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ABSTRACT 
 
 In this dissertation, I develop a number of new ideas for the statistical 

determination of reservoir parameters using seismic attributes. These ideas combine the 

classical techniques of multivariate statistics and the more recent methods of neural 

network analysis.  I apply these techniques to both full seismic volumes and to maps 

derived from intervals averaged through these volumes, largely using the Blackfoot 

dataset from central Alberta.  I show that multilinear regression often provides too simple 

a solution to the parameter estimation problem, and that the traditional feedforward 

neural network often provides a solution that is overly complex. My proposed solution is 

to use radial basis function neural networks for the prediction of reservoir parameters, 

since this approach combines the power of the multilinear regression technique with the 

nonlinearity of neural networks.  I also show how the radial basis function neural network 

can be considered as a generalization of the generalized regression neural network, which 

has been previously used in this type of parameter estimation. My conclusions are 

illustrated using both an AVO classification problem and the Blackfoot seismic and well 

log dataset. 

 

 In addition to the application of the radial basis function neural network to the 

prediction of reservoir parameters, several new ideas are presented for the analysis of 

well log and seismic data.  First, I derive an improved regression formula for the 

prediction of S-wave sonic logs from combinations of other logs.  Second, I apply a new 

approach to data clustering, which I call Mahalanobis clustering, to the interpretation of 

AVO crossplots and to the delineation of optimal clusters for the radial basis function 

neural network with centres method.  Finally, I develop a new approach to map analysis 

that combines geostatistics with multiattribute transforms.  This technique uses 

multivariate statistics and neural networks to improve the secondary dataset used in the 

collocated cokriging technique.  
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PREFACE 
 
 Although this dissertation was technically written over the last four years (2000-

2004), it is really the product of my thirty years in geophysics, both as a student and as a 

practitioner of the science.  During this time I have worked as a field geophysicist, a 

seismic interpreter, a seismic processor and, most recently, as a seismic software 

developer.  The thread that ties all this work together is my interest in seismic inversion. 

Initially this meant deterministic inversion using the convolutional model, applied to both 

poststack and prestack seismic data.  These methods form the basis of Chapter 2 of this 

study.  Thanks to the work of Ronen et al. (1994) and Jim Schuelke and his colleagues at 

Mobil (now ExxonMobil) I was introduced to the idea of statistical inversion.  The latter 

approach was implemented by Hampson-Russell Software as the EMERGE program 

(Hampson et al., 2001) and I was closely involved with testing and training on this 

product. The most important motivation for me in developing the ideas that form the 

basis of this dissertation was in trying to reconcile the generalized regression neural 

network proposed by Hampson et al. (2001) with the radial basis function approach of 

Ronen et al. (1994).  This is the basis of Chapters 6 through 8 in this study. However, to 

understand the building blocks upon which these methods are based, I was further 

motivated to study the areas of multivariate statistics and the single and multi-layer 

perceptron, which form the basis of Chapters 3 through 5 of the study.  The result has 

been a period of intense, but satisfying, work on this area of exploration geophysics, 

which I hope will motivate others to use these tools. 
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CHAPTER 1 :  INTRODUCTION 
 
 

1.1 The fundamental objective 

 

 The fundamental objective of this dissertation is to study the relationship between 

reservoir parameters and seismic attributes.  The reservoir parameters will include such 

measurements as P-wave velocity, porosity, and water saturation. The seismic attributes 

will include instantaneous attributes, windowed attributes, AVO attributes, and 

seismically derived impedance, all of which will be described in Chapter 2.  Specifically, 

I will determine a relationship between a set of seismic attributes and a reservoir 

parameter at a number of specific well locations, and then use this relationship to 

compute reservoir parameters from sets of seismic attributes throughout a seismic 

volume.  To address this problem, I will make use of a wide variety of tools, ranging 

from deterministic seismic techniques such as impedance inversion and amplitude 

variations with offset (AVO), to multivariate statistics and neural networks.  This is a 

problem that has been discussed by other authors (Ronen et al., 1994; Hampson et al. 

2001) and I will utilize many of the techniques that they introduced, as well as introduce 

several new approaches.  

  

  The overall structure of this study is as follows.  In this chapter I will qualitatively 

describe the inter-relationships between seismic attributes and target reservoir 

parameters.  I will also introduce the bias-variance dilemma, a crucial problem that we 

face.  In Chapter 2, I will discuss the theory behind the attributes used in the subsequent 

chapters.  Chapter 3 will deal with the linear regression problem and Chapter 4 will 

discuss the linear classification problem.  In chapters 5 through 7 I will then apply neural 

network techniques to reservoir parameter computation.  Specifically, Chapter 5 will 
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utilize the traditional neural network approach, called the feedforward neural network, or 

multilayer perceptron, Chapter 6 will utilize the kernel regression technique and neural 

networks based on this technique and Chapter 7 will introduce the radial basis function 

neural network with cluster centres.  Chapter 8 will then discuss the combination of linear 

and neural network computation methods with geostatistics.  Finally, Chapter 9 will give 

a summary of the complete study.   

 

1.2 A qualitative example 

 

 To illustrate the goals of this study more graphically, let us start with a 

straightforward example.  Figure 1.1 shows a target reservoir log on the left, and three 

seismic attributes on the right.     

 
Figure 1.1:  A target sonic log is shown on the left and three seismic attributes, extracted 
at the same location, are shown on the right.  The dots represent time samples. 

 

 The P-wave sonic log shown in Figure 1.1 has been integrated to time and 

correlated with the seismic data so that there is a one-to-one correspondence between the 

samples on the well log and the samples on the seismic attributes (shown as dots on the 
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display).  The log and each attribute contain 69 samples. In the general case (see 

Appendix 1) we will have M attributes and N time samples.  At the moment, I will not be 

concerned with how these particular seismic attributes were chosen, or even which 

attributes they are (this will be addressed in the next two chapters), but will instead 

consider their inter-relationships. This can be done by cross-plotting the target and 

attributes against each other, as shown in Figure 1.2.  This type of plot is called a P-

dimensional scatter plot (Johnson and Wichern, 1998) where, in this case, P = 4.  In both 

Figure 1.1 and Figure 1.2, the target log and attributes have been normalized by 

subtracting the mean and setting the largest absolute amplitude to either 1 or -1.  This 

means that each crossplot has the same scale and is centered on zero. 

 

 
Figure 1.2: A 4 x 4 matrix of crossplots, where the target log and each of the attributes 
shown in Figure 1.1 have been crossplotted against each other.  
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 As will be discussed in Chapter 3, Figure 1.2 contains quantitative information 

about the multivariate statistics of our dataset, and can be thought of as the visual 

equivalent of the covariance matrix.  Before getting to this quantitative analysis, let us 

make several qualitative observations about these plots.  First, notice that there is a lot of 

redundancy in the crossplots shown in Figure 1.2, since the six crossplots in the upper 

right triangular part of the matrix use the same pair of variables as the six crossplots in 

the lower left triangular part.  The only difference between the upper and lower sets of 

plots is that the order of the dependent and independent variables are reversed.   But there 

is quite a different look to the plots and, as I will discuss in Chapter 3, the statistics of the 

relationship will change when the order of the dependent and independent attributes is 

reversed.  

 

 Notice also that there are three types of crossplots shown in Figure 1.2.  The first 

type of crossplot, shown on the main diagonal of the figure, represents the autocorrelation 

of the target or a particular attribute against itself.   This is perfect linear correlation, and 

the other crossplots fall short of this ideal to a greater or lesser extent.  Although this 

crossplot will always give a straight line, the distribution of the points on the line, which 

can  be continuous or grouped into clusters,  will give us information about the 

distribution of the values in the dataset being correlated. 

 

 The second type of plot is shown along the top row and left column of the matrix.  

These are the crossplots of the target log with each attribute.  As discussed in the next 

section, these plots introduce the idea of linear regression.  Figure 1.3(a) shows a blowup 

of the second crossplot on the top row, in which the Target is on the vertical axis, and 

Attribute 1 is on the horizontal axis. Note that there appears to be a positive linear 

correlation of the target with Attribute 1, suggesting that as Attribute 1 increases, so does 

the target value.  But there is also a lot of scatter this crossplot, and the linear fit is far 

from perfect. 
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 (a) (b) 

Figure 1.3: “Blowup” of (a) the Target vs Attribute 1, and (b) Attribute 2 vs Attribute 1 crossplots from 
Figure 1.2. 

 

 Finally, the third type of crossplot is the crossplot of each attribute against each 

other attribute.  This shows the amount of correlation between attributes and will be used 

as the basis of classification.  Figure 1.3(b) shows a blowup of the crossplot with 

Attribute 2 on the vertical axis and Attribute 1 on the horizontal axis.  In this figure there 

appears to be a negative correlation between the two attributes, and again there is scatter 

is similar to that in Figure 1.3(a).  By looking again at Figure 1.2, notice that there is 

scatter in all of the crossplots.  We certainly do not get a good fit between any of the 

individual attributes and the target log.  This sets the stage for all that follows in this 

dissertation, since I will be looking for optimum methods of combining the attributes to 

predict the target log. 

 

1.3 Classification and regression 

 

 As mentioned in section 1.1, we can divide the approaches used in this study into 

two separate types: classification and regression.  The term classification refers to the 

subdivision of the input samples into a set of output classes.  An example of this would 

be the classification of the samples of a 3D seismic volume into a set of lithology classes 

(e.g. sand, shale, or carbonate) or fluid classes (e.g. gas, oil, or water).  Such a 

classification scheme can be either supervised, where we use known classes on the target 
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log to guide the classification of the seismic attributes, or unsupervised, where we look 

for natural clusters within the crossplot of seismic attributes.  The classification 

techniques used in this study will largely be supervised classification techniques.  (The 

one exception is the K-means clustering technique that will be used in Chapter 7, which is 

an unsupervised method.) 

 

 The term regression refers to the mapping of N input vectors (again of dimension 

M, where M represents the total number of input attributes) into N output scalar values, 

where these scalars represent the values of the reservoir parameter that we wish to 

compute.  An example would be the computation of a continuous parameter such as 

water saturation, density, or resistivity from the same set of N seismic attribute vectors 

described in the classification problem.  The difference between clustering and 

regression, when applied to the data shown in Figure 1.1, is shown in Figures 1.4 and 1.5. 

   

 
Figure 1.4: The classification problem, where classes A and B have been defined based on the 

target log. 
 
 Figure 1.4 gives us a qualitative idea of supervised clustering.   In this figure, I 

have labelled two zones on the log as Class A and Class B, as determined by their 

different characteristics.  Our objective in classification is to determine whether the other 
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samples fall into either Class A or Class B (or neither Class), and then apply this 

relationship to locations at which the log is not present. 

  
 In Figure 1.5, we see the basic regression problem, again applied to the example 

of Figure 1.1.  A single sample has been shown just above a time of 1000 ms.  The points 

in the box enclosing the seismic attributes are an M-dimensional vector xj, where M = 3.  

(Figure 1.5 also shows the difference between the vector of attributes, xj, and the attribute 

vector ai, which is more fully explained in Appendix 1).  The point in the box enclosing 

the target log is a scalar value tj.  Mathematically, we want to compute the target value 

from the attribute vectors for all N samples in the window, where N = 69, since the 

sample rate is 2 ms. 

 
 Figure 1.5: The basic multilinear regression problem, where we want to predict tj from xj. 

 

 Comparing Figures 1.4 and 1.5, note that the key difference is that the regression 

problem assigns a value to each of the N samples, whereas the classification problem 

assigns each of the N samples to one of K classes.  Although I will be utilizing both linear 

and nonlinear approaches to the solution of the regression and classification problems, 

the concept is best understood using the linear methods of Chapters 3 and 4.   
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 As an introduction to these concepts, Figure 1.6 illustrates the difference between 

linear regression and classification utilizing the crossplots of Figure 1.3.  Figure 1.6(a) 

shows the target vector crossplotted against Attribute 1 from Figure 1.1, as shown in 

Figure 1.3(a).  However, this time I have plotted the regression line of t against a, where 

a is a particular attribute.   That is, I have computed the best least-squares coefficients to 

the regression equation 

awwat 10)( += .    (1.1) 

  

 Notice that the fit is not very good in this case, due to the scatter of the points.  

We can quantify this scatter using the correlation coefficient, which will also be 

discussed in Chapter 3. 

 
 (a) (b) 
Figure 1.6 : The concepts behind (a) linear regression, and (b) linear classification, applied to the 

crossplots of Figure 1.3 
 

 Figure 1.6(b) shows Attribute 1 crossplotted against Attribute 2 from Figure 1.1, 

as shown in Figure 1.3(b).  Superimposed on the points is the line that separates two 

classes, let’s say C1 and C2.   That is, we have computed the coefficients to the equation 

22110)( awawwy ++=a ,    (1.2) 

where a = (a1, a2)T, and y can be interpreted from the equation: 
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 As we will see in subsequent chapters, equation (1.2) can be interpreted either as a 

linear discriminant function or as a single-layer perceptron. (The perceptron is the 

fundamental building block of the multilayer feed forward neural network and will be 

described in detail in Chapters 4 and 5.)  The line in Figure 1.6(b) therefore represents the 

boundary between two sets of points, not the regression of the target against the attribute, 

as shown in Figure 1.6(a).  Thus, although Figures 1.6(a) and (b) look very similar, there 

is a big difference in their interpretation, as indicated by equations (1.1) and (1.2).  

Equation (1.1) is a one-dimensional regression equation and indicates that the target 

values can be computed from a single attribute value.  The fact that the fit is not very 

good, and that very few of the computed values will correspond to the correct values, is 

due to the poor underlying model assumption of the linear fit (more about this in section 

1.5).  Equation (1.2) is actually a two dimensional fit, and the fact that the line separates 

two sets of points implies a third axis pointing away from the two-dimensional plot.  The 

values on this axis don’t really matter, as long as they are distinct for the two classes.  In 

many two-class problems, these values are given as 0 and 1, and in other cases they are 

given as -1 and +1.  Chapter 4 uses an example in which the latter values are used.  

 

1.4 Function approximation 

 

 The distinction between classification and regression is somewhat arbitrary since 

classification becomes regression as NK → .  (For example, predicting water saturation 

with arbitrary accuracy by regression is simply a more precise way of classifying a 

sample as being water or gas.)  In fact, both can be seen as particular cases of the general 

problem of function approximation (Bishop, 1995), in which we try to discover the 

underlying function, or model, that relates our observed data to the earth parameters.   

That is, we would like to find the function 

y = f(x), 

where y is our reservoir parameter and  x is a vector of seismic attribute values.  In the 

ideal case, f would be a known function.  For example, if x were a two-dimensional 

vector, we could find a fit using a function such as 
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)cos()sin( 2211 xAxAy += . 

 

 Unfortunately, such analytical functions rarely describe real data, so a more 

practical solution is to find an approximate relationship given by 

y = f(x; w), 

where w is a set of weights, and the function f can represent either membership in a class 

(that is, y takes on a set of discrete values such as, in the simplest case, 0 or 1), or some 

linear or nonlinear regression function.  As can be seen in the previous section, equations 

(1.1) and (1.2) represented linear regression and classification functions, respectively. 

 

1.5 Bias and variance 

 

 As just discussed, our goal is to find a relationship that best relates a set of 

observed data values to the physical parameters that describe the earth.  That is, we are 

searching for a model that relates seismic measurements to reservoir parameters.  

Because we do not assume a deterministic model, but rather will search for an underlying 

statistical relationship, the fundamental question is: how can we judge the validity of the 

derived model? On one hand, we do not want a model that is too simple and does not 

have the flexibility to ever fit our data points. This is called a model with high bias. On 

the other hand, we do not want a model that is too complex and has such a high degree of 

flexibility that it overfits the data.  This is called a model with high variance.  The 

optimal model would be complex enough to fit the data values reasonably well, but not so 

complex that it fits the noise in the data. This is a common problem in all statistical 

methods of data fitting, and is called the bias versus variance dilemma.  

 

 To understand the bias-variance problem, let us consider the problem of trying to 

estimate a single period of a sine wave of unit amplitude which has been contaminated 

with random noise and sampled N times. That is 

iii xxf ηπ += )sin()( ,     (1.3) 
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where xi = 0, 1/N, 2/N …, 1.0 and η represents the random noise component.  Figure 1.7 

shows the sine wave and three different noise contaminated versions, each a different 

noise realization with a variance of 0.2.  The sine wave has been sampled with N = 21. 

 
Figure 1.7:  A sinusoid (heavy black line) corrupted with three realizations of random noise of 

variance 0.2. 
 

 To estimate the sine wave from the noise corrupted signals, we will use an Mth 

order polynomial fit, given by 
M

M xwxwwxy +++= …10)( .    (1.4) 

For each noise-corrupted signal, I will use polynomial fits of orders 1, 3, and 10.   

 

 Figure 1.8(a) shows the three polynomial fits to the first noisy trace from Figure 

1.7, with the original sinusoid and the noisy points plotted for reference.  Figure 1.8(b) 

then shows the errors between the three fitted polynomials and the original sinusoid.  The 

first-order fit has the largest error and is therefore not a good model for the sinusoid.  
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This is obvious since a first-order fit is a straight line and can not be expected to fit a 

sinusoid.  In other words, the first-order fit has a high bias.   

 

 The third- and tenth-order fits show a reasonably good fit to the original sinusoid, 

with roughly similar error functions.  That is, the third- and tenth-order fits have low bias.  

Since the error for the tenth-order fit appears to be slightly lower than the error for the 

third-order fit, we may therefore decide to use a tenth order fit to model our data. 

 

 
 (a) (b) 
 

Figure 1.8:  Polynomial fits to the first noise corrupted sinusoid of Figure 1.7, where (a) shows the three 
polynomial fits, and (b) displays the three error plots. 

 

 But which of the two fits has the lowest variance, or lack of change between 

models? To judge this, we need to look at all three realizations of the data from Figure 

1.7.  Figure 1.9 therefore shows the three polynomial fits to all three noisy signals, with 

the original sinusoid plotted for reference on each set of polynomial fits.   
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(a)      (b)    

  

 
(c) 

Figure 1.9:  Polynomial fits to the three noise corrupted sine waves of Figure 1.7, where (a) is a first-order 
fit, (b) is a third-order fit, and (c) is a tenth-order fit.  In each case, the true curve is shown as a heavy line. 

 
 

 From Figure 1.9(a), it is clear that the first-order fit is too simple a model (i.e. has 

high bias) to fit the sinusoid.  However, notice that the tenth-order fit (Fig. 1.9(c)) 

produces a significantly different result for each data realization.  This means that the 

tenth-order fit is too complex a model, since it tends to honour the noise too well. That is, 

the tenth-order fit has too high a variance.  To see this even more clearly, look at Figure 

1.10, which shows the errors from the three polynomial fits.   
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(a)      (b)    

 
(c) 

Figure 1.10:  Errors between the actual sinusoid and the polynomial fits to the three noise corrupted sine 
waves of Figure 1.9, where (a) is the first order, (b) is the third order, and (c) is the tenth order error. 

 
 

 It is clear in Figure 1.10 that the errors are consistent for the first-order and third- 

order fits, as shown in Figures 1.10(a) and (b).  However, the errors are highly variable 

for the tenth-order fit shown in Figure 1.10(c). Unfortunately, in the real data cases that I 

will be using in this dissertation we do not know the underlying model.  This means that 

we need to find an alternate way to solve the bias-variance dilemma.  One of the most 

accepted ways of doing this is to use some type of cross-validation procedure, in which 

we leave out part of the data, and compare our computed result with the data that has 

been left out.  This is also often called “blind prediction”.   
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1.6 Introduction to artificial neural networks 

 

 In much of this dissertation, I will be using various types of artificial neural 

networks (ANNs) to find the relationship between the target log and the attributes.  Thus, 

we first need to answer the question: what is a neural network?  The simplest answer is 

that a neural network is a mathematical algorithm that can be trained to solve a problem 

that would normally require human intervention.  Although there are many different 

types of neural networks, there are two ways in which they are categorized: by the type of 

problem that they can solve and by their type of learning.   

 

 Neural network applications in seismic data analysis generally fall into one of two 

categories: the classification problem, or the regression problem.  In the classification 

problem, as discussed in section 1.3, we assign an input sample to one of several output 

classes, such as sand, shale, limestone etc.  In the prediction problem we assign a specific 

value to the output sample, such as a porosity value.    

 

 Neural networks can also be classified by the way they are trained, using either 

supervised or unsupervised learning.   In supervised learning the neural network starts 

with a training dataset for which we know both the input and output values.  The neural 

network algorithm then “learns” the relationship between the input and output from this 

training dataset, and finally applies the “learned” relationship to a larger dataset for which 

we do not know the output values.  The most common example of the supervised learning 

neural network is the multi-layer perceptron, or MLP, which has become almost 

synonymous with the term ANN.  This method also goes by several other names, such as 

the multi-layer feed-forward neural network (MLFN) and the backpropagation neural 

network (BPNN).  In Chapter 5 I will describe the MLP neural network and apply this 

approach to both a simple model, in which we can intuitively derive the weights for the 

network, and a real data example. Although the MLP is the most common artificial neural 

network, there are many other approaches described in the literature.  In this dissertation, 
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I will describe and apply three other neural network approaches: the probabilistic neural 

network, or PNN, the generalized regression neural network, or GRNN, and the radial 

basis function neural network, or RBFN.   The PNN will be used for classification, and 

the GRNN and RBFN will be used for nonlinear regression.    

 

 In unsupervised learning, we present the neural network with a series of inputs 

and let the neural network look for patterns itself.  That is, the specific outputs are not 

required.  The advantage of this approach is that we do not need to know the answer in 

advance.  This disadvantage is that it is often difficult to interpret the output.  An example 

of this type of unsupervised technique is the Kohonen self organizing map (KSOM) 

(Kohonen, 2001). In this dissertation, I will be exclusively concerned with neural 

networks that use supervised learning. 
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CHAPTER 2 :  SEISMIC ATTRIBUTES 
 
 

2.1 Introduction 

 

 In this chapter, I will discuss the various seismic attributes that will be used to 

compute reservoir parameters.  A seismic attribute can be defined as a transform, either 

linear or nonlinear, of the seismic trace.  Seismic attributes can be classified into the 

following seven basic types:  

 (1) instantaneous attributes, which are derived from a combination of the input 

 seismic trace and the Hilbert transform of the trace, 

 (2) windowed frequency attributes, in which the amplitude spectrum of seismic 

 trace is computed over a running window, 

 (3) recursive attributes, which are derived by applying a recursive operator along 

 the seismic trace, 

 (4) bandpass attributes, which are narrowband filter slices of the seismic traces,  

 (5) multi-trace attributes, which are found by applying an operator to a local 

 collection of seismic traces in a 3D volume, 

 (6) AVO attributes, which are derived from prestack seismic data, and  

 (7) model-based attributes, in which an a priori model is included as a 

 component of the final solution.   

 

 It should be pointed out that some authors (Chen and Sidney, 1997) do not 

include model-based attributes in their definition of seismic attributes.   I have chosen to 

do so in this dissertation based on the observation that model-based attributes often give 

the best overall fit to the reservoir parameter that we are predicting.  From this viewpoint, 

we can consider the statistical methods to be discussed in the subsequent chapters to be 
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improvements on classical deterministic methods of parameter estimation such as seismic 

inversion (Russell, 1988). 

  

 A second distinction when discussing seismic attributes is between sample-based 

attributes and horizon-based attributes.  Sample-based attributes are computed on a 

sample-by-sample basis over the complete seismic volume, whereas horizon-based 

attributes are computed as the average over a time window around a seismic horizon 

(either at constant time or picked on an event) throughout a 3D volume.  The key 

difference between sample-based attributes and horizon-based attributes is that there is a 

one-to-one correspondence between the samples in a seismic volume and the samples in a 

sample-based attribute, whereas there is no one-to-one correspondence in a horizon-based 

attribute, which is used in spatial, or map, form.  In most of this dissertation I will deal 

with sample-based attributes.  In Chapter 9, I will discuss horizon-based attributes. 

  

 Examples of all seven types of attributes have been taken from the Blackfoot 

dataset, which will be used in several case studies in subsequent chapters (Dufour et al., 

2002).  A 3C-3D seismic survey was recorded in this area in October 1995, with the 

primary target being the Glauconitic member of the Mannville group. The reservoir 

occurs at a depth of around 1550 m, where Glauconitic sand and shale fill valleys incised 

into the regional Mannville stratigraphy. The objectives of the survey were to delineate 

the channel and distinguish between sand-fill and shale-fill.   

 

 Figure 2.1 shows a map view of the seismic survey and available well coverage, 

with the inline and cross-line numbers annotated on the four corners of the map.  Seismic 

inline 27 is shown as a vertical red line on the map, intersected by well 08-08.  
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Figure 2.1. A map view of the Blackfoot dataset, with wells annotated. 
 

 Figure 2.2 shows the seismic section from inline 27 on the map shown in Figure 

1.1.  The synthetic seismogram from well 08-08 has been spliced into the section at 

crossline 42. 

   

Figure 2.2. The input seismic line used to display the various attributes in this section. The synthetic 
seismogram from a nearby well (08-08) is shown at Xline 42. 

 
 

 In following sections, I will use the seismic section shown in Figure 2.2 to 

illustrate the different types of seismic attributes listed above. 
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2.2 Instantaneous attributes 

 

 Instantaneous attributes were first computed from seismic data by Taner et al 

(1979), using theory that had been developed for electrical engineering applications 

(Bracewell, 1965).  The basis of the instantaneous attributes is the complex seismic trace, 

which can be written: 

( ) ( ) ( )thitstC +=      (2.1) 

where s(t) = the seismic trace, h(t) = the Hilbert transform of the seismic trace, often 

called the quadrature  trace, and 1i −= .  Rewriting equation (2.1) in polar form, we get 

( ) ))(exp()( titAtC φ= ,    (2.2) 

where ( ) ( ) ( )22 thtstA += is referred to as the amplitude envelope or instantaneous 

amplitude, and ))(/)((tan)( 1 tstht −=φ  is referred to as the instantaneous phase.  Equation 

(2.2) can also be expressed as: 

( ) ))(sin()())(cos()( ttiAttAtC φφ += ,   (2.3) 

which tells us that the seismic trace is equal to the product of the amplitude envelope and 

the cosine of instantaneous phase, and the quadrature trace is the product of the amplitude 

envelope and the sine of the instantaneous phase.   

 

 Figure 2.3 shows the Hilbert transform of the seismic section shown in Figure 2.2. 

Since both the seismic section and its Hilbert transform look similar, one way to observe 

the difference between the two is to compare their wiggle traces at the well intersection 

with the synthetic seismogram from well 08-08.  Notice that the synthetic seismogram 

differs by a 90 degree phase shift on the Hilbert transformed section, when compared to 

the original seismic section of Figure 2.2.    
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Figure 2.3. The Hilbert transform of the seismic section shown in Figure 2.1. 
   

 Figure 2.4 shows the amplitude envelope and Figure 2.5 shows the instantaneous 

phase of the same section shown in Figure 2.1.  As expected, the amplitude envelope 

section of Figure 2.4 emphasizes the amplitude changes from the original seismic section, 

and the instantaneous phase section of Figure 2.5 shows the subtle stratigraphic detail.   

  

Figure 2.4. The amplitude envelope of the seismic section shown in Figure 2.1. The integrated P-wave 
sonic log from a nearby well (08-08) is shown at Xline 42 on both seismic displays. 
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Figure 2.5. The instantaneous phase of the seismic section shown in Figure 2.1. 
 
 

 The traces on the instantaneous phase section (Fig. 2.5) show sharp jumps at ±180 

degrees, so the colour bar on the instantaneous phase has been designed to be identical at 

the two extremes.  For a more “seismic-looking” trace than the instantaneous phase, 

Equation (2.3) suggests taking the cosine of the instantaneous phase, as shown in Figure 

2.6.  

   

Figure 2.6. The cosine of the instantaneous phase section shown in Figure 2.5. 
 

 The cosine of instantaneous phase, shown in Figure 2.6, is a seismic section in 

which the amplitude changes have been removed, as if a strong gain control has been 
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applied.  Note from Equation 2.3 that the product of the sections in Figures 2.4 and 2.6 

gives us the original seismic section of Figure 2.2. 

 

 A third instantaneous attribute can be found by differentiating the instantaneous 

phase to get: 

( )
dt

tdt )(φω =      (2.4) 

where ω(t) is termed the instantaneous frequency.  Figure 2.7 shows the instantaneous 

frequency of the same section as in Figure 2.2.  Notice the alternately low and high 

instantaneous frequency bands between 1050 and 1100 ms. 

   

Figure 2.7. The instantaneous frequency section derived from the seismic section shown in Figure 2.2. 
 

 The amplitude envelope, instantaneous phase and instantaneous frequency are the 

three primary attributes, but many more can be derived from these basic three. These new 

attributes are usually products of the existing three attributes. 

 

2.3 Windowed frequency attributes 

 To compute a windowed frequency attribute, the Fourier transform of the seismic 

trace is computed over a window of fixed size around a seismic sample and some 

property of the transform is extracted.  To compute a sample-based attribute of this type, 
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either the average or dominant frequency is computed and placed at the sample location. 

This procedure is then repeated using a running window down the trace.  Figure 2.8 

shows the dominant frequency attribute from the section shown in Figure 2.2, using a 

window size of 64 ms and an increment between samples of 32 ms.  The samples in 

between the 32 ms increment are then interpolated.  As can be seen, this produces a long- 

period, smoothly varying estimate of the frequency content of the data.  

 

   
 

Figure 2.8. The dominant frequency along a sliding window of the seismic section shown in Figure 2.1. 
 

  

 To compute a horizon-based attribute based on windowing the data, Partyka et al. 

(1999) suggest computing the Fourier spectrum over a window from the complete 

seismic volume and then displaying the amplitude spectrum in frequency slices.  This is 

referred to as the spectral decomposition method, and will show spatial stratigraphic 

detail at a zone of interest.   

 

 Figure 2.9 shows the spectral decomposition between the two events picked at 

times of 1030 and 1080 on the seismic section of Figure 2.2, over the complete seismic 

volume.  In this figure I have shown slices at dominant frequencies of 16, 32, 48, and 64 

Hz, respectively. 
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 (a) (b)     

     

   
 (c) (d) 
Figure 2.9. The spectral decomposition of the full seismic volume shown in Figure 2.1, where (a) shows the 
16 Hz slice, (a) shows the 32 Hz slice, (a) shows the 48 Hz slice, and (a) shows the 64 Hz slice. 
 

 

2.4 Recursive attributes 

  

 Recursive attributes are computed by applying an operator recursively along the 

trace.  If we apply a recursive difference operator, the output is the first derivative of the 

seismic trace. In practice, this is estimated by taking the difference between adjacent 

samples, which can be written: 

1−−= iii ssd ,     (2.5) 

where ,N,1i,si …= are the seismic samples. Figure 2.10 shows the first derivative 

estimate of the seismic section from Figure 2.2.  Notice the extra detail shown in this 

figure when compared to Figure 2.2, and also the 90-degree phase shift.   
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 To illustrate this, consider the effect of the derivative on a single frequency 

component, written as 

fei
dt

de ti
ti

πωω ω
ω

2, == .    (2.6) 

In equation (2.6), multiplication by i implies a +90 degree phase shift to the original 

seismic trace, and multiplication by ω implies a “ramping-up” of the amplitude spectrum. 

 

   

Figure 2.10. The first derivative of the seismic section shown in Figure 2.2. 
 

If the difference operation is applied twice to the input, we estimate the second derivative 

of the seismic trace, given in equations as 

211 22 −−− +−=−= iiiiii sssddd .    (2.7) 

 Figure 2.11 shows the second derivative of the seismic section from Figure 2.2.  

Notice the extra detail shown in this figure when compared to Figure 2.9, and also the 

180-degree phase shift.  Again, this can be seen by applied the second derivative 

operation to a single frequency, or 

titi
ti

eeii
dt
ed ωω

ω

ωωω 2
2

2

)( −== .   (2.8) 
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Figure 2.11. The second derivative of the seismic section shown in Figure 2.2. 
 

 To compute other attributes, we can also apply the first and second derivative 

operations to the amplitude envelope of the seismic trace. 

 

 If we apply a recursive sum to the seismic trace, the output is the integral of the 

trace, given as 

∑
=

=
n

i
in sI

1
,     (2.9) 

where the nth integrated value is the sum of all of the samples from the first to the nth.  To 

remove any bias, the smoothed integrated trace is subtracted from the integrated trace.  

Figure 2.12 shows the integrated seismic section of Figure 2.2, where I have used a 50 ms 

running smoother to remove the bias.  Notice that there is less high-frequency content in 

this figure than in the seismic section of Figure 2.2, and also there is a -90-degree phase 

shift.  To illustrate this, consider the effect of integration on a single frequency 

component, written as 

tititi eie
i

dte ωωω

ωω
−==∫

1 .    (2.10) 
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In equation (2.10), multiplication by -i implies a -90 degree phase shift to the original 

seismic trace, and division by ω implies a “ramping-down” of the amplitude spectrum.  

Integration can also be thought of as a type of seismic inversion (Lindseth, 1979). 

   

Figure 2.12. The integration of the seismic section shown in Figure 2.2. 
 

 As with the derivative operation, integration can also be applied to the amplitude 

envelope of the seismic trace. 

 

2.5 Bandpass attributes 

 
 Bandpass attributes are simply narrow-band filter slices of the seismic data.  By 

applying a narrow-band filter, we isolate signal components within particular frequency 

bands of the seismic data.  To ensure that the filter slices can be added together to give 

the original data, trapezoidal filters are designed with overlapping 5-Hz slopes. For 

example, the first two filter slices could be 5/10-15/20 and 15/20-25/30, where the first 

number is the low-cut value, the second is the low-pass value, the third is the high-pass 

value and the fourth is the high-cut value, all given in Hertz.    

 

 Figures 2.13 and 2.14 show low frequency (5/10-15/20) and high frequency 

(55/60-65/70) bandpass filter slices, respectively, applied to the seismic data of Figure 

2.2.  
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Figure 2.13: A low-frequency filter slice (5/10-15/20) of the seismic section shown in Figure 2.2. 
 

 

   
 

Figure 2.14: A high-frequency filter slice (55/60-65/70) of the seismic section shown in Figure 2.2. 
 

  

 As expected, Figure 2.13 and 2.14 show a lot of “ringing” at both the low and 

high ends of the signal spectrum.  However, both sections contain valuable information 

about the seismic data that will be used by the statistical prediction techniques that will 

be explored in subsequent chapters. 
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2.6 Coherency attributes 

 
 Using a window of traces in a 3D seismic volume, information about 

discontinuities within the subsurface of the earth, such as faults and fractures, can be 

determined.  The resulting attributes are called coherency attributes. There have been 

three generations of algorithms proposed for extracting the coherency attribute.  Bahorich 

and Farmer (1995) published the first widely used algorithm, termed cross-correlation 

coherency.  Their method involved cross-correlating each trace with its in-line and cross-

line neighbour and then combining the two results after energy normalization. Marfurt et 

al. (1998) published the second-generation method, based on semblance.  Most recently, 

Gersztenkorn and Marfurt (1999) published the third-generation approach based on 

eigenstructure methods.  The latter two methods can be summarized as follows.  Let D be 

a matrix containing a suite of J seismic traces, each of N samples, which can be written 
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Using the values in D, the semblance coherency estimate can be defined as 
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. 

To derive the eigenstructure estimate, we require the covariance of D, which can be 

written as 

C = DTD.     (2.13) 
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 The eigenstructure coherence estimate is then found by the expression 

∑
=

= J

j
j

CE

1

1

λ

λ
,     (2.14) 

where λ j are the J eigenvalues of the matrix C, ordered from largest (λ1) to smallest (λJ).  

As shown by Gersztenkorn and Marfurt (1999), the semblance estimate can also be 

written in terms of the covariance matrix and its eigenvalues, as 

∑
=

= J

j
j

T

C
CuuS

1
λ

,     (2.15) 

where
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1

1
1
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u .  The numerator of equation (2.15) is often called a variance probe, and 

is maximized when uTCu = λ1, the maximum eigenvalue of C.  Thus, the eigenstructure 

approach to coherency can be seen to be the optimum implementation of the semblance 

coherency method. 

 

 Marfurt and Kirlin (2000) extended the concept of coherency to define other 

multi-trace attributes such as dip, amplitude gradient, and curvature.  In this study I will 

not use coherence attributes.  However, the concepts of the covariance matrix, the 

variance probe and eigenvalues and eigenvectors (and the related topic of principal 

components) will be addressed in later chapters. 
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2.7 AVO Attributes 

 
 If we consider an incident P-wave striking the boundary between two elastic half-

spaces at an angle θ, as shown in Figure 2.15, mode conversion results in the creation of 

reflected and transmitted P and SV-waves (Aki and Richards, 2002).   

 

Figure 2.15. Mode conversion from an incident P-wave arrival at the interface between two elastic media. 
 

 To derive the amplitudes of the reflected and transmitted waves, note that the 

stresses and displacements across the boundary are continuous.  This gives four equations 

in four unknowns, referred to as the Zoeppritz equations (Zoeppritz, 1919), and written as 
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(2.16) 

where RP is the P-wave reflection coefficient as a function of P-wave reflection angle θ1, 

RS is the SV-wave reflection coefficient as a function of S-wave reflection angle φ1,  TP is 

the P-wave transmission coefficient as a function of P-wave refraction angle θ2, TS is the 

SV-wave transmission coefficient as a function of S-wave refraction angle φ2, and VPi, VSi, 

and ρi are the P-wave velocity, S-wave velocity, and density in the first  (i = 1) and 
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second (i = 2) layers, respectively.  We can derive the reflected and transmitted angles 

from the input angle using Snell’s law, which is written 

2S
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V
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V
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V
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V
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p
φφθθθ

===== ,  (2.17) 

where p is called the ray parameter. 

  

 As shown by Bortfeld (1961), Richards and Frasier (1976), and Aki and Richards 

(2002), equation (2.16) can be linearized by expanding it as a Taylor series and keeping 

only first-order terms (i.e. neglecting all squares and products). The linearized P-wave 

reflection coefficient as a function of angle (or offset) is written 

[ ] [ ]
ρ
ρ∆θγ∆θγ∆

θ
θ 2

S

S2

P

P
2P sin25.0

V
V

sin4
V
V

cos2
1)(R −+−



= ,      (2.18) 

where
2

VV
V

2
VVV,

2
1S2S

S
1P2P

P
12 +

=+=+= andρρρ  are the average density and 

velocity terms, 1S2SS1P2PP12 VVVVVV, −=−=−= ∆∆ρρρ∆ and are the density and 

velocity differences, 
2

P

S

V
V









=γ , and

2
ti θθθ +

= is the average angle.  Another 

equivalent form of equation (2-18), derived initially by Wiggins et al. (1982), and 

expanded by Shuey (1985), is written 
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(It should be noted that Shuey (1985) added the third term C, although his second term, 

B, was a function of Vp, Poisson’s ratio, and density). 

 

 A second equivalent version of equation (2.18) was derived by Fatti et al. (1994), 

based on an earlier equation by Smith and Gidlow (1987), and expresses RP as a function 

of the zero-offset P and S-wave reflectivity.  Their equation is written 



34 
 

 

[ ] [ ]
ρ
ρ∆θγθθγθθ 



 −−−+≅ 22

0S
2

0P
2

P sin2tan
2
1Rsin8Rtan1)(R , (2.20) 

where 







+=

ρ
ρ∆∆

S

S
0S V

V
2
1R . 

 

 Note that equations (2.18) through (2.20) can all be written in the form 

332211P P),(fP),(fP)(f)(R γθγθθθ ++≅ ,  (2.21) 

where f1, f2, and f3 are functions of θ and sometimes γ (for example, f3 is a function of γ in 

the first and third equations, but not the second), and P1, P2, and P3 are parameters that 

are dependent on some combination of ∆VP/VP, ∆VS/VS, and ∆ρ/ρ. Thus, the parameter 

terms can be extracted by performing a weighted stack of the prestack seismic 

amplitudes.  Let us assume that there are N traces in a CMP gather.  We can then extract 

N amplitudes at time t, as shown in Figure 2.16, and write any one of the previous 

equations as a set of N equations with three unknowns, or: 

3N32N21N1NP

3232221212P

3132121111P

P),(fP),(fP)(f)(R

P),(fP),(fP)(f)(R
P),(fP),(fP)(f)(R

γθγθθθ

γθγθθθ
γθγθθθ

++=

++=
++=

####
   (2.22) 

 
Figure 2.16. Extraction of AVO attributes using the amplitudes from a seismic gather picked at time t. 

 

 These equations can be written in matrix form as 
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or R = MP, with solution 

RM)IMM(P T1T −+= λ ,    (2.24) 

where λ is a prewhitening factor and I is the 3 x 3 identity matrix.   

 

 Since we extract the parameters as a function of offset rather than angle, as shown 

in Figure 2.16, we need a relationship between offset and angle.  As shown by Walden 

(1991) this relationship can be written 

,
tV
XV

sin 2
RMS

INT=θ     (2.25) 

where X = offset, t = two-way traveltime, VINT = interval velocity, and VRMS = RMS 

velocity. 

 

 As an example of computing the AVO attributes just discussed, Figure 2.17 

shows a subset of the common-depth-point gathers used to create the stack in Figure 2.2. 

 

 
 

Figure 2.17. The seismic gathers that were used to create the stacked section in Figure 2.2, with the P-wave 
sonic log from well 08-08 spliced in at the intersecting location. 
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 Using the techniques just described, estimates of the RP0 and RS0 AVO attributes 

are created. The RP0 estimate is in Figure 2.18 and the RS0 estimate is in Figure 2.19.   

 

   

Figure 2.18. Extraction of the RP0 attribute from the gathers of Figure 2.17. 
 

   

Figure 2.19. Extraction of the RS attribute from the gathers of Figure 2.17. 
 
  
 These two reflectivity estimates will be used as the input to inversion in the last 
section in this chapter. 
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2.8 Model-based attributes 

 
 In this section, I will discuss model-based attributes, in which a geological model 

is included with some transform of the seismic trace to create an attribute.  This is a 

deterministic approach to reservoir delineation, because we determine the subsurface of 

the earth by assuming that we know the underlying model that fits the seismic data.  I will 

start by introducing the most common model, which is based on the convolution of a 

wavelet with the earth’s reflectivity. 

2.8.1 The convolutional model 
 

 The noise-free convolutional model for the seismic trace can be written  

  ( ) ( ) ( )s t w t r t= ∗     (2.26) 

where ( )s t = the seismic trace, ( )w t = the seismic wavelet, ( )r t = the earth’s reflectivity, 

and * denotes convolution.  The mathematics of convolution are discussed in Appendix 

3, where it is shown that convolution can be written as the matrix multiplication 

WRS = ,     (2.27) 
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 In equation (2.27), note that the reflectivity is of length M samples, the wavelet is 

of length N samples, and the output seismic trace is of length N+M-1 samples. (This 

implies that W has M columns and N+M-1 rows).   
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 As a simple example in which the length of both the reflectivity and the wavelet is 

two samples, the result is a seismic trace of three samples given as 
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   The matrix formulation of convolution is similar to the Z-transform approach, 

which leads us to the frequency domain (Claerbout, 1976), where convolution is written: 

( ) ( ) ( ) ( ) ( ) ( ) ))(exp()exp( rws ifRfWfRfWifSfS φφφ +−==−= , (2.29) 

where S(f), W(f), and R(f) are the Fourier transforms of the trace, wavelet, and 

reflectivity, respectively, | | denotes amplitude spectrum, and φ denotes phase spectrum.  

For the complex product, equation (2.29) tells us that the amplitude spectra are 

multiplied, and the phase spectra are added.  Equations (2.26) through (2.29) are 

illustrated graphically in Figure 2.20, which shows the convolution of a ninety-degree 

phase rotated Ricker wavelet with a well-log-derived reflectivity.   

 

 In equation (2.26), the reflectivity can be written: 
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where ri is the reflection coefficient at the ith geological interface, and Zi is the impedance 

at the ith geological layer, after integrating to time.  As will be discussed shortly, there are 

three different forms that impedance can take: acoustic impedance PP VZ ρ= , shear 

impedance SS VZ ρ= , and elastic impedance )sinK1()sinK8(
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VP is the P-wave velocity, VS is the shear wave velocity, ρ is the density, θ is average 

angle of incidence and 2
P

2
S V/VK = .  By inverting equation (2.30), the impedance can be 

recursively derived from the reflectivity.  The recursive inversion equation is written 
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Figure 2.20. An illustration of convolution using a Ricker wavelet and well-log derived reflectivity, where 
(a) shows convolution in the time domain (left to right: the wavelet, reflectivity, and seismic trace), and (b) 
shows the convolution in the frequency domain (top to bottom: the amplitude spectrum of the wavelet, the 
amplitude spectrum of the reflectivity, and the amplitude spectrum of the seismic trace), (Russell, 1988).  

  

 Equation (2.31) can also be thought of as integration.  To understand this, 

consider the effect of inverting M reflection coefficients, which gives 
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 Taking the logarithm of equation 2.32, we get 
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where I have made use of the series expansion 
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reflection coefficients ri are typically of the order of 0.1 or less, we can drop all terms 

greater than first order in the summation, so that equation (2.33) can be rewritten as 
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where ( ) ( )1MM ZlnZlnL −= .  Finally, note that equation (2.34) can also be written in 

convolutional form as 

HRL = ,     (2.35) 

where
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 Except for a factor of 2, and that the operation is being applied to the reflectivity 

rather than the seismic trace, notice that equation (2.34) is identical to equation (2.9).  

This suggests that the operation of recursive inversion is equivalent to trace integration if 

we replace the seismic trace with the reflectivity.  From equation (2.10) this also tells us 

that recursive inversion of the reflectivity will apply both a -90-degree phase shift and a 

ω -1 frequency-domain scaling (Russell and Lindseth, 1982).   

2.8.2 Acoustic impedance inversion 

 
 Acoustic impedance inversion was developed in the 1970’s by making use of 

equation 2.30, and substituting the seismic trace for the reflectivity (Lindseth, 1979).  

