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ABSTRACT 

Two separate seismic processing steps for multicomponent data, shear-wave 

splitting correction and migration, are brought together in this thesis.  The framework for 

doing this is the theory of elastic anisotropic propagator matrices, combined with 

generalized phase-shift plus interpolation (PSPI).  The resulting extrapolation can be 

written as matrix pseudodifferential operators acting on vector wavefields.  Each 

extrapolation step includes a decomposition based on eigenvectors of the Kelvin-

Christoffel equation, a phase-shift step based on eigenvalues of the Kelvin-Christoffel 

equation and a recomposition step.  It is the decomposition and recomposition operations 

which enable the shear-wave splitting correction within migration. 

Practical implementation of this approach is achieved by a new method of adaptive 

spatial windowing, designed to minimize the number of Fourier transforms which are 

required to represent the pseudodifferential operator.  The windows are made up of 

elementary Gaussian functions, and are selected based on minimizing a phase error 

criterion over a range of phase angles.   This method is referred to as phase-shift plus 

adaptive windowing (PSPAW). 

Another algorithm is derived for the special case of isotropic elastic media.  This 

algorithm is closer in spirit to the original scalar PSPI algorithm, and relies upon 

approximate separation of the dependence on P-wave and S-wave velocities. 

Both PSPAW and PSPI algorithms are tested on examples and compared with a 

reference, which is computed using the full pseudodifferential operator. 

For both methods, a prestack depth migration scheme is constructed by the addition 

of an appropriate imaging condition.  The PSPAW algorithm is used to apply prestack 

depth migration on a synthetic modelled dataset with a faulted HTI (transversely isotropic 

with horizontal symmetry axis) layer, and compared with isotropic migration on the same 

data. 

Finally, the PSPI algorithm is tested on a new elastic version of the Marmousi 

dataset, known as Marmousi-2.  The results reveal both the potential benefits of the 

method and areas where challenges remain. 
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CHAPTER ONE: INTRODUCTION 

"If we knew what it was we were doing, it would not be 
called research, would it?"  
-Albert Einstein 

1.1 Exploration geophysics context 

The permeability of many hydrocarbon reservoirs is enhanced by the presence of 

fractures.  Knowledge of the fracture system is crucial to understanding the flow of 

reservoir fluids and planning for optimal drilling.   The fractal nature of geologic 

processes suggests that fractures can be expected on all length scales, and this fits with 

observation (Lynn, 2004a; 2004b).  At the upper end of the scale we have faults, which 

are visible in seismic images.  Moving down in scale, other fractures will lie well beneath 

the limit of seismic resolvability.  According to equivalent media theory, they nonetheless 

can be observed through seismic anisotropy.  Azimuthal anisotropy, in particular HTI 

associated with vertical fractures, is one of the principal reasons for acquiring elastic 

seismic data, via multicomponent surveys.  The shear-wave splitting, or "birefringence", 

associated with shear-wave propagation in fractured media is particularly diagnostic of 

the fracture orientation and intensity (Crampin and Chastin, 2003). 

Sometimes, the goal is analysis of the shear-wave data in order to determine these 

parameters, and it is sufficient to use the data in this way without attempting to go further 

with imaging.  However, often azimuthal anisotropy is also present in the overburden 

above a reservoir.  Here, the anisotropy of these layers is not intrinsically interesting, but 

poses an impediment to imaging.  Shear-wave splitting introduces time delays which 

cause the image to become confused and hard to interpret.  For simple horizontally 

stratified media, and for near vertical propagation, the splitting effect can often be 

removed by static shifting of the fast and slow shear-wave modes to align them.  

However, in structurally complex geological settings, the passage through the overlying 

anisotropic region cannot be treated by simple time shifts. 

Moreover, a target such as a fractured reservoir may itself be structurally complex, 

requiring a simultaneous treatment of azimuthal anisotropy and reservoir geometry 

issues.  In cases where the structure is sufficient to cause significant deviation of the 

anisotropy axis from horizontal (i.e. tilted fractures) a more general form of anisotropy 
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than HTI must be accommodated.  Nevertheless, it is the present author’s belief that 

there are many cases where the combination of anisotropy and faulting can be regarded as 

a good approximation as structured HTI.   

A "canonical" example problem is to properly focus internal faults within a 

vertically fractured carbonate reservoir.  Currently this is difficult to achieve with 

standard approaches to imaging of multicomponent data, which regard structure and 

azimuthal anisotropy as two separate problems.  Therefore, a new approach in which they 

are addressed simultaneously and consistently is called for, and will be pursued here. 

1.2 Elastic wave propagation 

The earth is an elastic medium.1 

Neglecting absorption, the equation which best describes the propagation of seismic 

waves in the earth is the elastic wave equation.  This is in contrast to the acoustic wave 

equation which describes propagation of waves in a fluid medium, such as the ocean.  

The elastic wave equation is framed in terms of tensor operators acting on vector 

quantities.  The acoustic wave equation is written in terms of scalar operators acting on 

scalar quantities.  The scalar wave equation is much simpler to analyze, and easier to 

manipulate in order to construct inverse algorithms.  It is also a good approximation, in 

many cases, to the behaviour of compressional waves within the elastic earth.   

For these reasons, exploration seismology has focused primarily on use of the 

scalar acoustic wave equation, on which to base the development of processing and 

imaging algorithms.  This is not the case for global seismology, which generally requires 

elastic theory from the outset.   This is probably due to the relative importance of shear 

waves for global seismology2. 

Recently, interest has grown within exploration seismology in improved reservoir 

characterization from the analysis of both shear wave and anisotropic behaviour.  This  

                                                 
1 Actually, this statement is already a simplification.  The earth is at least a viscoelastic medium, in which 
absorption losses give rise to attenuation and dispersion effects.  However, these effects will not be 
addressed within this thesis. 
2 As a historical note, the compressional and shear wave abbreviations “P-wave” and “S-wave” stand for 
primary- and secondary-wave respectively, owing to their relative arrival times on earthquake 
seismograms. 
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has become possible through the use of multicomponent data to record the elastic 

wavefield (Thomsen, 1999; Stewart et al., 2002; 2003).  It is therefore appropriate to 

consider elastic wave equation formulation for processing and imaging algorithms in 

exploration seismology.  This is perhaps most obvious when dealing with shear waves 

and converted waves.  However, it is also true that a proper treatment of anisotropy 

fundamentally demands an elastic viewpoint, even when only P-waves (or quasi-P waves, 

to be precise) are contemplated. 

