

Figure 3.12: The application of equation (3.76) using the coefficients derived by Castagna et al. (1985),
where (a) shows well 04-16, (b) shows well 08-08, and (c) shows well 12-16. In all cases the blue line

shows the original S-wave log and the red line shows the computed S-wave log.

90

 Figures 3.13 through 3.16 show the correlations between S-wave log and the

density log, gamma ray log and P-wave log for wells 04-16, 08-08, and 12-16. For each

of these regressions, we can write the generalized form of equation (3.64) as

bLaVS += , (3.77)

where L represents an arbitrary log. In addition to the a and b coefficients, we will also

derive the correlation coefficient and RMS error for each of the regressions.

 For well 04-16, shown in Figure 3.13, it is obvious that the best fit in a least-squares

sense is with the P-wave curve. It would appear that the second best is with the gamma

ray curve, and the third best is with the density curve.

(a) (b)

 VP (m/s)

(c)
Figure 3.13: The regression fits to the S-wave velocity log from the curves for well 04-16, between the

Mannville and Mississippian tops, where (a) is versus density, (b) is versus gamma ray, and (c) is versus P-
wave velocity.

91

 However, when we look at the correlation coefficients and errors given in Table 3.3,

we see that the density fit is actually slightly better than the gamma ray fit. Notice that

the gamma ray has a negative correlation with the S-wave log.

S-wave velocity vs: P-wave velocity Density Gamma Ray
Intercept (a) -366.95 -1182.76 2948.41

Slope (b) 0.634 1.357 -7.434
Correlation Coeff. 0.9305 0.5030 -0.4845

RMS Error 92.251 217.683 220.329

Table 3.3: Regression parameters for well 04-16.

 The crossplots for well 08-08 are shown in Figure 3.14, and the correlation

coefficients and errors are given in table 3.4. Notice that the P-wave fit is the best, the

density fit is second, and the gamma ray fit is the third best .

(a) (b)

VP (m/s)

(c)
Figure 3.14: The regression fits to the S-wave velocity log from the curves for well 08-08, between the

Mannville and Mississippian tops, where (a) is versus density, (b) is versus gamma ray, and (c) is versus P-
wave velocity.

92

S-wave velocity vs: P-wave velocity Density Gamma Ray
Intercept (a) 182.507 -482.073 2541.01

Slope (b) 0.496 1.070 -3.586
Correlation Coeff. 0.7766 0.5376 -0.2460

RMS Error 140.992 188.716 216.921

Table 3.4: Regression parameters for well 08-08.

 Finally, the crossplots for well 12-16 are shown in Figure 3.15, and the correlation

coefficients and errors given in table 3.5. Note now that the P-wave fit is the best, the

gamma ray fit is now second, and the density is third. Both the density and gamma ray

logs have correlation coefficients below 0.5, indicating a poor fit.

 (a) (b)

VP (m/s)

(c)

Figure 3.15: The regression fits to the S-wave velocity log from the curves for well 12-16, between the
Mannville and Mississippian tops, where (a) is versus density, (b) is versus gamma ray, and (c) is versus P-

wave velocity.

93

S-wave velocity vs: P-wave velocity Density Gamma Ray
Intercept (a) 932.143 661.755 2567.9

Slope (b) 0.321 0.631 -4.254
Correlation Coeff. 0.4901 0.3283 -0.3864

RMS Error 214.734 232.702 227.22

Table 3.5: Regression parameters for well 12-16.

 The result of combining all three wells is shown in Table 3.6, arranged in order of

increasing RMS error and decreasing correlation coefficient. As expected, the P-wave

log correlates best, followed by the density log, followed by the gamma ray log. This

would suggest that we will find the coefficients for the multilinear regression given by

γρ dcbVaV PS +++= , (3.78)

where ρ = density, and γ = gamma ray.

Table 3.6: Regression parameters for all three wells, where the S-wave target is S-wave velocity and the P-
wave attribute is P-wave velocity.

 The log attributes and coefficients in equation (3.78) were determined using the

techniques described in the last section, in which cross-validation is used to determine the

optimal ordering of attributes. The results of performing the linear multi-attribute

analysis are shown in Figure 3.16, which shows the graphical training and validation

error, and Table 3.7, which shows the numerical errors. Note that the training error is the

error using all three wells in the prediction, and the cross-validation error is the error

when the well to be predicted is left out of the training.

94

Figure 3.16: The multi-regression fits to the S-wave log from the curves from wells 12-16, 08-08, and 04-
16, between the Mannville and Mississippian tops, where the training error is shown by the black dots and

validation error is shown by the red dots).

Table 3.7: The numerical results of the analysis shown in Figure 3.16.

 Two results are clear from Figure 3.16 and Table 3.7. First, when the multilinear

regression technique is used, the gamma ray log is the second best log attribute to use.

Second, the validation error shows that the error increases when the density log is

included, indicating that the optimum fit is found by using only the P-wave and gamma

ray logs in the multi-linear regression. The computed coefficients were

γ505.3V461.047.656V PS −+= , (3.79)

The negative coefficient for the gamma ray log in equation (3.79) is due to the negative

correlation of the gamma ray log with the S-wave log.

 A better fit can often be introduced by applying nonlinear functions, such as the

inverse, log, square and square root, to the attributes before performing the regression fit.

Table 3.8 shows the numerical error for this fit.

95

Table 3.8: The numerical results when nonlinear functions were applied to both the target and the attribute
in the analysis of Figure 3.16.

 The optimum nonlinear functions were found to be the square root of gamma ray

and the inverse of density. The density log is also again seen to increase the validation

error, and therefore is dropped. The computed regression coefficients are

γ46.60V465.042.893V PS −+= , (3.80)

 As a comparison with Castagna’s equation (3.76), the regression coefficients were

also computed using the P-wave velocity alone, and were found to be

PS V480.0125.269V += (3.81)

 The fit between the resulting pseudo-sonic logs and the original logs in the three

wells is shown in Figures 3.17 and 3.18, where Figure 3.17 shows the training results and

Figure 3.18 shows the validation result. In both cases, equation (3.79) is shown in (a),

and equation (3.80) is shown in (b).

 By comparing Figures 3.17(a) and (b) it is obvious that the addition of the gamma

ray log has improved the fit. The improvement is quite small in well 04-16, where the

correlation between S-wave and P-wave values was high, but is noticeable in the deeper

section of well 08-08. Also, notice that the correlation coefficient has gone from 0.73, in

the single regression case, to 0.78, in the multiple regression case.

96

 (a) (b)

Figure 3.17: The result of applying the training results for (a) equation (3.72), and (b) equation (3.71),
where the black lines show the original logs and the red lines show the computed logs.

 (a) (b)

Figure 3.18: The result of applying the validation results for (a) equation (3.72), and (b) equation (3.71),
where the black lines show the original logs and the red lines show the computed logs.

97

 Figure 3.18, which shows the validation results, also shows improvement between

the single regression case and the multiple regression case. As expected, the correlation

coefficients are slightly worse in this case, and the correlation coefficient has now

improved from 0.68, in the single regression case, to 0.74 in the multiple regression case.

 Equation (3.71) was then applied to the P-wave and gamma ray logs in the other

six wells shown in Figure 3.20, to produce pseudo-S-wave sonic logs in each well. These

pseudo-well logs will be used in the next part of this study.

3.7.3 Seismic analysis, inversion, and AVO

 Our next objective is to predict pseudo-well log curves at each seismic trace

location. Three steps are involved in the prediction of these pseudo-well log curves. The

first step involves extracting the composite seismic at each well location (an average of

the traces in a circular radius around the well) and the correlation of the well log to this

composite trace, using the sonic log to build the depth-time relationship. The second step

is the training step, in which we build the multi-linear relationship between the well log

curve and the seismic trace attributes. The third step involves applying the multilinear

relationship to the seismic trace locations which do not have wells, using the seismic

attributes derived at these locations.

 Having created pseudo-S-wave sonic logs in the six wells of Figure 3.10 that did

not originally contain S-wave logs, we now have a full suite of logs: P-wave, S-wave,

density, and gamma ray, for each of the nine wells shown on that map. I will now use the

multilinear regression approach to create pseudo-logs for each of the traces in the seismic

volume shown on the map. Pseudo-volumes will be created for two of the well log

curves: S-wave and P-wave sonic.

98

 Let us first examine the input seismic data that will be used for the analysis.

Figure 3.19 shows a set of CDP super-gathers over inline 27 from the map in Figure 3.10,

with the P-wave sonic from well 08-08 spliced in at its correct location. These

supergathers were created by performing partial stacks over five separate offset ranges in

the original dataset, and then re-grouping these offset stacks into a set of gathers.

Figure 3.19: The supergathers from inline 27 on the map in Figure 3.10

 The stack of the CDP gathers is shown in Figure 3.20. Note that the P-wave sonic

log has again been spliced in at its tie point, and I have picked two of the seismic

horizons of interest, the Mannville and Lower Mannville. The elliptical region highlights

an area that will be later compared to the RP0 section in Figure 3.34

99

Figure 3.20: The stack of the supergathers from inline 27 shown in Figure 3.19. The elliptical region
highlights an area that will be compared later to the RP0 section in Figure 3.34.

 The P-wave sonic log shown in Figures 3.19 and 3.20 has been correlated with the

seismic data. Correlation of the P-wave sonic log with the seismic data involves 2 steps.

First, we estimate an optimum wavelet from the seismic data. Figure 3.21(a) shows the

wavelet that was extracted from the seismic data using the autocorrelation method, which

assumes that since the reflectivity has a white spectrum the autocorrelation of the seismic

trace is equivalent to the autocorrelation of the wavelet. By taking the autocorrelation of

the trace, we have lost the phase information about the wavelet, so we must assume we

know the phase. In this case, we have assumed a zero phase wavelet. Figure 3.21(b)

shows the amplitude and phase spectra of the wavelet.

 (a) (b)

Figure 3.21: (a) The extracted wavelet from the stack of Figure 3.20, and (b) the amplitude (blue) and
phase (red) spectra of the wavelet.

100

 In the second step, the wavelet shown in Figure 3.21 is used to compute a

synthetic seismogram with the reflectivity derived from the seismic, as discussed in

section 2.8.1. We then correlate the log to the seismic, as shown in Figure 3.22.

Figure 3.22: The log correlation procedure for well 08-08. The sonic and density logs are shown on the
left, and the seismic tie is shown on the right.

 In Figure 3.22 the blue trace shown in the centre has been created by convolving

the wavelet shown in Figure 3.21 with the reflectivity derived from the sonic and density

logs shown on the left of the figure. The red trace is extracted by averaging the seismic

traces in a radius from around the well. As discussed in Chapter 2 on seismic attributes,

stacking is performed to increase the signal-to-noise ratio of the seismic data. However,

it gives us the average amplitude of the CDP gather, and does not correspond to a

physically meaningful reflectivity. Using equation (2.20) for extracting AVO attributes, I

therefore extracted the P-wave reflectivity (RP0) and the S-wave reflectivity (RS0) from

the seismic gathers shown in Figure 3.19. Figure 3.23 shows the P-wave reflectivity.

Although quite similar to the stack shown in Figure 3.20, there are some differences.

One such difference has been highlighted by the elliptical region shown on the figure.

101

Figure 3.23: The P-wave intercept (RP) of the supergathers from inline 27 shown in Figure 3.19. The

elliptical region highlights a difference with respect to the stack in Figure 3.20.

 Figure 3.24 shows the pseudo-S-wave reflectivity, again extracted using equation

(2.20). It is important to note that the S-wave reflectivity responds quite differently to the

subsurface than the P-wave reflectivity. This can be seen by comparing the seismic data

under the picked events. For example, the S-wave reflectivity close to the well at the

Lower Mannville event on the S-wave section in Figure 3.24 is a trough, whereas the P-

wave reflectivity on the same event in Figure 3.23 is a peak.

Figure 3.24: The pseudo-S-wave (RS0) section derived from the supergathers from inline 27 shown in

Figure 3.19.

102

 Now that we have extracted both the P-wave and S-wave reflectivity, they can be

inverted to P and S-impedance, using the model-based inversion scheme described in

Chapter 2. Figure 3.25 shows the inverted P-wave impedance volume. The inserted

curve is the P-wave velocity.

Figure 3.25: The inverted P-wave impedance section derived from the RP0 volume in Figure 3.23. The

colour bar on the right displays impedance values in units of m/s·g/cc.

 Figure 3.26 next shows the inverted S-wave impedance volume. The inserted

curve is the S-wave sonic log.

Figure 3.26: The inverted S-wave impedance section derived from the RS0 volume in Figure 3.24. The

colour bar on the right displays impedance values in units of m/s·g/cc.

103

3.7.4 Creating S-wave pseudo-logs over the seismic volume

 I will now use the multilinear regresssion approach to predict pseudo-logs,

starting with the prediction of the S-wave log over the complete seismic volume. The

input to the S-wave prediction consists of the nine S-wave sonic logs created in the last

section, the RS stack of Figure 3.24 and the inverted S-wave volume of Figure 3.26. To

compute the weighting coefficients, I used a 7-point convolutional set of weights. The

results of the training analysis are shown in Table 3.9 and in Figure 3.27, where the table

shows the actual attributes, and the figure shows the errors.

Table 3.9: The computed attributes for the creation of pseudo-S-wave logs by multilinear regression.

Figure 3.27: The training error (black dots) and validation error (red dots) for the creation of pseudo-S-

wave logs by multilinear regression

104

 By observing the validation error, we note that only the first five attributes are

statistically significant, since the error starts to increase after this point. These five

attributes were then used to create estimates of the pseudo-S-wave logs at the nine wells

ties. The first four well ties are shown in Figure 3.28, where (a) shows the training result,

and (b) shows the validation result.

(a)

(b)

Figure 3.28: The creation of pseudo-S-wave logs at the well ties, showing (a) the training result and (b) the
validation result. The black curves are the true logs, and the red curves are the predicted logs.

105

 Finally, Figure 3.29 shows the application of the multilinear regression

coefficients to the attributes along line 27 to create pseudo-S-wave-velocity curves.

Notice that the section is now given in m/s, rather than in impedance units. Also, the

shear-wave sonic log from well 08-08 has been spliced in, showing an excellent fit at the

well tie.

Figure 3.29: The predicted pseudo-S-wave velocity section for line 27. The colour bar on the right
displays impedance values in units of m/s.

3.7.4 Creating P-wave pseudo-logs over the seismic volume

 I will now use the multiattribute approach to predict the pseudo-P-wave-velocity

log over the seismic volume. The input consists of the nine measured P-wave sonic logs,

the RP0 stack of Figure 3.23 and the inverted P-wave volume of Figure 3.25. As with the

S-wave study, a convolutional set of weights were used with an operator length of 7

samples. The results of the training analysis are shown in Table 3.10 and Figure 3.30

where the table shows the list of attributes and the figure shows the training and

validation error. By observing the validation error, we can note that only the first four

attributes are statistically significant. These attributes are the P-impedance, one filter

slice of the RP0 stack, the integrated absolute amplitude of the RP stack, and a second

filter slice of the RP0 stack.

106

Table 3.10: A list of the attributes used to predict P-wave velocity.

Figure 3.30: The multi-regression analysis for the creation of pseudo-P-wave logs, where the training error

is shown by the black dots and the validation error by the red dots.

 These four attributes were then used to create estimates of the pseudo-P-wave-

velocity logs at the nine wells ties. The first four well ties are shown in Figure 3.31,

where (a) shows the training result, in which all wells were used in the prediction, and (b)

shows the validation result, in which the well being predicted has been left out of the

training.

107

(a)

(b)

Figure 3.31: The creation of pseudo-P-wave-velocity logs at the well ties, where (a) shows training result
with all wells, and (b) shows the validation result. The black curves are the true logs, and the red curves

are the predicted logs.

108

 Figure 3.32 shows the application of the multilinear regression coefficients to the

attributes along line 27, to create pseudo-P-wave curves. The section is now given in

m/s, rather than in impedance units. Also, the P-wave sonic log from well 08-08 has

been spliced in, again showing an excellent fit at the well tie.

Figure 3.32: The predicted pseudo-P-wave-velocity section for line 27. The colour bar on the right
displays impedance values in units of m/s.

3.8 Principal components analysis

 In our study so far, I have chosen a combination of M attributes with which to

predict our reservoir parameter of interest. Often, it is advantageous to reduce this

number to L attributes, where L < M. This becomes the statistical problem of mapping a

higher-dimensional space into a lower-dimensional space, and can be solved using

principal components analysis (Johnson and Wichern, 1998, Bishop, 1995). In this

section, I will explain the principal components analysis method as it applies to our

problem, and also show an example based on the datasets displayed in the earlier

sections.

109

 Note that our input data can be represented by the N x M matrix

[]















=

















==















==

NMM

N
T

MNM

N

aa

aa
A

xx

xx
X

"
#%#

"
#

"
#%#

"
"

1

111

1

111

T
M

T
1

N1

a

a
xx , (3.82)

where N is the number of seismic samples in our training dataset and M is the number of

input attributes.

 One obvious approach to reducing the dimensionality of the problem is to remove

the last few rows from matrices X and AT in equation (3.82). That is, simply reduce the

number of attributes. However, since we have spent a lot of effort finding both the

optimum number of attributes and their order, this would not be a very good approach. A

better approach is to design a transform matrix U such that we transform input matrix X

into a new matrix P by the linear operation

XUP T= , (3.83)

where P is called the principal component matrix, and can be written

[]















=

















==















==

NMM

N
T

MNM

N

qq

qq
Q

pp

pp
P

"
#%#

"
#

"
#%#

"
"

1

111

1

111

T
M

T
1

N1

q

q
pp . (3.84)

 In equation (3.84) the transpose of matrix P has been given a different name, Q, to

emphasize the fact that there is a one-to-one correspondence between P and X, and Q and

A, when comparing equations (3.84) and (3.82). Also, note that P is composed of N

vectors pj, and Q is composed of M vectors qi, again in direct comparison with the vectors

xj and ai. By referring to Figure 3.1, we can therefore think of the pj vectors as

transformed sample vectors xj and the qi vectors as transformed attribute vectors ai. The

qi vectors, which are the rows of matrix P, are referred to as the principal components.

110

 The transform matrix U is a rectangular matrix of dimension M x M and can be

written

 []















=

















=⇒















==

MMM

M
T

MMM

M

uu

uu
U

uu

uu
U

"
#%#

"
#

"
#%#

"
"

1

111

1

111

T
M

T
1

M1

u

u
uu . (3.85)

 To find the optimum values for the matrix U, note that by combining equations

(3.83) through (3.85), we can write the transposed qi vectors individually as

T
M

T
2

T
1

T
M

T
M

T
M

T
2

T
1

T
2

T
2

T
M

T
2

T
1

T
1

T
1

aaauq

aaauq
aaauq

MMMM

M

M

uuuX

uuuX
uuuX

+++==

+++==

+++==

"
#####

"
"

21

22221

11211

 (3.86)

 From equation (3.86) it can be seen that the transformed attribute vectors are

given either as the product of the transposed ui vector and the sample matrix X, or by the

weighted sum of the original attribute vectors ai, where the weights are the individual

components of the ui vectors. From a standard textbook in multivariate statistics

(Johnson and Wichern, 1998) it can be shown that the variance of vector qi can be written

i
T
i uu Σ=2

iσ , (3.87)

and that the covariance of two vectors qi and qk can be written

k
T
i uu Σ=ikσ , (3.88)

where Σ is the covariance matrix of X, assuming that X has zero mean. The ui vectors are

then found which maximize the variances of each of the principal components qi and set

the covariance values to zero, with the extra condition that the vectors are orthonormal.

This can be written





≠
=

==
.,0
,,1

ki
ki

ikδk
T
i uu (3.89)

111

 We have already encountered such a set of vectors in our discussion in section

3.4.4 on the eigendecomposition of the multivariate Gaussian distribution. These were

the normalized eigenvectors. Note that if we multiply each side of the earlier equation

(3.42) by T
iu , we get the equivalent of equation (3.80). That is:

iii λλλ ==⇒= i
T
ii

T
iii uuuuuu ΣΣ , (3.90)

where we have used the orthonormal condition given in equation (3.89). Therefore, the

maximized variances are equivalent to the eigenvalues of matrix X. The first principal

component computed in equation (3.90) is thus derived by using the eigenvector

associated with the largest eigenvalue, and so on. Once the principal component

transform has been computed, we can achieve our dimensionality reduction by dropping

principal components based on a sum-of-error criterion (Bishop, 1995) that uses the

eigenvalues. That is, we choose the L – M smallest eigenvalues such that

∑
+=

=
M

Li
iE

12
1 λ . (3.91)

 Several other points can be noted. First, the transform given in equation (3.83) is

fully invertible. That is, we can transform matrix P back to matrix X simply by

multiplying by U. This can be seen as follows:

XXUUPU T == , (3.92)

since UUT = I. Second, the matrix Σ can be reconstructed using the formula
TUUΛ=Σ , (3.93)

where















=Λ

Mλ

λ

00
00
001

% is a matrix that contains the eigenvalues along its main

diagonal and zeros elsewhere.

 Let us now consider a real data example of the preceding theory. Figure 3.33

shows a well log curve to be predicted on the left, and seven attributes to its right. This

figure is an extension of Figure 3.1, which shows only the first three attributes.

112

Figure 3.33: The red trace on the left shows the well log curve to be predicted and the seven curves on the
right show the extracted attributes.

 Taking the covariance matrix of the seven attributes shown in Figure 3.33, and

computing the eigenvalues of eigenvectors of this matrix, gives us





























=

0027.0000000
00262.000000
000537.00000
0001553.0000
00002255.000
000004478.00
0000000000.1

Λ ,

and





























−−−−
−

−−−
−−−−

−−
−−−−

−−−−−−

=

0074.01175.00014.06494.04565.05962.00242.0
7635.03381.01715.00988.01153.00772.04944.0
5859.06238.00756.01425.00281.00415.04889.0

0672.04131.07288.00817.01624.00974.05011.0
1557.02038.00759.01054.08220.04771.01188.0

0120.01659.00330.07178.02408.06306.00178.0
2120.04930.06533.01233.01324.00451.05004.0

U ,

113

where the eigenvalues have been sorted from largest to smallest and scaled so that the

largest eigenvalue is equal to 1.0. Figure 3.34 is a display of the seven principal

components of the attributes shown in Figure 3.33. That is, using equation (3.83) the

transpose of matrix U is multiplied times the matrix X, which contains the values of the

attributes as its seven rows. The resulting matrix P contains the attributes shown in

Figure 3.33 as its seven rows. The principal components shown in Figure 3.34 have been

ordered from largest on the left to smallest on the right. We can now use a subset of

these principal components to reconstruct the well log curve shown on the far left.

Figure 3.34: The red trace on the left shows the well log curve to be predicted and the seven curves on the
right show the principal components computed from the seven attributes of Figure 3.33. These principal

components are ordered from largest to smallest.

114

CHAPTER 4 : LINEAR METHODS FOR CLASSIFICATION

4.1 Introduction

 In the previous chapter I discussed the mathematical and statistical basis of multi-

linear regression methods as they relate to the prediction of reservoir parameters from

seismic attributes. In this chapter I will discuss linear classification methods. As stated

in Chapter 1, there is a close relationship between regression and classification. In

regression problems, a continuous set of values is assigned to our inputs. That is, for

each vector of attributes at a given time sample, we calculate a unique output value. In

classification problems, we assign the output values to a discrete set of classes. The

number of classes is determined in advance, using a training dataset. In this chapter I will

be performing supervised classification, in which we use a training dataset, rather than

unsupervised classification, in which we look for natural classes within the data.

 The term discrimination is almost synonymous with the term classification.

Discrimination is used to perform classification and involves computing a linear

discriminant function. Classification is a more general nonlinear problem and is based in

Bayesian statistics. I will therefore first look at the general theory of Bayesian

classification and then show that the linear discriminant function can be thought of a

subset of Bayesian theory in which we assume that each class has similar statistics. I will

then derive the Fisher linear discriminant and apply this approach to a seismic example.

 I will then show how the single-layer perceptron neural network can be thought of

as a type of linear discriminant, and use a simple AVO classification problem to illustrate

this method and its limitations. Finally, I will discuss the generalized linear discriminant.

115

4.2 Bayesian classification

4.2.1 Theory

 In this classification technique, we attempt to classify the multiattribute samples

in a seismic volume, xj, into the classes Ck, where k = 1,…, K. To determine the class

membership of an arbitrary input vector x, I introduce the concept of the discriminant

function yk(x) (Duda et al., 2001). Membership of x in a particular class Ck is found if

. allfor),()(kjyy jk ≠> xx (4.1)

In the general case, the decision boundary between two classes is found by setting yk(x) =

yj(x). Note that for the two class case, we can write:

y(x) = y2(x) – y1(x) = 0, (4.2)

as the boundary between the two classes.

 To find the discriminant function, I will use Bayes’ Theorem (Duda et al., 2001).

In Appendix 4 an overview of Bayes’ Theorem is given, using both discrete and

continuous examples. The general form of Bayes’ Theorem can be written

() () ()
() ,
BP

APA|BPB|AP = (4.3)

where () =AP the unconditional probability of event A, () =BP the unconditional

probability of event B () =BAP | the conditional probability of A given B, and

() =ABP | the conditional probability of B given A. When we apply Bayes’ Theorem to

the classification problem defined above, we find that the posterior probability)|C(P k x

for the kth cluster can be written as:

)(
)()()|(

x
|xx
p

CPCPCP kk
k = , (4.4)

where ∑
=

=
K

k
kk CPCPp

1
)()()(|xx ,)(kCP |x is the likelihood of x given ck, P(Ck) is the

116

prior probability of class Ck , and p(x) is a normalization factor, often called the evidence.

A common form of yj is given by taking the logarithm of equation (4.4), or

[] [] [])(ln)(ln)(ln)(kkkk CPCPCPy +== |xx|x , (4.5)

where I have dropped the normalization factor since it is common to each function.

 To implement Bayes’ Theorem, we must assume some probability distribution for

the likelihood function. A common approach is to use the multivariate normal

distribution, which was discussed at length in Chapter 3. However, I will now assume

that each class has its own mean and covariance function. That is





 −Σ−−

Σ
= −)()(

2
1exp

)2(
1)|(1

2/12/ kk µxµxx k
T

k
MkCp

π
, (4.6)

where µk is the M-dimensional vector of means of the kth cluster, given by



















== ∑
=

Mk

k

k
N

j
j

k
k

k

N
µ

µ
µ

#
2

1

1

1 xµ ,

and Σk is the M x M dimensional covariance matrix given by

[]




















=



















−

−
−

−−−=Σ

k
MM

k
M

k
M

k
M

kk

k
M

kk

k

k

k

kkk
k

k N
σσσ

σσσ
σσσ

"
#%##

"
"

#
…

21

22221

11211

,,,1

µx

µx
µx

µxµxµx

N

2

1

N21 k
.

 Substituting equation (4.6) into equation (4.5) leads to

)(lnln
2
1)2ln(

2
)()(

2
1)(1

kkk
T

k CPMy +Σ−−−Σ−−= − πkk µxµxx , (4.7)

which can be rewritten as the general quadratic form:

k
T
kk

T
k wWy 0)(++= xwxxx , (4.8)

where 1

2
1 −Σ−= kkW , kkk µw 1−Σ= , and)(lnln

2
1

2
1 1

0 kkkk
T
kk CPw +Σ−Σ−= − µµ .

117

The discriminant function between two arbitrary clusters, k and j, can therefore be written

(Duda et al., 2001):

0)()()(wWyyy T
jk ++=−= xwxxxxx T , (4.9)

where .wwwand,W-WW j0k00jjk −=−== ww w, k

 For the general case in which each cluster of points has a different covariance

matrix, the separation between clusters would be defined by quadratic functions (Duda et

al., 2001), which can take the shape of hyperplanes, hyperspheres, hyperellipsoids, etc.

However, there is a simpler case that will lead to a linear discriminant function. If we

assume that the covariance matrices for each cluster are identical (or Σk = Σ), we find that

matrix W in equation (4.8) becomes independent of k. The discriminant function between

two arbitrary clusters, k and j, can therefore be written

0)()()(wyyy jk +=−= xwxxx T , (4.10)

where)1
jk(µµw −Σ= − , and

)(
)(ln

2
1

2
1 11

0
j

k
j

T
jk

T
k CP

CPw +Σ+Σ−= −− µµµµ . Equation

(4.10) is called the linear discriminant function and is identical in form to the linear

regression equation (3.49) discussed in the previous chapter. However, as explained in

Chapter 1, the linear discriminant function represents the boundary between two sets of

points, not the regression of the target against an attribute.

4.2.2 Two cluster example

 Let us now apply the theory from the last section to a simple two-dimensional,

two-cluster example. In this case, equation (4.9) gives us

[] []

02211
2
2222112

2
111

0
2

1
21

2

1

2212

1211
21

012

2

)()()(

wxwxwxwxxwxw

w
x
x

ww
x
x

ww
ww

xx

wWyyy T

+++++=

+







+
















=

++=−= xwxxxxx T

, (4.11)

118

where ., 0102012 wwwandW-WW 1 −=−== ww w, 2 Setting this function to zero will

give us the boundary between the two clusters.

 Let us now consider a straightforward numerical example, from Duda et al.

(2001), to illustrate the theory. Figure 4.1(a) shows two two-dimensional clusters, each

containing four points.

 (a) (b)

Figure 4.1: A simple classification example, where (a) shows two four-point clusters in two dimensions,
and (b) shows the calculated decision boundary shown. The units on the axes are arbitrary.

 To compute the decision boundary shown in Figure 4.2(b), notice that the first

cluster contains the points 







=

4
3)1(

1x , 







=

6
2)1(

2x , 







=

8
3)1(

3x and 







=

6
4)1(

4x , with a mean

of 







=

6
3

1µ . The second cluster contains the points 







=

0
3)2(

1x , 







−

=
2

1)2(
2x , 








−

=
4

3)2(
3x

and 







−

=
2

5)2(
4x , with a mean of 








−

=
2

3
2µ . The covariance matrices for the clusters

are therefore given by














=


















−

−









−

−
=∑

20

0
2
1

01
20
01
20

0202
1010

4
1

1

119

and









=



















−
−









−

−
=∑

20
02

02
20

02
20

0202
2020

4
1

2 ,

where we have subtracted the mean from each point. The inverses of the two covariance

matrices are given by 







=∑








=∑ −−

5.00
05.0

and,
5.00

02 1
2

1
1 , and the determinants

by 4and,1 21 =∑=∑ . Computing W and w using equation (4.11) gives us









=

00
075.0

W , and 







−
−

=
5.1
5.4

w . To compute the w0k terms, we need to know the

probabilities of clusters 1 and 2. Assigning equal probabilities (5.0)(1 =CP

and 5.0)(2 =CP) means that the probabilities will cancel in w0, leaving

[] []

057.14

)1ln(
6
3

5.00
02

63
2
1)4ln(

2
3

5.00
05.0

23
2
1

)1(0)2(00

=









+
















+








+








−








−−=−= www

 To find the equation for the line separating the two clusters note that both w12 and

w22 are equal to zero, so that equation (4.11) simplifies to

)/()/()/(20121
2
12112 wwxwwxwwx −−−= ,

which, for the case we have just considered, gives us

514.3125.11875.0 1
2
12 +−= xxx ,

an upward trending parabola with vertex equal to [3, 1.83]. This parabola, which is the

Bayes decision boundary for this case, is shown in Figure 4.1(b). The key thing to note

about this decision boundary is that it curls towards the cluster with the more compact

shape. Mathematically, this is telling us that the covariance matrix of cluster 1 contains a

smaller value for the auto-covariance in the x direction, which was clear for the

computations.

120

 Two further examples are shown in Figure 4.2, which were not shown by Duda et

al. (2001). In the first example, shown in Figure 4.2(a), the covariances of the two

clusters are equal, as shown by their identical shapes. As indicated in equation (4.10), the

discriminant function for Figure 4.2(a) is linear. In the second example, shown in Figure

4.2(b), the covariance of cluster one is now is larger in the x direction than the covariance

of cluster 2. Thus, the discriminant function is now a downward trending parabola.

 (a) (b)
Figure 4.2: Two further classification examples, where (a) shows two clusters with equal variance, and (b)

shows two clusters where cluster 1 has larger variance than cluster 2.

4.3 Linear discriminant functions

 As shown by equation (4.10), a linear discriminant function between two clusters

of points is the simplification of the general Bayesian formula in which the covariance

matrices of the two clusters are equal. The linear discriminant function is given by the

formula:

xwx T
0w)(f += , (4.12)

where []M21 xxx "=Tx is an M-dimensional input vector of seismic attributes,

[]M21 www "=Tw is an M-dimensional weight vector, and w0 is a bias or

threshold weight. Notice that equation (4.12) appears identical to equation (3.49) in the

previous chapter, except that the threshold weight was absorbed into w in that equation

121

by setting the first value in x to one. But there is another important difference between

the two equations. In equation (3.49), the dependent variable was the target value t,

which was a measured reservoir parameter. This leads to the linear regression equation,

in which we solve for the weights by using N separate equations. In equation (4.1), f(x) is

not a measured value but is instead used to classify x into one of K classes. In the

simplest case where K = 2, this is done by assigning a value of 0 or 1 (or -1 and +1) to

each of the xj vectors, and solving for the weights that best separate the sets of values.

4.4 The Fisher linear discriminant

4.4.1 Theory of the Fisher linear discriminant

 If we rewrite equation (4.12) without the bias term, we get

xwTy = , (4.13)

where []Mxxx ,,, 21 "=Tx is an M-dimensional input sample vector of seismic

attributes, and []Mwww ,,, 21 "=Tw is an M-dimensional weight vector. The

interpretation of equation (4.2) is that we have projected the M-dimensional vector x onto

the one-dimensional space of y. This is called “dimensionality reduction”, and for

multiple values of x the set of output values y creates a line called the discriminant line.

If we divide these points into multiple clusters, the objective of discriminant analysis is to

find the weight vector that maximizes the separation of these clusters along the line

defined by the output values y.

 The simplest case is that of two clusters, in which case we can assume that the N

values of x are divided into two clusters, C1 and C2, containing N1 and N2 values,

respectively. We can then define the means for the clusters as

∑
∈

=
kCkN j

jk xµ 1 , (4.14)

 As a first attempt at finding the weight vector, we could try to maximize the

distance between the projected means, or

122

)12 12
T µµw −=− (mm . (4.15)

However, as discussed by both Bishop (1995) and Duda et al. (2001), this approach does

not take into account the scatter of the clusters and therefore does not provide a very good

way of discriminating between clusters. Fisher (1936) proposed that the problem could

be solved by maximizing the difference between the means divided by the sum of the

within-class scatter, or

()
2
1

2
2

2
12)(

ss
mm

J
+
−

=w , (4.16)

where ∑
∈

−=
kCj

kjk mys 22)(defines the within-class scatter.

 As shown by Bishop (1995), equation (4.16) can be re-written in matrix form as

wSw
wSw

w
W

T
B

T

=)(J , (4.17)

where SB is the between-class covariance matrix defined by
T))((1212 µµµµSB −−= , (4.18)

and SW is the within-class covariance matrix defined by

∑∑
∈∈

−−+−−=
21

))(())((2211
Cj

T
jj

Cj

T
jj µxµxµxµxSW . (4.19)

 As also shown by Bishop (1995), equation (4.17) is maximized when

)12
-1
W µµSw −= (. (4.20)

 Equation (4.20) is known as Fisher’s linear discriminant. As pointed out by Duda

et al. (2001), this is almost exactly the same formulation that we found using Bayes’

theorem for clusters with identical covariance matrices, or

)12 µµw −= − (1Σ . (4.21)

This is to be expected since the covariance matrix and the scatter matrix are simply

scaled versions of each other.

123

 To generalize the above formulation for multiple clusters, we must maximize the

equation

WSW
WSW

W
W

T
B

T

=)(J , (4.22)

where W is the matrix containing the weight vectors for each cluster wk, k = 1, …, K.

This is a more difficult problem than for the K = 2 case, but W can be maximized by

selecting the columns of W as the generalized eigenvectors corresponding the largest

eigenvectors in

kWkB wSwS kλ= . (4.23)

4.4.2 Applying the Fisher linear discriminant to porosity classification

 Let us now apply the Fisher linear discriminant to a case study that involves the

classification of density-derived porosity in a sandstone reservoir. The study area shown

in Figure 4.3 is the Blackfoot oilfield in Alberta, the same as for the case study

considered in section 3.7.

Figure 4.3: The distribution of wells used in this study. This map is from the Blackfoot oilfield of Alberta.

 Figure 4.4 shows well 08-08 from the map in Figure 4.3. On this well are shown

the check-shot-corrected sonic log, the density log, the porosity log, which has been

124

created from the density log, and the classified porosity logs. The porosity logs were

classified using the following relationship:









≥
<≤

<
=

%15if3
%15%5if2

%5if1
C

φ
φ

φ
,

where φ is the porosity value. That is, I have labelled three classes of porosity: low,

medium and high. Although it is hard to interpret the classified log at the scale shown in

Figure 4.4, notice the high porosity zone at about 1570 m in well 08-08.

 1 2 3
Figure 4.4: The well log curves from well 08-08, whose location is shown in Figure 4.3.

 Figure 4.5 then shows line 95 from the 3D volume, with the integrated sonic log

from well 08-08 superimposed on the section. The portion of the seismic line shown in

Figure 4.5 is shown on the map in Figure 4.3 as a red line. The wiggle traces show the

input seismic traces. The coloured amplitudes are the impedance values from a model-

based inversion. The theory of model-based inversion was described in section 2.8.2.

The colour bar for the inverted values is shown on the left of the section.

125

Figure 4.5: Line 95 from the 3D seismic volume shown in Figure 4.3.

 In order to train the linear classification scheme, we first need to extract the

composite seismic traces and impedance traces at the well locations. The result of this

extraction is shown in Figure 4.6 for three of the well logs, including well 08-08.

Figure 4.6: For three of the wells, the classified porosity log is shown on the left, the extracted seismic trace

in the middle, and the extracted inverted trace on the left. The analysis zone is shown by the horizontal
lines.

126

 We next need to decide on which attributes to use for the classification of porosity

using the seismic data, and will use the same procedure as described in detail in section

3.6. That is, we will find the best attributes using step-wise regression and decide which

attributes to keep using cross-validation. Table 3.1 shows both the chosen attributes and

the training and validation error. Only the first four attributes will be used, since the

validation error starts to increase after that point.

Table 4.1: The attributes used in the porosity classification, with their training and validation error.