However, as shown in Figure 2.20, the seismic trace is bandlimited by the seismic 

wavelet, and the resulting inverted impedance will also be bandlimited.  The lack of the 

high frequencies will remove detail from the final result.  The loss of the low frequencies 

will remove the trend from the resulting pseudo-impedance log.  The approach proposed 

by Lindseth (1979) to recover the low frequency component is to create an impedance 

model from well logs, apply a high-cut filter to this model to create a low frequency 

trend, and then add back the trend to the pseudo-logs.  This technique, which I will call 

bandlimited inversion, is illustrated in Figure 2.21. 
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Figure 2.21. An illustration of the Lindseth (1979) inversion technique.  Left to right, the original seismic 
trace is inverted using equation (2.30) to produce the second trace, and then added to the low frequency 
component to produce the final inverted log.  (from Hampson and Russell, 1992). 
 
 
 Figure 2.22 shows the bandlimited inversion of the seismic line shown in Figure 

2.2.  To create the model for this inversion, I used the sonic and density logs from the 

wells shown in Figure 2.1, and stretched this model over the 3D volume using the seismic 

picks. 

  

Figure 2.22. The bandlimited inversion of the seismic line shown in Figure 2.2.  
 

 Since the development of the bandlimited inversion technique, many more 

approaches to acoustic impedance inversion have been proposed.  Two such approaches 

are sparse-spike inversion (Oldenburg et al., 1983) and model-based inversion (Hampson 



42 
 

 

and Russell, 1990).  In sparse-spike inversion, an estimate of the sparse reflectivity is first 

extracted from the seismic data, using a linear programming technique in which 

frequency domain constraints are used to recover the low and high ends of the seismic 

spectrum lost due to the bandlimited seismic wavelet.  Once the sparse reflectivity is 

extracted, the reflectivity is integrated and constrained by the initial model.  The model is 

built as described for the bandlimited approach. 

 

 In model-based inversion, the initial geological model is perturbed so that the 

error between the synthetic generated from the perturbed model and the original seismic 

data is minimized.  Mathematically, this problem is one of minimizing the error function 

J given by the following equation: 

( ) ( ) ( ) ( ) ( )WRSWRSwHRLHRLwJ TT −−−+−−= 11 1 ,  (2.36) 

where L, H, S, W, and r are as defined in equations (2.27) and (2.35), and w1 and w2 are 

weights that satisfy the requirement that w1 + w2 = 1.  In equation (2.36), the first term 

minimizes the error in the model and the second term minimizes the error in the seismic 

trace.  Figure 2.23 shows the model-based inversion for the seismic line shown in Figure 

2.2.  Notice the extra detail that was not seen in Figure 2.22. 

 

   

Figure 2.23.  The model-based inversion of the seismic line shown in Figure 2.2.  
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2.8.3 Inversion of the AVO attributes 
 

 As I discussed in the section on AVO attributes, the weighted stack technique 

allows us to extract estimates of the P and S reflectivity sections, RP and RS.  Inverting the 

RP section should give us a better estimate of the P-impedance section.  The inversion of 

the RP section is shown in Figure 2.24.  Figure 2.25 shows the inversion of the RS 

attribute. 

   

Figure 2.24. The model-based inversion of the RP0 attribute shown in Figure 2.18.  
 

   

Figure 2.25. The model-based inversion of the RS0 attribute shown in Figure 2.18 
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2.9 Fluid-property discrimination with model-based attributes 

2.9.1 Introduction  
 

 The last model-based attribute to be discussed in this chapter combines AVO and 

inversion attributes with rock physics theory in an attempt to extract information about 

the fluid content and rigidity of our reservoir rocks (Mavko et al., 1998).  This topic has 

been addressed by Goodway et al. (1997), Hedlin (2000), Hilterman (2001) and Russell 

et al. (2003a). 

  

 To start our discussion, recall that the equations for P velocity in isotropic, non-

porous media can be written in two different forms as 

ρ
µ

ρ
µλ 3

42 +
=+=

K
VP ,    (2.37) 

where ρ is density, λ is the 1st Lamé parameter, µ is the 2nd Lamé parameter or shear 

modulus, and K is the bulk modulus, or the inverse of compressibility.  For these two 

forms of the P-wave velocity to hold, we see that the relationship between K and λ can be 

written as 

µλ 3
2=−K .     (2.38) 

  

 The equation for S-wave velocity involves only density and shear modulus, and is 

written 

ρ
µ=sV .     (2.39) 

   

 When we turn our attention to porous, saturated rocks, the situation becomes more 

complex.  Referring to Figure 2.26, note that a cube of porous rock can be characterized 

by four components:  the rock mineral, the pore/fluid system, the dry-rock frame, or 

skeleton, and the saturated rock itself.   
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Figure 2.26.  In Biot-Gassmann theory, a cube of rock is characterized by four components: the rock 
matrix, the pore/fluid system, the dry rock frame, and the saturated frame. 

 

The density effects of the saturated rock shown in Figure 2.26 can be computed quite 

accurately with the volume average equation as 

( ) ( )φρφρφρρ whcwwmsat SS −++−= 11 ,   (2.40) 

where ρsat is the total density value, ρm is the density of the rock matrix, ρw is the density 

of water (brine), ρhc is the density of the hydrocarbons, φ is the porosity of the rock, and 

Sw is the water saturation. 

 

 The velocity effects of the saturated rock were derived by Biot (1941) and 

Gassmann (1951) using apparently different approaches.  However, as shown by Krief et 

al. (1990), their approaches are identical. Biot used the Lamé parameters and showed that 

(Krief et al, 1990) the saturated 1st Lamé parameter could be written 

Mdrysat
2βλλ += ,     (2.41) 

where λsat and λdry are the 1st Lamé parameter for the saturated and dry frame, β is the 

Biot coefficient, or the ratio of the volume change in the fluid to the volume change in the 

formation when hydraulic pressure is constant, and M is the modulus, or the pressure 

needed to force water into the formation without changing the volume.   

 

Dry rock frame, 
or skeleton 
(pores empty) 

Saturated rock 
(pores full) 

Rock Matrix

Pores/Fluid 
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 Gassmann used the bulk and shear moduli, and derived the following relationship 

(Krief et al, 1990): 

MKK drysat
2β+= ,    (2.42) 

where Ksat and Kdry are the bulk modulii of the saturated and dry rock, and β and M are 

the same as in equation (2.41).  By equating equations (2.41) and (2.42), and using 

equation (2.38), we find that 

drysat µµ = ,     (2.43) 

which tells us that the shear modulus is unaffected by the pore fluid.   

 

 Using equations (2.41) and (2.42), we can now write the equation for P-wave 

velocity in the saturated case using the two separate forms given by 

sat

dry

sat

dry
P

MKM
V

ρ
βµ

ρ
βµλ 2

3
422 ++

=
++

= ,   (2.44) 

or, more succinctly, as 

sat
P

fsV
ρ
+= ,      (2.45) 

where f is a fluid/porosity term equal to β2M, and s is a dry-skeleton term which can be 

written either as µ3
4+dryK  or µλ 2+dry .  Note that drysat µµµ == . 

2.9.2 Extracting fluid and rigidity terms 
 

 Since I will be applying this method to seismic data, a practical limitation 

discussed in section 2.8.2 is that we can estimate only the P and S-wave impedances, ZP 

and ZS, where 

( )sfVZ PP +== ρρ ,    (2.46) 

and  ρµρ == SS VZ .     (2.47) 

 By squaring the impedances we can then find a constant, c, such that 

( )µρρ csfcZZf SP −+=−= 22 .   (2.48) 
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 Referring to equation (2.44), note that c can be written in one of three ways: 
2

3
42

dryS

Pdrydry

V
VK

c 







=+=+=

µµ
λ

.    (2.49) 

 

 There are several approaches for computing the c term.  The first is to estimate the 

dry-rock Poisson's ratio, σdry, noting that this is given by: 

22
2

22

2

2

2

−
−=

−








−








=
c

c

V
V

V
V

dryS

P

dryS

P

dryσ .    (2.50) 

 Generally, the accepted value of σdry is on the order of 0.1, which corresponds to a 

VP/VS ratio of 1.5, or a c value of 2.25. 

 

 A second approach is to perform laboratory measurements.  Murphy et al. (1993) 

measured the Kdry/µ ratio for clean quartz sandstones over a range of porosities and found 

that this value was, on average, equal to 0.9.  This corresponds to a c value of 2.233.  If 

the Kdry/µ value is rounded to 1.0, this implies a σdry of 0.125, and a corresponding c 

value of 2.333. 

 

 Thus, there are a range of values of c that depend on the particular reservoir being 

studied.  Table 2.1 shows a range of c values and the range of respective elastic constants.  

The value of c in this table ranges from a high of 3, which implies that λdry/µ is equal to 

1, to a low of 1 1/3, which implies that Kdry/µ is equal to 0 and that we have a negative 

Poisson’s ratio.  (This last value is therefore probably not physically meaningful). 

 

Goodway et al. (1997) attribute all of the fluid effect to the λ term in equation (2.37), 

and thus derive their λρ value as 
22 2 SP ZZ −=λρ .     (2.60) 
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Note that this means that c is equal to 2, which implies a zero dry-rock Poisson's ratio. 

 
2

dryS

P

V
V

c 







=  

dryS

P

V
V









 

 

dryσ  µ
dryK

 
µ

λdry  

3.000 1.732 0.325 1.667 1.000 

2.500 1.581 0.167 1.167 0.500 

2.333 1.528 0.125 1.000 0.333 

2.250 1.500 0.100 0.917 0.250 

2.233 1.494 0.095 0.900 0.233 

2.000 1.414 0.000 0.667 0.000 

1.333 1.155 -1.000 0.000 -0.667 

Table 2.1: A table of values for c ranging from 3 to 1 1/3 and showing the equivalent values for the various 
elastic constant ratios. 
 

 Hedlin (2000) incorporated the experimental results of Murphy et al., to arrive at 

the Kdry/µ ratio of 0.9 and a c value of 2.233.  Finally, Hilterman (2001) assumes that 

Kdry/µ is equal to 1.0, which implies a c value of 2.333.   

 

2.9.3 Well-log example 
 

 Our well-log example comes from the Whiterose area of offshore eastern Canada.  

Figure 2.27 shows the VS, VP, density and porosity logs over the producing zone, overlain 

by a Cretaceous shale. There is 85 m of gas sand, 97 m of oil sand, and 95 m of wet sand.  

These well-log curves were converted to the equivalent ρf and ρs curves and crossplotted. 
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Figure 2.27:  The VS,, VP, ρ  and porosity logs over the producing zone in the Whiterose L-08 well. 
 

 Figures 2.28(a) and (b) show crossplots of ρs versus ρf for values of c equal to 2.0 

and 2.333, respectively.  
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 (a) (b) 
Figure 2.28:  A crossplot of ρf vs ρs for the Whiterose L-03 well for (a) c=2.0, and (b) c=2.333. 

 
  

 In Figure 2.28, each lithology and pore-fluid saturant is indicated by a different 

symbol.  From our previous discussion, we wish to find the c value that produces the best 

ρf separation between the gas and non-gas-saturated zones.  When choosing between the 
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two c values, notice that the ρf separation is almost the same.  However, the better choice 

would appear to be 2.333 since the points with a higher ρs value show better separation.  

Also, for the c value of 2.333, the cloud of gas points is closer to zero on the ρf axis.  
 

2.9.4 A seismic example 
 

 Figures 2.29 and 2.30 show the P and S-wave impedance inversions for a shallow 

clastic gas sand in Alberta. 

 
Figure 2.29:  The P-wave impedance, ZP, found by inverting the RP0 estimate of a gas sand in Alberta. 

 

 
Figure 2.30:  The S-wave impedance, ZS, found by inverting the RS0 estimate of a gas sand in Alberta. 
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 Horizon 2 in both figures is the top of the gas sand.  In Figure 2.29 the gas sand 

shows a drop in P-impedance with respect to the encasing shale.  However the S-

impedance (Fig. 2.30) does not show the same decrease as we move into the gas sand.  

This can be understood when we recall that S-wave velocity is insensitive to the fluid, 

whereas P-wave velocity shows a sudden decrease when gas is introduced into the 

reservoir.   

 

Figures 2.31 and 2.32 show the fluid and skeleton terms (ρf and ρs) computed from 

the P- and S-impedance sections of Figures 2.29 and 2.30, where I used a c value of 

2.333.  These sections behave exactly as we would expect.  That is, ρf (Fig. 2.31) shows a 

strong decrease in the gas-filled reservoirs, whereas ρs (Fig. 2.32) shows an increase in 

the reservoir (since the sand matrix has a higher value than the overlying shale). 

 

 

Figure 2.31:  The ρf section found by combining the ZP and ZS inversions of Figure 2.29 and 2.30 using a c 
value of 2.333. 
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Figure 2.32:  The ρs section found by combining the ZP and ZS inversions of Figure 2.29 and 2.30 using a c 
value of 2.333. 

 

Figure 2.33 shows a crossplot of ρf vs ρs between the productive zones for the two 

sections of Figures 2.31 and 2.32, where the gas sand is again clearly visible in the red 

region.  Figure 2.34 then shows the corresponding zones on the seismic section plotted 

from the crossplot of Figure 2.33.   

 

Figure 2.33:  A crossplot between the sections of the previous two figures over the productive zone. 
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Figure 2.34:  The portion of the seismic section corresponding to the gas and non-gas zones.  The "red" gas 
region is where expected. 
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2.10 Conclusions 

 

 In this chapter, I discussed the various seismic attributes that will be used in 

subsequent chapters.  These included single trace attributes, multi-traces attributes, and 

model-based attributes. Single trace attributes consist of instantaneous attributes, 

windowed-frequency attributes, recursive attributes, and bandpass attributes.  

 

 Multi-trace attributes consist of coherency and AVO.  In the coherency method, 

we use a window of traces from a 3D seismic volume to extract information about 

discontinuities within the seismic volumes, such as faults and fractures.  AVO attributes 

are extracted from pre-stack traces and generally involve two independent attributes that 

relate to information about the fluid content of the reservoir.   

 

 Finally, model-based attributes involved the combination of information derived 

from the seismic trace with a geologically based model, and included post-stack seismic 

inversion, inversion of AVO attributes.  These are also referred to as deterministic 

attributes.   
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CHAPTER 3 :  MULTILINEAR REGRESSION 
 
 
3.1 Introduction 

 

 In Chapter 2, I discussed the seismic attributes that will be used in this study.  In 

this chapter I will begin the analysis of how to optimally combine these attributes in order 

to predict reservoir parameters.  Specifically, I will focus on the technique of multilinear 

regression, which is a generalization of the solution to finding the best least-squares fit to 

a straight line.  Multilinear regression will be used in two fundamental ways in this work. 

First, it can be used as our primary approach for the technique of reservoir parameter 

prediction (Russell et al., 1997).  As we will see in the case study at the end of the 

chapter, this is especially true when we apply this approach to well log prediction using 

other well logs.  Second, multilinear regression gives us a fast and efficient way to group 

our seismic attributes prior to analysis with the more powerful nonlinear neural networks 

to be discussed in subsequent chapters (Hampson et al., 2001).   

 

 In this chapter I will start by discussing multivariate statistics.  I will consider 

both univariate and bivariate statistics, before generalizing to N-dimensional attribute 

space.  I will then review the multivariate normal distribution, looking at the univariate, 

bivariate and trivariate cases before generalizing to N dimensions.  I will then discuss 

multilinear regression, and show how this technique can be used to solve for the 

prediction of reservoir parameters from seismic attributes.  Finally, these techniques will 

be applied to an actual case study. 

 

3.2 A word about notation 

 

 Before I start discussing multivariate statistics and multilinear regression, it is 

important to understand the terminology used in this study when referring to seismic 

attributes, and the distinction between the attribute vector and the sample vector (this is 
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given in more detail in Appendix 1).  This is best seen in Figure 3.1, which was also 

shown in Chapter 1 as Figure 1.5.  This figure shows the basic problem of predicting a 

target log using multiple seismic attributes. 

 
Figure 3.1: The basic multilinear regression problem, showing the sample vector xj, attribute vector aj, and 

the target value tj. 
 

 In Figure 3.1, the ith attribute vector ai represents all N samples of a particular 

seismic attribute.  In the case shown in the figure there are three attribute vectors.  

However, in general, there will be M attribute vectors.  In Figure 3.1, notice that I have 

shown only a single sample of the target log, written tj.  However, there are also N 

samples in the target, so we can think of the target log as the vector [ ]N1 tt "=Tt .  

The M attribute vectors are the same length as the target vector, and can be 

written [ ] .M,,1i,aa Nii1 …" ==T
ia  

 

 Referring back to Figure 3.1, note that the jth sample vector, xj, is the M-

dimensional vector of attribute values associated with the jth target sample tj, and can be 

written as [ ] .N,,1j,xx jMj1 …" ==T
jx  

 



57 
 

 

 If we consider the attribute vectors as the columns of this matrix, we get the N 

row by M column matrix A, or 

[ ]















==

NMN

M

aa

aa
A

"
#%#

"
"

1

111

M1 aa .   (3.1) 

 If we consider the sample vectors as the columns of the matrix, we get the M row 

by N column matrix X, or 

[ ]















==

MNM

N

xx

xx
X

"
#%#

"
"

1

111

N1 xx .   (3.2) 

 Note that matrices X and A contain all of the seismic samples that will be used in 

the reservoir prediction problem and are the transpose of each other, which can be written 

as A = XT.  In multivariate statistics, matrices A and X represent what is referred to as a 

single multivariate observation (e.g. Johnson and Wichern, 1998, page 117).  

 

3.3 Multivariate statistics 

 

 I will now review the concepts of multivariate statistics using the dataset shown in 

Figure 3.1. As already mentioned, this figure shows a target sonic log on the left and 

three seismic attributes on the right. Our objective is to combine these attributes in an 

optimum way to approximate the target log.  The target log is the P-wave sonic log from 

well 01-08 in Figure 2.1.  To relate the attributes shown in Figure 3.1 to those discussed 

in the last chapter, Attribute 1 is inverted seismic impedance using a model-based 

inversion algorithm, Attribute 2 is the derivative of the seismic trace with respect to time, 

and attribute 3 is the integration of the seismic trace with respect to time.  All three 

attributes were extracted from the 3D seismic volume shown in Figure 2.1, where the 

attribute traces within a one trace radius of the well location have been averaged. The 

reason that these particular attributes were chosen will be discussed later in this chapter.   
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3.3.1 Univariate statistics 
 

 Let us start by looking at the statistics of each attribute individually.  From a 

statistical point of view, each attribute is called a variate, and I will thus first discuss 

univariate statistics.  To understand the range and distribution of values in the target log 

and each of the attributes, it is useful to create a histogram of these values.  In a 

histogram, we find the minimum and maximum values of each variate, divide this range 

into N divisions, and determine how many values fall into each division.  Figure 3.2 

shows a histogram of each variate, where I have chosen N = 10.  There are 69 points in 

each of our variates. 

 

 The histograms in Figure 3.2 show us the symmetry (or lack of it) of the 

distributions of the values in the target and each attribute, and also the basic statistics of 

the variates.  The distribution of points shown in Figures 3.2(a), (c), and (d), are 

reasonably symmetrical, whereas the distribution in Figure 3.2(b) is slightly skewed.  I 

will talk more about the shape of these distributions in the next section. 

 

 The two basic statistics that I will derive for each of our variates are the mean and 

variance.  The mean is the arithmetic average of the sample values and the variance is the 

average of the sum of the squared difference between the sample values and the mean.  

Using the notation shown in Figure 3.1, the means of the target and attributes can be 

written as  

 ∑
=

=
N

j
jt t

N 1

1µ , (3.3) 

and 

∑
=

=
N

j
jii a

N 1

1µ ,    (3.4) 

where I have used the subscript i to represent the ith attribute mean.  
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 (a) (b) 

 
 (c) (d) 

Figure 3.2:  Histograms of the target and attributes shown in Figure 3.1, where (a) is the histogram of the 
target log, (b) is the histogram of attribute 1, (c) is the histogram of attribute 2, and (d) is the histogram of 
attribute 3.  In each figure, x represents the position of the mean value, and o represents the position of the 

mean plus and minus the standard deviation, respectively. 
 

 The mean is also called the first moment.  Another important statistic is the 

second moment, which is related to the square of the samples.  To compute the second 

moment, we simply replace the terms after the summation sign in equations (3.3) and 

(3.4) with their squared values.  A more common measurement is the variance, which is 

defined as the second moment away from the mean, and can be written as 
2
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for the target, and as 
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for the attributes.  Notice that the variance can be written either as the normalized sum of 

the squared differences between the values and their mean, or as the difference between 

the second moment and the square of the mean.   

 

 An alternate expression for the variance involves using vector notation.  In this 

case we observe that the variance is the scalar product of the vectors, after subtracting the 

means, divided by the number of samples.   In equations, we write 

,2

N
)-()-( t

T
t

t
µµ tt

=σ  and    (3.7) 

 ,2

N
)-()-( i

T
i

i
µµ ii aa

=σ     (3.8) 

where 















=

1

1
#tt µµ  and 
















=

1

1
#ii µµ , both vectors of length N.  An alternate definition of the 

variance uses a divisor of N-1, rather than N.  There are sound theoretical reasons for this, 

since dividing by N-1 leads to an unbiased maximum likelihood estimator (Hogg and 

Craig, 1995).  However, this only becomes crucial as the value N gets very small, and our 

datasets are usually quite large.  Also, it is more convenient to use the divisor N when we 

discuss the covariance matrix.  Another important statistic is the standard deviation, σ, 

which is the square root of the variance.  In Figure 3.2, both the means and the mean ± 

one standard deviation have been shown for the target and attributes.  A summary of 

these values is given in Table 3.1.  

 

 Mean Variance Standard Deviation 

Target 3975 m/s 1.303 x 105 (m/s)2 361 m/s 

Attribute 1 9903 m/s·g/cc 1.709 x 106  1307 m/s·g/cc 

Attribute 2 15.3 7.875 x 105 887 

Attribute 3 264 4.187 x 107 6471 

 
Table 3.1. The univariate statistics of the target and attribute vectors shown in Figure 3.1. 
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3.3.2 Bivariate statistics 
 

 The univariate statistics just discussed give us information about the individual 

variates, but not about their inter-relationships.  The inter-relationships are best shown by 

crossplotting each pair of variates, and Figure 3.3 displays the four-by-four matrix of 

crossplots shown in Figure 1.2.  In each crossplot, the means have been set to zero, and 

the values have been scaled so that the largest absolute value is equal to one.   

 

 

Figure 3.3: A four-by-four matrix of crossplots, where the target log and each of the attributes shown in 
Figure 3.1 have been crossplotted against each other.  

 

 The quantitative information contained in a crossplot can be found by computing 

the covariance between the two variates, which is a natural extension of the variance.  

Notice that there are two types of covariance indicated in Figure 3.3, the covariance 
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between the target and an attribute, which relates to the predictive ability of each 

attribute, and the covariance between a pair of attributes, which relates to the 

independence of the attributes.  Let us first consider the covariance between two 

attributes, where the two attributes are ai and ak.  The expression for covariance is very 

similar to that of variance in Equation 3.6, and can be written in summation form as 
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 In equation (3.9) the covariance has been written first as the normalized product 

of the differences between the values and their means and, second, as the difference 

between the normalized sum of the products and the product of the means.  The 

normalized sum of the products is called the correlation of the two attributes.   This 

second expression will be useful in a later section when interpreting the regression 

coefficients.   It is also clear that the variance written in equation (3.6) is a special type of 

covariance, in which i = k.  This means that σii = σi
2.  The variance is often referred to as 

the auto-covariance and can be seen on Figure 3.3 as straight line fits.  

 

 As with the variance, we can also write the covariance in vector form as  

,
N
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T

i
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=σ     (3.10) 

where again the vector means are simply the product of the scalar means and an N-length 

vector of ones.  In the same way, the covariance between the target and one of the 

attributes can be written as 
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or as 

N
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T
t

ti
µµ iat

=σ ,    (3.12) 

Again, note that the auto-covariance of the target is identical to the variance of the target. 
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 Another useful statistic is the normalized covariance, or the correlation 

coefficient, which can be written for two attributes as 

ki

ik
ik σσ

σρ = .     (3.13) 

That is, the correlation coefficient is the covariance between the two vectors divided by 

the product of the standard deviations of each vector.  Obviously, the correlation 

coefficient for auto-covariance is equal to one.  A correlation coefficient of 0 would 

indicate no correlation between the two vectors but, in this study, I have found that any 

value below 0.5 indicates poor correlation. A similar expression for the correlation 

coefficient between the target and one of the attributes can be easily written down.  Table 

3.2 shows the correlation coefficients between the target and attributes of Figure 3.1. 

 

 Target Attribute 1 Attribute 2 Attribute 3 
Target 1 0.57 -0.03 0.107 

Attribute 1 0.57 1 -0.486 0.513 
Attribute 2 -0.03 -0.486 1 -0.289 
Attribute 3 0.107 0.513 -0.289 1 

 
Table 3.2 . The correlation coefficients between the target and attribute vectors shown in Figure 3.1. 

 

 

3.3.3 The covariance matrix 
 

 Table 3.2 can be written as a matrix, called either the covariance matrix or the 

correlation matrix, depending on which value is being computed.  In the discussion of 

this section I will be restricting the discussion to the attribute covariance matrix, but these 

remarks are also valid for the situation shown in Table 3.2 if we consider the target vector 

to be the first attribute.  The covariance matrix for M attributes can be written: 
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where each of the terms σik in the covariance matrix are computed using equation (3.10). 

The correlation matrix can be written 
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where the terms ρik are as defined in equation 3.13.  By combining equations (3.1) and 

(3.10), we can show that the covariance matrix can be computed as 
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equivalent of matrix A.  Another way to think of equation (3.16) is as a matrix of vector 

inner products, or 
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where ai0 = ai – µi.  Equation (3.17) illustrates the basic structure of the covariance 

matrix, where each element in the matrix, σik, is the inner product of the zero-mean 

attributes ai0 and ak0. 

 

 In the above derivation of covariance I have used the attribute vectors, ai, shown 

in Figure 3.1.  An alternate way to define the covariance matrix is based on the sample 

vectors, xi, also shown in Figure 3.1.  To derive the covariance matrix in this way, we 

will compute the mean values slightly differently.  That is, we compute an M-

dimensional vector of means given by 
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Note that the individual values in the mean vector µ are the attribute means given by 

equation (3.4).  The computation of the covariance matrix is then found by computing the 

sum of the normalized outer products of xj, where j = 1 to N, and dividing by N, or 

∑
=
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T
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Equation (3.19) will again produce an M x M matrix, which is the same calculation as 
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3.4 The multivariate normal distribution 

3.4.1 The general case 
 

 For an M-dimensional vector x, the multivariate normal distribution is written: 





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2
1exp

)2(
1)( 1

2/12/
µxΣµx

Σ
x T

M
p

π
,        (3.21) 

where µ  is the M-dimensional vector of means defined in equation 3.18 and Σ  is the 

covariance matrix given by equation (3.14).  The term inside the exponential of equation 

(3.21), written 

)()( 12 µxΣµx −−=∆ −T ,    (3.22) 

is called the statistical, or Mahalanobis distance (Bishop, 1995), and measures the 

statistical distance from x to µ and defines hyperellipsoids of constant probability density. 
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3.4.2 The univariate case 
 

 The simplest case of equation (3.21) is the univariate normal distribution (M = 1), 

which is written: 


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


 −−= 2

2

2
)(exp

2
1)(

σ
µ

πσ
xxp ,    (3.23) 

where the mean µ and variance σ 
2

 are as defined in equations (3.3) through (3.7).  In 

Figure 3.4, the histograms shown in Figure 3.2 have been fitted with normal distributions 

based on the means and standard deviations shown in Table 3.1.    

 
 (a) (b)    

 
 (c) (d) 

Figure 3.4: The histograms shown in Figure 3.2 have been fitted with the normal distributions based on 
their means and standard deviations, where (a) is the distribution of the target log, (b) is the distribution of 
attribute 1, (c) is the distribution of attribute 2, and (d) is the distribution of attribute 3, all from Figure 3.1  

 

 From Figure 3.2, it is clear that Figures 3.4(a) and (c), the target log and attribute 

2 (derivative of the seismic trace), fit the normal distribution quite well.  However, 

Figures 3.4(b) and (d), attribute 1 (inverted impedance) and attribute 3 (integrated seismic 
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trace), do not fit the normal distribution very well.  Figure 3.4(b) is positively skewed and 

would appear to fit better to a log normal distribution, given by 
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But Figure 3.4(b) would appear to fit better to a uniform distribution, given by  
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 Despite the fact that the normal distribution does not fit our data in all cases, it 

usually gives a reasonable fit and will be used as our statistical model. 

3.4.3 The bivariate case 
 

 For M = 2, equation (3.21) becomes the bivariate normal distribution, which is the 

simplest multivariate example and can be used to help visualize the multivariate normal 

distribution.  In this case, the covariance matrix can be written as 
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 In equation (3.26), note that the cross-covariance terms σ12 are always equal to 

each other, whereas the auto-covariance terms σ11 and σ22 may be distinct.  Depending on 

the nature of the auto and cross-covariance terms, there are three cases of interest for the 

bivariate covariance matrix.  In the most general case the cross-covariances are non-zero 

(which implies that the attributes are statistically dependent), and the auto-covariances 

are distinct.  In this case, the inverse covariance matrix can be written 
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and the bivariate normal distribution can be written: 
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 Using the normalized variates 
1

11
1 σ

µ−= xz and
2

22
2 σ
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xz , the covariance 

matrix assumes the simple form: 
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where ρ=ρ12.  Equation 3.29 has an inverse given by 
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and we can therefore re-write equation 3.28 as the standardized bivariate normal density 
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 Equation (3.31) makes it clear that a contour of constant density for the bivariate 

distribution is defined by the equation (Anderson, 1984) 

   ( ) 22
221

2
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1
1 czzzz =+−

−
ρ

ρ
,    (3.32) 

which is an ellipse aligned at either +45o, if ρ > 0, or -45o, if ρ < 0, where c is an 

arbitrary constant.  For ρ > 0, the lengths of the semi-major and semi-minor axes are 

ρ+1c and ρ−1c , respectively, whereas for ρ < 0, the lengths of the semi-major and 

semi-minor axes are ρ+1c and ρ−1c , respectively.  Returning to the target and 

attributes shown in Figure 3.1, Table 3.1 shows that their correlation coefficients are ρta1 

= 0.57,               ρa1a2 = -0.486, ρa1a3 = 0.107, and ρa2a3 = -0.289.  Figure 3.5 shows the 

crossplots of these four cases, with elliptical contours corresponding to c = 1 and c = 2,  

where (a) shows the target versus attribute1, (b) shows attribute 1 against attribute 2, (c) 

shows attribute 1 against attribute 3, and (d) shows attribute 2 against attribute 3. 
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 (a) (b)  

 
 (c) (d) 

Figure 3.5: Crossplots of (a) the target versus attribute 1, (b) attribute 1 versus attribute 2, (c) attribute 1 
versus attribute 3, and (d) attribute 2 versus attribute 3, with elliptical contours corresponding to c = 1 and 2 

in equation (3.32). 
 
 
 Let us now consider the simpler case in which the attributes are statistically 

independent, which means that the cross-covariances are equal to zero, and the auto-

covariances are given by the variances σ1
2 and σ2

2 .  In this case, the inverse covariance 

matrix becomes 
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and the bivariate normal distribution can be written 
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The resulting distribution is the product of two gaussian curves.   

 

 In the simplest bivariate case, the attributes are statistically independent and the 

auto-covariances are identical and equal to the variance σ 2.  In this case, the ellipses 

become circles, the inverse covariance matrix becomes 
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and the bivariate normal distribution can be written: 
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3.4.4 The trivariate case 
 

 I will next extend our analysis to three dimensions, which is rarely considered in 

textbooks because of its complexity and difficulty in being visualized.  Let us first 

compute the inverse of the covariance matrix, which can be written 
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where )()()(det 22132312132313331212
2
23332211 σσσσσσσσσσσσσσ −+−−−=  is the 

determinant.  To make this clearer, the inverse of the correlation matrix can be written 
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 Using correlation coefficients, the symmetry in equation (3.38) becomes more 

apparent. Since both the normalized covariance matrix and its inverse are each 

symmetric, we can write their general form as 
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 Using equation (3.39) and the normalized variates 
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where the terms a through f can be evaluated by comparing equations (3.38) and (3.39).  

The terms a, d, and f correspond to the auto-covariances in the main diagonal, and the 

terms b, c and e correspond to the cross-covariance terms.   

 

 Thus, the general M-dimensional multivariate distribution will have 2M terms, the 

first M terms corresponding to the auto-covariances, and the second M terms 

corresponding to the cross-covariances.  As will be discussed in the next section, we can 

always rotate the covariance matrix back to its principal directions, in which case the 

cross-covariance terms disappear.   

 

 Figure 3.6 shows the three-dimensional crossplot of attributes 1, 2, and 3, with the 

surfaces corresponding to g(x) equal to exp(-1/2) and exp(-1).  The three lines shown in 

Figure 3.6 correspond to the three principal components of the trivariate normal 

distribution, and will be discussed in the next section.  
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Figure 3.6: The trivariate crossplot and normal distribution contours corresponding to attributes 1, 2 and 3, 
showing levels corresponding to exp(-0.5) and exp(-1.0).  The lines emanating from the origin show the 

principal axes, discussed in the next section. 

 

3.4.5 Eigendecomposition of the multivariate normal distribution 
 

 From our preceding discussion, note that the multivariate normal distribution can 

be written: 
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exp)(
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where )()( 12 µxΣµx −−=∆ −T is the Mahalanobis distance and 2/12/)2( −−= ΣMs π is a 

scale factor.  The surfaces of constant probability density of the multivariate normal 

distribution are therefore hyperellipsoids defined by constant Mahalanobis distance.  

Although we considered the bivariate and trivariate cases in the last two sections, we can 

arrive at a fuller understanding of these hyperellipsoids by finding the principal axes of 

∆ 2, using the eigenvalue equation 

ii uu iλ=Σ ,          (3.42) 



73 
 

 

where λ i and ui are the ith eigenvalue and normalized eigenvector corresponding to the 

covariance matrix Σ.  If we consider the inverse covariance matrix, we can write  

ii uu 1
i
−− = λ1Σ .    (3.43) 

However, since by definition we know that ui
Tui=1, we can rewrite equation (3.43) as   

1
i
−− = λi

T
i uu 1Σ .    (3.44) 

 

 Equating the right-hand side of equation (3.44) to the Mahalanobis distance 

defined in equation (3.41), it is clear that 1
i

2 −= λ∆  and that that the principal axes of the 

ellipsoids are equal in length to the inverse square root of the eigenvalues.  To illustrate 

this for the bivariate case we can use the normalized covariance matrix of equation (3.29) 

to find that the two eigenvalues are 
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 The eigenvectors associated with λ1 and λ2 are: 
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 We can then write the eigenvector matrix as  
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and show that the original correlation matrix can be rotated to its principal axes by the 

following equation: 
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 Notice in equation (3.45) that the rotated matrix Λ corresponds to the diagonal 

eigenvalue matrix, and that the principal components of the bivariate ellipse are given by 

the square roots of the eigenvalues, as discussed earlier.  Since we are using the 

normalized covariance matrix, or correlation matrix, the operation in equation (3.45) 

corresponds to a 45o rotation.  Another way to look at this is to realize that U corresponds 

to the rotation matrix given by 
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 The preceding discussion can be generalized to M dimensions and also to the un-

normalized covariance matrix, in which case the rotation is through an arbitrary angle.  

 

 An alternate and equivalent interpretation to the one given above is  

ΣRRX)R(XR)(XR)XRΛ TTTTT === ( ,   (3.46) 

where the rotations are applied to both the original matrix and its transpose. 

 

3.5 Multivariate regression 

3.5.1 Introduction to multivariate regression 
 

 As shown in Figure 3.1, I assume that we have a target log t, with N samples, and 

that we have M attributes ai, also each with N samples.  In general, we have a lot more 

samples than attributes, so that M << N (for example, in Figure 3.1, we have three 

attributes and 69 time samples).  We can then write the fundamental formula for linear 

prediction as 

MMwww aaat +++= "1100 ,          (3.47) 

where [ ]Nttt "21=Tt , and [ ]iNii aaa "21=T
ia .  Note that the zeroth 

attribute vector is written [ ]111 "=T
0a .    
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 Equation (3.47) can be written more compactly as 

w,t A=     (3.48) 

where 
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 As shown in Figure 3.1, there is a second way to visualize the problem.  This is to 

consider each value in the target log, tj, as the scalar product of the weight vector and a 

vector xj, which is an (M+1)-dimensional vector given by the attribute values at a given 

sample.  This can be written: 

N, , ,1jt j …== ,xw j
T     (3.49) 

where [ ] [ ]jMjM xx,www "" 110 1and == T
j

T xw .  As discussed in the 

previous section, the matrix given by the collection of all N vectors xj is the transpose of 

the matrix given by the collection of all M vectors ai.  That is worth restating at this point.  

That is, we can write the two matrices as 
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 The importance of equation (3.50) for an understanding of the problem to be 

solved in this dissertation cannot be overstated.  The vectors ai are fundamental to the 

regression problem, whereas the vectors xj are fundamental to both classification and 

basis function neural networks.  Figure 3.7 shows the xj vectors in two- and three-

dimensional space.  Notice that the two-dimensional crossplot shown in Figure 3.7(a) can 

be thought of as the top-down projection of the three-dimensional crossplot shown in 
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Figure 3.7(b). We could extend this analysis to any number of dimensions but cannot 

visualize more than three dimensions.   

 
 (a) (b) 

Figure 3.7:  Crossplots of the attributes shown in Figure 3.1, where (a) shows the first two attributes, and 
(b) shows all three attributes.  Each point in the crossplots can be thought of as a vector xj without the 

zeroth term. 
 

 Since equation (3.47) constitutes an overdetermined problem (that is, more 

observations than unknowns), its least-squares solution can be given as 

tw T-1T AI)AA λ+= ( ,     (3.51) 

where λ is a pre-whitening factor and I is the M x M identity matrix.  A complete 

discussion of equation (3.51) is given in Appendix 2. 

3.5.2 Solving for the weights in the two-dimensional case 
 

 Before discussing the general case, let us consider the two-dimensional case of 

equation (3.47), given by 

 10 aat 10 ww += .    (3.52) 

Equation (3.52) can be written in matrix form as 
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 In the linear problem of equations (3.52) and (3.53), w0 is called the intercept and 

w1 the gradient.  The solution to equation (3.53) can be computed using the least-squares 

solution of equation (3.51), giving (with λ = 0) 
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 (3.54) 

 

 We can therefore write out the full computation for the intercept as 
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and for the gradient as 
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 If we divide both the numerator and denominator in both equations by N2, the 

denominator is the variance given in equation (3.6).  Also, the numerator in equation 

(3.56) becomes the covariance from equation (3.11).  
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 For the gradient, we find that 

21
a

atw
σ
σ= .     (3.57) 

which is the covariance of a and t divided by the variance of the independent variable a.  

 

 We can also expand equation (3.55) and show that the intercept can be written as 

at ww µµ 10 −= ,    (3.58) 

which is the mean of the dependent variable minus the product of the gradient and the 

mean of the independent variable.  From this statistical interpretation, two important 

points can be made.  First, the regression of t on a is generally different from the 

regression of a on t.  To see this, note that the regression of a on t can be written as: 

,*
1

*
0 ta ww +=      (3.59) 

where ,2
*
1

t

atw
σ
σ=  and ta ww µµ 1

*
0 −= .  It is then obvious that w1

*= w1 only if σa
2 = 

σt
2, and that w0

*= w0 only if σa
2 = σt

2and µa = µt.  In other words, the gradients will be 

identical only if the variances of the target log and seismic attribute are identical, and the 

intercepts will be identical only if both the means and the variances of the target log and 

seismic attribute are identical. 

 

 Second, recall that the normalized regression coefficient can be written as the 

covariance of the target log and seismic attribute divided by the product of the standard 

deviations (the square root of the variance) of the target log and seismic attribute, or  

ta

at
at σσ

σρ = .     (3.60) 

Thus, if σa = σt the two gradients are also equal to the regression coefficient.  
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3.5.3 The general multivariate case 
 

 The preceding analysis can be extended to multivariate linear regression (Johnson 

and Wichern, 1998).  Let us rewrite equation (3.47) as 

wt Aw += 0 ,    (3.61) 

where [ ] [ ]MM21 Xwww aaawT "" 21and == . Then, the solution to the 

weights can be given as 

tA
1σ−= Σw ,     (3.62) 

and 

A
T

tw µw−= µ0 ,     (3.63) 

where 





















=





















=

MM a

a

a

A

ta

ta

ta

tA and

µ

µ
µ

σ

σ
σ

##
2

1

2

1

µσ . 

 

 Let us first consider the simplest multivariate case where M = 2.  Then, we have 

the regression equation 

22110 aat www ++= .    (3.64) 

 

 From equation (3.62), the second two terms are then given by: 
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 In the case where a1 and a2 are independent, the relationship between the 

multivariate case and the univariate case is even more obvious.  In this case, we find that 
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 In other words, the weights are given by the covariance of the attribute with the 

target divided by the covariance of the attribute.  This is identical to the univariate case 

but is only valid when the attributes are independent.  In the next section, I will discuss 

how to transform dependent attributes into independent attributes.  As an example of our 

discussion, Figure 3.8 shows the regression of the target against the first two attributes 

shone in Figure 3.1, where (a) shows the points in three dimensions, and (b) shows the 

best-fit plane to these points. 

 

 
 (a) (b) 
 
Figure 3.8:  The regression lines for the target and first two attributes from Figure 3.1, where (a) shows the 

values themselves and (b) shows the two-dimensional regression, which takes the form of a plane. 
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3.5.4 Multilinear regression with convolutional weights 
 

 Recall that the multilinear regression equation shown in equation (3.47) used 

scalar weights. We can extend this equation by letting the weights be vectors.  This can 

be written:  

MMw awawat ∗++∗+= "1100 ,   (3.67) 

where 
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a  is the ith attribute, where i = 1, … , M, a0 = 1, the 

identity vector, and * denotes convolution.   

 

 The difference between equations (3.64) and (3.67) is shown schematically in 

Figure 3.9. 

 

  
 (a) (b) 
 
Figure 3.9:  A schematic example of the difference between (a) the single-point weights given by equation 
(3.65) and (b) the convolutional weights given by equation (3.66) (from Hampson et al., 2001). 
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 Convolution was discussed in Chapter 2 in the context of the convolutional model 

of the earth, and is also covered in detail in Appendix 3, where it is shown that linear 

equations 3.65 and 3.66 can both be derived from the general theory of multichannel 

digital filtering.  As a quick review of convolution, note that if we consider the case in 

which we have only one attribute, the full convolutional equation can be written using 

matrix notation as 

aat 0 Ww += 0 ,    (3.68) 

where the convolutional matrix is written in similar fashion to the one shown in equation 

(2.27).  However, the matrix W shown in equation (2.27) was of dimension N+L-1 rows 

by N columns, so that the output also had N+L-1 points, rather than N points as shown in 

equation 3.66.  To avoid this problem, we truncate matrix W to N rows, with the term 

w(0) in both the upper left and lower right elements of the matrix.   

 

 Let us consider an example in which N = 4, L = 3 and M = 2.  That is, we have 

two attributes with four values each, and an operator of length three points.  This gives us 

the equation 
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  (3.69) 

  

 Often, it is preferable to use a symmetrical wavelet, with time zero at the centre, 

as shown in Figure 3.19(b).  For our three point case of equation (3.68) this would be 

written [ ])1()0()1( +−= wwwTw , and the resulting matrix expression is then given by 

the matrix equation 
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 Collecting terms, we can rewrite equation (3.69) as 
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where I have only considered the first attribute.  The interpretation of equation (3.71) is 

that the effect of a convolutional operator is to create a new set of attributes that are 

simply shifted versions of the original attributes.  Thus, the number of effective attributes 

in our process is the number of actual attributes multiplied by the operator length L. 

  

 An alternate interpretation of equation (3.71) can be found by re-expressing this 

equation with the weighting coefficients in column format, or 
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 Equation (3.72) can be solved using the generalized inverse approach. Dropping 

the zero weight and attribute number, and substituting equation (3.71) into equation 

(3.51), we get 
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or, in more complete form as 
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 Equation (3.74) can be extended for all of the attributes and involves nonzero lag 

autocorrelations and cross-correlations. It is known as the Wiener-Levinson equation 

(Claerbout, 1976), and has Toeplitz structure.  In seismic processing terms, we are de-

convolving the attributes to get a better match to the log values.  

   

3.6 A practical methodology 

3.6.1 Introduction 
 

 In the preceding five sections, I have discussed the theory of multivariate statistics 

and multilinear regression.  This gives us the theoretical basis for reservoir prediction 

using multiple seismic attributes.  In this section, I will describe a practical 

implementation of this methodology.  This discussion is based on work described by 

Russell et al. (1997) and Hampson et al. (2001).  The two key problems in the analysis 

can be summarized as follows: which attributes should be used, and which of these 

attributes are statistically significant?  These two questions will be addressed in the next 

two sections. 
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3.6.2 Finding the best attributes 
 

 In Chapter 2, I discussed the various seismic attributes that can be used to predict 

reservoir parameters.  This was only a partial list, as many more attributes can be devised 

which are either combinations of those discussed in Chapter 2, or are based on new 

algorithms.  But how many attributes should we use, and in what order?  The procedure 

adopted here is to try various combinations of attributes and minimize the least-squares 

error between the training samples, which are the values on the logs to be predicted, and 

the attributes. The least-squares error criterion is given by 

∑
=

−−−−=
N

j
jMMjj awawwt

N
E

1

2
110

2 )(1 … .  (3-75) 

As discussed in section 3.5.4, the weights can also be vectors, which is equivalent to 

introducing new time-shifted attributes equal to the number of attributes multiplied by the 

length of the operator.  The most obvious approach is to find the best set of M attributes 

from a total collection of T attributes.  If we do this by a procedure called the “exhaustive 

search”, in which the least-squares error is found for each possible combination and then 

we choose the set with the lowest error, the result is that we must compute a prohibitive 

number of cases.   

 

 An efficient method of finding the attributes is a technique called step-wise 

regression (Masters, 1995), which consists of the following steps: 

(1) Find the best attribute by an exhaustive search of all the attributes, using equation 

 (3.75) to compute the prediction error for each attribute (i.e. M = 1) and choosing 

 the attribute with the lowest error. 