The theory of elastic wave propagation is comprehensively dealt with in many 

standard geophysical texts (e.g. Aki and Richards, 2002).  Anisotropic wave theory is 

also well described in various textbooks (Musgrave, 1970; Auld, 1973).  The following 

two sections give a brief summary of the theory which is pertinent to the subject of elastic 

wavefield extrapolation. 

1.2.1 Momentum and constitutive equations 

Wave propagation in elastic, anisotropic, heterogeneous media is governed by the 

momentum equation (Newton’s second law) 

 jljlj fu += ,σρ �� , (1-1) 

where ρ is density, uj is the component of displacement in the jth direction, jlσ  is the 

stress tensor, and fj is a body force.  The body force term may refer to gravity or to an 

applied source term, depending on context. In this case it is taken to be an optional source 

term. 

Above, and throughout this thesis, the convention used is that “,l ” denotes partial 

differentiation with respect to xl, the lth spatial coordinate. The Einstein summation 

convention is also used, whereby twice-repeated indices indicate an implied summation.  

Indices repeated more than twice will be taken to imply that the summation convention is 

suspended.  All indices take the values 1, 2 and 3, though to clarify x,y and z are used 

when appropriate.  The second time derivative of u is indicated by u�� . 

The constitutive equation, which describes the relationship between the stress jlσ  

and the strain emn (generalized Hooke’s law), is given by 
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 mnjlmnjl ec=σ , (1-2) 

where cjlmn is the 4th rank stiffness tensor.  In turn the strain tensor is given by: 

 ( )mnnmmn uue ,,2
1

+= . (1-3) 

Equation (1-3) shows that the strain tensor is symmetric.  Simple physical 

arguments can be used to show the symmetry of the stress tensor.  These symmetries, 

taken together, imply that the stiffness tensor is symmetric under interchanges of j with l, 

and m with n. Energy considerations further imply symmetry under interchange of jl with 

mn.  The net result is, that for the most general elastic medium, there are “only” 21 

independent elastic coefficients rather than the 81 of an arbitrary 4th rank tensor.  Also the 

following coordinate transformation rule is useful for creating arbitrary symmetries:  
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An alternative representation of the stiffness uses Voigt (Musgrave, 1970) notation 

to replace the 4th rank tensor cjlmn by a symmetric 6x6 matrix C as follows: 
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where the lower half of the matrix is implied by symmetry.  

Likewise the stress and strain tensors may be written in a vector form as 
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so that the stress-strain relationship of equation (1-2) is rewritten as: 

 Ceσ = . (1-7) 

Note, however, that (1-7) is not a tensor equation as it is not invariant under 

rotation. 

For isotropic media, the stiffness tensor takes the form (e.g. Aki and Richards, 

2002) 

 ( )jkiljlikklijijklc δδδδµδλδ ++=  (1-8) 

and equation (1-5) becomes 
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C .  (1-9) 

In equation (1-9), the elements omitted are equal to zero.  The parameters λ and µ 

are the well-known Lamé moduli. 

Combining equations (1-1), (1-2) and (1-3), and considering a source free medium, 

the elastic wave equation is obtained as 

 ( )nmjlmn
l

j uc
x

u ,∂
∂

=��ρ . (1-10) 

In a homogeneous medium, or one where the spatial variation of the medium 

parameters is slow when compared with the wavelength of propagation, the spatial 

derivative of the stiffness tensor may be neglected to give 
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 nlmjlmnj ucu ,=��ρ . (1-11) 

1.2.2 The Kelvin-Christoffel equation 

The polarization vector, defined as a unit vector with the direction of particle 

displacement, is denoted by ( ) Tddd 321=d . The slowness vector, defined as the vector 

with direction parallel to phase velocity1 and magnitude equal to the reciprocal of phase 

velocity, is denoted by ( ) Tsss 321=s .2 

Substitution of plane-wave trial solutions of the form ( ) du xs tieU −⋅= ω , into (1-11), 

gives the Kelvin-Christoffel equation (Musgrave, 1970), which can be written in either of 

two forms 

 ( )( ) 0ˆ 20 =−Γ kikik dv ρδn , (1-12) 

or 

 ( )( ) 0=−Γ kikik dρδs , (1-13) 

where ( ) ljijklik nnc ˆˆˆ0 =Γ n  and ( ) ljijklik ssc=Γ s  are the two forms of the Christoffel matrix, 

sn v=ˆ  is the unit vector in the slowness direction, with v being an eigenmode velocity, 

and ikδ  is the Krönecker delta function.  

The first form, equation (1-12), gives rise to a true eigenvalue problem, in which 

the eigenvalues are ρ2v .  In general, there are three such values corresponding to qP 

(quasi-P), qS1 (quasi-S1) and qS2 (quasi-S2) modes3.  Since 0Γ  is real, symmetric and 

positive definite, for real n̂  (Musgrave, 1970), all eigenvalues are real and positive, 

giving real velocities, which can be chosen positive.  The normalized eigenvectors are the 

polarizations, d , which are orthogonal for a given n̂ .  

                                                 
1 The term "velocity" is used throughout this dissertation to indicate "wavespeed". This is based on 
common usage within exploration geophysics, even though usually referring to scalar quantities. 
2 Here, and subsequently within, the superscript T indicates the transpose of a vector or matrix.  It is often 
used simply to allow a column vector to be rewritten as a transposed row vector within the text. 
3 The qualifying term "quasi" is necessary when dealing with anisotropic materials.  In such materials it is 
no longer possible to identify P-waves as those which have displacements in the same direction as their 
propagation direction, and S-waves as those which have displacements orthogonal to their propagation 
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The second form, equation (1-13), is more convenient for wavefield extrapolation, 

since we may fix the radial (horizontal) slowness ),(),( 21 ssss yxr ≡=s , and solve for the 

vertical slowness 3ssz ≡ .  In this alternative problem, the “eigenvalues” (a misuse of the 

term, but common in the literature) are the values of zs .  The characteristic equation 

( ) 0det =−Γ jljl ρδ  has 6 roots for zs .  For non-evanescent waves (real zs ), the matrix Γ  

is real and symmetric; however, it is not the case that the resulting polarization 

“eigenvectors” are orthogonal.  For example, if we consider the qP, qS1 and qS2 waves 

associated with a given radial slowness, rs , (but different vertical slownesses), they 

correspond to three different slowness directions, n̂ , and have non-orthogonal 

polarizations.  This is illustrated in Figure 1.1. 