 Once the training has been completed, it can be applied to the full seismic volume

using the attributes shown in Table 4.1. This fit at the wells is shown in Figure 4.7 for

the three wells shown in Figure 4.6, where (a) shows the training result and (b) shows the

validation result. The training result shows the effect of computing the weighting

coefficients from all the wells and applying them to all the wells, whereas the validation

result shows the effect of leaving the well shown from the computation and is thus a

“blind” prediction of this result.

 In Figure 4.7 the RMS error is shown at the top of each result. Note that the error

is 0.3659 for the training result and 0.4657 for the classification result. This is as

expected, since the validation result will always have a larger error.

127

(a)

(b)

Figure 4.7: The application of the classification procedure to the three classified logs shown in Figure 4.6,
where (a) shows the training result, and (b) shows the validation result.

128

 Finally, I will apply the Fisher linear classification scheme to the seismic data.

The result over the seismic line from Figure 4.5 is shown in Figure 4.8, where grey shows

the low-porosity values, yellow shows the medium-porosity values and blue shows the

high-porosity values. Notice the lateral definition of the high-porosity channel just below

1050 ms. This shows continuity away from the well-log-derived porosity. The inserted

curve from well 08-08 is the density-porosity log, not the classified log. This log has

been integrated to time, so lacks the detail shown on the depth-sampled log shown in

Figure 4.6. It should also be pointed out that the apparent high-porosity zones in the

shallow section between 860 and 950 ms are due to shale streaks rather than highly

porous sands.

Figure 4.8: The classified porosity values on line 95 from Figure 4.5.

 Figure 4.9 shows a slice of the classified porosity taken from a single sample

window that was extracted 20 ms below the picked event that was labelled Horizon 1 in

Figure 4.8. The wells have also been indicated in Figure 4.9. Notice that the continuity of

the porosity is quite good in a lateral sense away from well 08-08. However, there are

false indications of high porosity across the upper and lower left parts of the map. This is

129

partly due to the fact we are using a linear classification scheme on a nonlinear problem.

As we shall see in Chapter 6, this can be improved with the probabilistic neural network.

Figure 4.9: The classified porosity shown over a slice that was picked 20 ms below Horizon 1, shown on
the section in Figure 4.8.

 Now that I have discussed the Fisher linear discriminant function, which is

essentially a tool developed by statisticians, I will look at the related concept of the

single-layer perceptron, which started the new field of neural networks. Through this

discussion, it will become obvious how closely related are the fields of statistics and

neural networks.

4.5 The single-layer perceptron

 The single-layer perceptron is a mathematical concept that is closely related to the

linear discriminant function. It will also lay the basis for the multi-layer perceptron that

will be discussed in the next chapter. In this section I will discuss the theory of the

single-layer perceptron and then apply the theory to a geophysical example.

130

4.5.1 Basic theory of the single-layer perceptron

 The classic model of the neuron is called the perceptron (McCulloch and Pitts,

1943) and is illustrated in Figure 4.10.

 (a) (b)

Figure 4.10: The figure above shows the perceptron neural network for (a) M inputs and a single output,
with a bias weight fed directly into the summation, and (b) M+1 inputs and a single output, where the bias

weight is applied to a zeroth attribute which is equal to the unity vector 1.

 In Figure 4.10, notice that there are two ways to interpret the perceptron. In the

first [Fig. 4.10(a)], the perceptron accepts M inputs jM2j1j a,,a,a … , and produces a single

output. The inputs are then weighted and summed according to the equation:

MM awawawwy ++++= …22110 , (4.24)

where the first weight, w0, is called the bias. Next, a threshold function, f, is applied to

the intermediate output x to produce the final output y, or

()yfz = (4.25)

 In the second interpretation (Figure 4.10(b)), the perceptron accepts M+1

inputs jM1j0j a,,a,a … , where the aj0 term is equal to 1. Thus, the bias term now acts on

the first attribute, and we can write

MM221100 awawawawy ++++= … (4.26)

In the Figure 4.10(b), the output of the summation is also transformed by a threshold

function of equation (4.25). The choice of the threshold function f is important and

depends on the problem being solved. If f(y) = y, the perceptron reduces to a linear sum

of the inputs. This function is used in the linear associator, discussed below. In many

131

applications, f(y) is set to the smoothly varying sigmoidal function such as the hyperbolic

tangent function [Fig. 4.11(a)], which is defined as:

() yy

yy

ee
eeyf −

−

+
−= . (4.27)

Hyperbolic Tangent Function

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

x

f(x
)

 (a) (b)

Figure 4.11: This figure shows a graph of (a) the hyperbolic tangent function of Equation (4.27), and (b)
the symmetric step function of Equation (4.28).

 For a two-class problem, such as the one we are discussing here, we often use the

step function [Fig. 4.11(b)], which is given mathematically by the equation:

()




<−
≥+

=
0,1
0,1

y
y

yf (4.28)

4.5.2 An AVO classification problem

 The basic AVO interpretation problem that I will study (Russell et al., 2002) is

how to differentiate between the AVO responses of the two reservoirs shown in Figure

4.12. Figure 4.12(a) shows a wet sand encased between two shale layers, and Figure

4.12(b) shows a gas sand encased between the same two shales. The P-wave velocity

(VP), S-wave velocity (VS), and density (ρ) for each layer are shown in each figure. I will

assume that the far angle of incidence is small enough (i.e. approximately 30°) that we

132

can ignore the third term in the Aki-Richards equation and write the reflectivity as a

function of angle of incidence θ as

() θθ 2sinBAR += , (4.29)

where A is the intercept given by











+=

ρ
ρ∆∆

p

P

V
V

2
1A , and B is the gradient given by

ρ
ρ∆∆∆

2
P

2
S

S

S
2

P

2
S

p

P

V
V

2
V
V

V
V

4
V
V

2
1B −−= . The terms ρ∆∆∆ and,V,V PP are the differences

across the layers and the terms ρand,V,V PP are the averages.

 (a) (b)
Figure 4.12: Two simple geological models where (a) shows a wet sand between two shale layers and (b)
shows a gas sand between the same two shales.

 Using the values for VP, VS, and ρ shown in Figure 4.12, we can now compute the

values for the AVO intercept and gradient for the wet and gas sands. For the wet sand,

note that VP/VS in both the sand and shale layers is equal to 2. This means that

S

S

p

P

V
V

V
V ∆∆ = and, thus substituting this value into the expression for the gradient B given

above leads to the simplification that BA −= for both the top and base of the layer. (For

a more complete derivation, see the Appendix to Russell et al., 2002). Using the

parameters shown in Figure 4.6 gives ATOP_WET = BBASE_WET = +0.1 and ABASE_WET =

BTOP_WET = -0.1. For the gas sand, the VP/VS ratio is equal to 1.65, and leads to ATOP_GAS =

BTOP_GAS = -0.1 and ABASE_GAS = BBASE_GAS = +0.1.

 Using the parameters for the gas case, we find that A=B for both the top and base

of the layer. The AVO curves for the wet and gas cases are shown in Figure 4.13, for an

angular aperture of 0º to 30º. It is observed that the absolute values of the gas sand

133

curves show an increase in amplitude, whereas the absolute values of the wet sand curves

show a decrease in amplitude.

Model AVO Curves

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25 30

Angle (degrees)

A
m

pl
itu

de

Top Gas Base Gas
Top Wet Base Wet

Figure 4.13: This figure shows the AVO responses from the top and base interfaces of the wet and gas

sands shown in Figure 4.12.

 Although the parameters used here simplify the problem, these values do fall

within a reasonable petrophysical range. After scaling each of the values of A and B by a

factor of 10 to give values of +1 and -1, they have been put on an A-B crossplot, as

shown in Figure 4.14(a). In our example, the wet points (shown as solid blue circles)

establish the wet sand-shale trend, and the top and base gas (shown as solid red circles)

plot in the other two quadrants of the A-B crossplot. This is a typical class 3 AVO

anomaly (Rutherford and Williams, 1989), caused by the reduction of the impedance and

the Vp/Vs ratio of the sand by gas saturation.

 Despite the simplicity of the models shown in Figure 4.12, the plot in Figure

4.14(a) shows us what is expected in a noise-free AVO crossplot. For comparison,

Figure 4.14(b) is an interpreted AVO A-B crossplot for a class 3 AVO response in the

Gulf of Mexico (Ross, 2000). The centre grey ellipse encompasses all of the wet sand-

shale AVO points while the gold and blue ellipses outlying the grey “wet trend” points

are associated with the top and base of the pay sand, respectively.

134

(a) (b)

Figure 4.14: Intercept versus gradient crossplots, where (a) shows the crossplot of the A and B values from
the wet and gas models of Figure 4.12, crossplotted after being scaled by a factor of 10, and (b) shows a

Gulf of Mexico real data example.

 Identifying the wet trend and the outlying two points in Figure 4.14(a) is a trivial

problem for the eye to interpret. Let us see if the single-layer perceptron is able to solve

this problem. The application of the single-layer perceptron to our AVO problem is

shown by the neural network graph in Figure 4.15. We now have two inputs, the

intercept (A) and gradient (B), and will use the symmetric step function to compute the

final output. For the output, a value of +1 will indicate the presence of a gas sand and a

value of –1 will indicate the presence of a wet sand.

Figure 4.15: The perceptron adapted to the AVO problem of Figure 4.14(a), where the inputs are the

intercept (A) and gradient (B) and the function is the symmetrical step function.

 Notice that the equation for intermediate output y is now given as

BwAwwy 210 ++= (4.30)

135

 We now want to determine the weights w0, w1, and w2. From equation (4.30), it is

obvious we are interested in the separation between 0y < and 0y > , which occurs when

y = 0. This is called the decision boundary, and is illustrated in Figure 4.16. From this

figure it is clear that the boundary crosses the A and B axes at
1

0

w
wA −= and

2

0

w
wB −= .

Figure 4.16: The perceptron decision boundary. Note that either w0 or w1 and w2 must be negative to make
the resulting intercept value on the A and B axes positive.

 Figure 4.16 also shows the weight vector []21, ww=Tw , which is normal to the

decision boundary and points in the direction of f(x) = +1. This will give us the signs of

w1 and w2. It is important to note from Figure 4.16 that the perceptron can only separate

points that are linearly separable. That is, for the two dimensional case we can draw a

line between the points, and for the three-dimensional case we can draw a plane. (For

higher-dimensional inputs we use hyperplanes to separate the points). This limitation

means that the perceptron can not solve a simple Boolean algebra problem, the exclusive

OR, or XOR (Haykin, 1999). This problem is similar to our AVO problem.

136

 The AVO problem of Figure 4.12(a) has been redrawn in Figure 4.17. Notice that

we are not able to separate both the top and base of the gas-sand from the wet trend with

a single decision boundary. We can separate either the top of the gas-sand, as shown in

Figure 4.17(a), or the base of the gas-sand, as shown in Figure 4.17(b).

 (a) (b)
Figure 4.17: The AVO problem from Figure 4.12(b) with decision boundaries, where (a) shows separation

of the base of the gas sand and (b) shows separation of the top of the gas sand.

 For the top of the gas-sand, we can compute the weights from

1
w
w

w
w

BA
2

0

1

0 −=−=−== .

 Although w0, w1 and w2 can be scaled by any value, we usually choose the

simplest values of 1ww 21 −== , and therefore 1w0 −= . The perceptron diagram for this

is shown in Figure 4.18(a). The weights for the base of gas sand can be computed as

1
w
w

w
w

BA
2

0

1

0 +=−=−== ,

so that the weights are 121 +== ww and 1w0 −= . This is shown in Figure 4.18(b).

 (a) (b)

Figure 4.18: Perceptron implementations for separating the (a) top of gas, and (b) base of gas.

137

 Table 4.2 shows that these values do indeed solve the problem for the four

possible cases.

 Inputs Perceptron 1 Perceptron 2
SAND A B x1 y1 x2 y2
Top Gas -1 -1 +1 +1 -3 -1
Base Wet -1 +1 -1 -1 -1 -1
Top Wet +1 -1 -1 -1 -1 -1
Base Gas +1 +1 -3 -1 +1 +1

Table 4.2: The outputs from the perceptron models of Figure 4.18.

 Although we have solved for the top and bottom of the gas-sand individually we

have still not solved the complete problem, which is to separate the gas-sand responses

from the wet-sand responses. This requires a multi-layer perceptron, or MLP, which will

be discussed in the next chapter.

4.6 Computing the neural network weights

4.6.1 The perceptron learning rule

 In the last section, I applied the perceptron model to an AVO classification

problem and used intuition to solve for the weights. McCulloch and Pitts (1943) devised

the first analytical approach to solve for the weights and called it the perceptron learning

rule. I will apply this rule to the AVO example of the previous section.

 Figure 4.19 shows an illustration of the perceptron neural network as applied to

our A-B crossplot example. In Figure 4.19, and in the following theory, note that we are

conforming to the notation set out in Appendix 1. That is, we have M attribute vectors,

ai, and N input sample vectors xj. The perceptron leaning rule can be stated as follows.

Given N input/training pairs {xj, tj}, present these pairs sequentially to the algorithm and

modify the weights so as to reduce the error between the actual output, zj, and the target

value, tj.

138

Figure 4.19: A conceptual illustration of the neural network used to solve for the A-B crossplot example.

 The perceptron learning rule can written mathematically as follows

,eww
,e

old0new0

joldnew

+=

+= xww
 (4.31)

where xj is the input sample vector, ,M/)zt(e jj −= and M is the number of input

attributes. In the perceptron model, the output zi is computed as follows:







<−

≥
=

,0y,1
,0y,1

z
j

j
j

0j
T

j wy += xwwhere .

 The algorithm is initialized by setting the weights to small random values. Let us

see how this algorithm will work in finding the gas zones from the previous example.

Starting with the base of the gas zone, our three input vectors and targets are

1t,
1

1
,1t,

1
1

,1t,
1
1

332211 −=







−

=−=






−
==








−
−

= xxx and .

 If we initialize w and w0 as 0w,
1.0
1.0

)0(0 =






−
= and(0)w , the computations

proceed as follows:

139

[]

.0w,
1.0
1.0

0

0
2

zte1z00
1
1

1.01.0y : 1 Iteration)1(

)1(0)0()1(

11
11

=






−
=+=⇒

=−=⇒=⇒=+







−
−

−=

ww
.

 Applying these weights, we find that 332211 t1z,t1z,t1z =−=≠=== and .

[]

.1w,
9.0

9.0
1
1

1
2

zt
e1z2.00

1
1

1.01.0y :2 Iteration (2)

)2(0)1()2(

11
22

−=







−

=






−
−=⇒

−=
−

=⇒=⇒=+






−
−=

ww

 Applying these weights, we find that 332211 t1z,t1z,t1z ≠==−=≠−= and .

[]

.1w,
1.0
1.0

1
1

1
2

zt
e1z8.01

1
1

9.09.0y :3 Iteration (3)

)3(0)2()3(

11
11

−=






−
=








−

−=⇒

−=
−

=⇒=⇒=−







−

−=

ww

 Applying these weights, we find that 332211 t1z,t1z,t1z =−==−=≠−= and .

[]

.1w,
9.0
1.1

1
1

1
2

zt
e1z8.01

1
1

1.01.0y:4 Iteration)4(

)4(0)3()4(

11
11

=







−
−

=







−
−

+=⇒

−=
−

=⇒=⇒=−







−
−

−=

ww

 Applying these weights, we find that 332211 t1z,t1z,t1z ≠=≠=== and .

[]

.1w,
9.1
1.0

1
1

1
2

zt
e1z2.11

1
1

9.01.1y :5 Iteration (5)

)5(0)4()5(

22
22

−=







−
−

=






−
−=⇒

−=
−

=⇒=⇒=−






−
−−=

ww

 Applying these weights, we find that 332211 t1z,t1z,t1z ≠==−=== and .

[]

.1w,
9.0
1.1

1
1

1
2

zt
e1z8.01

1
1

9.11.0y :6 Iteration (6)

)6(0)5()6(

11
33

−=







−
−

=







−

−=⇒

−=
−

=⇒=⇒=−







−

−−=

ww

140

 Applying these last weights, we find that ,t1z,t1z,t1z 332211 =−==−=== and and

now all three outputs are correct. Since the correct weights are both equal to -1, the first

weight has been overestimated by -0.1 and the second weight underestimated by 0.1. The

bias term is equal to -1, the correct value. A 3D scatter plot of the convergence of the

points after each iteration is shown in Figure 4.20. Note that the points move around

quite randomly in 3D space until convergence is obtained.

Figure 4.20: A 3D scatter plot of the perceptron weights after each iteration.

 We next proceed to the problem of finding the weights for the separation of the

wet sand from the base of the gas layer, where the inputs and target values are

1t,
1

1
,1t,

1
1

,1t,
1
1

332211 −=







−

=−=






−
==








= xxx and ,

and we find that, given the same starting guess, the solution again converges to

.1w,
1.1
9.0

)6(0)6(−=







=w

 Remember that the right answer is that both weights are equal to 1 and the bias is

equal to -1, so the algorithm has again done a good job. However, there are two major

problems with the perceptron learning rule. First, since the algorithm is iterative, we do

141

not know in advance when it will stop, or even if it will converge to the right answer.

Second, we do not really know how to initialize the weights. In the case considered

above, we converged to the right answer using a starting guess of [-0.1, 0.1]. However, a

starting guess of [1, 0.5] does not converge to the right answer. The problem of the initial

guess in neural network weight computations will be discussed in more detail in the next

chapter.

4.6.2 Hebb’s rule and associative memory

 Based on our conclusions about the perceptron learning rule in the last section, it

would be preferable to find an algorithm that could be expressed in closed form, as was

the solution to the regression problem given in the previous chapter. Such a method was

introduced independently by Anderson (1972) and Kohonen (1972) and was based on the

work of Hebb (1949). This method is called the linear associator, and results in a neural

network called an associative memory (Haykin, 1998). A full description of this type of

neural network is given in Appendix 5. In this section, I will simply apply the linear

associator to the AVO classification problem that we have been studying.

 The linear associator is shown in Figure 4.21. As the perceptron learning rule, the

input to the linear associator is the N input/training pairs {xj, tj}. However, unlike the

perceptron shown in Figure 4.19, the output function is the linear function given by

jj yz = , (4.32)

0j
T

j wy += xwwhere . To simplify this equation, we will add the zero weight to the

vector and add the value x0 =1 as the first value in each vector xj. Notice that this implies

that we have added a zeroth attribute containing N ones. The output values can now be

more simply written as the scalar product of two M+1 length vectors, or

[] j
T

M

1
M10j

x

x
1

wwwy xw=



















=
#

" . (4.33)

142

 To determine the weights given in equation (4.33), we use Hebb’s rule (Appendix

5), which can be written as

ijij)old(i)new(i xtww += , (4.34)

or, in vector form, as
T
jj

T
(old)

T
(new) xww t+= . (4.35)

Figure 4.21: A conceptual illustration of the use of the linear associator to solve for the A-B crossplot
example. The only difference with Figure 4.13 is that the applied function is linear.

 If we set the initial weights to zero, equation (4.35) can be written as:

[] AXttttttt TT
N

j
tt

x

x
x

xxxxw T

T
N

T
2

T
1

N21
T
NN

T
22

T
11

T
jj

T ==





















=+++==∑ #
…… . (4.36)

In other words, the weight vector is given by the outer product of the vector of training

values and matrix of input values. Alternately, we can write the transpose of equation

(4.36), giving

[] ttxxxw N21
T

N

2

1

AX

t

t
t

==



















=
#

… . (4.37)

 As shown in Appendix 5, the associative memory works well if a copy of every

possible input vector is presented to the algorithm. If some of the vectors are missing, a

143

better solution is obtained with the pseudo-inverse rule, which is written for equation

(4.36) as
++ == TAX TTT ttw , (4.38)

where T1T X)IXX(X −+ += λ , and A)IAA(A 1TT −+ += λ , λ is a prewhitening term

and I is the M x M identity matrix. Using equation (4.37) as the starting point, we get

ttw ++ == AX T . (4.39)

where X)IXX(X 1TT −+ += λ , and T1T A)IAA(A −+ += λ .

 I will now apply the preceding theory to our AVO classification problem. Let us

start with the complete problem of four inputs, as shown in Figure 4.8(a), or

1t,
1
1
1

,1t,
1

1
1

,1t,
1
1

1
,1t,

1
1

1

34332211 =















=−=

















−
=−=
















−==

















−
−= xxxx and ,

where I have added the value 1 in each case to allow for a zeroth weight, as described

above. Recall that we determined intuitively in the previous section that this problem has

no solution.

 From equation (4.36) the solution to the weights can be given as:

[] [] []000

111
111

111
11-1

1111tttt =



















−
−

−

−−=





















=

T
4

T
3

T
2

T
1

4221
T

x
x
x
x

w . (4.40)

 The weights computed in equation (4.40) are all equal to zero because, as

discussed earlier, a single layer perceptron cannot solve this problem. The input points

will therefore be transformed by this weight vector and placed at the position (0, 0).

Using equation (4.37) we also get the same answer, or

144
















=



















−
−

















−−
−−=

0
0
0

1
1
1

1

1111
1111
1111

w . (4.41)

 Next, we will apply the pseudo-inverse method. Using equation (4.38), we find

that

[]

[]


















−
−

−







































−
−

−
−

−−=



















−
−

−





































−−
−−



















−
−

−

−−=

−

−

111
111

111
11-1

3111
1311
1131
1113

1111

111
111

111
11-1

1111
1111
1111

111
111

111
11-1

1111

1

1

Tw

 (4.42)

 However, the 4 x 4 matrix shown in equation (4.42) has a zero determinant, so has

no inverse. Adding a small amount of prewhitening of 0.1, we find

[] []000

111
111

111
111

1.3111
11.311
111.31
1111.3

1111

1

=



















−
−

−−







































−
−

−

−−=

−

Tw . (4.43)

 To solve equation (4.38), we needed to add pre-whitening, since the problem was

under-constrained. Using equation (4.39), we find that:

145

.
0
0
0

1
1
1

1

1111
1111
1111

4
1

1
1
1

1

1111
1111
1111

400
040
004

1
1
1

1

1111
1111
1111

111
111

111
11-1

1111
1111
1111

1

1
















=



















−
−

















−−
−−=



















−
−

















−−
−−
































=



















−
−

















−−
−−







































−
−

−

















−−
−−=

−

−

w

 (4.44)

 Thus, equation (4.39) produces a result that does not require pre-whitening, since

the inverse matrix is of the same size as the number of weights. For this reason,

equations (4.37) and (4.39) are the preferred approach to writing the associative memory

equation.

 We will now apply this approach to the top of the gas zone, which is solvable. In

this case, we have the inputs

,1t,
1

1
1

and,1t,
1
1

1
,1t,

1
1

1

332211 −=
















−
=−=
















−==

















−
−= xxx

which, by applying equation (4.37), gives the result:

















−
−
−

=
















−
−

















−−
−−=

1
1
1

1
1

1

111
111
111

w . (4.45)

 Thus, we have found the weights exactly, without using the perceptron training

rule and having to estimate the initial weights. Since the matrix X is square, we could

also solve the problem using the matrix inverse rather than the pseudo-inverse. This is

given by:

146

















−
−
−

=
















−
−

















−
−=

















−
−

















−
−

−−
=

−

1
1
1

1
1

1

05.05.0
5.005.0
5.05.00

1
1

1

111
111
111 1

w . (4.46)

 Again, we get the right answer. Notice that the matrix being inverted is the

transpose of the matrix in the previous expression. This would be less obvious if we

solved for the top of the gas sand, since that matrix is symmetric. That is

















−
−==

111
111
111

XX T
toptop . (4.47)

 Throughout this section and the previous section, I have discussed the single layer

perceptron and methods that can be used to solve for the perceptron weighting

coefficients. I illustrated all of these methods with a straightforward AVO classification

problem. Despite the large array of techniques discussed, we were never able to solve

this simple problem completely, since it is nonlinearly separable. In the next chapter, we

will show how the multi-layer perceptron, which is composed of interconnected layers of

perceptrons, is able to solve a nonlinearly separable problem. Before doing this, the last

section in this chapter will briefly discuss the generalized linear discriminant, which will

lead us to the radial basis function neural networks that will be covered in Chapters 6 and

7.

4.7 The generalized linear discriminant

 In this chapter, I have discussed a number of approaches to linear discrimination,

all of which used the straightforward model

)(fy T xw= , (4.48)

where []M10 xxx "=Tx is an M+1-dimensional input sample vector of seismic

attributes, and []M10 www "=Tw is an M+1-dimensional weight vector. If we let

147

f(x) = x, equation (4.48) reduces to the linear case. We found that the limitation of this

approach is its inability to solve problems that are not linearly separable. In the next

chapter I will show how the multi-layer perceptron is able to get around this problem.

However, another approach is the generalized discriminant function, written

)(y T xw φ= , (4.49)

where [])x()x()x()(M10 φφφφ "=Tx is a nonlinear function of the vectors x, often

called a basis function. In chapter 6, we will see how a suitable choice of the basis

function will allow us to generalize the problem in such a way that we will be able to

solve nonlinear problems.

148

CHAPTER 5 : THE MULTI-LAYER PERCEPTRON

5.1 Introduction

 In the previous two chapters, I have discussed linear approaches to the regression

and classification problems. As might be expected, we found that linear methods do a

good job of solving linear problems, but are unable to solve nonlinear problems. In

particular, I discussed the single-layer perceptron and found that we could only solve the

classification problem if the classes were linearly separable. This was illustrated by

applying the perceptron method to an AVO classification problem and finding that we

could not separate both the top and base of a gas sand from a wet sand.

 The perceptron model was introduced by McCulloch and Pitts (1943). Supervised

learning using the perceptron model was first discussed by Rosenblatt (1958). At this

time there was much enthusiasm about the use of perceptrons to solve a wide variety of

problems. Unfortunately, Minsky and Papert (1969) showed mathematically that the fact

that a perceptron can only solve linearly separable problems is a fundamental limitation

of the method. This dealt a severe blow to the development of neural network algorithms

based on the perceptron model. As shown by McClelland and Rumelhart (1981), the

solution to this problem is to add a second layer of perceptrons. Their algorithm, called

the multi-layer perceptron (MLP), will be discussed in this chapter. I will apply the MLP

to both classification and regression problems. In the first section of this chapter, I will

revisit the AVO classification problem and show how to solve it intuitively using the

MLP. In the following section, I will discuss the mathematical approach to solving for

the weights, and show that the limitation of the MLP is the need to make an initial guess

of the weights, which can severely affect the final result. Finally, I will apply the MLP to

a real data example.

149

5.2 The multi-layer perceptron

5.2.1 The general multi-layer perceptron model

 The multi-layer perceptron is a generalization of the single-layer perceptron that

was discussed in section 4.5, in which we add multiple perceptrons to which the inputs

are fed with interconnected weights. In addition, we add an extra layer of weights in

order to connect the outputs of the perceptrons themselves. Figure 5.1 shows a flowchart

of a multi-layer perceptron with M inputs and K perceptrons. The first layer in the multi-

layer perceptron is referred to as the input layer, the second layer as the “hidden” layer,

and the output is referred to as the output layer. Although we can add any number of

“hidden” layers, it has been shown that most problems can be solved with a single

“hidden” layer. In all of our applications we will use only a single “hidden” layer.

Figure 5.1: A multi-layer perceptron with M inputs, K perceptrons, and a single output.

 To relate the multi-layer perceptron of Figure 5.1 to the reservoir prediction

problem that we are considering in this study, the input to the multi-layer perceptron is a

vector of M attribute values []jMjj xxx ,,, 21 "=T
jx , where j = 1, … , N, is the

number of seismic samples. Because each input stream of values is connected to each

perceptron and there are several layers of weights, the first set of weights are written as

150

w(q)
ik, where i represents the input attribute number, k represents the perceptron number

and the superscript q in brackets indicates the layer number.

 As in the single layer algorithm, each perceptron consists of a set of weights, a

summation step, and a nonlinear function step. The output of the weighting and

summation in the first layer, the “hidden” layer, can be written:

∑
=

===
M

i
ijkikj NjKkxwy

0

)1()1(.,,2,1,,,2,1, …… (5.1)

 In equation (5.1) the bias term has been included by letting x0j = 1. In matrix and

vector notation we can write

j
T

j W xy)1()1(= , (5.2)

where





















=





















=





















=

)1()1(
2

)1(
1

)1(
1

)1(
21

)1(
11

)1(
0

)1(
20

)1(
10

)1(1

)1(

)1(
2

)1(
1

)1(,

1

MKKK

M

M

T

Mj

j
j

Kj

j

j

j

www

www
www

Wand

x

x

y

y
y

"
#%##

"
"

##
x,y .

 Notice that the zeroth weight in equation (5.1) and (5.2) does not represent a new

neuron, but rather a weight associated with a zeroth attribute, which consists of all ones.

Also note that my notation convention differs from many neural network textbooks (e.g.

Hagan et al., 1996) in that I have preserved the transpose operation for the weight matrix

and the output vector, and write w(q)
ik rather that w(q)

ki. This clarifies the connection

between the multi-layer perceptron and the linear methods described in the previous two

chapters.

 The nonlinear function can be written as

)()1((1)
kjyfzkj = (5.3)

or, in vector form as

)()1((1)
jyz fj = . (5.4)

151

 The output from layer 1 is then fed into layer 2. Again, we can incorporate the

bias term by letting z0j
(1) = 1. The input to the single perceptron in layer 2 will thus

contain K+1 weights, and can be written

∑
=

===
K

k
j

T
jkjkjj Njzwy

0

)1()2()1()2()2(,,2,1, …zw , (5.5)

where [])2(
K

)2(
1

)2(
0 www "=(2)Tw , and





















=

)1(
Kj

)1(
j1

z

z
1

#
(1)
jz .

 The output of the second layer can then be written as

)y(fz)2(
j

)2(=(2)
j , (5.6)

 Combining the above equations, note that the two-layer perceptron shown in

Figure 5.1 can be also written in nested form as

))(()1()1()2()2(
j

(2)
j xTT WfWfz = . (5.7)

 Now, let us discuss the functions themselves. One of the most commonly used

functions in the multi-layer perceptron is the logistic function, illustrated in Figure 5.2.

The logistic function is given by

)exp(1
1)(logist)(

x
xxf

−+
== . (5.8)

 Notice that the values of the logistic function are constrained between 0 and +1.

In Figure 4.11 of Chapter 4 I showed two other common functions used in neural network

design, the step function and the hyperbolic tangent function, in which the output is

constrained between -1 and +1. Recall that the step function was used in our AVO

classification example. This function will also be used in the next section.

152

Logistic Function

0.0000

0.2500

0.5000

0.7500

1.0000

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

f(
x)

Figure 5.2: A graph of the logistic function.

 The hyperbolic tangent function can be shown to be related to the logistic

function in the following way

1 - logist(x)2
)exp()exp(
)exp()exp()(t)(=

−+
−−==

xx
xxxanhxf (5.9)

 Finally, note that if we apply the multi-layer perceptron model to all of our input

values simultaneously, equation (5.2) can be written as the matrix equation:

XWY T)1()1(= , (5.10)

where:

[]


















==

KNKK

N

N

yyy

yyy
yyy

Y

…
#%##

…
…

"

21

22221

11211

)1((1)
N

(1)
2

(1)
1 yyy ,

and

153

[]


















==

MNMM

N
N

xxx

xxx
X

…
#%##

…
…

"

21

11211
21

111

xxx .

 This is referred to as batch processing, rather than sequential processing.

5.2.2 The multi-layer perceptron applied to AVO classification

 To apply this formulation to the AVO classification problem of the last chapter,

we need to recast the problem as a multi-layer perceptron. This is shown in Figure 5.3,

where the inputs are still the intercept (A) and gradient (B), but we have now

interconnected the two perceptrons using the “hidden” layer concept.

Figure 5.3: The multi-layer perceptron for the gas-water sand model of Figure 4.12.

 In mathematical notation, the output from the first layer is given by

)()1()1(
j

T
j Wf xz = , (5.11)

where 







=

















=)1(
22

)1(
12

)1(
02

)1(
21

)1(
11

)1(
01)1(,

1

www
www

Wand
B
A T

j

jjx and f(·) is the function given in

equation (4.28).

154

 The output from the second layer is given by

)()2()2()(1
jzw ′= T

j fz , (5.12)

where [])2(
2

)2(
1

)2(
0

)2(

)1(
2

)1(
1 ,
1

wwwand
z
z T

j

j =
















=′ wz)(1
j .

 Before discussing a mathematical approach to solving for the perceptron weights,

we will solve the weight values intuitively. What we have done is simply connect two

perceptrons to produce two separate outputs. These outputs now represent the input to a

new perceptron. If we use the two perceptrons from Figure 4.12 in the previous chapter

as our two first layer perceptrons, we can crossplot their outputs z1
(1) and z2

(1), and design

a new perceptron, p(2), to separate these outputs. This is shown in Figure 5.4, using the

output values from Table 4.1.

Figure 5.4: A crossplot of the outputs of the two perceptrons of Figure 4.18.

 The weights for the top of gas can thus be written 1ww)1(
21

)1(
11 −== , and 1w)1(

01 −= ,

and for the base of gas can be written 1ww)1(
22

)1(
12 +== and 1w)1(

02 −= . The top of gas

output is now at the point (-1, +1), the base of gas output is at the point (+1, -1), and both

of the wet sands have moved to the point (-1, -1). The output is now linearly separable,

155

as is graphically shown by the decision boundary on Figure 5.4. We can therefore derive

the weights for perceptron p(2) in Figure 5.3, which are:

1)2(
2

)2(
0

)2(
1

)2(
0 −=−=−

w
w

w
w , or 1)2(

0
)2(

2
)2(

1 +=== www .

 The final perceptron, with its weights annotated, is shown in Figure 5.5. Notice

that the weights are all equal to +1 or –1, which are the simplest set of weights. This

solution is not unique, and there are also many other sets of weights that would solve the

problem.

Figure 5.5: The final multi-layer perceptron weights.

 To verify that this is the solution, Table 5.1 shows the outputs for all inputs.

 Inputs Perceptron
)1(

1p
Perceptron

)1(
2p

Perceptron
)2(p

Sand A B)1(
1z)1(

2z)2(z
Top Gas -1 -1 +1 -1 +1
Base Wet -1 +1 -1 -1 -1
Top Wet +1 -1 -1 -1 -1
Base Gas +1 +1 -1 +1 +1

Table 5.1: The computed output values from the multi-layer perceptron in Figure 5.5 for the gas and wet
models of Figure 4.12, where y(2) shows that the gas sand values (+1) have been separated from the wet

sand values (-1).

156

 As we can see in Table 5.1, the correct output is given for all four input cases.

Thus, we have solved the problem of how to separate a Class 3 gas sand from its

equivalent wet sand.

 Although we have solved the weights intuitively in the preceding discussion, we

need a more rigorous approach to finding the weights. This can be done using a

technique called backpropagation, in which we reduce the error between the known

output and the actual output by backward propagation of the errors. This will be

described in the next section.

5.3 Computing the weights for the multi-layer perceptron

5.3.1 The backpropagation algorithm

 In Chapter 4, I showed that the weights for a single layer perceptron could be

solved using a single matrix inversion, since the problem was linear. However, when we

add a second layer of weights, the problem becomes nonlinear, and we cannot solve for

the weights using a straightforward matrix inversion. To solve for these weights in the

multilayer case I use a generalization of the LMS algorithm which was invented by

Rummelhart et al. (1986). This technique is referred to as error backpropagation, since

the errors are backpropagated through the network and the weights are updated to reduce

the error. This has led to some confusion, because the network is often referred to as a

backpropagation network, although the calculations themselves proceed in a forward

direction. As mentioned in the last section, although this technique can be generalized to

any number of hidden layers, we will work with a network with a single hidden layer,

referred to as a two-layer network.

 In section 5.2 I described the forward model for the multi-layer perceptron. As

shown in Figure 5.1, the input values for a given input xj are transformed to an output

value z(2), where the superscript 2 represents the output of the second layer. The basic

idea in the computation of the weights is that this output is compared to the training value

157

t, and the weights are updated based on the error between the two values. This is called

error backpropagation, because the errors are backpropagated through the network and

used to improve the fit between the actual output and the training value. To start the

process, the weights are initialized to small random values. We then forward propagate

the solution using these initial weights. Once the output value has been computed, we

minimize the squared error, which can be written as a function of the weights as

2)2()(
2
1)(jj ztE −=w . (5.13)

 In equation (5.13) there is no superscript on the weights since we will use this

equation to compute the values for both sets of weights. The difference in the weight

values can be evaluated using the gradient descent method (Duda et al., 2001), in which

we differentiate the error term with respect to the weights, giving

w
ww

∂
∂−=)(Eη∆ , (5.14)

where η is a scaling value between 0 and 1. The weights are updated iteratively by the

equation

)()()1(nnn www ∆+=+ . (5.15)

 To implement this procedure, we start with the output layer weights. Using the

chain rule, and computing the derivative for each element in the weight vector, we get

)2(

)2(
)2(

)2(

)2(

)2()2(
kj

j
j

kj

j

j

j

kj

j

w
y

w
y

y
E

w
E

∂
∂

−=
∂
∂

∂
∂

=
∂
∂

δ , (5.16)

where δj
(2) is the error term for the second layer. To evaluate the individual derivatives in

equation (5.16), note that

)()()2()2(
)2(

)2(

)2()2(
)2(

jjj
j

j

j

j

j

j
j yfzt

y
z

z
E

y
E

′−=
∂
∂

∂
∂

=
∂
∂

=δ , (5.17)

where the prime denotes differentiation. From equation (5.11) we see that the second

term in equation (5.17) can be computed as

158

)1(
)2(

)2(

kj
kj

j z
w
y

=
∂
∂

. (5.18)

 Combining the preceding equations, we find that
)1()2()2()1()2()2()()(kjjjjkjjkj zyfztzw ′−==∆ ηηδ . (5.19)

 We next turn our attention to the first layer weights. Using the same approach,

we find that

)1(
ki

)1(
kj

)1(
kj

)1(
kj

)1(
kj

j
)1(

ki

j

w
y

y
z

z
E

w
E

∂
∂

∂
∂

∂
∂

=
∂
∂

. (5.20)

 Computing the first term on the right hand side of equation (5.20) using the chain

rule and equation (5.18), we get

.