(2) Find the best pair of attributes from all combinations of the first attribute and one 

 other.  Again, the best pair is the pair that has the lowest prediction error from 

 equation (3.75), with M = 2. 

(3) Find the best triplet, using the pair from step (2) and combining it with each other 

 attribute. 



86 
 

 

(4)  Continue the process as long as desired. 

 

 Step-wise regression therefore gives us a very efficient way of finding the best set of 

M attributes, since these will have the lowest least-squared error.  But how do we choose 

the value for M?  Actually, this method will indicate that M should be as large as 

possible, since increasing the number of attributes will either decrease the error or keep it 

the same. (As pointed out by Hampson et al. (2001), if this were not true, all we would 

have to do is set the weight of the last attribute to zero to make it true.)  In the next 

section, we will discuss a method for finding the best value for the number of attributes. 

3.6.3 Cross-validation 
 
 Step-wise regression will give us a set of attributes that is guaranteed to reduce 

the total error as the number of attributes goes up.  So when do we stop?  This is done 

using a technique called cross-validation, in which we leave out a training sample and 

then predict it from the other samples.  We then re-compute the error using equation 

(3.75), but this time from the training sample that was left out.  We repeat this procedure 

for all the training samples and average the error, giving us a total validation error.  This 

computation is done as a function of the number of attributes, and the resulting graph 

usually shows an increase in validation error past some small number of attributes such as 

five or six.  Rather than perform this procedure for all samples, we perform it on a well- 

by-well basis.  This is a reasonable assumption and speeds up the process on the 

computer. 

  

 I will now apply all of this theory to a case study from the Blackfoot area of 

central Alberta. 
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3.7 A multiattribute case study 

3.7.1 Introduction 
 

 In this section, I will use the multivariate approach just discussed to first predict 

well logs from combinations of other well logs, and, second, using these new well logs, 

predict well log parameters from multiple seismic attributes over a 3D volume. In both 

cases, we will be predicting S-wave sonic logs. 

 

 I will be using a seismic dataset acquired over the Blackfoot area of Alberta.  A 

3C-3D seismic survey was recorded in this area in October 1995, with the primary target 

being the Glauconitic member of the Mannville group. The reservoir occurs at a depth of 

around 1550 m, where Glauconitic sand and shale fill valleys incised into the regional 

Mannville stratigraphy. The objectives of the survey were to delineate the channel and 

distinguish between sand-fill and shale-fill. The well log input consists of nine wells, 

each with P-wave sonic, density, and gamma ray, and three with S-wave sonic.  Figure 

3.10 shows the distribution of wells throughout the 3D survey area, where the three wells 

that contain S-wave logs have been indicated with arrows.   

 

Figure 3.10:  The map from the Blackfoot area showing the  wells used in the study. Wells 08-08, 04-16 
and 12-16 contain S-wave sonic logs.   
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3.7.2 Predicting S-wave curves from other log curves 
 

 We will now use the multivariate procedure to predict new pseudo-S-wave logs at 

each of the six well locations in which the S-wave curve has not been measured.  The 

logs from one of the wells in which the S-wave sonic log is present, well 08-08, are 

shown in Figure 3.11. 

 
  

Figure 3.11:  Wells 08-08, displaying the density, P-wave, S-wave, and gamma ray log curves. 
 

 
 The traditional approach to S-wave curve prediction (Castagna et al., 1985) is to 

find the linear regression fit between the P-wave and S-wave curves given by 

PS bVaV += .     (3.76a) 
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 The coefficients derived in the above reference were given as 

SP V16.1s/m1360V += ,    (3.76b) 

which can be  re-arranged for VS as the dependent variable. Figure 3.12 shows the 

application of equation (3.76b) to the P-wave sonic logs from each of the three wells, 

with the correct S-wave log superimposed on the computed log.  Although the fit for the 

wells is reasonable in Figure 3.12, we could do better by finding a local fit.  In fact, we 

will extend our analysis beyond just a fit between P-wave and S-wave logs. 

                      
 (a) (b) (c) 
  

Figure 3.12:  The application of equation (3.76) using the coefficients derived by Castagna et al. (1985), 
where (a) shows well 04-16, (b) shows well 08-08, and (c) shows well 12-16. In all cases the blue line 

shows the original S-wave log and the red line shows the computed S-wave log. 
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 Figures 3.13 through 3.16 show the correlations between S-wave log and the 

density log, gamma ray log and P-wave log for wells 04-16, 08-08, and 12-16.  For each 

of these regressions, we can write the generalized form of equation (3.64) as 

bLaVS += ,     (3.77) 

where L represents an arbitrary log.  In addition to the a and b coefficients, we will also 

derive the correlation coefficient and RMS error for each of the regressions.   

 

 For well 04-16, shown in Figure 3.13, it is obvious that the best fit in a least-squares 

sense is with the P-wave curve.  It would appear that the second best is with the gamma 

ray curve, and the third best is with the density curve. 

 
(a)       (b)    

 
      VP (m/s) 

(c) 
Figure 3.13:  The regression fits to the S-wave velocity log from the curves for well 04-16, between the 

Mannville and Mississippian tops, where (a) is versus density, (b) is versus gamma ray, and (c) is versus P-
wave velocity. 
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 However, when we look at the correlation coefficients and errors given in Table 3.3, 

we see that the density fit is actually slightly better than the gamma ray fit.  Notice that 

the gamma ray has a negative correlation with the S-wave log. 

 

S-wave velocity vs: P-wave velocity Density Gamma Ray 
Intercept (a) -366.95 -1182.76 2948.41 

Slope (b) 0.634 1.357 -7.434 
Correlation Coeff. 0.9305 0.5030 -0.4845 

RMS Error 92.251 217.683 220.329 
 

Table 3.3: Regression parameters for well 04-16. 
 

 The crossplots for well 08-08 are shown in Figure 3.14, and the correlation 

coefficients and errors are given in table 3.4.   Notice that the P-wave fit is the best, the 

density fit is second, and the gamma ray fit is the third best . 

 
(a)       (b)    

 
VP (m/s) 

(c) 
Figure 3.14:  The regression fits to the S-wave velocity log from the curves for well 08-08, between the 

Mannville and Mississippian tops, where (a) is versus density, (b) is versus gamma ray, and (c) is versus P-
wave velocity. 
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S-wave velocity vs: P-wave velocity Density Gamma Ray 
Intercept (a) 182.507 -482.073 2541.01 

Slope (b) 0.496 1.070 -3.586 
Correlation Coeff. 0.7766 0.5376 -0.2460 

RMS Error 140.992 188.716 216.921 
 

Table 3.4: Regression parameters for well 08-08. 
 

 Finally, the crossplots for well 12-16 are shown in Figure 3.15, and the correlation 

coefficients and errors given in table 3.5.  Note now that the P-wave fit is the best, the 

gamma ray fit is now second, and the density is third.  Both the density and gamma ray 

logs have correlation coefficients below 0.5, indicating a poor fit. 

 

 
 (a) (b) 

    

 
VP (m/s) 

(c) 
 

Figure 3.15:  The regression fits to the S-wave velocity log from the curves for well 12-16, between the 
Mannville and Mississippian tops, where (a) is versus density, (b) is versus gamma ray, and (c) is versus P-

wave velocity. 
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S-wave velocity vs: P-wave velocity Density Gamma Ray 
Intercept (a) 932.143 661.755 2567.9 

Slope (b) 0.321 0.631 -4.254 
Correlation Coeff. 0.4901 0.3283 -0.3864 

RMS Error 214.734 232.702 227.22 
 

Table 3.5: Regression parameters for well 12-16. 
 

 The result of combining all three wells is shown in Table 3.6, arranged in order of 

increasing RMS error and decreasing correlation coefficient.  As expected, the P-wave 

log correlates best, followed by the density log, followed by the gamma ray log. This 

would suggest that we will find the coefficients for the multilinear regression given by 

γρ dcbVaV PS +++= ,    (3.78) 

where ρ = density, and γ = gamma ray. 

 

 
 

Table 3.6: Regression parameters for all three wells, where the S-wave target is S-wave velocity and the P-
wave attribute is P-wave velocity. 

 

 The log attributes and coefficients in equation (3.78) were determined using the 

techniques described in the last section, in which cross-validation is used to determine the 

optimal ordering of attributes.  The results of performing the linear multi-attribute 

analysis are shown in Figure 3.16, which shows the graphical training and validation 

error, and Table 3.7, which shows the numerical errors.  Note that the training error is the 

error using all three wells in the prediction, and the cross-validation error is the error 

when the well to be predicted is left out of the training.   
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Figure 3.16:  The multi-regression fits to the S-wave log from the curves from wells 12-16, 08-08, and 04-
16, between the Mannville and Mississippian tops, where the training error is shown by the black dots and 

validation error is shown by the red dots). 
 

 

Table 3.7: The numerical results of the analysis shown in Figure 3.16. 
 

 Two results are clear from Figure 3.16 and Table 3.7.  First, when the multilinear 

regression technique is used, the gamma ray log is the second best log attribute to use.  

Second, the validation error shows that the error increases when the density log is 

included, indicating that the optimum fit is found by using only the P-wave and gamma 

ray logs in the multi-linear regression.   The computed coefficients were 

γ505.3V461.047.656V PS −+= ,   (3.79) 

The negative coefficient for the gamma ray log in equation (3.79) is due to the negative 

correlation of the gamma ray log with the S-wave log.  

  

 A better fit can often be introduced by applying nonlinear functions, such as the 

inverse, log, square and square root, to the attributes before performing the regression fit.  

Table 3.8 shows the numerical error for this fit.     
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Table 3.8: The numerical results when nonlinear functions were applied to both the target and the attribute 
in the analysis of Figure 3.16. 

 

 The optimum nonlinear functions were found to be the square root of gamma ray 

and the inverse of density.  The density log is also again seen to increase the validation 

error, and therefore is dropped. The computed regression coefficients are 

γ46.60V465.042.893V PS −+= ,    (3.80) 

 

 As a comparison with Castagna’s equation (3.76), the regression coefficients were 

also computed using the P-wave velocity alone, and were found to be 

PS V480.0125.269V +=     (3.81) 

 

 The fit between the resulting pseudo-sonic logs and the original logs in the three 

wells is shown in Figures 3.17 and 3.18, where Figure 3.17 shows the training results and 

Figure 3.18 shows the validation result.   In both cases, equation (3.79) is shown in (a), 

and equation (3.80) is shown in (b).   

 

 By comparing Figures 3.17(a) and (b) it is obvious that the addition of the gamma 

ray log has improved the fit.  The improvement is quite small in well 04-16, where the 

correlation between S-wave and P-wave values was high, but is noticeable in the deeper 

section of well 08-08.  Also, notice that the correlation coefficient has gone from 0.73, in 

the single regression case, to 0.78, in the multiple regression case.   
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 (a) (b) 

Figure 3.17:  The result of applying the training results for (a) equation (3.72), and (b) equation (3.71), 
where the black lines show the original logs and the red lines show the computed logs. 

 

 
 (a) (b) 

Figure 3.18:  The result of applying the validation results for (a) equation (3.72), and (b) equation (3.71), 
where the black lines show the original logs and the red lines show the computed logs. 
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 Figure 3.18, which shows the validation results, also shows improvement between 

the single regression case and the multiple regression case.  As expected, the correlation 

coefficients are slightly worse in this case, and the correlation coefficient has now 

improved from 0.68, in the single regression case, to 0.74 in the multiple regression case.  

 

 Equation (3.71) was then applied to the P-wave and gamma ray logs in the other 

six wells shown in Figure 3.20, to produce pseudo-S-wave sonic logs in each well.  These 

pseudo-well logs will be used in the next part of this study. 

 

3.7.3 Seismic analysis, inversion, and AVO  
 

 Our next objective is to predict pseudo-well log curves at each seismic trace 

location. Three steps are involved in the prediction of these pseudo-well log curves. The 

first step involves extracting the composite seismic at each well location (an average of 

the traces in a circular radius around the well) and the correlation of the well log to this 

composite trace, using the sonic log to build the depth-time relationship. The second step 

is the training step, in which we build the multi-linear relationship between the well log 

curve and the seismic trace attributes.  The third step involves applying the multilinear 

relationship to the seismic trace locations which do not have wells, using the seismic 

attributes derived at these locations.   

 

 Having created pseudo-S-wave sonic logs in the six wells of Figure 3.10 that did 

not originally contain S-wave logs, we now have a full suite of logs: P-wave, S-wave, 

density, and gamma ray, for each of the nine wells shown on that map.  I will now use the 

multilinear regression approach to create pseudo-logs for each of the traces in the seismic 

volume shown on the map. Pseudo-volumes will be created for two of the well log 

curves: S-wave and P-wave sonic.  
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 Let us first examine the input seismic data that will be used for the analysis.   

Figure 3.19 shows a set of CDP super-gathers over inline 27 from the map in Figure 3.10, 

with the P-wave sonic from well 08-08 spliced in at its correct location. These 

supergathers were created by performing partial stacks over five separate offset ranges in 

the original dataset, and then re-grouping these offset stacks into a set of gathers.   

 

 

Figure 3.19:  The supergathers from inline 27 on the map in Figure 3.10 

 

 The stack of the CDP gathers is shown in Figure 3.20.  Note that the P-wave sonic 

log has again been spliced in at its tie point, and I have picked two of the seismic 

horizons of interest, the Mannville and Lower Mannville.  The elliptical region highlights 

an area that will be later compared to the RP0 section in Figure 3.34 
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Figure 3.20:  The stack of the supergathers from inline 27 shown in Figure 3.19. The elliptical region 
highlights an area that will be compared later to the RP0 section in Figure 3.34.  

 

 The P-wave sonic log shown in Figures 3.19 and 3.20 has been correlated with the 

seismic data.  Correlation of the P-wave sonic log with the seismic data involves 2 steps.  

First, we estimate an optimum wavelet from the seismic data. Figure 3.21(a) shows the 

wavelet that was extracted from the seismic data using the autocorrelation method, which 

assumes that since the reflectivity has a white spectrum the autocorrelation of the seismic 

trace is equivalent to the autocorrelation of the wavelet. By taking the autocorrelation of 

the trace, we have lost the phase information about the wavelet, so we must assume we 

know the phase.  In this case, we have assumed a zero phase wavelet.  Figure 3.21(b) 

shows the amplitude and phase spectra of the wavelet.   

 
 (a) (b) 

Figure 3.21:  (a) The extracted wavelet from the stack of Figure 3.20, and (b) the amplitude (blue) and 
phase (red) spectra of the wavelet. 
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 In the second step, the wavelet shown in Figure 3.21 is used to compute a 

synthetic seismogram with the reflectivity derived from the seismic, as discussed in 

section 2.8.1.  We then correlate the log to the seismic, as shown in Figure 3.22.   

 

Figure 3.22:  The log correlation procedure for well 08-08.  The sonic and density logs are shown on the 
left, and the seismic tie is shown on the right.   

 

 In Figure 3.22 the blue trace shown in the centre has been created by convolving 

the wavelet shown in Figure 3.21 with the reflectivity derived from the sonic and density 

logs shown on the left of the figure.  The red trace is extracted by averaging the seismic 

traces in a radius from around the well.  As discussed in Chapter 2 on seismic attributes, 

stacking is performed to increase the signal-to-noise ratio of the seismic data.  However, 

it gives us the average amplitude of the CDP gather, and does not correspond to a 

physically meaningful reflectivity.  Using equation (2.20) for extracting AVO attributes, I 

therefore extracted the P-wave reflectivity (RP0) and the S-wave reflectivity (RS0) from 

the seismic gathers shown in Figure 3.19.  Figure 3.23 shows the P-wave reflectivity.   

Although quite similar to the stack shown in Figure 3.20, there are some differences.  

One such difference has been highlighted by the elliptical region shown on the figure. 
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Figure 3.23:  The P-wave intercept (RP) of the supergathers from inline 27 shown in Figure 3.19. The 

elliptical region highlights a difference with respect to the stack in Figure 3.20. 

 

 Figure 3.24 shows the pseudo-S-wave reflectivity, again extracted using equation 

(2.20).  It is important to note that the S-wave reflectivity responds quite differently to the 

subsurface than the P-wave reflectivity.  This can be seen by comparing the seismic data 

under the picked events.  For example, the S-wave reflectivity close to the well at the 

Lower Mannville event on the S-wave section in Figure 3.24 is a trough, whereas the P-

wave reflectivity on the same event in Figure 3.23 is a peak. 

 

 
Figure 3.24:  The pseudo-S-wave (RS0) section derived from the supergathers from inline 27 shown in 

Figure 3.19. 
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 Now that we have extracted both the P-wave and S-wave reflectivity, they can be 

inverted to P and S-impedance, using the model-based inversion scheme described in 

Chapter 2.  Figure 3.25 shows the inverted P-wave impedance volume.  The inserted 

curve is the P-wave velocity. 

   
Figure 3.25:  The inverted P-wave impedance section derived from the RP0 volume in Figure 3.23. The 

colour bar on the right displays impedance values in units of m/s·g/cc. 

 

 Figure 3.26 next shows the inverted S-wave impedance volume.  The inserted 

curve is the S-wave sonic log.   

   
Figure 3.26:  The inverted S-wave impedance section derived from the RS0 volume in Figure 3.24.  The 

colour bar on the right displays impedance values in units of m/s·g/cc. 
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3.7.4 Creating S-wave pseudo-logs over the seismic volume 
 

 I will now use the multilinear regresssion approach to predict pseudo-logs, 

starting with the prediction of the S-wave log over the complete seismic volume.  The 

input to the S-wave prediction consists of the nine S-wave sonic logs created in the last 

section, the RS stack of Figure 3.24 and the inverted S-wave volume of Figure 3.26.  To 

compute the weighting coefficients, I used a 7-point convolutional set of weights.  The 

results of the training analysis are shown in Table 3.9 and in Figure 3.27, where the table 

shows the actual attributes, and the figure shows the errors.   

 
Table 3.9: The computed attributes for the creation of pseudo-S-wave logs by multilinear regression.  

 

 
Figure 3.27:  The training error (black dots) and validation error (red dots) for the creation of pseudo-S-

wave logs by multilinear regression 
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 By observing the validation error, we note that only the first five attributes are 

statistically significant, since the error starts to increase after this point.  These five 

attributes were then used to create estimates of the pseudo-S-wave logs at the nine wells 

ties.  The first four well ties are shown in Figure 3.28, where (a) shows the training result, 

and (b) shows the validation result. 

 
(a) 

 
(b) 

Figure 3.28:  The creation of pseudo-S-wave logs at the well ties, showing (a) the training result and (b) the 
validation result.  The black curves are the true logs, and the red curves are the predicted logs. 
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 Finally, Figure 3.29 shows the application of the multilinear regression 

coefficients to the attributes along line 27 to create pseudo-S-wave-velocity curves.  

Notice that the section is now given in m/s, rather than in impedance units.  Also, the 

shear-wave sonic log from well 08-08 has been spliced in, showing an excellent fit at the 

well tie. 

   

Figure 3.29:  The predicted pseudo-S-wave velocity section for line 27.  The colour bar on the right 
displays impedance values in units of m/s. 

 

3.7.4 Creating P-wave pseudo-logs over the seismic volume 
 

 I will now use the multiattribute approach to predict the pseudo-P-wave-velocity 

log over the seismic volume.  The input consists of the nine measured P-wave sonic logs, 

the RP0 stack of Figure 3.23 and the inverted P-wave volume of Figure 3.25.  As with the 

S-wave study, a convolutional set of weights were used with an operator length of 7 

samples.  The results of the training analysis are shown in Table 3.10 and Figure 3.30 

where the table shows the list of attributes and the figure shows the training and 

validation error.  By observing the validation error, we can note that only the first four 

attributes are statistically significant.  These attributes are the P-impedance, one filter 

slice of the RP0 stack, the integrated absolute amplitude of the RP stack, and a second 

filter slice of the RP0 stack. 



106 
 

 

 
 

Table 3.10: A list of the attributes used to predict P-wave velocity. 
 

 
Figure 3.30:  The multi-regression analysis for the creation of pseudo-P-wave logs, where the training error 

is shown by the black dots and the validation error by the red dots.   

 

 These four attributes were then used to create estimates of the pseudo-P-wave-

velocity logs at the nine wells ties.  The first four well ties are shown in Figure 3.31, 

where (a) shows the training result, in which all wells were used in the prediction, and (b) 

shows the validation result, in which the well being predicted has been left out of the 

training. 
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(a) 

 
(b) 

Figure 3.31:  The creation of pseudo-P-wave-velocity logs at the well ties, where (a) shows training result 
with all wells, and (b) shows the validation result.  The black curves are the true logs, and the red curves 

are the predicted logs. 
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 Figure 3.32 shows the application of the multilinear regression coefficients to the 

attributes along line 27, to create pseudo-P-wave curves.  The section is now given in 

m/s, rather than in impedance units.  Also, the P-wave sonic log from well 08-08 has 

been spliced in, again showing an excellent fit at the well tie. 

 

    
 

Figure 3.32:  The predicted pseudo-P-wave-velocity section for line 27.  The colour bar on the right 
displays impedance values in units of m/s. 

 

3.8 Principal components analysis 

 

 In our study so far, I have chosen a combination of M attributes with which to 

predict our reservoir parameter of interest.  Often, it is advantageous to reduce this 

number to L attributes, where L < M.  This becomes the statistical problem of mapping a 

higher-dimensional space into a lower-dimensional space, and can be solved using 

principal components analysis (Johnson and Wichern, 1998, Bishop, 1995). In this 

section, I will explain the principal components analysis method as it applies to our 

problem, and also show an example based on the datasets displayed in the earlier 

sections.   
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 Note that our input data can be represented by the N x M matrix 
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where N is the number of seismic samples in our training dataset and M is the number of 

input attributes.  

 

 One obvious approach to reducing the dimensionality of the problem is to remove 

the last few rows from matrices X and AT in equation (3.82).  That is, simply reduce the 

number of attributes.  However, since we have spent a lot of effort finding both the 

optimum number of attributes and their order, this would not be a very good approach.  A 

better approach is to design a transform matrix U such that we transform input matrix X 

into a new matrix P by the linear operation  

XUP T= ,     (3.83) 

where P is called the principal component matrix, and can be written 
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 In equation (3.84) the transpose of matrix P has been given a different name, Q, to 

emphasize the fact that there is a one-to-one correspondence between P and X, and Q and 

A, when comparing equations (3.84) and (3.82).  Also, note that P is composed of N 

vectors pj, and Q is composed of M vectors qi, again in direct comparison with the vectors 

xj and ai.  By referring to Figure 3.1, we can therefore think of the pj vectors as 

transformed sample vectors xj and the qi vectors as transformed attribute vectors ai.  The 

qi vectors, which are the rows of matrix P, are referred to as the principal components.   
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 The transform matrix U is a rectangular matrix of dimension M x M and can be 

written 
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 To find the optimum values for the matrix U, note that by combining equations 

(3.83) through (3.85), we can write the transposed qi vectors individually as   
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   (3.86) 

 

 From equation (3.86) it can be seen that the transformed attribute vectors are 

given either as the product of the transposed ui vector and the sample matrix X, or by the 

weighted sum of the original attribute vectors ai, where the weights are the individual 

components of the ui vectors.  From a standard textbook in multivariate statistics 

(Johnson and Wichern, 1998) it can be shown that the variance of vector qi can be written 

i
T
i uu Σ=2

iσ ,     (3.87) 

and that the covariance of two vectors qi and qk can be written 

k
T
i uu Σ=ikσ ,     (3.88) 

where Σ is the covariance matrix of X, assuming that X has zero mean.  The ui vectors are 

then found which maximize the variances of each of the principal components qi and set 

the covariance values to zero, with the extra condition that the vectors are orthonormal.  

This can be written 





≠
=

==
.,0
,,1

ki
ki

ikδk
T
i uu     (3.89) 
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 We have already encountered such a set of vectors in our discussion in section 

3.4.4 on the eigendecomposition of the multivariate Gaussian distribution.  These were 

the normalized eigenvectors.  Note that if we multiply each side of the earlier equation 

(3.42) by T
iu , we get the equivalent of equation (3.80).  That is: 

iii λλλ ==⇒= i
T
ii

T
iii uuuuuu ΣΣ  ,  (3.90) 

where we have used the orthonormal condition given in equation (3.89).  Therefore, the 

maximized variances are equivalent to the eigenvalues of matrix X.  The first principal 

component computed in equation (3.90) is thus derived by using the eigenvector 

associated with the largest eigenvalue, and so on.  Once the principal component 

transform has been computed, we can achieve our dimensionality reduction by dropping 

principal components based on a sum-of-error criterion (Bishop, 1995) that uses the 

eigenvalues.  That is, we choose the L – M smallest eigenvalues such that    

∑
+=

=
M

Li
iE

12
1 λ .     (3.91) 

 Several other points can be noted.  First, the transform given in equation (3.83) is 

fully invertible.  That is, we can transform matrix P back to matrix X simply by 

multiplying by U.  This can be seen as follows:  

XXUUPU T == ,    (3.92) 

since UUT = I.  Second, the matrix Σ can be reconstructed using the formula 
TUUΛ=Σ ,     (3.93) 

where 















=Λ

Mλ

λ

00
00
001

%  is a matrix that contains the eigenvalues along its main 

diagonal and zeros elsewhere. 

 

 Let us now consider a real data example of the preceding theory.  Figure 3.33 

shows a well log curve to be predicted on the left, and seven attributes to its right.  This 

figure is an extension of Figure 3.1, which shows only the first three attributes.  
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Figure 3.33:  The red trace on the left shows the well log curve to be predicted and the seven curves on the 
right show the extracted attributes. 

 

 Taking the covariance matrix of the seven attributes shown in Figure 3.33, and 

computing the eigenvalues of eigenvectors of this matrix, gives us 
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U , 
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where the eigenvalues have been sorted from largest to smallest and scaled so that the 

largest eigenvalue is equal to 1.0.  Figure 3.34 is a display of the seven principal 

components of the attributes shown in Figure 3.33.  That is, using equation (3.83) the 

transpose of matrix U is multiplied times the matrix X, which contains the values of the 

attributes as its seven rows.  The resulting matrix P contains the attributes shown in 

Figure 3.33 as its seven rows.  The principal components shown in Figure 3.34 have been 

ordered from largest on the left to smallest on the right.  We can now use a subset of 

these principal components to reconstruct the well log curve shown on the far left. 

 

 

Figure 3.34:  The red trace on the left shows the well log curve to be predicted and the seven curves on the 
right show the principal components computed from the seven attributes of Figure 3.33.  These principal 

components are ordered from largest to smallest. 



114 
 

 

 

CHAPTER 4 :  LINEAR METHODS FOR CLASSIFICATION  
 

 

4.1 Introduction 

 

 In the previous chapter I discussed the mathematical and statistical basis of multi-

linear regression methods as they relate to the prediction of reservoir parameters from 

seismic attributes.  In this chapter I will discuss linear classification methods.  As stated 

in Chapter 1, there is a close relationship between regression and classification.  In 

regression problems, a continuous set of values is assigned to our inputs.  That is, for 

each vector of attributes at a given time sample, we calculate a unique output value.  In 

classification problems, we assign the output values to a discrete set of classes.  The 

number of classes is determined in advance, using a training dataset.  In this chapter I will 

be performing supervised classification, in which we use a training dataset, rather than 

unsupervised classification, in which we look for natural classes within the data.   

 

 The term discrimination is almost synonymous with the term classification.  

Discrimination is used to perform classification and involves computing a linear 

discriminant function.  Classification is a more general nonlinear problem and is based in 

Bayesian statistics.  I will therefore first look at the general theory of Bayesian 

classification and then show that the linear discriminant function can be thought of a 

subset of Bayesian theory in which we assume that each class has similar statistics. I will 

then derive the Fisher linear discriminant and apply this approach to a seismic example.   

 

 I will then show how the single-layer perceptron neural network can be thought of 

as a type of linear discriminant, and use a simple AVO classification problem to illustrate 

this method and its limitations.  Finally, I will discuss the generalized linear discriminant.  

 



115 
 

 

4.2 Bayesian classification 

4.2.1 Theory 
 

 In this classification technique, we attempt to classify the multiattribute samples 

in a seismic volume, xj, into the classes Ck, where k = 1,…, K.  To determine the class 

membership of an arbitrary input vector x, I introduce the concept of the discriminant 

function yk(x) (Duda et al., 2001).  Membership of x in a particular class Ck is found if 

. allfor  ),()( kjyy jk ≠> xx    (4.1) 

In the general case, the decision boundary between two classes is found by setting yk(x) = 

yj(x). Note that for the two class case, we can write: 

y(x) = y2(x) – y1(x) = 0,            (4.2) 

as the boundary between the two classes.  

 

 To find the discriminant function, I will use Bayes’ Theorem (Duda et al., 2001).  

In Appendix 4 an overview of Bayes’ Theorem is given, using both discrete and 

continuous examples.  The general form of Bayes’ Theorem can be written 

( ) ( ) ( )
( ) ,
BP

APA|BPB|AP =     (4.3) 

where ( ) =AP the unconditional probability of event A, ( ) =BP the unconditional 

probability of event B ( ) =BAP |  the conditional probability of A given B, and 

( ) =ABP | the conditional probability of B given A.  When we apply Bayes’ Theorem to 

the classification problem defined above, we find that the posterior probability )|C(P k x  

for the kth cluster can be written as:                

)(
)()()|(

x
|xx
p

CPCPCP kk
k = ,    (4.4) 

where ∑
=

=
K

k
kk CPCPp

1
)()()( |xx , )( kCP |x  is the likelihood of x given ck, P(Ck) is the 
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prior probability of class Ck , and p(x) is a normalization factor, often called the evidence.  

A common form of yj is given by taking the logarithm of equation (4.4), or          

[ ] [ ] [ ])(ln)(ln)(ln)( kkkk CPCPCPy +== |xx|x ,   (4.5) 

where I have dropped the normalization factor since it is common to each function. 

 

 To implement Bayes’ Theorem, we must assume some probability distribution for 

the likelihood function.  A common approach is to use the multivariate normal 

distribution, which was discussed at length in Chapter 3.  However, I will now assume 

that each class has its own mean and covariance function.  That is 





 −Σ−−

Σ
= − )()(

2
1exp

)2(
1)|( 1

2/12/ kk µxµxx k
T

k
MkCp

π
,         (4.6) 

where µk is the M-dimensional vector of means of the kth cluster, given by  
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and Σk is the M x M dimensional covariance matrix given by 
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 Substituting equation (4.6) into equation (4.5) leads to 

)(lnln
2
1)2ln(

2
)()(

2
1)( 1

kkk
T

k CPMy +Σ−−−Σ−−= − πkk µxµxx ,  (4.7) 

which can be rewritten as the general quadratic form: 

k
T
kk

T
k wWy 0)( ++= xwxxx ,    (4.8) 

where 1

2
1 −Σ−= kkW , kkk µw 1−Σ= , and )(lnln

2
1

2
1 1

0 kkkk
T
kk CPw +Σ−Σ−= − µµ .  
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The discriminant function between two arbitrary clusters, k and j, can therefore be written 

(Duda et al., 2001): 

0)()()( wWyyy T
jk ++=−= xwxxxxx T ,   (4.9) 

where .wwwand,W-WW j0k00jjk −=−== ww w, k  

  

 For the general case in which each cluster of points has a different covariance 

matrix, the separation between clusters would be defined by quadratic functions (Duda et 

al., 2001), which can take the shape of hyperplanes, hyperspheres, hyperellipsoids, etc.  

However, there is a simpler case that will lead to a linear discriminant function.  If we 

assume that the covariance matrices for each cluster are identical (or Σk = Σ), we find that 

matrix W in equation (4.8) becomes independent of k.  The discriminant function between 

two arbitrary clusters, k and j, can therefore be written 

0)()()( wyyy jk +=−= xwxxx T ,    (4.10) 

where )1
jk( µµw −Σ= − , and 
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CPw +Σ+Σ−= −− µµµµ .  Equation 

(4.10) is called the linear discriminant function and is identical in form to the linear 

regression equation (3.49) discussed in the previous chapter.  However, as explained in 

Chapter 1, the linear discriminant function represents the boundary between two sets of 

points, not the regression of the target against an attribute. 

4.2.2 Two cluster example 
 

 Let us now apply the theory from the last section to a simple two-dimensional, 

two-cluster example.  In this case, equation (4.9) gives us 
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where ., 0102012 wwwandW-WW 1 −=−== ww w, 2   Setting this function to zero will 

give us the boundary between the two clusters.  

 

 Let us now consider a straightforward numerical example, from Duda et al. 

(2001), to illustrate the theory.  Figure 4.1(a) shows two two-dimensional clusters, each 

containing four points. 

 
 (a) (b) 

Figure 4.1: A simple classification example, where (a) shows two four-point clusters in two dimensions, 
and (b) shows the calculated decision boundary shown.  The units on the axes are arbitrary. 

 

 To compute the decision boundary shown in Figure 4.2(b), notice that the first 

cluster contains the points 
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and 
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where we have subtracted the mean from each point. The inverses of the two covariance 

matrices are given by 
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 To find the equation for the line separating the two clusters note that both w12 and 

w22 are equal to zero, so that equation (4.11) simplifies to  

)/()/()/( 20121
2
12112 wwxwwxwwx −−−= , 

which, for the case we have just considered, gives us 

514.3125.11875.0 1
2
12 +−= xxx , 

an upward trending parabola with vertex equal to [3, 1.83].  This parabola, which is the 

Bayes decision boundary for this case, is shown in Figure 4.1(b).  The key thing to note 

about this decision boundary is that it curls towards the cluster with the more compact 

shape.  Mathematically, this is telling us that the covariance matrix of cluster 1 contains a 

smaller value for the auto-covariance in the x direction, which was clear for the 

computations.   
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 Two further examples are shown in Figure 4.2, which were not shown by Duda et 

al. (2001).  In the first example, shown in Figure 4.2(a), the covariances of the two 

clusters are equal, as shown by their identical shapes.  As indicated in equation (4.10), the 

discriminant function for Figure 4.2(a) is linear.  In the second example, shown in Figure 

4.2(b), the covariance of cluster one is now is larger in the x direction than the covariance 

of cluster 2.  Thus, the discriminant function is now a downward trending parabola. 

 
 (a) (b)   
Figure 4.2: Two further classification examples, where (a) shows two clusters with equal variance, and (b) 

shows two clusters where cluster 1 has larger variance than cluster 2. 
 

 

4.3 Linear discriminant functions 

 

 As shown by equation (4.10), a linear discriminant function between two clusters 

of points is the simplification of the general Bayesian formula in which the covariance 

matrices of the two clusters are equal.  The linear discriminant function is given by the 

formula: 

xwx T
0w)(f += ,     (4.12) 

where [ ]M21 xxx "=Tx  is an M-dimensional input vector of seismic attributes, 

[ ]M21 www "=Tw  is an M-dimensional weight vector, and w0 is a bias or 

threshold weight.  Notice that equation (4.12) appears identical to equation (3.49) in the 

previous chapter, except that the threshold weight was absorbed into w in that equation 
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by setting the first value in x to one.  But there is another important difference between 

the two equations.  In equation (3.49), the dependent variable was the target value t, 

which was a measured reservoir parameter.  This leads to the linear regression equation, 

in which we solve for the weights by using N separate equations.  In equation (4.1), f(x) is 

not a measured value but is instead used to classify x into one of K classes.  In the 

simplest case where K = 2, this is done by assigning a value of 0 or 1 (or -1 and +1) to 

each of the xj vectors, and solving for the weights that best separate the sets of values. 

 

4.4 The Fisher linear discriminant 

4.4.1 Theory of the Fisher linear discriminant 
 

 If we rewrite equation (4.12) without the bias term, we get 

xwTy = ,     (4.13) 

where [ ]Mxxx ,,, 21 "=Tx  is an M-dimensional input sample vector of seismic 

attributes, and [ ]Mwww ,,, 21 "=Tw  is an M-dimensional weight vector.  The 

interpretation of equation (4.2) is that we have projected the M-dimensional vector x onto 

the one-dimensional space of y.  This is called “dimensionality reduction”, and for 

multiple values of x the set of output values y creates a line called the discriminant line.  

If we divide these points into multiple clusters, the objective of discriminant analysis is to 

find the weight vector that maximizes the separation of these clusters along the line 

defined by the output values y.   

 

 The simplest case is that of two clusters, in which case we can assume that the N 

values of x are divided into two clusters, C1 and C2, containing N1 and N2 values, 

respectively.  We can then define the means for the clusters as 

∑
∈

=
kCkN j

jk xµ 1 ,     (4.14) 

 As a first attempt at finding the weight vector, we could try to maximize the 

distance between the projected means, or 
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)12 12
T µµw −=− (mm .    (4.15) 

 

However, as discussed by both Bishop (1995) and Duda et al. (2001), this approach does 

not take into account the scatter of the clusters and therefore does not provide a very good 

way of discriminating between clusters.  Fisher (1936) proposed that the problem could 

be solved by maximizing the difference between the means divided by the sum of the 

within-class scatter, or  
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=w ,     (4.16) 

where ∑
∈

−=
kCj

kjk mys 22 )( defines the within-class scatter. 

 As shown by Bishop (1995), equation (4.16) can be re-written in matrix form as 

wSw
wSw

w
W

T
B

T

=)(J ,     (4.17) 

where SB is the between-class covariance matrix defined by 
T))(( 1212 µµµµSB −−= ,    (4.18) 

and SW is the within-class covariance matrix defined by 

∑∑
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))(())(( 2211
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T
jj

Cj

T
jj µxµxµxµxSW . (4.19) 

 

 As also shown by Bishop (1995), equation (4.17) is maximized when 

)12
-1
W µµSw −= ( .     (4.20) 

 

 Equation (4.20) is known as Fisher’s linear discriminant.  As pointed out by Duda 

et al. (2001), this is almost exactly the same formulation that we found using Bayes’ 

theorem for clusters with identical covariance matrices, or 

)12 µµw −= − (1Σ .     (4.21) 

This is to be expected since the covariance matrix and the scatter matrix are simply 

scaled versions of each other. 
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 To generalize the above formulation for multiple clusters, we must maximize the 

equation  

WSW
WSW

W
W

T
B

T

=)(J ,    (4.22) 

where W is the matrix containing the weight vectors for each cluster wk, k = 1, …, K.  

This is a more difficult problem than for the K = 2 case, but W can be maximized by 

selecting the columns of W as the generalized eigenvectors corresponding the largest 

eigenvectors in 

kWkB wSwS kλ= .    (4.23) 

 

4.4.2 Applying the Fisher linear discriminant to porosity classification 
 
 Let us now apply the Fisher linear discriminant to a case study that involves the 

classification of density-derived porosity in a sandstone reservoir.  The study area shown 

in Figure 4.3 is the Blackfoot oilfield in Alberta, the same as for the case study 

considered in section 3.7.  

 
Figure 4.3: The distribution of wells used in this study.  This map is from the Blackfoot oilfield of Alberta. 
 
 
 Figure 4.4 shows well 08-08 from the map in Figure 4.3.  On this well are shown 

the check-shot-corrected sonic log, the density log, the porosity log, which has been 
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created from the density log, and the classified porosity logs.  The porosity logs were 

classified using the following relationship: 









≥
<≤

<
=

%15if3
%15%5if2

%5if1
C

φ
φ

φ
, 

where φ is the porosity value.  That is, I have labelled three classes of porosity: low, 

medium and high.  Although it is hard to interpret the classified log at the scale shown in 

Figure 4.4, notice the high porosity zone at about 1570 m in well 08-08. 

 
                                                                                                                  1          2         3 
Figure 4.4: The well log curves from well 08-08, whose location is shown in Figure 4.3. 

 
 

 Figure 4.5 then shows line 95 from the 3D volume, with the integrated sonic log 

from well 08-08 superimposed on the section.  The portion of the seismic line shown in 

Figure 4.5 is shown on the map in Figure 4.3 as a red line.  The wiggle traces show the 

input seismic traces. The coloured amplitudes are the impedance values from a model-

based inversion.  The theory of model-based inversion was described in section 2.8.2.  

The colour bar for the inverted values is shown on the left of the section.   
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Figure 4.5: Line 95 from the 3D seismic volume shown in Figure 4.3.   

 
 In order to train the linear classification scheme, we first need to extract the 

composite seismic traces and impedance traces at the well locations.  The result of this 

extraction is shown in Figure 4.6 for three of the well logs, including well 08-08. 

 
Figure 4.6: For three of the wells, the classified porosity log is shown on the left, the extracted seismic trace 

in the middle, and the extracted inverted trace on the left.  The analysis zone is shown by the horizontal 
lines. 
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 We next need to decide on which attributes to use for the classification of porosity 

using the seismic data, and will use the same procedure as described in detail in section 

3.6.  That is, we will find the best attributes using step-wise regression and decide which 

attributes to keep using cross-validation.  Table 3.1 shows both the chosen attributes and 

the training and validation error.  Only the first four attributes will be used, since the 

validation error starts to increase after that point. 

  

 
 

Table 4.1: The attributes used in the porosity classification, with their training and validation error. 
  

 
 Once the training has been completed, it can be applied to the full seismic volume 

using the attributes shown in Table 4.1.  This fit at the wells is shown in Figure 4.7 for 

the three wells shown in Figure 4.6, where (a) shows the training result and (b) shows the 

validation result.  The training result shows the effect of computing the weighting 

coefficients from all the wells and applying them to all the wells, whereas the validation 

result shows the effect of leaving the well shown from the computation and is thus a 

“blind” prediction of this result. 

 

 In Figure 4.7 the RMS error is shown at the top of each result.  Note that the error 

is 0.3659 for the training result and 0.4657 for the classification result.  This is as 

expected, since the validation result will always have a larger error.   
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(a) 

  

 
(b) 

Figure 4.7: The application of the classification procedure to the three classified logs shown in Figure 4.6, 
where (a) shows the training result, and (b) shows the validation result. 
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 Finally, I will apply the Fisher linear classification scheme to the seismic data.  

The result over the seismic line from Figure 4.5 is shown in Figure 4.8, where grey shows 

the low-porosity values, yellow shows the medium-porosity values and blue shows the 

high-porosity values.  Notice the lateral definition of the high-porosity channel just below 

1050 ms.  This shows continuity away from the well-log-derived porosity.  The inserted 

curve from well 08-08 is the density-porosity log, not the classified log.  This log has 

been integrated to time, so lacks the detail shown on the depth-sampled log shown in 

Figure 4.6.  It should also be pointed out that the apparent high-porosity zones in the 

shallow section between 860 and 950 ms are due to shale streaks rather than highly 

porous sands.  

 

   
Figure 4.8: The classified porosity values on line 95 from Figure 4.5. 

 
  

 Figure 4.9 shows a slice of the classified porosity taken from a single sample 

window that was extracted 20 ms below the picked event that was labelled Horizon 1 in 

Figure 4.8.  The wells have also been indicated in Figure 4.9. Notice that the continuity of 

the porosity is quite good in a lateral sense away from well 08-08.  However, there are 

false indications of high porosity across the upper and lower left parts of the map.  This is 
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partly due to the fact we are using a linear classification scheme on a nonlinear problem.  

As we shall see in Chapter 6, this can be improved with the probabilistic neural network. 

 

 
 

Figure 4.9: The classified porosity shown over a slice that was picked 20 ms below Horizon 1, shown on 
the section in Figure 4.8. 

 

 Now that I have discussed the Fisher linear discriminant function, which is 

essentially a tool developed by statisticians, I will look at the related concept of the 

single-layer perceptron, which started the new field of neural networks.  Through this 

discussion, it will become obvious how closely related are the fields of statistics and 

neural networks. 

 

4.5 The single-layer perceptron 

 

 The single-layer perceptron is a mathematical concept that is closely related to the 

linear discriminant function.  It will also lay the basis for the multi-layer perceptron that 

will be discussed in the next chapter.  In this section I will discuss the theory of the 

single-layer perceptron and then apply the theory to a geophysical example. 
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4.5.1 Basic theory of the single-layer perceptron 
 

 The classic model of the neuron is called the perceptron (McCulloch and Pitts, 

1943) and is illustrated in Figure 4.10.   

 
 (a) (b) 

Figure 4.10: The figure above shows the perceptron neural network for (a) M inputs and a single output, 
with a bias weight fed directly into the summation, and (b) M+1 inputs and a single output, where the bias 

weight is applied to a zeroth attribute which is equal to the unity vector 1. 
 

 In Figure 4.10, notice that there are two ways to interpret the perceptron.  In the 

first [Fig. 4.10(a)], the perceptron accepts M inputs jM2j1j a,,a,a … , and produces a single 

output.  The inputs are then weighted and summed according to the equation: 

MM awawawwy ++++= …22110 ,    (4.24) 

where the first weight, w0, is called the bias.  Next, a threshold function, f, is applied to 

the intermediate output x to produce the final output y, or 

( )yfz =       (4.25) 

 In the second interpretation (Figure 4.10(b)), the perceptron accepts M+1 

inputs jM1j0j a,,a,a … , where the aj0 term is equal to 1.  Thus, the bias term now acts on 

the first attribute, and we can write 

MM221100 awawawawy ++++= …    (4.26) 

In the Figure 4.10(b), the output of the summation is also transformed by a threshold 

function of equation (4.25).  The choice of the threshold function f is important and 

depends on the problem being solved.  If f(y) = y, the perceptron reduces to a linear sum 

of the inputs.  This function is used in the linear associator, discussed below.  In many 
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applications, f(y) is set to the smoothly varying sigmoidal function such as the hyperbolic 

tangent function [Fig. 4.11(a)], which is defined as: 

( ) yy

yy

ee
eeyf −

−

+
−= .     (4.27) 
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 (a) (b) 

Figure 4.11:  This figure shows a graph of (a) the hyperbolic tangent function of Equation (4.27), and (b) 
the symmetric step function of Equation (4.28). 

 

 For a two-class problem, such as the one we are discussing here, we often use the 

step function [Fig. 4.11(b)], which is given mathematically by the equation: 

( )




<−
≥+

=
0,1
0,1

y
y

yf      (4.28) 

 

4.5.2 An AVO classification problem 
 

 The basic AVO interpretation problem that I will study (Russell et al., 2002) is 

how to differentiate between the AVO responses of the two reservoirs shown in Figure 

4.12.  Figure 4.12(a) shows a wet sand encased between two shale layers, and Figure 

4.12(b) shows a gas sand encased between the same two shales.  The P-wave velocity 

(VP), S-wave velocity (VS), and density (ρ) for each layer are shown in each figure.  I will 

assume that the far angle of incidence is small enough (i.e. approximately 30°) that we 
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can ignore the third term in the Aki-Richards equation and write the reflectivity as a 

function of angle of incidence θ as 

( ) θθ 2sinBAR += ,     (4.29)  

where A is the intercept given by
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
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1B −−= . The terms ρ∆∆∆ and,V,V PP are the differences 

across the layers and the terms ρand,V,V PP are the averages. 