 

sx=kx/ω

sz=kz/ω

0

θSV

θP

Fixed kx

S-wave
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P-wave
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P-wave slowness
S-wave slowness
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θSVθSVθSV
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P-wave
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P-wave
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P-wave
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P-wave slowness
S-wave slowness
P-wave slowness
S-wave slowness

 
Figure 1.1. P-wave and S-wave phase velocities (bold and dashed curves). Phase angles 
θP and θSV (isotropic case) for a given horizontal slowness, xs , corresponding to fixing xk  
for a given frequency ω.   

                                                                                                                                                 
direction.  The direction of propagation and displacement are not simply related for anisotropic materials 
except in certain favoured directions.  
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1.3 HTI: Transverse isotropy with a horizontal symmetry axis 

The methods for wavefield extrapolation developed in this thesis are applicable to a 

range of anisotropic symmetries, provided there is a horizontal symmetry plane.  

However, it is useful to focus on one specific symmetry system for illustrative purposes. 

An important type of anisotropy for exploration and reservoir description is transverse 

anisotropy with a horizontal symmetry axis, more succinctly known as "HTI anisotropy", 

or simply "HTI".1  HTI is believed often to be associated with the presence of vertical 

fractures embedded in an otherwise isotropic rock matrix. Such fractures may give rise to 

increased permeability and are therefore of great interest for increased production from 

hydrocarbon reservoirs.  Consequently, there is much active research into the behaviour 

of both P-wave and S-wave propagation in HTI rocks.  The presence of fractures gives 

the rock a greater strength in directions parallel to the fracturing compared with the 

perpendicular direction, much as a deck of playing cards is more rigid parallel to the card 

faces than it is perpendicular to them (see Figure 1.2). HTI can also arise due to 

differential stresses within the earth. 

With respect to seismic wave propagation, there is a variation in the seismic 

velocity with direction for both P- and S-waves in an HTI medium.  The plane parallel to 

the fractures is known as the isotropy plane (since all directions are equivalent within it).  

The vertical plane perpendicular to the fractures is known as the symmetry plane.  

Generally speaking waves propagating parallel to the isotropy plane experience a more 

rigid medium, and so travel with a higher velocity, than waves parallel to the symmetry 

plane.  For S-wave velocities, HTI also causes a dependence on the polarization of the S-

wave.  S-waves polarized parallel to the isotropy plane propagate faster than those 

polarized orthogonal to it.  These are often referred to as the fast and slow shear waves, 

or as S1 and S2. 

 

 

                                                 
1 HTI is a particular case of "azimuthal anisotropy". Azimuthal anisotropy occurs whenever the velocity 
depends upon the azimuth of the ray-path, but not upon the angle relative to vertical.  Multiple vertical 
fracture sets are also azimuthally anisotropic, but may not necessarily be HTI.   
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Figure 1.2. Schematic depiction of an HTI medium.  The presence of vertical fractures 
causes different strengths of the rock parallel and perpendicular to the fractures. HTI can 
also arise due to differential stresses within the earth. 

 

A general introduction to HTI can be found in Thomsen (1988). As with his paper 

on transverse isotropy with a vertical axis (VTI) (Thomsen, 1986), largely based on the 

work of Daley and Hron (1977), Thomsen's primary purpose is to simplify existing 

theory and introduce convenient intuitive parameterization. Thomsen (1988) also 

elucidates the phenomenon of shear-wave splitting, or shear-wave birefringence, which is 

uniquely characteristic of azimuthally anisotropic media.  The paper includes an 

explanation of the Alford rotation method for determining the orientation of fractures in 

such media – an explanation which is more detailed than the account given in Alford's 

original SEG abstract (Alford, 1986).  Another useful reference on anisotropy in general, 

including transverse isotropy, is Winterstein (1990).  Winterstein's purpose is to 

standardize terminology within the exploration seismology community.  This thesis 

follows his terminology in most cases.1   More recently, a substantial effort has been 

made by Tsvankin and colleagues at the Colorado School of Mines to provide useful 

descriptions of both P-wave and converted-wave kinematic behaviour for different 

                                                 
1 Though for example the abbreviation "TIH" used by Winterstein, is discarded in favour of the currently 
more usual "HTI".  However, both terms are in common use.  
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anisotropic symmetries, including VTI (e.g. Tsvankin, 1996), HTI (e.g. Tsvankin, 

1997), and orthorhombic media (e.g. Grechka and Tsvankin, 1999). 

When expressed in a coordinate system such that the symmetry axis is parallel to 

the x-axis, an HTI medium has a stiffness matrix [equation (1-5)], which has the form 

 

⎟
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⎟
⎟
⎟
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⎞

⎜
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⎝

⎛
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332313

233313

131311

C
C

C
CCC
CCC
CCC

C , (1-14) 

with the constraint ( )23332
1

44 CCC −= , and spaces indicating zeros. 

The number of independent variables for an HTI medium can be seen from 

equation (1-14) to be 5, taking into account the constraint.  This assumes the symmetry 

axis is aligned with the x-axis.  In general, the direction of the symmetry axis is itself an 

independent variable. Hence a total of 6 quantities are needed to uniquely specify an HTI 

medium.   The stiffness tensor for an arbitrary set of coordinate axes can be calculated 

from the coordinate frame defined by the symmetry axis using equation (1-4).  The result 

can then be re-expressed as a 6x6 matrix form by using the Voigt mapping, as defined in 

equation (1-5).   

Alternatively the coordinate transformation can be written directly as a Bond 

transformation (Auld, 1973, pp.73-85; Winterstein, 1990) applied directly to the stiffness 

matrix, C, as  

 TMCNC =′ .  (1-15) 

(See above references for definitions of M and N).  

The effect of choosing such an arbitrary reference frame, in which the symmetry 

axis is not aligned with either of the coordinate axes, is that the stiffness matrix no longer 

has the simple form of equation (1-14).  Instead it has several other non-zero terms. 
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1.4 Recursive wavefield extrapolation 

Many modeling and migration algorithms are fundamentally based on the concept 

of extrapolation, in which the wavefield is marched along a specified axis in small steps, 

using some form of wave equation.  Broadly speaking there are two main types of 

algorithms – time extrapolation and depth extrapolation.   