)()(

)(

)()(
2
1

)2()2(

)2()2()2(

)1(

)2(

)2(

)2(
)2(

)1(

)2(
)2(2)2(

)1()1(

kjj

kjjjj

kj

j

j

j
jj

kj

j
jjjj

kjkj

j

w

wyfzt

z
y

y
z

zt

z
z

ztzt
zz

E

δ−=

′−−=

∂
∂

∂
∂

−−=

∂
∂

−−=



 −

∂
∂=

∂
∂

 (5.21)

 After a second application of the chain rule we find that the derivative of the error

with respect to the first layer outputs is equal to the second layer error term multiplied by

the second layer weights. From equation (5.16), next note that the second term on the

right hand side of equation (5.21) is given by

)()1(
)1(

)1(

kj
kj

kj yf
y
z

′=
∂
∂

. (5.22)

 Finally, by equation (5.13), note that the third term in equation (5.22) can be

written

159

ij
ki

kj x
w
y

=
∂
∂

)1(

)1(

. (5.23)

 Combining equation (5.20) through (5.23) along with equation (5.13), we get

ijjijkjkjjki xxyfww)1()1()2()2()1()(ηδηδ =′=∆ . (5.24)

where δj
(2) is the first layer error term.

 To implement the backpropagation algorithm, all that remains is to compute the

derivatives of the functions used in the neural network. This explains why the logistic

and tanh functions are used so often, since their derivatives are easy to compute. The

derivative of the logistic function is written

[]
)exp(1

)exp()(1)()(
x

xxfxfxf
−+

−=−=′ , (5.25)

and the derivative of the hyperbolic tangent function is written

[]2
2

)exp()exp(
1)(1)(

xx
xfxf

−+
=−=′ . (5.26)

5.3.2 An AVO classification example

 To understand the practical aspects of backpropagation, I will first apply the

method to two simple model examples. The first example is the AVO classification

problem that was considered in the last section. In that discussion, we computed the

weights intuitively. In this section, I will use the backpropagation technique to find the

weights.

 The flow chart for the implementation of the MLFN network used to solve for the

AVO classification process is shown in Figure 5.6. To solve this problem, I will

reformulate the equations of section 5.3.1 in matrix form. Before letting the computer

take over, I will manually compute a single iteration through the process.

160

Figure 5.6: The inputs and desired outputs for the AVO classification problem.

 Let us start with the forward modelling. Our input, as seen in Figure 5.6, can be

written

















−−
−−=
















=

1111
1111
11111111

24232221

14131211

xxxx
xxxxX .

 A critical step is the initialization of the weights. These are set to random

numbers between 0 and 1. The choice of these random numbers will determine the

convergence of the algorithm. Using a random number generator, the first layer weights

are initially set to
















=

















=
7621.06068.0
8913.02311.0
4860.09501.0

)1(
22

)1(
21

)1(
12

)1(
11

)1(
02

)1(
01

)1(
)0(

ww
ww
ww

W ,

where the value in the subscripted bracket refers to the 0th iteration. Applying these

weights in the forward process gives the following output from the first layer summation









−

==
1394.23568.06152.01674.1
7881.13258.15744.01121.0)1(

)0(XW T(1)
(0)y .

161

 Taking the hyperbolic tangent of each value in the above matrix, and adding a

row of ones for the bias values in the second layer, we get

















−
==

1394.23568.06152.01674.1
7881.13258.15744.01121.0
1111

)tanh((1)
(0)

(1)
(0) yz .

 The second layer weights are then initialized to
















=

















=
8214.0
0185.0
4565.0

)2(
2

)2(
1

)2(
0

w
w
w

(2)
(0)w ,

and the output of the second layer summation is

[]2729.17538.09160.02178.0)1(
)0(−== (1)

(0)
(2)
(0) zwy T .

 Taking the hyperbolic tangent of each value in the above matrix, we get

[]8546.06374.07240.02145.0)tanh(−== (2)
(0)

(2)
(0) yz .

 We will now compute the difference between this result and the training values of

[]0.10.10.10.1 −−=t ,

which is given by

[]1454.06374.17240.12145.1 −−=−= (2)
(0)

(2)
(0) zte ,

and the RMS error is given by 6738.2=RMSe .

 This is a large error, so we will now use the backpropagation method to improve

the estimate of the weights. The two key parameters in the backpropagation algorithm

are the learning constant η and the number of iterations. In our test, we will set η to 0.2

and use 1000 iterations. We will do the first iteration manually, and then let the computer

take over. First we calculate δ(2) which, using the derivative form shown in equation

(5.26), is given by

162

[]0392.09722.08203.01586.1)1()(' 2)2()2()2(−−=⋅−=⋅= (2)
(0)

(2)
(0) ezeyfδ ,

where the square and multiplication operations are applied element by element. The

update for the second layer weights is thus given by

















−
−
−

=⋅⋅=
3396.0
2206.0
1189.0

)2()1()2(Tδ∆ zη ,

and the updated weights are
















−=∆+=

4818.0
2021.0

3375.0
)2((2)

(0)
(2)
(1) ww .

 Next we calculate δ(1), which is given by

















−−
−−=⋅−=

0017.07049.04716.03064.0
0001.00044.00111.00212.0
0000

)()1()2(2)1()1(δδ (2)
(0)wz .

 The weight update for the first layer weights is then given by

















−−
−−
−

==
1076.00029.00
0143.00056.00
1737.00011.00

)1()1(TXδ∆ η .

 The zeros in the first column are superfluous and can be dropped, leaving a 3x2

matrix which, when added to the initial weights gives
















=∆+=

6545.06040.0
8770.02256.0
3123.09513.0

)1((1)
(0)

(1)
(1) WW .

 Now that we have the updated weights, we can repeat the forward calculation,

giving a new output of

[]5405.02022.04370.00911.0−=(2)
(1)z ,

163

with an RMS error of 2163.2=RMSe . The error is going down, but very slowly. We will

therefore let the computer compute the next 999 iterations. Figure 5.7 shows the RMS

error after each of the 1000 iterations. Notice in Figure 5.7 that the error decays

smoothly nearly to zero, indicating that after 1000 iterations we have converged to a

reasonable answer. The final computed values are

[]9734.09806.09806.09736.0 −−=(2)
(1000)z ,

and the error has decreased to 0464.0=RMSe . The weights after 1000 iterations are given

by















 −
=

5534.16556.1
5539.16564.1
3779.15024.1

(1)
(1000)W , and
















−=

5885.2
5788.2

3006.2
(2)
(1000)w .

Notice that these weights are somewhat different than the weights we derived intuitively

in the previous section.

Figure 5.7: Convergence of the backpropagation algorithm for the AVO classification problem using the
first example given above.

164

 From this first example it would appear that, with enough iterations, we can

approximate the right answer to any desired level of accuracy. However, let us see what

happens if we choose a different set of initial weights. In this second case, we let the

initial weights be
















=

0099.00579.0
8132.08936.0
3529.04103.0

)1(
)0(W , and
















=

1987.0
2028.0
1389.0

(2)
(0)w ,

leading to an initial output of

[]4469.00264.04411.00483.0 −−=(2)
(0)z ,

with RMS error of 2.0072. Figure 5.8 show the RMS error convergence for 1000

iterations using this set of weights. Notice that the algorithm now gets trapped in a local

minimum, and does not to converge to an acceptable answer.

Figure 5.8: Convergence of the backpropagation algorithm for the AVO classification problem using the
second example given above.

 The final weights are for the convergence shown in Figure 5.8 are

165

















−
=

8651.07535.0
5148.24744.2
5525.24303.2

)1(
)1000(W , and
















−
−

=
7242.1
6353.1
0888.0

(2)
(1000)w ,

and the final output is

[]0007.09784.00008.09772.0 −−=(2)
(0)z ,

with RMS error of 1.4156. Comparing these results with the first results, it can be seen

that the last row of the first weight matrix is much too low, as is the bias value in the

second set of weights. The result is an output that finds the first and third value correctly,

but not the second and fourth.

 As a final display, let us look at the estimated classification values after each

iteration. This is shown in Figure 5.9, where Figure 5.9(a) shows the estimates for the

case shown in Figure 5.7, and Figure 5.9(b) shows the estimates for the case shown in

Figure 5.8. In Figure 5.9(a) the positive and negative pairs fall on top of each other and

converge to the right answer in much the same way as the error plot. In Figure 5.9(b), the

four cases are distinct and show that two of the classification values refused to converge.

This shows how sensitive the process is to the initial estimate of the weights.

 (a) (b)

Figure 5.9: Convergence of the classification values in backpropagation algorithm, where (a) shows the
case from Figure 5.7, and (b) shows the case from Figure 5.8.

166

5.3.3 A sine wave example

 As mentioned in Chapter 1, neural networks can be used for either classification

or function prediction, that is an example of nonlinear regression where we know which

function we are trying to interpolate. Our first example was a classification problem, in

which we classified a sand reservoir as being either gas-charged or wet. In our second

example, we will use the backpropagation network to interpolate the function sin(π t)

using a training set consisting of four measured points from the sine wave. To perform

this interpolation, we will use a different type of neural network than was used in the first

example, called a 1-K-1 neural network (Hagan et al., 1996). This type of network

accepts a scalar input (rather than the two-dimensional vector used in our classification

example), passes it through K neurons, then combines the output from these K neurons

using a single neuron, and outputs a scalar value. We will use the simplest case of K = 2,

and will use different functions for the neurons in each layer. For the first layer, the

hidden layer, we will use the logistic function given by equation (5.9), with derivative

given by equation (5.25). For the second layer, the output layer, we will use the linear

function given by xf(x) = , with a derivative of 1. Figure 5.10 shows the flowchart for

the 1-2-1 neural network.

Figure 5.10: The 1-2-1 neural network used in this section to interpolate a sine wave.

167

 In our test, I will use four input values at x values of 1/8, 3/8, 5/8, and 7/8. This

means that our X matrix can be written:









=








=

8/78/58/38/1
11111111

4321 xxxx
X

The training values are therefore at angles of π/4, 3π/4, 5π/4, and 7π/4 and are given by

[]
[]2222

)4/7sin()4/5sin()4/3sin()4/sin(

−−=

= ππππt

 Using a random number generator, the first-layer weights for the zeroth iteration

are set to









=








=

4860.02311.0
6068.09501.0

)1(
12

)1(
11

)1(
02

)1(
01)1(

)0(ww
ww

W .

 Applying these weights in the forward process gives the following output from

the first layer summation









==

0321.19106.07891.06676.0
1524.10946.10368.19790.0)1(

)0(XW T(1)
(0)y .

 Applying the logistic function to each value in the above matrix, and adding a row

of ones for the bias values in the second layer, we get
















=

7373.07131.06876.06610.0
7599.07492.07382.07269.0
1111

(1)
(0)z .

 The second layer weights are then initialized to
















=

















=
4565.0
7621.0
8913.0

)2(
2

)2(
1

)2(
0

w
w
w

(2)
(0)w ,

168

and the output of the second layer summation and function application, since the function

is linear, is

[]8070.17878.17678.17470.1)1(
)0(=== (1)

(0)
(2)
(0)

(2)
(0) zwyz T .

 We will now compute the difference between this result and the training values,

that is given by

[]5141.24949.20607.10399.1 −−−−=−= (2)
(0)

(2)
(0) zte ,

and the RMS error is given by 8408.3=RMSe .

 As in the previous case, the two key parameters in the backpropagation algorithm

are the learning constant η and the number of iterations. In our test, I will set η to 0.1

and use 12,000 iterations. (I chose 12,000 iterations by trial and error. Another approach

to finding the number of iterations is to stop iterating when some convergence criterion is

met.) Again, I will do the first iteration manually, since this problem is quite different

than the first one, and then I will let the computer take over. First we calculate δ(2) which,

since the derivative of a linear function is equal to one, is given by
(2)
(0)

(2)
(0)

(2) eey =⋅=)(')2(fδ .

This is simply equal to the error between the initial calculation and the training values,

given above. The update for the second layer weights is given by

















−
−
−

=⋅⋅=
5050.0
5319.0
7110.0

)2()1()2(Tδ∆ zη ,

and the updated weights are

















−
=+=

0485.0
2302.0
1803.0

)2(∆(2)
(0)

(2)
(1) ww .

 Next we calculate δ (1), in which we need the derivative of the logistic function,

given in equation (5.25). This gives us

169

















−−−−
−−−−=⋅−=

2223.02330.01040.01064.0
3495.03572.01562.01573.0
0000

)()1()2(2)1()1(δδ (2)
(0)wz .

 The weight update for the first layer weights is then given by









−−
−−

==
0392.0607.00
666.01020.00)1()1(TXδη∆ .

 The zeros in the first column are superfluous and can be dropped, leaving a 2x2

matrix that, when added to the initial weights gives









=∆+=

4467.01704.0
5403.08481.0)1((1)

(0)
(1)

(1) WW .

 Now that we have the updated weights, we can repeat the forward calculation,

giving a new output of

[]3137.03129.03121.03113.0=(2)
(1)z ,

with an RMS error of 5477.1=RMSe . The error is going down, and the values are all

roughly the same size, but we know that the last two values should be the same absolute

value but negative. We will therefore let the computer compute the next 11,999

iterations. Figure 5.11(a) shows the RMS error after each of the 12,000 iterations. (The

reason that the first value on the plot does not seem to agree with the first error given

above is that the error in the first ten iterations is very steep, and the points are not shown

at this scale.) Notice that the error decays smoothly to close to zero, indicating that after

12,000 iterations we have converged to a reasonable answer.

 The final computed values are

[]7087.07045.07047.07085.0 −−=(2)
(12000)z ,

and the error has decreased to 0041.0=RMSe . The weights after 12,000 iterations are

given by

170








 −−
=

3039.127847.2
0168.60483.1(1)

(12000)W , and
















−

−
=

0671.3
3917.3
3823.0

(2)
(12000)w .

 In Figure 5.11(b) I show the results of applying the derived weights to interpolate

values away from the training points. Notice that the approximation is quite good

between the centre two training points, but underestimates the true value between the

other pairs of training points and overestimates the true value at the ends of the function.

The error has converged to close to zero, but is far from being uniform in convergence,

showing a large change after about 300 iterations.

 (a) (b)

Figure 5.11. Interpolation of a sine wave using the backpropagation network shown in Figure 5.10, where

(a) shows the error convergence after 10,000 iterations, and (b) shows the correct answer as open blue
circles, the training points as four black squares, the predictions as open red squares, and the error between

the predicted and true values as a solid blue line.

 It is also useful to display the four estimated sine wave values for each iteration of

the algorithm. This is shown in Figure 5.12. In this figure, note that the algorithm gets

the sign of the values correct after very few iterations, but underestimates the size of one

value and overestimates the other for both the positive and negative pairs. Also, there is

almost perfect symmetry between the two pairs of values.

171

Figure 5.12. The estimate of each of the four sine wave values (the black squares in Figure 5.11(a)) after
each iteration of the neural network.

 Next, let us see what happens if we change the random guess on the initial

weights. Figure 5.13 shows five separate solutions of 12,000 iterations each, starting with

a different set of random numbers each time. Notice that although each estimate is close

to the estimate in Figure 5.12, they all differ slightly.

 (a) (b)

Figure 5.13: Same as Figure 5.11, except that five separate interpolations have been done using different
sets of random initial weights.

172

 Next, let us vary the training points. Figure 5.14 shows five separate solutions of

12,000 iterations each, starting with a different set of random numbers each time.

However, this time the training values are at π/8, 5π/8, 9π/8, and 13π/8.

(a) (b)

Figure 5.14. Same as Figure 5.13, except that the training points have been shifted by π/8.

 In Figure 5.14, note that only two of the five initial starting estimates have

converged to the right answer, and these do so after different numbers of iterations. In

the best case, the one that converged after 9000 iterations, the training values and final

answer are

[]9239.03827.09239.03827.0 −−=t ,

and

[]9239.03827.09238.03827.0)2(
)12000(−−=z ,

with an error of only 0.00047. So this first run has done an excellent job.

 The convergence of the individual values is shown in Figure 5.15. Because the

points are not symmetric, as in our first example, the convergence is no longer

symmetric.

173

Figure 5.15. The estimated sine wave values after each iteration of the neural network.

 What we can conclude from both this model study and the previous one is that the

multi-layer perceptron is highly sensitive to both the initial guess of the weights and also

the number of iterations used in the solution. If we are lucky, we will converge to a

correct answer after a reasonable number of iterations. If we are not lucky, we will either

require a very large number of iterations, making the process costly in time and computer

usage, or may get locked in a local minimum and never converge at all. The next section

will discuss several methods for trying to avoid these problems.

5.4 Advanced methods for backpropagation

5.4.1 Introduction

 In the examples just given, I have used the traditional LMS backpropagation

method to compute weights in our neural networks. However, this method has been

shown to be quite slow and highly dependent on the initial guess. Several more advanced

methods have been developed over the years to improve the performance of network

training. The two methods that will be used in the next section are the conjugate gradient

174

method and the simulated annealing method. Before discussing these methods, I will

quickly review the basics of function optimization (Gill et al., 1981, Hagan et al., 1996).

These methods can be best understood by considering the vector form of the Taylor series

expansion, that can be written

xxxgxx ∆∆+∆+= Hff TT)()(0 , (5.27)

where



















=

nx

x
x

#
2

1

x ,



























∂
∂

∂
∂
∂
∂

=∇=

nx
f

x
f
x
f

f
#

2

1

g ,



























∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

=∇=

2

2

2

2

1

2

2

2

2
2

2

12

2
1

2

21

2

2
1

2

2

nnn

n

n

x
f

xx
f

xx
f

xx
f

x
f

xx
f

xx
f

xx
f

x
f

fH

"

#%##

"

"

, and

oxxx −=∆ . The vector of derivatives g is called the gradient, and the symmetric

matrix H is called the Hessian. If f(x) is the quadratic function given by

cAf TT ++= xbxxx
2
1)(, (5.28)

where A is also a symmetric matrix, we find that

bA)(f +=∇ xx , (5.29)

and

Af =∇)(2 x , (5.30)

which shows that A is equivalent to the Hessian.

 As a simple example of this theory, that will be used to illustrate the gradient

search methods described in the next two sections, let 







=








=

y
x

x
x

2

1x , and consider the

quadratic function

[] 22

21
12

2
1

2
1)(yxyx

y
x

yxAf T ++=















== xxx , (5.31)

that is the ellipse shown in Figure 5.16, both in contour and perspective form.

175

 (a) (b)

Figure 5.16. The elliptical function used for the explanation of optimization methods, showing (a) the
contours of the function, and (b) a perspective plot of the function.

 For this function, the gradient is









+
+

=



















∂
∂
∂
∂

=∇=
xy
yx

y
f
x
f

f
2
2

g , (5.32)

and the Hessian is









=



















∂
∂

∂∂
∂

∂∂
∂

∂
∂

=∇=
21
12

2

22

2

2

2

2

y
f

xy
f

yx
f

x
f

fH . (5.33)

5.4.2 The gradient descent method

 To optimize the function f(x), we must find the value of x that gives us the

minimum value of f(x). This can be done iteratively using the equation

kk pxx k1k α+=+ , (5.34)

where k is the iteration number, pk is a search direction, and αk is the learning rate (Hagan

et al., 1996).

 Note that equation (5.34) can also be written

kpxk α∆ = , (5.35)

176

where ∆ xk = xk+1 – xk. Dropping the third term of equation (5.27) and substituting xk+1

for x and xk for x0, we get

k1k xgxx ∆T
k)(f)(f +=+ . (5.36)

Equation (5.36) can be rewritten as

k
T
k xg ∆∆ =f , (5.37)

that must be negative if the function f(x) is to decrease. Combining equations (5.35) and

(5.37) therefore gives us

 kk pgxg T
kk

T
k α∆ = , (5.38)

where, for pk to point in the direction of maximum change, or descent, we must

have kgp −=k . This means that we can rewrite equation (5.34) as

kk gxx k1k α−=+ , (5.39)

which is called the steepest descent, or gradient descent method.

 For an analytical function, gk can be computed directly, as we saw in the last

section. However, when we do not know the underlying analytic function, the gradient

must be evaluated directly from the data. In the case where the vector x in equation

(5.39) represents a set of unknown weights, as in both the single and multi-layer

perceptron, we can replace the gradient with the error between the desired and predicted

outputs. In this case, the gradient descent method becomes identical to the LMS

algorithm, that was used in both chapter 4 and in this chapter to solve for the weights. A

detailed discussion of the LMS algorithm is given in Appendix 5.

 Another key decision is how to choose a value for αk. Often, this value is set to a

constant that does not vary from iteration to iteration. Choosing this value to be very

small will ensure a smooth convergence but will lead to too many iterations. Choosing a

value of alpha that is too large will result in fewer iterations, but the solution may become

unstable.

177

 As shown by Hagan et al. (1996) and discussed in section A5.6 of Appendix 5,

the theoretical limit of αk is

max

k
2

λ
α < , (5.40)

where λmax is the largest eigenvalue of the Hessian matrix.

 If we are dealing with quadratic functions, we can compute an optimum value for

αk at each iteration by minimizing the function f(xk + αkpk) with respect to αk. As shown

by Hagan et al. (1996) this leads to the vector result

k

k
k Hpp

pg
T
k

T
k−=α . (5.41)

 As an example of the gradient descent method, let us use the function defined by

equation (5.31), with gradient and Hessian defined in equations (5.32) and (5.33). Note

that the eigenvalues for the matrix A are 3 and 1, so that the largest allowable value for α

is 0.667. We will choose 







=

0.4-
1.0

0x , which means, from equation (5.32), that









=
















=

0.2
1.6

0.4-
1.0

21
12

0g .

If we choose α = 0.1, then we find that









−

=−=
42.0

84.0
1.0 0gxx 01 ,

which is a small first step. If we choose α = 0.6, then we find that









−

=−=
52.0

04.0
6.0 0gxx 01 ,

which is a large first step.

 Figure 5.17 shows the convergence of the solution for the two different values of

α. As expected, using a small value of α requires more iterations than a large value of α.

178

In the cases shown in Figure 5.17, we needed 50 iterations for α = 0.1 and 20 iterations

for α = 0.6. Note that the large value of α has created a result that is close to unstable.

 (a) (b)

Figure 5.17. The convergence of the gradient descent method using α values of (a) 0.1 and (b) 0.6.

 Next, we will let αk vary for each iteration, using the line minimization procedure

given in equation (5.41). For the first iteration, we find that

[]

[]
4452.0

2.0
6.1

21
12

2.06.1

2.0
6.1

2.06.1

0

0
0 =



























==
gg

gg
T
0

T
0

H
α .

This results in a first value equal to









−

=−=
489.0

2877.0
4452.0 0gxx 01

 Figure 5.18 shows the first and subsequent values of the gradient descent

algorithm with line minimization. Note that this method converges to the correct solution

in an optimum fashion when compared to the results in Figure 5.18, in which the alpha

values were both fixed and arbitrary. As shown in Figure 5.18(a), most of the

convergence is in the first five steps, although ten steps are shown in the figure. Figure

5.18(b) shows a detailed interpretation of the first two iterations of Figure 5.18(a). Note

179

that at each step we move down the steepest slope (the gradient) from this step, but this

direction is virtually never directly towards the actual minimum. Thus, the convergence

to the solution is quite “jerky”. The length of each step is controlled by the α factor. In

this particular example, the values of αk vary alternatively between 0.4452 and 0.5702.

 (a) (b)

Figure 5.18. The gradient descent algorithm with line minimization, where (a) shows the iterative solution

and (b) explains the first two steps of (a) in more detail.

5.4.3 The conjugate gradient method

 The conjugate gradient method allows us to converge to a solution much more

rapidly than the gradient descent method, since it uses vectors that are mutually

conjugate. Using the positive definite Hessian matrix defined in equation (5.27), we can

state that a set of vectors pk are mutually conjugate if

jk,0H j ≠=ppT
k . (5.38)

 If we then combine the definitions of the gradient and Hessian given for the

quadratic function in equations (5.29) and (5.30), where we now write the Hessian as the

specific matrix A, we can compute the change in the gradient as

kk1k A)A()A(- xbxbxggg k1kk ∆∆ =+−+== ++ . (5.39)

180

 If we next multiply equation (5.38) by αk and substitute equation (5.33) for the

term ∆ xk, we get

jk,0HH jjj ≠=== pgpxpp T
k

T
k

T
kk ∆∆α . (5.40)

 Equation (5.40) shows us that to compute the conjugate to the gradient we no

longer need to know the Hessian, only the changes in the gradient from iteration to

iteration. The procedure is done iteratively using the equation

 1kk −+−= pgp kk β , (5.41)

where the first search direction uses the gradient descent method, so that 0gp −=0 , and

the βk values are found using the equation

1k

k

−

=
gg
gg

T
1-k

T
k

kβ . (5.42)

Equation (5.42) is due to Fletcher and Reeves (1964. The update in the xk value is then

given by equation (5.34).

 Now I will illustrate the conjugate gradient method using the same dataset used to

illustrate the gradient descent method. As just discussed, the first step of the conjugate

gradient method is identical to the first step of the gradient descent method. Since I will

again start at 







=

0.4-
1.0

0x , the initial gradient is 







=

0.2
1.6

0g and the first value

is 4452.00 =α . This means that the first step is exactly as shown in Figure 5.17, resulting

in the position 







−

=
489.0

2877.0
1x .

 The second step is the conjugate gradient step. For this, we need the second

iteration of the gradient, that is









=








−








=

0.6904-
0.0863

489.0
2877.0

21
12

1g .

181

 The first β term is then given by

[]

[]
1682.0

2.0
6.1

2.06.1

6904.0
0863.0

6904.00863.0

0

1
1 =


















−

−
==

gg
gg

T
0

T
1β ,

 Using equation (5.41) and recalling that 0gp −=0 , this results in a conjugate

gradient value of








−
=








+








=

6532.0
3842.0

1682.01 0.2-
1.6-

0.6904
0.0863-

p .

 The new value of α is then given by line minimization as

[]

[]
7487.0

6532.0
3842.0

21
12

6532.03842.0

6532.0
3842.0

6904.00863.0

1

1
1 =








−








−








−
−

−=−=
pp

pg
T
1

T
1

H
α ,

and the final result is









=







−
+








−

=+=
0
0

489.0
2877.0

489.0
2877.0

7487.0 1pxx 12 .

 Thus, the conjugate gradient method has converged in just two iterations. This is

illustrated in Figure 5.19, in which (a) shows the steps in the algorithm and (b) annotates

these steps. Note that the conjugate to the gradient points directly at the correct solution

and therefore the line minimization method allows us to arrive at the correct solution in

just the second step. This can be contrasted with the gradient descent method of Figure

5.18, in which the gradient virtually never points directly at the correct solution and thus

must tortuously arrive at the solution in multiple steps.

182

 (a) (b)
Figure 5.19. An illustration of the conjugate gradient algorithm with line minimization, where (a) shows the

iterative solution and (b) shows an annotation of (a). Note that the algorithm converges in two steps.

 The preceding analysis assumed that we are dealing with a quadratic function

when performing minimization. In the case that will be considered in Section 5.5 we are

dealing with real discrete data and the algorithm must be modified (Masters, 1993). The

first difference is that the gradient term is not analytic and must be determined by the

error between the predicted and desired result, as explained in the LMS algorithm. The

second difference is that the distance step α cannot be determined by line minimization.

In the real data case, this value is determined by searching for a minimum in the error

term using a technique called the Golden Section search (Press et al., 1992). This

technique will be also be used in finding the minimum for the radial basis function

method, and will be discussed in the next chapter.

183

5.5 A multi-layer feedforward neural network case study

 In this section, I will apply the theory of the multi-layer perceptron to the

prediction of P-wave velocity in a channel sand from the Blackfoot oilfield of southern

Alberta. This is the same area that I have discussed in sections 3.7 and 4.4.2. The base

map showing both the wells in the area and the outline of the 3D seismic survey is shown

in Figure 5.20.

Figure 5.20. A base map showing the wells and limits of the 3D seismic data used in this study. The red

vertical line shows line 95, that is displayed in the next figure.

 Figure 5.21 shows seismic line 95, which was indicated as the vertical red line in

Figure 5.20. The P-wave sonic log from line 95 has been superimposed on the section at

its correct location, after correlation with the seismic data. The wiggle traces on the

display represent seismic amplitude and the colour represents acoustic impedance derived

using the model-based seismic inversion scheme discussed in section 2.8.2. Also shown

is a picked seismic event (Horizon 1) just above the channel location. The low

impedance red zone just below Horizon 1 shows the extent of the channel on this line.

Notice that this is the same input data that was used in the case study of section 4.4.2.

The two differences are that we will be predicting P-wave velocity rather than porosity,

and performing regression rather than classification.

184

Figure 5.21. Line 95 from the 3D survey shown in Figure 5.23, where the wiggle traces show the seismic
amplitudes, colour shows the inverted impedance, and the P-wave sonic log has been inserted at trace 25.

 To see the full lateral extent of the channel, a dataslice was created over the

complete 3D survey, and is shown in Figure 5.22. This slice was created by averaging

over a 10 ms zone that was centered on a “phantom” event created by shifting Horizon 1

down by 20 ms. Notice the low impedances (yellow) that correspond to the channel in

the lower part of the map, running from right to left.

Figure 5.22. The average impedance from a 10 ms window that was shifted 20 ms below Horizon 1 in

Figure 5.21.

185

 We will next extract the seismic trace and inverted trace that correspond to each

P-wave sonic log by averaging these traces from a one-trace radius around each well.

Figure 5.23 shows the result at wells 08-08 and 09-08, with the sonic log on the right, the

seismic trace in the middle, and the inverted trace on the right. The analysis window for

each well is shown by the horizontal red lines.

Figure 5.23. The P-wave sonic, extracted seismic trace and inverted impedance for wells 08-08 and 09-08.

The zones of interest are marked by the horizontal red lines.

 We can get an idea of how well the seismic trace and inverted trace match the

sonic log over the zone of interest by cross-plotting them, as shown in Figure 5.24. It is

obvious that the inverted trace fits better.

 (a) (b)
Figure 5.24. The crossplots of (a) inverted impedance, and (b) seismic amplitude against the P-wave sonic

logs over the zone of interest in all wells.

186

 We will next find the optimum set of attributes using the method described in

section 3.6. That is, we will find the best attributes using step-wise regression and decide

which attributes to keep using cross-validation. Table 5.2 and Figure 5.25 show the

result of this analysis, where the table shows the chosen attributes and the figure shows

the training error in black and the validation error in red. Only the first six attributes will

be used, since the validation error starts to increase after six. In this analysis, we also

used an operator length of seven points, that was found to be the optimal length by trying

a range of values.

Table 5.2: The list of attributes used in the training for this problem.

Figure 5.25. The graphical error for the attributes, where the red curve shows the validation error and the

black curve shows the total error.

187

 The comparison between the predicted and actual sonic log values at wells 08-08,

09-08 and 09-17 are shown in Figure 5.26.

(a)

(b)

Figure 5.26. A comparison of the predicted P-wave logs (red) to the actual P-wave logs (black), where (a)
shows the training result and (b) shows the validation result.

188

 In Figure 5.26, note that (a) shows the result of using all the wells and (b) shows

the validation result, in which the well being predicted is left out of the training. Notice

also that the correlation coefficient drops to 0.674 for the validation result, but this is still

reasonably close to the training result of 0.709. Figure 5.27 shows a crossplot of the

pseudo-sonic logs against the measured sonic logs at all well locations. When comparing

this with Figure 5.24(a), notice that the scatter has gone down and the correlation

coefficient has improved to 0.709.

Figure 5.27. The crossplot of P-wave sonic log values predicted using the multilinear transform against true

P-wave sonic log values, for all wells.

 We will now apply the multilinear regression coefficients derived in the training

to produce a full volume of pseudo-P-wave sonic logs. Figure 5.28 shows the predicted

P-wave values for seismic line 95. Notice the extra detail that is seen in the channel that

intersects the well log below Horizon 1 when compared to Figure 5.21. There is also

better lateral continuity throughout the section.

189

Figure 5.28. The predicted P-wave sonic logs from multilinear regression over line 95, taken from the

predicted P-wave logs over the complete seismic volume.

 Figure 5.29 shows a dataslice from the complete 3D survey, which is the mean

average of a 10 ms zone that was centered on a “phantom” event created by shifting

Horizon 1 down by 20 ms, as in Figure 5.22. As in the Figure 5.22, the grid cells were

then interpolated by a factor of four and smoothed with a 3 x 3 running smoother. Notice

that the channel is more clearly defined than the channel in Figure 5.22.

Figure 5.29. The extracted P-wave slice over the complete seismic survey, averaged over a 10 ms window

that was shifted 20 ms below Horizon 1 in Figure 5.31.

190

 Finally, we will use the multi-layer perceptron (MLP) to try to improve the results

of the multilinear regression. The theory of the MLP was discussed earlier in this

chapter, but not the practical implementation. The three key questions are how to choose

the attributes, how many nodes to include in the hidden layer and how many iterations to

perform, both for the backward propagation step and the conjugate gradient step.

 To answer the first question, I have found in this study that the multilinear

regression approach gives a good estimate of the attribute order, so the attributes with the

operator described above are the ones that will be used as input to the neural network.

Note that the attributes were 6 in number with an operator length of 7 points. To answer

the second question, a good rule-of-thumb for the number of nodes is to use 2/3 of the

number of attributes (Hampson and Russell, 1998). Since the number of effective

attributes is 6 x 7 = 42 (six attributes with a seven point operator), we will therefore use

28 nodes. Finally, for the number of iterations, we will use 10 full iterations and 100

conjugate gradient iterations within each full iteration. The simulated annealing steps are

included if the error does not go down. In this case, no simulated annealing steps were

needed.

 The comparison between the predicted and actual sonic log values after the MLP

process, at wells 08-08, 09-08 and 09-17, are shown in Figure 5.30. Figure 5.30(a) shows

the training result, in which all the wells are used in the calculation, and Figure 5.30(b)

shows the validation result, in which the well being predicted is left out of the training

calculation. Notice that the correlation coefficient for the training result is 0.739, which

is better than multilinear regression, but that the correlation coefficient for the validation

result drops to 0.522, which is worse. In other words, some of the improvement that we

are seeing with the MLP may be due to overtraining at the well locations.

 Figure 5.31 then shows a crossplot of the pseudo-sonic logs against the measured

sonic logs at all well locations, after applying the MLP process. When comparing this

with Figure 5.30, notice that the scatter has gone down even more and the correlation

191

coefficient has improved to 0.739. However, keep in mind that this is the result of full

training, and not validation.

(a)

(b)

Figure 5.30. A comparison of the predicted P-wave logs (red) to the actual P-wave logs (black) from the
MLP network, where (a) shows the training result and (b) shows the validation result.

192

Figure 5.31. The crossplot of P-wave sonic log values predicted using the MLP network against true P-

wave sonic log values, for all wells.

 We will now apply the multilinear regression coefficients derived in the MLP

training to produce a full volume of pseudo-P-wave sonic logs. Figure 5.32 shows the

predicted P-wave velocity values for seismic line 95. Notice the extra detail that is seen

in the channel that intersects the well log below Horizon 1, when compared to the

multilinear regression result of Figure 5.28. There is also much higher frequency and

good lateral continuity throughout the section. However, a strong “imprint” of the well

log is clearly visible on the seismically-derived logs adjacent to the well, which may

suggest that the result has been overtrained.

 Figure 5.33 then shows a dataslice from the complete 3D survey, again showing

the mean average over a 10 ms zone that was centered on a “phantom” event created by

shifting Horizon 1 down by 20 ms. As in the Figures 5.22 and 5.29, the grid cells were

then interpolated by a factor of four and smoothed with a 3 x 3 running smoother. Notice

that the channel is less continuous than the channel in Figure 5.29, indicating again that

193

the network has possibly been overtrained. Thus, overtraining is a big concern for the

multi-layer perceptron neural network, and appears in evidence here.

Figure 5.32. The predicted P-wave sonic logs from the MLP network over line 95, taken from the predicted

P-wave logs over the complete seismic volume.

Figure 5.33. The extracted P-wave slice over the complete seismic survey, averaged over a 10 ms window

that was shifted 20 ms below Horizon 1 in Figure 5.35.

194

 This case study has shown that we can produce higher-frequency results with the

multi-layer perceptron approach to reservoir prediction than with the multilinear

regression approach. However, it has also shown us that the danger of overtraining has

increased. A second problem, that was shown earlier in the chapter, is that if we had

started the process with a different set of initial weights, the final answer could have been

different. This is not the case with multilinear regression, which always converges to the

same answer, given the same number of iterations. In the next chapter, we will look at a

set of neural networks that combine the best features of both the multilinear regression

approach and the multi-layer perceptron approach, called basis function neural networks.

These methods will always converge to the same answer, but they are inherently

nonlinear. Although the danger of overtraining will also be present using basis function

networks, the danger is less severe than in the multi-layer perceptron.

5.6 Neural networks using a linear function

 It is important to note that the multilayer network is equivalent to a single layer

network if the linear function is applied to the output of the weighted sum at each layer.

To understand this, consider a simple two-layer network with three inputs, two

perceptrons in the first layer, and a single perceptron in the second layer, as illustrated in

Figure 5.34.

Figure 5.34. A multi-layer perceptron that uses a linear function.

195

 If we let the bias equal zero, we can write

























=









3

2

1

)1(
23

)1(
22

)1(
21

)1(
13

)1(
12

)1(
11

2

1

x
x
x

www
www

y
y

, (5.43)

for the output of the first layer, and

[] 







=

2

1)2(
3

)2(
2

)2(
1 y

y
wwwz , (5.44)

for the output of the second layer, where we have assumed that f(y) = y and f(z) = z.

Combining equations (5.43) and (5.44) gives

[]















=

3

2

1
*
3

*
2

*
1

x
x
x

wwwz , (5.45)

where

.
,

,

)1(
32

)2(
2

)1(
31

)2(
1

*
3

)1(
22

)2(
2

)1(
21

)2(
1

*
2

)1(
12

)2(
2

)1(
11

)2(
1

*
1

wwwww
wwwww

wwwww

+=

+=

+=

 Thus, the two layer network of Figure 5.37 reduces to the single layer network

shown in Figure 5.35. This can be generalized to any number of layers and perceptrons.

Figure 5.35. The equivalent single-layer perceptron to the multi-layer perceptron shown in Figure 5.34.

196

CHAPTER 6 : BASIS-FUNCTION NEURAL NETWORKS

6.1 Introduction

 In all the approaches I have applied so far to the determination of reservoir

parameters from seismic attributes, I have used some form of the scalar product of a

weight vector and the input attribute vector. In the multilinear regression and linear

discriminant methods, the output of this scalar product is the final result. In the multi-

layer perceptron method, a nonlinear function is applied to the scalar product, and we are

able to solve nonlinear problems. The disadvantage of linear methods is that they can

solve only linear problems, whereas the disadvantage of the multi-layer perceptron

approach is that the final answer is dependent on this initial guess of the weights.