   
  (a)                   (b) 
Figure 4.12:  Two simple geological models where (a) shows a wet sand between two shale layers and (b) 
shows a gas sand between the same two shales. 

 

 Using the values for VP, VS, and ρ shown in Figure 4.12, we can now compute the 

values for the AVO intercept and gradient for the wet and gas sands.  For the wet sand, 

note that VP/VS in both the sand and shale layers is equal to 2.  This means that 

S

S

p

P

V
V

V
V ∆∆ =  and, thus substituting this value into the expression for the gradient B given 

above leads to the simplification that BA −=  for both the top and base of the layer. (For 

a more complete derivation, see the Appendix to Russell et al., 2002). Using the 

parameters shown in Figure 4.6 gives ATOP_WET = BBASE_WET = +0.1 and ABASE_WET = 

BTOP_WET = -0.1. For the gas sand, the VP/VS ratio is equal to 1.65, and leads to ATOP_GAS = 

BTOP_GAS = -0.1 and ABASE_GAS = BBASE_GAS = +0.1.   

 

 Using the parameters for the gas case, we find that A=B for both the top and base 

of the layer. The AVO curves for the wet and gas cases are shown in Figure 4.13, for an 

angular aperture of 0º to 30º.  It is observed that the absolute values of the gas sand 
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curves show an increase in amplitude, whereas the absolute values of the wet sand curves 

show a decrease in amplitude. 

Model AVO Curves

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25 30

Angle (degrees)

A
m

pl
itu

de

Top Gas Base Gas
Top Wet Base Wet

 
Figure 4.13: This figure shows the AVO responses from the top and base interfaces of the wet and gas 

sands shown in Figure 4.12. 
 

 Although the parameters used here simplify the problem, these values do fall 

within a reasonable petrophysical range.  After scaling each of the values of A and B by a 

factor of 10 to give values of +1 and -1, they have been put on an A-B crossplot, as 

shown in Figure 4.14(a).  In our example, the wet points (shown as solid blue circles) 

establish the wet sand-shale trend, and the top and base gas (shown as solid red circles) 

plot in the other two quadrants of the A-B crossplot.  This is a typical class 3 AVO 

anomaly (Rutherford and Williams, 1989), caused by the reduction of the impedance and 

the Vp/Vs ratio of the sand by gas saturation.   

 

 Despite the simplicity of the models shown in Figure 4.12, the plot in Figure 

4.14(a) shows us what is expected in a noise-free AVO crossplot.  For comparison, 

Figure 4.14(b) is an interpreted AVO A-B crossplot for a class 3 AVO response in the 

Gulf of Mexico (Ross, 2000).  The centre grey ellipse encompasses all of the wet sand-

shale AVO points while the gold and blue ellipses outlying the grey “wet trend” points 

are associated with the top and base of the pay sand, respectively.   
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(a)      (b) 

Figure 4.14:  Intercept versus gradient crossplots, where (a) shows the crossplot of the A and B values from 
the wet and gas models of Figure 4.12, crossplotted after being scaled by a factor of 10, and (b) shows a 

Gulf of Mexico real data example. 
 

   Identifying the wet trend and the outlying two points in Figure 4.14(a) is a trivial 

problem for the eye to interpret.  Let us see if the single-layer perceptron is able to solve 

this problem.  The application of the single-layer perceptron to our AVO problem is 

shown by the neural network graph in Figure 4.15.  We now have two inputs, the 

intercept (A) and gradient (B), and will use the symmetric step function to compute the 

final output.  For the output, a value of +1 will indicate the presence of a gas sand and a 

value of –1 will indicate the presence of a wet sand. 

 

 
Figure 4.15:  The perceptron adapted to the AVO problem of Figure 4.14(a), where the inputs are the 

intercept (A) and gradient (B) and the function is the symmetrical step function. 
  

 Notice that the equation for intermediate output y is now given as 

BwAwwy 210 ++=      (4.30) 
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 We now want to determine the weights w0, w1, and w2.  From equation (4.30), it is 

obvious we are interested in the separation between 0y <  and 0y > , which occurs when 

y = 0.  This is called the decision boundary, and is illustrated in Figure 4.16. From this 

figure it is clear that the boundary crosses the A and B axes at 
1

0

w
wA −= and

2

0

w
wB −= . 

 

Figure 4.16:  The perceptron decision boundary.  Note that either w0 or w1 and w2 must be negative to make 
the resulting intercept value on the A and B axes positive. 

 

 Figure 4.16 also shows the weight vector [ ]21, ww=Tw , which is normal to the 

decision boundary and points in the direction of f(x) = +1. This will give us the signs of 

w1 and w2.  It is important to note from Figure 4.16 that the perceptron can only separate 

points that are linearly separable.  That is, for the two dimensional case we can draw a 

line between the points, and for the three-dimensional case we can draw a plane.  (For 

higher-dimensional inputs we use hyperplanes to separate the points).  This limitation 

means that the perceptron can not solve a simple Boolean algebra problem, the exclusive 

OR, or XOR (Haykin, 1999). This problem is similar to our AVO problem. 
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 The AVO problem of Figure 4.12(a) has been redrawn in Figure 4.17. Notice that 

we are not able to separate both the top and base of the gas-sand from the wet trend with 

a single decision boundary.  We can separate either the top of the gas-sand, as shown in 

Figure 4.17(a), or the base of the gas-sand, as shown in Figure 4.17(b).   

 
 (a) (b)  
Figure 4.17:  The AVO problem from Figure 4.12(b) with decision boundaries, where (a) shows separation 

of the base of the gas sand and (b) shows separation of the top of the gas sand. 
 

 For the top of the gas-sand, we can compute the weights from  

1
w
w

w
w

BA
2

0

1

0 −=−=−== . 

 Although w0, w1 and w2 can be scaled by any value, we usually choose the 

simplest values of 1ww 21 −== , and therefore 1w0 −= .  The perceptron diagram for this 

is shown in Figure 4.18(a).  The weights for the base of gas sand can be computed as 

1
w
w

w
w

BA
2

0

1

0 +=−=−== ,      

so that the weights are 121 +== ww  and 1w0 −= .  This is shown in Figure 4.18(b).  

 
 (a) (b) 

Figure 4.18:  Perceptron implementations for separating the (a) top of gas, and (b) base of gas. 
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 Table 4.2 shows that these values do indeed solve the problem for the four 

possible cases. 

 Inputs Perceptron 1 Perceptron 2 
SAND A B x1 y1 x2 y2 
Top Gas -1 -1 +1 +1 -3 -1 
Base Wet -1 +1 -1 -1 -1 -1 
Top Wet +1 -1 -1 -1 -1 -1 
Base Gas +1 +1 -3 -1 +1 +1 

Table 4.2:  The outputs from the perceptron models of Figure 4.18. 
 

 Although we have solved for the top and bottom of the gas-sand individually we 

have still not solved the complete problem, which is to separate the gas-sand responses 

from the wet-sand responses.  This requires a multi-layer perceptron, or MLP, which will 

be discussed in the next chapter. 

 

4.6 Computing the neural network weights 

4.6.1 The perceptron learning rule 
 

 In the last section, I applied the perceptron model to an AVO classification 

problem and used intuition to solve for the weights.  McCulloch and Pitts (1943) devised 

the first analytical approach to solve for the weights and called it the perceptron learning 

rule.  I will apply this rule to the AVO example of the previous section.  

 

 Figure 4.19 shows an illustration of the perceptron neural network as applied to 

our A-B crossplot example. In Figure 4.19, and in the following theory, note that we are 

conforming to the notation set out in Appendix 1.  That is, we have M attribute vectors, 

ai, and N input sample vectors xj.  The perceptron leaning rule can be stated as follows. 

Given N input/training pairs {xj, tj}, present these pairs sequentially to the algorithm and 

modify the weights so as to reduce the error between the actual output, zj, and the target 

value, tj.     



138 
 

 

 
Figure 4.19:  A conceptual illustration of the neural network used to solve for the A-B crossplot example. 

 

 The perceptron learning rule can written mathematically as follows 

,eww
,e
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+= xww
     (4.31) 

where xj is the input sample vector, ,M/)zt(e jj −= and M is the number of input 

attributes. In the perceptron model, the output zi is computed as follows: 
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 The algorithm is initialized by setting the weights to small random values. Let us 

see how this algorithm will work in finding the gas zones from the previous example. 

Starting with the base of the gas zone, our three input vectors and targets are 

1t,
1

1
,1t,

1
1

,1t,
1
1

332211 −=







−

=−=






−
==








−
−

= xxx and . 

 

 If we initialize w and w0 as 0w,
1.0
1.0

)0(0 =
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= and(0)w , the computations 

proceed as follows: 
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 Applying these last weights, we find that ,t1z,t1z,t1z 332211 =−==−=== and and 

now all three outputs are correct.  Since the correct weights are both equal to -1, the first 

weight has been overestimated by -0.1 and the second weight underestimated by 0.1.  The 

bias term is equal to -1, the correct value.  A 3D scatter plot of the convergence of the 

points after each iteration is shown in Figure 4.20.  Note that the points move around 

quite randomly in 3D space until convergence is obtained.  

 

Figure 4.20:  A 3D scatter plot of the perceptron weights after each iteration. 
 

 We next proceed to the problem of finding the weights for the separation of the 

wet sand from the base of the gas layer, where the inputs and target values are 
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and we find that, given the same starting guess, the solution again converges to  
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 Remember that the right answer is that both weights are equal to 1 and the bias is 

equal to -1, so the algorithm has again done a good job.  However, there are two major 

problems with the perceptron learning rule.  First, since the algorithm is iterative, we do 
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not know in advance when it will stop, or even if it will converge to the right answer.  

Second, we do not really know how to initialize the weights.  In the case considered 

above, we converged to the right answer using a starting guess of [-0.1, 0.1].   However, a 

starting guess of [1, 0.5] does not converge to the right answer.  The problem of the initial 

guess in neural network weight computations will be discussed in more detail in the next 

chapter. 

4.6.2 Hebb’s rule and associative memory 
 

 Based on our conclusions about the perceptron learning rule in the last section, it 

would be preferable to find an algorithm that could be expressed in closed form, as was 

the solution to the regression problem given in the previous chapter.  Such a method was 

introduced independently by Anderson (1972) and Kohonen (1972) and was based on the 

work of Hebb (1949).  This method is called the linear associator, and results in a neural 

network called an associative memory (Haykin, 1998).  A full description of this type of 

neural network is given in Appendix 5.  In this section, I will simply apply the linear 

associator to the AVO classification problem that we have been studying. 

 

 The linear associator is shown in Figure 4.21.  As the perceptron learning rule, the 

input to the linear associator is the N input/training pairs {xj, tj}.  However, unlike the 

perceptron shown in Figure 4.19, the output function is the linear function given by 

jj yz = ,     (4.32) 
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j wy += xwwhere .  To simplify this equation, we will add the zero weight to the 

vector and add the value x0 =1 as the first value in each vector xj.  Notice that this implies 

that we have added a zeroth attribute containing N ones. The output values can now be 

more simply written as the scalar product of two M+1 length vectors, or 
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 To determine the weights given in equation (4.33), we use Hebb’s rule (Appendix 

5), which can be written as 

ijij)old(i)new(i xtww += ,    (4.34) 

or, in vector form, as 
T
jj

T
(old)

T
(new) xww t+= .     (4.35) 

 

Figure 4.21:  A conceptual illustration of the use of the linear associator to solve for the A-B crossplot 
example.  The only difference with Figure 4.13 is that the applied function is linear. 

 

 If we set the initial weights to zero, equation (4.35) can be written as: 
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In other words, the weight vector is given by the outer product of the vector of training 

values and matrix of input values.  Alternately, we can write the transpose of equation 

(4.36), giving 
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 As shown in Appendix 5, the associative memory works well if a copy of every 

possible input vector is presented to the algorithm.  If some of the vectors are missing, a 
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better solution is obtained with the pseudo-inverse rule, which is written for equation 

(4.36) as 
++ == TAX TTT ttw ,     (4.38) 

where T1T X)IXX(X −+ += λ , and A)IAA(A 1TT −+ += λ , λ is a prewhitening term 

and I is the M x M identity matrix.  Using equation (4.37) as the starting point, we get 

ttw ++ == AX T .     (4.39) 

where X)IXX(X 1TT −+ += λ , and T1T A)IAA(A −+ += λ .   

 

 I will now apply the preceding theory to our AVO classification problem.  Let us 

start with the complete problem of four inputs, as shown in Figure 4.8(a), or 
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where I have added the value 1 in each case to allow for a zeroth weight, as described 

above.  Recall that we determined intuitively in the previous section that this problem has 

no solution.   

 

 From equation (4.36) the solution to the weights can be given as: 
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 The weights computed in equation (4.40) are all equal to zero because, as 

discussed earlier, a single layer perceptron cannot solve this problem.  The input points 

will therefore be transformed by this weight vector and placed at the position (0, 0).  

Using equation (4.37) we also get the same answer, or 
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 Next, we will apply the pseudo-inverse method.  Using equation (4.38), we find 

that 
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 However, the 4 x 4 matrix shown in equation (4.42) has a zero determinant, so has 

no inverse.  Adding a small amount of prewhitening of 0.1, we find 

 

[ ] [ ]000

111
111

111
111

1.3111
11.311
111.31
1111.3

1111

1

=



















−
−

−−







































−
−

−

−−=

−

Tw .  (4.43) 

  

 To solve equation (4.38), we needed to add pre-whitening, since the problem was 

under-constrained.  Using equation (4.39), we find that: 
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 Thus, equation (4.39) produces a result that does not require pre-whitening, since 

the inverse matrix is of the same size as the number of weights.  For this reason, 

equations (4.37) and (4.39) are the preferred approach to writing the associative memory 

equation. 

 

 We will now apply this approach to the top of the gas zone, which is solvable.  In 

this case, we have the inputs 
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which, by applying equation (4.37), gives the result: 
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 Thus, we have found the weights exactly, without using the perceptron training 

rule and having to estimate the initial weights.  Since the matrix X is square, we could 

also solve the problem using the matrix inverse rather than the pseudo-inverse.  This is 

given by: 
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 Again, we get the right answer.  Notice that the matrix being inverted is the 

transpose of the matrix in the previous expression.  This would be less obvious if we 

solved for the top of the gas sand, since that matrix is symmetric.  That is 
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 Throughout this section and the previous section, I have discussed the single layer 

perceptron and methods that can be used to solve for the perceptron weighting 

coefficients.  I illustrated all of these methods with a straightforward AVO classification 

problem.  Despite the large array of techniques discussed, we were never able to solve 

this simple problem completely, since it is nonlinearly separable.  In the next chapter, we 

will show how the multi-layer perceptron, which is composed of interconnected layers of 

perceptrons, is able to solve a nonlinearly separable problem.  Before doing this, the last 

section in this chapter will briefly discuss the generalized linear discriminant, which will 

lead us to the radial basis function neural networks that will be covered in Chapters 6 and 

7. 

 

4.7 The generalized linear discriminant 

 

 In this chapter, I have discussed a number of approaches to linear discrimination, 

all of which used the straightforward model 

)(fy T xw= ,     (4.48) 

where [ ]M10 xxx "=Tx  is an M+1-dimensional input sample vector of seismic 

attributes, and [ ]M10 www "=Tw  is an M+1-dimensional weight vector. If we let 
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f(x) = x, equation (4.48) reduces to the linear case. We found that the limitation of this 

approach is its inability to solve problems that are not linearly separable.  In the next 

chapter I will show how the multi-layer perceptron is able to get around this problem.  

However, another approach is the generalized discriminant function, written 

 )(y T xw φ= ,     (4.49) 

where [ ])x()x()x()( M10 φφφφ "=Tx is a nonlinear function of the vectors x, often 

called a basis function.   In chapter 6, we will see how a suitable choice of the basis 

function will allow us to generalize the problem in such a way that we will be able to 

solve nonlinear problems.  
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CHAPTER 5 :  THE MULTI-LAYER PERCEPTRON 
 
 
5.1 Introduction 

 
 In the previous two chapters, I have discussed linear approaches to the regression 

and classification problems.  As might be expected, we found that linear methods do a 

good job of solving linear problems, but are unable to solve nonlinear problems.  In 

particular, I discussed the single-layer perceptron and found that we could only solve the 

classification problem if the classes were linearly separable.   This was illustrated by 

applying the perceptron method to an AVO classification problem and finding that we 

could not separate both the top and base of a gas sand from a wet sand. 

 

 The perceptron model was introduced by McCulloch and Pitts (1943). Supervised 

learning using the perceptron model was first discussed by Rosenblatt (1958).  At this 

time there was much enthusiasm about the use of perceptrons to solve a wide variety of 

problems.  Unfortunately, Minsky and Papert (1969) showed mathematically that the fact 

that a perceptron can only solve linearly separable problems is a fundamental limitation 

of the method.  This dealt a severe blow to the development of neural network algorithms 

based on the perceptron model.  As shown by McClelland and Rumelhart (1981), the 

solution to this problem is to add a second layer of perceptrons.  Their algorithm, called 

the multi-layer perceptron (MLP), will be discussed in this chapter.  I will apply the MLP 

to both classification and regression problems.  In the first section of this chapter, I will 

revisit the AVO classification problem and show how to solve it intuitively using the 

MLP.  In the following section, I will discuss the mathematical approach to solving for 

the weights, and show that the limitation of the MLP is the need to make an initial guess 

of the weights, which can severely affect the final result.  Finally, I will apply the MLP to 

a real data example. 
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5.2 The multi-layer perceptron 

5.2.1 The general multi-layer perceptron model 
 

 The multi-layer perceptron is a generalization of the single-layer perceptron that 

was discussed in section 4.5, in which we add multiple perceptrons to which the inputs 

are fed with interconnected weights.  In addition, we add an extra layer of weights in 

order to connect the outputs of the perceptrons themselves.  Figure 5.1 shows a flowchart 

of a multi-layer perceptron with M inputs and K perceptrons.  The first layer in the multi-

layer perceptron is referred to as the input layer, the second layer as the “hidden” layer, 

and the output is referred to as the output layer.  Although we can add any number of 

“hidden” layers, it has been shown that most problems can be solved with a single 

“hidden” layer.  In all of our applications we will use only a single “hidden” layer. 

 
Figure 5.1:  A multi-layer perceptron with M inputs, K perceptrons, and a single output. 

 

  To relate the multi-layer perceptron of Figure 5.1 to the reservoir prediction 

problem that we are considering in this study, the input to the multi-layer perceptron is a 

vector of M attribute values [ ]jMjj xxx ,,, 21 "=T
jx , where j = 1, … , N, is the 

number of seismic samples.  Because each input stream of values is connected to each 

perceptron and there are several layers of weights, the first set of weights are written as 
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w(q)
ik, where i  represents the input attribute number, k represents the perceptron number 

and the superscript q in brackets indicates the layer number.   

 

 As in the single layer algorithm, each perceptron consists of a set of weights, a 

summation step, and a nonlinear function step. The output of the weighting and 

summation in the first layer, the “hidden” layer, can be written: 

∑
=

===
M

i
ijkikj NjKkxwy

0

)1()1( .,,2,1,,,2,1, ……   (5.1) 

  

 In equation (5.1) the bias term has been included by letting x0j = 1. In matrix and 

vector notation we can write 

j
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 Notice that the zeroth weight in equation (5.1) and (5.2) does not represent a new 

neuron, but rather a weight associated with a zeroth attribute, which consists of all ones.  

Also note that my notation convention differs from many neural network textbooks (e.g. 

Hagan et al., 1996) in that I have preserved the transpose operation for the weight matrix 

and the output vector, and write w(q)
ik rather that w(q)

ki.  This clarifies the connection 

between the multi-layer perceptron and the linear methods described in the previous two 

chapters.  

 

 The nonlinear function can be written as 

)()1( (1)
kjyfzkj =                                                 (5.3) 

or, in vector form as 

)()1( (1)
jyz fj = .    (5.4) 
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 The output from layer 1 is then fed into layer 2.  Again, we can incorporate the 

bias term by letting z0j
(1) = 1. The input to the single perceptron in layer 2 will thus 

contain K+1 weights, and can be written 
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 The output of the second layer can then be written as 

)y(fz )2(
j

)2(=(2)
j ,     (5.6) 

 

 Combining the above equations, note that the two-layer perceptron shown in 

Figure 5.1 can be also written in nested form as  

))(( )1()1()2()2(
j

(2)
j xTT WfWfz = .   (5.7) 

  

 Now, let us discuss the functions themselves. One of the most commonly used 

functions in the multi-layer perceptron is the logistic function, illustrated in Figure 5.2.  

The logistic function is given by 

)exp(1
1)(logist)(

x
xxf

−+
== .    (5.8) 

  

 Notice that the values of the logistic function are constrained between 0 and +1. 

In Figure 4.11 of Chapter 4 I showed two other common functions used in neural network 

design, the step function and the hyperbolic tangent function, in which the output is 

constrained between -1 and +1.  Recall that the step function was used in our AVO 

classification example.  This function will also be used in the next section.  
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Figure 5.2: A graph of the logistic function. 
 

 The hyperbolic tangent function can be shown to be related to the logistic 

function in the following way 

1 - logist(x)2
)exp()exp(
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 Finally, note that if we apply the multi-layer perceptron model to all of our input 

values simultaneously, equation (5.2) can be written as the matrix equation: 

XWY T)1()1( = ,     (5.10) 
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 This is referred to as batch processing, rather than sequential processing. 

  

5.2.2 The multi-layer perceptron applied to AVO classification 
  

 To apply this formulation to the AVO classification problem of the last chapter, 

we need to recast the problem as a multi-layer perceptron.  This is shown in Figure 5.3, 

where the inputs are still the intercept (A) and gradient (B), but we have now 

interconnected the two perceptrons using the “hidden” layer concept. 

 

Figure 5.3: The multi-layer perceptron for the gas-water sand model of Figure 4.12. 
 

 In mathematical notation, the output from the first layer is given by 
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equation (4.28).   
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 The output from the second layer is given by 
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 Before discussing a mathematical approach to solving for the perceptron weights, 

we will solve the weight values intuitively.  What we have done is simply connect two 

perceptrons to produce two separate outputs.  These outputs now represent the input to a 

new perceptron.  If we use the two perceptrons from Figure 4.12 in the previous chapter 

as our two first layer perceptrons, we can crossplot their outputs z1
(1) and z2

(1), and design 

a new perceptron, p(2), to separate these outputs.  This is shown in Figure 5.4, using the 

output values from Table 4.1.  

 
Figure 5.4: A crossplot of the outputs of the two perceptrons of Figure 4.18. 

  

 The weights for the top of gas can thus be written 1ww )1(
21

)1(
11 −== , and 1w )1(

01 −= , 

and for the base of gas can be written 1ww )1(
22

)1(
12 +==  and 1w )1(

02 −= .  The top of gas 

output is now at the point (-1, +1), the base of gas output is at the point (+1, -1), and both 

of the wet sands have moved to the point (-1, -1).  The output is now linearly separable, 
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as is graphically shown by the decision boundary on Figure 5.4.  We can therefore derive 

the weights for perceptron p(2) in Figure 5.3, which are: 

1)2(
2

)2(
0

)2(
1

)2(
0 −=−=−

w
w

w
w , or 1)2(

0
)2(

2
)2(

1 +=== www . 

 

 The final perceptron, with its weights annotated, is shown in Figure 5.5.  Notice 

that the weights are all equal to +1 or –1, which are the simplest set of weights.  This 

solution is not unique, and there are also many other sets of weights that would solve the 

problem.   

 
Figure 5.5:  The final multi-layer perceptron weights. 

 

 To verify that this is the solution, Table 5.1 shows the outputs for all inputs. 

     

 Inputs Perceptron 
)1(

1p  
Perceptron 

)1(
2p  

Perceptron 
)2(p  

Sand A B )1(
1z  )1(

2z  )2(z  
Top Gas -1 -1 +1 -1 +1 
Base Wet -1 +1 -1 -1 -1 
Top Wet +1 -1 -1 -1 -1 
Base Gas +1 +1 -1 +1 +1 

 
Table 5.1:  The computed output values from the multi-layer perceptron in Figure 5.5 for the gas and wet 
models of Figure 4.12, where y(2) shows that the gas sand values (+1) have been separated from the wet 

sand values (-1). 
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 As we can see in Table 5.1, the correct output is given for all four input cases.  

Thus, we have solved the problem of how to separate a Class 3 gas sand from its 

equivalent wet sand.  

 

 Although we have solved the weights intuitively in the preceding discussion, we 

need a more rigorous approach to finding the weights.  This can be done using a 

technique called backpropagation, in which we reduce the error between the known 

output and the actual output by backward propagation of the errors.  This will be 

described in the next section. 

 
5.3 Computing the weights for the multi-layer perceptron 

5.3.1 The backpropagation algorithm 
 

 In Chapter 4, I showed that the weights for a single layer perceptron could be 

solved using a single matrix inversion, since the problem was linear.  However, when we 

add a second layer of weights, the problem becomes nonlinear, and we cannot solve for 

the weights using a straightforward matrix inversion. To solve for these weights in the 

multilayer case I use a generalization of the LMS algorithm which was invented by 

Rummelhart et al. (1986).  This technique is referred to as error backpropagation, since 

the errors are backpropagated through the network and the weights are updated to reduce 

the error.  This has led to some confusion, because the network is often referred to as a 

backpropagation network, although the calculations themselves proceed in a forward 

direction. As mentioned in the last section, although this technique can be generalized to 

any number of hidden layers, we will work with a network with a single hidden layer, 

referred to as a two-layer network. 

 

 In section 5.2 I described the forward model for the multi-layer perceptron. As 

shown in Figure 5.1, the input values for a given input xj are transformed to an output 

value z(2), where the superscript 2 represents the output of the second layer.  The basic 

idea in the computation of the weights is that this output is compared to the training value 
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t, and the weights are updated based on the error between the two values.  This is called 

error backpropagation, because the errors are backpropagated through the network and 

used to improve the fit between the actual output and the training value. To start the 

process, the weights are initialized to small random values.  We then forward propagate 

the solution using these initial weights.  Once the output value has been computed, we 

minimize the squared error, which can be written as a function of the weights as 

2)2( )(
2
1)( jj ztE −=w .    (5.13) 

 

 In equation (5.13) there is no superscript on the weights since we will use this 

equation to compute the values for both sets of weights.  The difference in the weight 

values can be evaluated using the gradient descent method (Duda et al., 2001), in which 

we differentiate the error term with respect to the weights, giving 

w
ww

∂
∂−= )(Eη∆ ,    (5.14) 

where η is a scaling value between 0 and 1.  The weights are updated iteratively by the 

equation 

)()()1( nnn www ∆+=+ .    (5.15) 

 

 To implement this procedure, we start with the output layer weights.  Using the 

chain rule, and computing the derivative for each element in the weight vector, we get 

)2(

)2(
)2(

)2(

)2(

)2()2(
kj

j
j

kj

j

j

j

kj

j

w
y

w
y
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E

w
E

∂
∂

−=
∂
∂

∂
∂

=
∂
∂

δ ,   (5.16) 

where δj
(2) is the error term for the second layer.  To evaluate the individual derivatives in 

equation (5.16), note that 

)()( )2()2(
)2(

)2(

)2()2(
)2(

jjj
j

j

j

j

j

j
j yfzt

y
z

z
E

y
E

′−=
∂
∂

∂
∂

=
∂
∂

=δ ,   (5.17) 

where the prime denotes differentiation.  From equation (5.11) we see that the second 

term in equation (5.17) can be computed as 
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)1(
)2(

)2(

kj
kj

j z
w
y

=
∂
∂

.     (5.18) 

 Combining the preceding equations, we find that 
)1()2()2()1()2()2( )()( kjjjjkjjkj zyfztzw ′−==∆ ηηδ .  (5.19) 

 

 We next turn our attention to the first layer weights.  Using the same approach, 

we find that  

)1(
ki

)1(
kj
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kj
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∂
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.    (5.20) 

 

 Computing the first term on the right hand side of equation (5.20) using the chain 

rule and equation (5.18), we get 

.
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∂

  (5.21) 

 

 After a second application of the chain rule we find that the derivative of the error 

with respect to the first layer outputs is equal to the second layer error term multiplied by 

the second layer weights.  From equation (5.16), next note that the second term on the 

right hand side of equation (5.21) is given by 

)( )1(
)1(

)1(

kj
kj

kj yf
y
z

′=
∂
∂

.    (5.22) 

 

 Finally, by equation (5.13), note that the third term in equation (5.22) can be 

written 
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ij
ki

kj x
w
y

=
∂
∂

)1(

)1(

.     (5.23) 

 

 Combining equation (5.20) through (5.23) along with equation (5.13), we get 

ijjijkjkjjki xxyfww )1()1()2()2()1( )( ηδηδ =′=∆ .   (5.24) 

where δj
(2) is the first layer error term.  

 

 To implement the backpropagation algorithm, all that remains is to compute the 

derivatives of the functions used in the neural network.  This explains why the logistic 

and tanh functions are used so often, since their derivatives are easy to compute.  The 

derivative of the logistic function is written 

[ ]
)exp(1

)exp()(1)()(
x

xxfxfxf
−+

−=−=′ ,   (5.25) 

and the derivative of the hyperbolic tangent function is written 

[ ]2
2

)exp()exp(
1)(1)(

xx
xfxf

−+
=−=′ .   (5.26) 

5.3.2 An AVO classification example 
 

 To understand the practical aspects of backpropagation, I will first apply the 

method to two simple model examples.  The first example is the AVO classification 

problem that was considered in the last section.  In that discussion, we computed the 

weights intuitively.  In this section, I will use the backpropagation technique to find the 

weights.   

  

 The flow chart for the implementation of the MLFN network used to solve for the 

AVO classification process is shown in Figure 5.6. To solve this problem, I will 

reformulate the equations of section 5.3.1 in matrix form.  Before letting the computer 

take over, I will manually compute a single iteration through the process. 
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Figure 5.6: The inputs and desired outputs for the AVO classification problem. 
 

 Let us start with the forward modelling.  Our input, as seen in Figure 5.6, can be 

written 

















−−
−−=
















=

1111
1111
11111111

24232221

14131211

xxxx
xxxxX . 

 

 A critical step is the initialization of the weights.  These are set to random 

numbers between 0 and 1.  The choice of these random numbers will determine the 

convergence of the algorithm. Using a random number generator, the first layer weights 

are initially set to 
















=

















=
7621.06068.0
8913.02311.0
4860.09501.0

)1(
22

)1(
21

)1(
12

)1(
11

)1(
02

)1(
01

)1(
)0(

ww
ww
ww

W , 

where the value in the subscripted bracket refers to the 0th iteration. Applying these 

weights in the forward process gives the following output from the first layer summation 









−

==
1394.23568.06152.01674.1
7881.13258.15744.01121.0)1(

)0( XW T(1)
(0)y . 
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 Taking the hyperbolic tangent of each value in the above matrix, and adding a 

row of ones for the bias values in the second layer, we get 

















−
==

1394.23568.06152.01674.1
7881.13258.15744.01121.0
1111

)tanh( (1)
(0)

(1)
(0) yz . 

 

 The second layer weights are then initialized to  










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




=

















=
8214.0
0185.0
4565.0

)2(
2

)2(
1

)2(
0

w
w
w

(2)
(0)w , 

and the output of the second layer summation is 

[ ]2729.17538.09160.02178.0)1(
)0( −== (1)

(0)
(2)
(0) zwy T . 

 

 Taking the hyperbolic tangent of each value in the above matrix, we get 

[ ]8546.06374.07240.02145.0)tanh( −== (2)
(0)

(2)
(0) yz . 

 

 We will now compute the difference between this result and the training values of 

[ ]0.10.10.10.1 −−=t , 

which is given by  

[ ]1454.06374.17240.12145.1 −−=−= (2)
(0)

(2)
(0) zte , 

and the RMS error is given by 6738.2=RMSe . 

 

 This is a large error, so we will now use the backpropagation method to improve 

the estimate of the weights.  The two key parameters in the backpropagation algorithm 

are the learning constant η and the number of iterations.  In our test, we will set η to 0.2 

and use 1000 iterations.  We will do the first iteration manually, and then let the computer 

take over.  First we calculate δ(2) which, using the derivative form shown in equation 

(5.26), is given by 
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[ ]0392.09722.08203.01586.1)1()(' 2)2()2()2( −−=⋅−=⋅= (2)
(0)

(2)
(0) ezeyfδ , 

where the square and multiplication operations are applied element by element. The 

update for the second layer weights is thus given by 
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
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


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=⋅⋅=
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and the updated weights are 
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 Next we calculate δ(1), which is given by 
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−−=⋅−=

0017.07049.04716.03064.0
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 The weight update for the first layer weights is then given by 
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==
1076.00029.00
0143.00056.00
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)1()1( TXδ∆ η . 

 

 The zeros in the first column are superfluous and can be dropped, leaving a 3x2 

matrix which, when added to the initial weights gives 


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
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
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


=∆+=

6545.06040.0
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)1((1)
(0)

(1)
(1) WW . 

 

 Now that we have the updated weights, we can repeat the forward calculation, 

giving a new output of 

[ ]5405.02022.04370.00911.0−=(2)
(1)z , 
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with an RMS error of 2163.2=RMSe .  The error is going down, but very slowly.  We will 

therefore let the computer compute the next 999 iterations.  Figure 5.7 shows the RMS 

error after each of the 1000 iterations.  Notice in Figure 5.7 that the error decays 

smoothly nearly to zero, indicating that after 1000 iterations we have converged to a 

reasonable answer.  The final computed values are 

[ ]9734.09806.09806.09736.0 −−=(2)
(1000)z , 

and the error has decreased to 0464.0=RMSe .  The weights after 1000 iterations are given 

by 










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

 −
=

5534.16556.1
5539.16564.1
3779.15024.1

(1)
(1000)W , and
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
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


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


−=

5885.2
5788.2

3006.2
(2)
(1000)w . 

Notice that these weights are somewhat different than the weights we derived intuitively 

in the previous section. 

 

Figure 5.7: Convergence of the backpropagation algorithm for the AVO classification problem using the 
first example given above.   
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 From this first example it would appear that, with enough iterations, we can 

approximate the right answer to any desired level of accuracy.  However, let us see what 

happens if we choose a different set of initial weights.  In this second case, we let the 

initial weights be 


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
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


=

0099.00579.0
8132.08936.0
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)0(W , and










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


=

1987.0
2028.0
1389.0

(2)
(0)w , 

leading to an initial output of 

[ ]4469.00264.04411.00483.0 −−=(2)
(0)z ,  

with RMS error of 2.0072.  Figure 5.8 show the RMS error convergence for 1000 

iterations using this set of weights.  Notice that the algorithm now gets trapped in a local 

minimum, and does not to converge to an acceptable answer.  

 

Figure 5.8: Convergence of the backpropagation algorithm for the AVO classification problem using the 
second example given above. 

 

 The final weights are for the convergence shown in Figure 5.8 are 
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
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0888.0

(2)
(1000)w , 

and the final output is 

[ ]0007.09784.00008.09772.0 −−=(2)
(0)z ,  

with RMS error of 1.4156.  Comparing these results with the first results, it can be seen 

that the last row of the first weight matrix is much too low, as is the bias value in the 

second set of weights.  The result is an output that finds the first and third value correctly, 

but not the second and fourth.  

 

 As a final display, let us look at the estimated classification values after each 

iteration.  This is shown in Figure 5.9, where Figure 5.9(a) shows the estimates for the 

case shown in Figure 5.7, and Figure 5.9(b) shows the estimates for the case shown in 

Figure 5.8.  In Figure 5.9(a) the positive and negative pairs fall on top of each other and 

converge to the right answer in much the same way as the error plot.  In Figure 5.9(b), the 

four cases are distinct and show that two of the classification values refused to converge.  

This shows how sensitive the process is to the initial estimate of the weights. 

 

 
 (a) (b) 
 

Figure 5.9: Convergence of the classification values in backpropagation algorithm, where (a) shows the 
case from Figure 5.7, and (b) shows the case from Figure 5.8. 
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5.3.3 A sine wave example 
 

 As mentioned in Chapter 1, neural networks can be used for either classification 

or function prediction, that is an example of nonlinear regression where we know which 

function we are trying to interpolate.  Our first example was a classification problem, in 

which we classified a sand reservoir as being either gas-charged or wet.  In our second 

example, we will use the backpropagation network to interpolate the function sin(π t) 

using a training set consisting of four measured points from the sine wave.  To perform 

this interpolation, we will use a different type of neural network than was used in the first 

example, called a 1-K-1 neural network (Hagan et al., 1996).  This type of network 

accepts a scalar input (rather than the two-dimensional vector used in our classification 

example), passes it through K neurons, then combines the output from these K neurons 

using a single neuron, and outputs a scalar value.  We will use the simplest case of K = 2, 

and will use different functions for the neurons in each layer.  For the first layer, the 

hidden layer, we will use the logistic function given by equation (5.9), with derivative 

given by equation (5.25). For the second layer, the output layer, we will use the linear 

function given by xf(x) = , with a derivative of 1.  Figure 5.10 shows the flowchart for 

the 1-2-1 neural network. 

 

Figure 5.10: The 1-2-1 neural network used in this section to interpolate a sine wave. 
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 In our test, I will use four input values at x values of 1/8, 3/8, 5/8, and 7/8.  This 

means that our X matrix can be written: 


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
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
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


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
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8/78/58/38/1
11111111

4321 xxxx
X  

The training values are therefore at angles of π/4, 3π/4, 5π/4, and 7π/4 and are given by 

[ ]
[ ]2222

)4/7sin()4/5sin()4/3sin()4/sin(

−−=

= ππππt
 

 

 Using a random number generator, the first-layer weights for the zeroth iteration 

are set to 
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 Applying these weights in the forward process gives the following output from 

the first layer summation 
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0321.19106.07891.06676.0
1524.10946.10368.19790.0)1(

)0( XW T(1)
(0)y . 

  

 Applying the logistic function to each value in the above matrix, and adding a row 

of ones for the bias values in the second layer, we get 
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 The second layer weights are then initialized to  
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and the output of the second layer summation and function application, since the function 

is linear, is 

[ ]8070.17878.17678.17470.1)1(
)0( === (1)

(0)
(2)
(0)

(2)
(0) zwyz T . 

 

 We will now compute the difference between this result and the training values, 

that is given by  

[ ]5141.24949.20607.10399.1 −−−−=−= (2)
(0)

(2)
(0) zte , 

and the RMS error is given by 8408.3=RMSe . 

 

 As in the previous case, the two key parameters in the backpropagation algorithm 

are the learning constant η and the number of iterations.  In our test, I will set η to 0.1 

and use 12,000 iterations.  (I chose 12,000 iterations by trial and error.  Another approach 

to finding the number of iterations is to stop iterating when some convergence criterion is 

met.)  Again, I will do the first iteration manually, since this problem is quite different 

than the first one, and then I will let the computer take over.  First we calculate δ(2) which, 

since the derivative of a linear function is equal to one, is given by 
(2)
(0)

(2)
(0)

(2) eey =⋅= )(')2( fδ . 

This is simply equal to the error between the initial calculation and the training values, 

given above.  The update for the second layer weights is given by 
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and the updated weights are 
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(1) ww . 

 Next we calculate δ (1), in which we need the derivative of the logistic function, 

given in equation (5.25).  This gives us 
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 The weight update for the first layer weights is then given by 
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−−
−−

==
0392.0607.00
666.01020.00)1()1( TXδη∆ . 

 

 The zeros in the first column are superfluous and can be dropped, leaving a 2x2 

matrix that, when added to the initial weights gives 









=∆+=

4467.01704.0
5403.08481.0)1((1)

(0)
(1)

(1) WW . 

  

 Now that we have the updated weights, we can repeat the forward calculation, 

giving a new output of 

[ ]3137.03129.03121.03113.0=(2)
(1)z , 

with an RMS error of 5477.1=RMSe .  The error is going down, and the values are all 

roughly the same size, but we know that the last two values should be the same absolute 

value but negative.  We will therefore let the computer compute the next 11,999 

iterations.  Figure 5.11(a) shows the RMS error after each of the 12,000 iterations.  (The 

reason that the first value on the plot does not seem to agree with the first error given 

above is that the error in the first ten iterations is very steep, and the points are not shown 

at this scale.) Notice that the error decays smoothly to close to zero, indicating that after 

12,000 iterations we have converged to a reasonable answer. 

 

 The final computed values are 

[ ]7087.07045.07047.07085.0 −−=(2)
(12000)z , 

and the error has decreased to 0041.0=RMSe .  The weights after 12,000 iterations are 

given by 
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






 −−
=

3039.127847.2
0168.60483.1(1)

(12000)W , and
















−

−
=

0671.3
3917.3
3823.0

(2)
(12000)w . 

  

 In Figure 5.11(b) I show the results of applying the derived weights to interpolate 

values away from the training points.  Notice that the approximation is quite good 

between the centre two training points, but underestimates the true value between the 

other pairs of training points and overestimates the true value at the ends of the function.  

The error has converged to close to zero, but is far from being uniform in convergence, 

showing a large change after about 300 iterations.   

 

 
 (a) (b) 
 
Figure 5.11.  Interpolation of a sine wave using the backpropagation network shown in Figure 5.10, where 

(a) shows the error convergence after 10,000 iterations, and  (b) shows the correct answer as open blue 
circles, the training points as four black squares, the predictions as open red squares, and the error between 

the predicted and true values as a solid blue line. 
 

 It is also useful to display the four estimated sine wave values for each iteration of 

the algorithm.  This is shown in Figure 5.12.  In this figure, note that the algorithm gets 

the sign of the values correct after very few iterations, but underestimates the size of one 

value and overestimates the other for both the positive and negative pairs.  Also, there is 

almost perfect symmetry between the two pairs of values. 
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Figure 5.12. The estimate of each of the four sine wave values (the black squares in Figure 5.11(a)) after 
each iteration of the neural network. 

 

 Next, let us see what happens if we change the random guess on the initial 

weights. Figure 5.13 shows five separate solutions of 12,000 iterations each, starting with 

a different set of random numbers each time.  Notice that although each estimate is close 

to the estimate in Figure 5.12, they all differ slightly. 

 

 
 (a) (b) 
 

Figure 5.13: Same as Figure 5.11, except that five separate interpolations have been done using different 
sets of random initial weights. 
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 Next, let us vary the training points. Figure 5.14 shows five separate solutions of 

12,000 iterations each, starting with a different set of random numbers each time. 

However, this time the training values are at π/8, 5π/8, 9π/8, and 13π/8. 

 

   
(a)      (b) 

 
Figure 5.14.  Same as Figure 5.13, except that the training points have been shifted by π/8. 

 

 In Figure 5.14, note that only two of the five initial starting estimates have 

converged to the right answer, and these do so after different numbers of iterations.  In 

the best case, the one that converged after 9000 iterations, the training values and final 

answer are 

[ ]9239.03827.09239.03827.0 −−=t , 

and  

[ ]9239.03827.09238.03827.0)2(
)12000( −−=z , 

with an error of only 0.00047.  So this first run has done an excellent job.   

 

 The convergence of the individual values is shown in Figure 5.15.  Because the 

points are not symmetric, as in our first example, the convergence is no longer 

symmetric. 
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Figure 5.15. The estimated sine wave values after each iteration of the neural network. 

 

 What we can conclude from both this model study and the previous one is that the 

multi-layer perceptron is highly sensitive to both the initial guess of the weights and also 

the number of iterations used in the solution.  If we are lucky, we will converge to a 

correct answer after a reasonable number of iterations.  If we are not lucky, we will either 

require a very large number of iterations, making the process costly in time and computer 

usage, or may get locked in a local minimum and never converge at all.  The next section 

will discuss several methods for trying to avoid these problems. 

 

5.4 Advanced methods for backpropagation 

5.4.1 Introduction 
 
 In the examples just given, I have used the traditional LMS backpropagation 

method to compute weights in our neural networks.  However, this method has been 

shown to be quite slow and highly dependent on the initial guess.  Several more advanced 

methods have been developed over the years to improve the performance of network 

training.  The two methods that will be used in the next section are the conjugate gradient 
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method and the simulated annealing method.  Before discussing these methods, I will 

quickly review the basics of function optimization (Gill et al., 1981, Hagan et al., 1996).  

These methods can be best understood by considering the vector form of the Taylor series 

expansion, that can be written 

xxxgxx ∆∆+∆+= Hff TT)()( 0 ,        (5.27) 

where 
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, and 

oxxx −=∆ .  The vector of derivatives g is called the gradient, and the symmetric 

matrix H is called the Hessian.  If f(x) is the quadratic function given by 

cAf TT ++= xbxxx
2
1)( ,    (5.28) 

where A is also a symmetric matrix, we find that 

bA)(f +=∇ xx ,    (5.29) 

and 

Af =∇ )(2 x ,     (5.30) 

which shows that A is equivalent to the Hessian. 

 

 As a simple example of this theory, that will be used to illustrate the gradient 

search methods described in the next two sections, let 







=








=

y
x

x
x

2

1x , and consider the 

quadratic function 

[ ] 22

21
12

2
1

2
1)( yxyx

y
x

yxAf T ++=















== xxx , (5.31) 

that is the ellipse shown in Figure 5.16, both in contour and perspective form.   
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 (a) (b) 

Figure 5.16. The elliptical function used for the explanation of optimization methods, showing (a) the 
contours of the function, and (b) a perspective plot of the function. 

 

 For this function, the gradient is 
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and the Hessian is 
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5.4.2 The gradient descent method 
 
 To optimize the function f(x), we must find the value of x that gives us the 

minimum value of f(x).  This can be done iteratively using the equation 

kk pxx k1k α+=+ ,    (5.34) 

where k is the iteration number, pk is a search direction, and αk is the learning rate (Hagan 

et al., 1996).   