Extrapolation in time is the favoured approach for forward modeling, and is the 

basis for finite difference modeling as well as techniques such as pseudospectral 

modeling (Carcione et al., 2002).  It also has been advocated as a method for migration, 

known as "reverse time migration", (Baysal et al., 1983).  Extrapolation in time is based 

upon use of the full two-way wave equation, and offers the advantage that multi-pathing 

is naturally included.  This can also become a disadvantage when the velocity model is 

not known with sufficient accuracy, since artifacts can arise from multiply scattered 

energy.  

The alternative, extrapolation in depth, is based instead upon the concept of a one-

way wave equation. Use of a one-way wave equation avoids some of the complexity 

associated with multiple scattering, is more robust to velocity errors, and is in general 

more computationally efficient than methods based on the full two-way wave equation.  

1.4.1 The one-way wave equation 

In two dimensions, the scalar Helmholtz equation is written 

 ( ) 0
,2

2

2

2

2

2

=+
∂
∂

+
∂
∂ ψωψψ

zxczx
. (1-16)  

In cases where the medium velocity, c, depends on depth alone, Fourier transform 

along the x coordinate, gives 

 ( ) 02
2

2

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

∂
∂ ϕωϕ

xk
zcz

, (1-17) 

where 
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 ( ) ( )∫
∞

∞−

= dxezxzk xik
x

x,, ψϕ  (1-18)  

is the Fourier transform of the wavefield ( )zx,ψ . If c is constant over the depth interval 

of interest, the one-way wave equation can be derived by a simple factorization of (1-17),  

 0=⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂ ϕzz ik

z
ik

z
, (1-19) 

where 

 2
2

2

xz k
c

k −=
ω . (1-20) 

The solution of (1-19) is a linear combination of solutions which obey one of the 

two one-way equations 

 0=⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂ ϕzik
z

, (1-21) 

and 

 0=⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂ ϕzik
z

. (1-22) 

 

The separability of equation (1-19) results directly from the z independence of the 

velocity c, and implies that solutions decouple into upward and downward terms.  

Solutions to (1-21) are up-going waves, whereas solutions to (1-22) are down-going.   

Using one-way wave equation solutions, when the medium varies with depth, 

corresponds to neglecting interaction (transmission and reflection) effects. 

In terms of the original wavefield, the one-way wave equations are formally written 

 ( ) 0, =⎟
⎠
⎞

⎜
⎝
⎛ Γ+

∂
∂ zxi
z

ψ , (1-23) 

and 
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 ( ) 0, =⎟
⎠
⎞

⎜
⎝
⎛ Γ−

∂
∂ zxi
z

ψ , (1-24) 

where 

 2

22

xc ∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛≡Γ

ω . (1-25) 

Assigning a meaning to the square-root operator, Γ, is possible in this case because 

of the x independence of the velocity c, so that  

 2

22
2

xc ∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛=Γ

ω . (1-26) 

Use of a square-root operator when c varies with x is not strictly correct. However 

this approximation has been successfully used in many seismic extrapolation algorithms. 

The one-way extrapolator which satisfies (1-16), and propagates the wavefield from 

depth 0z  to z, is given by 

 ( ) ( )[ ] ( )00 ,exp, zkzzikzk xzx ϕϕ −= ,   (1-27) 

as can be verified by direct substitution. 

By using equation (1-27) recursively the wavefield may be extrapolated to arbitrary 

depths from the depth at which it has been measured, usually taken as 0=z . 

1.4.2 Historical review 

In exploration geophysics, the idea of using recursive wavefield extrapolation, 

together with an imaging condition, as a tool for mapping reflectors to their correct 

positions, grew out of the early work of Claerbout and the Stanford Exploration Project 

group (Claerbout, 1971; Claerbout and Doherty, 1972).   Their methods used finite 

difference approximations, based upon the "15-degree" paraxial ray equation, which is 

identical to the Schrödinger equation of quantum mechanics, and later a "45-degree" 

equation.  Both of these are derived from the scalar Helmholtz equation (1-16) by 

truncated series expansions of increasing order. An important realization was the need to 

use depth as the vertical coordinate rather than time, when dealing with lateral velocity 

variations (Judson et al., 1980; Schultz and Sherwood, 1980).   
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The method of space-frequency domain extrapolation using convolutional filters 

derived from the wavenumber operator response has especially been championed by 

Berkhout and associates at Delft University (Berkhout, 1981; Wapenaar, 1989).  Spatial 

domain filters have the attractive property that they can be easily varied to accommodate 

velocity changes in the lateral directions.  The most widely used space-frequency filters 

are explicit, or finite impulse response (FIR), filters.  Their main disadvantage is that 

stability is not automatic.  The simplest approach is to design filters according to their 

exact wavenumber domain response, and then truncate them in the spatial domain. This 

always results in operators which amplify the wavefield excessively for simple velocity 

models (Holberg, 1988).  This issue has been (and remains) one of the most active areas 

of research for wavefield extrapolation (Hale, 1991).  The difficulty is that there is an 

inevitable trade-off between stability and accuracy for steep reflector dips. 

As an alternative to spatial domain convolution, Gazdag advocated direct 

application of the extrapolation operators in the frequency-wavenumber domain (Gazdag, 

1978).  This technique, commonly referred to as "phase-shift migration", has the 

immediate advantage of combining steep dip accuracy with guaranteed stability, but at 

the cost of inability to handle lateral velocity variations.  For this reason, it was soon 

followed by a modification in which the extrapolation is performed several times with 

different velocities, and the results interpolated.  This is the well-known phase-shift plus 

interpolation (PSPI) algorithm (Gazdag and Sguazerro, 1984).  Although not apparent at 

the time, these authors were gradually moving towards the idea of implementing 

extrapolation as a pseudodifferential operator. This relationship was eventually brought 

to light during the later work on non-stationary phase-shift migration by Margrave and 

Ferguson (1999), as discussed in the next section. 

Other ideas abound for either improving the performance of phase-shift 

extrapolation in the presence of velocity variations, or combining phase-shift with finite 

difference in hybrid approaches.  For example, there is a class of algorithms based upon a 

dual-domain approach.  In these, a phase-shift correction in the wavenumber domain is 

followed by an inverse Fourier transform to the spatial domain where a correction for the 

local velocity variation is applied.  The simplest is a 'static' shift based upon the 
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difference between the reference and actual velocity. This is known variously as split-

step or phase-screen migration (Stoffa et al., 1990).   A method which improves upon 

split-step in accuracy for similar cost is the Fourier finite difference method of Ristow 

and Ruhl (Ristow and Ruhl, 1994; Ruhl et al., 1995). In this method, the spatial domain 

operator is a finite-difference correction to the phase-shift.  There are also techniques, 

known as generalized phase-screen (Le Rousseau and de Hoop, 2001), which extend the 

phase-screen method by repeated alternation between wavenumber and space domains. 