 In section 4.7 I introduced the generalized linear discriminant, in which we

compute the scalar product of the weight vector and some nonlinear function of the input

attribute vector. This equation is written

)(y T xw φ= , (6.1)

where [])x()x()x()(M10 φφφφ "=Tx is a nonlinear function of the vectors x, often

called a basis function. In this chapter I will revisit the basis function and show how this

approach combines the advantages of the methods we have discussed so far, but avoids

the disadvantages. As with linear methods, the solution to the weights does not depend

on an initial guess, but, unlike linear methods, the basis function approach can solve

nonlinear problems. The neural network methods discussed in this chapter will include

the probabilistic neural network, or PNN, the generalized regression neural network, or

GRNN, and the radial basis function neural network, or RBFN.

197

6.2 Probability density estimation

6.2.1 Parametric statistics

 In parametric statistics, we use a model that is based on several known

parameters. This approach was extensively discussed in Chapter 3, in which we used the

normal, or Gaussian, probability density function. In the general case for an M-

dimensional vector x, the multivariate normal distribution is given as





 −−−= −)()(

2
1exp

)2(
1)(1

2/12/
µxΣµx

Σ
x T

M
p

π
, (6.2)

where µ is the M-dimensional vector of means and Σ is and MxM dimensional

covariance matrix. These parameters can be estimated by finding the mean, variance, and

covariance of a representative set of data points. Parametric statistics give us an excellent

way of visualizing statistical relationships within our data, and lead to such powerful

techniques as linear discriminant analysis, Bayesian inference and maximum likelihood

analysis. However, the drawback of parametric methods is that we “force” a model onto

our data. In the next section, I will discuss non-parametric statistics, in which the form of

the probability density function depends on the data itself.

6.2.2 Non-parametric statistics and the histogram

 In non-parametric statistics we do not specify the parameters in advance, but

instead try to fit a function based on the data itself. The simplest type of non-parametric

approach, the histogram, was introduced in Chapter 3. In Figure 3.2, the histograms of

four different attributes were shown. Implicit in the histograms shown in Figure 3.2 is

the fact that each histogram is based on 10 uniform divisions, or bins, between the

minimum and maximum amplitude of the attribute. If we change the bin size, the look of

our histogram will change. This is shown in Figure 6.1, where I have re-computed the

histogram of Figure 3.2(d) for 5, 10, 50, and 100 bins, respectively.

198

 (a) (b)

 (c) (d)

Figure 6.1. Histograms for Attribute 3 of Figure 3.2, for (a) 5, (b) 10, (c) 50, and (d) 100 bins, respectively.

 Notice the extra detail that becomes apparent in Figure 6.1 as we increase the

number of bins. Recall that this dataset contained 69 points, so a bin size of 100 is

actually too large and contains a lot of zeros and ones.

 Although the histogram gives us an easy way of visualizing the distribution of

values within our dataset, it has several limitations (Bishop, 1995). First, the function is

not smooth, but has discontinuities at the bin locations. Second, and more importantly,

the histogram cannot be easily extended to the multi-dimensional case. In the next

section, we will discuss a density estimation method that overcomes both of these

limitations.

199

6.2.3 Kernel-based density estimation

 In kernel-based density estimation we define a hypercube in M dimensions and

then define a kernel function that will map the points which fall within this hypercube

into a new space defined by the kernel function. In our application, I will again consider

the case of our input attribute vectors xj, j = 1, …, N, where each vector contains M

attributes and can be written []Mjj2j1 xxx "=T
jx . These vectors can be thought of

as N points in M-dimensional attribute space. If we consider an arbitrary point in this

space, x, we can define Parzen’s estimator (Parzen, 1960) by the function

∑
=








 −
=

N

j

j

N
p

1

1)(
σ

φ
σ

xx
x , (6.3)

where ()uφ is referred to as either the kernel function or the Parzen window, and satisfies

the properties

() 0≥uφ , (6.4a)

and

() 1d =∫ uuφ . (6.4b)

 Although there are a number of functions that conform to these criteria, the most

commonly used function is the Gaussian kernel, given by

∑
= 













−=

N

j
MMN

p
1

2

2

2/ exp
)2(
1)(

σσπ
jx-x

x , (6.5)

I will exclusively use the Gaussian kernel as our Parzen estimator, and also for the neural

networks based on this method.

 The key parameter in equation (6.5) is the scaling factor σ, which can obviously

be equated to the standard deviation in the parametric form of the Gaussian distribution.

Let us first consider the one-dimensional case, where the Parzen window can be written

200

∑
=










 −
−=

N

j

jxx

N
xp

1
2

2)(
exp

2
1)(

σπσ
, (6.6)

where x is a scalar value. Figure 6.2 shows the result of applying the Parzen estimator to

the dataset shown in the histograms of Figure 6.1. In this case, I have used σ values of

10, 100, 250, and 1000, respectively. The reason for the large values of σ is that I did not

normalize the dataset first. Recall also that N = 69 for this dataset.

 (a) (b)

 (c) (d)
Figure 6.2. The Parzen estimator applied to the dataset shown in Figure 6.1, where I have used σ values of

(a) 10, (b) 100, (c) 250, and (d) 1000.

 From Figure 6.2 it is obvious that, as σ increases, the resulting function becomes

smoother. It is also clear that a σ value of 10 is probably too small, and a σ value of

1000 is too large. To illustrate the effect of σ on the Parzen window even more clearly, I

201

will let N = 6, so that the individual Gaussian curves can be seen. I will let the six points

be x1 = 20, x2 = 30, x3 = 35, x4 = 60, x5 = 70, and x6 = 75. The result of applying a

Parzen window to these values is shown in Figure 6.3, where I have used σ values of 5,

10, 20, and 40, respectively. Again, it is the relative effect of these values that we are

concerned with, not their absolute values.

 (a) (b)

 (c) (d)
Figure 6.3: The 1D Parzen windows for the six points described in the text, where I have used σ values of

(a) 5, (b) 10, (c) 20, and (d) 40.

 In Figure 6.3, each Gaussian has been normalized to a value of one. Notice that

as the value of σ increases, the resolution of the six points becomes less clear until, for a

value of 40, we just see a single smooth Gaussian shape. Let us now consider the two-

dimensional case, where the Parzen window can be written as

202

∑
=










 −+−
−=

6

1
2

2
22

2
11

2

)()(
exp

12
1)(

j

jj xxxx
p

σπσ
x . (6.7)

Figure 6.4 shows the Parzen window for the 2D case, where I have used the six points









=








=








=








=








=








=

30
75

,
20
70

,
40
60

,
65
35

,
75
30

,
55
20

654321 xxxxxx , and have again used σ

values of 5, 10, 20, and 40.

 (a) (b)

 (c) (d)
Figure 6.4: The 2D Parzen windows for the six points described in the text, where I have used σ values of

(a) 5, (b) 10, (c) 20, and (d) 40.

 Notice in Figure 6.4 that a σ value of 5 is too small, since the result is spiky,

whereas a σ value of 40 is too large, since it results in a single smooth Gaussian shape.

The optimum value of σ is between these two values. Although we can only visualize

the Parzen window up to the two-dimensional case, the same concept applies for M > 2.

203

6.3 An introduction to kernel-based neural networks

 Let us now discuss neural networks that are based on the Parzen estimator. As

already discussed, our training dataset consists of a set of N known training samples ti,

which will be some well-log-derived reservoir parameter such as VP, SP, SW, etc. Each

training sample is dependent on a vector of M seismic attribute values, correlated in time

with the training samples. The issues of which seismic attributes to use and how to

optimize the correlation between the training samples and the seismic data were

discussed in Chapter 3, and I will be using the same approach in this section. The

seismic attribute vectors can be written si = (si1, si2, …, siM)T, i = 1, 2, …, N. The objective

of our neural network is to find some function y such that:

y(si) = ti , i =1, 2,…, N (6.8)

 Once this function has been found, it can be applied to an arbitrary set of seismic

attribute vectors xk, where the attributes in the xk vectors are identical to those in the si

vectors. This is illustrated in Figure 6.5 for two arbitrary training samples and a single

application sample. I have chosen to use a different letter to represent the training and

application data vectors to emphasize the fundamental difference between them.

Figure 6.5: An illustration of the differences between the training vectors, si and sj, in which the output
samples ti and tj are known, and the application vector xk, in which the output sample yk is not known.

204

 Before discussing the RBFN and GRNN algorithms, I will first discuss the

simpler PNN algorithm. The PNN algorithm is based on the concept of “distance” in

attribute space. To better understand this concept, consider Figure 6.6, in which I have

drawn, in graphical form, the three arbitrary two-dimensional seismic attribute vectors

shown in Figure 6.5. Note that “distance” on these graphs is represented by the distance

between attribute amplitudes rather than the Cartesian distance that we normally use.

Recall that two of these vectors are from the training dataset (si and sj) and one is from the

application dataset (xk). We can define the three possible distances between these

vectors, as displayed in Figure 6.6. These are given by

 2
22

2
11)()(jijijiij ssssd −+−=−= ss ,

 2
22

2
11)() kikikiik xsxsd −+−=−= xs , and

 2
22

2
11)()(kjkjkjjk xsxsd −+−=−= xs .

 It is important to distinguish two fundamentally different types of attribute

distance in the above equations. The dij distances are the inter-training distances and the

dik and djk distances are the application distances.

Figure 6.6: A schematic graph of the vectors, si, sj, and xk, from Figure 6.5, where the coordinate axes

represent attribute amplitude rather than Cartesian distance.

205

 A second important concept is that it is not the distances themselves that will be

used in our neural network applications, but the basis function, φ(d), of the distance. As

mentioned in the last section, I will be using the Gaussian function as our basis function,

which can be written as









−= 2

2

exp)(
σ

φ dd , (6.9)

where σ is a smoothness parameter. Notice that σ can also be interpreted as the variance

of a Gaussian distribution centered on d. Thus, as we decrease σ, the width of the

distribution becomes narrower. Equation (6.9) is obviously equivalent to the Parzen

window of equation (6.5), but with the physical interpretation that the distance values

used in the exponential are equivalent to distances between reservoir parameter. Which

distances are used, and how they are used, will define our three neural networks: PNN,

GRNN, and RBFN. I will start with the PNN or probabilistic neural network.

6.4 The probabilistic neural network

6.4.1 Theory of the probabilistic neural network

 The probabilistic neural network, or PNN, is a neural network implementation of

the Parzen window, and was initially proposed by Specht (1990). A description of this

method, and the C++ code used to implement the algorithm, is found in books by Masters

(1993, 1995). The PNN can be used for discrimination or classification, and is thus a

nonlinear extension of Fisher’s linear discriminant function. Based on the definitions

given in the last section and shown in Figure 6.6 and 6.7, the PNN is defined for each of

the xk points as the sum over all the possible)d(kjφ functions, or

∑ ∑
= =

=












 −
−=

N

j

N

j
kj

jk
kp

1 1
2

2

exp)(φ
σ

sx
x , (6.10)

206

where I have used the abbreviation φkj for φ(dkj). If we use all the points in the training

dataset PNN will result in a single value, which does not give us a very useful

discrimination technique. But if we subdivide the training points into a number of classes,

PNN becomes an excellent classification method. This can be thought of as an

implementation of Bayes’ Theorem. I will first consider the simplest case, that of two

classes. If we have class C1 with N1 points, and class C2 with N2 points, where N1 + N2 =

N, then we can define

)(

,
)(1

1
k

Nj
kj

k p
p

x
x

∑
∈=

φ
, (6.11)

and

)(
)(2

2
k

Nj
kj

k p
p

x
x

∑
∈=

φ
, (6.12)

where normalization by the p(xk) term defined in equation (6.10) assures us that

0.1)(p)(p k2k1 =+ xx . The pj values can be interpreted as the probability of

membership in a class. That is, if p1(xk) > p2(xk), then xk is a member of class C1, or, if

p1(xk) < p2(xk), then xk is a member of class C2.

 Let us start with an example in which we have two classes, each a function of two

attributes and containing three points. In this case, we can compute the total PNN

function for point xk as the combination of the basis functions from all 6 points, or








 −+−++






 −+−=













 −
−=∑

=

2

2
262

2
161

2

2
212

2
111

6

1
2

2

)()(exp)()(exp

exp)(

σσ

σ

sxsxsxsx

p

kkkk

j

jk
k

"

sx
x

 (6.13)

Notice from equation (6.13) that the final result is the sum of six individual Gaussian

functions.

207

We can compute the individual class probability functions as

)(

exp

)(

3

1
2

2

1
k

j

jk

k p
p

x

sx

x

∑
= 












 −
−

=
σ

, (6.14)

and

)(

exp

)(

6

4
2

2

2
k

j

jk

k p
p

x

sx

x

∑
= 












 −
−

=
σ

. (6.15)

 This two class problem is shown below in Figure 6.7.

Figure 6.7: A simple example of the PNN neural network, using two classes with three points in each class,
and two attributes.

 The result of the calculations is shown in Figure 6.8 using an optimal sigma value.

The top two figures show the un-normalized basis functions, and the bottom two figures

show the normalized basis functions that correspond to the probabilities given in equation

(6.14) and (6.15).

208

 In Figure 6.8, classes 1 and 2 have been renamed classes A and B, respectively.

This simple example can be generalized to K classes and M attributes, as will be done in

the next section in which I will show a case study that uses 3 classes and four attributes.

 (a) (b)

 (c) (d)

Figure 6.8: The computed basis functions for the example shown in Figure 6.7, where (a) and (b) represent

the un-normalized functions for the two classes, and (c) and (d) represent the normalized probability
functions.

209

6.4.2 Application of the probabilistic neural network to porosity classification

 In section 4.4.2, I applied the Fisher linear discriminant to porosity classification.

I will now use the same input data and apply the probabilistic neural network to

classification. The base map for the study was shown in Figure 4.3, the logs for well 08-

08 were shown in Figure 4.4, seismic line 95 was shown in Figure 4.5, and three of the

seven wells used in the study were shown Figure 4.6. We then decided on which

attributes to use for the classification of porosity using the seismic data, finding the best

attributes using step-wise regression and deciding which attributes to keep using cross-

validation. Table 4.1 and Figure 4.7 showed the results of this analysis. Only the first

four attributes will be used, since the validation error increases after that point. These

figures will not be repeated here.

 I will now apply the PNN algorithm to the full seismic volume using the attributes

shown in Table 4.1. Before looking at the seismic volume, we need to see how close the

fit is at the wells. This is shown in Figure 6.9 for the three wells shown in Figure 4.6,

where Figure 6.9(a) shows the training result and Figure 6.9(b) shows the validation

result. You will recall from sections 3.7 and 4.4.2 that the training result shows the effect

of computing the weighting coefficients from all the wells and applying them to all the

wells, whereas the validation result shows the effect of leaving the well shown from the

computation and is thus a “blind” prediction of this result.

 In Figure 6.9 the RMS error is shown at the top of each result. The error for the

training result is 0.185 and for the classification result is 0.399. This is an improvement

over the Fisher linear discriminant of Figure 4.8, in which the training error was 0.3859

and the classification error was 0.4657.

210

(a)

(b)

Figure 6.9: The application of the PNN algorithm to the three wells shown in Figure 4.6, where (a) shows
the training error, and (b) shows the validation error.

211

 Finally, I will apply the PNN algorithm to the seismic data itself. The result over

the seismic line from Figure 4.5 is shown in Figure 6.12, where gray shows the low

porosity values, yellow shows the medium porosity values and blue shows the high

porosity values. For comparison purposes I have redrawn Figure 4.8, the equivalent

application of the Fisher linear discriminant, as Figure 6.13. When comparing Figure 6.12

and Figure 6.13, note that the PNN algorithm has enhanced both the lateral definition and

continuity of the high porosity channel just below 1050 ms. Note that in both Figures

6.12 and 6.13, the inserted curve from well 08-08 is the density-porosity log, not the

classified log.

 Figure 6.13 then shows a slice of the classified porosity taken from a single

sample that was extracted 20 ms below the picked event labelled Horizon 1 in Figure

6.12. The wells have also been indicated in Figure 6.13. As with the results on the single

seismic line, the equivalent application of the Fisher linear discriminant over the volume,

shown in Figure 4.9, has been redrawn as Figure 6.14. Notice when comparing these two

figures that the lateral continuity of the porosity away from well 08-08 is better in the

PNN result and that the false indications of high porosity across the upper and lower left

parts of the map have been reduced, but not completely eliminated.

 In general, it would appear that the PNN result for the porosity prediction case

study is an improvement over the Fisher linear discriminant. However, it is important to

stress that, except at the wells, we have no way of validating the result throughout the

data volume. That is, we do not know was the correct answer is for the seismic data

volume except when we drill. The fact that the two results give different answers

(although they agree in some specific areas) is a little concerning. Remember that the

Fisher linear discriminant is based on parametric statistics, whereas the PNN is based on

non-parametric statistics. Thus, we would expect some differences. It is certainly

worthwhile to apply both methods and make a decision as to which is preferred based on

geological criteria.

212

Figure 6.10: The application of the PNN to porosity classification on the seismic line of Figure 4.5.

Figure 6.11: The Fisher linear discriminant results of porosity classification originally shown in Figure 4.8.

213

Figure 6.12: The application of the PNN to porosity classification in a window across the complete seismic

survey area.

Figure 6.13: The Fisher linear discriminant results of porosity classification originally shown in Figure 4.9.

214

6.5 The generalized regression neural network (GRNN)

6.5.1 Theory of the GRNN

 The generalized regression neural network, or GRNN, is based on the PNN and

was initially proposed by Specht (1991), as was the PNN. A good summary of this

method is given by Masters (1995). This method is actually a neural network

implementation of a statistical technique that was proposed independently by Nadaraya

(1964) and Watson (1964), and often referred to as the Nadaraya-Watson estimator. The

derivation of the Nadaraya-Watson estimator can be done by using a two-dimensional

Parzen kernel estimator that uses N pairs of inputs and targets, sj and tj, and can be written

(Bishop, 1996) as













−−= ∑
=

+ 2

2

2

2

1
2/)1(2 exp

)2(
11)(

σσπσ
j

N

j
M

t-t
N

tp js-x
 x, . (6.16)

 Equation (6.16) is the joint probability function and is illustrated in Figure 6.14

for a single attribute x. In Figure 6.14, the points represent the target values and the

circles represent the Gaussian functions from the Parzen estimator.

Figure 6.14: An illustration of the two-dimensional Parzen kernel estimator (adapted from Bishop, 1996).

215

 The function y(x) shown in Figure 6.14 is the Nadaraya-Watson estimator. It can

be derived (Bishop, 1996) by computing the conditional average of the target data on the

input variables, given by

∫
∫∫ ===

dttp

dttpt
dttptty k

),(

),(
)()(

x

x
xxx . (6.17)

Substituting equation (6.16) into equation (6.17) gives

)(

exp

exp

exp

)(
1

2

2

1
2

2

1
2

2

k

N

j

jk
j

N

j

jk

N

j

jk
j

k p

tt

y
x

sx

sx

sx

x

∑

∑

∑
=

=

= 











 −

=













 −













 −

=
σ

σ

σ
. (6.18)

 As mentioned earlier, the Nadaraya-Watson estimator of equation (6.18) was re-

discovered in the context of neural networks and named the generalized regression neural

network, or GRNN. This name is due to the fact that the training values themselves are

weight values and thus this is indeed a type of generalized regression on the Gaussian

basis functions. Note that the normalization factor in the denominator of equation (6.18)

is the PNN estimate of the complete training dataset. We can observe how this equation

works on the training data by re-writing equation (6.18) using the training data, or

Ni
p

t

y
i

N

j

ji
j

i ,,2,1,
)(

exp

)(
1

2

2

…=












 −
−

=

∑
=

s

ss

s
σ

. (6.19)

Notice that when i = j, it follows that [] 10expexp 2

2

=−=










 −
−

σ
ii ss

.

 A simple illustration of the GRNN method is given in Figure 6.15 for the same

two attributes that were used to illustrate PNN in Figure 6.7. In Figure 6.15, the last

sample on the target log, which is not known, is estimated using the N pairs of attribute

values and their corresponding target values shown above.

216

Figure 6.15: The attribute vectors and target values used in the GRNN and RBFN methods

6.5.2 Optimization of sigma in the GRNN method

 As in the PNN method, the key parameter in the GRNN method is the sigma

value, that will determine the width of the Parzen estimator in N-dimensional space. So

far in our discussion, I have assumed that the sigma term is a constant. In fact, sigma can

be made to vary as a function of each attribute. That is, equation (6.19) can be rewritten

as

Ni
p

ssssss
t

y
i

N

j M

MjMijiji
j

i ,,2,1,
)(

)()()(
exp

)(
1

2

2

2
2

2
22

2
1

2
11

…
"

=









 −
−

−
−

−
−

=
∑

=

s
s

σσσ
. (6.20)

where ∑
= 










 −
−

−
−

−
−=

N

j M

MjMijiji
i

ssssss
p

1
2

2

2
2

2
22

2
1

2
11)()()(

exp)(
σσσ

"s .

 This approach was suggested by Masters (1996) who also supplies C++ code for

finding the optimum values of the sigma values using the conjugate gradient approach.

217

6.5.3 Application of the GRNN to P-wave velocity prediction

 In this section, I will apply the generalized regression neural network to the

prediction of P-wave velocity in a channel sand from the Blackfoot oilfield of southern

Alberta. This is the same case study which was discussed in section 5.5. The base map,

inverted seismic line, and impedance dataslice for this study were shown in Figures 5.23

through 5.25, and will not be re-shown here. The P-wave log, extracted seismic trace and

inverted trace used in the analysis are shown in Figure 6.16 for two of the nine wells in

the study, which is a re-display of Figure 5.26. In Figure 6.16, the analysis window is

shown by the horizontal red lines.

Figure 6.16. The P-wave sonic, extracted seismic trace and inverted impedance for wells 08-08 and 09-08.

The zones of interest are marked by the horizontal red lines.

 The best attributes were then computed using step-wise regression and the

optimum attributes were found using cross-validation. Table 6.1 shows the results of this

analysis. Only the first six attributes will be used, since the validation error starts to

increase after six. In this analysis, I used an operator length of seven points, which was

found to be the optimal length.

218

Table 6.1. The optimum attributes for predicting P-wave velocity, computed using the multilinear
regression approach with a seven-point convolutional operator.

 In the case study of section 5.5, I applied both the multilinear regression approach

and the multi-layer perceptron approach. For the multilinear regression approach, the

comparison between the training result and validation result for the predicted and actual

sonic log values at wells 08-08, 09-08 and 09-17 was shown in Figure 5.29. For the

multi-layer perceptron approach, the comparison between the training result and

validation result for the predicted and actual sonic log values was shown in Figure 5.33.

The key point to note from those figures was that although the correlation coefficient for

the multi-layer perceptron training result was higher than the correlation coefficient for

the multi-linear regression training result (0.739 versus 0.709), the correlation coefficient

for the multi-linear regression validation result was higher than the correlation coefficient

for the multi-layer perceptron validation result (0.674 versus 0.522). This suggests that

the multi-layer perceptron has been overtrained.

 I will now apply the GRNN approach to the prediction of P-wave velocity, using

the attributes shown in Table 6.1. This will be done by optimizing the σ value in

equation (6.19), but will be extended so that we compute a different sigma value for each

attribute, as discussed in the last section. Table 6.2 shows the computed σ values for

each of the attributes. Since we used a 7-point symmetrical convolutional filter to

219

compute the attributes, this is equivalent to introducing a set of new attributes at each

filter lag. A new σ value is computed at each of these lags and is shown in the table.

Lag Impedance Filter 1 Filter 2 Phase Filter 3 Frequency
-3 0.819 0.206 0.740 0.442 1.194 1.137
-2 0.539 0.693 0.283 0.433 0.973 1.302
-1 0.506 0.922 0.891 1.127 1.334 1.240
0 0.207 1.077 1.091 0.509 1.364 1.173
1 1.519 1.168 1.154 0.931 1.058 1.390
2 1.135 1.198 1.011 0.991 0.804 1.295
3 0.469 1.184 0.666 1.007 1.235 1.298

Table 6.2. The σ values computed for each of the first six attributes shown in Table 6.1.

 The comparison between the predicted and actual sonic log values after the

GRNN process, at wells 08-08, 09-08 and 09-17, is shown in Figure 6.17. Figure 6.17(a)

shows the training result, in which all the wells are used in the calculation, and Figure

6.17(b) shows the validation result, in which the well being predicted is left out of the

training calculation.

 In Figure 6.17, notice that the correlation coefficient for the training result is

0.901, which is better than both multilinear regression and the multi-layer perceptron, and

that although the correlation coefficient for the validation result drops to 0.667, this is

still much better than for both the multi-linear regression and the multi-layer perceptron.

A crossplot of all of the logs is then shown in Figure 6.18. Notice that the fit is much

better than for the crossplots shown in section 5.5 for the multi-linear regression and

multi-layer perceptron methods.

220

(a)

(b)

Figure 6.17. A comparison between the computed (red) and original (black) well logs for wells 08-08, 09-
08, and 09-17, where (a) shows the training result and (b) shows the validation result.

221

Figure 6.18. A crossplot of the predicted P-wave logs from the GRNN approach against the original logs.

 I will now apply the multilinear regression coefficients derived in the GRNN

training to produce a full volume of pseudo-P-wave sonic logs. Figure 6.19 shows the

predicted P-wave values for seismic line 95. Notice the extra detail that is seen in the

channel that intersects the well log below Horizon 1, when compared to the multilinear

regression result of Figure 5.31. There is also better lateral continuity throughout the

section than in the multi-layer perceptron result.

 Finally, Figure 6.20 then shows a dataslice from the complete 3D survey, again

showing the mean average over a 10 ms zone that was centered on a “phantom” event

created by shifting Horizon 1 down by 20 ms.

222

Figure 6.19. The predicted P-wave sonic logs over line 95 using the generalized regression neural network.

Figure 6.20. The extracted P-wave slice over the complete seismic survey, averaged over a 10 ms window
that was shifted 20 ms below Horizon 1 in Figure 6.19.

223

6.6 The radial basis function neural network (RBFN)

6.6.1 Theory of the RBFN

 The radial basis function neural network, or RBFN, was originally developed as a

method for performing exact interpolation of a set of data points in multi-dimensional

space (Powell, 1987). Referring again to Figures 6.5 and 6.6 in section 6.3 for our

notation, we want to find a function y(x) that satisfies

Nity ii ,,2,1,)(…==s , (6.21)

where the ti values are our training samples, and the si values are our attribute vectors.

 In its most general form, the problem can be formulated as

() Niwwt
N

j
ijj

N

j
jiji ,,2,1,)(

11
…==−= ∑∑

==
φφ sss , (6.22)

where the functions ()ji xx −φ are a set on N radial basis functions that depend on the

attribute distances, which can be abbreviated as φij. (Note that equation (6.22) is the

generalized linear discriminant function that was given in equation (4.49).) A radial basis

function is a function whose response decreases (or increases) monotonically with

distance away from a central point (Orr, 1996). There are many functions that satisfy this

requirement (Bishop, 1996), such as the thin-plate spline function given by

)ln()(2 xxx =φ , (6.23)

and the multi-quartic function given by

10,)()(22 <<+= βσφ βxx . (6.25)

 However, it has been found that the most effective function is the Gaussian basis

function. Equation (6.22) can thus be written as

Niwwt
N

j

ji
j

N

j
ijji ,,2,1,exp)(

1
2

2

1
…=













 −
−== ∑∑

== σ
φ

ss
s , (6.26)

224

where the wj, j = 1, … , N, are the desired weights. As shown in Appendix 6, equation

(6.26) can be derived from basic principles using the theory of regularization, and

involves the introduction of pseudo-differential operators (Poggio and Girosi, 1990).

 To solve for the weights in equation (6.26), notice that it can be written as a set of

N equations in N unknowns, or

NNNNN

N

N

wwwt

wwwt
wwwt

+++=

+++=
+++=

…
####

…
…

2211

22222112

11221111

φφ

φφ
φφ

 (6.27)

 Equation (6.27) can be written more compactly as the matrix equation:

,wt Φ= (6.28)

where















=
















=
















=

NN

N

NNN

and
w

w

t

t

φ

φ

φ

φ
#

"
%
"

###
1

1

1111

,, Φwt .

 The solution to equation (6.28) was discussed extensively in Chapter 3 and is

given by

[] ,λ 1 tw −+= ΙΦ (6.29)

where λ is a pre-whitening factor and I is the identity matrix. This equation can be

solved efficiently by noting that the matrix is symmetric. Once the weights have been

computed, they are applied to the application dataset (see Figure 6.5) using

∑
= 












 −
=

N

j

jk
jk wy

1
2

2

exp)(
σ

sx
x . (6.30)

225

6.6.2 Optimization of sigma for the RBFN method

 As in the PNN method and the GRNN methods, the key parameter in the RBFN

method is the sigma value σ. I showed in section 6.4.2 that σ could be written as a

function of each attribute for the GRNN method. This is also the case for the RBFN

method in theory. That is, equation (6.20) could be rewritten in the RBFN case as

Ni
ssssss

wy
N

j M

MjMijiji
ji ,,2,1,

)()()(
exp)(

1
2

2

2
2

2
22

2
1

2
11 …" =











 −
−

−
−

−
−=∑

= σσσ
s . (6.31)

 Unfortunately, no efficient way of optimizing σ as a function of each attribute has

been obtained for the RBFN method, as was the case for the GRNN method. In fact,

even optimizing a constant σ value turns out to be very time consuming for the RBFN

method, since a matrix inversion is required for each change in this parameter. Initially, a

trial-and-error approach was adopted, in which the value of σ was varied over a range of

values and the σ value that gave the minimum least-squared error was chosen. However,

the problem with this approach is that as the increment of σ becomes small, and the

search range becomes large, the computer time requirements for solving the problem tend

to approach infinity! Thus, I chose to use the parabolic search method to find the

optimum value for σ.

 This parabolic search method, described by Press et al. (1992), is illustrated in

Figure 6.21. We initially choose three values of σ: low, intermediate and high, and

compute the RMS error between RBFN response of our training data and the actual

values of the training data. These error values are illustrated by points 1, 2 and 3 in

Figure 6.21. We then fit a parabola to these three points, illustrated by Parabola A in the

figure. We next find the minimum of Parabola A, which is labelled point 4 in Figure

6.21. We then replace point 3 with point 4 and compute a new parabola, labelled Parabola

B in the figure. The minimum of Parabola B is point 5, and this in turn replaces point 4

226

for a new parabolic search. If we consider the three points on the parabola to be given as

a, b and c, and the error functions of these points as f(a), f(b) and f(c), the equation for

finding the minimum is given by

)]()()[()]()()[(
)]()([)()]()([)(

2
1 22

afbfcbcfbfab
afbfcbcfbfabb

−−−−−
−−−−−−=σ , (6.32)

where σ is the new value of sigma. This procedure is repeated until we converge to a

minimum error, with the resulting σ value being the optimum value. In Figure 6.21,

point 5 appears to be a reasonable estimate of the minimum value.

Figure 6.21. An illustration of the parabolic search method (adapted from Press et al., 2002)

 Before applying the RBFN to a real dataset, I will discuss the relationship

between the RBFN and the GRNN, both in theory and then using two straightforward

functions.

227

6.7 The relationship between the RBFN and the GRNN methods

 To understand the relationship between the RBFN and the GRNN methods, recall

that the GRNN relationship given in equation (6.18) was written

)(

exp

)(
1

2

2

k

N

j

jk
j

k p

t

y
x

sx

x

∑
= 












 −

=
σ

, (6.33)

where p(xk) is a normalization constant which is identical to the PNN function for all N

training points that was defined in equation (6.10).

 By equating equations (6.33) and (6.30), note that equation (6.33) can be thought

of as the general form of both the RBFN and the GRNN if we rewrite the weights as

)(
exp

1
2

2
k

j

N

j

jk

j
j p

tt
w

xsx
=













 −
=

∑
= σ

. (6.34)

 If we assume that the scaling factors σ are identical in equations (6.30) and (6.33),

and that p(xk) = 1, then we simply need to look at the relationship between tj and wj to

equate the two methods. By expanding equation (6.29), we find that





































=





































+

+
+

=


















−

NNNNN

N

N

NNNNN

N

N

N t

t
t

t

t
t

w

w
w

#
"

#%##
"
"

#
"

#%##
"
"

#
2

1

21

22221

11211

2

1
1

21

22221

11211

2

1

ψψψ

ψψψ
ψψψ

λφφφ

φλφφ
φφλφ

, (6.35)

where












 −−
= 2

2

exp
σ

φ
ji

ij

ss
, and ijψ is an element of the inverted matrix. Therefore, we

can write the equation for a single weight as

NjNjjj tttw ψψψ +++= …2211 . (6.36)

228

 From equation (6.34) we see that wj is a weighted sum of all the training values.

If the inverted matrix consisted only of values along the main diagonal, we could rewrite

equation (6.35) as

jjjj tw ψ= . (6.37)

If this was the case, Φ would consist only of the values jjφ along the main diagonal. But

note that

1exp 2

2

=












 −
−=

σ
φ

jj

jj

ss
. (6.38)

 Thus, for the case given in equation (6.38), Φ = I, the identity matrix, and Φ−1 =

I. Therefore, for this trivial case, the RBFN and GRNN methods are identical to a scale

factor. This would occur in two situations:

 (1) ,0ss ji →− for all i and j, and

 (2) 0→σ

 In the more general case, the off-diagonal elements in the covariance matrix are

all non-zero. Indeed, they will only be equal to zero for the case in which the seismic

attributes are statistically independent. Thus, we can think of the GRNN method as a

subset of the RBFN method for the case of statistical independence of the attributes. We

would therefore expect the RBFN method to give a more high resolution result than the

GRNN method, since the off-diagonal covariance elements are being used. Before trying

to observe this for a real data case, I will discuss two simpler cases involving analytical

functions.

229

6.8 RBFN/GRNN Comparison for two simple functions

 In this section, I will compare the RBFN and GRNN approaches by applying

them to the prediction of known analytical functions. The two functions I will use are the

sine wave and the step function. These functions were chosen because of their

contrasting nature. The sine wave is a smooth function with no discontinuities and can be

thought of as a prototypical seismic trace, whereas the square wave has a discontinuity at

its step and can be thought of as a prototypical well log curve. Since we are dealing with

a one-dimensional problem, we can replace the vector notation given earlier with scalar

notation. That is, we can write the equations for the GRNN as

∑

∑

=

=











 −
−











 −
−

=
N

j

j

N

j

j
j

xx

xx
t

xy

1
2

2

1
2

2

)(
exp

)(
exp

)(

σ

σ , (6.39)

and for the RBFN as:

∑
= 










 −
−=

N

j

j
j

xx
wxy

1
2

2)(
exp)(

σ
, (6.40)

where the weights in equation (6.40) are computed from the solution to

Nnwwt
N

j

N

j
ijj

jn
jn ,,2,1,exp)(

1 1
2

2

…==












 −
−=∑ ∑

= =
φ

σ
xx

x . (6.41)

 I will start with the sine wave example. To train the two algorithms, I will use the

function

t(xi) = sin(2πxi), xi=0, 0.2, …, 1.0, (6.42)

as suggested by Bishop (1995). (However, Bishop only tests the RBFN method on this

function, and does not compare RBFN to GRNN.) Notice that we have sampled this

function six times in one period. To validate the algorithms, we will use the function

y(xi) = sin(2πxi), xi=0, 0.05, …, 1.0, (6.43)

230

where the sine wave has been sampled twenty-one times in one period. Note that we are

able to check the results of the validation function since we know the right answer.

 A graph of the functions given in equations (6.41) and (6.42) is shown in Figure

6.22, where the validation curve is shown as the smoothly interpolated line, and the

sampled training values are shown by the solid dots.

Figure 6.22: A graph of the sine function in equations (6.40) and (6.41), where the training samples are
shown by dots, and the true values of the validation function by the solid curve.

 The results of applying both the RBFN and the GRNN algorithms to this sampled

sine wave are shown in Figure 6.23. It is important to note that the value of σ has a

major impact on the results, and the optimum value is usually different for the two

methods. I have therefore used four different values of sigma in Figure 6.23: (a) 1.0, (b)

0.1, (c) 0.01, and (d) 0.001. In each case in Figure 6.23, the solid curve shows the true

sine wave values, the dotted curve shows the RBFN results, and the dashed curve shows

the GRNN results.

 A number of observations can be made by referring to Figure 6.23. First, for σ =

1.0, shown in Figure 6.23(a), RBFN has done an almost perfect job in predicting the sine

wave curve, whereas the GRNN has simply fit a straight line to the curve. For σ = 0.1,

as in Figure 6.23(b), neither the RBFN nor the GRNN has done a perfect job of fitting,

231

but GRNN appears to fit the sine curve better than RBFN. When we decrease the σ =

0.01, as in Figure 6.23(c), the GRNN is still doing a reasonable job of fitting the sine

curve, but the RBFN has fit the function with spikes at the six training points, going to

zero otherwise. Finally, when we decrease the σ = 0.001, as in Figure 6.23(d), both the

RBFN and the GRNN methods have converged to the same result, fitting the function

with spikes at the six training points, but going to zero otherwise. This is the same result

obtained with the RBFN using a σ value of 0.01.

 (a) (b)

 (c) (d)

Figure 6.23: The GRNN and RBFN results of the sampled sine wave shown in Figure 6.21, for σ values

of (a) 1.0, (b) 0.1, (c) 0.01, and (d) 0.001.

232

 To quantify these observations, Figure 6.24 shows the errors between the true sine

wave and the GRNN and RBFN results shown in Figure 6.23.

 (a) (b)

 (c) (d)
Figure 6.24: The errors for the GRNN and RBFN results shown in Figure 6.23, for (a) σ = 1.0, (b) σ = 0.1,

(c) σ = 0.01, and (d) σ = 0.001.

 As seen in Figure 6.24, the RBFN error is almost zero for a σ = 1.0, the GRNN

error is consistent over a range of σ values between 0.1 and 0.01, the RBFN method

gives identical results for σ values below 0.01, and the two methods converge to the same

answer when σ = 0.001. This last point confirms point (2) from the theory in section 6.6,

that the two methods should converge as σ approaches 0.