 Note that equation (5.34) can also be written 

kpxk α∆ = ,     (5.35) 
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where ∆ xk = xk+1 – xk.  Dropping the third term of equation (5.27) and substituting xk+1 

for x and xk for x0, we get 

k1k xgxx ∆T
k )(f)(f +=+ .    (5.36) 

 
Equation (5.36) can be rewritten as 

k
T
k xg ∆∆ =f ,     (5.37) 

that must be negative if the function f(x) is to decrease.  Combining equations (5.35) and 

(5.37) therefore gives us 

 kk pgxg T
kk

T
k α∆ = ,    (5.38) 

where, for pk to point in the direction of maximum change, or descent, we must 

have kgp −=k .  This means that we can rewrite equation (5.34) as 

kk gxx k1k α−=+ ,    (5.39) 

which is called the steepest descent, or gradient descent method.   

 

 For an analytical function, gk can be computed directly, as we saw in the last 

section.  However, when we do not know the underlying analytic function, the gradient 

must be evaluated directly from the data.  In the case where the vector x in equation 

(5.39) represents a set of unknown weights, as in both the single and multi-layer 

perceptron, we can replace the gradient with the error between the desired and predicted 

outputs.  In this case, the gradient descent method becomes identical to the LMS 

algorithm, that was used in both chapter 4 and in this chapter to solve for the weights. A 

detailed discussion of the LMS algorithm is given in Appendix 5. 

 

 Another key decision is how to choose a value for αk.  Often, this value is set to a 

constant that does not vary from iteration to iteration.  Choosing this value to be very 

small will ensure a smooth convergence but will lead to too many iterations.  Choosing a 

value of alpha that is too large will result in fewer iterations, but the solution may become 

unstable.   
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 As shown by Hagan et al. (1996) and discussed in section A5.6 of Appendix 5, 

the theoretical limit of αk is 

 
max

k
2

λ
α < ,     (5.40) 

where λmax is the largest eigenvalue of the Hessian matrix.   

 

 If we are dealing with quadratic functions, we can compute an optimum value for 

αk at each iteration by minimizing the function f(xk + αkpk) with respect to αk.  As shown 

by Hagan et al. (1996) this leads to the vector result 

k

k
k Hpp

pg
T
k

T
k−=α .    (5.41) 

 
 As an example of the gradient descent method, let us use the function defined by 

equation (5.31), with gradient and Hessian defined in equations (5.32) and (5.33).  Note 

that the eigenvalues for the matrix A are 3 and 1, so that the largest allowable value for α 

is 0.667.  We will choose 







=

0.4-
1.0

0x , which means, from equation (5.32), that 


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1.0

21
12

0g . 

If we choose α = 0.1, then we find that 









−

=−=
42.0

84.0
1.0 0gxx 01 , 

which is a small first step.  If we choose α = 0.6, then we find that 









−

=−=
52.0

04.0
6.0 0gxx 01 , 

which is a large first step.   

 

 Figure 5.17 shows the convergence of the solution for the two different values of 

α.  As expected, using a small value of α requires more iterations than a large value of α. 
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In the cases shown in Figure 5.17, we needed 50 iterations for α = 0.1 and 20 iterations 

for α = 0.6.   Note that the large value of α has created a result that is close to unstable. 

 

  
 (a) (b) 

Figure 5.17. The convergence of the gradient descent method using α values of (a) 0.1 and (b) 0.6. 
 
 Next, we will let αk vary for each iteration, using the line minimization procedure 

given in equation (5.41).  For the first iteration, we find that 
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This results in a first value equal to  









−

=−=
489.0

2877.0
4452.0 0gxx 01  

 

 Figure 5.18 shows the first and subsequent values of the gradient descent 

algorithm with line minimization. Note that this method converges to the correct solution 

in an optimum fashion when compared to the results in Figure 5.18, in which the alpha 

values were both fixed and arbitrary. As shown in Figure 5.18(a), most of the 

convergence is in the first five steps, although ten steps are shown in the figure.  Figure 

5.18(b) shows a detailed interpretation of the first two iterations of Figure 5.18(a).  Note 
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that at each step we move down the steepest slope (the gradient) from this step, but this 

direction is virtually never directly towards the actual minimum.  Thus, the convergence 

to the solution is quite “jerky”. The length of each step is controlled by the α factor. In 

this particular example, the values of αk vary alternatively between 0.4452 and 0.5702. 

  
 (a) (b) 
 
Figure 5.18. The gradient descent algorithm with line minimization, where (a) shows the iterative solution 

and (b) explains the first two steps of (a) in more detail.  

 

5.4.3 The conjugate gradient method 
 
 The conjugate gradient method allows us to converge to a solution much more 

rapidly than the gradient descent method, since it uses vectors that are mutually 

conjugate.  Using the positive definite Hessian matrix defined in equation (5.27), we can 

state that a set of vectors pk are mutually conjugate if 

jk,0H j ≠=ppT
k .    (5.38) 

  

 If we then combine the definitions of the gradient and Hessian given for the 

quadratic function in equations (5.29) and (5.30), where we now write the Hessian as the 

specific matrix A, we can compute the change in the gradient as 

kk1k A)A()A(- xbxbxggg k1kk ∆∆ =+−+== ++ .  (5.39) 
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 If we next multiply equation (5.38) by αk and substitute equation (5.33) for the 

term ∆ xk, we get 

jk,0HH jjj ≠=== pgpxpp T
k

T
k

T
kk ∆∆α .  (5.40) 

 Equation (5.40) shows us that to compute the conjugate to the gradient we no 

longer need to know the Hessian, only the changes in the gradient from iteration to 

iteration.  The procedure is done iteratively using the equation 

 1kk −+−= pgp kk β ,    (5.41) 

where the first search direction uses the gradient descent method, so that 0gp −=0 , and 

the βk values are found using the equation 

1k

k

−

=
gg
gg

T
1-k

T
k

kβ  .    (5.42) 

Equation (5.42) is due to Fletcher and Reeves (1964.  The update in the xk value is then 

given by equation (5.34). 

 

 Now I will illustrate the conjugate gradient method using the same dataset used to 

illustrate the gradient descent method.  As just discussed, the first step of the conjugate 

gradient method is identical to the first step of the gradient descent method.  Since I will 

again start at 
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0x , the initial gradient is 
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is 4452.00 =α .  This means that the first step is exactly as shown in Figure 5.17, resulting 

in the position 
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 The second step is the conjugate gradient step.  For this, we need the second 

iteration of the gradient, that is 
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 The first β term is then given by 
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 Using equation (5.41) and recalling that 0gp −=0 , this results in a conjugate 

gradient value of 
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 The new value of α is then given by line minimization as 
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and the final result is  









=







−
+








−

=+=
0
0

489.0
2877.0

489.0
2877.0

7487.0 1pxx 12 . 

 

 Thus, the conjugate gradient method has converged in just two iterations.  This is 

illustrated in Figure 5.19, in which (a) shows the steps in the algorithm and (b) annotates 

these steps.  Note that the conjugate to the gradient points directly at the correct solution 

and therefore the line minimization method allows us to arrive at the correct solution in 

just the second step.  This can be contrasted with the gradient descent method of Figure 

5.18, in which the gradient virtually never points directly at the correct solution and thus 

must tortuously arrive at the solution in multiple steps. 
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 (a) (b) 
Figure 5.19. An illustration of the conjugate gradient algorithm with line minimization, where (a) shows the 

iterative solution and (b) shows an annotation of (a).  Note that the algorithm converges in two steps. 
 

 The preceding analysis assumed that we are dealing with a quadratic function 

when performing minimization.  In the case that will be considered in Section 5.5 we are 

dealing with real discrete data and the algorithm must be modified (Masters, 1993).  The 

first difference is that the gradient term is not analytic and must be determined by the 

error between the predicted and desired result, as explained in the LMS algorithm.  The 

second difference is that the distance step α cannot be determined by line minimization.  

In the real data case, this value is determined by searching for a minimum in the error 

term using a technique called the Golden Section search (Press et al., 1992).  This 

technique will be also be used in finding the minimum for the radial basis function 

method, and will be discussed in the next chapter. 
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5.5 A multi-layer feedforward neural network case study 

 
 In this section, I will apply the theory of the multi-layer perceptron to the 

prediction of P-wave velocity in a channel sand from the Blackfoot oilfield of southern 

Alberta.  This is the same area that I have discussed in sections 3.7 and 4.4.2.  The base 

map showing both the wells in the area and the outline of the 3D seismic survey is shown 

in Figure 5.20. 

 
Figure 5.20. A base map showing the wells and limits of the 3D seismic data used in this study.  The red 

vertical line shows line 95, that is displayed in the next figure. 
 

 
 Figure 5.21 shows seismic line 95, which was indicated as the vertical red line in 

Figure 5.20.  The P-wave sonic log from line 95 has been superimposed on the section at 

its correct location, after correlation with the seismic data.  The wiggle traces on the 

display represent seismic amplitude and the colour represents acoustic impedance derived 

using the model-based seismic inversion scheme discussed in section 2.8.2.  Also shown 

is a picked seismic event (Horizon 1) just above the channel location.  The low 

impedance red zone just below Horizon 1 shows the extent of the channel on this line. 

Notice that this is the same input data that was used in the case study of section 4.4.2.  

The two differences are that we will be predicting P-wave velocity rather than porosity, 

and performing regression rather than classification. 
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Figure 5.21.  Line 95 from the 3D survey shown in Figure 5.23, where the wiggle traces show the seismic 
amplitudes, colour shows the inverted impedance, and the P-wave sonic log has been inserted at trace 25. 

 

 To see the full lateral extent of the channel, a dataslice was created over the 

complete 3D survey, and is shown in Figure 5.22.  This slice was created by averaging 

over a 10 ms zone that was centered on a “phantom” event created by shifting Horizon 1 

down by 20 ms.  Notice the low impedances (yellow) that correspond to the channel in 

the lower part of the map, running from right to left. 

   
Figure 5.22.  The average impedance from a 10 ms window that was shifted 20 ms below Horizon 1 in 

Figure 5.21. 
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 We will next extract the seismic trace and inverted trace that correspond to each 

P-wave sonic log by averaging these traces from a one-trace radius around each well.  

Figure 5.23 shows the result at wells 08-08 and 09-08, with the sonic log on the right, the 

seismic trace in the middle, and the inverted trace on the right.  The analysis window for 

each well is shown by the horizontal red lines. 

 
Figure 5.23.  The P-wave sonic, extracted seismic trace and inverted impedance for wells 08-08 and 09-08. 

The zones of interest are marked by the horizontal red lines. 
 

 We can get an idea of how well the seismic trace and inverted trace match the 

sonic log over the zone of interest by cross-plotting them, as shown in Figure 5.24.  It is 

obvious that the inverted trace fits better. 

 
 (a) (b) 
Figure 5.24. The crossplots of (a) inverted impedance, and (b) seismic amplitude against the P-wave sonic 

logs over the zone of interest in all wells. 
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 We will next find the optimum set of attributes using the method described in 

section 3.6.  That is, we will find the best attributes using step-wise regression and decide 

which attributes to keep using cross-validation.  Table 5.2 and Figure 5.25 show the 

result of this analysis, where the table shows the chosen attributes and the figure shows 

the training error in black and the validation error in red.  Only the first six attributes will 

be used, since the validation error starts to increase after six.  In this analysis, we also 

used an operator length of seven points, that was found to be the optimal length by trying 

a range of values. 

 

 
Table 5.2: The list of attributes used in the training for this problem. 

 

 
Figure 5.25. The graphical error for the attributes, where the red curve shows the validation error and the 

black curve shows the total error. 
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 The comparison between the predicted and actual sonic log values at wells 08-08, 

09-08 and 09-17 are shown in Figure 5.26. 

 

 
(a) 

 
(b) 

Figure 5.26. A comparison of the predicted P-wave logs (red) to the actual P-wave logs (black), where (a) 
shows the training result and (b) shows the validation result.   
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 In Figure 5.26, note that (a) shows the result of using all the wells and (b) shows 

the validation result, in which the well being predicted is left out of the training.  Notice 

also that the correlation coefficient drops to 0.674 for the validation result, but this is still 

reasonably close to the training result of 0.709.  Figure 5.27 shows a crossplot of the 

pseudo-sonic logs against the measured sonic logs at all well locations.  When comparing 

this with Figure 5.24(a), notice that the scatter has gone down and the correlation 

coefficient has improved to 0.709.   

 

 
Figure 5.27. The crossplot of P-wave sonic log values predicted using the multilinear transform against true 

P-wave sonic log values, for all wells.  

 

 We will now apply the multilinear regression coefficients derived in the training 

to produce a full volume of pseudo-P-wave sonic logs.  Figure 5.28 shows the predicted 

P-wave values for seismic line 95. Notice the extra detail that is seen in the channel that 

intersects the well log below Horizon 1 when compared to Figure 5.21.  There is also 

better lateral continuity throughout the section. 
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Figure 5.28. The predicted P-wave sonic logs from multilinear regression over line 95, taken from the 

predicted P-wave logs over the complete seismic volume.  
 

 Figure 5.29 shows a dataslice from the complete 3D survey, which is the mean 

average of a 10 ms zone that was centered on a “phantom” event created by shifting 

Horizon 1 down by 20 ms, as in Figure 5.22.  As in the Figure 5.22, the grid cells were 

then interpolated by a factor of four and smoothed with a 3 x 3 running smoother.  Notice 

that the channel is more clearly defined than the channel in Figure 5.22. 

 
Figure 5.29. The extracted P-wave slice over the complete seismic survey, averaged over a 10 ms window 

that was shifted 20 ms below Horizon 1 in Figure 5.31. 
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 Finally, we will use the multi-layer perceptron (MLP) to try to improve the results 

of the multilinear regression.  The theory of the MLP was discussed earlier in this 

chapter, but not the practical implementation.  The three key questions are how to choose 

the attributes, how many nodes to include in the hidden layer and how many iterations to 

perform, both for the backward propagation step and the conjugate gradient step.   

 

 To answer the first question, I have found in this study that the multilinear 

regression approach gives a good estimate of the attribute order, so the attributes with the 

operator described above are the ones that will be used as input to the neural network.  

Note that the attributes were 6 in number with an operator length of 7 points. To answer 

the second question, a good rule-of-thumb for the number of nodes is to use 2/3 of the 

number of attributes (Hampson and Russell, 1998).  Since the number of effective 

attributes is 6 x 7 = 42 (six attributes with a seven point operator), we will therefore use 

28 nodes.  Finally, for the number of iterations, we will use 10 full iterations and 100 

conjugate gradient iterations within each full iteration.  The simulated annealing steps are 

included if the error does not go down.  In this case, no simulated annealing steps were 

needed. 

 

 The comparison between the predicted and actual sonic log values after the MLP 

process, at wells 08-08, 09-08 and 09-17, are shown in Figure 5.30. Figure 5.30(a) shows 

the training result, in which all the wells are used in the calculation, and Figure 5.30(b) 

shows the validation result, in which the well being predicted is left out of the training 

calculation.  Notice that the correlation coefficient for the training result is 0.739, which 

is better than multilinear regression, but that the correlation coefficient for the validation 

result drops to 0.522, which is worse.  In other words, some of the improvement that we 

are seeing with the MLP may be due to overtraining at the well locations. 

 

 Figure 5.31 then shows a crossplot of the pseudo-sonic logs against the measured 

sonic logs at all well locations, after applying the MLP process.  When comparing this 

with Figure 5.30, notice that the scatter has gone down even more and the correlation 



191 
 

 

coefficient has improved to 0.739.   However, keep in mind that this is the result of full 

training, and not validation. 

 
(a) 

  
(b) 

Figure 5.30. A comparison of the predicted P-wave logs (red) to the actual P-wave logs (black) from the 
MLP network, where (a) shows the training result and (b) shows the validation result. 
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Figure 5.31. The crossplot of P-wave sonic log values predicted using the MLP network against true P-

wave sonic log values, for all wells. 
  

 We will now apply the multilinear regression coefficients derived in the MLP 

training to produce a full volume of pseudo-P-wave sonic logs.  Figure 5.32 shows the 

predicted P-wave  velocity values for seismic line 95. Notice the extra detail that is seen 

in the channel that intersects the well log below Horizon 1, when compared to the 

multilinear regression result of Figure 5.28.  There is also much higher frequency and 

good lateral continuity throughout the section.  However, a strong “imprint” of the well 

log is clearly visible on the seismically-derived logs adjacent to the well, which may 

suggest that the result has been overtrained. 

 

 Figure 5.33 then shows a dataslice from the complete 3D survey, again showing 

the mean average over a 10 ms zone that was centered on a “phantom” event created by 

shifting Horizon 1 down by 20 ms.  As in the Figures 5.22 and 5.29, the grid cells were 

then interpolated by a factor of four and smoothed with a 3 x 3 running smoother.  Notice 

that the channel is less continuous than the channel in Figure 5.29, indicating again that 
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the network has possibly been overtrained.  Thus, overtraining is a big concern for the 

multi-layer perceptron neural network, and appears in evidence here. 

  
Figure 5.32. The predicted P-wave sonic logs from the MLP network over line 95, taken from the predicted 

P-wave logs over the complete seismic volume. 
 

  
Figure 5.33.  The extracted P-wave slice over the complete seismic survey, averaged over a 10 ms window 

that was shifted 20 ms below Horizon 1 in Figure 5.35.  
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 This case study has shown that we can produce higher-frequency results with the 

multi-layer perceptron approach to reservoir prediction than with the multilinear 

regression approach.  However, it has also shown us that the danger of overtraining has 

increased.  A second problem, that was shown earlier in the chapter, is that if we had 

started the process with a different set of initial weights, the final answer could have been 

different.  This is not the case with multilinear regression, which always converges to the 

same answer, given the same number of iterations.  In the next chapter, we will look at a 

set of neural networks that combine the best features of both the multilinear regression 

approach and the multi-layer perceptron approach, called basis function neural networks.  

These methods will always converge to the same answer, but they are inherently 

nonlinear.  Although the danger of overtraining will also be present using basis function 

networks, the danger is less severe than in the multi-layer perceptron. 

 

5.6 Neural networks using a linear function 

 

 It is important to note that the multilayer network is equivalent to a single layer 

network if the linear function is applied to the output of the weighted sum at each layer.  

To understand this, consider a simple two-layer network with three inputs, two 

perceptrons in the first layer, and a single perceptron in the second layer, as illustrated in 

Figure 5.34.  

 

Figure 5.34. A multi-layer perceptron that uses a linear function. 
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 If we let the bias equal zero, we can write  
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for the output of the first layer, and 
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for the output of the second layer, where we have assumed that f(y) = y and f(z) = z. 

Combining equations (5.43) and (5.44) gives 
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 Thus, the two layer network of Figure 5.37 reduces to the single layer network 

shown in Figure 5.35.  This can be generalized to any number of layers and perceptrons.   

 

Figure 5.35. The equivalent single-layer perceptron to the multi-layer perceptron shown in Figure 5.34.  
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CHAPTER 6 : BASIS-FUNCTION NEURAL NETWORKS 
 
 
6.1 Introduction 

 
 In all the approaches I have applied so far to the determination of reservoir 

parameters from seismic attributes, I have used some form of the scalar product of a 

weight vector and the input attribute vector.  In the multilinear regression and linear 

discriminant methods, the output of this scalar product is the final result.  In the multi-

layer perceptron method, a nonlinear function is applied to the scalar product, and we are 

able to solve nonlinear problems.  The disadvantage of linear methods is that they can 

solve only linear problems, whereas the disadvantage of the multi-layer perceptron 

approach is that the final answer is dependent on this initial guess of the weights. 

  

 In section 4.7 I introduced the generalized linear discriminant, in which we 

compute the scalar product of the weight vector and some nonlinear function of the input 

attribute vector.  This equation is written 

)(y T xw φ= ,     (6.1) 

where [ ])x()x()x()( M10 φφφφ "=Tx is a nonlinear function of the vectors x, often 

called a basis function.  In this chapter I will revisit the basis function and show how this 

approach combines the advantages of the methods we have discussed so far, but avoids 

the disadvantages.  As with linear methods, the solution to the weights does not depend 

on an initial guess, but, unlike linear methods, the basis function approach can solve 

nonlinear problems.  The neural network methods discussed in this chapter will include 

the probabilistic neural network, or PNN, the generalized regression neural network, or 

GRNN, and the radial basis function neural network, or RBFN.   
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6.2 Probability density estimation 

6.2.1 Parametric statistics 
 

 In parametric statistics, we use a model that is based on several known 

parameters.  This approach was extensively discussed in Chapter 3, in which we used the 

normal, or Gaussian, probability density function. In the general case for an M-

dimensional vector x, the multivariate normal distribution is given as 





 −−−= − )()(

2
1exp

)2(
1)( 1

2/12/
µxΣµx

Σ
x T

M
p

π
,        (6.2) 

where µ  is the M-dimensional vector of means and Σ  is and MxM dimensional 

covariance matrix.  These parameters can be estimated by finding the mean, variance, and 

covariance of a representative set of data points.  Parametric statistics give us an excellent 

way of visualizing statistical relationships within our data, and lead to such powerful 

techniques as linear discriminant analysis, Bayesian inference and maximum likelihood 

analysis.  However, the drawback of parametric methods is that we “force” a model onto 

our data.  In the next section, I will discuss non-parametric statistics, in which the form of 

the probability density function depends on the data itself. 

 

6.2.2 Non-parametric statistics and the histogram 
 

 In non-parametric statistics we do not specify the parameters in advance, but 

instead try to fit a function based on the data itself.  The simplest type of non-parametric 

approach, the histogram, was introduced in Chapter 3.  In Figure 3.2, the histograms of 

four different attributes were shown.  Implicit in the histograms shown in Figure 3.2 is 

the fact that each histogram is based on 10 uniform divisions, or bins, between the 

minimum and maximum amplitude of the attribute.  If we change the bin size, the look of 

our histogram will change.  This is shown in Figure 6.1, where I have re-computed the 

histogram of Figure 3.2(d) for 5, 10, 50, and 100 bins, respectively. 
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 (a) (b) 

 
 (c) (d) 
 
Figure 6.1. Histograms for Attribute 3 of Figure 3.2, for  (a) 5, (b) 10, (c) 50, and (d) 100 bins, respectively. 
 
 Notice the extra detail that becomes apparent in Figure 6.1 as we increase the 

number of bins.  Recall that this dataset contained 69 points, so a bin size of 100 is 

actually too large and contains a lot of zeros and ones. 

 
 Although the histogram gives us an easy way of visualizing the distribution of 

values within our dataset, it has several limitations (Bishop, 1995).  First, the function is 

not smooth, but has discontinuities at the bin locations.  Second, and more importantly, 

the histogram cannot be easily extended to the multi-dimensional case. In the next 

section, we will discuss a density estimation method that overcomes both of these 

limitations.  
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6.2.3 Kernel-based density estimation 
 

 In kernel-based density estimation we define a hypercube in M dimensions and 

then define a kernel function that will map the points which fall within this hypercube 

into a new space defined by the kernel function.  In our application, I will again consider 

the case of our input attribute vectors xj, j = 1, …, N, where each vector contains M 

attributes and can be written [ ]Mjj2j1 xxx "=T
jx . These vectors can be thought of 

as N points in M-dimensional attribute space.  If we consider an arbitrary point in this 

space, x, we can define Parzen’s estimator (Parzen, 1960) by the function 
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where ( )uφ  is referred to as either the kernel function or the Parzen window, and satisfies 

the properties 

( ) 0≥uφ ,     (6.4a) 

and 

( ) 1d =∫ uuφ .     (6.4b) 

 

 Although there are a number of functions that conform to these criteria, the most 

commonly used function is the Gaussian kernel, given by 
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I will exclusively use the Gaussian kernel as our Parzen estimator, and also for the neural 

networks based on this method.  

 

 The key parameter in equation (6.5) is the scaling factor σ, which can obviously 

be equated to the standard deviation in the parametric form of the Gaussian distribution.  

Let us first consider the one-dimensional case, where the Parzen window can be written 
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where x is a scalar value.  Figure 6.2 shows the result of applying the Parzen estimator to 

the dataset shown in the histograms of Figure 6.1.  In this case, I have used σ values of 

10, 100, 250, and 1000, respectively.  The reason for the large values of σ is that I did not 

normalize the dataset first.  Recall also that N = 69 for this dataset. 

 

 
 (a) (b) 

 
 (c) (d) 
Figure 6.2. The Parzen estimator applied to the dataset shown in Figure 6.1, where I have used σ  values of  

(a) 10, (b) 100, (c) 250, and (d) 1000.  
 

 From Figure 6.2 it is obvious that, as σ increases, the resulting function becomes 

smoother.  It is also clear that a σ value of 10 is probably too small, and a σ value of 

1000 is too large.  To illustrate the effect of σ on the Parzen window even more clearly, I 
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will let N = 6, so that the individual Gaussian curves can be seen.  I will let the six points 

be x1 = 20, x2 = 30, x3 = 35, x4 = 60, x5 = 70, and x6 = 75.  The result of applying a 

Parzen window to these values is shown in Figure 6.3, where I have used σ values of 5, 

10, 20, and 40, respectively.  Again, it is the relative effect of these values that we are 

concerned with, not their absolute values. 

 

 
 (a) (b)    

 
 (c) (d) 
Figure 6.3:  The 1D Parzen windows for the six points described in the text, where I have used σ values of 

(a) 5, (b) 10, (c) 20, and (d) 40. 
 

 In Figure 6.3, each Gaussian has been normalized to a value of one.  Notice that 

as the value of σ increases, the resolution of the six points becomes less clear until, for a 

value of 40, we just see a single smooth Gaussian shape. Let us now consider the two-

dimensional case, where the Parzen window can be written as 
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Figure 6.4 shows the Parzen window for the 2D case, where I have used the six points  
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values of 5, 10, 20, and 40.   

 
 (a) (b)    

 
 (c) (d) 
Figure 6.4:  The 2D Parzen windows for the six points described in the text, where I have used σ values of 

(a) 5, (b) 10, (c) 20, and (d) 40. 
 

  

 Notice in Figure 6.4 that a σ value of 5 is too small, since the result is spiky, 

whereas a σ value of 40 is too large, since it results in a single smooth Gaussian shape. 

The optimum value of σ is between these two values.  Although we can only visualize 

the Parzen window up to the two-dimensional case, the same concept applies for M > 2.   
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6.3 An introduction to kernel-based neural networks 

 
 Let us now discuss neural networks that are based on the Parzen estimator.  As 

already discussed, our training dataset consists of a set of N known training samples ti, 

which will be some well-log-derived reservoir parameter such as VP, SP, SW, etc.  Each 

training sample is dependent on a vector of M seismic attribute values, correlated in time 

with the training samples.  The issues of which seismic attributes to use and how to 

optimize the correlation between the training samples and the seismic data were 

discussed in Chapter 3, and I will be using the same approach in this section.  The 

seismic attribute vectors can be written si = (si1, si2, …, siM)T, i = 1, 2, …, N.  The objective 

of our neural network is to find some function y such that: 

y(si ) = ti ,  i =1, 2,…, N    (6.8) 

 

 Once this function has been found, it can be applied to an arbitrary set of seismic 

attribute vectors xk, where the attributes in the xk vectors are identical to those in the si 

vectors. This is illustrated in Figure 6.5 for two arbitrary training samples and a single 

application sample. I have chosen to use a different letter to represent the training and 

application data vectors to emphasize the fundamental difference between them. 

 
Figure 6.5: An illustration of the differences between the training vectors, si and sj, in which the output 
samples ti and tj are known, and the application vector xk, in which the output sample yk is not known.  
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 Before discussing the RBFN and GRNN algorithms, I will first discuss the 

simpler PNN algorithm.  The PNN algorithm is based on the concept of “distance” in 

attribute space.  To better understand this concept, consider Figure 6.6, in which I have 

drawn, in graphical form, the three arbitrary two-dimensional seismic attribute vectors 

shown in Figure 6.5.  Note that “distance” on these graphs is represented by the distance 

between attribute amplitudes rather than the Cartesian distance that we normally use. 

Recall that two of these vectors are from the training dataset (si and sj) and one is from the 

application dataset (xk).  We can define the three possible distances between these 

vectors, as displayed in Figure 6.6.  These are given by 

   2
22

2
11 )()( jijijiij ssssd −+−=−= ss ,  

   2
22

2
11 )() kikikiik xsxsd −+−=−= xs , and 

   2
22

2
11 )()( kjkjkjjk xsxsd −+−=−= xs . 

  

 It is important to distinguish two fundamentally different types of attribute 

distance in the above equations.  The dij distances are the inter-training distances and the 

dik and djk distances are the application distances.   

 
Figure 6.6: A schematic graph of the vectors, si, sj, and xk, from Figure 6.5, where the coordinate axes 

represent attribute amplitude rather than Cartesian distance. 
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 A second important concept is that it is not the distances themselves that will be 

used in our neural network applications, but the basis function, φ(d), of the distance.  As 

mentioned in the last section, I will be using the Gaussian function as our basis function, 

which can be written as 
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where σ is a smoothness parameter.  Notice that σ can also be interpreted as the variance 

of a Gaussian distribution centered on d. Thus, as we decrease σ, the width of the 

distribution becomes narrower.  Equation (6.9) is obviously equivalent to the Parzen 

window of equation (6.5), but with the physical interpretation that the distance values 

used in the exponential are equivalent to distances between reservoir parameter.  Which 

distances are used, and how they are used, will define our three neural networks: PNN, 

GRNN, and RBFN.  I will start with the PNN or probabilistic neural network. 

 

6.4 The probabilistic neural network 

6.4.1 Theory of the probabilistic neural network 
 

 The probabilistic neural network, or PNN, is a neural network implementation of 

the Parzen window, and was initially proposed by Specht (1990).  A description of this 

method, and the C++ code used to implement the algorithm, is found in books by Masters 

(1993, 1995). The PNN can be used for discrimination or classification, and is thus a 

nonlinear extension of Fisher’s linear discriminant function.  Based on the definitions 

given in the last section and shown in Figure 6.6 and 6.7, the PNN is defined for each of 

the xk points as the sum over all the possible )d( kjφ  functions, or 
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where I have used the abbreviation φkj for φ(dkj).   If we use all the points in the training 

dataset PNN will result in a single value, which does not give us a very useful 

discrimination technique. But if we subdivide the training points into a number of classes, 

PNN becomes an excellent classification method.  This can be thought of as an 

implementation of Bayes’ Theorem.  I will first consider the simplest case, that of two 

classes. If we have class C1 with N1 points, and class C2 with N2 points, where N1 + N2 = 

N, then we can define 
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where normalization by the p(xk) term defined in equation (6.10) assures us that 

0.1)(p)(p k2k1 =+ xx . The pj values can be interpreted as the probability of 

membership in a class.  That is, if p1(xk) > p2(xk), then xk is a member of class C1, or, if 

p1(xk) < p2(xk), then xk is a member of class C2.   

 

 Let us start with an example in which we have two classes, each a function of two 

attributes and containing three points.  In this case, we can compute the total PNN 

function for point xk as the combination of the basis functions from all 6 points, or  
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Notice from equation (6.13) that the final result is the sum of six individual Gaussian 

functions. 
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We can compute the individual class probability functions as     
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 This two class problem is shown below in Figure 6.7. 

 

Figure 6.7: A simple example of the PNN neural network, using two classes with three points in each class, 
and two attributes. 

 

 The result of the calculations is shown in Figure 6.8 using an optimal sigma value.  

The top two figures show the un-normalized basis functions, and the bottom two figures 

show the normalized basis functions that correspond to the probabilities given in equation 

(6.14) and (6.15).   
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 In Figure 6.8, classes 1 and 2 have been renamed classes A and B, respectively.  

This simple example can be generalized to K classes and M attributes, as will be done in 

the next section in which I will show a case study that uses 3 classes and four attributes. 

 

 
 (a) (b) 

 
 (c) (d) 

 
Figure 6.8: The computed basis functions for the example shown in Figure 6.7, where (a) and (b) represent 

the un-normalized functions for the two classes, and (c) and (d) represent the normalized probability 
functions. 
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6.4.2 Application of the probabilistic neural network to porosity classification 
 
 In section 4.4.2, I applied the Fisher linear discriminant to porosity classification.  

I will now use the same input data and apply the probabilistic neural network to 

classification.  The base map for the study was shown in Figure 4.3, the logs for well 08-

08 were shown in Figure 4.4, seismic line 95 was shown in Figure 4.5, and three of the 

seven wells used in the study were shown Figure 4.6. We then decided on which 

attributes to use for the classification of porosity using the seismic data, finding the best 

attributes using step-wise regression and deciding which attributes to keep using cross-

validation.  Table 4.1 and Figure 4.7 showed the results of this analysis.  Only the first 

four attributes will be used, since the validation error increases after that point. These 

figures will not be repeated here.  

 

 I will now apply the PNN algorithm to the full seismic volume using the attributes 

shown in Table 4.1.  Before looking at the seismic volume, we need to see how close the 

fit is at the wells.  This is shown in Figure 6.9 for the three wells shown in Figure 4.6, 

where Figure 6.9(a) shows the training result and Figure 6.9(b) shows the validation 

result.  You will recall from sections 3.7 and 4.4.2 that the training result shows the effect 

of computing the weighting coefficients from all the wells and applying them to all the 

wells, whereas the validation result shows the effect of leaving the well shown from the 

computation and is thus a “blind” prediction of this result. 

 

 In Figure 6.9 the RMS error is shown at the top of each result.  The error for the 

training result is 0.185 and for the classification result is 0.399.  This is an improvement 

over the Fisher linear discriminant of Figure 4.8, in which the training error was 0.3859 

and the classification error was 0.4657.   
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(a) 

 
(b) 

Figure 6.9: The application of the PNN algorithm to the three wells shown in Figure 4.6, where (a) shows 
the training error, and (b) shows the validation error. 
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 Finally, I will apply the PNN algorithm to the seismic data itself.  The result over 

the seismic line from Figure 4.5 is shown in Figure 6.12, where gray shows the low 

porosity values, yellow shows the medium porosity values and blue shows the high 

porosity values.  For comparison purposes I have redrawn Figure 4.8, the equivalent 

application of the Fisher linear discriminant, as Figure 6.13. When comparing Figure 6.12 

and Figure 6.13, note that the PNN algorithm has enhanced both the lateral definition and 

continuity of the high porosity channel just below 1050 ms.  Note that in both Figures 

6.12 and 6.13, the inserted curve from well 08-08 is the density-porosity log, not the 

classified log. 

 

 Figure 6.13 then shows a slice of the classified porosity taken from a single 

sample that was extracted 20 ms below the picked event labelled Horizon 1 in Figure 

6.12.  The wells have also been indicated in Figure 6.13.  As with the results on the single 

seismic line, the equivalent application of the Fisher linear discriminant over the volume, 

shown in Figure 4.9, has been redrawn as Figure 6.14.  Notice when comparing these two 

figures that the lateral continuity of the porosity away from well 08-08 is better in the 

PNN result and that the false indications of high porosity across the upper and lower left 

parts of the map have been reduced, but not completely eliminated. 

 

 In general, it would appear that the PNN result for the porosity prediction case 

study is an improvement over the Fisher linear discriminant.  However, it is important to 

stress that, except at the wells, we have no way of validating the result throughout the 

data volume.  That is, we do not know was the correct answer is for the seismic data 

volume except when we drill.  The fact that the two results give different answers 

(although they agree in some specific areas) is a little concerning.  Remember that the 

Fisher linear discriminant is based on parametric statistics, whereas the PNN is based on 

non-parametric statistics.  Thus, we would expect some differences.  It is certainly 

worthwhile to apply both methods and make a decision as to which is preferred based on 

geological criteria.   
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Figure 6.10: The application of the PNN to porosity classification on the seismic line of Figure 4.5.  

 
 

   
Figure 6.11:  The Fisher linear discriminant results of porosity classification originally shown in Figure 4.8. 
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Figure 6.12: The application of the PNN to porosity classification in a window across the complete seismic 

survey area. 
 

 
Figure 6.13: The Fisher linear discriminant results of porosity classification originally shown in Figure 4.9. 
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6.5 The generalized regression neural network (GRNN) 

6.5.1 Theory of the GRNN 
 

 The generalized regression neural network, or GRNN, is based on the PNN and 

was initially proposed by Specht (1991), as was the PNN.  A good summary of this 

method is given by Masters (1995). This method is actually a neural network 

implementation of a statistical technique that was proposed independently by Nadaraya 

(1964) and Watson (1964), and often referred to as the Nadaraya-Watson estimator.  The 

derivation of the Nadaraya-Watson estimator can be done by using a two-dimensional 

Parzen kernel estimator that uses N pairs of inputs and targets, sj and tj, and can be written 

(Bishop, 1996) as 
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 Equation (6.16) is the joint probability function and is illustrated in Figure 6.14 

for a single attribute x.  In Figure 6.14, the points represent the target values and the 

circles represent the Gaussian functions from the Parzen estimator.   

 
Figure 6.14: An illustration of the two-dimensional Parzen kernel estimator (adapted from Bishop, 1996). 

 



215 
 

 

 The function y(x) shown in Figure 6.14 is the Nadaraya-Watson estimator. It can 

be derived (Bishop, 1996) by computing the conditional average of the target data on the 

input variables, given by 
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Substituting equation (6.16) into equation (6.17) gives 
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 As mentioned earlier, the Nadaraya-Watson estimator of equation (6.18) was re-

discovered in the context of neural networks and named the generalized regression neural 

network, or GRNN.  This name is due to the fact that the training values themselves are 

weight values and thus this is indeed a type of generalized regression on the Gaussian 

basis functions.  Note that the normalization factor in the denominator of equation (6.18) 

is the PNN estimate of the complete training dataset.  We can observe how this equation 

works on the training data by re-writing equation (6.18) using the training data, or 
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Notice that when i = j, it follows that [ ] 10expexp 2
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 A simple illustration of the GRNN method is given in Figure 6.15 for the same 

two attributes that were used to illustrate PNN in Figure 6.7. In Figure 6.15, the last 

sample on the target log, which is not known, is estimated using the N pairs of attribute 

values and their corresponding target values shown above. 
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Figure 6.15: The attribute vectors and target values used in the GRNN and RBFN methods 

 

6.5.2 Optimization of sigma in the GRNN method 
 

 As in the PNN method, the key parameter in the GRNN method is the sigma 

value, that will determine the width of the Parzen estimator in N-dimensional space.  So 

far in our discussion, I have assumed that the sigma term is a constant. In fact, sigma can 

be made to vary as a function of each attribute.  That is, equation (6.19) can be rewritten 

as 
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 This approach was suggested by Masters (1996) who also supplies C++ code for 

finding the optimum values of the sigma values using the conjugate gradient approach. 
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6.5.3 Application of the GRNN to P-wave velocity prediction 
 

 In this section, I will apply the generalized regression neural network to the 

prediction of P-wave velocity in a channel sand from the Blackfoot oilfield of southern 

Alberta.  This is the same case study which was discussed in section 5.5.  The base map, 

inverted seismic line, and impedance dataslice for this study were shown in Figures 5.23 

through 5.25, and will not be re-shown here.  The P-wave log, extracted seismic trace and 

inverted trace used in the analysis are shown in Figure 6.16 for two of the nine wells in 

the study, which is a re-display of Figure 5.26. In Figure 6.16, the analysis window is 

shown by the horizontal red lines. 

 

 
Figure 6.16.  The P-wave sonic, extracted seismic trace and inverted impedance for wells 08-08 and 09-08. 

The zones of interest are marked by the horizontal red lines. 
  

 The best attributes were then computed using step-wise regression and the 

optimum attributes were found using cross-validation.  Table 6.1 shows the results of this 

analysis. Only the first six attributes will be used, since the validation error starts to 

increase after six.  In this analysis, I used an operator length of seven points, which was 

found to be the optimal length. 
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Table 6.1. The optimum attributes for predicting P-wave velocity, computed using the multilinear 
regression approach with a seven-point convolutional operator. 

 
 

 In the case study of section 5.5, I applied both the multilinear regression approach 

and the multi-layer perceptron approach.  For the multilinear regression approach, the 

comparison between the training result and validation result for the predicted and actual 

sonic log values at wells 08-08, 09-08 and 09-17 was shown in Figure 5.29.  For the 

multi-layer perceptron approach, the comparison between the training result and 

validation result for the predicted and actual sonic log values was shown in Figure 5.33.  

The key point to note from those figures was that although the correlation coefficient for 

the multi-layer perceptron training result was higher than the correlation coefficient for 

the multi-linear regression training result (0.739 versus 0.709), the correlation coefficient 

for the multi-linear regression validation result was higher than the correlation coefficient 

for the multi-layer perceptron validation result (0.674 versus 0.522).  This suggests that 

the multi-layer perceptron has been overtrained.  

 

 I will now apply the GRNN approach to the prediction of P-wave velocity, using 

the attributes shown in Table 6.1.  This will be done by optimizing the σ value in 

equation (6.19), but will be extended so that we compute a different sigma value for each 

attribute, as discussed in the last section.  Table 6.2 shows the computed σ values for 

each of the attributes.  Since we used a 7-point symmetrical convolutional filter to 
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compute the attributes, this is equivalent to introducing a set of new attributes at each 

filter lag.  A new σ value is computed at each of these lags and is shown in the table. 

   

Lag Impedance Filter 1 Filter 2 Phase Filter 3 Frequency 
-3 0.819 0.206 0.740 0.442 1.194 1.137 
-2 0.539 0.693 0.283 0.433 0.973 1.302 
-1 0.506 0.922 0.891 1.127 1.334 1.240 
0 0.207 1.077 1.091 0.509 1.364 1.173 
1 1.519 1.168 1.154 0.931 1.058 1.390 
2 1.135 1.198 1.011 0.991 0.804 1.295 
3 0.469 1.184 0.666 1.007 1.235 1.298 

 
Table 6.2. The σ values computed for each of the first six attributes shown in Table 6.1. 

 

 The comparison between the predicted and actual sonic log values after the 

GRNN process, at wells 08-08, 09-08 and 09-17, is shown in Figure 6.17. Figure 6.17(a) 

shows the training result, in which all the wells are used in the calculation, and Figure 

6.17(b) shows the validation result, in which the well being predicted is left out of the 

training calculation. 

 

 In Figure 6.17, notice that the correlation coefficient for the training result is 

0.901, which is better than both multilinear regression and the multi-layer perceptron, and 

that although the correlation coefficient for the validation result drops to 0.667, this is 

still much better than for both the multi-linear regression and the multi-layer perceptron.  

A crossplot of all of the logs is then shown in Figure 6.18.  Notice that the fit is much 

better than for the crossplots shown in section 5.5 for the multi-linear regression and 

multi-layer perceptron methods.   
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(a) 

 

 
(b) 
 

Figure 6.17. A comparison between the computed (red) and original (black) well logs for wells 08-08, 09-
08, and 09-17, where (a) shows the training result and (b) shows the validation result. 
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Figure 6.18. A crossplot of the predicted P-wave logs from the GRNN approach against the original logs. 
  

 I will now apply the multilinear regression coefficients derived in the GRNN 

training to produce a full volume of pseudo-P-wave sonic logs.  Figure 6.19 shows the 

predicted P-wave values for seismic line 95. Notice the extra detail that is seen in the 

channel that intersects the well log below Horizon 1, when compared to the multilinear 

regression result of Figure 5.31.  There is also better lateral continuity throughout the 

section than in the multi-layer perceptron result.  

 

 Finally, Figure 6.20 then shows a dataslice from the complete 3D survey, again 

showing the mean average over a 10 ms zone that was centered on a “phantom” event 

created by shifting Horizon 1 down by 20 ms. 
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Figure 6.19. The predicted P-wave sonic logs over line 95 using the generalized regression neural network. 
 

   

Figure 6.20. The extracted P-wave slice over the complete seismic survey, averaged over a 10 ms window 
that was shifted 20 ms below Horizon 1 in Figure 6.19. 
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6.6 The radial basis function neural network (RBFN) 

6.6.1 Theory of the RBFN 
 

 The radial basis function neural network, or RBFN, was originally developed as a 

method for performing exact interpolation of a set of data points in multi-dimensional 

space (Powell, 1987).  Referring again to Figures 6.5 and 6.6 in section 6.3 for our 

notation, we want to find a function y(x) that satisfies 

Nity ii ,,2,1,)( …==s ,    (6.21) 

where the ti values are our training samples, and the si values are our attribute vectors. 

 

 In its most general form, the problem can be formulated as 
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where the functions ( )ji xx −φ   are a set on N radial basis functions that depend on the 

attribute distances, which can be abbreviated as φij.  (Note that equation (6.22) is the 

generalized linear discriminant function that was given in equation (4.49).)  A radial basis 

function is a function whose response decreases (or increases) monotonically with 

distance away from a central point (Orr, 1996).  There are many functions that satisfy this 

requirement (Bishop, 1996), such as the thin-plate spline function given by 

 )ln()( 2 xxx =φ ,     (6.23) 

and the multi-quartic function given by 
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 However, it has been found that the most effective function is the Gaussian basis 

function.  Equation (6.22) can thus be written as 
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where the wj, j = 1, … , N, are the desired weights. As shown in Appendix 6, equation 

(6.26) can be derived from basic principles using the theory of regularization, and 

involves the introduction of pseudo-differential operators (Poggio and Girosi, 1990).   

 

 To solve for the weights in equation (6.26), notice that it can be written as a set of 

N equations in N unknowns, or 
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 Equation (6.27) can be written more compactly as the matrix equation: 
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 The solution to equation (6.28) was discussed extensively in Chapter 3 and is 

given by 

[ ] ,λ 1 tw −+= ΙΦ     (6.29) 

 

where λ is a pre-whitening factor and I is the identity matrix.  This equation can be 

solved efficiently by noting that the matrix is symmetric.  Once the weights have been 

computed, they are applied to the application dataset (see Figure 6.5) using 
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6.6.2 Optimization of sigma for the RBFN method 
 

 As in the PNN method and the GRNN methods, the key parameter in the RBFN 

method is the sigma value σ.  I showed in section 6.4.2 that σ could be written as a 

function of each attribute for the GRNN method.  This is also the case for the RBFN 

method in theory.  That is, equation (6.20) could be rewritten in the RBFN case as 
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 Unfortunately, no efficient way of optimizing σ as a function of each attribute has 

been obtained for the RBFN method, as was the case for the GRNN method.  In fact, 

even optimizing a constant σ value turns out to be very time consuming for the RBFN 

method, since a matrix inversion is required for each change in this parameter.  Initially, a 

trial-and-error approach was adopted, in which the value of σ was varied over a range of 

values and the σ value that gave the minimum least-squared error was chosen.  However, 

the problem with this approach is that as the increment of σ becomes small, and the 

search range becomes large, the computer time requirements for solving the problem tend 

to approach infinity!  Thus, I chose to use the parabolic search method to find the 

optimum value for σ.    