It is worth commenting here that many of the methods described above, within the 

context of exploration geophysics, have been independently pre-discovered or re-

discovered in other disciplines, such as ocean acoustics and atmospheric physics.    Often 

different terminology obscures the connections. 

1.4.3 Pseudodifferential operator (ΨDO) forms of wavefield extrapolator 

The above discussion of the phase-shift migration method alerts us to a 

fundamental contradiction when using the wave-number domain for spatially varying 

operators.  The correct operator apparently has a simultaneous dependence upon both the 

spatial variable, x, and upon its Fourier dual variable xk .   The implication is that the 

operator can no longer be expressed as a pure Fourier transform, but rather by a 

pseudodifferential operator (ΨDO).  There is a rich mathematical body of ΨDO theory, a 

branch of partial differential equations theory.  An introduction to the subject is found in 

Saint Raymond's book (Saint Raymond, 1991).  A detailed description would include 

discussion of such matters as Sobolev spaces, wavefront sets and microlocal analysis - 

topics outside the scope of this thesis.  For our purposes, a ΨDO may be thought of as a 

generalization of the Fourier transform.  For example, the equation which describes 

generalized PSPI (GPSPI) for the scalar wave-equation is 

 ( ) ( ) ( ) x
xik

xx dkezkkxzx x−

∞

∞−
∫= ,0,,

2
1, ϕα
π

ψ  , (1-28) 

where  
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is the wavefield extrapolator, with spatially varying velocity ( )xc . 

The term α  is known as the “symbol” of the operator.  As can be seen from (1-29), 

the symbol is a mixed domain kernel in which the spatial and wavenumber dependence is 

treated on equal terms.  Equation (1-28) is still an approximation in the sense that it is 

based upon the square-root operator of equation (1-25), which is only correct for a 

homogeneous medium. 

The implementation of the square-root operator, using a ΨDO, is non-unique. For 

example, there is an adjoint form of equation (1-28), which is known as nonstationary 

phase shift (NSPS) (Margrave and Ferguson, 1999; Ferguson, 2000).  In ΨDO 

terminology, GPSPI is in anti-standard form, while NSPS is in standard form.  There is 

also an intermediate form, known as the Weyl operator. The standard, anti-standard and 

Weyl ΨDO implementations of phase-shift extrapolation have somewhat differing 

properties, and can give visibly different results for large depth steps, though their 

behaviour converges as the depth step shrinks (Ferguson and Margrave, 2002). 

In practice, efficiency demands that the full ΨDOs of GPSPI or NSPS are 

approximated using a set of spatially invariant reference operators and an interpolation 

scheme, such as Gazdag's PSPI, in order to allow use of the fast Fourier transform. 

Other authors have applied the mathematical tools of ΨDOs to the analysis of 

phase-screen type operators.  An interesting application is the generalized phase-screen 

approach of Le Rousseau and de Hoop (2001a; 2001b) mentioned in the previous section.  

They use ΨDO theory to evaluate the square-root operator in a heterogeneous medium. 

1.4.4 Alternatives to the square-root operator 

As noted in section 1.4.1, the square-root operator is only exact for media with no 

transverse (x-direction) variation.  Although the square-root approximation will be the 

basis for the elastic operators used in this thesis, it is worth noting that work has been 

done by several researchers to move beyond the square-root operator.  Fishman and 
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McCoy (1985) derive an exact extrapolator for what they refer to as "range 

independent" media with transverse variation.  Some care is needed when reading this 

paper from an exploration seismology background, as the direction of propagation (the 

range direction) they use is horizontal direction, while their transverse direction is 

vertical.  The theory is applicable to depth extrapolation in exploration seismology if the 

range is considered to be the vertical direction instead.   The exact operator is derived by 

considering the full Helmholtz operator  

 ( ) ( ) 2

22
2

xxc
x

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Ω

ω  , (1-30) 

as the composition of an unknown ΨDO, Ω, with itself, using the composition equation 

of pseudodifferential calculus (Saint Raymond, 1991, p.37). 

1.4.5 Elastic wavefield extrapolation migration 

The basic theory of elastic wavefield extrapolation is not new.  Wapenaar and 

Berkhout (1989) give a comprehensive exposition of this theory using both two-way and 

one-way wave equations, for the case of isotropic media. Zhe and Greenhalgh (1997) 

proposed a migration algorithm for elastic waves in isotropic media. Their extrapolation 

step consists of decomposing the displacement into potentials via the Helmholtz 

decomposition, extrapolating the potentials using a split-step technique (Stoffa et al., 

1990), and then recomposing to displacement.  Their method uses a finite-difference 

wavefield decomposition, which requires knowledge of the wavefield at a few adjacent 

depth intervals in order to compute the vertical derivative. The depth steps are initialized 

below the surface by applying a few steps of reverse time migration.  Etgen (1988) 

performed wavefield separation in the wavenumber domain using Fourier transformed 

divergence and curl operators, applied to the displacement data, before scalar migration 

of P- and SV- potentials with a Stolt (1978) algorithm.  Hou and Marfurt (2002) sidestep 

the decomposition problem by extrapolating each component of displacement using 

scalar extrapolators, and applying the separation step as part of the imaging condition.  

They found that doing this enabled a PS separation which is less sensitive to model 
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errors.  A possible disadvantage, particularly for anisotropic media, is the need to 

extrapolate each of 3 components using 3 different models.   

The Helmholtz decomposition for elastic waves is only valid for homogeneous 

isotropic media.  As shown by Dellinger and Etgen (1990), the Helmholtz decomposition 

can be generalized to anisotropic media by using the Kelvin-Christoffel equation.  

Though not originally suggested for application within a migration scheme, this idea, 

combined with Etgen's (1988) migration technique above (or other methods) offers a 

possible approach to anisotropic elastic migration. 