 Next, I will consider the step function defined by





<−
≥+

=
.5.0x,0.1
,5.0x,0.1

)x(y (6.44)

233

 Figure 6.25 is a graph of this wave, where we have sampled the function six times

for the training and 101 times for the validation. (We used more points in the validation

curve than for the sine wave in order to image the step more accurately).

Figure 6.25: A graph of the step function in equation (6.42), where the training samples are shown by dots,
and the true values of the validation function by the solid curve.

 The results of applying both the RBFN and the GRNN algorithms to this sampled

step function are shown in Figure 6.26. I have again used four different values of sigma

in Figure 6.26: (a) 1.0, (b) 0.1, (c) 0.01, and (d) 0.0001. In each case in Figure 6.26, the

solid curve shows the true step function values, the dotted curve shows the RBFN results,

and the dashed curve shows the GRNN results.

 The results shown in Figure 6.26 are quite different than the results of Figure

6.23. For σ =1.0, shown in Figure 6.26(a), the GRNN has again fit a smooth line to the

function, but the RBFN has “overshot” the square wave on both the negative and positive

sides. This is a classic “Gibbs phenomena” effect, observed in the theory of Fourier

series. When σ = 0.1, as in Figure 6.26(b), the RBFN has again “overshot” the two sides

of the square wave, but the GRNN has actually fit the square wave perfectly except at the

step. At the step, both the RBFN and the GRNN have behaved almost identically. When

234

σ = 0.01, as in Figure 6.26(c), the GRNN now fits almost perfectly, but the RBFN has fit

the function with spikes at the six training points, and goes to zero otherwise. Finally,

when we decrease the σ = 0.0001, as in Figure 6.26(d), both the RBFN and the GRNN

methods have converged to the same result, fitting the function with spikes at the six

training points, but going to zero otherwise. This is the same result obtained with the

RBFN using a σ value of 0.01.

 (a) (b)

 (c) (d)

Figure 6.26: The GRNN and RBFN results of the sampled square wave shown in Figure 6.25, where the
scale values are (a) σ = 1.0, (b) σ = 0.1, (c) σ = 0.01, and (d) σ = 0.0001.

 To quantify these observations, Figure 6.27 shows the errors between the true

square wave and the GRNN and RBFN results shown in Figure 6.26. As seen in Figure

6.27, the RBFN error shows an “overshoot” for a σ value of 1.0, the GRNN error appears

to be very consistent over a range of σ values between 0.1 and 0.01, and fits almost

235

perfectly for σ = 0.01, the RBFN method gives identical results for σ values below 0.01,

and the two methods converge to the same answer when σ = 0.0001.

(a) (b)

 (c) (d)
Figure 6.27: The errors for the GRNN and RBFN results shown in Figure 6.25, for (a) σ = 1.0, (b) σ = 0.1,

(c) σ = 0.01, and (d) σ = 0.0001.

 The results of these two tests lead us to three conclusions. First, the RBFN

method is better able to predict smooth functions such as a sine wave curve than the

GRNN method. Second, the GRNN method is better able to predict discontinuous

function such as the step function than the RBFN method. Third, an optimized value of

sigma is crucial to the success of both methods. One last point that should be made is

that no pre-whitening (the λ term in equation (6.29)) was used in any of these examples,

since we were dealing with noise-free analytical functions. In the real data case, I have

found that up to 10% prewhitening is needed in order to stabilize the solution.

236

6.9 Comparison of the RBFN and the GRNN methods on a real data example

 I will now illustrate our methodology using the channel sand case study that was

discussed in sections 5.5 and 6.4.2. As I have already fully discussed this case study, the

main objective in this section will be to compare the RBFN and GRNN results. For

reference, the base map showing the twelve wells used in this study, the inverted seismic

data for line 95, and the impedance dataslice were shown in Figures 5.23 through 5.25,

respectively. The multi-linear attribute training result was shown in Table 6.1. In this

analysis, we used all twelve wells in the training, a convolutional operator length of seven

points, and seven attributes.

 Figure 6.28 shows the result of applying the GRNN algorithm the prediction of P-

wave velocity using the first six attributes from Table 6.1. In Figure 6.28, which shows

only four of the twelve wells, notice that we see an excellent fit between the original and

modeled logs. As seen at the top of the figure, we get a correlation coefficient of 0.869

and an average error of 179 m/s, which is an excellent fit.

Figure 6.28. Application of the GRNN algorithm to four of the P-wave sonic logs in the twelve log suite,
using all the training samples in the prediction.

237

 Figure 6.29 then shows the result of applying the RBFN algorithm to the same set of

four attributes used in the GRNN approach, again using all twelve wells in the training.

The result is close to that seen in Figure 6.28, although the fit is not quite as good, either

visually or in terms of the correlation coefficient (0.8236) or the average error (196 m/s).

Figure 6.29. Application of the RBFN algorithm to four of the P-wave sonic logs in the twelve log suite
using all the training samples in the prediction.

 Next, we will look at the cross-validation plots, in which we will leave the predicted

well out of the training. This is shown in Figure 6.30 for the GRNN algorithm and in

Figure 6.31 for the RBFN algorithm. In both plots, the fit is not as good as it was when

we used all the wells in the training. Again, we also see a slightly better result for the

GRNN algorithm, both visually and analytically. Note that the correlation coefficient for

GRNN is 0.5935, compared with a value of 0.535 for RBFN, and the average error is 273

m/s compared with 290 m/s.

238

Figure 6.30: Validation of the four P-wave sonic logs from Figure 6.27 using the GRNN algorithm, where

the predicted well has been left out of the training.

Figure 6.31: Validation of the four P-wave sonic logs from Figure 6.28 using the RBFN algorithm, where
the predicted well has been left out of the training.

239

 We will next see how the algorithms compare when we look at the application to

real seismic data. Figure 6.32 shows the application of the GRNN algorithm and Figure

6.33 shows the application of the RBFN algorithm.

Figure 6.32: Application of the GRNN algorithm to line 95 of the 3D volume, after training using all the
wells.

Figure 6.33: Application of the RBFN algorithm to line 95 of the 3D volume, after training with all the
wells.

240

 It is clear from Figures 6.32 and 6.33 that the RBFN approach has produced a

higher frequency result than the GRNN approach. Also, this high frequency content

appears to be realistic, since there is lateral continuity to the extra events that appear on

the section.

 Next, I will repeat the same analysis, but using only three wells in the training.

Table 6.3 and Figure 6.34 shows the results of the training, where the table shows the

best five attributes chosen by the step-wise regression algorithm discussed earlier, and the

figure shows that only the first four attributes are statistically significant, based on cross-

validation. Note that the error on the last attribute shoots up almost vertically. It is

therefore important to use only the first four attributes.

Table 6.3: The list of attributes determined by cross-validation analysis of multilinear regression.

Figure 6.34: The error results of the multi-attribute training.

241

 I will now look at the results of applying the training from all three wells to the

wells themselves, shown in Figure 6.35 for GRNN and in Figure 6.36 for RBFN.

Figure 6.35: Application of the GRNN algorithm to the three P-wave sonic logs used in the training, where
all the training samples are used in the prediction.

Figure 6.36: Application of the RBFN algorithm to the three P-wave sonic logs used in the training, where
all the training samples are used in the prediction.

242

 Note in the previous figures that the visual match is almost the same for both

methods, as are the correlation coefficients and average error. The RBFN algorithm has

done slightly better than the GRNN algorithm in the average error (230.7 m/s vs 234.21

m/s) and slightly worse for the correlation coefficient (0.760 vs 0.763).

 I will now look at the validation results for the three well results, shown in Figure

6.37 for the GRNN case, and in Figure 6.28 for the RBFN case. RBFN has definitely

done better than GRNN, with an average error of 259.58 m/s against 263.89, and a

correlation coefficient of 0.681 against 0.667 for GRNN.

 Finally, we will apply the results of the training to the 3D seismic dataset itself.

Figure 6.39 shows the application of the GRNN method to the seismic data. Notice that

although the continuity in the events of the result is quite good, the frequency content is

very low. This suggests that not enough training points were used for this method to be

effective.

 When we apply the RBFN method, as shown in Figure 6.40, much more high

frequency detail has come through. Also, the lateral continuity of the events is still very

good. I would therefore conclude that, as the number of wells in our training dataset goes

down, the RBFN algorithm becomes preferable to the GRNN algorithm.

243

Figure 6.37: Validation of the GRNN algorithm to the three P-wave sonic logs used in the training, where
the each log has been successively left out of the training.

Figure 6.38: Validation of the RBFN algorithm to the three P-wave sonic logs used in the training, where
the each log has been successively left out of the training.

244

Figure 6.39: Application of the GRNN algorithm to line 95 of the 3D volume, after training using only
three of the wells.

Figure 6.40: Application of the RBFN algorithm to line 95 of the 3D volume, after training using only
three of the wells.

245

6.10 Conclusions

 In this chapter, I have discussed several neural network approaches for the

classification and prediction of log properties using multiple seismic attributes. These

methods consisted of the probabilistic neural network, or PNN, the generalized regression

neural network, or GRNN, and the radial basis function neural network, or RBFN. These

methods are based on Gaussian basis functions of distance in attribute space. The PNN

approach uses these Gaussian basis functions to implement Bayes’ Theorem for event

classification. I applied the PNN classification technique to the porosity example

considered in Chapter 4, and found improved results over the Fisher linear discriminant.

 The GRNN and RBFN methods are also built from Gaussian basis functions. The

key difference between the two methods is that the GRNN prediction is a weighted sum

of the basis functions and the training values, whereas in the RBFN the weights are pre-

computed by generalized matrix inversion of the basis functions. The GRNN approach

has its origins in the statistical theory of Parzen density estimation, whereas the RBFN

method can be thought of as a nonlinear extension of the linear regression methods

considered in Chapter 3.

 I then applied the GRNN and RBFN methods to a channel sand case study from

Alberta. We did the training using all twelve wells in the study area, and then using a

subset of only three wells. Our conclusion is that as the number of wells in the training

dataset goes down RBFN provides a better technique for predicting log properties from

seismic attributes, both in the fit at the training wells and in the application to the seismic.

As the number of wells increases, the two methods produce fairly consistent results.

 In the next chapter, I will consider an alternate form of the RBFN method that uses

a subset of points from the training dataset, called basis centres. I will also extensively

discuss the problem of finding the basis centres.

246

CHAPTER 7 : RBF NETWORKS WITH BASIS CENTRES

7.1 Introduction

 In the radial basis function neural network (RBFN) approach discussed in the last

chapter, I designed a neural network operator by computing the basis functions for all the

possible distances between the N points in our training dataset. This involved the

inversion of an NxN dimensional matrix, which became costly as N got very large, due to

space and time limitations. This approach is often called the strict interpolation RBFN,

since all the training points are used to calculate the weights. An alternate approach to

strict interpolations RBFN is to reduce the number of input samples to a subset of K

values, often called centres, and compute the basis functions of the distances between the

N input points and these K centres. Although this results in a non-square NxK matrix,

this matrix can be inverted using the generalized inverse approach, and results in the

inversion of a KxK, greatly reducing space requirements and speeding up the

computation.

 In this chapter, I will first describe the theory of RBFN with basis centres and

then show an example using the AVO classification problem. I will then discuss an

approach to finding the basis function centres using K-means clustering, and discuss how

to apply K-means clustering methods to the RBFN with centres neural network. This will

be illustrated with a simple numerical example, and then applied to the prediction of P-

wave velocity over a channel sand. In this chapter, I will also introduce an extension to

the K-means clustering method, called the Mahalanobis clustering method, and apply this

method to an AVO crossplot example.

247

7.2 Theory of RBF networks with basis centres

 In the full interpolation RBFN approach, recall that we wish to solve for the N

weights wj given the N pairs of attribute vectors si and the N training values ti, as shown

in Figure 7.1.

Figure 7.1: The attribute vectors and target values used in the RBFN method.

 The solution is found by solving the set of equations

Niwt
N

j
ijji ,,2,1,)(

1
…==∑

=
φs , (7.1)

where the φij functions are the Gaussian basis functions given by













 −
−= 2

2

exp
σ

φ ji
ij

ss
. (7.2)

 Equation 7.1 can be written more compactly as the N x N matrix equation

 ,wt Φ= (7.3)

248

where















=

Nt

t
#
1

t is a vector containing the target values,















=

Nw

w
#
1

w is a vector containing

the weights, and















=

NN

N

N φ

φ

φ

φ
#

"
%
"

#
1

1

11

Φ is an N x N matrix containing the basis functions. The

solution to equation (7.3) is given by the matrix inverse

 [] ,1 tw −+= ΙΦ λ (7.4)

where λ is a pre-whitening factor and I is the identity matrix. Once the weights have been

computed, they are applied to the full dataset using the equation

 ∑
= 












 −
=

N

j

jk
jk wy

1
2

2

exp)(
σ

sx
x . (7.5)

 The solution to equation (7.4) is very time-consuming and possibly unstable as N

becomes very large. To solve for the instability, a large prewhitening value λ is often

needed.

 The solution to the problem of large N is to reduce the number of linear equations

by defining a modified version of equation (7.1) given by

Niwt
K

k

ki
ki ,,2,1,exp)(

1
2

2

…=










 −
−=∑

= σ
µs

s , (7.4)

where the µk terms are a set of K cluster centres, or means, and K << N. Notice that

these are vector-valued means, with a dimension equal to M, the number of attributes.

Equation (7.4) can be written in expanded form as the set of linear equations given by

NKNKNNN

KK

KK

wwwt

wwwt
wwwt

φφφ

φφφ
φφφ

+++=

+++=
+++=

…
#####

…
…

2211

222222112

111221111

 (7.5)

249

which can again be written as the matrix equation

wt Φ= , (7.6)

where















=Φ
















=
















=

NKN

K

NK

1

t

t

w

w

φφ

φφ

"
#%#

"
##

1

1111

,t,w . In many applications (such as the one

shown in the next section) a zero weight w0 is added to each linear equation. This weight

can be implicitly assumed in equations (7.5) and (7.6) if we let the first row of φ values

all equal one. Equation (7.6) represents an over-determined system, in which we have

more observations than unknowns. The solution to this problem is given by the least-

squares Moore-Penrose inverse

[] tw TT ΦΛ+ΦΦ= −1 , (7.7)

where Λ is the K x K regularization matrix given by



















=Λ

Kλ

λ
λ

00
0

0
00

2

1

"
%%#

#%
"

. The λk

terms are called regularization parameters. In the simplest case, the regularization terms

are all equal to the value λ, and Λ = λ I, where I is the K x K identity matrix. In neural

network terminology, Φ is called the design matrix, and the term [ΦTΦ + Λ] is called the

covariance matrix.

 The crucial question is how to determine the basis centres µk in equation (7.4).

This is illustrated in Figure 7.2 for the simple case of two attributes with 18 points. As

can be seen in Figure 7.2, these points separate naturally into 4 clusters and we have

replaced each cluster of points with its mean, resulting in K = 4. Before discussing the

K-means method, and showing how the clusters in Figure 7.2 can be found, I will revisit

the AVO classification problem and show how it can be solved using RBFN with basis

centres.

250

Figure 7.2: Computing the means for a 4 cluster, 18 point example.

7.3 An AVO classification example

 In Chapters 4 and 5, I used the multilayer perceptron to differentiate between a

class 3 gas sand and a wet sand on an AVO crossplot. Recall that the Aki-Richards

equation as given in equation (2.19) of section 2.7 is given by

() θθ 2sinBAR += , (7.8)

where A is the intercept, and B is the gradient.

 Using the values for VP, VS, and density ρ shown in Figure 4.6 of section 4.5.2, I

computed values for A and B, scaled by a factor of 10 (to give values of +1 and -1) and

created the A-B crossplot shown in Figure 7.3(a). The objective is to separate the wet

points from the gas points but, as shown in the figure, there is a nonlinear decision

boundary between these points.

251

 (a) (b)
Figure 7.3. Intercept versus gradient crossplot from the wet and gas models of Figure 4.6, both (a) before

and (b) after application of the multi-layer perceptron.

 Since the gas sand points shown in Figure 7.3(a) were not linearly separable, I

found that a single layer perceptron could only solve for either the top or base of the sand,

not for both simultaneously. By applying the multi-layer perceptron we were able to

transform the values shown in Figure 7.3(a) into the space shown in Figure 7.3(b), in

which the top and base of the sand were linearly separable. However, recall that the

solution to the problem was quite involved, as it requires the nonlinear optimization of

two layers of weights.

 Let us now use the RBFN with centres method to solve the same problem. Note

that the four input vectors can be written

.
1
1

,
1
1

,
1
1

,
1
1

4321 







+
+

=







+
−

=







−
+

=







−
−

= xxxx

where points x1 and x4 are the top and base of the gas zone and points x2 and x3 are the

top and base of the wet zone. I will define two centres using the gas sand values of

.
1
1

,
1
1

21 







+
+

=







−
−

= cc

252

 I have used the symbol c rather than µ for the centres since these are not the mean

values. Thus, equation (7.4) can be rewritten as

()












 −
−== 2

2

exp
σ

φφ ji
ijij

cx
x . (7.9)

Expanding the vector components for the two-dimensional vectors we can write

() ()










 −+−
−= 2

2
22

2
11exp

σ
φ jiji

ij

cxcx
. (7.10)

 From the definitions of our input vectors and centers, we can see that there are

only three possible distances
2

jid cx −= . If we set the value of σ equal to 1, the values

of φij are [] 0.10exp4211 =−==φφ , [] 0003.08exp4112 =−== φφ , and 32312221 φφφφ ===

[] 018.04exp =−= . Grouping the terms, we find that



















=



















=

0003.0
018.0
018.0
0.1

41

31

21

11

1

φ
φ
φ
φ

φ ,

and



















=



















=

0.1
018.0
018.0
0003.0

42

32

22

12

2

φ
φ
φ
φ

φ .

 Figure 7.4(a) shows the original AVO problem in A-B space, and Figure 7.4(b)

shows a crossplot of ()i1 xφ versus ()i2 xφ . Notice that we have now achieved a linear

separation between the gas sand values and the wet sand values. Next, I will use the

radial basis function neural network to compute the weights.

253

 (a) (b)

Figure 7.4: The AVO classification problem, where (a) shows the original problem in intercept-gradient
space and (b) shows the same problem in φ1-φ2 space.

 Figure 7.5 shows how the concepts of the previous section can be applied in

neural network form. Note that this is a similar diagram to the MLP except for two

important differences. First, there are no weights between the inputs and the application

of the φ functions in the first layer neurons. Second, although there are weights and a

bias value leading to the second layer neuron, there is no application of a nonlinear

function at this neuron. In other words, the second layer is simply a linear sum.

Figure 7.5: The radial basis function neural network implementation of the AVO classification problem.

 In this case we can write the RBFN mathematically as

() ()∑
=

=+=
2

1
0 .4,,1,

j
ijji iwwt …xx φ (7.11)

254

 To solve for the weights, I set each output value to the training data values given

in Table 1, where +1 indicates the presence and -1 indicates the absence of gas.

i Ai Bi φi1 φi2 ti

1 -1 -1 1 0.0003 +1

2 +1 -1 0.018 0.018 -1

3 -1 +1 0.018 0.018 -1

4 +1 +1 0.0003 1 +1

Table 7.1. The input values and basis function values for the AVO classification problem.

 Thus, we have four linear equations with three unknowns, which can be written as

the matrix equation

 wt Φ= , (7.12)

where















=



















=



















=Φ



















−
−

=



















=

2

1

0

w
w
w

t
t
t
t

wt and,

1003.01
018.0018.01
018.0018.01
003.011

1
1
1
1

,

1
1
1

1

4241

3231

2221

1211

4

3

2

1

φφ
φφ
φφ
φφ

.

 Rewriting equation (7.7) using a constant regularization of prewhitening term, we

get

[] tw TT I Φ+ΦΦ= −1λ , (7.13)

where we can expand the terms to get















=ΦΦ

001.1007.0039.1
007.0001.1039.1
039.1039.14

T , and
















=Φ

967.0
967.0
0

tT . Using zero pre-whitening (λ = 0) the solution is















−
=

068.2
068.2
074.1

w .

255

Thus, the intercepts on both the A and B axes are given by the ratio

–w0/w1 = – w0/w2 = - (- 1.074 / 2.068) = 0.519,

which are the points where the dashed line in Figure 7.4(b) intersects each axis.

 I have therefore shown how to construct a linear separation boundary for our

AVO classification problem using the radial basis function neural network, and found

that the solution is actually more straightforward than the multi-layer perceptron

approach. However, our real interest is in the solution of problems in which the number

of points is very large. This will involve using a clustering algorithm to compute the

RBFN centres.

7.4 Data clustering methods

7.4.1 Introduction to clustering

 Clustering has been long been used in the field of multivariate statistics (Johnson

and Wichern, 1998), but has only recently found application in seismic analysis. In

clustering, we seek to find natural groupings, or clusters, within a particular dataset.

These clusters could pertain to different lithologies, fluids, etc. Although closely related

to classification, clustering is more basic in that we normally do not know how many

clusters we have, or what form these clusters will take. Classification is usually

supervised by the knowledge of what our classes should look like, whereas clustering is

unsupervised, without any such knowledge.

 A key question is where we should do the clustering. In this chapter, I will apply

the clustering in multi-dimensional parameter space. The simplest example of this is

two-dimensional space, and our study will involve A-B crossplots from the AVO

technique (Ross, 2000). The advantage of using two-dimensional space is that it is easily

visualized and the results can be checked by eye. The method can also be applied to

higher dimensional spaces, which cannot be visualized. For this example, I chose multi-

256

attribute space, in which multiple seismic attributes are grouped and used to predict

reservoir parameters (Hampson et al., 2001). In the following discussion, I will refer to

the group of L attributes for a single recorded time sample in L-dimensional space as an

attribute vector. In general, there will be N recorded time samples.

 I will start by considering the simplest clustering approach, called K-means

clustering (Bishop, 1996). This method is based on the Euclidean distance between

points. I will show that this method works well for the case of well-separated, roughly

spherical clusters, but not when the clusters become elliptical in shape. I then propose a

new method called Mahalanobis clustering, in which statistical distance, rather than

Euclidean distance, is used for the clustering. Although the use of this distance metric

was discussed by Johnson and Wichern (1998), they state that it is not used in practice,

and do not discuss a method for implementing this procedure.

7.4.2 K-means clustering

 In the K-means clustering technique, I start with a random estimate of the cluster

centres, and iterate toward a solution by minimizing the distance from each input cluster

centre to the points surrounding it. As pointed out by Haykin (1999) this has the

desirable property of placing the centres of the clusters in those regions of the input space

where significant amounts of data are present. The steps involved in K-means clustering

are as follows:

1. Decide on a number of clusters, K, and divide the input data points randomly into

these K clusters. If we have N L-dimensional input vectors of attributes, xi, we

initially set the number of points in each of the first K-1 clusters to Nk = int(N/K),

and the last cluster equal to N - (Nk*(K-1)). Also, the decision of what value to

assign to K is important and will affect the result.

257

2. Compute the means µk, where k = 1, 2,… , K. The means are simply the sum of

 the Nk attribute vectors divided by Nk, where Nk is the number of points in the kth

 cluster.

3. Compute the matrix of distances dik = | xi - µk |, and assign each input attribute

 vector to the cluster for which this distance is a minimum. Note that the Nk values

 are now updated.

4. Re-compute the means based on the new cluster assignments

5. Iterate through steps 2-4 until convergence.

 Obviously, the K-means clustering algorithm can be computed for any number of

input points, attributes and clusters. Before considering any real data application, let us

consider the following two-dimensional numerical example in which we have the

eighteen input vectors given by:

.
5
8

,
3

10
,

7
3

,
4
7

,
2

10
,

8
2

,
7
7

,
1
9

,
6
1

,
6
6

,
3
9

,
2
3

,
5
5

,
2
8

,
3
2

,
9
4

,
1
8

,
1
1

181716151413

121110987

654321









=








=








=








=








=








=









=








=








=








=








=








=









=








=








=








=








=








=

xxxxxx

xxxxxx

xxxxxx

 These eighteen vectors are plotted in Figure 7.6, with the input vector number

labelled on the graph. Note that we see four distinct clusters, although the order of the

input points is random, and bears no relationship to the cluster order.

 I will perform the first step of the K-means clustering by assuming that we have

four clusters, although the optimal number of clusters will not be obvious in a real

dataset. This will give us the result that the first three clusters have four points each, and

the last cluster has six points.

258

 The resulting means are

.
833.4
667.6

and,
5
75.5

,
3
25.6

,
5.3
75.3









=








=








=








= 4321 µµµµ

Figure 7.6: The red dots show an set of eighteen points, grouped in four clusters, with the labels indicating

the input order of the two-dimensional attribute vectors.

 The means of the four clusters are plotted using blue crosses on Figure 7.7(b).

(Figure 7.7(a) is simply a repeat of Figure 7.6, for comparison purposes). Since the

points were entered in random order, the initial means are grouped together in the centre

of the plot and do not define the actual cluster means.

 I next re-compute the clusters by finding the points that are closest to the initial

means. After this first iteration, we find that the number of points in each cluster is n1 =

4, n2 = 6, n3 = 5, n4 = 3, and their means become

.
333.5
333.7

and,
7
4

,
2
9

,
3
75.1









=








=








=








= 4321 µµµµ

259

 The new means are shown in Figure 7.7(b). Notice that the means have spread

out and become more reasonable and that the second cluster, with six points and a mean

of (9, 2), has been computed exactly.

 (a) (b)

 (c) (d)
Figure 7.7: The results of applying the K-means clustering example to the example in Figure 7.6, showing
(a) the initial calculation, (b) the result of the first iteration, (c) the result of the second iteration, and (d) the

result of the third iteration, which is the correct answer.

260

 I next repeat the clustering operation, finding the points that are closest to the new

means. The second iteration leads to n1 = 4, n2 = 6, n3 = 4, n4 = 4, with means









=








=








=








=

5.5
7

and,
55.7
5.3

,
2
9

,
3
75.1

4321 µµµµ
.

The results of the second iteration are shown in Figure 7.7(c). Although cluster 1 hasn’t

improved, clusters 3 and 4 have moved closer to their correct positions.

 The third iteration leads to the values n1 = 3, n2 = 6, n3 = 4, n4 = 5, with means

.
4.5
6.6

and,
5.7
5.2

,
2
9

,
2
2









=








=








=








= 4321 µµµµ

Comparing these to the known right answers, notice that the results are now correct. This

is shown in Figure 7.2(d).

 Now I will consider a second example, shown in Figure 7.3. In this case we have

created three elliptical clusters trending at about -45 degrees. This is a synthetic example

of a class 3 AVO anomaly (Russell et al., 2002b).

Figure 7.8: A second input dataset to the K-means clustering algorithm. This dataset simulates a typical
class 3 AVO A-B crossplot.

261

 It would appear that the job of partitioning this set of points into three clusters

would be fairly trivial. The results of 20 iterations of K-means clustering on the example

shown in Figure 7.8 are shown in Figure 7.9. Figure 7.9(a) shows the classified points,

where the blue circles, red squares, and green diamonds show, respectively, the three

clusters. Notice that the three obvious clusters from Figure 7.8 have not been correctly

classified. The reason for this is shown in Figure 7.9(b), where black dots show the three

means, and two circles have been drawn around each of the means. The circles have radii

equal to half the distance between each pair of means.

 Thus, the K-means algorithm has classified points into clusters that fall into

circular groups, not the elongated ellipses seen in Figure 7.8. As I shall show in the next

section, there is a theoretical reason for this, and we can make use of this theory to

develop an algorithm that will correctly classify this example.

 (a) (b)

Figure 7.9: The application of the K-means clustering algorithm to the input dataset of Figure 7.8, showing

(a) the three output clusters (blue circles, green diamonds, and red squares), and (b) the cluster centres
(black circles) with circles indicating the mid-point distance between cluster centres.

262

7.4.3 Mahalanobis clustering

 As discussed in the last section, K-means clustering is based on the Euclidean

distance, which can be written

,K,,1k;N,,1i),()(d i
T

i
2

i
2
ik …… ==−−=−= kkk xxx µµµ (7.14)

where [] []iM2i1i
T
kiM2i1i ,,, and ,x,,x,x µµµ …… == µT

ix

 Another type of distance is the statistical, or Mahalanobis, distance (Johnson and

Wichern, 1998) from x to µ, which can be written

)()(1T2
ik kiki µxΣµx −−= −∆ , (7.15)

where Σ is the covariance matrix given by















=

MM1M

M111

σσ

σσ

"
#%#

"
Σ , and the individual

covariance values of Σ are computed from the outer product sum given by

∑
=

−−=
N

1i

T
ii))((

N
1

jj µxµxΣ . Recall from Chapter 3 that the Mahalanobis distance

could also be interpreted as the exponent in the multivariate Gaussian distribution, which

is given by









−=

2
exp

)2(
1)(p

2

2/12/M

∆
π Σ

x . (7.16)

 Also note that the covariance matrix with statistically independent variates and

unit variances is equal to the identity matrix. That is, if



















==

100

010
001

"
#%##

"
"

1-ΣΣ , (7.17)

then

)()()()(T1T2
ij jijijiji µxµxµxΣµx −−=−−= −∆ , (7.18)

263

which is the Euclidean distance. Thus, Mahalanobis distance can be seen as the

generalization of Euclidean distance, and can be computed for each cluster if the

covariances of the cluster are known.

 After the application of the K-means clustering algorithm shown in Figure 7.9, we

can then compute the means and covariances of each cluster, which gives us an initial

estimate of these values. Then, by iterating through the same steps given at the start of

the last section, but using Mahalanobis distance rather than Euclidean distance, we can

improve the clustering. I refer to this as Mahalanobis clustering. (Although the author of

this dissertation is not aware of any published theory on this method, it appears to be an

intuitively obvious approach and has probably been implemented by others). The result

of applying 20 iterations of Mahalanobis clustering is shown in Figure 7.10(a). Notice

that the cluster values are now correctly assigned. Figure 7.10(b) shows the lines of

equal bivariate gaussian amplitude, illustrating that the elliptical clusters have indeed

been captured.

 (a) (b)

Figure 7.10: The application of the Mahalanobis clustering algorithm to the input dataset of Figure 7.8,
where (a) shows the three output clusters (blue circles, green diamonds, and red squares), and (b) shows the

cluster centres (black circles) with the ellipses showing lines of constant variance.

264

7.5 AVO Crossplot clustering

 An obvious application of Mahalanobis clustering is to AVO crossplot analysis

(Ross, 2000). To illustrate the method, I will use a data example from the Colony sand

play in central Alberta (Russell and Lines, 2003). A seismic section across a known gas

sand is shown in Figure 7.11. Although the gas sand is an obvious “bright spot”, there

are many false “bright spots” in the area due to thin limestone stringers. In Figure 7.11,

the sonic log from the discovery well has been inserted at its correct location, after

conversion from time to depth and the application of a check-shot correction.

Figure 7.11: A seismic line over a know gas zone, with the sonic log from the discovery well overlain at
CDP 330. The gas sand is indicated by the “bright spot” at a time of 630 ms.

 A small window of the seismic section shown in Figure 7.11 is shown in Figure

7.12(a), with the intercept (A) versus gradient (B) crossplot from the peaks and troughs in

this window shown in Figure 7.12(b). This window is between CDP 327 and 332 and

encompasses a time window of 80 ms, around a time of 630 ms.

265

 In the crossplot shown in Figure 7.12(b), the colour scale represents time. As

discussed by Ross (2000) and Russell et al. (2002), the human interpreter would interpret

this crossplot as a Class 3 AVO anomaly, with a “wet trend” visible as a cluster of points

running along a -90 degree line, and two anomalous clusters in the first and third

quadrants of the crossplot. These anomalies represent the top (third quadrant) and base

(first quadrant) of the gas sand.

(a)

(b)

Figure 7.12: AVO intercept/gradient crossplot analysis over a window from the seismic section of Figure
7.17, where (a) is the seismic window, and (b) is the un-interpreted crossplot.

266

 I will next apply the clustering algorithms described earlier to the crossplot shown

in Figure 7.12(b). This results are shown in Figure 7.13, where Figure 7.13(a) shows the

application of twenty iterations of the K-means algorithm, and Figure 7.13(b) shows the

application of a further twenty iterations of the Mahalanobis algorithm to the output of

the K-means algorithm.

(a) (b)

Figure 7.13: The application of (a) the K-means clustering algorithm, and (b) the Mahalanobis clustering
algorithm to the crossplot of Figure 7.12(b), where the different shapes and colours indicate the five
clusters, the black dots show the cluster centers, and the ellipses are equal variance lines enclosing the
Mahalanobis clusters.

 In Figure 7.13, notice that five clusters have been used in the training of the

algorithm. This was due to the fact that there appeared to be more than three obvious

clusters on the crossplot. (It should be pointed out that the number of clusters, or centers,

to use is not a trivial issue, and has been discussed by many authors. For example, Chen

et al. (1991) use an orthogonal least squares learning algorithm to determine the number

of centers.)

 The K-means clustering algorithm of Figure 7.13(a) has done an excellent job in

finding five distinct clusters of points, and these are indicated by five different shapes and

colours on the figure. When the output from the K-means algorithm was processed

through twenty iterations of the Mahalanobis algorithm, as shown in Figure 7.13(b), the

points in the clusters and the cluster centers do not change. In this case, the K-means

267

algorithm appears to have done the optimum job. However, the advantage of the

Mahalanobis method in this case is that it defines the elliptical shapes (and their

quantitative parameters) that can be used for the application of clustering back to the

crossplot of Figure 7.12(b). The results are shown in Figure 7.14.

(a)

(b)

Figure 7.14: The application of the Mahalanobis clustering results shown in Figure 7.13(b) to the original
crossplot of Figure 7.12(b), showing (a) the crossplot with the ellipse superimposed, and (b) application to

the seismic traces of Figure 7.12(a).

 In Figure 7.14(a) I have plotted the result of applying the elliptical shapes from

the Mahalanobis clustering to the original crossplot of Figure 7.14(b), and in Figure

268

7.14(b) I have shown the equivalent peaks and troughs on the seismic window shown in

Figure 7.12(a). Notice that the identified clusters appear to define coherent events in the

seismic window. Although I have derived the crossplot clustering parameters over a very

small window, we can apply the results of the clustering to the complete dataset. Figure

7.15 shows the application of the training to a portion of the complete line shown in

Figure 7.11.

Figure 7.15: The application of the Mahalanobis clustering results shown to the complete seismic line of
Figure 7.11.

 In Figure 7.15, we clearly see the top of the gas sand (in red, called zone 4 on the

colour bar) and the base of the gas sand (in green, called zone 3 on the colour bar). Also,

the other three clusters, which are clearly on the wet trend in Figure 7.14(a), all plot on

parts of the seismic line that are non-anomalous, as expected. Thus, the K-

means/Mahalanobis clustering method has produced an excellent result in this case.

 It is important to note that a human interpreter could do at least as good a job in

identifying these anomalies on the crossplot. Also, the method depends on having a

certain amount of separation between the anomalies and the wet trend. The real power of

this method is when we apply to higher dimensional spaces, especially those having more

than three dimensions. This extension of the K-means clustering algorithm will be

269

discussed in the next section, in which the method is applied to the radial basis function

neural network used for predicting reservoir parameters.

7.6 K-means clustering with the radial basis function neural network

 I will now compare the strict interpolation RBFN method with the RBFN method

with centres to the channel sand case study which was discussed in sections 5.5, 6.4.2,

and 6.8. This study was published by Russell and Lines (2003). Recall that this study

involved the prediction of P-wave velocity in the Glauconitic reservoir of the Blackfoot

field of central Alberta. The reservoir occurs at a depth of around 1550 m, where

Glauconitic sand and shale fill valleys incised into the regional Mannville stratigraphy.

The well log input consists of twelve wells, each with sonic and density logs. The base

map showing the twelve wells, the inverted seismic data for line 95, and the impedance

dataslice were shown in Figures 5.23 through 5.25. The multi-linear attribute training

result was shown in Table 6.1. In this analysis, I used all twelve wells in the training, an

operator length of seven points, and seven attributes. The training results of the strict

interpolation RBFN algorithm is shown in Figure 7.16, where only the first three wells

are displayed. The correlation coefficient is 0.7994 and the observed fit is very good. In

the training of the full RBFN algorithm, I used a total training dataset of approximately

1000 points.

 Next, I will apply the RBFN method with centers to the problem I have just

considered. I reduce the number of points to 25 centres and see how well the results

compare to the full RBFN. The same attributes will be used as shown in Table 6.1 and

used in the full interpolation method. The centres are found using the K-means clustering

algorithm. Since the vectors are 6-dimensional, it is impossible to actually visualize the

clusters. The result of training with 25 centers is shown in Figure 7.17, where only the

first three wells are displayed. Notice that the correlation coefficient is 0.634, less than

the full RBFN value of 0.7994, but still a very good fit.

270

Figure 7.16: Training the RBFN algorithm, where all the training samples are used in the prediction. The
black lines show the original curves and the red lines show the predicted curves.

Figure 7.17: Training the RBFN algorithm using 25 centers. The black lines show the original curves and
the red lines show the predicted curves.

271

 The cross-validation of the full interpolation RBFN result is shown in Figure 7.18,

where each log has been left out of the training and then “blindly” predicted. The black

lines show the original curves and the red lines show the predicted curves. Only the first

three P-wave sonic logs have been shown, although all twelve were used in the training.

Notice that the cross-validation error is 0.6577, which is lower that the training error

without cross-validation, but still quite good.

 The cross-validation of the RBFN result with 25 centers is shown in Figure 7.19..

The black lines show the original curves and the red lines show the predicted curves.

Only the first three P-wave sonic logs have been shown, although all twelve were used in

the training. Notice that the cross-validation error is 0.602, which is less than the full

RBFN result of 0.6558, but actually much closer than the full training result. That is, the

difference between the training result with all wells and the cross-validation result is

much smaller for RBFN with 25 centers than for full RBFN.

 The results of the training from the full interpolation RBFN method is then

applied to the seismic line shown in Figure 5.24, and is shown in Figure 7.20. Notice the

excellent fit of the predicted P-wave sonic log at the well tie, and also the high frequency

detail of the results as we move away from the well. There is also good lateral continuity

of the predicted events.

 Finally, the results of the training using the RBFN method with 25 centres is then

applied to the seismic line shown in Figure 5.24, and is shown in Figure 7.21. Notice the

excellent fit of the predicted P-wave sonic log at the well tie, and also the high frequency

detail of the results as we move away from the well. There is also good lateral continuity

of the predicted events. This detail should be compared with the results shown in Figure

7.19. Although the full result of Figure 7.19 is better, we have achieved almost as good a

result using roughly 2.5 % of the original number of data values.