 

 This parabolic search method, described by Press et al. (1992), is illustrated in 

Figure 6.21.  We initially choose three values of σ: low, intermediate and high, and 

compute the RMS error between RBFN response of our training data and the actual 

values of the training data.   These error values are illustrated by points 1, 2 and 3 in 

Figure 6.21.  We then fit a parabola to these three points, illustrated by Parabola A in the 

figure.  We next find the minimum of Parabola A, which is labelled point 4 in Figure 

6.21. We then replace point 3 with point 4 and compute a new parabola, labelled Parabola 

B in the figure.  The minimum of Parabola B is point 5, and this in turn replaces point 4 
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for a new parabolic search.  If we consider the three points on the parabola to be given as 

a, b and c, and the error functions of these points as f(a), f(b) and f(c), the equation for 

finding the minimum is given by 
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−−−−−−=σ , (6.32) 

 

where σ is the new value of sigma. This procedure is repeated until we converge to a 

minimum error, with the resulting σ value being the optimum value.  In Figure 6.21, 

point 5 appears to be a reasonable estimate of the minimum value. 

 
Figure 6.21. An illustration of the parabolic search method (adapted from Press et al., 2002) 

   

 Before applying the RBFN to a real dataset, I will discuss the relationship 

between the RBFN and the GRNN, both in theory and then using two straightforward 

functions. 
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6.7 The relationship between the RBFN and the GRNN methods 

 
 To understand the relationship between the RBFN and the GRNN methods, recall 

that the GRNN relationship given in equation (6.18) was written 
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where p(xk) is a normalization constant which is identical to the PNN function for all N 

training points that was defined in equation (6.10). 

   

 By equating equations (6.33) and (6.30), note that equation (6.33) can be thought 

of as the general form of both the RBFN and the GRNN if we rewrite the weights as 
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 If we assume that the scaling factors σ are identical in equations (6.30) and (6.33), 

and that p(xk) = 1, then we simply need to look at the relationship between tj and wj  to 

equate the two methods.  By expanding equation (6.29), we find that 
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can write the equation for a single weight as 
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 From equation (6.34) we see that wj is a weighted sum of all the training values.  

If the inverted matrix consisted only of values along the main diagonal, we could rewrite 

equation (6.35) as 

jjjj tw ψ= .     (6.37) 

If this was the case, Φ would consist only of the values jjφ  along the main diagonal.  But 

note that 
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 Thus, for the case given in equation (6.38), Φ = I, the identity matrix, and Φ−1 = 

I.  Therefore, for this trivial case, the RBFN and GRNN methods are identical to a scale 

factor.  This would occur in two situations:     

    (1) ,0ss ji →−  for all i and j, and 

    (2) 0→σ  

 In the more general case, the off-diagonal elements in the covariance matrix are 

all non-zero.  Indeed, they will only be equal to zero for the case in which the seismic 

attributes are statistically independent.  Thus, we can think of the GRNN method as a 

subset of the RBFN method for the case of statistical independence of the attributes.  We 

would therefore expect the RBFN method to give a more high resolution result than the 

GRNN method, since the off-diagonal covariance elements are being used.  Before trying 

to observe this for a real data case, I will discuss two simpler cases involving analytical 

functions. 
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6.8 RBFN/GRNN Comparison for two simple functions 

 

 In this section, I will compare the RBFN and GRNN approaches by applying 

them to the prediction of known analytical functions.  The two functions I will use are the 

sine wave and the step function.  These functions were chosen because of their 

contrasting nature.  The sine wave is a smooth function with no discontinuities and can be 

thought of as a prototypical seismic trace, whereas the square wave has a discontinuity at 

its step and can be thought of as a prototypical well log curve.  Since we are dealing with 

a one-dimensional problem, we can replace the vector notation given earlier with scalar 

notation.  That is, we can write the equations for the GRNN as 
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and for the RBFN as: 
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where the weights in equation (6.40) are computed from the solution  to 
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 I will start with the sine wave example. To train the two algorithms, I will use the 

function 

t(xi) = sin(2πxi),  xi=0, 0.2, …, 1.0,     (6.42) 

as suggested by Bishop (1995).  (However, Bishop only tests the RBFN method on this 

function, and does not compare RBFN to GRNN.)  Notice that we have sampled this 

function six times in one period.  To validate the algorithms, we will use the function 

y(xi) = sin(2πxi),   xi=0, 0.05, …, 1.0,    (6.43) 
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where the sine wave has been sampled twenty-one times in one period.   Note that we are 

able to check the results of the validation function since we know the right answer. 

 

 A graph of the functions given in equations (6.41) and (6.42) is shown in Figure 

6.22, where the validation curve is shown as the smoothly interpolated line, and the 

sampled training values are shown by the solid dots. 

 

Figure 6.22:  A graph of the sine function in equations (6.40) and (6.41), where the training samples are 
shown by dots, and the true values of the validation function by the solid curve.   

 
 

 The results of applying both the RBFN and the GRNN algorithms to this sampled 

sine wave are shown in Figure 6.23.  It is important to note that the value of σ has a 

major impact on the results, and the optimum value is usually different for the two 

methods.  I have therefore used four different values of sigma in Figure 6.23: (a) 1.0, (b) 

0.1, (c) 0.01, and (d) 0.001.  In each case in Figure 6.23, the solid curve shows the true 

sine wave values, the dotted curve shows the RBFN results, and the dashed curve shows 

the GRNN results.  

 

 A number of observations can be made by referring to Figure 6.23.  First, for σ = 

1.0, shown in Figure 6.23(a), RBFN has done an almost perfect job in predicting the sine 

wave curve, whereas the GRNN has simply fit a straight line to the curve.   For σ = 0.1, 

as in Figure 6.23(b), neither the RBFN nor the GRNN has done a perfect job of fitting, 
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but GRNN appears to fit the sine curve better than RBFN.  When we decrease the σ = 

0.01, as in Figure 6.23(c), the GRNN is still doing a reasonable job of fitting the sine 

curve, but the RBFN has fit the function with spikes at the six training points, going to 

zero otherwise.  Finally, when we decrease the σ  = 0.001, as in Figure 6.23(d), both the 

RBFN and the GRNN methods have converged to the same result, fitting the function 

with spikes at the six training points, but going to zero otherwise. This is the same result 

obtained with the RBFN using a σ value of 0.01.   

  

 
 (a) (b) 
    

 
 (c) (d) 

 
Figure 6.23:  The GRNN and RBFN results of the sampled sine wave shown in Figure 6.21, for σ  values 

of (a) 1.0, (b) 0.1, (c) 0.01, and (d) 0.001.   
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 To quantify these observations, Figure 6.24 shows the errors between the true sine 

wave and the GRNN and RBFN results shown in Figure 6.23. 

 
 (a) (b) 

    

 
 (c) (d)  
Figure 6.24:  The errors for the GRNN and RBFN results shown in Figure 6.23, for (a) σ = 1.0, (b) σ = 0.1, 

(c) σ = 0.01, and (d) σ = 0.001. 
 

 As seen in Figure 6.24, the RBFN error is almost zero for a σ = 1.0, the GRNN 

error is consistent over a range of σ values between 0.1 and 0.01, the RBFN method 

gives identical results for σ values below 0.01, and the two methods converge to the same 

answer when σ = 0.001.  This last point confirms point (2) from the theory in section 6.6, 

that the two methods should converge as σ approaches 0. 

 

 Next, I will consider the step function defined by 




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=
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)x(y      (6.44) 
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 Figure 6.25 is a graph of this wave, where we have sampled the function six times 

for the training and 101 times for the validation.  (We used more points in the validation 

curve than for the sine wave in order to image the step more accurately). 

 

Figure 6.25:  A graph of the step function in equation (6.42), where the training samples are shown by dots, 
and the true values of the validation function by the solid curve.   

 

 The results of applying both the RBFN and the GRNN algorithms to this sampled 

step function are shown in Figure 6.26.  I have again used four different values of sigma 

in Figure 6.26: (a) 1.0, (b) 0.1, (c) 0.01, and (d) 0.0001.  In each case in Figure 6.26, the 

solid curve shows the true step function values, the dotted curve shows the RBFN results, 

and the dashed curve shows the GRNN results.   

 

 The results shown in Figure 6.26 are quite different than the results of Figure 

6.23.  For σ =1.0, shown in Figure 6.26(a), the GRNN has again fit a smooth line to the 

function, but the RBFN has “overshot” the square wave on both the negative and positive 

sides.  This is a classic “Gibbs phenomena” effect, observed in the theory of Fourier 

series.  When σ = 0.1, as in Figure 6.26(b), the RBFN has again “overshot” the two sides 

of the square wave, but the GRNN has actually fit the square wave perfectly except at the 

step.  At the step, both the RBFN and the GRNN have behaved almost identically.  When 
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σ = 0.01, as in Figure 6.26(c), the GRNN now fits almost perfectly, but the RBFN has fit 

the function with spikes at the six training points, and goes to zero otherwise.  Finally, 

when we decrease the σ = 0.0001, as in Figure 6.26(d), both the RBFN and the GRNN 

methods have converged to the same result, fitting the function with spikes at the six 

training points, but going to zero otherwise. This is the same result obtained with the 

RBFN using a σ value of 0.01. 

 
 (a) (b)    

 
 (c) (d) 

Figure 6.26:  The GRNN and RBFN results of the sampled square wave shown in Figure 6.25, where the 
scale values are (a) σ = 1.0, (b) σ = 0.1, (c) σ = 0.01, and (d) σ = 0.0001. 

 
 
   To quantify these observations, Figure 6.27 shows the errors between the true 

square wave and the GRNN and RBFN results shown in Figure 6.26.  As seen in Figure 

6.27, the RBFN error shows an “overshoot” for a σ value of 1.0, the GRNN error appears 

to be very consistent over a range of σ values between 0.1 and 0.01, and fits almost 
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perfectly for σ = 0.01, the RBFN method gives identical results for σ values below 0.01, 

and the two methods converge to the same answer when σ = 0.0001.  

 
(a)      (b)    

 
 (c) (d) 
Figure 6.27:  The errors for the GRNN and RBFN results shown in Figure 6.25, for (a) σ = 1.0, (b) σ = 0.1, 

(c) σ = 0.01, and (d)  σ = 0.0001. 
 

 The results of these two tests lead us to three conclusions.  First, the RBFN 

method is better able to predict smooth functions such as a sine wave curve than the 

GRNN method.  Second, the GRNN method is better able to predict discontinuous 

function such as the step function than the RBFN method.  Third, an optimized value of 

sigma is crucial to the success of both methods.  One last point that should be made is 

that no pre-whitening (the λ term in equation (6.29)) was used in any of these examples, 

since we were dealing with noise-free analytical functions.  In the real data case, I have 

found that up to 10% prewhitening is needed in order to stabilize the solution. 
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6.9 Comparison of the RBFN and the GRNN methods on a real data example 

 
 I will now illustrate our methodology using the channel sand case study that was 

discussed in sections 5.5 and 6.4.2. As I have already fully discussed this case study, the 

main objective in this section will be to compare the RBFN and GRNN results.  For 

reference, the base map showing the twelve wells used in this study, the inverted seismic 

data for line 95, and the impedance dataslice were shown in Figures 5.23 through 5.25, 

respectively.  The multi-linear attribute training result was shown in Table 6.1. In this 

analysis, we used all twelve wells in the training, a convolutional operator length of seven 

points, and seven attributes. 
 

 Figure 6.28 shows the result of applying the GRNN algorithm the prediction of P-

wave velocity using the first six attributes from Table 6.1.  In Figure 6.28, which shows 

only four of the twelve wells, notice that we see an excellent fit between the original and 

modeled logs.  As seen at the top of the figure, we get a correlation coefficient of 0.869 

and an average error of 179 m/s, which is an excellent fit.   

 
 

Figure 6.28. Application of the GRNN algorithm to four of the P-wave sonic logs in the twelve log suite, 
using all the training samples in the prediction. 
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 Figure 6.29 then shows the result of applying the RBFN algorithm to the same set of 

four attributes used in the GRNN approach, again using all twelve wells in the training.  

The result is close to that seen in Figure 6.28, although the fit is not quite as good, either 

visually or in terms of the correlation coefficient (0.8236) or the average error (196 m/s). 

 
 

Figure 6.29.  Application of the RBFN algorithm to four of the P-wave sonic logs in the twelve log suite 
using all the training samples in the prediction. 

 

 Next, we will look at the cross-validation plots, in which we will leave the predicted 

well out of the training.  This is shown in Figure 6.30 for the GRNN algorithm and in 

Figure 6.31 for the RBFN algorithm.  In both plots, the fit is not as good as it was when 

we used all the wells in the training.  Again, we also see a slightly better result for the 

GRNN algorithm, both visually and analytically.  Note that the correlation coefficient for 

GRNN is 0.5935, compared with a value of 0.535 for RBFN, and the average error is 273 

m/s compared with 290 m/s. 
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Figure 6.30:  Validation of the four P-wave sonic logs from Figure 6.27 using the GRNN algorithm, where 

the predicted well has been left out of the training. 
 

 

Figure 6.31:  Validation of the four P-wave sonic logs from Figure 6.28 using the RBFN algorithm, where 
the predicted well has been left out of the training. 
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 We will next see how the algorithms compare when we look at the application to 

real seismic data.  Figure 6.32 shows the application of the GRNN algorithm and Figure 

6.33 shows the application of the RBFN algorithm.  

  

 
 

Figure 6.32:  Application of the GRNN algorithm to line 95 of the 3D volume, after training using all the 
wells.  

 
 

 
 

Figure 6.33:  Application of the RBFN algorithm to line 95 of the 3D volume, after training with all the 
wells. 
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 It is clear from Figures 6.32 and 6.33 that the RBFN approach has produced a 

higher frequency result than the GRNN approach.  Also, this high frequency content 

appears to be realistic, since there is lateral continuity to the extra events that appear on 

the section. 

  

 Next, I will repeat the same analysis, but using only three wells in the training.  

Table 6.3 and Figure 6.34 shows the results of the training, where the table shows the 

best five attributes chosen by the step-wise regression algorithm discussed earlier, and the 

figure shows that only the first four attributes are statistically significant, based on cross-

validation.  Note that the error on the last attribute shoots up almost vertically.  It is 

therefore important to use only the first four attributes. 

 

 
Table 6.3:  The list of attributes determined by cross-validation analysis of multilinear regression. 

 

 
Figure 6.34: The error results of the multi-attribute training. 
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 I will now look at the results of applying the training from all three wells to the 

wells themselves, shown in Figure 6.35 for GRNN and in Figure 6.36 for RBFN.   

 

Figure 6.35:  Application of the GRNN algorithm to the three P-wave sonic logs used in the training, where 
all the training samples are used in the prediction. 

 

Figure 6.36:  Application of the RBFN algorithm to the three P-wave sonic logs used in the training, where 
all the training samples are used in the prediction. 
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 Note in the previous figures that the visual match is almost the same for both 

methods, as are the correlation coefficients and average error.  The RBFN algorithm has 

done slightly better than the GRNN algorithm in the average error (230.7 m/s vs 234.21 

m/s) and slightly worse for the correlation coefficient (0.760 vs 0.763). 

 

 I will now look at the validation results for the three well results, shown in Figure 

6.37 for the GRNN case, and in Figure 6.28 for the RBFN case.  RBFN has definitely 

done better than GRNN, with an average error of 259.58 m/s against 263.89, and a 

correlation coefficient of 0.681 against 0.667 for GRNN. 

 

 Finally, we will apply the results of the training to the 3D seismic dataset itself.  

Figure 6.39 shows the application of the GRNN method to the seismic data.  Notice that 

although the continuity in the events of the result is quite good, the frequency content is 

very low.  This suggests that not enough training points were used for this method to be 

effective. 

 

 When we apply the RBFN method, as shown in Figure 6.40, much more high 

frequency detail has come through.  Also, the lateral continuity of the events is still very 

good. I would therefore conclude that, as the number of wells in our training dataset goes 

down, the RBFN algorithm becomes preferable to the GRNN algorithm. 
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Figure 6.37:  Validation of the GRNN algorithm to the three P-wave sonic logs used in the training, where 
the each log has been successively left out of the training. 

 

 

Figure 6.38:  Validation of the RBFN algorithm to the three P-wave sonic logs used in the training, where 
the each log has been successively left out of the training. 



244 
 

 

 

 

Figure 6.39:  Application of the GRNN algorithm to line 95 of the 3D volume, after training using only 
three of the wells.  

 
 

 

Figure 6.40:  Application of the RBFN algorithm to line 95 of the 3D volume, after training using only 
three of the wells.  
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6.10 Conclusions 

 

 In this chapter, I have discussed several neural network approaches for the 

classification and prediction of log properties using multiple seismic attributes.  These 

methods consisted of the probabilistic neural network, or PNN, the generalized regression 

neural network, or GRNN, and the radial basis function neural network, or RBFN.  These 

methods are based on Gaussian basis functions of distance in attribute space.  The PNN 

approach uses these Gaussian basis functions to implement Bayes’ Theorem for event 

classification.  I applied the PNN classification technique to the porosity example 

considered in Chapter 4, and found improved results over the Fisher linear discriminant.   

 

 The GRNN and RBFN methods are also built from Gaussian basis functions.  The 

key difference between the two methods is that the GRNN prediction is a weighted sum 

of the basis functions and the training values, whereas in the RBFN the weights are pre-

computed by generalized matrix inversion of the basis functions.  The GRNN approach 

has its origins in the statistical theory of Parzen density estimation, whereas the RBFN 

method can be thought of as a nonlinear extension of the linear regression methods 

considered in Chapter 3. 

 

 I then applied the GRNN and RBFN methods to a channel sand case study from 

Alberta.  We did the training using all twelve wells in the study area, and then using a 

subset of only three wells.  Our conclusion is that as the number of wells in the training 

dataset goes down RBFN provides a better technique for predicting log properties from 

seismic attributes, both in the fit at the training wells and in the application to the seismic.  

As the number of wells increases, the two methods produce fairly consistent results. 

  

 In the next chapter, I will consider an alternate form of the RBFN method that uses 

a subset of points from the training dataset, called basis centres.  I will also extensively 

discuss the problem of finding the basis centres. 
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CHAPTER 7 :  RBF NETWORKS WITH BASIS CENTRES 
 

 

7.1 Introduction 

 

 In the radial basis function neural network (RBFN) approach discussed in the last 

chapter, I designed a neural network operator by computing the basis functions for all the 

possible distances between the N points in our training dataset.  This involved the 

inversion of an NxN dimensional matrix, which became costly as N got very large, due to 

space and time limitations.  This approach is often called the strict interpolation RBFN, 

since all the training points are used to calculate the weights. An alternate approach to 

strict interpolations RBFN is to reduce the number of input samples to a subset of K 

values, often called centres, and compute the basis functions of the distances between the 

N input points and these K centres.  Although this results in a non-square NxK matrix, 

this matrix can be inverted using the generalized inverse approach, and results in the 

inversion of a KxK, greatly reducing space requirements and speeding up the 

computation.    

 

 In this chapter, I will first describe the theory of RBFN with basis centres and 

then show an example using the AVO classification problem.  I will then discuss an 

approach to finding the basis function centres using K-means clustering, and discuss how 

to apply K-means clustering methods to the RBFN with centres neural network. This will 

be illustrated with a simple numerical example, and then applied to the prediction of P-

wave velocity over a channel sand.  In this chapter, I will also introduce an extension to 

the K-means clustering method, called the Mahalanobis clustering method, and apply this 

method to an AVO crossplot example.   
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7.2 Theory of RBF networks with basis centres 

 

 In the full interpolation RBFN approach, recall that we wish to solve for the N 

weights wj given the N pairs of attribute vectors si and the N training values ti, as shown 

in Figure 7.1. 

 
Figure 7.1: The attribute vectors and target values used in the RBFN method. 

 

 The solution is found by solving the set of equations  
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 Equation 7.1 can be written more compactly as the N x N matrix equation 

    ,wt Φ=      (7.3) 
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Φ is an N x N matrix containing the basis functions. The 

solution to equation (7.3) is given by the matrix inverse 

    [ ] ,1 tw −+= ΙΦ λ     (7.4) 

where λ is a pre-whitening factor and I is the identity matrix. Once the weights have been 

computed, they are applied to the full dataset using the equation 
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 The solution to equation (7.4) is very time-consuming and possibly unstable as N 

becomes very large.  To solve for the instability, a large prewhitening value λ is often 

needed. 

 

 The solution to the problem of large N is to reduce the number of linear equations 

by defining a modified version of equation (7.1) given by 
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where the µk terms are a set of K cluster centres, or means, and K << N.  Notice that 

these are vector-valued means, with a dimension equal to M, the number of attributes.  

Equation (7.4) can be written in expanded form as the set of linear equations given by 
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which can again be written as the matrix equation  
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,t,w . In many applications (such as the one 

shown in the next section) a zero weight w0 is added to each linear equation. This weight 

can be implicitly assumed in equations (7.5) and (7.6) if we let the first row of φ values 

all equal one.  Equation (7.6) represents an over-determined system, in which we have 

more observations than unknowns.  The solution to this problem is given by the least-

squares Moore-Penrose inverse 
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where Λ is the K x K regularization matrix given by
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terms are called regularization parameters.  In the simplest case, the regularization terms 

are all equal to the value λ, and Λ = λ I, where I is the K x K identity matrix.  In neural 

network terminology, Φ is called the design matrix, and the term [ΦTΦ + Λ] is called the 

covariance matrix.  

 

 The crucial question is how to determine the basis centres µk in equation (7.4). 

This is illustrated in Figure 7.2 for the simple case of two attributes with 18 points.  As 

can be seen in Figure 7.2, these points separate naturally into 4 clusters and we have 

replaced each cluster of points with its mean, resulting in K = 4.  Before discussing the 

K-means method, and showing how the clusters in Figure 7.2 can be found, I will revisit 

the AVO classification problem and show how it can be solved using RBFN with basis 

centres. 
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Figure 7.2: Computing the means for a 4 cluster, 18 point example. 

 

 

7.3 An AVO classification example 

 
 In Chapters 4 and 5, I used the multilayer perceptron to differentiate between a 

class 3 gas sand and a wet sand on an AVO crossplot. Recall that the Aki-Richards 

equation as given in equation (2.19) of section 2.7 is given by 

( ) θθ 2sinBAR += ,     (7.8)  

where A is the intercept, and B is the gradient.   

 

 Using the values for VP, VS, and density ρ shown in Figure 4.6 of section 4.5.2, I 

computed values for A and B, scaled by a factor of 10 (to give values of +1 and -1) and 

created the A-B crossplot shown in Figure 7.3(a).  The objective is to separate the wet 

points from the gas points but, as shown in the figure, there is a nonlinear decision 

boundary between these points. 
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 (a) (b) 
Figure 7.3.  Intercept versus gradient crossplot from the wet and gas models of Figure 4.6, both (a) before 

and (b) after application of the multi-layer perceptron. 
 

 Since the gas sand points shown in Figure 7.3(a) were not linearly separable, I 

found that a single layer perceptron could only solve for either the top or base of the sand, 

not for both simultaneously.  By applying the multi-layer perceptron we were able to 

transform the values shown in Figure 7.3(a) into the space shown in Figure 7.3(b), in 

which the top and base of the sand were linearly separable.  However, recall that the 

solution to the problem was quite involved, as it requires the nonlinear optimization of 

two layers of weights. 

 

 Let us now use the RBFN with centres method to solve the same problem. Note 

that the four input vectors can be written 
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where points x1 and x4 are the top and base of the gas zone and points x2 and x3 are the 

top and base of the wet zone.  I will define two centres using the gas sand values of 
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 I have used the symbol c rather than µ for the centres since these are not the mean 

values.  Thus, equation (7.4) can be rewritten as 
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Expanding the vector components for the two-dimensional vectors we can write 
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 From the definitions of our input vectors and centers, we can see that there are 

only three possible distances 
2

jid cx −= .  If we set the value of σ equal to 1, the values 

of φij are [ ] 0.10exp4211 =−==φφ , [ ] 0003.08exp4112 =−== φφ , and 32312221 φφφφ ===  

[ ] 018.04exp =−= .  Grouping the terms, we find that 
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 Figure 7.4(a) shows the original AVO problem in A-B space, and Figure 7.4(b) 

shows a crossplot of ( )i1 xφ  versus ( )i2 xφ .  Notice that we have now achieved a linear 

separation between the gas sand values and the wet sand values. Next, I will use the 

radial basis function neural network to compute the weights.  
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 (a) (b) 

Figure 7.4:  The AVO classification problem, where (a) shows the original problem in intercept-gradient 
space and (b) shows the same problem in φ1-φ2 space. 

 

 Figure 7.5 shows how the concepts of the previous section can be applied in 

neural network form.  Note that this is a similar diagram to the MLP except for two 

important differences.  First, there are no weights between the inputs and the application 

of the φ functions in the first layer neurons.  Second, although there are weights and a 

bias value leading to the second layer neuron, there is no application of a nonlinear 

function at this neuron.  In other words, the second layer is simply a linear sum. 

 

Figure 7.5:  The radial basis function neural network implementation of the AVO classification problem. 
 

 In this case we can write the RBFN mathematically as 

( ) ( )∑
=

=+=
2

1
0 .4,,1,

j
ijji iwwt …xx φ    (7.11) 
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 To solve for the weights, I set each output value to the training data values given 

in Table 1, where +1 indicates the presence and -1 indicates the absence of gas. 

 

i Ai Bi φi1 φi2 ti 

1 -1 -1 1 0.0003 +1 

2 +1 -1 0.018 0.018 -1 

3 -1 +1 0.018 0.018 -1 

4 +1 +1 0.0003 1 +1 

Table 7.1.  The input values and basis function values for the AVO classification problem. 
 

 Thus, we have four linear equations with three unknowns, which can be written as 

the matrix equation 

  wt Φ= ,     (7.12) 
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 Rewriting equation (7.7) using a constant regularization of prewhitening term, we 

get  

[ ] tw TT I Φ+ΦΦ= −1λ ,    (7.13) 

where we can expand the terms to get 
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Thus, the intercepts on both the A and B axes are given by the ratio 

–w0/w1 = – w0/w2 = - (- 1.074 / 2.068) = 0.519, 

which are the points where the dashed line in Figure 7.4(b) intersects each axis. 

   

 I have therefore shown how to construct a linear separation boundary for our 

AVO classification problem using the radial basis function neural network, and found 

that the solution is actually more straightforward than the multi-layer perceptron 

approach.  However, our real interest is in the solution of problems in which the number 

of points is very large.  This will involve using a clustering algorithm to compute the 

RBFN centres. 

  

7.4 Data clustering methods 

7.4.1 Introduction to clustering 
 

 Clustering has been long been used in the field of multivariate statistics (Johnson 

and Wichern, 1998), but has only recently found application in seismic analysis.  In 

clustering, we seek to find natural groupings, or clusters, within a particular dataset.  

These clusters could pertain to different lithologies, fluids, etc.  Although closely related 

to classification, clustering is more basic in that we normally do not know how many 

clusters we have, or what form these clusters will take.  Classification is usually 

supervised by the knowledge of what our classes should look like, whereas clustering is 

unsupervised, without any such knowledge. 

 

 A key question is where we should do the clustering.  In this chapter, I will apply 

the clustering in multi-dimensional parameter space.  The simplest example of this is 

two-dimensional space, and our study will involve A-B crossplots from the AVO 

technique (Ross, 2000).  The advantage of using two-dimensional space is that it is easily 

visualized and the results can be checked by eye. The method can also be applied to 

higher dimensional spaces, which cannot be visualized.  For this example, I chose multi-
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attribute space, in which multiple seismic attributes are grouped and used to predict 

reservoir parameters (Hampson et al., 2001).  In the following discussion, I will refer to 

the group of L attributes for a single recorded time sample in L-dimensional space as an 

attribute vector.  In general, there will be N recorded time samples. 

 

 I will start by considering the simplest clustering approach, called K-means 

clustering (Bishop, 1996).  This method is based on the Euclidean distance between 

points. I will show that this method works well for the case of well-separated, roughly 

spherical clusters, but not when the clusters become elliptical in shape.  I then propose a 

new method called Mahalanobis clustering, in which statistical distance, rather than 

Euclidean distance, is used for the clustering.  Although the use of this distance metric 

was discussed by Johnson and Wichern (1998), they state that it is not used in practice, 

and do not discuss a method for implementing this procedure. 

 

7.4.2 K-means clustering 
 

 In the K-means clustering technique, I start with a random estimate of the cluster 

centres, and iterate toward a solution by minimizing the distance from each input  cluster 

centre to the points surrounding it.  As pointed out by Haykin (1999) this has the 

desirable property of placing the centres of the clusters in those regions of the input space 

where significant amounts of data are present.  The steps involved in K-means clustering 

are as follows: 

 

1. Decide on a number of clusters, K, and divide the input data points randomly into 

these K clusters.  If we have N L-dimensional input vectors of attributes, xi, we 

initially set the number of points in each of the first K-1 clusters to Nk = int(N/K), 

and the last cluster equal to N - (Nk*(K-1)).  Also, the decision of what value to 

assign to K is important and will affect the result. 
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2. Compute the means µk, where k = 1, 2,… , K.  The means are simply the sum of 

 the Nk attribute vectors divided by Nk, where Nk is the number of points in the kth 

 cluster. 

3. Compute the matrix of distances dik = | xi - µk |, and assign each input attribute 

 vector to the cluster for which this distance is a minimum.  Note that the Nk values 

 are now updated. 

4. Re-compute the means based on the new cluster assignments 

5. Iterate through steps 2-4 until convergence. 

 

 Obviously, the K-means clustering algorithm can be computed for any number of 

input points, attributes and clusters. Before considering any real data application, let us 

consider the following two-dimensional numerical example in which we have the 

eighteen input vectors given by: 
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 These eighteen vectors are plotted in Figure 7.6, with the input vector number 

labelled on the graph.  Note that we see four distinct clusters, although the order of the 

input points is random, and bears no relationship to the cluster order.  

 

 I will perform the first step of the K-means clustering by assuming that we have 

four clusters, although the optimal number of clusters will not be obvious in a real 

dataset.   This will give us the result that the first three clusters have four points each, and 

the last cluster has six points.   
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 The resulting means are 
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Figure 7.6: The red dots show an set of eighteen points, grouped in four clusters, with the labels indicating 

the input order of the two-dimensional attribute vectors. 
 

 The means of the four clusters are plotted using blue crosses on Figure 7.7(b). 

(Figure 7.7(a) is simply a repeat of Figure 7.6, for comparison purposes).  Since the 

points were entered in random order, the initial means are grouped together in the centre 

of the plot and do not define the actual cluster means.   

 

 I next re-compute the clusters by finding the points that are closest to the initial 

means.  After this first iteration, we find that the number of points in each cluster is n1 = 

4, n2 = 6, n3 = 5, n4 = 3, and their means become 
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 The new means are shown in Figure 7.7(b).  Notice that the means have spread 

out and become more reasonable and that the second cluster, with six points and a mean 

of (9, 2), has been computed exactly. 

   

 
 (a) (b) 

 
 (c) (d) 
Figure 7.7: The results of applying the K-means clustering example to the example in Figure 7.6, showing 
(a) the initial calculation, (b) the result of the first iteration, (c) the result of the second iteration, and (d) the 

result of the third iteration, which is the correct answer. 
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 I next repeat the clustering operation, finding the points that are closest to the new 

means. The second iteration leads to n1 = 4, n2 = 6, n3 = 4, n4 = 4, with means 
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The results of the second iteration are shown in Figure 7.7(c).  Although cluster 1 hasn’t 

improved, clusters 3 and 4 have moved closer to their correct positions.   

 

 The third iteration leads to the values n1 = 3, n2 = 6, n3 = 4, n4 = 5, with means 
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Comparing these to the known right answers, notice that the results are now correct.  This 

is shown in Figure 7.2(d). 

   

 Now I will consider a second example, shown in Figure 7.3.  In this case we have 

created three elliptical clusters trending at about -45 degrees.  This is a synthetic example 

of a class 3 AVO anomaly (Russell et al., 2002b). 

 

Figure 7.8: A second input dataset to the K-means clustering algorithm. This dataset simulates a typical 
class 3 AVO A-B crossplot. 
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 It would appear that the job of partitioning this set of points into three clusters 

would be fairly trivial.  The results of 20 iterations of K-means clustering on the example 

shown in Figure 7.8 are shown in Figure 7.9.  Figure 7.9(a) shows the classified points, 

where the blue circles, red squares, and green diamonds show, respectively, the three 

clusters.  Notice that the three obvious clusters from Figure 7.8 have not been correctly 

classified.  The reason for this is shown in Figure 7.9(b), where black dots show the three 

means, and two circles have been drawn around each of the means.  The circles have radii 

equal to half the distance between each pair of means.   

 

 Thus, the K-means algorithm has classified points into clusters that fall into 

circular groups, not the elongated ellipses seen in Figure 7.8.  As I shall show in the next 

section, there is a theoretical reason for this, and we can make use of this theory to 

develop an algorithm that will correctly classify this example. 

 

 
 (a) (b) 
 
Figure 7.9: The application of the K-means clustering algorithm to the input dataset of Figure 7.8, showing 

(a) the three output clusters (blue circles, green diamonds, and red squares), and (b) the cluster centres 
(black circles) with circles indicating the mid-point distance between cluster centres. 
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7.4.3 Mahalanobis clustering 
 

 As discussed in the last section, K-means clustering is based on the Euclidean 

distance, which can be written 

,K,,1k;N,,1i),()(d i
T

i
2

i
2
ik …… ==−−=−= kkk xxx µµµ  (7.14)  
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ix  

   

 Another type of distance is the statistical, or Mahalanobis, distance (Johnson and 

Wichern, 1998) from x to µ, which can be written 

    )()( 1T2
ik kiki µxΣµx −−= −∆ ,    (7.15) 

where Σ  is the covariance matrix given by
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 Also note that the covariance matrix with statistically independent variates and 

unit variances is equal to the identity matrix.   That is, if 
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which is the Euclidean distance.  Thus, Mahalanobis distance can be seen as the 

generalization of Euclidean distance, and can be computed for each cluster if the 

covariances of the cluster are known. 

 

 After the application of the K-means clustering algorithm shown in Figure 7.9, we 

can then compute the means and covariances of each cluster, which gives us an initial 

estimate of these values.  Then, by iterating through the same steps given at the start of 

the last section, but using Mahalanobis distance rather than Euclidean distance, we can 

improve the clustering.  I refer to this as Mahalanobis clustering. (Although the author of 

this dissertation is not aware of any published theory on this method, it appears to be an 

intuitively obvious approach and has probably been implemented by others). The result 

of applying 20 iterations of Mahalanobis clustering is shown in Figure 7.10(a).  Notice 

that the cluster values are now correctly assigned.  Figure 7.10(b) shows the lines of 

equal bivariate gaussian amplitude, illustrating that the elliptical clusters have indeed 

been captured.  

  

 
 (a) (b) 
  

Figure 7.10: The application of the Mahalanobis clustering algorithm to the input dataset of Figure 7.8, 
where (a) shows the three output clusters (blue circles, green diamonds, and red squares), and (b) shows the 

cluster centres (black circles) with the ellipses showing lines of constant variance. 
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7.5 AVO Crossplot clustering 

 

 An obvious application of Mahalanobis clustering is to AVO crossplot analysis 

(Ross, 2000).  To illustrate the method, I will use a data example from the Colony sand 

play in central Alberta (Russell and Lines, 2003).  A seismic section across a known gas 

sand is shown in Figure 7.11.  Although the gas sand is an obvious “bright spot”, there 

are many false “bright spots” in the area due to thin limestone stringers.  In Figure 7.11, 

the sonic log from the discovery well has been inserted at its correct location, after 

conversion from time to depth and the application of a check-shot correction. 

 

 
 

Figure 7.11: A seismic line over a know gas zone, with the sonic log from the discovery well overlain at 
CDP 330.  The gas sand is indicated by the “bright spot” at a time of 630 ms. 

 

 A small window of the seismic section shown in Figure 7.11 is shown in Figure 

7.12(a), with the intercept (A) versus gradient (B) crossplot from the peaks and troughs in 

this window shown in Figure 7.12(b).   This window is between CDP 327 and 332 and 

encompasses a time window of 80 ms, around a time of 630 ms. 
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 In the crossplot shown in Figure 7.12(b), the colour scale represents time.  As 

discussed by Ross (2000) and Russell et al. (2002), the human interpreter would interpret 

this crossplot as a Class 3 AVO anomaly, with a “wet trend” visible as a cluster of points 

running along a -90 degree line, and two anomalous clusters in the first and third 

quadrants of the crossplot.  These anomalies represent the top (third quadrant) and base 

(first quadrant) of the gas sand. 

 
(a) 

 
(b) 

Figure 7.12: AVO intercept/gradient crossplot analysis over a window from the seismic section of Figure 
7.17, where (a) is the seismic window, and (b) is the un-interpreted crossplot. 
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 I will next apply the clustering algorithms described earlier to the crossplot shown 

in Figure 7.12(b).  This results are shown in Figure 7.13, where Figure 7.13(a) shows the 

application of twenty iterations of the K-means algorithm, and Figure 7.13(b) shows the 

application of a further twenty iterations of the Mahalanobis algorithm to the output of 

the K-means algorithm. 

 

 
(a)      (b) 

Figure 7.13: The application of (a) the K-means clustering algorithm, and (b) the Mahalanobis clustering 
algorithm to the crossplot of Figure 7.12(b), where the different shapes and colours indicate the five 
clusters, the black dots show the cluster centers, and the ellipses are equal variance lines enclosing the 
Mahalanobis clusters. 
 

 In Figure 7.13, notice that five clusters have been used in the training of the 

algorithm.  This was due to the fact that there appeared to be more than three obvious 

clusters on the crossplot.  (It should be pointed out that the number of clusters, or centers, 

to use is not a trivial issue, and has been discussed by many authors.  For example, Chen 

et al. (1991) use an orthogonal least squares learning algorithm to determine the number 

of centers.)   

 

 The K-means clustering algorithm of Figure 7.13(a) has done an excellent job in 

finding five distinct clusters of points, and these are indicated by five different shapes and 

colours on the figure.  When the output from the K-means algorithm was processed 

through twenty iterations of the Mahalanobis algorithm, as shown in Figure 7.13(b), the 

points in the clusters and the cluster centers do not change.  In this case, the K-means 



267 
 

 

algorithm appears to have done the optimum job.  However, the advantage of the 

Mahalanobis method in this case is that it defines the elliptical shapes (and their 

quantitative parameters) that can be used for the application of clustering back to the 

crossplot of Figure 7.12(b).  The results are shown in Figure 7.14. 

 

    
(a)  

 

 
(b) 

Figure 7.14: The application of the Mahalanobis clustering results shown in Figure 7.13(b) to the original 
crossplot of Figure 7.12(b), showing (a) the crossplot with the ellipse superimposed, and (b) application to 

the seismic traces of Figure 7.12(a). 
 

 In Figure 7.14(a) I have plotted the result of applying the elliptical shapes from 

the Mahalanobis clustering to the original crossplot of Figure 7.14(b), and in Figure 
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7.14(b) I have shown the equivalent peaks and troughs on the seismic window shown in 

Figure 7.12(a).  Notice that the identified clusters appear to define coherent events in the 

seismic window.  Although I have derived the crossplot clustering parameters over a very 

small window, we can apply the results of the clustering to the complete dataset.  Figure 

7.15 shows the application of the training to a portion of the complete line shown in 

Figure 7.11. 

 

Figure 7.15: The application of the Mahalanobis clustering results shown to the complete seismic line of 
Figure 7.11. 

 

 In Figure 7.15, we clearly see the top of the gas sand (in red, called zone 4 on the 

colour bar) and the base of the gas sand (in green, called zone 3 on the colour bar).  Also, 

the other three clusters, which are clearly on the wet trend in Figure 7.14(a), all plot on 

parts of the seismic line that are non-anomalous, as expected.  Thus, the K-

means/Mahalanobis clustering method has produced an excellent result in this case.   

 

 It is important to note that a human interpreter could do at least as good a job in 

identifying these anomalies on the crossplot.  Also, the method depends on having a 

certain amount of separation between the anomalies and the wet trend.  The real power of 

this method is when we apply to higher dimensional spaces, especially those having more 

than three dimensions.  This extension of the K-means clustering algorithm will be 
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discussed in the next section, in which the method is applied to the radial basis function 

neural network used for predicting reservoir parameters. 

 

7.6 K-means clustering with the radial basis function neural network 

 

 I will now compare the strict interpolation RBFN method with the RBFN method 

with centres to the channel sand case study which was discussed in sections 5.5, 6.4.2, 

and 6.8.  This study was published by Russell and Lines (2003). Recall that this study 

involved the prediction of P-wave velocity in the Glauconitic reservoir of the Blackfoot 

field of central Alberta.  The reservoir occurs at a depth of around 1550 m, where 

Glauconitic sand and shale fill valleys incised into the regional Mannville stratigraphy. 

The well log input consists of twelve wells, each with sonic and density logs. The base 

map showing the twelve wells, the inverted seismic data for line 95, and the impedance 

dataslice were shown in Figures 5.23 through 5.25.  The multi-linear attribute training 

result was shown in Table 6.1.  In this analysis, I used all twelve wells in the training, an 

operator length of seven points, and seven attributes.    The training results of the strict 

interpolation RBFN algorithm is shown in Figure 7.16, where only the first three wells 

are displayed.  The correlation coefficient is 0.7994 and the observed fit is very good.  In 

the training of the full RBFN algorithm, I used a total training dataset of approximately 

1000 points.   

 

 Next, I will apply the RBFN method with centers to the problem I have just 

considered.  I reduce the number of points to 25 centres and see how well the results 

compare to the full RBFN.  The same attributes will be used as shown in Table 6.1 and 

used in the full interpolation method.  The centres are found using the K-means clustering 

algorithm. Since the vectors are 6-dimensional, it is impossible to actually visualize the 

clusters.  The result of training with 25 centers is shown in Figure 7.17, where only the 

first three wells are displayed.  Notice that the correlation coefficient is 0.634, less than 

the full RBFN value of 0.7994, but still a very good fit. 
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Figure 7.16:  Training the RBFN algorithm, where all the training samples are used in the prediction. The 
black lines show the original curves and the red lines show the predicted curves. 

 
 

 
 

Figure 7.17:  Training the RBFN algorithm using 25 centers. The black lines show the original curves and 
the red lines show the predicted curves. 
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 The cross-validation of the full interpolation RBFN result is shown in Figure 7.18, 

where each log has been left out of the training and then “blindly” predicted.  The black 

lines show the original curves and the red lines show the predicted curves.  Only the first 

three P-wave sonic logs have been shown, although all twelve were used in the training.  

Notice that the cross-validation error is 0.6577, which is lower that the training error 

without cross-validation, but still quite good. 

 

 The cross-validation of the RBFN result with 25 centers is shown in Figure 7.19..  

The black lines show the original curves and the red lines show the predicted curves.  

Only the first three P-wave sonic logs have been shown, although all twelve were used in 

the training.  Notice that the cross-validation error is 0.602, which is less than the full 

RBFN result of 0.6558, but actually much closer than the full training result.  That is, the 

difference between the training result with all wells and the cross-validation result is 

much smaller for RBFN with 25 centers than for full RBFN. 

 

 The results of the training from the full interpolation RBFN method is then 

applied to the seismic line shown in Figure 5.24, and is shown in Figure 7.20.  Notice the 

excellent fit of the predicted P-wave sonic log at the well tie, and also the high frequency 

detail of the results as we move away from the well.  There is also good lateral continuity 

of the predicted events.   

 

 Finally, the results of the training using the RBFN method with 25 centres is  then 

applied to the seismic line shown in Figure 5.24, and is shown in Figure 7.21.  Notice the 

excellent fit of the predicted P-wave sonic log at the well tie, and also the high frequency 

detail of the results as we move away from the well.  There is also good lateral continuity 

of the predicted events.  This detail should be compared with the results shown in Figure 

7.19. Although the full result of Figure 7.19 is better, we have achieved almost as good a 

result using roughly 2.5 % of the original number of data values. 
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Figure 7.18:  Validation of the RBFN, where the each log has been left out, in turn, of the training.  The 
black lines show the original curves and the red lines show the predicted curves.  

  
 

 
 

Figure 7.19:  Validation of the RBFN using 25 centres, where the each log has been left out, in turn, of the 
training.  The black lines show the original curves and the red lines show the predicted curves.   

 



273 
 

 

  

 

Figure 7.20:  Application of the full RBFN algorithm to line 95 of the 3D volume. 
 

 
 

Figure 7.21:  Application of the RBFN with 25 centers to line 95 of the 3D volume. 
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7.7 Mahalanobis clustering applied to the RBF network 

 

 In the previous section, I showed how K-means clustering could be used to 

improve the run time and stability of the RBFN algorithm by reducing the full 

interpolation algorithm to an algorithm that uses a limited number of centers (or mean 

vectors) in the design of the weight values.  You will also recall that the scaling functions 

σ given in equation (7.5) were constant and were optimized by using a range of σ values 

and choosing the one that gives the lowest cross-validation error.  If we return to the 

concept of statistical distance, notice that the full basis function equation can actually be 

written as follows (Bishop, 1995), using statistical distance rather than Euclidean 

distance: 
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 Equation (7.19) can be thought of as analogous to the multivariate Gaussian 

distribution (Johnson and Wichern, 1998).  The Σk matrix represents the covariance 

matrix for the kth cluster.  The basis function in equation (7.19) can thus be seen to be a 

simplification of equation (7.4), in which the covariance matrix can be written in the 

simplified form 
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 Using the Mahalanobis clustering method proposed in the previous section, we 

can obtain an estimate of each of these covariance matrices.  However, this method has 

proved to be fairly unstable, and I decided to stay with the standard approach. 
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7.8 Parameter optimization in the RBFN with centres method 

 
 In the RBFN with centres method, there are three parameters that must be 

optimized: the σ term in the basis functions, the regularization parameter λ, and the 

number of centres K.  Optimization of the σ term is done in the same way as discussed in 

section 6.5.2.  In this section I will therefore discuss the optimization of the latter two 

parameters, λ and K, using the methods discussed by Orr (1996). 