1.5 Thesis origins 

"I may not have gone where I intended to go, but I think I 
have ended up where I intended to be." 
-Douglas Adams 

 

The original idea for this thesis came from thinking about shear-wave splitting, and 

the limitations of the vertical propagation based theory.   This vertical propagation, 

normal-incidence assumption is basic to many of the techniques conventionally used to 

correct shear-wave spitting effects.  For example, Thomsen (1988, p.305) states 

"Assume that a conventional stack of a CMP gather forms a 
trace which is an accurate surrogate for a normal-incidence, 
multiple-free, noise reduced trace. Although this 
assumption is not one to be taken casually, the results of 
Alford (1986b) and Willis et al. (1986) suggest that it is 
acceptable in the present context." 

 

Similarly, in a paper describing the Linear Transform Technique (LTT) developed 

by the Edinburgh Anisotropy Project, Li (1997, p.47) states 

"Assuming orthogonally polarized and vertically 
propagating split shear waves, shear-wave splitting can be 
simulated by a two-component eigensystem, with the 
eigenvectors representing the polarizations, and the 
eigenvalues representing the amplitudes, of the two split 
shear waves." 
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Following Li (1998), an equation which describes the recorded response from a 

P-S mode conversion at depth, for 2-D geometry, after vertical propagation through a 

homogeneous HTI medium is 
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Here PSU  represents the effective shear wave source due to a mode conversion at 

depth, xU  and yU  are the recorded wavefields for inline (X) and crossline (Y) 

geophones respectively, φ is the azimuthal angles of the fracture strike, measured with 

respect to the (inline) x-axis, and ( )φR  is a 2-D rotation matrix through angle φ.  The 

diagonal matrix nested between the rotations describes propagation delays for the fast 

(S1) and slow (S2) modes by 1τ  and 2τ  respectively, and amplitude modulation by 1f  

and 2f  respectively.    

Since it is a modeling equation, the corresponding processing step is the inverse of 

equation (1-31) which determines PSU  from measurements of xU  and yU .   The inverse 

equation reads, 
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where the depth dependence has now been made explicit, amplitude effects have been 

omitted, and no assumption is made that the displacement of the wavefield at depth is 

aligned with the source-receiver azimuth.  

As indicated above, the implicit assumptions of equations of (1-31) and (1-32) are: 

1. Vertical propagation 

2. Orthogonal S1 and S2 

Notice also that in going from equation (1-31) to equation (1-32) PSU , a wavefield 

associated with the shear-wave mode arising from conversion, has been rather casually 

replaced by a displacement wavefield, xU  (and yU ).  This identification of shear-wave 
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modes with horizontal components of the displacement only strictly makes sense for 

waves propagating in the vertical direction.  It is a common approximation in converted-

wave processing, but is certainly incorrect in general. 

While these assumptions may be acceptable for low relief structure and small offset 

ranges, they are clearly inappropriate assumptions for data where depth migration is 

considered to be necessary.   So for example, to simply substitute migrated versions of 

xU  and yU  into the inverse of equation (1-31), would not be a valid approach to 

correcting for shear wave splitting in structurally complex areas.  Let us consider, in 

general terms, how equation (1-32) might be modified to accommodate depth migration.   

The obvious modification is to replace the simple shift operators ( )2,1exp ωτi  with 

wavefield extrapolation operators of the form ( )zik z ∆2,1exp  in a recursive scheme.   This 

would incorporate angle dependence into the shift operations, and allow for the inclusion 

of angle dependent velocities for both shear modes.  A (slightly) more subtle 

modification, which is necessary, is to replace the rotation matrices R with angle 

dependent rotation matrices, to move beyond both the vertical incidence and 

orthogonality assumptions.  Thus, one might expect a modified form of equation (1-32), 

suitable for use within a recursive wavefield extrapolation type depth migration scheme 

to look something like, 
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where the rotation matrices and the phase shift operators now depend on the horizontal 

slowness s (‘s’ is used to denote slowness, in preference to the more usual ‘p’, to avoid 

possible confusion with polarization).  In the case of the phase shift operators, the vertical 

wavenumbers 1q  and 2q are determined from the horizontal slowness s, using appropriate 

phase velocities for the S1 and S2 modes respectively. 

Equation (1-33) has been obtained heuristically, and cannot be taken as proven.  

The intention, rather, is to illustrate the natural progression from vertical incidence based 

processing of birefringent shear-waves towards incorporation in more advanced imaging 

scheme.  In Chapter 2 an extrapolation equation is obtained from propagator matrix 
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theory, which has the essential qualities of equation (1-33), but is more general, as it 

includes P-wave mode propagation and uses the full displacement-stress formulation 

needed to represent up-going and down-going solutions. 

The differences between the "conventional" approach to multicomponent 

processing for birefringence and the proposed approach are illustrated in Figure 1.3.  In 

the conventional approach, (a), the rotation to S1 and S2 is performed first, followed by 

migration.  The P-wave migration (not shown), is performed separately.  For elastic wave 

equation migration, the rotation to S1 and S2 is integral to the migration, and all modes 

are migrated together. 

 

(a)  

Rotation to S1 S2 
(normal incidence assumption)

P-S1

Scalar 
Migration

P-S2

Scalar 
Migration

X Y

Rotation to S1 S2 
(normal incidence assumption)
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Scalar 
Migration

P-S2

Scalar 
Migration

P-S1

Scalar 
Migration

P-S1

Scalar 
Migration

P-S2

Scalar 
Migration
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Migration
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  (b)  

Vector Migration using 
elastic wavefield extrapolators
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Mig.
P-S2

Mig.
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X Y Z

Vector Migration using 
elastic wavefield extrapolators

Mig.
P-S1

Mig.
P-S2

Mig.
P-P
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P-S1

Mig.
P-S2

Mig.
P-P

X Y ZX Y Z

 

Figure 1.3. Schematic view of current practice for shear-wave splitting (a), in which 
rotations to S1 and S2 are performed first, followed by migration, compared with 
proposed approach, (b) in which the rotation is integral to the migration. 

1.6 Thesis objective and program 

The primary objective of this thesis is to formalize the ideas outlined in section 1.5 

– to embed the shear-wave splitting correction within an elastic wave-equation migration 

algorithm.  A secondary objective is to explore methods of modifying the migration 

extrapolators, in order handle the lateral variation of parameters for both isotropic and 

HTI media. 

In Chapter 2, the basic elastic anisotropic extrapolation equations are obtained, by 

derivation from the Kelvin-Christoffel equation, following the theory of anisotropic 
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propagator matrices.  The treatment is based upon layered media which are laterally 

homogeneous. 