272

Figure 7.18: Validation of the RBFN, where the each log has been left out, in turn, of the training. The
black lines show the original curves and the red lines show the predicted curves.

Figure 7.19: Validation of the RBFN using 25 centres, where the each log has been left out, in turn, of the
training. The black lines show the original curves and the red lines show the predicted curves.

273

Figure 7.20: Application of the full RBFN algorithm to line 95 of the 3D volume.

Figure 7.21: Application of the RBFN with 25 centers to line 95 of the 3D volume.

274

7.7 Mahalanobis clustering applied to the RBF network

 In the previous section, I showed how K-means clustering could be used to

improve the run time and stability of the RBFN algorithm by reducing the full

interpolation algorithm to an algorithm that uses a limited number of centers (or mean

vectors) in the design of the weight values. You will also recall that the scaling functions

σ given in equation (7.5) were constant and were optimized by using a range of σ values

and choosing the one that gives the lowest cross-validation error. If we return to the

concept of statistical distance, notice that the full basis function equation can actually be

written as follows (Bishop, 1995), using statistical distance rather than Euclidean

distance:





 −−−=)()(

2
1exp ki

1-
kki µsΣµs T

ikφ , (7.19)

where
















=
)()(

1

)(
1

)(
11

k
MM

k
M

k
M

k

σσ

σσ

"
#%#

"

kΣ and M is the total number of attributes.

 Equation (7.19) can be thought of as analogous to the multivariate Gaussian

distribution (Johnson and Wichern, 1998). The Σk matrix represents the covariance

matrix for the kth cluster. The basis function in equation (7.19) can thus be seen to be a

simplification of equation (7.4), in which the covariance matrix can be written in the

simplified form

I2

2

2

2

00
0

0
00

σ

σ

σ
σ

=





















=

"
%%#

#%
"

kΣ . (7.20)

 Using the Mahalanobis clustering method proposed in the previous section, we

can obtain an estimate of each of these covariance matrices. However, this method has

proved to be fairly unstable, and I decided to stay with the standard approach.

275

7.8 Parameter optimization in the RBFN with centres method

 In the RBFN with centres method, there are three parameters that must be

optimized: the σ term in the basis functions, the regularization parameter λ, and the

number of centres K. Optimization of the σ term is done in the same way as discussed in

section 6.5.2. In this section I will therefore discuss the optimization of the latter two

parameters, λ and K, using the methods discussed by Orr (1996).

 Recall that our objective is to find the optimal set of weights that will predict the

training samples from the input attributes, where we have K weights and N inputs. The

forward equation for this relationship was given in equation (6.6) and the inverse

equation in equation (6.7). To check the error in the weights, we can apply them to the

training values and compute an estimated output y. By combining this operation with

equation (6.7), we get

)A T twy ΦΦ=Φ= −1(, (7.21)

where []K
T

NKN

K

NK

1

N

IA
t

t

w

w

t

t
λ

φφ

φφ
+ΦΦ=
















=Φ
















=
















=
















= ,,,

1

11111

"
#%#

"
t,wy , IK is the K

dimensional identity matrix, and












 −
−= 2

2

exp
σ

φ ji
ij

µs
. Using equation (7.21) the error

between the observed and predicted values can be written

ttwy-te P)AI(T1
K =−=== − ΦΦΦ , (7.22)

where P is an N x N dimensional matrix called the projection matrix. The sum of squared

error S is thus given by

ttee TT 2PS == . (7.23)

276

 We can make use of the projection matrix and the sum of squared error to

optimize λ. Orr (1996) shows that the optimum value of λ can be estimated iteratively

using the formula

)(tr
)ˆ(trˆ

1

212

PA
AAP

ww
tt
T

T

−

−− −= λλ , (7.24)

where tr(·) indicates the trace of the matrix. To apply this procedure, we make an initial

guess of λ̂ and calculate the right hand side of equation (7.24). This gives us a new

estimate of λ̂ and we then iterate until convergence.

 The problem of estimating the optimum number of basis functions is a more

difficult task. The optimum number of centres is somewhere between 1 and N, the total

number of training points. Orr (1996) shows that the optimum number of centres can be

found by computing a large number of centres and then growing the network one centre

at a time, each time computing the error difference. This error difference can be

computed incrementally using the formula

Jk
Τ
J

Jk
T

1kk P
P

SS
φφ
φt

=− + , (7.25)

where the φJ functions are the columns of the design matrix, or],,[K1 φφ …=Φ . The

minimum error will indicate how many basis functions to use. In the approach taken in

this study, equation (7.25) was found to be too costly in terms of computer time, and I

therefore determined the number of basis functions by trial and error.

7.10 Conclusions

 In this chapter, I discussed the RBFN method using basis centres. To compute the

basis centres, I used the K-means clustering approach and presented a new approach to

clustering, which I call Mahalanobis clustering. This method is an extension of K-means

clustering in which we apply a second iteration which uses statistical, or Mahalanobis,

distance to perform the clustering.

277

 After a review of the K-means method, in which I illustrated the approach using a

simple two-dimensional problem, I then presented a model dataset for which the K-means

method did not converge to a correct answer. This model dataset consisted of elongated

elliptical clusters. I then described the Mahalanobis clustering method and showed that

this method converged to a correct answer for our model dataset.

 I then applied the K-means and Mahalanobis clustering methods to a two-

dimensional AVO crossplot example. Although both methods converged to the same

answer, I showed that the Mahalanobis method was able to give us the correct elliptical

shapes for interpreting the AVO crossplot. This was confirmed by the interpretation of

the crossplot, in which the top and base of a gas zone were identified.

 I then used K-means clustering to find the clusters to be used in the radial basis

function neural network (RBFN) method with centers, and found that we could achieve a

result that was very close to the full RBFN method using clusters representing only 3% of

the original number of points. Although the K-means method performed well, it gave us

no way of finding and refining the values for the covariance matrices of each cluster,

which would allow us to optimize the scaling parameters in the weight determination. I

thus proposed a method which uses Mahalanobis clustering to perform this task. Finally,

I discussed ways of optimizing both the regularization parameter λ and the number of

clusters, K.

278

CHAPTER 8 : GEOSTATISTICS AND MULTIATTRIBUTE
TRANSFORMS

8.1 Introduction

 The classical problem in seismic exploration and production is how to integrate

seismic data, which are spatially closely sampled but of relatively low temporal

resolution, with well log data, which are of high temporal resolution but are poorly

sampled spatially. This can be solved using geostatistical methods such as cokriging and

kriging with external drift (Doyen, 1988). In this approach, the well-log data are

considered to be the primary dataset, and the seismic data provides a background trend.

The advantage of this method is that the primary variable is honoured exactly at the well

tie. The disadvantage is that this perfect tie often implies a less-than-perfect physical

model. For example, if cokriging is applied to tying seismic structure to picked well

depths, the implied velocities often show “bulls-eyes” around the well intersections.

 We can use multilinear regression and neural networks to predict well log

properties from seismic attributes, where the wells are considered to be the training

points, and the method being used “learns” the relationship between the attributes and the

well values. This relationship is then applied to the seismic volume to create a reservoir

parameter volume. The advantage of this approach is a good overall fit to the parameter

of interest. The disadvantage is that the fit at the well ties locations is not exact.

 In this chapter, I combine the methods of geostatistics and multiattribute

prediction and show a geological application of this approach. Our example will involve

a map-based approach where the attributes are derived from an interval over the zone of

interest of the channel sand. Part of this chapter has been published in the Journal of

279

Petroleum Geology (Russell et al., 2002c). Similar work, using multi-component data,

has been published by Todorov et al. (1997, 1998) and Todorov (2000).

8.2 Channel Sand Case Study

 Recall that our case study involves the prediction of porosity in the Blackfoot

field of central Alberta. The reservoir occurs at a depth of around 1550 m, where

Glauconitic sand and shale fill valleys incised into the regional Mannville stratigraphy.

The objectives of the survey were to delineate the channel and distinguish between sand-

fill and shale-fill. The well log input consisted of twelve wells, each with sonic, density,

and calculated porosity logs. The top and base of the sand zone for each of the wells

were picked, and the porosity was averaged between the top and base as input to the

mapping procedure. Figure 8.1 shows the distribution of wells throughout the 3D survey

area, as well as cross-line 18 from the P-wave seismic dataset.

Figure 8.1: The distribution of wells within the 3D seismic survey area, Blackfoot, Alberta. The
annotation shows inline and crossline numbers.

 The seismic input consists of two 3D volumes. The first is the stacked P-wave

seismic dataset from the survey, and the second is the acoustic impedance inversion of

280

the initial seismic volume. Figure 8.2 shows crossline 18 from the seismic survey, where

(a) shows the input seismic line, and (b) shows the inverted line. Notice that this line ties

well 14-09, a dry hole, and 13-16, a producer.

Figure 8.2. Cross-line 18 from the 3D seismic survey, where (a) shows the final CDP stack, and (b) shows

the impedance inversion.

 Another key to this method is the extraction of a stable seismic wavelet to be used in

the inversion process. Figure 8.3 shows the sonic and porosity logs for well 14-09, along

with the seismic picks and log tops, and a portion of the seismic data at the tie point. The

figure also shows the synthetic tie at the well intersection.

281

Figure 8.3: Sonic and porosity logs from well 14-09, together with synthetic tie, seismic picks, and tops.

Figure 8.4: The porosity at each well location, averaged between the top and base of the channel.

282

 The porosity value at each well was then averaged between the top and base of sand.

The resulting values have been plotted and colour-coded on the map shown in Figure 8.4.

Notice the high porosity values in the center left of the map.

 Next, a dataslice was created through the inverted impedance volume to use as the

secondary dataset. To create this slice, the channel top was picked (this pick is shown on

a piece of the seismic data in Figure 8.3) and then an arithmetic average from a 10 ms

window below the channel top was used to produce the slice. This resulting map slice is

shown in Figure 8.5. Notice the low impedance values on the middle left side of this

map, indicating the possible channel.

Figure 8.5: Map of average acoustic impedance over a 10 ms window below the picked channel top.

283

 At the well locations, the average impedance values were then extracted from the

map and crossplotted against the well porosity values. This crossplot is shown in Figure

8.6. Note that the correlation coefficient from the crossplot is equal to -0.65. The

negative correlation was due to the fact that porosity varies as the inverse of impedance.

 The regression fit from this crossplot was then applied to the impedance slice to

convert it to pseudo-porosity for display purposes. The resulting porosity slice is shown

in Figure 8.7. On this map, it is obvious that the well values do not tie the seismic values

at the well locations, since the colour is indicative of porosity both at the wells and on the

seismically derived map.

Figure 8.6: Plot of average well porosity against average impedance for all the wells in the survey area.

284

Figure 8.7: Map of porosity variations in the survey area. This was derived by the application of the

regression fit from Figure 8.5 to the impedance slice of Figure 8.4.

8.3 Map-based geostatistics

 Map-based geostatistics involves the integration of two related datasets. The

primary dataset is generally a set of sampled values from well logs distributed throughout

the map area. These values represent some reservoir parameter of interest such as

porosity or depth. The secondary dataset is derived from a separate set of measurements,

generally seismic data, which is related in some way to the primary dataset. For example,

seismic amplitude or inverted seismic amplitude would be expected to correlate with

porosity, whereas seismic structure time should correlate with measured well depth. To

test the amount of correlation between the two datasets, a crossplot can be made between

them (Fig. 8.6) and both the regression line and the correlation coefficient can be

computed.

285

 The next step is to derive variograms from the well data and seismic data alone, and

also from the well-to-seismic comparison. The variogram (or more precisely, the semi-

variogram) measures the spatial variability of the particular value being measured. That

is, it tells us how this parameter changes as a function of distance. If there is very little

spatial variability, the variogram will be close to zero, and if there is a lot of variability,

the variogram will be large. In practice, the variogram is small for small distances close

to zero, climbs rapidly, and flattens off to a uniform value. For the porosity case being

considered in this section, we can write the variogram mathematically as

∑
=

−=
hh

ji
ij

N
h 2)(

2
1)(φφγ , (8.1)

where h represents the offset between two porosity values and we collect all N pairs that

are within an offset bin centered at h. The variogram is related to the covariance of the

data by the following formula

)()0()()()(hChhC γγγ −=−∞= , (8.2)

where C(h) is the covariance at offset h and C(0) is the zero offset covariance, which is

identical to the variogram at an infinite distance.

 Figure 8.8 shows two variograms, where (a) shows the well-to-well variogram and

(b) shows the seismic-to-seismic variogram. In Figure 8.8, the black squares represent the

computed variogram values from equation 8.1 and the red curve shows a mathematical fit

to these points. This fit was done using the spherical function, written









>+

≤

















−






+

=

ah,s

ah,
a
h5.0

a
h5.1s

)h(

0

3

0

γ

γ
γ , (8.3)

where s is the sill, or the value at which the variogram flattens off; γ0 is the nugget, or the

starting value of the variogram; and a is the range, or the distance at which the variogram

flattens off.

286

(a)

(b)

Figure 8.8: The spatial variogram of (a) the well values and (b) the seismic values. The variogram is the
sum of the squared differences between all the pairs of points within a given offset value.

 To understand how the variogram is used to create geostatistical maps, let us first

consider the problem of creating a linear, unbiased estimate of an unknown map value

given N input map values. The process involves finding the best N weights that will

recreate the unknown sample, or

287

() () () () ∑
=

=+++=
N

i
iiNNN wyxwyxwyxwyx

1
22211100 ,,,, φφφφφ … , (8.4)

where () 000 y,x φφ = is the unknown sample and φ1 through φN are the known samples.

As shown by Isaaks and Srivastava (1989), the weights can be estimated by using random

variable theory and making the following two assumptions

 (1) The mean between the estimated and true value is equal to zero.

 (2) The error variance is minimized.

 This leads to the following set of N equations in N unknowns:
















=

































)(

)(

)()(

)()(

0

101

1

111

NNNNN

N

hC

hC

w

w

hChC

hChC
#

"
#%#

"
, (8.5)

where C(hij) is the covariance function defined in equation (8.2). Equation (8.5) is

referred to as simple kriging (SK) and the weighting coefficients can be computed using a

standard matrix inversion technique, in which we note that we are dealing with a

symmetric matrix. Note that the matrix on the left hand side of the equation contains the

covariances between the known points, and the vector on the right hand side contains the

covariances of the known points to the unknown points. These covariances are computed

from the fitted variograms shown in Figure 8.8 and given in mathematical form in

equation (8.3).

 A problem with simple kriging is that we do not know the mean of the true values

to be estimated. This problem can be avoided using the Lagrange multiplier technique,

which results in the ordinary kriging (OK) systems of equations



















=





































1
)(

)(

011
1)()(

1)()(

0

101

1

111

NNNNN

N

hC

hC

w

w

hChC

hChC
##

"
"

##%#
"

µ

, (8.6)

where µ is the Lagrange parameter.

288

 As in simple kriging, the covariances are computed from the fitted variograms

shown in Figure 8.8 and given in mathematical form in equation (8.3). Figure 8.9 shows

the result of ordinary kriging using the well values for our case study. Notice that the

map shows only the general trends, which consist of high porosity on the left side of the

map and low porosity to the right side of the map. The detail that we would expect in a

map of porosity is not present.

 To estimate the statistical validity of our maps, we can use two approaches. The

first is to use the kriging variance error, which is defined as:

∑
=

−=
N

i
iisk hCwC

1
0

2)()0(σ . (8.6)

where C(0) represents the zero offset covariance. Figure 8.10 shows the kriging error in

our case.

Figure 8.9: Map of the survey area produced by kriging the well porosities.

289

Figure 8.10: The kriging error for the kriged result of Figure 8.9

 A second, more unbiased estimate measure of the error is the cross-validation

error, which is found by successively leaving out wells and predicting their value. The

cross-validation error for the kriged map is shown in Figure 8.11. The RMS average of

these errors is 3.242 %.

 If we use both datasets, the techniques of kriging with external drift (KED) or

cokriging can be used to produce an optimal map. By optimal, I mean that we honour the

well data at the well locations and the trend of the seismic data away from the well

locations. For both these methods, the well log data is considered the primary dataset,

and the seismic is the secondary dataset. The quality of the final maps can be determined

either through the cross-validation technique in which we leave each well out in turn and

blindly predict it value, or a display of the error variance at each estimated point

290

Figure 8.11: The cross-validation errors for the kriged map of Figure 8.9.

 Cokriging is an extension of kriging that uses a weighted sum of both well and

seismic values. In collocated cokriging, only the seismic value at the output location is

used. The equation for collocated cokriging is given as:

() () () () ()00122211100 ,,,,, yxAIwyxwyxwyxwyx NNNN +++++= φφφφ … , (8.7)

where AI is the acoustic impedance. Thus, we need to extend the theory of ordinary

kriging to compute N+1 weights. Because we are including the seismic values, we now

need to include both the seismic-to-seismic and seismic-to-well variograms. The final set

of equations can be written in matrix form as



























=





















































+

1
1

)0(
)(

)(

00100
00011
10)0()()(
01)()()(

01)()()(

0

10

2

1

1

1

010

01

10111

ss

Nww

ww

N

N

ssNwsws

NwsNNwwNww

wsNwwww

C
hC

hC

w
w

w

ChChC
hChChC

hChChC
##

"
"
"
"

####%#
"

µ
µ

, (8.8)

291

where Cww(hij) represents the well-to-well covariance at the hij offset, Cws(hij) represents

the well-to-seismic covariance at the hij offset, and Css(hij) represents the well-to-well

covariance at the hij offset, Cws(hij) represents the seismic-to-seismic covariance at the hij

offset. In the case of collocated cokriging, only the zero offset term is used for the

seismic-to-seismic covariance. Note that for collocated cokriging there are two Lagrange

parameters, one for the well terms and one for the well to seismic terms.

 In equation (8.8), we show that three variograms are needed to compute the

weighting coefficients: the well-to-well variogram, the well-to-seismic variogram, and

the seismic-to-seismic variogram. However, in many cases we have much more

confidence in the seismic-to-seismic variogram, which in the case of a 3D seismic dataset

is derived from a much greater number of points than the well-to-well or well-to-seismic

variograms. In this case, we can use the Markov-Bayes assumption, which assumes that

there is a linear relationship between our datasets given by

AI(x,y) = aφ(x,y) + b + noise, (8.9)

where AI(x,y) is the acoustic impedance at spatial locations x and y derived from the

seismic data, φ(x,y) is the porosity derived from the well logs, and a and b are constants

as determined in the crossplot of Figure 8.6.

 This leads to the following two relationships among the three covariance functions

CSS(h) = a2CWW(h) + CNN , (8.10)

and

CWS(h) = aCWW(h), (8.11)

where CNN is the noise covariance, given by

() 2/1)0()0(
)0(

SSWW

WS
NN CC

CC
⋅

= . (8.12)

292

 In Figure 8.12 the well and seismic data have been combined using collocated

cokriging with the Markov-Bayes assumption being used to derive all three variograms

from the seismic-to-seismic variogram.

Figure 8.12: Map of porosity in the survey area produced by collocated cokriging between the averaged
well porosities and the impedance slice.

 Although the map in Figure 8.12 shows the imprint of the wells from the kriged

result, the final look of the map is more realistic because of the inclusion of the seismic

impedance data. Again, we can compute the error either from a similar technique defined

for the kriged result, or by using the cross-validation error. In this case, the RMS average

of the cross-validation error is 3.027%, which is lower than the error for kriging.

293

8.4 Map attributes

 I will now discuss an improvement to the geostatistics approach, in which we pre-

condition the seismic map using the multi-attribute approach discussed in this

dissertation. The key difference between what I am doing in this chapter compared to

what was done in earlier chapters is that I am using map attributes rather than volume

attributes. That is, a series of time averaged slices were extracted from the seismic cube.

These slices were averaged over a 10 ms window below the zone of interest using an

RMS average, rather than an arithmetic average, since many of the attributes had zero

mean (that is, both positive and negative values).

 The six slices that were extracted consisted of seismic amplitude, amplitude

envelope, instantaneous phase, cosine instantaneous phase, trace length, and integrated

trace. In the case of trace length, no averaging was performed since this attribute

measures the length of the trace over the zone of interest. These slices are shown in

Figure 8.13. Notice that each slice shows the channel in a slightly different way, since

each attribute looks at the information over the volume slice in a different way. For

example, we see that the amplitude and amplitude envelope slices of Figure 8.13(a) and

(b) are very similar, and show a narrow channel. However, the instantaneous phase and

frequency slices of Figure 8.13(c) and (d) show a broader channel with a dominant phase

of less than 112 degrees and a dominant frequency of greater than 69 Hz. The integrated

trace slice of Figure 8.13(e) again shows a broad channel, but the trace length slice of

Figure 8.13(f) does not show the channel very well.

294

 (a) (b)

 (c) (d)

(e) (f)

Figure 8.13: Attribute slices derived from the original seismic volume, where (a) shows seismic amplitude,

(b) shows amplitude envelope, (c) shows instantaneous phase, (d) shows instantaneous frequency, (e)
shows integrated trace, and (f) shows total trace length. The first five attributes consist of an RMS average

over a 10 ms window below the picked channel top.

295

8.5 The multiattribute transform

 The multiattribute transform method involves the same input data as in the

geostatistical method just described, except that multiple secondary sets of seismic

attributes are used. Recall that seismic attributes were discussed at length in Chapter 2.

Another key difference between this method and the geostatistical method is that the

multiattribute transform does not force an exact solution at the well-to-seismic

intersections. Instead, a “best-fit” relationship is derived at the well-tie points, which is

then applied to the multiple input attributes to produce the reservoir volume. Two

approaches can be used to derive this relationship: multilinear regression and neural

network analysis. I will discuss the multilinear regression approach in this section and

the neural network approach in a later section. Using multilinear regression we seek a set

of weights which, when applied to the attribute maps, will produce the reservoir

parameter map. A pictorial illustration of this approach is shown in Figure 8.14.

Figure 8.14: A pictorial illustration of the multilinear regression method of combining map attributes.

 Mathematically, we model the log parameter map L(x,y) as a weighted sum of the M

attribute maps Aj(x,y) by the linear equation

296

),(),(),(110 yxAwyxAwwyxL MM+++= " . (8.13)

 In equation (8.13) both the estimated log values and the attributes are a function

of the map coordinates x and y, rather than of time, t, as in our applications in the earlier

chapters. As also discussed in earlier chapters, we can expand the linear approach by

applying nonlinear transforms to the attributes, such as the logarithm, the square root, etc.

 In the multilinear regression approach we will compute the number and order of

the statistically valid attribute slices using the cross-validation method, which was also

discussed at length in previous chapters. In the cross-validation approach, the prediction

error is computed by leaving out the target well for each of the input points, calculating

the resulting least-squares error, and then summing the results. The validation error will

reach a minimum at a relatively small number of attributes, usually less than five.

 The correlation between each slice and the porosity map is shown in Table 8.1,

where the inversion slice has the highest correlation coefficient, the amplitude (amp) slice

has the second highest correlation coefficient, and so on down to the integrated trace

length slice (int), which has the lowest correlation coefficient.

Table 8.1: The correlation coefficients for the seven attribute slices.

297

 A multiattribute analysis was then performed at the well locations using the

multilinear regression algorithm. The cross-validation results for this analysis are shown

in Figure 8.15. In this figure the bottom curve (in black) shows the result of using all the

wells in the training, and the top curve (in red) is the cross-validation result, in which the

wells are left out of the computation and then predicted. It is clear in Figure 8.15 that

only the first three attributes are statistically significant, since the error on the top curve

increases after the third attribute. Table 8.2 shows a numerical summary of these

attributes. Note that the three attributes were, in order, the inverse of impedance,

instantaneous phase, and integrated trace. Also note that the well parameter is the square

root of porosity.

Figure 8.15: The average error for the best five attribute found by multi-linear regression, where the

bottom curve (black) shows the total error and the top curve (red) shows the validation error.

Table 8.2. The training and validation errors for the attribute slices used in the multiattribute computation.

298

 Table 8.3 then shows the derived weights used in the multiattribute transform.

These weights are the coefficients for equation 8.13.

Table 8.3. The weights used in the multiattribute computation.

 The map that results from applying the derived weights to the attribute slices is

shown in Figure 8.16. Note the increased resolution of the high porosity sand channel.

Figure 8.16: The application of multi-linear regression using the weights and attributes shown in Table 8.3.

299

 To see how well we have done statistically, Figure 8.17 is a crossplot of the actual

porosity values against the predicted porosity values. Notice that the correlation

coefficient has now increased to 0.85, compared with the -0.65 value for the best attribute

slice, the impedance.

Figure 8.17: The crossplot of the actual well-log derived porosity (horizontal axis) against the estimated

porosity in the result shown in Figure 8.15. Note that the correlation coefficient is 0.85.

 Although I have described the geostatistical method before the multiattribute

method, the actual order of application is the reverse of this. That is, we first use the

multiattribute method to produce an improved map as the secondary attribute for the

geostatistical method. We next apply the technique of collocated cokriging to this new

map. As mentioned previously, we must first re-compute the variogram, and this is

shown in Figure 8.18. In the previous variogram, a spherical function was used, which

was given in equation (8.3). In this case, a better fit was obtained with an exponential

function, which can be written















−−+=

a
hsh exp1)(0γγ , (8.14)

where s is the sill, γ0 is the nugget and a is the range, all as defined previously.

300

Figure 8.18: The recomputed seismic variogram used for collocated cokriging with the multi-linear result

of Figure 8.15 as the secondary dataset.

 The cokriged porosity result is shown in Figure 8.19. Notice that the channel

sand is now clearly delineated, and the fit to the wells is very good. In this case, the RMS

average of the cross-validation error is 2.534%, which is lower than the result found

using cokriging with the impedance attribute.

Figure 8.19: The result of applying cokriging to the multi-linear regression result.

301

8.6 Neural network mapping

 I will now apply several neural network algorithms that have been to the map

dataset. Specifically, I will use the three key algorithms that have been discussed in this

dissertation: the multi-layer perceptron (MLP), the generalized regression neural network

(GRNN), and the radial basis function neural network (RBFN). As input to these

algorithms I will use the attributes computed using multi-linear regression with cross-

validation analysis as shown in Figure 8.15 and Table 8.2.

 I will start with the multi-layer perceptron, which was fully described in Chapter 5

of this dissertation. Figure 8.20 shows the result of applying the multi-layer perceptron

with 5 nodes in the hidden layer and 10 iterations in the weight computation.

Figure 8.20: The computed porosity map using the multi-layer perceptron applied to the first three

attributes shown in Table 8.2.

302

 Although the main trend of the high porosity channel has been revealed in Figure

8.20, there appears to be a lot of “noise” in the result, which suggests that the MLP has

been overtrained. This overtraining is indeed in evidence when we look at the cross plot

of the actual well log porosity values against the predicted values, shown in Figure 8.21.

Notice that the fit is too good for most of the points, since they fall on a straight line, and

not good enough for the rest of the points, since they all have the same value of 15%.

The overall correlation coefficient is very close to 1.0, which implies perfect correlation.

Figure 8.21: The crossplot of the actual well-log derived porosity (horizontal axis) against the estimated
porosity for the MLP result shown in Figure 8.19. Note that the correlation coefficient is 0.85.

 Next, I will apply the generalized regression neural network (GRNN) algorithm,

which was fully described in Chapter 6 of this dissertation. You will recall that the

GRNN algorithm involves performing a weighted sum of the input values multiplied by a

set of Gaussian functions of the square of the distance between the attribute vectors of the

output values and those of the input values. The key parameter that needs to be modified

is σ, which controls the width of the Gaussian functions.

303

 Figure 8.22 shows the result of applying the GRNN algorithm, in which σ was

optimized using cross-validation, and allowed to vary as a function of the three attributes

used as input. These attributes are the first three attributes shown in Table 8.2. As with

the MLP algorithm, the main trend of the high porosity channel has been revealed.

However, there again appears to be a lot of “noise” in the result, which suggests that the

GRNN has been overtrained.

Figure 8.22: The computed porosity map using the generalized regression neural network (GRNN) applied

to the first three attributes shown in Table 8.2.

 As shown with the MLP result, this overtraining is obvious when we look at the

cross plot of the actual well log porosity values against the predicted values, shown in

Figure 8.23. In this figure we see that the points fall on the line of perfect correlation and

have a correlation coefficient almost identical to 1.0. The initial results of applying

neural networks to the map case are thus not too encouraging.

304

Figure 8.23: The crossplot of the actual well-log derived porosity (horizontal axis) against the estimated

porosity for the GRNN result shown in Figure 8.22. Note that the correlation coefficient is almost perfect,
but this suggests overtraining.

 I will next apply the radial basis function neural network (RBFN), which was

fully discussed in Chapter 6. As with the GRNN approach, the RBFN uses Gaussian

functions of distance. But, unlike GRNN, a set of weights are pre-computed from the

training data, and are then applied to the attribute distance functions. The key parameter

to optimize is again σ, which controls the widths of the Gaussian basis functions.

 Figure 8.24 shows the result of applying the RBFN algorithm, in which σ was

optimized using the parabolic search technique described in section 6.5.2. These

attributes are the first three attributes shown in Table 8.2. Unlike our results using the

MLP and GRNN algorithms, the map shown in Figure 8.24 does not show any noise

bursts and is actually quite similar to the multi-linear result shown in Figure 8.16. Notice

that the high porosity channel has been very well delineated. To see if there is any

improvement over the multi-linear result, we will again crossplot the actual and predicted

porosity values. This crossplot is shown in Figure 8.25, and shows a correlation

coefficient of 0.869. This value is an improvement over the value of 0.85 found using

multi-linear regression, but is not indicative of over-training, as were the crossplots for

both the GRNN and MLP results, shown earlier.

305

Figure 8.24: The computed porosity map using the radial basis function neural network (RBFN) applied to

the first three attributes shown in Table 8.2.

Figure 8.25: The crossplot of the actual well-log derived porosity (horizontal axis) against the estimated

porosity for the RBFN result shown in Figure 8.23. Note that the correlation coefficient is equal to 0.869.

 I next apply the technique of collocated cokriging to this new map produced by

the RBFN algorithm. As mentioned previously, we must first re-compute the variogram,

306

and this is shown in Figure 8.26. As with the multi-linear regression map, the best fit was

obtained with an exponential function, which was written in equation (8.14).

Figure 8.26: The recomputed seismic variogram used for collocated cokriging with the RBFN result of

Figure 8.24 as the secondary dataset.

 The final cokriged porosity result is shown in Figure 8.27, in which the RBFN

result of Figure 8.25 has been used as the secondary input. Notice that the channel sand

is again clearly delineated and that the fit to the wells is very good. This result is very

similar to the result obtained using multilinear regression, but gives a slightly improved

cross-validation result. In this case, the RMS average of the cross-validation error is

2.516%, which is lower than the result found using cokriging with the multi-linear

attribute. As a final summary, Table 8.3 lists the cross-validation results at each of the

wells, and their RMS averages, for all of the methods discussed in this chapter.

307

Figure 8.27: The result of applying collocated cokriging using the RBFN result of Figure 8.24 as the

secondary dataset.

 Cokriged:
X Y Kriged Impedance Multilinear RBFN

80 29 -0.662 -1.338 -1.694 -1.842
55 17 -0.665 -1.367 -5.171 -4.213
96 27 -1.190 -0.372 -0.160 -1.043

110 17 5.040 4.287 2.801 3.042
63 28 -5.354 -5.835 -2.944 -3.518
65 40 3.318 4.258 2.847 3.054
96 40 -1.322 -1.753 -3.884 -3.489
26 41 1.032 -0.222 -1.610 -1.334
38 41 2.552 1.186 -0.333 0.456
47 39 -0.427 -0.593 -0.203 0.201
38 59 -6.652 -5.170 -2.066 -2.518
51 39 2.233 1.996 0.843 1.497

 RMS: 3.242 3.027 2.534 2.516

Table 8.4: A cross-validation analysis of the errors at each well using each of the mapping methods. The

units in the table are % porosity.

308

8.7 Conclusions

 In this chapter I have presented a new approach to the integration of well log and

seismic data, which combines the methods of seismic inversion, geostatistics and

multiattribute transforms. Inversion is used as the starting point, since I have found that

the inversion results correlate much better with geology than the original seismic.

However, by combining multiple seismic attributes I was able to bring in extra

information to enhance the final well tie. It is also important to use the technique of

validation to make sure that we are not adding spurious attributes to the final solution.

Finally, geostatistics gives us a powerful set of tools for producing our final map, which

combines the multiattribute transformed map with the well values, giving priority to the

well information. The geostatistical results produced in this chapter were created using a

commercial implementation of the GSLIB Geostatistical Software Library (Deutsch and

Journel, 1992) from Hampson-Russell Software called ISMap.

 Our approach was tested using a channel sand example from Alberta. I used four

separate approaches to build a map of well porosity: kriging with the wells values alone,

collocated cokriging with the impedance as the secondary dataset, collocated cokriging

with the multi-linear regression output as the secondary dataset, and collocated cokriging

with the RBFN output as the secondary dataset. I found that the RMS error of the cross-

validation results progressively improved from 3.242 for kriging to 2.516 for the RBFN

method, and that the final result clearly delineated the channel sand and provided an

excellent match to the wells. I also found that the MLP and GRNN neural networks

tended to be overtrained with this dataset, leading to noisy results. The fact that the

RBFN network worked best is due to the fact that RBFN is the best method to use as the

number of training points goes down. Since we only had 12 training points in this case,

this is the ultimate test of these methods.

309

CHAPTER 9 : SUMMARY AND CONCLUSIONS

9.1 Summary

 In this dissertation, I have examined the relationship between seismic attributes

and reservoir parameters such as porosity. Figure 1.5 shows this relationship for the case

that was considered in Chapter 2. Note that we are trying to predict the target log on the

left from the three attributes on the right. In Figure 1.5, the target log t represents the

known seismic reservoir parameter and the attribute vectors ai represent the seismic

attributes from a seismic volume that correspond spatially and temporally to this reservoir

parameter, where i goes from 1 to M. Although only three attribute vectors are shown in

Figure 1.5, we can use as many in our analysis as are statistically valid. The sample

vectors xj, where j ranges over the number of seismic samples, are associated with the

individual training samples tj, and can be considered as the transpose of the attribute

vectors (see Appendix 1 for the mathematical details).

 Throughout this study, the relationship between the seismic attributes and the

reservoir parameter was quantified using various linear and nonlinear mappings derived

from multivariate statistics and neural network theory. We can write this relationship as

),(ft j jxw= , (9.1)

where w is a set of weights. Once this mapping has been found, we can apply to the

unknown seismic points s to find a new reservoir parameter value y, using the

relationship

),(fy sw= , (9.2)

 The most general form of such a mapping using the training data is

()()()jj xx TTq
j WWWft)1()2()(),(φφ== , (9.3)

310

where j = 1, …, N, the number of seismic samples, W(1) and W(2) are weight matrices

given by

















=
T

K

T

W
)2(

)2(
1

)2(

w

w
and][)1()1(

1
)1()1(

M
T wwW "== w ,

the input is given by][1 jMj xx "=T
jx , and φ is a nonlinear function. Note that K

represents the number of summing nodes. If we let φ be a sigmoid function, equation

(9.3) represents the multilayer perceptron (MLP) that was discussed in Chapter 5. If we

let φ(x) = x it was shown in section 6.6 that equation (9.3) reduces to

jj xwxw T
j),(ft == , (9.4)

where w is equal to W(1) in equation (9.1) and xj is as defined above.

 The linear multi-regression approach of equation (9.4) was extensively discussed

in Chapter 3, and was proved to be an extremely robust way of mapping attributes into

reservoir parameters. In Chapter 4 I discussed the related concept of linear classification,

in which the linear functions defined the boundaries between classes.

 In both chapters 3 and 4, we found that the limitation of linear methods is their

inability to perform nonlinear tasks, such as prediction of data points that do not fall on a

linear trend, or separation of classes for which there is a nonlinear boundary. This led us

to the multi-layer perceptron, which I have just discussed, and to the radial basis function

neural network. The radial basis function neural network combines the ease of

implementation of multi-linear regression and the power of the multi-layer perceptron.

Mathematically, we can write the radial basis equation as

∑
=

==
K

k
kj wft

1

)(),(jj xxw φ , (9.5)

where w is now a K-valued weight vector, xj is as defined above, φ(xj) is a Gaussian basis

function given by

311













 −
−= 2

2

exp)(
σ

φ kj µx
x j , (9.6)

the µk are a set of mean values, and σ is a scaling value. Note that equation (9.5) is the

formulation for RBFN with centres, and can be expanded to the full RBFN method by

letting K go to N, and replacing the µk values with the N seismic samples. The radial

basis function approach was discussed in Chapters 6 and 7. In Chapter 6, I discussed the

general theory and showed that there are three closely related methods which use

Gaussian basis functions: the probabilistic neural network (PNN), the generalized

regression neural network (GRNN), and the radial basis function network (RBFN), and in

Chapter 7 I discussed the RBFN with centres method.

 In Chapters 2 through 7, I considered the mapping procedure as one in which we

transform a set of 3D seismic attribute volumes into a volume of reservoir values. In

Chapter 8 I applied these methods to map analysis, and combined this with the theory of

geostatistics.

9.2 Conclusions

 Throughout this dissertation I have used both model and real datasets to illustrate

the theory behind the prediction of reservoir parameters from seismic attributes. This has

lead me to a number of conclusions about the effectiveness of each method, which I will

now discuss.

 The first technique that was applied to the prediction of reservoir parameters was

multilinear regression. This is a well established technique that is fully discussed in the

multivariate statistics literature, and a summary of this theory was given in Chapter 3. I

found that multilinear regression gave extremely robust, reproducible results but that the

error between the known training values and the predicted results tended to be large. An

extension of the classical multilinear regression technique, suggested by Hampson et al.

312

(2001), was to use convolutional filters instead of single points in multilinear regression.

As I show mathematically in section 3.5.4, this is equivalent to creating a set of new

seismic attributes that are the time-shifted versions of the original attributes at the shifts

corresponding to the convolutional filters. I also show in Appendix 3 that this approach

can be derived from the more general multichannel filter (Treitel, 1970). Another way in

which the results of multilinear regression can be improved, also suggested by Hampson

et al. (2001), is to apply nonlinear functions such as log, square root, etc, to either the

attributes or the target log or both before analysis. Using this approach, I was able to

build a new relationship between S-wave velocity and two other well log attributes: the

P-wave sonic log and the square root of the gamma ray log.