 

 Recall that our objective is to find the optimal set of weights that will predict the 

training samples from the input attributes, where we have K weights and N inputs.  The 

forward equation for this relationship was given in equation (6.6) and the inverse 

equation in equation (6.7).  To check the error in the weights, we can apply them to the 

training values and compute an estimated output y.  By combining this operation with 

equation (6.7), we get 
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between the observed and predicted values can be written 

ttwy-te P)AI( T1
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where P is an N x N dimensional matrix called the projection matrix.  The sum of squared 

error S is thus given by 

ttee TT 2PS == .    (7.23) 
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 We can make use of the projection matrix and the sum of squared error to 

optimize λ.  Orr (1996) shows that the optimum value of λ can be estimated iteratively 

using the formula 
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where tr(·) indicates the trace of the matrix.  To apply this procedure, we make an initial 

guess of λ̂ and calculate the right hand side of equation (7.24).  This gives us a new 

estimate of λ̂ and we then iterate until convergence. 

 

 The problem of estimating the optimum number of basis functions is a more 

difficult task.  The optimum number of centres is somewhere between 1 and N, the total 

number of training points.  Orr (1996) shows that the optimum number of centres can be 

found by computing a large number of centres and then growing the network one centre 

at a time, each time computing the error difference.  This error difference can be 

computed incrementally using the formula 
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where the φJ functions are the columns of the design matrix, or ],,[ K1 φφ …=Φ .  The 

minimum error will indicate how many basis functions to use.  In the approach taken in 

this study, equation (7.25) was found to be too costly in terms of computer time, and I 

therefore determined the number of basis functions by trial and error. 

 

7.10 Conclusions 

 

 In this chapter, I discussed the RBFN method using basis centres.  To compute the 

basis centres, I used the K-means clustering approach and presented a new approach to 

clustering, which I call Mahalanobis clustering.  This method is an extension of K-means 

clustering in which we apply a second iteration which uses statistical, or Mahalanobis, 

distance to perform the clustering.   
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 After a review of the K-means method, in which I illustrated the approach using a 

simple two-dimensional problem, I then presented a model dataset for which the K-means 

method did not converge to a correct answer.  This model dataset consisted of elongated 

elliptical clusters.  I then described the Mahalanobis clustering method and showed that 

this method converged to a correct answer for our model dataset. 

 

 I then applied the K-means and Mahalanobis clustering methods to a two-

dimensional AVO crossplot example.  Although both methods converged to the same 

answer, I showed that the Mahalanobis method was able to give us the correct elliptical 

shapes for interpreting the AVO crossplot.  This was confirmed by the interpretation of 

the crossplot, in which the top and base of a gas zone were identified. 

 

 I then used K-means clustering to find the clusters to be used in the radial basis 

function neural network (RBFN) method with centers, and found that we could achieve a 

result that was very close to the full RBFN method using clusters representing only 3% of 

the original number of points.  Although the K-means method performed well, it gave us 

no way of finding and refining the values for the covariance matrices of each cluster, 

which would allow us to optimize the scaling parameters in the weight determination.  I 

thus proposed a method which uses Mahalanobis clustering to perform this task.  Finally, 

I discussed ways of optimizing both the regularization parameter λ and the number of 

clusters, K. 
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CHAPTER 8 : GEOSTATISTICS AND MULTIATTRIBUTE 
TRANSFORMS 
 

8.1 Introduction 

 

 The classical problem in seismic exploration and production is how to integrate 

seismic data, which are spatially closely sampled but of relatively low temporal 

resolution, with well log data, which are of high temporal resolution but are poorly 

sampled spatially.  This can be solved using geostatistical methods such as cokriging and 

kriging with external drift (Doyen, 1988).  In this approach, the well-log data are 

considered to be the primary dataset, and the seismic data provides a background trend.  

The advantage of this method is that the primary variable is honoured exactly at the well 

tie.  The disadvantage is that this perfect tie often implies a less-than-perfect physical 

model.  For example, if cokriging is applied to tying seismic structure to picked well 

depths, the implied velocities often show “bulls-eyes” around the well intersections.   

 

 We can use multilinear regression and neural networks to predict well log 

properties from seismic attributes, where the wells are considered to be the training 

points, and the method being used “learns” the relationship between the attributes and the 

well values.  This relationship is then applied to the seismic volume to create a reservoir 

parameter volume.  The advantage of this approach is a good overall fit to the parameter 

of interest.  The disadvantage is that the fit at the well ties locations is not exact. 

 

 In this chapter, I combine the methods of geostatistics and multiattribute 

prediction and show a geological application of this approach.  Our example will involve 

a map-based approach where the attributes are derived from an interval over the zone of 

interest of the channel sand.  Part of this chapter has been published in the Journal of 
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Petroleum Geology (Russell et al., 2002c).  Similar work, using multi-component data, 

has been published by Todorov et al. (1997, 1998) and Todorov (2000). 

 

8.2 Channel Sand Case Study 

 

 Recall that our case study involves the prediction of porosity in the Blackfoot 

field of central Alberta.  The reservoir occurs at a depth of around 1550 m, where 

Glauconitic sand and shale fill valleys incised into the regional Mannville stratigraphy. 

The objectives of the survey were to delineate the channel and distinguish between sand-

fill and shale-fill. The well log input consisted of twelve wells, each with sonic, density, 

and calculated porosity logs.  The top and base of the sand zone for each of the wells 

were picked, and the porosity was averaged between the top and base as input to the 

mapping procedure.   Figure 8.1 shows the distribution of wells throughout the 3D survey 

area, as well as cross-line 18 from the P-wave seismic dataset.   

 

Figure 8.1:  The distribution of wells within the 3D seismic survey area, Blackfoot, Alberta.  The 
annotation shows inline and crossline numbers.   

 

 The seismic input consists of two 3D volumes.  The first is the stacked P-wave 

seismic dataset from the survey, and the second is the acoustic impedance inversion of 
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the initial seismic volume.  Figure 8.2 shows crossline 18 from the seismic survey, where 

(a) shows the input seismic line, and (b) shows the inverted line.  Notice that this line ties 

well 14-09, a dry hole, and 13-16, a producer. 

 
Figure 8.2. Cross-line 18 from the 3D seismic survey, where (a) shows the final CDP stack, and (b) shows 

the impedance inversion. 
 

 Another key to this method is the extraction of a stable seismic wavelet to be used in 

the inversion process.  Figure 8.3 shows the sonic and porosity logs for well 14-09, along 

with the seismic picks and log tops, and a portion of the seismic data at the tie point.  The 

figure also shows the synthetic tie at the well intersection. 
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Figure 8.3:  Sonic and porosity logs from well 14-09, together with synthetic tie, seismic picks, and tops. 
 
 

 

 
 

 
Figure 8.4:  The porosity at each well location, averaged between the top and base of the channel. 
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 The porosity value at each well was then averaged between the top and base of sand.  

The resulting values have been plotted and colour-coded on the map shown in Figure 8.4.  

Notice the high porosity values in the center left of the map. 

 

 Next, a dataslice was created through the inverted impedance volume to use as the 

secondary dataset.  To create this slice, the channel top was picked (this pick is shown on 

a piece of the seismic data in Figure 8.3) and then an arithmetic average from a 10 ms 

window below the channel top was used to produce the slice.  This resulting map slice is 

shown in Figure 8.5.  Notice the low impedance values on the middle left side of this 

map, indicating the possible channel. 

 

 

 

 

Figure 8.5:  Map of average acoustic impedance over a 10 ms window below the picked channel top. 
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 At the well locations, the average impedance values were then extracted from the 

map and crossplotted against the well porosity values. This crossplot is shown in Figure 

8.6.  Note that the correlation coefficient from the crossplot is equal to -0.65.  The 

negative correlation was due to the fact that porosity varies as the inverse of impedance. 

 

 The regression fit from this crossplot was then applied to the impedance slice to 

convert it to pseudo-porosity for display purposes.  The resulting porosity slice is shown 

in Figure 8.7.  On this map, it is obvious that the well values do not tie the seismic values 

at the well locations, since the colour is indicative of porosity both at the wells and on the 

seismically derived map. 

 

Figure 8.6: Plot of average well porosity against average impedance for all the wells in the survey area. 
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Figure 8.7:  Map of porosity variations in the survey area.  This was derived by the application of the 

regression fit from Figure 8.5 to the impedance slice of Figure 8.4. 
 

 
8.3 Map-based geostatistics 

 

 Map-based geostatistics involves the integration of two related datasets.  The 

primary dataset is generally a set of sampled values from well logs distributed throughout 

the map area.  These values represent some reservoir parameter of interest such as 

porosity or depth.  The secondary dataset is derived from a separate set of measurements, 

generally seismic data, which is related in some way to the primary dataset.  For example, 

seismic amplitude or inverted seismic amplitude would be expected to correlate with 

porosity, whereas seismic structure time should correlate with measured well depth.  To 

test the amount of correlation between the two datasets, a crossplot can be made between 

them (Fig. 8.6) and both the regression line and the correlation coefficient can be 

computed. 
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 The next step is to derive variograms from the well data and seismic data alone, and 

also from the well-to-seismic comparison.  The variogram (or more precisely, the semi-

variogram) measures the spatial variability of the particular value being measured.  That 

is, it tells us how this parameter changes as a function of distance.  If there is very little 

spatial variability, the variogram will be close to zero, and if there is a lot of variability, 

the variogram will be large.  In practice, the variogram is small for small distances close 

to zero, climbs rapidly, and flattens off to a uniform value.  For the porosity case being 

considered in this section, we can write the variogram mathematically as 
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where h represents the offset between two porosity values and we collect all N pairs that 

are within an offset bin centered at h.  The variogram is related to the covariance of the 

data by the following formula 

)()0()()()( hChhC γγγ −=−∞= ,    (8.2) 

where C(h) is the covariance at offset h and C(0) is the zero offset covariance, which is 

identical to the variogram at an infinite distance. 

 

 Figure 8.8 shows two variograms, where (a) shows the well-to-well variogram and 

(b) shows the seismic-to-seismic variogram. In Figure 8.8, the black squares represent the 

computed variogram values from equation 8.1 and the red curve shows a mathematical fit 

to these points.  This fit was done using the spherical function, written 
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where s is the sill, or the value at which the variogram flattens off; γ0 is the nugget, or the 

starting value of the variogram; and a is the range, or the distance at which the variogram 

flattens off.   
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(a) 

 
(b) 

Figure 8.8:  The spatial variogram of (a) the well values and (b) the seismic values.  The variogram is the 
sum of the squared differences between all the pairs of points within a given offset value. 
 

  To understand how the variogram is used to create geostatistical maps, let us first 

consider the problem of creating a linear, unbiased estimate of an unknown map value 

given N input map values.  The process involves finding the best N weights that will 

recreate the unknown sample, or   
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where ( ) 000 y,x φφ =  is the unknown sample and φ1 through φN are the known samples.  

As shown by Isaaks and Srivastava (1989), the weights can be estimated by using random 

variable theory and making the following two assumptions 

 (1) The mean between the estimated and true value is equal to zero. 

 (2) The error variance is minimized. 

 

 This leads to the following set of N equations in N unknowns: 
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where C(hij) is the covariance function defined in equation (8.2).  Equation (8.5) is 

referred to as simple kriging (SK) and the weighting coefficients can be computed using a 

standard matrix inversion technique, in which we note that we are dealing with a 

symmetric matrix.  Note that the matrix on the left hand side of the equation contains the 

covariances between the known points, and the vector on the right hand side contains the 

covariances of the known points to the unknown points.  These covariances are computed 

from the fitted variograms shown in Figure 8.8 and given in mathematical form in 

equation (8.3).    

 

 A problem with simple kriging is that we do not know the mean of the true values 

to be estimated.  This problem can be avoided using the Lagrange multiplier technique, 

which results in the ordinary kriging (OK) systems of equations 
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where µ is the Lagrange parameter.   
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 As in simple kriging, the covariances are computed from the fitted variograms 

shown in Figure 8.8 and given in mathematical form in equation (8.3).   Figure 8.9 shows 

the result of ordinary kriging using the well values for our case study.  Notice that the 

map shows only the general trends, which consist of high porosity on the left side of the 

map and low porosity to the right side of the map.  The detail that we would expect in a 

map of porosity is not present.   

 

 To estimate the statistical validity of our maps, we can use two approaches.  The 

first is to use the kriging variance error, which is defined as:  
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where C(0) represents the zero offset covariance.  Figure 8.10 shows the kriging error in 

our case.  

 

 

 
 

Figure 8.9:  Map of the survey area produced by kriging the well porosities. 
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Figure 8.10:  The kriging error for the kriged result of Figure 8.9 

 

 A second, more unbiased estimate measure of the error is the cross-validation 

error, which is found by successively leaving out wells and predicting their value.  The 

cross-validation error for the kriged map is shown in Figure 8.11.  The RMS average of 

these errors is 3.242 %. 

 

 If we use both datasets, the techniques of kriging with external drift (KED) or 

cokriging can be used to produce an optimal map.  By optimal, I mean that we honour the 

well data at the well locations and the trend of the seismic data away from the well 

locations.  For both these methods, the well log data is considered the primary dataset, 

and the seismic is the secondary dataset.  The quality of the final maps can be determined 

either through the cross-validation technique in which we leave each well out in turn and 

blindly predict it value, or a display of the error variance at each estimated point 
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Figure 8.11:  The cross-validation errors for the kriged map of Figure 8.9. 

 

 Cokriging is an extension of kriging that uses a weighted sum of both well and 

seismic values.  In collocated cokriging, only the seismic value at the output location is 

used.  The equation for collocated cokriging is given as: 

( ) ( ) ( ) ( ) ( )00122211100 ,,,,, yxAIwyxwyxwyxwyx NNNN +++++= φφφφ … , (8.7) 

where AI is the acoustic impedance.  Thus, we need to extend the theory of ordinary 

kriging to compute N+1 weights.  Because we are including the seismic values, we now 

need to include both the seismic-to-seismic and seismic-to-well variograms.  The final set 

of equations can be written in matrix form as 
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where Cww(hij) represents the well-to-well covariance at the hij offset, Cws(hij) represents 

the well-to-seismic covariance at the hij offset, and Css(hij) represents the well-to-well 

covariance at the hij offset, Cws(hij) represents the seismic-to-seismic covariance at the hij 

offset.  In the case of collocated cokriging, only the zero offset term is used for the 

seismic-to-seismic covariance.  Note that for collocated cokriging there are two Lagrange 

parameters, one for the well terms and one for the well to seismic terms. 

  

 In equation (8.8), we show that three variograms are needed to compute the 

weighting coefficients: the well-to-well variogram, the well-to-seismic variogram, and 

the seismic-to-seismic variogram.  However, in many cases we have much more 

confidence in the seismic-to-seismic variogram, which in the case of a 3D seismic dataset 

is derived from a much greater number of points than the well-to-well or well-to-seismic 

variograms.  In this case, we can use the Markov-Bayes assumption, which assumes that 

there is a linear relationship between our datasets given by 

AI(x,y) = aφ(x,y) + b + noise,     (8.9) 

where AI(x,y) is the acoustic impedance at spatial locations x and y derived from the 

seismic data, φ(x,y) is the porosity derived from the well logs, and a and b are constants 

as determined in the crossplot of Figure 8.6.   

 

 This leads to the following two relationships among the three covariance functions 

CSS(h) = a2CWW(h) + CNN ,    (8.10) 

and 

CWS(h) = aCWW(h),     (8.11) 

where CNN is the noise covariance, given by 

( ) 2/1)0()0(
)0(

SSWW

WS
NN CC

CC
⋅

= .    (8.12) 
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 In Figure 8.12 the well and seismic data have been combined using collocated 

cokriging with the Markov-Bayes assumption being used to derive all three variograms 

from the seismic-to-seismic variogram.  

 

 

 

Figure 8.12:  Map of porosity in the survey area produced by collocated cokriging between the averaged 
well porosities and the impedance slice. 

 

 Although the map in Figure 8.12 shows the imprint of the wells from the kriged 

result, the final look of the map is more realistic because of the inclusion of the seismic 

impedance data.  Again, we can compute the error either from a similar technique defined 

for the kriged result, or by using the cross-validation error.  In this case, the RMS average 

of the cross-validation error is 3.027%, which is lower than the error for kriging. 
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8.4 Map attributes 

 

 I will now discuss an improvement to the geostatistics approach, in which we pre-

condition the seismic map using the multi-attribute approach discussed in this 

dissertation.  The key difference between what I am doing in this chapter compared to 

what was done in earlier chapters is that I am using map attributes rather than volume 

attributes.  That is, a series of time averaged slices were extracted from the seismic cube.  

These slices were averaged over a 10 ms window below the zone of interest using an 

RMS average, rather than an arithmetic average, since many of the attributes had zero 

mean (that is, both positive and negative values).   

 

 The six slices that were extracted consisted of seismic amplitude, amplitude 

envelope, instantaneous phase, cosine instantaneous phase, trace length, and integrated 

trace.  In the case of trace length, no averaging was performed since this attribute 

measures the length of the trace over the zone of interest.  These slices are shown in 

Figure 8.13.  Notice that each slice shows the channel in a slightly different way, since 

each attribute looks at the information over the volume slice in a different way.  For 

example, we see that the amplitude and amplitude envelope slices of Figure 8.13(a) and 

(b) are very similar, and show a narrow channel. However, the instantaneous phase and 

frequency slices of Figure 8.13(c) and (d) show a broader channel with a dominant phase 

of less than 112 degrees and a dominant frequency of greater than 69 Hz.  The integrated 

trace slice of Figure 8.13(e) again shows a broad channel, but the trace length slice of 

Figure 8.13(f) does not show the channel very well. 
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 (a) (b)                           

 

 
    (c)      (d)    

 

 
(e)      (f)  

 
Figure 8.13:  Attribute slices derived from the original seismic volume, where (a) shows seismic amplitude, 

(b) shows amplitude envelope, (c) shows instantaneous phase, (d) shows instantaneous frequency, (e) 
shows integrated trace, and (f) shows total trace length.  The first five attributes consist of an RMS average 

over a 10 ms window below the picked channel top. 
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8.5 The multiattribute transform 

 

 The multiattribute transform method involves the same input data as in the 

geostatistical method just described, except that multiple secondary sets of seismic 

attributes are used.  Recall that seismic attributes were discussed at length in Chapter 2.  

Another key difference between this method and the geostatistical method is that the 

multiattribute transform does not force an exact solution at the well-to-seismic 

intersections.  Instead, a “best-fit” relationship is derived at the well-tie points, which is 

then applied to the multiple input attributes to produce the reservoir volume.  Two 

approaches can be used to derive this relationship: multilinear regression and neural 

network analysis.  I will discuss the multilinear regression approach in this section and 

the neural network approach in a later section.  Using multilinear regression we seek a set 

of weights which, when applied to the attribute maps, will produce the reservoir 

parameter map.  A pictorial illustration of this approach is shown in Figure 8.14. 

 

 

Figure 8.14: A pictorial illustration of the multilinear regression method of combining map attributes. 
 

 Mathematically, we model the log parameter map L(x,y) as a weighted sum of the M 

attribute maps Aj(x,y)  by the linear equation 
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),(),(),( 110 yxAwyxAwwyxL MM+++= " .   (8.13) 

 

 In equation (8.13) both the estimated log values and the attributes are a function 

of the map coordinates x and y, rather than of time, t, as in our applications in the earlier 

chapters.  As also discussed in earlier chapters, we can expand the linear approach by 

applying nonlinear transforms to the attributes, such as the logarithm, the square root, etc.  

  

 In the multilinear regression approach we will compute the number and order of 

the statistically valid attribute slices using the cross-validation method, which was also 

discussed at length in previous chapters.  In the cross-validation approach, the prediction 

error is computed by leaving out the target well for each of the input points, calculating 

the resulting least-squares error, and then summing the results.  The validation error will 

reach a minimum at a relatively small number of attributes, usually less than five.   

 

 The correlation between each slice and the porosity map is shown in Table 8.1, 

where the inversion slice has the highest correlation coefficient, the amplitude (amp) slice 

has the second highest correlation coefficient, and so on down to the integrated trace 

length slice (int), which has the lowest correlation coefficient.   

 

 
 

Table 8.1:  The correlation coefficients for the seven attribute slices. 
 

  



297 
 

 

 A multiattribute analysis was then performed at the well locations using the 

multilinear regression algorithm.   The cross-validation results for this analysis are shown 

in Figure 8.15.  In this figure the bottom curve (in black) shows the result of using all the 

wells in the training, and the top curve (in red) is the cross-validation result, in which the 

wells are left out of the computation and then predicted.  It is clear in Figure 8.15 that 

only the first three attributes are statistically significant, since the error on the top curve 

increases after the third attribute.  Table 8.2 shows a numerical summary of these 

attributes.  Note that the three attributes were, in order, the inverse of impedance, 

instantaneous phase, and integrated trace.  Also note that the well parameter is the square 

root of porosity.   

 
Figure 8.15:  The average error for the best five attribute found by multi-linear regression, where the 

bottom curve (black) shows the total error and the top curve (red) shows the validation error.  
 

 
Table 8.2. The training and validation errors for the attribute slices used in the multiattribute computation. 
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 Table 8.3 then shows the derived weights used in the multiattribute transform.  

These weights are the coefficients for equation 8.13. 

 

 
Table 8.3.  The weights used in the multiattribute computation. 

 

 The map that results from applying the derived weights to the attribute slices is 

shown in Figure 8.16.  Note the increased resolution of the high porosity sand channel.   

 

 
 

Figure 8.16:  The application of multi-linear regression using the weights and attributes shown in Table 8.3. 
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 To see how well we have done statistically, Figure 8.17 is a crossplot of the actual 

porosity values against the predicted porosity values. Notice that the correlation 

coefficient has now increased to 0.85, compared with the -0.65 value for the best attribute 

slice, the impedance. 
 

 
Figure 8.17:  The crossplot of the actual well-log derived porosity (horizontal axis) against the estimated 

porosity in the result shown in Figure 8.15.  Note that the correlation coefficient is 0.85. 
 

 

 Although I have described the geostatistical method before the multiattribute 

method, the actual order of application is the reverse of this.  That is, we first use the 

multiattribute method to produce an improved map as the secondary attribute for the 

geostatistical method.  We next apply the technique of collocated cokriging to this new 

map.  As mentioned previously, we must first re-compute the variogram, and this is 

shown in Figure 8.18.  In the previous variogram, a spherical function was used, which 

was given in equation (8.3).  In this case, a better fit was obtained with an exponential 

function, which can be written 















−−+=

a
hsh exp1)( 0γγ ,     (8.14) 

where s is the sill, γ0 is the nugget and a is the range, all as defined previously. 
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Figure 8.18:  The recomputed seismic variogram used for collocated cokriging with the multi-linear result 

of Figure 8.15 as the secondary dataset. 
 

 The cokriged porosity result is shown in Figure 8.19.  Notice that the channel 

sand is now clearly delineated, and the fit to the wells is very good.  In this case, the RMS 

average of the cross-validation error is 2.534%, which is lower than the result found 

using cokriging with the impedance attribute. 

 

 

 

Figure 8.19:  The result of applying cokriging to the multi-linear regression result. 
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8.6 Neural network mapping 

 
 I will now apply several neural network algorithms that have been to the map 

dataset.  Specifically, I will use the three key algorithms that have been discussed in this 

dissertation: the multi-layer perceptron (MLP), the generalized regression neural network 

(GRNN), and the radial basis function neural network (RBFN).  As input to these 

algorithms I will use the attributes computed using multi-linear regression with cross-

validation analysis as shown in Figure 8.15 and Table 8.2. 

 

 I will start with the multi-layer perceptron, which was fully described in Chapter 5 

of this dissertation.  Figure 8.20 shows the result of applying the multi-layer perceptron 

with 5 nodes in the hidden layer and 10 iterations in the weight computation. 

 

 
Figure 8.20:  The computed porosity map using the multi-layer perceptron applied to the first three 

attributes shown in Table 8.2. 
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 Although the main trend of the high porosity channel has been revealed in Figure 

8.20, there appears to be a lot of “noise” in the result, which suggests that the MLP has 

been overtrained.  This overtraining is indeed in evidence when we look at the cross plot 

of the actual well log porosity values against the predicted values, shown in Figure 8.21.  

Notice that the fit is too good for most of the points, since they fall on a straight line, and 

not good enough for the rest of the points, since they all have the same value of 15%.  

The overall correlation coefficient is very close to 1.0, which implies perfect correlation. 

 

 

Figure 8.21:  The crossplot of the actual well-log derived porosity (horizontal axis) against the estimated 
porosity for the MLP result shown in Figure 8.19.  Note that the correlation coefficient is 0.85. 

 

 Next, I will apply the generalized regression neural network (GRNN) algorithm, 

which was fully described in Chapter 6 of this dissertation.  You will recall that the 

GRNN algorithm involves performing a weighted sum of the input values multiplied by a 

set of Gaussian functions of the square of the distance between the attribute vectors of the 

output values and those of the input values.  The key parameter that needs to be modified 

is σ, which controls the width of the Gaussian functions.   



303 
 

 

 Figure 8.22 shows the result of applying the GRNN algorithm, in which σ was 

optimized using cross-validation, and allowed to vary as a function of the three attributes 

used as input. These attributes are the first three attributes shown in Table 8.2. As with 

the MLP algorithm, the main trend of the high porosity channel has been revealed.  

However, there again appears to be a lot of “noise” in the result, which suggests that the 

GRNN has been overtrained. 

 

 
Figure 8.22:  The computed porosity map using the generalized regression neural network (GRNN) applied 

to the first three attributes shown in Table 8.2. 
 

 

 As shown with the MLP result, this overtraining is obvious when we look at the 

cross plot of the actual well log porosity values against the predicted values, shown in 

Figure 8.23.  In this figure we see that the points fall on the line of perfect correlation and 

have a correlation coefficient almost identical to 1.0.  The initial results of applying 

neural networks to the map case are thus not too encouraging. 
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Figure 8.23:  The crossplot of the actual well-log derived porosity (horizontal axis) against the estimated 

porosity for the GRNN result shown in Figure 8.22.  Note that the correlation coefficient is almost perfect, 
but this suggests overtraining. 

 

 I will next apply the radial basis function neural network (RBFN), which was 

fully discussed in Chapter 6.  As with the GRNN approach, the RBFN uses Gaussian 

functions of distance.  But, unlike GRNN, a set of weights are pre-computed from the 

training data, and are then applied to the attribute distance functions.  The key parameter 

to optimize is again σ, which controls the widths of the Gaussian basis functions. 

 

 Figure 8.24 shows the result of applying the RBFN algorithm, in which σ was 

optimized using the parabolic search technique described in section 6.5.2. These 

attributes are the first three attributes shown in Table 8.2. Unlike our results using the 

MLP and GRNN algorithms, the map shown in Figure 8.24 does not show any noise 

bursts and is actually quite similar to the multi-linear result shown in Figure 8.16.  Notice 

that the high porosity channel has been very well delineated.  To see if there is any 

improvement over the multi-linear result, we will again crossplot the actual and predicted 

porosity values.  This crossplot is shown in Figure 8.25, and shows a correlation 

coefficient of 0.869.  This value is an improvement over the value of 0.85 found using 

multi-linear regression, but is not indicative of over-training, as were the crossplots for 

both the GRNN and MLP results, shown earlier. 
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Figure 8.24:  The computed porosity map using the radial basis function neural network (RBFN) applied to 

the first three attributes shown in Table 8.2. 
 

 
Figure 8.25:  The crossplot of the actual well-log derived porosity (horizontal axis) against the estimated 

porosity for the RBFN result shown in Figure 8.23.  Note that the correlation coefficient is equal to 0.869. 
 

 I next apply the technique of collocated cokriging to this new map produced by 

the RBFN algorithm.  As mentioned previously, we must first re-compute the variogram, 
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and this is shown in Figure 8.26.  As with the multi-linear regression map, the best fit was 

obtained with an exponential function, which was written in equation (8.14). 

 

 
Figure 8.26:  The recomputed seismic variogram used for collocated cokriging with the RBFN result of 

Figure 8.24 as the secondary dataset. 
 

 The final cokriged porosity result is shown in Figure 8.27, in which the RBFN 

result of Figure 8.25 has been used as the secondary input.  Notice that the channel sand 

is again clearly delineated and that the fit to the wells is very good.  This result is very 

similar to the result obtained using multilinear regression, but gives a slightly improved 

cross-validation result.  In this case, the RMS average of the cross-validation error is 

2.516%, which is lower than the result found using cokriging with the multi-linear 

attribute.   As a final summary, Table 8.3 lists the cross-validation results at each of the 

wells, and their RMS averages, for all of the methods discussed in this chapter. 
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Figure 8.27:  The result of applying collocated cokriging using the RBFN result of Figure 8.24 as the 

secondary dataset. 
 
 

   Cokriged:   
X Y Kriged Impedance Multilinear RBFN 

      
80 29 -0.662 -1.338 -1.694 -1.842 
55 17 -0.665 -1.367 -5.171 -4.213 
96 27 -1.190 -0.372 -0.160 -1.043 

110 17 5.040 4.287 2.801 3.042 
63 28 -5.354 -5.835 -2.944 -3.518 
65 40 3.318 4.258 2.847 3.054 
96 40 -1.322 -1.753 -3.884 -3.489 
26 41 1.032 -0.222 -1.610 -1.334 
38 41 2.552 1.186 -0.333 0.456 
47 39 -0.427 -0.593 -0.203 0.201 
38 59 -6.652 -5.170 -2.066 -2.518 
51 39 2.233 1.996 0.843 1.497 

      
 RMS: 3.242 3.027 2.534 2.516 

 
Table 8.4: A cross-validation analysis of the errors at each well using each of the mapping methods. The 

units in the table are % porosity. 
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8.7 Conclusions 

 
 In this chapter I have presented a new approach to the integration of well log and 

seismic data, which combines the methods of seismic inversion, geostatistics and 

multiattribute transforms.   Inversion is used as the starting point, since I have found that 

the inversion results correlate much better with geology than the original seismic.  

However, by combining multiple seismic attributes I was able to bring in extra 

information to enhance the final well tie.  It is also important to use the technique of 

validation to make sure that we are not adding spurious attributes to the final solution.  

Finally, geostatistics gives us a powerful set of tools for producing our final map, which 

combines the multiattribute transformed map with the well values, giving priority to the 

well information.  The geostatistical results produced in this chapter were created using a 

commercial implementation of the GSLIB Geostatistical Software Library (Deutsch and 

Journel, 1992) from Hampson-Russell Software called ISMap. 

 

 Our approach was tested using a channel sand example from Alberta.  I used four 

separate approaches to build a map of well porosity: kriging with the wells values alone, 

collocated cokriging with the impedance as the secondary dataset, collocated cokriging 

with the multi-linear regression output as the secondary dataset, and collocated cokriging 

with the RBFN output as the secondary dataset. I found that the RMS error of the cross-

validation results progressively improved from 3.242 for kriging to 2.516 for the RBFN 

method, and that the final result clearly delineated the channel sand and provided an 

excellent match to the wells.  I also found that the MLP and GRNN neural networks 

tended to be overtrained with this dataset, leading to noisy results.  The fact that the 

RBFN network worked best is due to the fact that RBFN is the best method to use as the 

number of training points goes down.  Since we only had 12 training points in this case, 

this is the ultimate test of these methods. 
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CHAPTER 9 :  SUMMARY AND CONCLUSIONS 
 
 
9.1 Summary 

 

 In this dissertation, I have examined the relationship between seismic attributes 

and reservoir parameters such as porosity.   Figure 1.5 shows this relationship for the case 

that was considered in Chapter 2.  Note that we are trying to predict the target log on the 

left from the three attributes on the right.  In Figure 1.5, the target log t represents the 

known seismic reservoir parameter and the attribute vectors ai represent the seismic 

attributes from a seismic volume that correspond spatially and temporally to this reservoir 

parameter, where i goes from 1 to M.   Although only three attribute vectors are shown in 

Figure 1.5, we can use as many in our analysis as are statistically valid.  The sample 

vectors xj, where j ranges over the number of seismic samples, are associated with the 

individual training samples tj, and can be considered as the transpose of the attribute 

vectors (see Appendix 1 for the mathematical details).     

 

 Throughout this study, the relationship between the seismic attributes and the 

reservoir parameter was quantified using various linear and nonlinear mappings derived 

from multivariate statistics and neural network theory.  We can write this relationship as 

),(ft j jxw= ,    (9.1) 

where w is a set of weights.  Once this mapping has been found, we can apply to the 

unknown seismic points s to find a new reservoir parameter value y, using the 

relationship 

),(fy sw= ,     (9.2) 

 

 The most general form of such a mapping using the training data is 

( )( )( )jj xx TTq
j WWWft )1()2()( ),( φφ== ,   (9.3) 
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where j = 1, …, N, the number of seismic samples, W(1) and W(2)  are weight matrices 

given by 
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the input is given by ][ 1 jMj xx "=T
jx  , and φ is a nonlinear function.  Note that K 

represents the number of summing nodes.  If we let φ be a sigmoid function, equation 

(9.3) represents the multilayer perceptron (MLP) that was discussed in Chapter 5.  If we 

let φ(x) = x it was shown in section 6.6 that equation (9.3) reduces to 

jj xwxw T
j ),(ft == ,    (9.4) 

where w is equal to W(1) in equation (9.1) and xj is as defined above.  

  

 The linear multi-regression approach of equation (9.4) was extensively discussed 

in Chapter 3, and was proved to be an extremely robust way of mapping attributes into 

reservoir parameters. In Chapter 4 I discussed the related concept of linear classification, 

in which the linear functions defined the boundaries between classes.   

 

 In both chapters 3 and 4, we found that the limitation of linear methods is their 

inability to perform nonlinear tasks, such as prediction of data points that do not fall on a 

linear trend, or separation of classes for which there is a nonlinear boundary.  This led us 

to the multi-layer perceptron, which I have just discussed, and to the radial basis function 

neural network.  The radial basis function neural network combines the ease of 

implementation of multi-linear regression and the power of the multi-layer perceptron.  

Mathematically, we can write the radial basis equation as 

∑
=

==
K

k
kj wft

1

)(),( jj xxw φ ,    (9.5) 

where w is now a K-valued weight vector, xj is as defined above, φ(xj) is a Gaussian basis 

function given by  
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the µk are a set of mean values, and σ is a scaling value.  Note that equation (9.5) is the 

formulation for RBFN with centres, and can be expanded to the full RBFN method by 

letting K go to N, and replacing the µk values with the N seismic samples.  The radial 

basis function approach was discussed in Chapters 6 and 7.  In Chapter 6, I discussed the 

general theory and showed that there are three closely related methods which use 

Gaussian basis functions:  the probabilistic neural network (PNN), the generalized 

regression neural network (GRNN), and the radial basis function network (RBFN), and in 

Chapter 7 I discussed the RBFN with centres method. 

 

 In Chapters 2 through 7, I considered the mapping procedure as one in which we 

transform a set of 3D seismic attribute volumes into a volume of reservoir values.  In 

Chapter 8 I applied these methods to map analysis, and combined this with the theory of 

geostatistics.   

 

9.2 Conclusions 

 

 Throughout this dissertation I have used both model and real datasets to illustrate 

the theory behind the prediction of reservoir parameters from seismic attributes.  This has 

lead me to a number of conclusions about the effectiveness of each method, which I will 

now discuss.  

 

 The first technique that was applied to the prediction of reservoir parameters was 

multilinear regression.  This is a well established technique that is fully discussed in the 

multivariate statistics literature, and a summary of this theory was given in Chapter 3.  I 

found that multilinear regression gave extremely robust, reproducible results but that the 

error between the known training values and the predicted results tended to be large.  An 

extension of the classical multilinear regression technique, suggested by Hampson et al. 
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(2001), was to use convolutional filters instead of single points in multilinear regression.  

As I show mathematically in section 3.5.4, this is equivalent to creating a set of new 

seismic attributes that are the time-shifted versions of the original attributes at the shifts 

corresponding to the convolutional filters.  I also show in Appendix 3 that this approach 

can be derived from the more general multichannel filter (Treitel, 1970).  Another way in 

which the results of multilinear regression can be improved, also suggested by Hampson 

et al. (2001), is to apply nonlinear functions such as log, square root, etc, to either the 

attributes or the target log or both before analysis.  Using this approach, I was able to 

build a new relationship between S-wave velocity and two other well log attributes: the 

P-wave sonic log and the square root of the gamma ray log.  

 

 As a measure of the statistical validity of the multilinear regression method, I used 

the cross-validation approach, in which we successively drop known values out of the 

training dataset and “blindly” predict these values.  This method gave us an excellent way 

of ordering the attributes and removing those that did not improve the overall error.  This 

approach is used to find the order and number of attributes for each of the nonlinear 

methods used in subsequent chapters. 

 

 In Chapter 4, linear classification methods were discussed and were shown to be 

closely related to multilinear regression.  Two applications of these methods were 

considered.  The first was linear discriminant analysis, in which we divided a set of 

reservoir parameters into a number of classes based on the linear separation between 

these classes.  This approach was applied to a well log and seismic dataset from the 

Blackfoot area of Alberta, in which three classes of porosity (low, medium, and high) 

were classified.  The results indicated the presence of a known high porosity channel, but 

also contained some spurious high porosity zones.  The second application of linear 

classification was the single layer perceptron (SLP).  When applied to a class 3 AVO 

anomaly, the SLP was able to correctly identify either the top or base of the sand, but not 

both simultaneously, since this was a nonlinear problem.   
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 In Chapter 5, I extended the single layer perceptron to the multi-layer perceptron 

(MLP), which is also often called the multi-layer feedforward neural network.  

Continuing the work on the class 3 AVO anomaly, I was able to show that the MLP was 

able to simultaneously identify the top and base of the sand.  I then discussed the 

mathematics behind error backpropagation in the MLP and applied this theory to both the 

AVO classification problem and a sine wave prediction problem.  The MLP was then 

applied to the prediction of P-wave velocity in the Blackfoot dataset. In our applications 

to both real and model datasets, we found that the MLP was able to predict the training 

data quite accurately, but often displayed the following undesirable characteristics 

 - the solution of the weights was highly dependent on the initial guess. 

 - the solution could be very slow to converge. 

 - the result were often “overtrained”, meaning that there was a good fit to   

 the training data but poor generalization to the unknown values. 

 

 Before discussing the last three chapters of this dissertation, which contain my 

key argument, it is important to recall the discussion of the “bias versus variance” 

dilemma which was presented in section 1.5.  Let me quote from that section: 

 

“On one hand, we do not want a model that is too simple and does not 

have the flexibility to ever fit our data points. This is called a model with 

high bias. On the other hand, we do not want a model that is too complex 

and has such a high degree of flexibility that it overfits the data.  This is 

called a model with high variance.  The optimal model would be complex 

enough to fit the data values reasonably well, but not so complex that it 

fits the noise in the data.” 

  

 In the light of this quote, let me summarize the first two approaches I used for the 

prediction of reservoir parameters.  I found that the multilinear regression approach 

tended to have high bias because the linear model is too simple to predict earth 
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properties.  However, I found that the multilayer perceptron was too complex of an 

algorithm and tended to have high variance.  We needed to find a better method. 

 

 The answer was to find a method that combines the best properties of both 

methods, while improving on their weaknesses.  This method was supplied by using 

Gaussian basis functions.  In Chapter 6, three methods were discussed that used Gaussian 

functions of attribute distance:  the probabilistic neural network (PNN), the generalized 

regression neural network (GRNN), and the radial basis function neural network (RBFN).   

The first two methods (PNN and GRNN) were derived using statistical theory, and the 

third method (RBFN) was derived using regularization theory.  Both theoretically and by 

using a simple sine wave and square wave example, we saw that the GRNN can be seen 

as a subset of the RBFN method.  I then applied both methods to the Blackfoot seismic 

data example.  The results indicated that both methods gave about the same fit to the 

training data, but that the RBFN method tended to give higher-frequency results.  

However, the high frequencies did not appear to be from overtraining, as in the MLP 

approach, but appeared to bring out spatial continuity within the dataset. 

 

 The one problem with the full RBFN approach is that it requires the inversion of a 

symmetric N x N matrix, where N is the number of training points. This can result in long 

processing times.  The GRNN method is faster because training does not involve the 

inversion of a matrix.  In Chapter 7, I looked for an approach that would vastly improve 

the run time of the full interpolation RBFN method, called RBFN with centres.  This 

method was first applied to the AVO classification example, with results that were 

identical to the MLP approach.  To apply the method to real data required the 

computation of a reduced set of data centres, which was done using K-means clustering 

and a refinement to K-means clustering which I termed “Mahalanobis” clustering.  The 

resulting clustering method was applied to the Blackfoot seismic dataset and the results 

were very close in accuracy to the full interpolation RBFN method, but using only 2% of 

the number of values needed in the former approach.  
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 Finally, in Chapter 8, I discussed the related problem of transforming map 

averages derived from a 3D volume into maps of reservoir parameters.  I showed how to 

combine the multi-linear and neural network concepts discussed throughout the 

dissertation with traditional map-based geostatistics.  This was done by creating an 

improved attribute map first and then using collocated cokriging to create a final map that 

honoured both the wells and the seismic volume.  A summary of this work was presented 

in Table 8.4, which has been reproduced below as Table 9.1.   

 

   Cokriged:   
X Y Kriged Impedance Multilinear RBFN 

      
80 29 -0.662 -1.338 -1.694 -1.842 
55 17 -0.665 -1.367 -5.171 -4.213 
96 27 -1.190 -0.372 -0.160 -1.043 

110 17 5.040 4.287 2.801 3.042 
63 28 -5.354 -5.835 -2.944 -3.518 
65 40 3.318 4.258 2.847 3.054 
96 40 -1.322 -1.753 -3.884 -3.489 
26 41 1.032 -0.222 -1.610 -1.334 
38 41 2.552 1.186 -0.333 0.456 
47 39 -0.427 -0.593 -0.203 0.201 
38 59 -6.652 -5.170 -2.066 -2.518 
51 39 2.233 1.996 0.843 1.497 

      
 RMS: 3.242 3.027 2.534 2.516 

 
Table 9.1:  A cross-validation analysis of the porosity error at each well from Figure 8.1 using each of the 

mapping methods discussed in Chapter 8. The units in the table are % porosity. 
 

 Table 9.1 represents a summary of this complete dissertation, since it contains all 

of the elements that have been presented.  This includes the concept of the seismic 

attribute, discussed in Chapter 2, since we are using seismic impedance as our primary 

attribute.  Also, I used multilinear regression and neural network (RBFN) to combine a 

group of map attributes to predict porosity as our reservoir parameter.  I then used the 

geostatistical technique of collocated cokriging to “fine-tune” our prediction of porosity.  

Finally, the technique of cross-validation was used as an independent statistical 

evaluation of the accuracy of each method.  The numbers at the bottom of each list of 
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cross-validated porosities is the RMS average of the porosity values.  It can be seen in 

this example that the best “blind” prediction of porosity is from the RBFN method.  

 

 In addition, a number of secondary ideas were developed as a “by-product” of my 

primary research. These included the development of an approach to fluid estimation that 

combined the ideas of Biot, Gassmann, and AVO analysis (Russell et al., 2003), which 

was discussed in section 2.9; the development of a multilinear regression equation for the 

prediction of S-wave logs from a combination of P-wave sonic logs and gamma ray logs 

(Russell et al., 2004), which was discussed in section 3.7; and the development of 

Mahalanobis clustering and its application to AVO crossplotting (Russell et al., 2003), 

which was discussed in section 7.5. 

  

9.3 Suggestions for future research 

 
 I think it is fair to say that no dissertation ever covers all of the research that the 

student envisaged covering when he or she started the project.  The same is true for this 

work.  In particular, I see the following three areas in which future work can be done: 

 

(1) Optimization of the σ value in the RBFN method so that σ is a function of each 

attribute, as is done in the GRNN and PNN methods. 

(2)  Incorporation of the multivariate statistical parameters estimated using Mahalanobis 

clustering into the RBFN method with basis centres. 

(3)  Estimation of regularization parameters, which vary as a function of each weight.   

 

 Having said this, I feel that this dissertation advances research in the area of 

reservoir parameter prediction, and hope that the ideas presented here will be of use to 

my colleagues and to future geophysical students. 
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APPENDIX 1: A note on terminology 
 

 This appendix has been added to clarify the terminology used in the main body of 

this dissertation.   

 

 Fundamentally, there are four different datasets to consider: the input values, the 

weighting coefficients, the output values, and the target values.  For a single input set of 

values, the transform relationship is given by 

xwT+= 0wy  ,    (A1-1) 

where y is the output value, a scalar, w0 is a bias term, [ ]M21 www "=Tw  is a 

weight vector of M values, and [ ]M21 xxx "=Tx is an input vector also of M 

values. The superscript T indicates the transpose operation, in which a column vector 

becomes a row vector.  The bias term can be absorbed into the weight and input vectors 

by replacing equation (A1-1) by 

xwT=y ,     (A1-2) 

where [ ]M10 www "=Tw and [ ]M1 xx1 "=Tx .  Equation (A1-2) is often 

referred to as the dot, or scalar, product.   

 

 In the more general case where there are N input vectors, we can write 

  N,,1j,y j …== j
T xw ,    (A1-3) 

where [ ]jMj1 xx1 "=T
jx .  Equation (A1-3) can be replaced by the matrix equation 

XTT wy = ,     (A1-4) 

where [ ]N21 yyy "=Ty and [ ]
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 By taking the transpose of both sides of equation A1-4, we get the equation 

wy TX= ,     (A1-5) 

which we will also write as 

wy A= ,     (A1-6) 

where 
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 The distinction between vectors xj and ai is important.  The ai vectors represent M 

input seismic attribute traces, each with N samples, whereas the xj vectors represent N 

input vectors of seismic attributes, each with M samples.  The elements of matrix A can 

be written as aji, and the elements of matrix X can be written as xij, again emphasizing 

that the two matrices are a transposed pair. We can also rewrite equation A1-6 as 

 MM1100 www aaay +++= … ,    (A1-7) 

where the weights now represent a linear regression on the M attribute vectors. The 

vector y is the output after applying the weight vector to the input.  To determine the 

weights, we often use a training vector t, which can be physically interpreted as the well 

log associated with the input attributes.  The vectors y and t are of the same length, and 

the transpose of t can be written: 

[ ] .ttt N21 "=Tt    (A1-8) 

  

 In the still more general case where we have K weight vectors, equation (A1-5) 

becomes the matrix equation 
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Y = WT X,     (A1-9) 

where X is as given above, WT is the K x M dimensional weight matrix given by  
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and Y  is the K x N dimensional output matrix given by 
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 Thus, we have transformed the M x N dimensional matrix X into the K x N 

dimensional matrix Y, using the K x M dimensional transform WT.  Note that the values in 

X can be written as xij, where subscript i refers to the attribute number, and goes from 1 to 

M, and subscript j refers to the sample in the time series, and goes from 1 to N.   The 

values in WT can be written wki, where subscript k represents the order of the weights (for 

example, the weights for the kth node in a multi-layer perceptron), and goes from 1 to K, 

and subscript i again represents the attribute number, and goes from 1 to M.   The values 

of Y can be written ykj, where subscript k refers to the output from a particular set of 

weights (e.g. from a given node in a single layer perceptron), and goes from 1 to K, and 

subscript j represents the output from a particular sample, and goes from 1 to N.   