In Chapter 3, the extension to laterally heterogeneous media is addressed.  The 

methods used are elastic versions of GPSPI and NSPS operators.  Some issues of stability 

are discussed.  

In Chapter 4, two alternative approaches to handling heterogeneity are introduced. 

The first known as phase-shift plus adaptive windowing (PSPAW), is applicable to the 

HTI case.  The second, an elastic version of the standard PSPI algorithm, is specifically 

designed for isotropic media. 

In Chapter 5, a prestack shot-record migration, based on these extrapolators, is 

introduced.  The imaging condition is also discussed.  The operator is illustrated with 

some representative impulse responses, and reciprocity relations are discussed.  The 

migration is demonstrated on two synthetic models, the first isotropic, and a second 

similar to this but containing a faulted HTI layer. 

In Chapter 6, the migration is applied to a new elastic version of the well-known 

Marmousi model, called Marmousi-2 (Martin et al., 2002).  Though isotropic, this model 

is structurally complex.  It is a major test of the capabilities of the elastic migration, and 

pinpoints some issues for future investigation. 
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CHAPTER TWO: ELASTIC WAVEFIELD EXTRAPOLATION IN HTI 

MEDIA 

"Shear wave splitting (seismic birefringence) is the most 
diagnostic, informative and easily observable evidence of 
azimuthal seismic anisotropy."  
- Crampin and Chastin (2003) 

2.1 Introduction 

In this chapter, extrapolation in a layered HTI medium is considered.  The 

derivation of the extrapolators is based on one-way plane wave solutions to the Kelvin-

Christoffel equation (Musgrave, 1970).  This is then extended to a layered medium based 

on continuity considerations.  The extrapolation is equivalent to the theory of propagator 

matrices described by Thomson (1950) and Haskell (1953), and introduced to seismology 

by Gilbert and Backus (1966).  Propagator matrices are most commonly discussed within 

the context of the reflectivity method of forward modeling.  For a full treatment of the 

reflectivity method, including the theory of propagator matrices, the reader is referred to 

the relevant literature (e.g. Woodhouse, 1974; Kennett, 1983).  For a detailed analysis of 

the anisotropic case, two related papers by Fryer and Frazer (1984, 1987) are 

recommended.  A similar analysis for the elastostatic (time-invariant) case was derived 

by Stroh (1962), and is well-known in the material science and mathematical mechanics 

literature (e.g. Ting, 1996; Shuvalov, 2001).   

The operator which extrapolates the three elastic modes can be described by a 

combination of a diagonal matrix containing phase shifts for each mode, and an 

“interface-propagator” matrix which includes terms describing mode conversions.  The 

terms of the interface-propagator can be used selectively, for example, to omit conversion 

between P and S, but include conversion between S1 and S2 modes arising from a change 

in the principal axes orientation.  A similar selective approach was applied to forward 

modeling by Silawongsawat (1998).   

Examples are provided to illustrate the operators for both isotropic and HTI media.  

The extension to laterally varying media, via PSPI and NSPS type algorithms, is 

discussed in Chapters 3 and 4. 
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2.1.1 One-way wave equation: scalar (acoustic) case 

Consider the Fourier transformed scalar Helmholtz equation (1-17).  An important 

feature of equation (1-17) is the isolation of the main propagation direction, taken here to 

be the vertical direction, z.  Doing so enables analysis in terms of one-way solutions 

which are either upward or downward propagating. By selecting only the down-going 

solution, the wavefield may be extrapolated in a way which neglects unwanted backward 

scattering.  The one-way extrapolator which satisfies (1-17) is 

 ( ) ( )[ ] ( )ωφωωφ ,,,~exp,,,~
00 zsszzsizss yxzyx −= ,   (2-1) 

where ( )2221 yxz sscs +−=  is the vertical slowness.  That (2-1) is a solution to (1-17) 

can be verified by direct substitution. 

2.2 Elastic (vector) extrapolation 

Now let us turn our attention to elastic, vector wavefields. 

2.2.1 Eigensolutions to elastic-wave equation 

The propagation of plane waves in an elastic medium is governed by the Kelvin-

Christoffel equation [equations (1-12) and (1-13)].  Because it is a vector equation, 

solutions are sought via eigenvalue-eigenvector analysis. 

2.2.1.1 Eigenvalues 

For a solution it is required that the determinant vanish giving the so-called 

characteristic equation 

 ( )( ) 0,det =− IsΓ ρzr s  (2-2) 

In general, the sixth-degree equation implied by equation (2-2) has no analytic 

solution, and must be solved numerically.  Fortunately, for anisotropy of sufficient 

symmetry, equation (2-2) is cubic in 2
zs , and may be analytically solved (Fryer and 

Frazer, 1987).   Appendix A gives a proof of the necessary and sufficient conditions on 

the structure of the stiffness matrix C, for a cubic solution for 2
zs  to exist. 

Analytic solutions for the slownesses under different anisotropic symmetries are 

given in Musgrave's book (Musgrave, 1970). An analysis of the slowness solutions to 
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(2-2) for HTI symmetry, and their associated branch points (which define the transition 

from propagating to evanescent behaviour), is provided in Appendix B. 

In the HTI case, as in the VTI case, the cubic for 2
zs  factors into a quadratic and a 

linear term, making its solution quite straightforward. The solutions form pairs zs± , 

which correspond to up- and down-going waves.  The three pairs of vertical slownesses 

correspond to different wave-modes )(P
zs , )1(S

zs and )2(S
zs , and have corresponding 

polarization vectors )1()( , SP dd  and )2(Sd .  For HTI the polarizations of up- and down-

going waves are simply related by changing the sign of the Z component and leaving the 

horizontal components unchanged.  For a generic mode, these are indicated by )(M
zs  and 

)(Md , where { }2,1, SSPM ∈ , dropping the preceding qualifier, “q”, (see section 1.2.2, 

and footnote on page 6) for brevity. 

The phase velocity, Mv , is given by ( )( )221 M
zrrM sv +⋅= ss .  In general Mv  is a 

function of the slowness (phase) direction.  For the isotropic case, Mv  is constant and we 

can solve for vertical slowness easily via ( ) 22
rM

M
z svs −±= − .  

For 22 /1 Mr vs ≤  solutions are real, but for 22 /1 Mr vs >  they are imaginary, 

corresponding to evanescent waves.  This gives rise to three distinct regions: (I) 

SPr vvs /1/1 <<  leading to real zs  for all modes; (II) SrP vsv /1/1 <<  leading to real 

( )SHSV
zs ,  but imaginary )(P

zs ; and (III) rSP svv << /1/1  for which all zs  are imaginary.  