 As a measure of the statistical validity of the multilinear regression method, I used

the cross-validation approach, in which we successively drop known values out of the

training dataset and “blindly” predict these values. This method gave us an excellent way

of ordering the attributes and removing those that did not improve the overall error. This

approach is used to find the order and number of attributes for each of the nonlinear

methods used in subsequent chapters.

 In Chapter 4, linear classification methods were discussed and were shown to be

closely related to multilinear regression. Two applications of these methods were

considered. The first was linear discriminant analysis, in which we divided a set of

reservoir parameters into a number of classes based on the linear separation between

these classes. This approach was applied to a well log and seismic dataset from the

Blackfoot area of Alberta, in which three classes of porosity (low, medium, and high)

were classified. The results indicated the presence of a known high porosity channel, but

also contained some spurious high porosity zones. The second application of linear

classification was the single layer perceptron (SLP). When applied to a class 3 AVO

anomaly, the SLP was able to correctly identify either the top or base of the sand, but not

both simultaneously, since this was a nonlinear problem.

313

 In Chapter 5, I extended the single layer perceptron to the multi-layer perceptron

(MLP), which is also often called the multi-layer feedforward neural network.

Continuing the work on the class 3 AVO anomaly, I was able to show that the MLP was

able to simultaneously identify the top and base of the sand. I then discussed the

mathematics behind error backpropagation in the MLP and applied this theory to both the

AVO classification problem and a sine wave prediction problem. The MLP was then

applied to the prediction of P-wave velocity in the Blackfoot dataset. In our applications

to both real and model datasets, we found that the MLP was able to predict the training

data quite accurately, but often displayed the following undesirable characteristics

 - the solution of the weights was highly dependent on the initial guess.

 - the solution could be very slow to converge.

 - the result were often “overtrained”, meaning that there was a good fit to

 the training data but poor generalization to the unknown values.

 Before discussing the last three chapters of this dissertation, which contain my

key argument, it is important to recall the discussion of the “bias versus variance”

dilemma which was presented in section 1.5. Let me quote from that section:

“On one hand, we do not want a model that is too simple and does not

have the flexibility to ever fit our data points. This is called a model with

high bias. On the other hand, we do not want a model that is too complex

and has such a high degree of flexibility that it overfits the data. This is

called a model with high variance. The optimal model would be complex

enough to fit the data values reasonably well, but not so complex that it

fits the noise in the data.”

 In the light of this quote, let me summarize the first two approaches I used for the

prediction of reservoir parameters. I found that the multilinear regression approach

tended to have high bias because the linear model is too simple to predict earth

314

properties. However, I found that the multilayer perceptron was too complex of an

algorithm and tended to have high variance. We needed to find a better method.

 The answer was to find a method that combines the best properties of both

methods, while improving on their weaknesses. This method was supplied by using

Gaussian basis functions. In Chapter 6, three methods were discussed that used Gaussian

functions of attribute distance: the probabilistic neural network (PNN), the generalized

regression neural network (GRNN), and the radial basis function neural network (RBFN).

The first two methods (PNN and GRNN) were derived using statistical theory, and the

third method (RBFN) was derived using regularization theory. Both theoretically and by

using a simple sine wave and square wave example, we saw that the GRNN can be seen

as a subset of the RBFN method. I then applied both methods to the Blackfoot seismic

data example. The results indicated that both methods gave about the same fit to the

training data, but that the RBFN method tended to give higher-frequency results.

However, the high frequencies did not appear to be from overtraining, as in the MLP

approach, but appeared to bring out spatial continuity within the dataset.

 The one problem with the full RBFN approach is that it requires the inversion of a

symmetric N x N matrix, where N is the number of training points. This can result in long

processing times. The GRNN method is faster because training does not involve the

inversion of a matrix. In Chapter 7, I looked for an approach that would vastly improve

the run time of the full interpolation RBFN method, called RBFN with centres. This

method was first applied to the AVO classification example, with results that were

identical to the MLP approach. To apply the method to real data required the

computation of a reduced set of data centres, which was done using K-means clustering

and a refinement to K-means clustering which I termed “Mahalanobis” clustering. The

resulting clustering method was applied to the Blackfoot seismic dataset and the results

were very close in accuracy to the full interpolation RBFN method, but using only 2% of

the number of values needed in the former approach.

315

 Finally, in Chapter 8, I discussed the related problem of transforming map

averages derived from a 3D volume into maps of reservoir parameters. I showed how to

combine the multi-linear and neural network concepts discussed throughout the

dissertation with traditional map-based geostatistics. This was done by creating an

improved attribute map first and then using collocated cokriging to create a final map that

honoured both the wells and the seismic volume. A summary of this work was presented

in Table 8.4, which has been reproduced below as Table 9.1.

 Cokriged:
X Y Kriged Impedance Multilinear RBFN

80 29 -0.662 -1.338 -1.694 -1.842
55 17 -0.665 -1.367 -5.171 -4.213
96 27 -1.190 -0.372 -0.160 -1.043

110 17 5.040 4.287 2.801 3.042
63 28 -5.354 -5.835 -2.944 -3.518
65 40 3.318 4.258 2.847 3.054
96 40 -1.322 -1.753 -3.884 -3.489
26 41 1.032 -0.222 -1.610 -1.334
38 41 2.552 1.186 -0.333 0.456
47 39 -0.427 -0.593 -0.203 0.201
38 59 -6.652 -5.170 -2.066 -2.518
51 39 2.233 1.996 0.843 1.497

 RMS: 3.242 3.027 2.534 2.516

Table 9.1: A cross-validation analysis of the porosity error at each well from Figure 8.1 using each of the

mapping methods discussed in Chapter 8. The units in the table are % porosity.

 Table 9.1 represents a summary of this complete dissertation, since it contains all

of the elements that have been presented. This includes the concept of the seismic

attribute, discussed in Chapter 2, since we are using seismic impedance as our primary

attribute. Also, I used multilinear regression and neural network (RBFN) to combine a

group of map attributes to predict porosity as our reservoir parameter. I then used the

geostatistical technique of collocated cokriging to “fine-tune” our prediction of porosity.

Finally, the technique of cross-validation was used as an independent statistical

evaluation of the accuracy of each method. The numbers at the bottom of each list of

316

cross-validated porosities is the RMS average of the porosity values. It can be seen in

this example that the best “blind” prediction of porosity is from the RBFN method.

 In addition, a number of secondary ideas were developed as a “by-product” of my

primary research. These included the development of an approach to fluid estimation that

combined the ideas of Biot, Gassmann, and AVO analysis (Russell et al., 2003), which

was discussed in section 2.9; the development of a multilinear regression equation for the

prediction of S-wave logs from a combination of P-wave sonic logs and gamma ray logs

(Russell et al., 2004), which was discussed in section 3.7; and the development of

Mahalanobis clustering and its application to AVO crossplotting (Russell et al., 2003),

which was discussed in section 7.5.

9.3 Suggestions for future research

 I think it is fair to say that no dissertation ever covers all of the research that the

student envisaged covering when he or she started the project. The same is true for this

work. In particular, I see the following three areas in which future work can be done:

(1) Optimization of the σ value in the RBFN method so that σ is a function of each

attribute, as is done in the GRNN and PNN methods.

(2) Incorporation of the multivariate statistical parameters estimated using Mahalanobis

clustering into the RBFN method with basis centres.

(3) Estimation of regularization parameters, which vary as a function of each weight.

 Having said this, I feel that this dissertation advances research in the area of

reservoir parameter prediction, and hope that the ideas presented here will be of use to

my colleagues and to future geophysical students.

317

REFERENCES

Abdi, H., Valentin, D., and Edelman, B., 1999, Neural Networks: Sage Publications, Inc.,
Thousand Oaks, California.

Aki, K., and Richards, P.G., 2002, Quantitative Seismology, 2nd Edition: W.H. Freeman
and Company.

Anderson, J.A., 1972, A simple neural network generating an interactive memory:
Mathematical Biosciences, 14, 197-220.

Anderson, T.W., 1984, An Introduction to Multivariate Statistical Methods (2nd ed.): John
Wiley, New York.

Bahorich, M. and Farmer, S., 1995, 3-D seismic discontinuity for faults and stratigraphic
features: The coherence cube: THE LEADING EDGE, 14, no. 10, 1053-1058.

Batzle, M., and Wang, Z., 1992, Seismic properties of fluids: Geophysics, 57, 1396-1408.

Biot, M. A., 1941, General theory of three-dimensional consolidation: Journal of Applied
Physics, 12, 155-164.

Bishop, C.M, 1995, Neural Networks for Pattern Recognition. Oxford: Oxford University
Press.

Bortfeld, R., 1961, Approximations to the reflection and transmission coefficients of
plane longitudinal and transverse waves: Geophys. Prosp., Eur. Assn. Geosci. Eng., 09,
485-502.

Bracewell, R.N., 1965, The Fourier Transform and its Applications: New York,
McGraw-Hill Book Co., Inc.

Castagna, J. P., Batzle, M. L., and Eastwood, R. L., 1985, Relationships between
compressional-wave and shear-wave velocities in clastic silicate rocks, Geophysics, 50,
571-581.

Castagna, J. P., Batzle, M. L. and Kan, T. K., 1993, Rock physics - The link between
rock properties and AVO response, in Backus, M. M., Ed., Offset-dependent reflectivity -
theory and practice of AVO analysis: Soc. of Expl. Geophys., 135-171.

Chen, Q. and Sidney, S., 1997, Seismic attribute technology for reservoir forecasting and
monitoring: THE LEADING EDGE, 16, no. 05, 445-456.

318

Chen, S., Cowan, F.N., and Grant, P.M., 1991, Orthogonal least squares learning
algorithm for radial basis function networks: IEEE Transactions on Neural Networks, 2,
302-309.

Claerbout, J, 1976, Fundamentals of Geophysical Data Processing, McGraw Hill, Inc.

Deutsch, C.V. and Journel, A.G., 1992, GSLIB: Geostatistical Software Library and
User’s Guide. Oxford University Press, New York, NY.

Doyen, P.M., 1988, Porosity from seismic data – A geostatistical approach: Geophysics,
53, no. 10, 1263-1275.

Duda, R.O., Hart, P.E., and Stork, D.G., 2001, Pattern Classification, Second Edition.
New York, John Wiley and Sons.

Dufour, J., Squires, J., Goodway, W.N., Edmunds, A. and Shook, I., 2002, Integrated
geological and geophysical interpretation case study, and Lamé rock parameter
extractions using AVO analysis on the Blackfoot 3C-3D seismic data, southern Alberta,
Canada: Geophysics, 67, 27-37.

Fatti, J., Smith, G., Vail, P., Strauss, P., and Levitt, P., 1994, Detection of gas in
sandstone reservoirs using AVO analysis: a 3D Seismic Case History Using the Geostack
Technique, Geophysics, 59, 1362-1376.

Fisher, R. A., 1936, The use of multiple measurements in taxonomic problems: Annals of
Eugenics, 7, 179-188.

Fletcher, R., and Reeves, C.M., 1964, Function minimization by conjugate gradients:
Computer Journal, 7, 149-154.

Gassmann, F., 1951, Uber die Elastizitat poroser Medien, Vierteljahrsschrift der
Naturforschenden Gesellschaft in Zurich, 96, 1-23.

Gersztenkorn, A. and Marfurt, K. J., 1999, Eigenstructure-based coherence computations
as an aid to 3-D structural and stratigraphic mapping: GEOPHYSICS, 64, 1468-1479.

Gill, P.E., Murray, W., and Wright, M.H., 1981, Practical Optimization: New York,
Academic Press.

Goodway, W., Chen, T., and Downton, J., 1997, Improved AVO fluid Detection and
Lithology Discrimination Using Lamé Petrophysical Parameters: Extended Abstracts,
SEG 67th Annual International Meeting, Denver.

319

Hagan, M.T., Demuth, H.B., and Beale, M., 1996. Neural Network Design. Boston:
PWS.

Hampson, D. and Russell, B., 1990, AVO inversion: Theory and practice: Annual
Meeting Abstracts, Society of Exploration Geophysicists, 1456-1458.

Hampson, D. and Russell, B., 1992, Strata Course Notes: unpublished.

Hampson, D. and Russell, B., 1998, Emerge Course Notes: unpublished.

Hampson, D., Schuelke, J.S., and Quirein, J.A., 2001, Use of multi-attribute transforms to
predict log properties from seismic data: Geophysics, 66, 220-231.

Haykin, S., 1999, Neural Networks, A Comprehensive Foundation, 2nd Ed. Englewood
Cliffs, New Jersey: Prentice Hall.

Hebb, D., 1949, The Organization of Behaviour: New York, Wiley.

Hedlin, K., 2000, Pore Space Modulus and Extraction using AVO, Extended Abstracts,
Soc. Expl. Geophys., 70th Annual Meeting, Calgary.

Hilterman, F. J., 2001, Seismic Amplitude Interpretation, 2001 Distinguished Instructor
Short Course, Distinguished Instructor Series, No. 4, Soc. Expl. Geophys.

Hogg, R.V. and Craig, A.T., 1995, Introduction to Mathematical Statistics, 5th Edition.
Englewood Cliffs, New Jersey: Prentice Hall.

Isaacs, E. and Srivastava, R., 1989, An Introduction to Applied Geostatistics. Oxford
University Press, New York, NY.

Johnson, R.A. and Wichern, D.W., 1998. Applied Multivariate Statistical Analysis,
Upper Saddle River, N.S.: Prentice Hall.

Kohonen, T., 1972, Correlation matrix memories: IEEE Transactions on Computers,
volume C-21, 353-359.

Kohonen, T., 2001, Self Organizing Maps: Springer Series in Information Sciences, 20,
Springer Verlag, Berlin.

Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation
using the velocities of P and S waves, The Log Analyst, Nov-Dec, 355-369.

Lindseth, R.O., 1979, Synthetic sonic logs-A process for stratigraphic interpretation:
Geophysics, 44, 3-26.

320

Marfurt, K. J., Kirlin, R. L., Farmer, S. L. and Bahorich, M. S., 1998, 3-D seismic
attributes using a semblance-based coherency algorithm: GEOPHYSICS, 63, 1150-1165.

Marfurt, K. J. and Kirlin, R. L., 2000, 3-D broad-band estimates of reflector dip and
amplitude: GEOPHYSICS, 65, 304-320.

Masters, T., 1993, Practical Neural Network Recipes in C++: Academic Press, Inc.

Masters, T., 1995, Advanced algorithms for neural networks: John Wiley & Sons, Inc.

Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The rock physics handbook – Tools for
seismic analysis in porous media, Cambridge University Press.

McClelland, J.L. and Rumelhart, D. E., 1981, An interactive model of context effects in
letter perception: part 1: An account of the basic findings, Psychological Review 88: 375-
407.

McCulloch, W. S. and Pitts, W., 1943, A logical calculus of the ideas immanent in
nervous activity: Bulletin of Mathematical Biophysics, 5, 115-133.

Minsky, M.L., and Papert, S.A., 1969, Perceptrons: MIT Press, Cambridge, Mass.

Murphy, W., Reischer, A., and Hsu, K., 1993, Modulus Decomposition of Compressional
and Shear Velocities in Sand Bodies, Geophysics, 58, 227-239.

Nadaraya, E.A., 1964, On estimating regression: Theory of Probability and its
Applications 9 (1), 55-59.

Oldenburg, D. W., Scheuer, T. and Levy, S., 1983, Recovery of the acoustic impedance
from reflection seismograms: Geophysics, 48, 1318-1337.

Orr, M., 1996, Introduction to radial basis function neural networks: Research Report for
the Institute of Adaptive and Neural Computation, University of Edinburgh.

Partyka, G., Gridley, J. and Lopez, J., 1999, Interpretational applications of spectral
decomposition in reservoir characterization: THE LEADING EDGE, 18, no. 3, 353-360.

Parzen, E. (1960), On estimation of a probability density function and mode, Annals of
Mathematical Statistics, 33, 1065-1076.

Poggio, T., and Girosi, F., 1990, Networks for approximation and learning: Proceedings
of the IEEE 78 (9), 1481-1497.

321

Powell, M.J.D., 1987, Radial basis functions for multivariable interpolation: a review. In
J.C. Mason and M.G. Cox (Eds.), Algorithms for Approximation, 143-167. Oxford:
Clarendon Press.

Press, W.H., Flannery, B., Teukolsky, S., and Vetterling, W., 1992, Numerical Recipes in
C. Cambridge University Press, New York.

Richards, P. G. and Frasier, C. W., 1976, Scattering of elastic waves from depth-
dependent inhomogeneities: Geophysics, 41, 441-458.

Ronen, S., Schultz, P.S., Hattori, M., and Corbett, C., 1994, Seismic-guided estimation of
log properties, Parts 1, 2, and 3: The Leading Edge, 13, 305-310, 674-678, and 770-776.

Rosenblatt, M., 1958, The perceptron: A probabilistic model for information storage and
organization in the brain: Psychological Review, 65, 386-408.

Ross, C. P., 2000, Effective AVO crossplot modeling: A tutorial: Geophysics, 65, 700-
711.

Rummelhart, D.E., Hinton, G.E., and Williams, R.J., 1986, Learning representations of
back-propagation errors: Nature, 323, 533-536.

Russell, B., and Lindseth, R.O., 1982, The information content of synthetic sonic logs – a
frequency domain approach: abstracts of the 44th Mtg., EAEG.

Russell, B., 1988, Introduction to seismic inversion methods: Society of Exploration
Geophysicists. (Course notes from SEG Continuing Education course)

Russell, B. and Hampson, D., 1991, A comparison of post-stack seismic inversion
methods: Annual Meeting Abstracts, Society Of Exploration Geophysicists, 876-878.

Russell, B., Hampson, D., Schuelke, J. and Quirein, J., 1997, Multiattribute seismic
analysis: The Leading Edge, 16, no. 10, 1439-1443.

Russell, B.H., Lines, L.R., and Ross, C.P., 2002a, AVO classification using neural
networks: A comparison of two methods: CREWES Research Report 14.

Russell, B.H., Ross, C. P. and Lines, L.R., 2002b, Neural networks and AVO: THE
LEADING EDGE, 21, no. 3, 268-277.

Russell, B., Hampson D.P., Lines L.R., and Todorov, T., 2002c, Combining geostatistics
and multiattribute transforms: A channel sand case study: Journal of Petroleum Geology,
25, 97-117.

322

Russell, B., Hedlin, K., Hilterman, F. and Lines, L. R., 2003, Fluid-property
discrimination with AVO: A Biot-Gassmann perspective: Geophysics, 68, 29-39.

Russell, B.H., Lines, L.R., and Hampson, D.P., 2003, Application of the radial basis
function neural network to the prediction of log properties from seismic data: Exploration
Geophysics, 34, 15-23.

Russell, B.H., and Lines, L.R., 2003, Mahalanobis clustering, with applications to AVO
classification and seismic reservoir parameter estimation: CREWES Research Report 15.

Russell, B.H., Hampson, D.P, and Lines, L.R., 2004, A case study in the local estimation
of shear-wave logs: accepted for presentation at the 74th Annual meeting of the Society of
Exploration Geophysicists, Denver.

Rutherford, S. R. and Williams, R. H., 1989, Amplitude-versus-offset variations in gas
sands: Geophysics, 54, 680-688.

Shuey, R.T., 1985, A simplification of the Zoeppritz equations: Geophysics 50, 609-614.

Smith, G.C., and Gidlow, P.M., 1987, Weighted stacking for rock property estimation
and detection of gas: Geophys. Prosp., 35, 993-1014.

Specht, D.F., 1990, Probabilistic neural networks: Neural Networks 3 (1), 109-118.

Specht, D.F., 1991, A general regression neural network: IEEE Transactions on Neural
Networks, 2(6), 568-576.

Strang, G., 1988, Linear Algebra and its Applications: Harcourt Brace and Company.

Taner, M.T., Koehler, F., and Sheriff, R.E., 1979, Complex seismic trace analysis:
Geophysics, 44, 1041-1063.

Tikhonov, A. N., and Arsenin, V.Y., 1977, Solutions of Ill-posed Problems: V.H.
Winston, Washington, D.C.

Todorov, T., Yang, G., and Stewart, R., 1997, Geostatistical analysis of 3C-3D seismic
data for depth, isopachs, and sand/shale distribution: 1997 Technical Abstract Book,
Canadian SEG, 52.

Todorov, T. I., Stewart, R. R., Hampson, D. P. and Russell, B. H., 1998, Well log
prediction using attributes from 3C-3D seismic data: Annual Meeting Abstracts, Society
Of Exploration Geophysicists: 1574-1576.

323

Todorov, T. I., 2000, Integration of 3C-3D seismic data and well logs for rock property
estimation: M.Sc. Dissertation, University of Calgary.

Treitel, S., 1970, Principles of digital multichannel filtering: Geophysics, 35, 785-811.

Walden, A. T., 1991, Making AVO sections more robust: Geophysical Prospecting, 39,
915-942.

Watson, G.S., 1964, Smooth regression analysis: Sankhya, the Indian Journal of
Statistics. Series A 26, 359-372.

Widrow, B., and Stearns, S., 1985, Adaptive Signal Processing. New York: Prentice-Hall.

Wiggins, R., Kenney, G.S., and McClure, C.D., 1983, A method for determining and
displaying the shear-velocity reflectivities of a geological formation: European Patent
Application 0113944.

Zoeppritz, K.,1919, Erdbebenwellen VIIIB, On the reflection and propagation of seismic
waves: Gottinger Nachrichten, I, 66-84.

324

APPENDIX 1: A note on terminology

 This appendix has been added to clarify the terminology used in the main body of

this dissertation.

 Fundamentally, there are four different datasets to consider: the input values, the

weighting coefficients, the output values, and the target values. For a single input set of

values, the transform relationship is given by

xwT+= 0wy , (A1-1)

where y is the output value, a scalar, w0 is a bias term, []M21 www "=Tw is a

weight vector of M values, and []M21 xxx "=Tx is an input vector also of M

values. The superscript T indicates the transpose operation, in which a column vector

becomes a row vector. The bias term can be absorbed into the weight and input vectors

by replacing equation (A1-1) by

xwT=y , (A1-2)

where []M10 www "=Tw and []M1 xx1 "=Tx . Equation (A1-2) is often

referred to as the dot, or scalar, product.

 In the more general case where there are N input vectors, we can write

 N,,1j,y j …== j
T xw , (A1-3)

where []jMj1 xx1 "=T
jx . Equation (A1-3) can be replaced by the matrix equation

XTT wy = , (A1-4)

where []N21 yyy "=Ty and []


















==

MN2M1M

N11211
N21

xxx

xxx
111

X

…
#%##

…
…

" xxx .

325

 By taking the transpose of both sides of equation A1-4, we get the equation

wy TX= , (A1-5)

which we will also write as

wy A= , (A1-6)

where

[]


















=





















==



















==

MNN1

2M12

1M11

T
N

T
2

T
1

T

NM1N

M221

M111

M10

xx1

xx1
xx1

X

aa1

aa1
aa1

A

…
#%##

…
…

#
…

#%##
…
…

"

x

x
x

aaa , and

M,,1i,

a

a
a

Ni

i2

i1

i …
#

=



















=a .

 The distinction between vectors xj and ai is important. The ai vectors represent M

input seismic attribute traces, each with N samples, whereas the xj vectors represent N

input vectors of seismic attributes, each with M samples. The elements of matrix A can

be written as aji, and the elements of matrix X can be written as xij, again emphasizing

that the two matrices are a transposed pair. We can also rewrite equation A1-6 as

 MM1100 www aaay +++= … , (A1-7)

where the weights now represent a linear regression on the M attribute vectors. The

vector y is the output after applying the weight vector to the input. To determine the

weights, we often use a training vector t, which can be physically interpreted as the well

log associated with the input attributes. The vectors y and t are of the same length, and

the transpose of t can be written:

[] .ttt N21 "=Tt (A1-8)

 In the still more general case where we have K weight vectors, equation (A1-5)

becomes the matrix equation

326

Y = WT X, (A1-9)

where X is as given above, WT is the K x M dimensional weight matrix given by



















=





















=

MKK2K1

2M2212

1M2111

T
K

T
2

T
1

T

www

www
www

W

…
#%##

…
…

#
w

w
w

,

and Y is the K x N dimensional output matrix given by

[]


















==

KN2K1K

N22221

N11211

N21

yyy

yyy
yyy

Y

…
#%##

…
…

" yyy .

 Thus, we have transformed the M x N dimensional matrix X into the K x N

dimensional matrix Y, using the K x M dimensional transform WT. Note that the values in

X can be written as xij, where subscript i refers to the attribute number, and goes from 1 to

M, and subscript j refers to the sample in the time series, and goes from 1 to N. The

values in WT can be written wki, where subscript k represents the order of the weights (for

example, the weights for the kth node in a multi-layer perceptron), and goes from 1 to K,

and subscript i again represents the attribute number, and goes from 1 to M. The values

of Y can be written ykj, where subscript k refers to the output from a particular set of

weights (e.g. from a given node in a single layer perceptron), and goes from 1 to K, and

subscript j represents the output from a particular sample, and goes from 1 to N.

 Until now, all of our indices have been in subscript form. The last case that we

will consider involves an index in superscript form. This is the index that keeps track of

the layer number (that is, the level of nesting) in a multilayer perceptron. Since

superscripts can be confused with exponential powers, I have chosen to bracket this

index. Thus, we will write:
() Qqw q ,,2,1, …= (A1-10)

for the weight matrix of the qth layer, where there are Q layers in total. The complete

input-output relationship for a two layer MLP network could therefore be written as:

327

() () () ())]}XW(f[W{fz T11T22)2(= (A1-11)

 Notice that equation (A1-11) does not include a bias term. This can been

included in the weight and input matrices by appending a zeroth term to each of vectors

in the matrices of equation A1-5, or ()Mjj1j0
T
j x,,x,x …=x , and ()Mkk1k0

T
k w,,w,w …=w ,

where x0j = 1 and w0k = the bias term.

328

APPENDIX 2: The least-squares method

A2.1 A geometrical development of the least-squares method

 One of the basic problems discussed in this dissertation has been the prediction an

output training vector, t, from M input vectors, ai, where both the input and training

vectors are N-dimensional. In equation form, we can write:



















++



















+



















=+++=



















=

MN

2M

1M

M

N2

22

21

2

N1

12

11

M2

N

2

1

a

a
a

w

a

a
a

w

a

a
a

wwww

t

t
t

#
…

##
…

1M211 aaat . (A2.1)

 This is an inverse problem in which we want to find the weights which best

reconstruct the training vector. Once the weights have been found the actual computed

output will be the vector y, which is usually not identical to the target vector. Equation

(A2.1) can be written more compactly as

wt A= , (A2.2)

where















=

NM1N

M111

aa

aa
A

…
#%#

…
. If M = N and the input vectors are independent we can find

a solution using the matrix inverse

 tw 1A−= . (A2.2)

 However, we typically find that M < N, and an exact solution cannot be found.

This problem is called overdetermined, since we have more information than we need.

As the simplest example of this, we will let M = 1 and N = 2, and we can rewrite

equation (A2.1) as

at w= , (A2.3)

329

where [] [] .aa,tt T
21

T
21 == at and We can find an exact solution only if a is linearly

dependent on t. In the more general case, shown in Figure 2.1(a), we can never match t

exactly by applying a weight to a, and the optimum solution is to scale a so that it comes

as close as possible to t. This is shown in Figure 2.1(b), where the vector that joins the

product wx to t is orthogonal to t. Since this distance is given by t – wa, and we know

that the scalar product between two orthogonal vectors is equal to zero, we can write

2
2

2
1

2211

aa
atatw)(w0)w(

+
+=

⋅
⋅=⇒⋅=⋅⇒=⋅
aa
ataaataa-t (A2.4)

 (a) (b)

Figure A2.1: A geometrical illustration of least-squares, where (a) shows the input and
target vectors a and t, and (b) shows that wa is the closest scaled version of a to t.

 To demonstrate using an example, notice that for a = (2, 1)T and t = (3, 4)T, as

shown in Figure A2.1(a), the weight would be

2
5

10
12

1423w 22 ==
+

⋅+⋅= .

 The output y thus can be written









=








==

2
4

1
2

2way ,

which is geometrically as close as we can get to the right answer.

330

A2.2 Alternate derivations of the least-squares method

 A second way to derive the identical result is to minimize the error between the

vectors t and wa. If we define E as the squared distance between t and wa, we can write

() ()2
22

2
11

2 twatwawE −+−=−= ta . (A2.5)

 Setting the derivative of the error with respect to the weight equal to zero gives

() () 0atwa2atwa2
dw
dE

222111 =−+−= . (A2.6)

Simplifying, we get () 2
2

2
1

2211
2211

2
2

2
1 aa

tatawtataaaw
+
+=⇒+=+ . This result is identical to

the result that we obtained using a geometrical argument. However, this approach

explains why the method is also called the least-squares technique.

 There is yet a third way of deriving the result we have just derived using

geometry and calculus. If we start with the vector equation given in equation (A2.3) and

simply pre-multiply both sides by the vector transpose of the input vector a, we get

2
2

2
1

2211

aa
tata

w)(w
+
+

==⇒=
xa
taaata T

T
TT (A2.7)

 Let us now move to higher dimensions. If we let N increase, while leaving M =

1, the solution is the same as just given, finding a single weight which minimizes the

distance from one vector in N-dimensional space to another vector in N-dimensional

space. The next level of difficulty is therefore to let N = 3 and M = 2. In this case, we

need to find the solution to the problem

21 aat 21 ww += , (A2.8)

where we now have the vectors []T
321 ttt=t , []T

131211 aaa=1a , and

[]T
232221 aaa=2a . Geometrically, we now want to find the weighted vector sum of

the inputs which gives the shortest distance to the training vector. This is given as the

orthogonal projection of t onto the vector 21 aa 21 ww + . Following Bishop (1995), if we

331

call this orthogonal projection torth, then we can decompose t into the two components t =

torth + tpara, where tpara is the parallel component of t. Notice that the least-squares error

can now be written
2

M

1j
jjwE ∑

=

−= ta (A2.9)

and we can therefore arrive at a least-squares solution by setting the derivative of E with

respect to each of the weights equal to zero, or:

0)(
w
E

j

=−=
∂
∂ tyaT

j (A2.10)

Substituting, we find that

0))((para =+− ttya orth
T
j (A2.11)

But, since 0=orth
T
j ta , we find that 0para =− ty , or paraty = .

 The matrix solution to the full least-squares problem can be found by generalizing

our geometrical argument. That is, expanding equation (A2.7) using the M vectors

shown in equation (A2.1), we can write the following M linear equations by taking the

dot product of each of the M input vectors ai with the target vector t, or

)(w)(w)(w

)(w)(w)(w
),(w)(w)(w

M2

M2

M2

MM2M1M1M

M2221212

M1211111

aaaaaata

aaaaaata
aaaaaata

⋅++⋅+⋅=⋅

⋅++⋅+⋅=⋅
⋅++⋅+⋅=⋅

…
####

…
…

 (A2.12)

 Note that equation (A2.12) can be written in the following matrix form:

[] waaa

a

a
a

t

a

a
a

111

T
M

T
2

T
1

T
M

T
2

T
1











































=





















"
##

, (A2.13)

 Or more compactly as

wt)AA(A TT = (A2.14)

where A is as defined in equation (A2.2)

332

.

 Note that the matrix product ATA is now a square matrix, so we simply perform

the matrix equivalent of division by multiplying by the inverse of ATA. This leads to the

pseudo-inverse solution

tw T1T A)AA(−= , (A2.15)

where the product ATA now gives us a square matrix which is invertible if the input

vectors are all independent. (The non-invertible case will be discussed in section A2.4).

A2.3 Adding a zero weight to the least-squares problem

 Let us next consider the effect of adding a zero weight, w0, to an underdetermined

set of equations. As an example, consider again the case of N=2 and M=1. The two

linear equations can now be written:

2102

1101

awwt
awwt

+=
+=

 (A2.16)

or

wt A
w
w

a1
a1

t
t

1

0

2

1

2

1 =⇒















=








, (A2.17)

with solution



















−
−
−
−

=















−

−
−

=







⇒
















=








⇒=

−
−

12

12

12

1221

2

112

121

0

2

1
1

2

1

1

01

aa
tt
aa

atat

t
t

11
aa

aa
1

w
w

t
t

a1
a1

w
w

A tw

 When we substitute our last example (x = (2, 1)T and t = (3, 4)T), note that this

gives w0 = 5 and w1 = -1, which leads to









=








−








=








+








=

4
3

1
2

5
5

a
a

w
1
1

w
2

1
10y .

333

 By adding a zero weight we have thud solved the problem exactly, without

needing a second set of measurements. However, this approach will fail if a is itself a

scaled unit vector, that is, if a1 = a2. In this case, the determinant of the matrix is

undefined, and the inverse does not exist. In general, as the dimensions of the problem

increase, but M = N-1, we can solve the problem exactly by adding a zero weight, and

thus a unit vector, as long as none of the input vectors is equal to a scaled unit vector. If

M < N-1, the problem is improved by adding a zero weight but not solved exactly, again

assuming that none of the input vectors are equal to a scaled unit vector. A more

practical solution is to add pre-whitening to the problem.

A2.4 The effect of pre-whitening

 In the case of an undefined matrix inverse caused by two or more linearly

dependent input vectors, a practical solution is to add pre-whitening. This can be written

tw T1T A)IAA(−+= λ , (A2.18)

 where λ is the pre-whitening factor and I is the M x M identity matrix.

 As an example, if our earlier problem was re-defined so that we were trying to

predict the target vector t = (3, 4)T using the input vector a = (1, 1)T, then the matrix

solution using a zero weight would be

















=








−

4
3

11
11

w
w 1

1

0 ,

for which the matrix inverse is undefined. By adding the pre-whitening term λI, where I

is the identity matrix, we get

















+

+
=

























+








=








−−

4
3

11
11

4
3

10
01

11
11

w
w 11

1

0

λ
λ

λ .

Using the explicit form of the matrix solution, we get:

















+−
−+

−+
=








4
3

11
11

1)1(
1

w
w

2
1

0

λ
λ

λ
,

334

which is obviously invertible as long as λ > 0. Let us now try a few values of λ. If λ =

0.1 (10% pre-whitening), we get:









=








+−=⇒







−
=
















−

−
=








333.3
333.3

1
1

667.6333.3
667.6
333.3

4
3

1.11
11.1

21.0
1

w
w

1

0 y .

If λ = 0.01 (1% pre-whitening), we get:









=








+−=⇒







−
=
















−

−
=








483.3
483.3

1
1

74.5126.48
74.51
26.48

4
3

01.11
101.1

02.0
1

w
w

1

0 y

Recall that the least-squares solution to the problem is given in equation (A2.11), which

gives in this case









=








==⇒=+=

+
+

==
5.3
5.3

1
1

5.3wy5.3
2

43
aa

tata
w 2

2
2
1

1111 a
aa
ta

T

T

.

Comparing the last three computations, it is obvious that the pre-whitening solution with

the linear dependent vectors is converging to the least-squares solution. To see this

explicitly, let us re-write the matrix solution as

















+
+

+
−

+
+

+
−

=







+−
+−

+
=
















+−
−+

−+
=









2
t

2
tt

2
t

2
tt

ttt
ttt

2
1

t
t

11
11

1)1(
1

w
w

2
2

12

1
2

21

212

121
2

2

1
2

1

0

λλλ

λλλ
λ
λ

λλλ
λ

λ

Notice that in this case each output value yi is equal to the sum of the two weights, which

gives

2
ttyy 21

21 +
+==

λ
.

Therefore, we can see from the above derivation that, as λ approaches 0, y1 and y2

approach (t1 + t2)/2.

335

APPENDIX 3: Digital Multichannel Filtering

 In this appendix, we will discuss the theory of the multichannel digital filter

(Treitel, 1970), which can be seen as the generalization of the concepts of the linear

perceptron model and multilinear regression with convolutional weights. Let us first re-

write the general form of the multichannel digital filter from Treitel (1970), using the

notation described in Appendix 1:

,*

M

2

1

KM2K1K

M22221

M11211

K

2

1





































=



















a

a
a

www

www
www

y

y
y

#
"

#%##
"
"

#
 (A3.1)

where





















=



















=



















=

−+ k)1LN(

k2

k1

k

ki

ki

ki

ki

Ni

i2

i1

i

y

y
y

and,

)L(w

)2(w
)1(w

,

a

a
a

###
ywa , and * denotes convolution.

 In this notation, ai is an input attribute of N samples, wki is set of filter weights of

length L, and yk is an output reservoir parameter of length N+L-1. When K and M are

both equal to one, equation (A3.1) reduces to the classical single-channel filter, which

can be written without subscripts as y = w* a. If we let both the filter and input have two

points, the complete transient convolutional matrix can be written as
















+=
























=

















2

21

1

2

1

3

2

1

a)2(w
a)1(wa)2(w

a)1(w

a
a

)2(w0
)1(w)2(w

0)1(w

y
y
y

 (A3.2)

 This can be written as the two-point (N = L = 2), two input/output (K = M = 2)

case considered by Treitel (1970) as

336

















=









2

1

2221

1221

2

1 *
a
a

ww
ww

y
y

, (A3.3)

which can be expanded to give

,**
,**

2221212

2121111

awawy
awawy

+=
+=

where

.
y
y
y

)t(and,
)2(w
)1(w

,
a
a

k3

k2

k1

k
ki

ki
ki

i2

i1
i
















=








=








= ywa

 We can then write this equation in a more complete way as













































=



























⇒=

22

12

21

11

2221

22222121

2221

1111

12121111

1211

32

22

12

31

21

11

a
a
a
a

)2(w0)2(w0
)1(w)2(w)1(w)2(w

0)2(w0)1(w
)2(w0)2(w0
)1(w)2(w)1(w)2(w

0)1(w0)1(w

y
y
y
y
y
y

Way . (A3.4)

 Equation (A3.4) can obviously be generalized for any number of filters and

inputs, of any length. Substituting the numerical example from Treitel (1970), we find

that



























−

−

=


















−



























=



























4
18

18
1
20

12

3
4
5

2

3010
1371
0107
2010
0261
0006

)2(y
)1(y
)0(y
)2(y
)1(y
)0(y

2

2

2

1

1

1

. (A3.5)

337

 For the inverse problem, we can write the generalized inverse solution as a =

(WTW)-1WTy, or a = R-1c, where R is the autocorrelation matrix and c is the cross-

correlation between the output and the filter. This gives us:


















−

=



















−
−
−



















=


















−

3
4
5

2

4
76
241

160

143121
3143312

12338713
1121387

)1(a
)0(a
)1(a
)0(a 1

2

2

1

1

. (A3.6)

 As expected, the inverse gives us the exact answer in this case. The time domain

solution shown above is not given in Treitel (1970), since that paper focuses on the Z-

transform solution to the multichannel filter.