 

 Until now, all of our indices have been in subscript form.  The last case that we 

will consider involves an index in superscript form.  This is the index that keeps track of 

the layer number (that is, the level of nesting) in a multilayer perceptron.  Since 

superscripts can be confused with exponential powers, I have chosen to bracket this 

index.  Thus, we will write: 
( ) Qqw q ,,2,1, …=      (A1-10) 

for the weight matrix of the qth layer, where there are Q layers in total.  The complete 

input-output relationship for a two layer MLP network could therefore be written as: 
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( ) ( ) ( ) ( ) )]}XW(f[W{fz T11T22)2( =     (A1-11) 

 

 Notice that equation (A1-11) does not include a bias term.  This can been 

included in the weight and input matrices by appending a zeroth term to each of vectors 

in the matrices of equation A1-5, or ( )Mjj1j0
T
j x,,x,x …=x , and ( )Mkk1k0

T
k w,,w,w …=w , 

where x0j = 1 and w0k = the bias term. 
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APPENDIX 2: The least-squares method 
 

A2.1 A geometrical development of the least-squares method  

 

 One of the basic problems discussed in this dissertation has been the prediction an 

output training vector, t, from M input vectors, ai, where both the input and training 

vectors are N-dimensional.  In equation form, we can write: 
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  This is an inverse problem in which we want to find the weights which best 

reconstruct the training vector.  Once the weights have been found the actual computed 

output will be the vector y, which is usually not identical to the target vector.  Equation 

(A2.1) can be written more compactly as 

wt A= ,    (A2.2) 

where















=

NM1N

M111

aa

aa
A

…
#%#

…
.  If M = N and the input vectors are independent we can find 

a solution using the matrix inverse 

  tw 1A−= .     (A2.2) 

 

 However, we typically find that M < N, and an exact solution cannot be found.  

This problem is called overdetermined, since we have more information than we need.  

As the simplest example of this, we will let M = 1 and N = 2, and we can rewrite 

equation (A2.1) as 

at w= ,     (A2.3) 
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where [ ] [ ] .aa,tt T
21

T
21 == at and  We can find an exact solution only if a is linearly 

dependent on t.  In the more general case, shown in Figure 2.1(a), we can never match t 

exactly by applying a weight to a, and the optimum solution is to scale a so that it comes 

as close as possible to t.  This is shown in Figure 2.1(b), where the vector that joins the 

product wx to t is orthogonal to t.  Since this distance is given by t – wa, and we know 

that the scalar product between two orthogonal vectors is equal to zero, we can write 

2
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2
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2211

aa
atatw)(w0)w(

+
+=

⋅
⋅=⇒⋅=⋅⇒=⋅
aa
ataaataa-t    (A2.4)  

 
      (a)       (b) 

Figure A2.1: A geometrical illustration of least-squares, where (a) shows the input and 
target vectors a and t, and (b) shows that wa is the closest scaled version of a to t. 
 

 
 To demonstrate using an example, notice that for a = (2, 1)T and t = (3, 4)T, as 

shown in Figure A2.1(a), the weight would be 

2
5

10
12

1423w 22 ==
+

⋅+⋅= . 

 The output y thus can be written 
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which is geometrically as close as we can get to the right answer. 
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A2.2 Alternate derivations of the least-squares method  

 

 A second way to derive the identical result is to minimize the error between the 

vectors t and wa.  If we define E as the squared distance between t and wa, we can write 

( ) ( )2
22

2
11

2 twatwawE −+−=−= ta .   (A2.5) 

 Setting the derivative of the error with respect to the weight equal to zero gives 

( ) ( ) 0atwa2atwa2
dw
dE

222111 =−+−= .   (A2.6) 

Simplifying, we get ( ) 2
2

2
1

2211
2211

2
2

2
1 aa

tatawtataaaw
+
+=⇒+=+ .  This result is identical to 

the result that we obtained using a geometrical argument. However, this approach 

explains why the method is also called the least-squares technique. 

 

 There is yet a third way of deriving the result we have just derived using 

geometry and calculus.  If we start with the vector equation given in equation (A2.3) and 

simply pre-multiply both sides by the vector transpose of the input vector a, we get 

2
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2
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2211

aa
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w)(w
+
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==⇒=
xa
taaata T

T
TT    (A2.7) 

  

 Let us now move to higher dimensions.  If we let N increase, while leaving M = 

1, the solution is the same as just given, finding a single weight which minimizes the 

distance from one vector in N-dimensional space to another vector in N-dimensional 

space.  The next level of difficulty is therefore to let N = 3 and M = 2.  In this case, we 

need to find the solution to the problem 

21 aat 21 ww += ,    (A2.8) 

where we now have the vectors [ ]T
321 ttt=t , [ ]T

131211 aaa=1a , and 

[ ]T
232221 aaa=2a .  Geometrically, we now want to find the weighted vector sum of 

the inputs which gives the shortest distance to the training vector.  This is given as the 

orthogonal projection of t onto the vector 21 aa 21 ww + .  Following Bishop (1995), if we 
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call this orthogonal projection torth, then we can decompose t into the two components t = 

torth + tpara, where tpara is the parallel component of t.  Notice that the least-squares error 

can now be written 
2

M

1j
jjwE ∑

=

−= ta     (A2.9) 

and we can therefore arrive at a least-squares solution by setting the derivative of E with 

respect to each of the weights equal to zero, or: 

0)(
w
E

j

=−=
∂
∂ tyaT

j     (A2.10) 

Substituting, we find that 

0))(( para =+− ttya orth
T
j    (A2.11) 

But, since 0=orth
T
j ta , we find that 0para =− ty , or paraty = . 

 

 The matrix solution to the full least-squares problem can be found by generalizing 

our geometrical argument.  That is, expanding equation (A2.7) using the M vectors 

shown in equation (A2.1), we can write the following M linear equations by taking the 

dot product of each of the M input vectors ai with the target vector t, or 
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 Note that equation (A2.12) can be written in the following matrix form: 

[ ] waaa

a

a
a

t

a

a
a

111

T
M

T
2

T
1

T
M

T
2

T
1











































=





















"
##

,  (A2.13) 

 Or more compactly as 

wt )AA(A TT =     (A2.14) 

where A is as defined in equation (A2.2) 
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. 

 

 Note that the matrix product ATA is now a square matrix, so we simply perform 

the matrix equivalent of division by multiplying by the inverse of ATA.  This leads to the 

pseudo-inverse solution 

tw T1T A)AA( −= ,    (A2.15) 

where the product ATA now gives us a square matrix which is invertible if the input 

vectors are all independent.  (The non-invertible case will be discussed in section A2.4).  

 

A2.3 Adding a zero weight to the least-squares problem 

 

 Let us next consider the effect of adding a zero weight, w0, to an underdetermined 

set of equations. As an example, consider again the case of N=2 and M=1.  The two 

linear equations can now be written: 
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with solution 
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 When we substitute our last example (x = (2, 1)T and t = (3, 4)T ), note that this 

gives w0 = 5 and w1 = -1, which leads to 
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 By adding a zero weight we have thud solved the problem exactly, without 

needing a second set of measurements.  However, this approach will fail if a is itself a 

scaled unit vector, that is, if a1 = a2.  In this case, the determinant of the matrix is 

undefined, and the inverse does not exist.  In general, as the dimensions of the problem 

increase, but M = N-1, we can solve the problem exactly by adding a zero weight, and 

thus a unit vector, as long as none of the input vectors is equal to a scaled unit vector.  If 

M < N-1, the problem is improved by adding a zero weight but not solved exactly, again 

assuming that none of the input vectors are equal to a scaled unit vector.  A more 

practical solution is to add pre-whitening to the problem. 

  

A2.4 The effect of pre-whitening 

 

 In the case of an undefined matrix inverse caused by two or more linearly 

dependent input vectors, a practical solution is to add pre-whitening.  This can be written 

tw T1T A)IAA( −+= λ ,    (A2.18) 

 where λ is the pre-whitening factor and I is the M x M identity matrix.   

 

 As an example, if our earlier problem was re-defined so that we were trying to 

predict the target vector t = (3, 4)T using the input vector  a = (1, 1)T, then the matrix 

solution using a zero weight would be 
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for which the matrix inverse is undefined.  By adding the pre-whitening term λI, where I 

is the identity matrix, we get 
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Using the explicit form of the matrix solution, we get: 
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which is obviously invertible as long as λ > 0.  Let us now try a few values of λ.  If λ = 

0.1 (10% pre-whitening), we get: 
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If λ = 0.01 (1% pre-whitening), we get: 
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Recall that the least-squares solution to the problem is given in equation (A2.11), which 

gives in this case 
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Comparing the last three computations, it is obvious that the pre-whitening solution with 

the linear dependent vectors is converging to the least-squares solution.  To see this 

explicitly, let us re-write the matrix solution as 
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Notice that in this case each output value yi is equal to the sum of the two weights, which 

gives 

2
ttyy 21

21 +
+==

λ
. 

Therefore, we can see from the above derivation that, as λ approaches 0, y1 and y2 

approach (t1 + t2)/2. 
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APPENDIX 3: Digital Multichannel Filtering 
 

 In this appendix, we will discuss the theory of the multichannel digital filter 

(Treitel, 1970), which can be seen as the generalization of the concepts of the linear 

perceptron model and multilinear regression with convolutional weights. Let us first re-

write the general form of the multichannel digital filter from Treitel (1970), using the 

notation described in Appendix 1: 

,*

M

2

1

KM2K1K

M22221

M11211

K

2

1





































=



















a

a
a

www

www
www

y

y
y

#
"

#%##
"
"

#
   (A3.1) 

where 
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 In this notation, ai is an input attribute of N samples, wki is set of filter weights of 

length L, and yk is an output reservoir parameter of length N+L-1. When K and M are 

both equal to one, equation (A3.1) reduces to the classical single-channel filter, which 

can be written without subscripts as y = w* a. If we let both the filter and input have two 

points, the complete transient convolutional matrix can be written as 
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 This can be written as the two-point (N = L = 2), two input/output (K = M = 2) 

case considered by Treitel (1970) as  
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which can be expanded to give 
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 We can then write this equation in a more complete way as 
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 Equation (A3.4) can obviously be generalized for any number of filters and 

inputs, of any length.  Substituting the numerical example from Treitel (1970), we find 

that 
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 For the inverse problem, we can write the generalized inverse solution as a = 

(WTW)-1WTy, or a = R-1c, where R is the autocorrelation matrix and c is the cross-

correlation between the output and the filter.  This gives us: 
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 As expected, the inverse gives us the exact answer in this case.  The time domain 

solution shown above is not given in Treitel (1970), since that paper focuses on the Z-

transform solution to the multichannel filter. 

 

 Next, consider the case of a single-point filter, which is the case used in neural 

network theory.  We can now drop the time index on the filter, to get  
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Re-writing equation (A3.7) in the same form as equation (A3.3), we get 
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where I is the identity matrix, .
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=    Since I ai(t) = ai(t), we can rewrite equation 

(A3.8) as 
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which can be re-arranged in matrix form as 
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where the superscript T indicates the vector transpose.   
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 Equation (A3.10) can be expanded to give 
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 We can therefore re-write the single point filter equivalent of the general case 

shown in equation (A3.1) as 

.

)t(

)t(
)t(

www

www
www

)t(

)t(
)t(

T
M

T
2

T
1

KM2K1K

M22221

M11211

T
K

T
2

T
1







































=





















a

a
a

y

y
y

#
"

#%##
"
"

#
   (A3.12) 

 

 Equation A3.12 is the standard way of writing the first layer calculation for a 

multi-layer perceptron with M inputs and K perceptrons.  This is obviously a special case 

of the multichannel digital filter in which the filters have only a single point, or weight.  

However, because of the transpose operation in equation (A3.12), there is a fundamental 

difference in the interpretation of the two approaches which becomes more obvious when 

we expand equation (A3.12) in the same way that we expanded equation (A3.10).  That 

is, we get: 
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 Thus, each value in the output matrix can be thought of as the product of a 

horizontal weight vector and a constant time vector. Equation (A3.13) can therefore be 

written: 
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where: 
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 Note that I have used a bold letter to denote the weight vector, or wk. This new 

weight vector should not be confused with the multi-point convolutional filter defined in 

equation (A3.1).  In that case, the filter was convolved with the full input time series at 

each channel.  In this case, we take the dot product of the weight vector with a vector 

containing a single sample of all the input channels, which is a multiplexed operation.  

  

 As a further simplification, if we let K = 1 (a single perceptron), equation (A3.14) 

reduces to  
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 In equation (A3.15) the k subscript has been dropped and now the weight values 

are not written in bold, since these are scalar values rather than vectors.  Equation 

(A3.15) can also be written in transposed form as 
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 Equation (A3.16) can be seen to be the common form of the multilinear 

regression equation. 
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 The multilinear regression equation in equations (A3.14) through (A3.16) is the 

same approach we use in Chapter 3 to initially find the optimum set of attributes to use in 

the neural network approach.  Again, this is simply a special case of the multichannel 

digital filter.  

 

 Finally, consider the case of multilinear regression with convolutional weights, 

which is also discussed in Chapter 3.  This again is a special case of equation (A3.1), 

where K = 1.  That is: 
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APPENDIX 4: Bayes’ Theorem 
 
 
A4.1 Introduction 

 
 One of the cornerstones of statistical theory is Bayes’ Theorem, first derived by 

the Reverend Thomas Bayes in 1764.  Bayes’ Theorem can be written succinctly as 

( ) ( ) ( )
( ) ,
BP

APA|BPB|AP =     (A4.1) 

where:  ( ) =AP the unconditional probability of event A, ( ) =BP the probability of event 

B ( ) =BAP |  the conditional probability of A given B, and ( ) =ABP | the conditional 

probability of B given A.  Although equation A4.1 is a correct statement of Bayes’ 

Theorem, it is extremely abstract for those not familiar with statistics. In the next section, 

I will explain Bayes’ Theorem with a simple geologic example.  In the last section, I will 

consider an example using probability distributions.   

 

A4.2 A simple example of Bayes’ Theorem 

 

 Let us consider a geological example in which we have determined the lithology 

and porosity of samples taken from ten different reservoirs.  We will assume that there 

are only two possible lithologies, sandstone (SS) and limestone (LS), and two possible 

porosities, low porosity (LP) and high porosity (HP). A summary of the ten samples is 

shown in Table A4.1, where we note that there are one low porosity sandstone sample, 

four high porosity sandstone samples, three low porosity limestone samples, and two high 

porosity limestone samples. Note that the table also contains the sums of the columns and 

rows, and shows that there are an equal number of sandstone and limestone samples, but 

more high porosity than low porosity cores. To relate this table back to the form of 

Bayes’ Theorem given in equation A4.1, we will refer to the porosity and lithology as 

events, and have arbitrarily called the lithology event A and the porosity event B. 
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Table A4.1: A table of ten cores samples as a function of porosity and lithology, where 
SS = Sandstone, LS = Limestone, LP = Low porosity, and HP = High porosity. 

 

 Table A4.1 contains three fundamentally different types of probabilities: the joint 

probability, the unconditional probability, and the conditional probability.  The joint 

probability is the probability of two events happening simultaneously, the unconditional 

probability is the probability that a single event happens, and the conditional probability 

is the probability that an event happens given that we know that a second event has 

already happened.  

 

 Since probabilities are given as fractions, we must normalize the frequencies of 

occurrence that are given in Table A4.1.  Dividing the values in Table A4.1 by the total 

number of well samples (10), we find the joint probability, written P(A,B).  The joint 

probabilities are thus given as 

  P(SS, LP) = 1/10, P(LS, LP)  = 3/10, P(SS, HP) = 2/5, and P(LS, HP) = 1/5.   

Notice that the sum of the four joint probabilities is equal to one, since one of these 

occurrences must happen.  A summary of the joint probabilities is given in Table A4.2. 

 

 

 

 

 

 
Table A4.2: The joint probabilities P(A,B) and unconditional probabilities P(A) 
and P(B) of the events in Table A4.1, where P(A,B) = P(B,A). 
 

 Porosity (B) 

 LP HP Sum 

SS 1 4 5 

LS 3 2 5 

Li
th

ol
og

y 
(A

) 

Sum 4 6 10 

 Porosity (B) 

 LP HP Sum =P(A) 

SS 1/10 2/5 1/2 

LS 3/10 1/5 1/2 

Li
th

ol
og

y 
(A

) 

Sum =P(B) 2/5 3/5 1.0 
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 The unconditional probabilities can be found by adding the values in the rows of 

Table A4.1 for lithology, or the values in the columns in Table A4.1 for porosity, and 

again dividing by 10.  For the lithology, we get P(SS) = 1/2 and P(LS) = 1/2.  For the 

porosity, we get P(LP) = 2/5 and P(HP) = 3/5.  Again, the sum of P(SS) and P(LS) and 

the sum of P(LP) and P(HP) are both equal to 1.0. It can also be seen that the 

unconditional probabilities are the sum of the joint probabilities for a given row or 

column in Table A4.2. 

 

 To compute the conditional probability, written P(B|A), we divide the individual 

numbers in Table A4.1 by either the row sums (to find P(A|B)), or the column sums (to 

find P(B|A)).  For example, to compute P(SS|HP), we divide the number of high porosity 

sandstones by the total number of high porosities, to get 2/3.  To compute P(HP|SS) we 

divide the number of high porosity sandstones by the total number of sandstones, to get 

4/5.  Note that P(B|A) is not equal to P(A|B).  Table A4.3 shows the conditional 

probabilities P(A|B) and Table A4.4 shows the conditional probabilities P(B|A).     

 

 

 

 

 
 
 

Table A4.3: The conditional probabilities P(A|B) of the events in Table A4.1. 
  

 

 

 

 

 
 
 

Table A4.4: The conditional probabilities P(B|A) of the events in Table 4.1.  
 

 Porosity (B) 

 LP HP Sum 

SS 3/4 2/3 N/A 

LS 1/4 1/3 N/A 

Li
th

ol
og

y 
(A

) 

Sum 1.0 1.0 N/A 

 Porosity (B) 

 LP HP Sum 

SS 1/5 4/5 1.0 

LS 3/5 2/5 1.0 

Li
th

ol
og

y 
(A

) 

Sum N/A N/A N/A 
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 Let us now look at the relationship between joint probability and conditional 

probability.  The ratio of the joint probability of two events A and B to the probability of 

one of those events, let’s say A, is equal to the conditional probability of B given A.  This 

can be written 

( ) ( )
( )AP

BAPABP ,| =      (A4.2) 

 Alternately, for the conditional probability of A given B, we can write 

( ) ( )
( )BP

B,APB|AP =      (A4.3) 

 

 Equations (A4.2) and (A4.3) can be verified by observing the computed values in 

the previous tables.  For example, if we look at the high porosity sandstone cores we see 

that 

( ) ( )
( ) 3

2
5/3
5/2

HPP
HP,SSPHP|SSP === ,   (A4.4) 

or 

( ) ( )
( ) 5

4
2/1
5/2

SSP
SS,HPPSS|HPP ===  .   (A4.5)  

 

 By rearranging equation (A4.2) and (A4.3) we arrive at the law of multiplication 

of probabilities, which can be written as 

P(A, B) = P(B|A)P(A)     (A4.6) 

or 

P(A, B) = P(A|B)P(B)     (A4.7) 

 

 Since both of the above equations are equal, we can equate their right hand sides 

to get: 

( ) ( ) ( ) ( )BPB|APAPA|BP =     (A4.8) 
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This leads to Bayes’ Theorem of equation (A4.1), by simply dividing through by either 

P(A) or P(B).  That is we get either 

( ) ( ) ( )
( ) ,
BP

APA|BPB|AP =     (A4.9) 

or 

( ) ( ) ( )
( ) ,
AP

BPB|APA|BP =     (A4.10) 

 

 To verify this using our example, note that by re-arranging equations (A4.4) and 

(A4.5) we get: 

P(SS,HP) = P(SS|HP)P(HP)=2/3*3/5=2/5 

and     P(HP,SS) = P(HP|SS)P(SS)=4/5*1/2=2/5 

or 

P(SS|HP) P(HP) = P(HP|SS) P(SS)   (A4.11) 

 

 Dividing both sides in equation (A4.11) by either P(HP) or P(SS) leads to Bayes’ 

Theorem.  For example, if we divide by P(HP), we get: 

( ) ( ) ( )
( ) 3

2
5/3
5/2

HPP
SSPSS|HPPHP|SSP === ,   (A4.12) 

a if we divided by P(SS), we get: 

( ) ( ) ( )
( ) 5

4
2/1
5/2

SSP
HPPHP|SSPSS|HPP === ,   (A4.12) 

 

A4.3 Bayes’ theorem with probability functions 

 

 In the previous example, we have assumed that events A and B are discrete 

events.  The restriction that each event only had two outcomes can easily be expanded for 

any number of events (for example, five different lithologies and a range of porosities 

from 5% to 25%, in increments of 1%).  But the real power of Bayes’ Theorem comes 

into play when we assume continuous probability distributions for the two events.  This is 
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shown graphically in Figure A4.1, where we have assumed conditional distributions of 

the form p(x|t) and p(t|x)  where x represents our input values and t represents our target 

values. 

 

 
 (a) (b)     

Figure A4.1 An interpretation of (a) the conditional probability function p(x|t) at the fixed 
value t0, and (b) the conditional probability function p(t|x) at the fixed value x0. 

 

 Notice that the probability function drawn in Figure A4.1 is a Gaussian 

distribution.  Let us assume that the joint probability can be written as 
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x )t()x(
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µ
,    (A4.9) 

and the unconditional probabilities written as 








 −
−⋅= 2

x

2
x )x(

expc)x(p
σ

µ
,     (A4.10) 

and 








 −
−⋅= 2

t

2
t )t(

expc)t(p
σ

µ
,     (A4.11) 

The conditional probabilities can then be written as 
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and 
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APPENDIX 5: Associative Networks 
 

A5.1 Introduction 

 

 Although there are a bewildering array of neural networks, most of these 

networks are variants on two simple neural network models:  the perceptron (McCulloch 

and Pitts, 1943, Rosenblatt, 1958) and Hebbian learning (Hebb, 1949). The single-layer 

perceptron lead to the development of the multi-layer perceptron, and Hebbian learning 

lead to the development of the associative network and the Kohonen self-organizing map.  

In this appendix, we will discuss the ideas that evolved from Hebbian learning, starting 

with Hebb’s postulate. Donald Hebb was a Canadian psychologist working at Harvard 

who introduced the following postulate in his 1949 book “The Organization of 

Behaviour”. 

 

 “When an axon of cell A is near enough to excite a cell B and repeatedly 

 or persistently takes part in firing it, some growth process or metabolic 

 charge takes place in one or both cells such that A’s efficiency, as one of 

 the cells firing B, is increased.” 

 

 In the preceding quote, cells A and B are biological neurons, and an axon is the 

transmission line that connects these neurons. Translating Hebb’s postulate to 

mathematical language will lead to autoassociative and heteroassociative learning, as 

well as the least mean square (LMS) algorithm, singular value decomposition (SVD), and 

the generalized inverse.  These concepts will be illustrated with a straightforward 

geophysical example. 
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A5.2 Autoassociative learning 

 

 To translate Hebb’s postulate to a mathematical model, we will first assume that 

our cells (A, B, etc) are the M-dimensional attribute vectors  xj, which can be written (see 

Appendix 1) as 

N,,2,1j,

x

x
x

Mj

2j

1j

j …
#

=





















=x . 

We will next create an operator W by summing the outer products of the input vectors.  

This can be written as 

T
N

j

T
jj XXW ==∑

=1

xx ,     (A5.1) 

where X is an M x N dimensional matrix consisting of the input vectors as its columns 

(see Appendix 1), and W is symmetric and of dimension M x M.  To understand how W is 

related to Hebb’s postulate, consider applying it to our input vectors.  This can be written 

jj xy W= ,     (A5.2) 

where the vector yj is the output, of length M, the same length as the input xj. (Note that 

in Appendix 1, equation A5.2 was written using WT.  However, since W is symmetrical, 

WT = W.) 

 

 Since W was created from the outer products of the inputs, we can think of it as 

having a “memory” of the inputs, so that the input vectors try to “find” themselves in W.  

Hebb’s rule would tell us that the input vectors, or cells, are reinforced by finding a 

correlated version of themselves within W.  We can therefore rewrite equation A5.2 as: 

jj Wˆ xx = ,     (A5.3) 

where jx̂  is a reconstructed version of jx . If jj xx =ˆ , the memory has perfect recall (xj 

has found itself perfectly), and if jj xx ≠ˆ , the memory has imperfect recall (xj has found 

itself imperfectly).  This is referred to as autoassociative learning.   
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 To understand this mathematically, note that by combining equations A5.1 and 

A5.3, we get 

( ) ( ) ( ) j
kj

k
T
jkk

T
k

j j
jk

T
jk

T
jjkk W xxxxxxxxxxxxxx ∑∑ ∑

≠

+====ˆ .  (A5.4) 

The result is the sum of two parts.  The first part is simply a scaled version of kx .  The 

second part consists of cross-talk between the input vector and the stored vectors (Abdi et 

al, 1999).  If the input vector is orthogonal to all of the training vectors, the result will be 

zero and we will get perfect recall to within a scale factor.  (If the vectors are 

orthonormal, the scale factor will be equal to one.)  If the vectors are not orthogonal, we 

will get imperfect recall.  The amount of error can be quantified by finding the cosine 

between the input and output vectors, or 

( )
jj

j
T
j

jj ˆ
ˆ

,ˆcos
xx
xx

xx = .     (A5.5) 

Imperfect recall can have two separate causes.  Either the input vector was not used in the 

computation of W, or the vectors used in the training were not orthogonal. 

 

A5.3 Autoassociative Learning Example 

 

 Now, let’s look at a numerical example of autoassociative learning.  Recall that 

our input consists of a series of vectors containing M seismic attribute values at a 

particular sample.  Although the seismic attributes can take on any real value within a 

range determined by the number of bits in the recording system, in this example we will 

allow only values +1 or -1.  This is equivalent to the sign-bit recording system.  If we 

have two seismic attributes or reservoir parameters, there are thus four possible cases: 
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 This can be thought of as the four extreme cases in an AVO A/B crossplot, 

where 2x  and 3x  are the top and base of a wet sand, and 1x and 4x  are the top and base of 

a gas sand. For the case of M = 3, we have 23 = 8 cases, or 
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

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



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

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
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






−=

















−
=
















=

1
1
1

,
1
1
1

,
1

1
1

,
1
1

1
,

1
1
1

,
1
1

1
,

1
1
1

,
1
1
1

87654321 xxxxxxxx . 

 

 For N = 4, there are 24 = 16 distinct cases, for N = 5, there are 25 = 32 distinct 

cases, and so on. Thus, for N values, the complete input will always consist of 2N vectors. 

 

 Next, consider the matrix X and its transpose XT, which contain the full set of 

input vectors.  For N = 2, we get: 

[ ]21
T

T
2

T
1 ,

11
11

11
11

Xand
1111
1111

X aa
a
a

=



















−−
−

−
=








=








−−
−−

= , 

where a1 and a2 are the seismic attribute traces as a function of time (see Appendix 1), 

given by 



















−

−
=

1
1
1

1

1a  and



















−
−

=

1
1

1
1

2a . 

Notice that a1 and a2 are orthogonal, since they each contain two 1’s and two -1’s.  Thus, 

from equation A5.1, we find 









=








=








==

10
01

4
40
04

XXW T

2
T
21

T
2

2
T
11

T
1

aaaa
aaaa

. 

For N = 3, we find that 
















=

800
080
008

XX T . 
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 In both cases, W is equal to 2N times the N x N identity matrix.  We can produce 

similar results for N of any size.  The scaling factor of N can be removed by normalizing 

the vectors, which involves dividing by N .   

 

 For the above case in which a complete orthogonal set of vectors is used to create 

X, the resulting weight matrix will always produce perfect recall.  If we reduce the 

number of input vectors in the training, the result will depend on whether the remaining 

vectors are orthogonal or not.  For example, if we return to the N = 2 case, and use 

vectors 1x  and 2x  in the training, which are orthogonal, we get: 









=








−








−

=
20
02

11
11

11
11

W , 

and there is perfect recall.  However, if we use vectors 1x  and 4x  in the training, which 

are not orthogonal, the result is less than perfect.  That is: 









=








−−








−
−

=
22
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11

11
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W  









−
−

=







−−
−−









==⇒

4004
4004

1111
1111

22
22ˆ WXX . 

In this case, although the vectors used in the training have been recalled perfectly to 

within a scale factor, the others have been set to zero.   

 

 For a more realistic example, consider the case of N = 3.  We will design the 

weight matrix using only the first two vectors, [ ]1,1,11 =Tx  and [ ]1,1,12 −=Tx , and then 

apply the weights to the complete set of inputs.  This gives us: 
















=








−

















−
=
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022

111
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11
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W , 
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and  
















−−−−
−−−−
−−−−











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


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11111111
11111111
11111111
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ˆ WXX  

















−−−−
−−
−−

=
22222222
44000044
44000044

. 

 This result tells us that we are able to recall vectors 1 and 2, the training vectors, 

but with an error given by 

( ) ( ) 833.0
48
40,ˆcos,ˆcos 2211 === xxxx . 

It also tells us that we did a very poor job of recalling vectors 3 through 6.  Their error 

was: 

( ) 6,5,4,3j,167.0
48
8,ˆcos jj ===xx . 

Notice that vectors 7 and 8 were recovered with the same error as vectors 1 and 2. This is 

because these vectors are reverse polarity versions of vectors 1 and 2, and filter 

operations are insensitive to a polarity reversal.  To understand why vectors 1 and 2 were 

imperfectly reconstructed in the above case, we can use equation A5.5 to find that 

( ) ( ) 2121111ˆ xxxxxxx TT +=  
















=

















−
+
















=⇒

2
4
4

1
1
1

1
1
1
1

3ˆ1x . 

Note the cross-talk error due to the fact that 1x and 2x  are not orthogonal. 

 

A5.4 The LMS algorithm 

 

 As we have just seen, the Hebb rule does not work perfectly if the learned vectors 

are not orthogonal.  However, the method can be improved by iteratively adjusting the 

weights based on the observed error.  This method goes by a number of names:  the delta 

rule, the perceptron learning rule, the least mean square (LMS) algorithm, or the Widrow-
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Hoff learning rule (Widrow and Hoff, 1960), named after the inventers of the LMS 

algorithm.  This algorithm is also identical to the gradient descent method and, in the 

limit, to the Moore-Penrose generalized inverse.  The LMS algorithm can be derived by 

modifying equation (A5.1).  Note that this equation can be rewritten iteratively as 

( ) ( ) N,,1,0j,1jWjW T
jj …=+−= xxα ,   (A5.6) 

where we have added the term α  which is a constant (positive and less than 1) called the 

learning rate, and assumed that W(0) is the zero matrix: 

( )















=

00

00
0W

"
#%#

"
. 

Next, we replace jx  in the second term on the right hand side of that equation by the 

error between the input and the output.  The error can be written as jj x̂x − , or 

( ) jj 1nW xx −−  giving 

( ) ( ) ( )( ) T
jjj nWnWnW xxx 11 −−+−= α .   (A5.7) 

Thus, we iteratively update the weight matrix by using the error between the correct 

output and the output of the previous iteration.  Our criterion for stopping will be when 

the error approaches a small enough value.  We can also remove the dependency on the j 

term by using all of the input vectors at the same time, or 

( ) ( ) ( )( ) TXX1nWX1nWnW −−+−= α    (A5.8) 

Equation A5.8 can also be written as 

( ) ( ) TEX1nWnW α+−= ,    (A5.9) 

where E is the error term, or 

( ) ( ) ( )1nW1nWnW −+−= ∆ ,   (A5.10) 

where ( )1−∆ nW  is the correction matrix for the (n-1)st iteration. 

 

 Let us now go back to our previous example and apply the LMS algorithm.  We 

will let 2.0=α 5 (choosing an optimum value of α will be discussed later), and we will 

initialize W to the 3 x 3 zero matrix. 
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Since
















−
=

11
11
11

X , we find that ( ) ( )















==

00
00
00

00ˆ XWX , and ( ) ( ) X0XX0E =−= . 

Thus we, after the first iteration, get: 

( ) ( ) ( )















==+=

5.000
05.05.0
05.05.0

XX25.0X0E25.00W1W TT . 

The weight matrix after the first iteration is simply the matrix given in section A5.3 times 

the α  factor.  For the second iteration, the new output is 

















−
=

















−








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




==

5.05.0
11
11

11
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11

5.000
05.05.0
05.05.0

X)1(W)1(X . 

Note that this is again simply our original result scaled by α.  Now compute the error: 

















−
=−=

5.05.0
00
00

)1(X̂X)1(E . 

Notice that the error is largest where the misfit in the output was greatest, in the third 

row.  Next, we compute the delta matrix: 
















==

25.000
000
000

X)1(E25.0)1(W T∆ . 

 The correction is only non-zero in one element in the bottom row of the delta 

matrix.  Thus for the second iteration of the weight matrix we get 
















=+=

75.000
05.05.0
05.05.0

)1(W)1(W)2(W ∆ . 

In the updated matrix, the value in the bottom row is now larger.  This gives us the new 

result: 
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















−
==

75.075.0
11
11

X)2(W)2(X̂ . 

Although the result is still not perfect, we are going in the right direction.  All we need to 

do now is iterate through the process.  After 20 iterations we find that 

( )
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


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
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



−
=
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
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


=⇒






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


=

11
11
11

11
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11

100
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20X̂
100
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)20(W . 

 

A5.5 Eigendecomposition and singular value decomposition (SVD) 

 

 An alternative approach to the implementation of the LMS algorithm can be 

found using singular value decomposition (SVD).  To understand this approach, let us 

briefly review eigenvalues and eigenvectors.  If v is an eigenvector of the square matrix 

W, and 

vv λ=W      (A5.11) 

then λ is the eigenvalue associated with eigenvector v.  To illustrate this, let us take the 

inner product matrix of our previous example, or 









=

















−








−

==
31
13
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111
111

XXA T . 

Then: 

0
31

13
0AA =

−
−

⇒=−⇒=
λ

λ
λλ vvv  

( ) ( )( ) 024086013 22 =−−⇒=+−⇒=−−⇒ λλλλλ . 

Thus, matrix A has eigenvalues of 41 =λ  and 22 =λ , and is said to be of full rank equal 

to 2  (Strang, 1988). The eigenvectors are 









=


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


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
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
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
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2
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A
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
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
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
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
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
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A
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222 vv λ , 

where v1 and v2 have been normalized. 

 

 Let us now compute its outer product of X and find the eigenvalues and 

eigenvectors.  The outer product has already been computed and is given by 
















=




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The eigenvalues for B are computed by 

( ) ( ) 02420
200
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022

3 =−−−⇒=
−

−
−

λλ
λ

λ
λ

 

( ) 086086 2223 =+−⇒=+−⇒ λλλλλλλ . 

which gives 41 =λ , 22 =λ , and 03 =λ .  Since the third eigenvalues is equal to zero, 

matrix B is not of full rank (which would be 3) and has a rank of 2, the same as matrix A.  

The eigenvectors  are computed as 
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

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For the zero eigenvalue, notice that the matrix can be written in the form: 

0=uM , 
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and the vector u is said to be in the null space of M. 

 

 Once we have computed the eigenvalues and eigenvectors of a matrix, we can 

express it as 
1UUW −= Λ ,     (A5.12) 

where U is a matrix whose columns are the eigenvectors and Λ is a diagonal matrix 

whose main diagonal consists of the eigenvalues of W.  In the symmetrical case we have 

been considering, note that T1 UU =− .  For our two cases: 
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and 
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 Eigenvalues and eigenvectors can only be computed from square matrices.  In the 

more general case, we wish to eigendecompose a rectangular matrix.  This is especially 

important in seismic data analysis since we are almost always dealing with rectangular 

matrices (i.e. more equations than unknowns).  This is referred to as singular value 

decomposition (SVD) and will not be derived here (see Strang, 1988, Appendix A).  The 

result is given by: 
TVUX ∆= ,     (A5.13) 

where X is any rectangular matrix, U is the eigenvector matrix of the XXT, ∆ is a diagonal 

matrix with the square roots of the eigenvalues of XXT on its diagonal (these are called 

singular values) and V is the eigenvector matrix of XTX.  Since U and V are of a different 

size, we can either append zeros to V or drop the zero eigenvalues and its associated 
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eigenvector from ∆ and U.  Obviously, it is simpler and more efficient to do the latter.  

Using our example from the last section, we get: 
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A5.6 The LMS algorithm and SVD 

 

 As shown by Widrow and Stearns (1985) the SVD leads to a very fast way of 

solving the LMS algorithm.  Recall that the LMS algorithm is written 

( ) ( ) ( )( ) TXXnWXnWnW 11 −−+−= α .   (A5.14) 

This can be written as the eigendecomposition: 

( ) ( ) TUnUnW Φ= ,     (A5.15) 

where ( ) ( )nIIn ΛαΦ −−= . 

 

 From equation (A5.21), we note two important points.  First, since Φ(n) is only 

stable if (Hagan et al., 1995) 

11 i <−αλ , 

then the maximum stable learning rate parameter must satisfy: 

11 max −<−αλ  

or 
max

2
λ

α < . 

(In the case we have been considering,
2
1

4
2 =<α , thus 0.25 was a reasonable choice for 

α).  Second, we can write 

( )
















=−
n

m

n
l

n

f00
00
00f

I %Λα , 
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where fi < 1. 

 

 Then, for ∞=n , this matrix becomes the zero matrix, and we find that 

( ) TUUW =∞ . 

 

 The effect of the LMS algorithm is thus to whiten the weight matrix by setting 

each of its eigenvalues to 1.  To illustrate this using our previous example, note that: 
















=⇒




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


















==

100
05.05.0
05.05.0

100
0

10
0
0

2
1

2
1

2
1
2

1

WUUW T . 

 

 This was the same answer we got using the recursive LMS algorithm, but took a 

lot less work. 

 

A5.6 Heteroassociative learning 

 

 In autoassociative learning, we try to detect patterns without supervision.  

However, the type of problem we are most interested in this thesis is the supervised 

problem, in which we are presented with at least some examples of what our output 

should look like.  Specifically, this may be the measured porosity in a well that is 

intersected by a seismic line.  This is called heteroassociative learning, and is closely 

related to the autoassociative case that we considered in the previous section. The basic 

equations for heteroassociative learning are almost identical to equations (A5.1) and 

(A5.2), except that the output vector y is replaced with the training vector t.  That is: 

jj xt W

t

t
t

Mj

2j

1j

=





















=
#

.    (A5.16) 
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 Equation (A5.15) is for the single input (or stimulus) case.  As in autoassociative 

learning, we can also consider the batch learning case, in which we process N input 

vectors simultaneously.  In this case, we write: 

XWT = ,     (A5.17) 

where [ ]















==

KNK

N

N

tt

tt
T

…
#%#

…
…

1

111

21 ,,, ttt , and [ ]















==

MNM

N

N

xx

xx
X

…
#%#

…
…

1

111

21 ,,, xxx . 

 

 The key question is again how to determine the weight matrix W.  

Heteroassociative learning does this using by summing all possible outer products 

between the xj and tj vectors, as in the autoassociative case.  That is: 

∑
=

==
N

j

TT
jj XTW

1

tx .     (A5.18) 

The accuracy of the prediction of the training vectors can be computed by comparing the 

estimated values: 

XWT T=ˆ ,     (A5.19) 

with the true values, using the cosine rule given earlier in equation (A5.6).  For the 

training vector case, we get: 

( )
tt

tttt ˆ
ˆ

,ˆcos
T

= .     (A5.20) 

 

 We will again find that the accuracy of the prediction will depend on the 

orthogonality of the input vectors.  That is: 

( ) ( ) ( )∑∑∑
≠

+====
kj

jk
T
jkk

T
kj

j
k

T
j

j
k

T
jjk

T
k W txxtxxtxxxxtxt̂ . (A5.21) 

 

 If the xj vectors are orthogonal, the first term will equal a scaled version of tk 

(equal to tk for orthonormal inputs) and the second term will be zero.  For non-orthogonal 

input vectors, the second term will introduce cross-talk.   
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A5.7 Heterassociative example 

 

 In this example we will use the same input vectors as in our previous example, or: 











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



−
=

11
11
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X , 

but will now try to predict the two-dimensional output 


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
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
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T . 

 

 Thus, we find: 
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022ˆ XWT T . 

The error in computing both t1 and t2 is therefore: 

( ) ( )
220

6,ˆcos,ˆcos 2211 ⋅
== tttt  

If we compute the estimate for the first vector using equation (A5.21), we get: 

( ) ( ) 1121111̂ txxtxxt TT += [ ] [ ] 
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 As in our earlier autoassociative example, note that the error is due to the fact that 

x1 and x2 are not orthogonal. 
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A5.8 LMS and heteroassociative learning 

 

 The LMS algorithm applied to heteroassociative learning is simply an extension 

of the autoassociative equation given in equation (8).  Since we want to improve our 

estimate of T, we simply replace the term XX ˆ−  with TT ˆ− .  That is: 

( ) ( ) ( )( ) TTT XXnWTαnWnW −+=     (A5.22) 

( ) ( )( ) TT XnTTnW ˆ−+= α  

( ) ( ) TT
n XnEαW +=  

( ) ( )nWW T
n ∆+= , 

where E(n) is the error at the nth iteration, and ∆W(n) is the matrix of corrections at the nth 

iteration.  Let us apply equation (A5.22) to our previous example. 

 

A5.9 Example 

 

Recall that 
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 As expected, WT(1) is α times our original estimate of W.  For iteration 2, we get: 
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When we apply this updated weight matrix to X, we get: 
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Thus, our solution has improved.  Using a computer we find that after 15 iterations we 

converge to: 

( ) ( ) 
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A5.10 SVD and LMS for heteroassociative learning 

 

 Since we now have the matrix T in our LMS calculation, the SVD solution is 

slightly more complex, and can be written (Abdi et al., 1999) as: 

 

( ) ( ) T1T UnTVnW Φ∆−= ,     (A5.21) 

 

where ( ) ( )nIIn ΛαΦ −−=  and V, U and ∆ are as defined earlier.  If α is chosen to be 

less than
max

2
λ

, then: 

( ) T1T UTVW −=∞ ∆ .     (A5.22) 

Using our previous example: 
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A5.11 The pseudo-inverse 

 

 We have seen that the Hebb rule can give the exact solution for our weight matrix 

in the equation 

XWT T=  

only if the vectors in X are orthogonal.  We also discussed an iterative approach to 

solving for W, called the LMS algorithm, and its implementation using singular value 

decomposition.  However, there is also a direct matrix inversion approach that can be 

used.  If the matrix X is square and has a non-zero determinant, we can write: 
1T TXW −= . 

 

 However, in general X is not square.  In this case, we use the generalized inverse, 

or 
+= TXW T , 

where ( ) T1T XXXX
−+ = .  Returning to our example, note that: 
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APPENDIX 6   Derivation of the radial basis function approach 
 
 
 It was shown by Poggio and Girosi (1990) that the theoretical foundation of the 

basis function method could be derived using regularization theory (Tikhonov and 

Arsenin, 1977).  Regularization theory involves controlling the smoothness of a mapping 

function by adding a second term that penalizes values that are not smooth.  This is done 

by minimizing an error function given by 

[ ] 2
j

N

1j

2
jj )(Pyt)(yE xx λ+−=∑

=

,   (A6.1) 

where λ is the regularization parameter, P is a differential operator; and y, xj, and tj are the 

final computed reservoir parameter value, attribute vectors and observed training values, 

respectively, as discussed throughout this dissertation.  Equation (A6.1) can be solved 

using the calculus of variations (Bishop, 1995) by setting the functional derivative with 

respect to y(xj) equal to zero.  This gives 

[ ] 0)(PyP̂)-(t)(y jj

N

1j
jj =+−∑

=

xxxx λδ ,   (A6.2) 

where P̂ is the adjoint differential operator to P, δ is the delta function and x is an 

arbitrary input sample vector.  The equations in (A6.2) are better known as the Euler-

Lagrange equations and have the solution given by 

)-(),(PGP̂ jj xxxx δ= ,    (A6.3) 

where G(x, xj) are the Green’s functions of the operator PP̂ .  In the case of an operator 

which is rotationally and translationally invariant, as in the case of a radial basis function, 

the solution to (A6.3) is given by  

( )∑
=

−=
N

1j
G)(y jj xxwx .    (A6.4) 

 Poggio and Girosi (1990) consider several forms of the Green’s function given in 

equation (A6.4).  The most straightforward form is given by the differential equation 

)()(G)1( m2m xx δ=∇− ,    (A6.5) 
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where m2∇ is the m-iterated Laplacian in n dimensions.  This leads to the multi-

dimensional spline function given by 

xxx ln)(G nm2 −= .    (A6.6) 

 

 By generalizing equation (A6.5) to an infinite number of terms, we derive the 

partial-differential equation for the Green’s function given by 

)-(),(G
2!m

)1(
0n

n2
m

m2
n

jj xxxx δσ =∇−∑
∞

=
.  (A6.7) 

  

 By applying Fourier techniques to equation (A6.7) we arrive at the radial basis 

function solution given by 

∑
=


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−=

N

1j

2

2 -
2

1exp)(y jj xxwx
σ

.   (A6.8) 

 

 
 