 Next, consider the case of a single-point filter, which is the case used in neural

network theory. We can now drop the time index on the filter, to get





































=



















)1(a
)0(a
)1(a
)0(a

w0w0
0w0w
f0w0
0w0w

)1(y
)0(y
)1(y
)0(y

2

2

1

1

2221

2221

1211

1211

1

1

1

1

. (A3.7)

Re-writing equation (A3.7) in the same form as equation (A3.3), we get

),t(Iw)t(Iw)t(
and),t(Iw)t(Iw)t(

2221212

2121111

aay
aay

+=
+=

 (A3.8)

where I is the identity matrix, .
10
01

I 







= Since I ai(t) = ai(t), we can rewrite equation

(A3.8) as

),t(w)t(w)t(
),t(w)t(w)t(

2221212

2121111

aay
aay

+=
+=

 (A3.9)

which can be re-arranged in matrix form as

,
)t(
)t(

ww
ww

)t(
)t(

T
2

T
1

2221

1211
T
2

T
1

















=









a
a

y
y

 (A3.10)

where the superscript T indicates the vector transpose.

338

 Equation (A3.10) can be expanded to give

.
)1(a)0(a
)1(a)0(a

ww
ww

)1(y)0(y
)1(y)0(y

22

11

2221

1211

22

11
















=








 (A3.11)

 We can therefore re-write the single point filter equivalent of the general case

shown in equation (A3.1) as

.

)t(

)t(
)t(

www

www
www

)t(

)t(
)t(

T
M

T
2

T
1

KM2K1K

M22221

M11211

T
K

T
2

T
1







































=





















a

a
a

y

y
y

#
"

#%##
"
"

#
 (A3.12)

 Equation A3.12 is the standard way of writing the first layer calculation for a

multi-layer perceptron with M inputs and K perceptrons. This is obviously a special case

of the multichannel digital filter in which the filters have only a single point, or weight.

However, because of the transpose operation in equation (A3.12), there is a fundamental

difference in the interpretation of the two approaches which becomes more obvious when

we expand equation (A3.12) in the same way that we expanded equation (A3.10). That

is, we get:

.

)1n(a)1(a)0(a

)1n(a)1(a)0(a
)1n(a)1(a)0(a

www

www
www

)1n(y)1(y)0(y

)1n(y)1(y)0(y
)1n(y)1(y)0(y

MMM

122

111

KM2K1K

M22221

M11211

KKK

222

111



















−

−
−



















=



















−

−
−

"
#%##

"
"

"
#%##

"
"

"
#%##

"
"

(A3.13)

 Thus, each value in the output matrix can be thought of as the product of a

horizontal weight vector and a constant time vector. Equation (A3.13) can therefore be

written:

[] [] ,)1n()1()0()1n()1()0(−





















=− aaa

w

w
w

yyy

T
K

T
2

T
1

"
#

" (A3.14)

where:

339

.

)j(a

)j(a
)j(a

)j(and,

w

w
w

,

)j(y

)j(y
)j(y

)j(

M

2

1

kM

2k

1k

k

K

2

1



















=



















=



















=
###

awy

 Note that I have used a bold letter to denote the weight vector, or wk. This new

weight vector should not be confused with the multi-point convolutional filter defined in

equation (A3.1). In that case, the filter was convolved with the full input time series at

each channel. In this case, we take the dot product of the weight vector with a vector

containing a single sample of all the input channels, which is a multiplexed operation.

 As a further simplification, if we let K = 1 (a single perceptron), equation (A3.14)

reduces to

[] .

)t(

)t(
)t(

w,,w,w)t(

T
M

T
2

T
1

M21
T





















=

a

a
a

y
#

" (A3.15)

 In equation (A3.15) the k subscript has been dropped and now the weight values

are not written in bold, since these are scalar values rather than vectors. Equation

(A3.15) can also be written in transposed form as

[]

)t(w)t(w)t(w

.

w

w
w

)t(,),t(),t()t(

2M2211

M

2

1

M21

aaa

aaay

+++=



















=

…

#
"

 (A3.16)

 Equation (A3.16) can be seen to be the common form of the multilinear

regression equation.

340

 The multilinear regression equation in equations (A3.14) through (A3.16) is the

same approach we use in Chapter 3 to initially find the optimum set of attributes to use in

the neural network approach. Again, this is simply a special case of the multichannel

digital filter.

 Finally, consider the case of multilinear regression with convolutional weights,

which is also discussed in Chapter 3. This again is a special case of equation (A3.1),

where K = 1. That is:

[] .

)t(a

)t(a
)t(a

*)t(w)t(w)t(w)t(y

M

2

1

M21



















=
#

" (A3.18)

341

APPENDIX 4: Bayes’ Theorem

A4.1 Introduction

 One of the cornerstones of statistical theory is Bayes’ Theorem, first derived by

the Reverend Thomas Bayes in 1764. Bayes’ Theorem can be written succinctly as

() () ()
() ,
BP

APA|BPB|AP = (A4.1)

where: () =AP the unconditional probability of event A, () =BP the probability of event

B () =BAP | the conditional probability of A given B, and () =ABP | the conditional

probability of B given A. Although equation A4.1 is a correct statement of Bayes’

Theorem, it is extremely abstract for those not familiar with statistics. In the next section,

I will explain Bayes’ Theorem with a simple geologic example. In the last section, I will

consider an example using probability distributions.

A4.2 A simple example of Bayes’ Theorem

 Let us consider a geological example in which we have determined the lithology

and porosity of samples taken from ten different reservoirs. We will assume that there

are only two possible lithologies, sandstone (SS) and limestone (LS), and two possible

porosities, low porosity (LP) and high porosity (HP). A summary of the ten samples is

shown in Table A4.1, where we note that there are one low porosity sandstone sample,

four high porosity sandstone samples, three low porosity limestone samples, and two high

porosity limestone samples. Note that the table also contains the sums of the columns and

rows, and shows that there are an equal number of sandstone and limestone samples, but

more high porosity than low porosity cores. To relate this table back to the form of

Bayes’ Theorem given in equation A4.1, we will refer to the porosity and lithology as

events, and have arbitrarily called the lithology event A and the porosity event B.

342

Table A4.1: A table of ten cores samples as a function of porosity and lithology, where
SS = Sandstone, LS = Limestone, LP = Low porosity, and HP = High porosity.

 Table A4.1 contains three fundamentally different types of probabilities: the joint

probability, the unconditional probability, and the conditional probability. The joint

probability is the probability of two events happening simultaneously, the unconditional

probability is the probability that a single event happens, and the conditional probability

is the probability that an event happens given that we know that a second event has

already happened.

 Since probabilities are given as fractions, we must normalize the frequencies of

occurrence that are given in Table A4.1. Dividing the values in Table A4.1 by the total

number of well samples (10), we find the joint probability, written P(A,B). The joint

probabilities are thus given as

 P(SS, LP) = 1/10, P(LS, LP) = 3/10, P(SS, HP) = 2/5, and P(LS, HP) = 1/5.

Notice that the sum of the four joint probabilities is equal to one, since one of these

occurrences must happen. A summary of the joint probabilities is given in Table A4.2.

Table A4.2: The joint probabilities P(A,B) and unconditional probabilities P(A)
and P(B) of the events in Table A4.1, where P(A,B) = P(B,A).

 Porosity (B)

 LP HP Sum

SS 1 4 5

LS 3 2 5

Li
th

ol
og

y
(A

)

Sum 4 6 10

 Porosity (B)

 LP HP Sum =P(A)

SS 1/10 2/5 1/2

LS 3/10 1/5 1/2

Li
th

ol
og

y
(A

)

Sum =P(B) 2/5 3/5 1.0

343

 The unconditional probabilities can be found by adding the values in the rows of

Table A4.1 for lithology, or the values in the columns in Table A4.1 for porosity, and

again dividing by 10. For the lithology, we get P(SS) = 1/2 and P(LS) = 1/2. For the

porosity, we get P(LP) = 2/5 and P(HP) = 3/5. Again, the sum of P(SS) and P(LS) and

the sum of P(LP) and P(HP) are both equal to 1.0. It can also be seen that the

unconditional probabilities are the sum of the joint probabilities for a given row or

column in Table A4.2.

 To compute the conditional probability, written P(B|A), we divide the individual

numbers in Table A4.1 by either the row sums (to find P(A|B)), or the column sums (to

find P(B|A)). For example, to compute P(SS|HP), we divide the number of high porosity

sandstones by the total number of high porosities, to get 2/3. To compute P(HP|SS) we

divide the number of high porosity sandstones by the total number of sandstones, to get

4/5. Note that P(B|A) is not equal to P(A|B). Table A4.3 shows the conditional

probabilities P(A|B) and Table A4.4 shows the conditional probabilities P(B|A).

Table A4.3: The conditional probabilities P(A|B) of the events in Table A4.1.

Table A4.4: The conditional probabilities P(B|A) of the events in Table 4.1.

 Porosity (B)

 LP HP Sum

SS 3/4 2/3 N/A

LS 1/4 1/3 N/A

Li
th

ol
og

y
(A

)

Sum 1.0 1.0 N/A

 Porosity (B)

 LP HP Sum

SS 1/5 4/5 1.0

LS 3/5 2/5 1.0

Li
th

ol
og

y
(A

)

Sum N/A N/A N/A

344

 Let us now look at the relationship between joint probability and conditional

probability. The ratio of the joint probability of two events A and B to the probability of

one of those events, let’s say A, is equal to the conditional probability of B given A. This

can be written

() ()
()AP

BAPABP ,| = (A4.2)

 Alternately, for the conditional probability of A given B, we can write

() ()
()BP

B,APB|AP = (A4.3)

 Equations (A4.2) and (A4.3) can be verified by observing the computed values in

the previous tables. For example, if we look at the high porosity sandstone cores we see

that

() ()
() 3

2
5/3
5/2

HPP
HP,SSPHP|SSP === , (A4.4)

or

() ()
() 5

4
2/1
5/2

SSP
SS,HPPSS|HPP === . (A4.5)

 By rearranging equation (A4.2) and (A4.3) we arrive at the law of multiplication

of probabilities, which can be written as

P(A, B) = P(B|A)P(A) (A4.6)

or

P(A, B) = P(A|B)P(B) (A4.7)

 Since both of the above equations are equal, we can equate their right hand sides

to get:

() () () ()BPB|APAPA|BP = (A4.8)

345

This leads to Bayes’ Theorem of equation (A4.1), by simply dividing through by either

P(A) or P(B). That is we get either

() () ()
() ,
BP

APA|BPB|AP = (A4.9)

or

() () ()
() ,
AP

BPB|APA|BP = (A4.10)

 To verify this using our example, note that by re-arranging equations (A4.4) and

(A4.5) we get:

P(SS,HP) = P(SS|HP)P(HP)=2/3*3/5=2/5

and P(HP,SS) = P(HP|SS)P(SS)=4/5*1/2=2/5

or

P(SS|HP) P(HP) = P(HP|SS) P(SS) (A4.11)

 Dividing both sides in equation (A4.11) by either P(HP) or P(SS) leads to Bayes’

Theorem. For example, if we divide by P(HP), we get:

() () ()
() 3

2
5/3
5/2

HPP
SSPSS|HPPHP|SSP === , (A4.12)

a if we divided by P(SS), we get:

() () ()
() 5

4
2/1
5/2

SSP
HPPHP|SSPSS|HPP === , (A4.12)

A4.3 Bayes’ theorem with probability functions

 In the previous example, we have assumed that events A and B are discrete

events. The restriction that each event only had two outcomes can easily be expanded for

any number of events (for example, five different lithologies and a range of porosities

from 5% to 25%, in increments of 1%). But the real power of Bayes’ Theorem comes

into play when we assume continuous probability distributions for the two events. This is

346

shown graphically in Figure A4.1, where we have assumed conditional distributions of

the form p(x|t) and p(t|x) where x represents our input values and t represents our target

values.

 (a) (b)

Figure A4.1 An interpretation of (a) the conditional probability function p(x|t) at the fixed
value t0, and (b) the conditional probability function p(t|x) at the fixed value x0.

 Notice that the probability function drawn in Figure A4.1 is a Gaussian

distribution. Let us assume that the joint probability can be written as








 −
−

−
−⋅= 2

t

2
t

2
x

2
x)t()x(

expc)t,x(p
σ

µ
σ

µ
, (A4.9)

and the unconditional probabilities written as








 −
−⋅= 2

x

2
x)x(

expc)x(p
σ

µ
, (A4.10)

and








 −
−⋅= 2

t

2
t)t(

expc)t(p
σ

µ
, (A4.11)

The conditional probabilities can then be written as

347








 −−⋅








 −
−

−
−⋅

==

2
t

2
t

2
t

2
t

2
x

2
x

)t(expc

)t()x(
expc

)t(p
)t,x(p)t|x(p

σ
µ

σ
µ

σ
µ

, (A4.12)

and








 −
−⋅








 −
−

−
−⋅

==

2
x

2
x

2
t

2
t

2
x

2
x

)x(
expc

)t()x(
expc

)x(p
)t,x(p)x|t(p

σ
µ

σ
µ

σ
µ

, (A4.13)

348

APPENDIX 5: Associative Networks

A5.1 Introduction

 Although there are a bewildering array of neural networks, most of these

networks are variants on two simple neural network models: the perceptron (McCulloch

and Pitts, 1943, Rosenblatt, 1958) and Hebbian learning (Hebb, 1949). The single-layer

perceptron lead to the development of the multi-layer perceptron, and Hebbian learning

lead to the development of the associative network and the Kohonen self-organizing map.

In this appendix, we will discuss the ideas that evolved from Hebbian learning, starting

with Hebb’s postulate. Donald Hebb was a Canadian psychologist working at Harvard

who introduced the following postulate in his 1949 book “The Organization of

Behaviour”.

 “When an axon of cell A is near enough to excite a cell B and repeatedly

 or persistently takes part in firing it, some growth process or metabolic

 charge takes place in one or both cells such that A’s efficiency, as one of

 the cells firing B, is increased.”

 In the preceding quote, cells A and B are biological neurons, and an axon is the

transmission line that connects these neurons. Translating Hebb’s postulate to

mathematical language will lead to autoassociative and heteroassociative learning, as

well as the least mean square (LMS) algorithm, singular value decomposition (SVD), and

the generalized inverse. These concepts will be illustrated with a straightforward

geophysical example.

349

A5.2 Autoassociative learning

 To translate Hebb’s postulate to a mathematical model, we will first assume that

our cells (A, B, etc) are the M-dimensional attribute vectors xj, which can be written (see

Appendix 1) as

N,,2,1j,

x

x
x

Mj

2j

1j

j …
#

=





















=x .

We will next create an operator W by summing the outer products of the input vectors.

This can be written as

T
N

j

T
jj XXW ==∑

=1

xx , (A5.1)

where X is an M x N dimensional matrix consisting of the input vectors as its columns

(see Appendix 1), and W is symmetric and of dimension M x M. To understand how W is

related to Hebb’s postulate, consider applying it to our input vectors. This can be written

jj xy W= , (A5.2)

where the vector yj is the output, of length M, the same length as the input xj. (Note that

in Appendix 1, equation A5.2 was written using WT. However, since W is symmetrical,

WT = W.)

 Since W was created from the outer products of the inputs, we can think of it as

having a “memory” of the inputs, so that the input vectors try to “find” themselves in W.

Hebb’s rule would tell us that the input vectors, or cells, are reinforced by finding a

correlated version of themselves within W. We can therefore rewrite equation A5.2 as:

jj Wˆ xx = , (A5.3)

where jx̂ is a reconstructed version of jx . If jj xx =ˆ , the memory has perfect recall (xj

has found itself perfectly), and if jj xx ≠ˆ , the memory has imperfect recall (xj has found

itself imperfectly). This is referred to as autoassociative learning.

350

 To understand this mathematically, note that by combining equations A5.1 and

A5.3, we get

() () () j
kj

k
T
jkk

T
k

j j
jk

T
jk

T
jjkk W xxxxxxxxxxxxxx ∑∑ ∑

≠

+====ˆ . (A5.4)

The result is the sum of two parts. The first part is simply a scaled version of kx . The

second part consists of cross-talk between the input vector and the stored vectors (Abdi et

al, 1999). If the input vector is orthogonal to all of the training vectors, the result will be

zero and we will get perfect recall to within a scale factor. (If the vectors are

orthonormal, the scale factor will be equal to one.) If the vectors are not orthogonal, we

will get imperfect recall. The amount of error can be quantified by finding the cosine

between the input and output vectors, or

()
jj

j
T
j

jj ˆ
ˆ

,ˆcos
xx
xx

xx = . (A5.5)

Imperfect recall can have two separate causes. Either the input vector was not used in the

computation of W, or the vectors used in the training were not orthogonal.

A5.3 Autoassociative Learning Example

 Now, let’s look at a numerical example of autoassociative learning. Recall that

our input consists of a series of vectors containing M seismic attribute values at a

particular sample. Although the seismic attributes can take on any real value within a

range determined by the number of bits in the recording system, in this example we will

allow only values +1 or -1. This is equivalent to the sign-bit recording system. If we

have two seismic attributes or reservoir parameters, there are thus four possible cases:









−
−

=






−
=








−

=







=

1
1

,
1
1

,
1

1
,

1
1

4321 xxxx .

351

 This can be thought of as the four extreme cases in an AVO A/B crossplot,

where 2x and 3x are the top and base of a wet sand, and 1x and 4x are the top and base of

a gas sand. For the case of M = 3, we have 23 = 8 cases, or

















−
−
−

=















−
−

=
















−

−
=

















−
−=















−
=
















−=

















−
=
















=

1
1
1

,
1
1
1

,
1

1
1

,
1
1

1
,

1
1
1

,
1
1

1
,

1
1
1

,
1
1
1

87654321 xxxxxxxx .

 For N = 4, there are 24 = 16 distinct cases, for N = 5, there are 25 = 32 distinct

cases, and so on. Thus, for N values, the complete input will always consist of 2N vectors.

 Next, consider the matrix X and its transpose XT, which contain the full set of

input vectors. For N = 2, we get:

[]21
T

T
2

T
1 ,

11
11

11
11

Xand
1111
1111

X aa
a
a

=



















−−
−

−
=








=








−−
−−

= ,

where a1 and a2 are the seismic attribute traces as a function of time (see Appendix 1),

given by



















−

−
=

1
1
1

1

1a and



















−
−

=

1
1

1
1

2a .

Notice that a1 and a2 are orthogonal, since they each contain two 1’s and two -1’s. Thus,

from equation A5.1, we find









=








=








==

10
01

4
40
04

XXW T

2
T
21

T
2

2
T
11

T
1

aaaa
aaaa

.

For N = 3, we find that
















=

800
080
008

XX T .

352

 In both cases, W is equal to 2N times the N x N identity matrix. We can produce

similar results for N of any size. The scaling factor of N can be removed by normalizing

the vectors, which involves dividing by N .

 For the above case in which a complete orthogonal set of vectors is used to create

X, the resulting weight matrix will always produce perfect recall. If we reduce the

number of input vectors in the training, the result will depend on whether the remaining

vectors are orthogonal or not. For example, if we return to the N = 2 case, and use

vectors 1x and 2x in the training, which are orthogonal, we get:









=








−








−

=
20
02

11
11

11
11

W ,

and there is perfect recall. However, if we use vectors 1x and 4x in the training, which

are not orthogonal, the result is less than perfect. That is:









=








−−








−
−

=
22
22

11
11

11
11

W









−
−

=







−−
−−









==⇒

4004
4004

1111
1111

22
22ˆ WXX .

In this case, although the vectors used in the training have been recalled perfectly to

within a scale factor, the others have been set to zero.

 For a more realistic example, consider the case of N = 3. We will design the

weight matrix using only the first two vectors, []1,1,11 =Tx and []1,1,12 −=Tx , and then

apply the weights to the complete set of inputs. This gives us:
















=








−

















−
=

200
022
022

111
111

11
11
11

W ,

353

and
















−−−−
−−−−
−−−−
















==

11111111
11111111
11111111

200
022
022

ˆ WXX

















−−−−
−−
−−

=
22222222
44000044
44000044

.

 This result tells us that we are able to recall vectors 1 and 2, the training vectors,

but with an error given by

() () 833.0
48
40,ˆcos,ˆcos 2211 === xxxx .

It also tells us that we did a very poor job of recalling vectors 3 through 6. Their error

was:

() 6,5,4,3j,167.0
48
8,ˆcos jj ===xx .

Notice that vectors 7 and 8 were recovered with the same error as vectors 1 and 2. This is

because these vectors are reverse polarity versions of vectors 1 and 2, and filter

operations are insensitive to a polarity reversal. To understand why vectors 1 and 2 were

imperfectly reconstructed in the above case, we can use equation A5.5 to find that

() () 2121111ˆ xxxxxxx TT +=
















=

















−
+
















=⇒

2
4
4

1
1
1

1
1
1
1

3ˆ1x .

Note the cross-talk error due to the fact that 1x and 2x are not orthogonal.

A5.4 The LMS algorithm

 As we have just seen, the Hebb rule does not work perfectly if the learned vectors

are not orthogonal. However, the method can be improved by iteratively adjusting the

weights based on the observed error. This method goes by a number of names: the delta

rule, the perceptron learning rule, the least mean square (LMS) algorithm, or the Widrow-

354

Hoff learning rule (Widrow and Hoff, 1960), named after the inventers of the LMS

algorithm. This algorithm is also identical to the gradient descent method and, in the

limit, to the Moore-Penrose generalized inverse. The LMS algorithm can be derived by

modifying equation (A5.1). Note that this equation can be rewritten iteratively as

() () N,,1,0j,1jWjW T
jj …=+−= xxα , (A5.6)

where we have added the term α  which is a constant (positive and less than 1) called the

learning rate, and assumed that W(0) is the zero matrix:

()















=

00

00
0W

"
#%#

"
.

Next, we replace jx in the second term on the right hand side of that equation by the

error between the input and the output. The error can be written as jj x̂x − , or

() jj 1nW xx −− giving

() () ()() T
jjj nWnWnW xxx 11 −−+−= α . (A5.7)

Thus, we iteratively update the weight matrix by using the error between the correct

output and the output of the previous iteration. Our criterion for stopping will be when

the error approaches a small enough value. We can also remove the dependency on the j

term by using all of the input vectors at the same time, or

() () ()() TXX1nWX1nWnW −−+−= α (A5.8)

Equation A5.8 can also be written as

() () TEX1nWnW α+−= , (A5.9)

where E is the error term, or

() () ()1nW1nWnW −+−= ∆ , (A5.10)

where ()1−∆ nW is the correction matrix for the (n-1)st iteration.

 Let us now go back to our previous example and apply the LMS algorithm. We

will let 2.0=α 5 (choosing an optimum value of α will be discussed later), and we will

initialize W to the 3 x 3 zero matrix.

355

Since
















−
=

11
11
11

X , we find that () ()















==

00
00
00

00ˆ XWX , and () () X0XX0E =−= .

Thus we, after the first iteration, get:

() () ()















==+=

5.000
05.05.0
05.05.0

XX25.0X0E25.00W1W TT .

The weight matrix after the first iteration is simply the matrix given in section A5.3 times

the α factor. For the second iteration, the new output is

















−
=

















−














==

5.05.0
11
11

11
11
11

5.000
05.05.0
05.05.0

X)1(W)1(X .

Note that this is again simply our original result scaled by α. Now compute the error:

















−
=−=

5.05.0
00
00

)1(X̂X)1(E .

Notice that the error is largest where the misfit in the output was greatest, in the third

row. Next, we compute the delta matrix:
















==

25.000
000
000

X)1(E25.0)1(W T∆ .

 The correction is only non-zero in one element in the bottom row of the delta

matrix. Thus for the second iteration of the weight matrix we get
















=+=

75.000
05.05.0
05.05.0

)1(W)1(W)2(W ∆ .

In the updated matrix, the value in the bottom row is now larger. This gives us the new

result:

356

















−
==

75.075.0
11
11

X)2(W)2(X̂ .

Although the result is still not perfect, we are going in the right direction. All we need to

do now is iterate through the process. After 20 iterations we find that

()
















−
=

















−














=⇒
















=

11
11
11

11
11
11

100
05.05.0
05.05.0

20X̂
100
05.05.0
05.05.0

)20(W .

A5.5 Eigendecomposition and singular value decomposition (SVD)

 An alternative approach to the implementation of the LMS algorithm can be

found using singular value decomposition (SVD). To understand this approach, let us

briefly review eigenvalues and eigenvectors. If v is an eigenvector of the square matrix

W, and

vv λ=W (A5.11)

then λ is the eigenvalue associated with eigenvector v. To illustrate this, let us take the

inner product matrix of our previous example, or









=

















−








−

==
31
13

11
11
11

111
111

XXA T .

Then:

0
31

13
0AA =

−
−

⇒=−⇒=
λ

λ
λλ vvv

() ()() 024086013 22 =−−⇒=+−⇒=−−⇒ λλλλλ .

Thus, matrix A has eigenvalues of 41 =λ and 22 =λ , and is said to be of full rank equal

to 2 (Strang, 1988). The eigenvectors are









=








⇒








=
















−

−
⇒=

1
1

2
1

v
v

0
0

v
v

11
11

A
21

11

21

11
111 vv λ , and

357









−

=







⇒








=
















⇒=

1
1

2
1

v
v

0
0

v
v

11
11

A
22

21

22

21
222 vv λ ,

where v1 and v2 have been normalized.

 Let us now compute its outer product of X and find the eigenvalues and

eigenvectors. The outer product has already been computed and is given by
















=








−

















−
==

200
022
022

111
111

11
11
11

TXXB .

The eigenvalues for B are computed by

() () 02420
200

022
022

3 =−−−⇒=
−

−
−

λλ
λ

λ
λ

() 086086 2223 =+−⇒=+−⇒ λλλλλλλ .

which gives 41 =λ , 22 =λ , and 03 =λ . Since the third eigenvalues is equal to zero,

matrix B is not of full rank (which would be 3) and has a rank of 2, the same as matrix A.

The eigenvectors are computed as

()















=
















⇒
















=

































−
−

−
⇒
















=−

0
1
1

2
1

0
0
0

200
022
022

0
0
0

31

21

11

31

21

11

11

u
u
u

u
u
u

IB uλ ,

()















=
















⇒
















=
































⇒
















=−

1
0
0

0
0
0

000
002
020

0
0
0

23

22

21

23

22

21

2

u
u
u

u
u
u

IB 2uλ , and

()















−=
















⇒
















=
































⇒
















=−

0
1

1

2
1

0
0
0

200
022
022

0
0
0

33

32

31

33

32

31

3

u
u
u

u
u
u

IB 3uλ .

For the zero eigenvalue, notice that the matrix can be written in the form:

0=uM ,

358

and the vector u is said to be in the null space of M.

 Once we have computed the eigenvalues and eigenvectors of a matrix, we can

express it as
1UUW −= Λ , (A5.12)

where U is a matrix whose columns are the eigenvectors and Λ is a diagonal matrix

whose main diagonal consists of the eigenvalues of W. In the symmetrical case we have

been considering, note that T1 UU =− . For our two cases:









=








−








−

=







−
















−

==
31
13

11
11

24
24

2
1

11
11

20
04

11
11

2
1VVA T

AΛ ,

and

















−






























−==

0
100
0

000
020
004

010
0
0

UUB

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

T
BΛ
















=

















−














=

200
022
022

0
100
0

020
00
00

2
1

2
1

2
1

2
1

2
4
2

4

.

 Eigenvalues and eigenvectors can only be computed from square matrices. In the

more general case, we wish to eigendecompose a rectangular matrix. This is especially

important in seismic data analysis since we are almost always dealing with rectangular

matrices (i.e. more equations than unknowns). This is referred to as singular value

decomposition (SVD) and will not be derived here (see Strang, 1988, Appendix A). The

result is given by:
TVUX ∆= , (A5.13)

where X is any rectangular matrix, U is the eigenvector matrix of the XXT, ∆ is a diagonal

matrix with the square roots of the eigenvalues of XXT on its diagonal (these are called

singular values) and V is the eigenvector matrix of XTX. Since U and V are of a different

size, we can either append zeros to V or drop the zero eigenvalues and its associated

359

eigenvector from ∆ and U. Obviously, it is simpler and more efficient to do the latter.

Using our example from the last section, we get:

















−
=








−
















=







−
























==

11
11
11

20
02
02

20
02

10
0
0

VUX
2

1
2

1
2

1
2

1

2
1

2
1

2
1

2
1

2
1
2

1

T∆ .

A5.6 The LMS algorithm and SVD

 As shown by Widrow and Stearns (1985) the SVD leads to a very fast way of

solving the LMS algorithm. Recall that the LMS algorithm is written

() () ()() TXXnWXnWnW 11 −−+−= α . (A5.14)

This can be written as the eigendecomposition:

() () TUnUnW Φ= , (A5.15)

where () ()nIIn ΛαΦ −−= .

 From equation (A5.21), we note two important points. First, since Φ(n) is only

stable if (Hagan et al., 1995)

11 i <−αλ ,

then the maximum stable learning rate parameter must satisfy:

11 max −<−αλ

or
max

2
λ

α < .

(In the case we have been considering,
2
1

4
2 =<α , thus 0.25 was a reasonable choice for

α). Second, we can write

()
















=−
n

m

n
l

n

f00
00
00f

I %Λα ,

360

where fi < 1.

 Then, for ∞=n , this matrix becomes the zero matrix, and we find that

() TUUW =∞ .

 The effect of the LMS algorithm is thus to whiten the weight matrix by setting

each of its eigenvalues to 1. To illustrate this using our previous example, note that:
















=⇒
























==

100
05.05.0
05.05.0

100
0

10
0
0

2
1

2
1

2
1
2

1

WUUW T .

 This was the same answer we got using the recursive LMS algorithm, but took a

lot less work.

A5.6 Heteroassociative learning

 In autoassociative learning, we try to detect patterns without supervision.

However, the type of problem we are most interested in this thesis is the supervised

problem, in which we are presented with at least some examples of what our output

should look like. Specifically, this may be the measured porosity in a well that is

intersected by a seismic line. This is called heteroassociative learning, and is closely

related to the autoassociative case that we considered in the previous section. The basic

equations for heteroassociative learning are almost identical to equations (A5.1) and

(A5.2), except that the output vector y is replaced with the training vector t. That is:

jj xt W

t

t
t

Mj

2j

1j

=





















=
#

. (A5.16)

361

 Equation (A5.15) is for the single input (or stimulus) case. As in autoassociative

learning, we can also consider the batch learning case, in which we process N input

vectors simultaneously. In this case, we write:

XWT = , (A5.17)

where []















==

KNK

N

N

tt

tt
T

…
#%#

…
…

1

111

21 ,,, ttt , and []















==

MNM

N

N

xx

xx
X

…
#%#

…
…

1

111

21 ,,, xxx .

 The key question is again how to determine the weight matrix W.

Heteroassociative learning does this using by summing all possible outer products

between the xj and tj vectors, as in the autoassociative case. That is:

∑
=

==
N

j

TT
jj XTW

1

tx . (A5.18)

The accuracy of the prediction of the training vectors can be computed by comparing the

estimated values:

XWT T=ˆ , (A5.19)

with the true values, using the cosine rule given earlier in equation (A5.6). For the

training vector case, we get:

()
tt

tttt ˆ
ˆ

,ˆcos
T

= . (A5.20)

 We will again find that the accuracy of the prediction will depend on the

orthogonality of the input vectors. That is:

() () ()∑∑∑
≠

+====
kj

jk
T
jkk

T
kj

j
k

T
j

j
k

T
jjk

T
k W txxtxxtxxxxtxt̂ . (A5.21)

 If the xj vectors are orthogonal, the first term will equal a scaled version of tk

(equal to tk for orthonormal inputs) and the second term will be zero. For non-orthogonal

input vectors, the second term will introduce cross-talk.

362

A5.7 Heterassociative example

 In this example we will use the same input vectors as in our previous example, or:

















−
=

11
11
11

X ,

but will now try to predict the two-dimensional output









−

=
11

11
T .

 Thus, we find:
















=








−

















−
==

20
02
02

11
11

11
11
11

TXTW ,

and 







−

=
















−








==

22
44

11
11
11

200
022ˆ XWT T .

The error in computing both t1 and t2 is therefore:

() ()
220

6,ˆcos,ˆcos 2211 ⋅
== tttt

If we compute the estimate for the first vector using equation (A5.21), we get:

() () 1121111̂ txxtxxt TT += [] [] 







−































−+








































=

1
1

1
1
1

111
1
1

1
1
1

111









=








−

+







=

2
4

1
1

3
3

.

 As in our earlier autoassociative example, note that the error is due to the fact that

x1 and x2 are not orthogonal.

363

A5.8 LMS and heteroassociative learning

 The LMS algorithm applied to heteroassociative learning is simply an extension

of the autoassociative equation given in equation (8). Since we want to improve our

estimate of T, we simply replace the term XX ˆ− with TT ˆ− . That is:

() () ()() TTT XXnWTαnWnW −+= (A5.22)

() ()() TT XnTTnW ˆ−+= α

() () TT
n XnEαW +=

() ()nWW T
n ∆+= ,

where E(n) is the error at the nth iteration, and ∆W(n) is the matrix of corrections at the nth

iteration. Let us apply equation (A5.22) to our previous example.

A5.9 Example

Recall that
















−
=

11
11
11

X and 







−

=
11

11
T . Let us assume that () 








=

000
000

0TW

 and 25.0=α . (Recall that
2
1

4
22

max

==<
λ

α , so this is an acceptable value.) Thus:

() 







=








−
















−








−

+







=

5.000
05.05.0

111
111

00
00

11
11

25.0
000
000

1TW .

 As expected, WT(1) is α times our original estimate of W. For iteration 2, we get:

() 







−
































−








−








−

+







=

111
111

11
11
11

5.000
05.05.0

11
11

25.0
5.000

05.05.0
2TW

364









−
















−








−

+







=

111
111

5.05.0
11

11
11

25.0
5.000

05.05.0









−








−

+







=

111
111

5.05.0
00

25.0
5.000

05.05.0









=








+








=

75.000
05.05.0

25.000
000

5.000
05.05.0

.

When we apply this updated weight matrix to X, we get:

() () 







−

=
















−








==

75.075.0
11

11
11
11

5.000
05.05.0

22ˆ XWT T .

Thus, our solution has improved. Using a computer we find that after 15 iterations we

converge to:

() () 







−

==⇒







=

11
11

1515ˆ
0.100

05.05.0
XWTW TT .

A5.10 SVD and LMS for heteroassociative learning

 Since we now have the matrix T in our LMS calculation, the SVD solution is

slightly more complex, and can be written (Abdi et al., 1999) as:

() () T1T UnTVnW Φ∆−= , (A5.21)

where () ()nIIn ΛαΦ −−= and V, U and ∆ are as defined earlier. If α is chosen to be

less than
max

2
λ

, then:

() T1T UTVW −=∞ ∆ . (A5.22)

Using our previous example:

365

() 























−








−

=∞
100
0

0
0

11
11

W 2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

T









=








−








−

=
100
05.05.0

5.025.025.0
5.025.025.0

11
11

.

A5.11 The pseudo-inverse

 We have seen that the Hebb rule can give the exact solution for our weight matrix

in the equation

XWT T=

only if the vectors in X are orthogonal. We also discussed an iterative approach to

solving for W, called the LMS algorithm, and its implementation using singular value

decomposition. However, there is also a direct matrix inversion approach that can be

used. If the matrix X is square and has a non-zero determinant, we can write:
1T TXW −= .

 However, in general X is not square. In this case, we use the generalized inverse,

or
+= TXW T ,

where () T1T XXXX
−+ = . Returning to our example, note that:

() 







−
































−








−

==

−

−+

111
111

11
11
11

111
111

XXXX

1

T1T









−

=







−








−

−
=








−








=

−

2
1

4
1

4
1

2
1

4
1

4
11

111
111

31
13

8
1

111
111

31
13









=








−








−

=⇒
100
0

11
11 2

1
2
1

2
1

4
1

4
1

2
1

4
1

4
1

TW .

366

APPENDIX 6 Derivation of the radial basis function approach

 It was shown by Poggio and Girosi (1990) that the theoretical foundation of the

basis function method could be derived using regularization theory (Tikhonov and

Arsenin, 1977). Regularization theory involves controlling the smoothness of a mapping

function by adding a second term that penalizes values that are not smooth. This is done

by minimizing an error function given by

[] 2
j

N

1j

2
jj)(Pyt)(yE xx λ+−=∑

=

, (A6.1)

where λ is the regularization parameter, P is a differential operator; and y, xj, and tj are the

final computed reservoir parameter value, attribute vectors and observed training values,

respectively, as discussed throughout this dissertation. Equation (A6.1) can be solved

using the calculus of variations (Bishop, 1995) by setting the functional derivative with

respect to y(xj) equal to zero. This gives

[] 0)(PyP̂)-(t)(y jj

N

1j
jj =+−∑

=

xxxx λδ , (A6.2)

where P̂ is the adjoint differential operator to P, δ is the delta function and x is an

arbitrary input sample vector. The equations in (A6.2) are better known as the Euler-

Lagrange equations and have the solution given by

)-(),(PGP̂ jj xxxx δ= , (A6.3)

where G(x, xj) are the Green’s functions of the operator PP̂ . In the case of an operator

which is rotationally and translationally invariant, as in the case of a radial basis function,

the solution to (A6.3) is given by

()∑
=

−=
N

1j
G)(y jj xxwx . (A6.4)

 Poggio and Girosi (1990) consider several forms of the Green’s function given in

equation (A6.4). The most straightforward form is given by the differential equation

)()(G)1(m2m xx δ=∇− , (A6.5)

367

where m2∇ is the m-iterated Laplacian in n dimensions. This leads to the multi-

dimensional spline function given by

xxx ln)(G nm2 −= . (A6.6)

 By generalizing equation (A6.5) to an infinite number of terms, we derive the

partial-differential equation for the Green’s function given by

)-(),(G
2!m

)1(
0n

n2
m

m2
n

jj xxxx δσ =∇−∑
∞

=
. (A6.7)

 By applying Fourier techniques to equation (A6.7) we arrive at the radial basis

function solution given by

∑
=





−=

N

1j

2

2 -
2

1exp)(y jj xxwx
σ

. (A6.8)