Likewise, for anisotropy, complex values for zs  can arise when the Kelvin-

Christoffel equation is solved.  There are four such regions, since the two S-wave 

velocities differ, creating an additional region between 11 Sv  and 21 Sv .  Figure 2.1 

shows the variation of vertical slowness for each mode as a function of horizontal 

slowness for (a) isotropic, and (b) HTI cases, with parameters given in Table 2.1.  These 

model parameters are scaled from the model in Table 3 of Lou and Rial (1995), which 

was derived using Hudson's theory (Hudson, 1981).  This medium has a shear wave 

anisotropy [i.e. Thomsen's γ (1988)] of approximately 11.5%.  The HTI slowness curves 

shown are for propagation in the plane which contains the axis of symmetry.  For 
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propagation in this plane, the behaviour is equivalent to a VTI medium, and the two 

shear modes decouple. The S1 mode, defined as the fastest mode for vertical propagation, 

has behaviour equivalent to an SH-wave, and the S2 mode behaves as SV.  As for VTI, 

the SV wave results from the second solution to the term that is quadratic in 2
zs  from the 

Kelvin-Christoffel equation (the first solution is the P-wave). The SH-wave arises from 

solution of the linear term in 2
zs . 

 
kl 

ij 11 22 33 23 13 12 

11 23.6e9 6.99e9 6.99e9 0 0 0 
22 6.99e9 24.86e9   9.1e9 0 0 0 
33 6.99e9 9.1e9 24.86e9 0 0 0 
23 0 0 0 7.88e9 0 0 
13 0 0 0 0 6.09e9  
12 0 0 0 0 0 6.09e9 

Table 2.1: cijkl for HTI model with symmetry axis aligned with x direction, all values in 

Pa. 

2.2.1.2 Eigenvectors 

Determination of the polarization vectors is less straightforward.  A solution to 

equation (1-13) is of the form (Shuvalov, 2001) 

 ( )( )wIsΓd ρ−= adj , (2-3) 

where w is an arbitrary vector, I is the identity matrix (i.e. the matrix form of Krönecker 

delta), and )adj(A  means the adjugate or cofactor matrix of A (Strang, 1988, p.232), 

obtained by replacing each element of A by its signed cofactor, and transposing, as 

follows: 

 ,)adj(
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27

27

The adjugate matrix should not be confused with the adjoint matrix.  The 

definition of adjugate in (2-4) is constructed so that ( ) ( )IAAA detadj = , and, when the 

determinant is non-zero, the inverse of A exists and is given by ( ) ( )AAA detadj1 =− .1   

That equation (2-3) solves equation (1-13) follows directly from the fact that 

( )( ) 0det =− IsΓ ρ .  However, simple substitution of the three eigenvalues, )(P
zs , )1(S

zs  and 
)2(S

zs , into equation (2-3) does not necessarily lead to distinct eigenvectors, unless w is 

also changed, due to the presence of degenerate solutions and/or null rows in the adjugate 

matrix.  Fryer and Frazer (1987) provide a solution, which corresponds to choosing 

( )T100=w  for P-waves, and then trying ( )T010=w  and ( )T001=w  for 

each S-wave mode in turn. They do not consider more general choices for w, though they 

would also provide solutions of equation (2-3).   

An example of degeneracy is the isotropic case within the x-z plane (i.e. setting 

0=ys ).  The normalized polarization vectors are well-known from physical and 

geometrical principles to be  
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)(d . (2-5)  

As shown in Appendix C, the first of these can be obtained (within a scale factor) 

by using the P-wave eigenvalue and setting ( )T001=w .  However, Appendix C also 

shows that substituting the S-wave eigenvalue into ( )( )IsΓ ρ−adj  always gives the second 

                                                 
1 It is useful to think of the adjugate as a “determinant-free” inverse – unlike the true inverse, the adjugate 
is well defined even for singular matrices. 
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(a)  

(b)  

Figure 2.1. Vertical slowness against horizontal slowness for: (a) an isotropic medium, 
with vP=3000m/s, vS=1500m/s. and; (b) an HTI medium, along plane containing 
symmetry axis.  Plots show real (solid) and imaginary (dashed) values for P-waves 
(blue), SV-waves (red) and SH-waves (green).  In the isotropic case, the SV and SH 
curves are coincident. 
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eigenvector, irrespective of w.  To obtain the SV-wave eigenvector, the SH-wave 

solution must first be factored out of ( )( )IsΓ ρ−adj . 

In equation (2-5), the vectors have complex-valued elements for some 

wavenumbers, and can be written in the form, IR iddd += , known as bivectors 

(Shuvalov, 2001).  Using the same classification as for the vertical slownesses the 

following behaviour is observed, for the isotropic case:  in region (I) all elements of the 

polarizations are real; in region (II) all elements are real except )(
3

Pd , which is imaginary; 

in region (III) all elements are real, except for )(
3

Pd  and )(
1

SVd .  

Figure 2.2 shows the real and imaginary components of )(Pd  and )(SVd  for an 

isotropic medium, as a function of horizontal slowness, xs .  The second elements are 

omitted, as they are zero.  Of particular interest are the complex elements that arise in the 

zone between P- and S-wave evanescent cut-offs.  In equation (2-5) and Figure 2.2, a 

polarity convention is used such that the SV horizontal polarization points in the positive 

x-direction. The P-wave amplitudes are symmetric about the vertical, while SV-wave 

amplitudes are antisymmetric.  This convention gives rise to polarizations which vary 

continuously with propagation direction for 2-D geometries.  Unfortunately, an extension 

3-D always involves a discontinuity.1 

Figure 2.3, Figure 2.4 and Figure 2.5 show both slowness and polarization 

simultaneously for the propagating solutions to equation (1-13).  For each of these 

figures, the complete plot is shown in (a), and a zoom on detail for propagation angles 

near 90° from vertical is shown in (b).   The coloured curves represent the vertical 

slowness as a function of horizontal slowness, while the black arrows represent the 

polarization direction at 5° intervals, for each of the modes. Figure 2.3 shows the solution 

for the HTI medium of Table 2.1, with the axis of symmetry aligned parallel to the x-axis.   

Figure 2.4 and Figure 2.5 show the corresponding solutions for axes of symmetry rotated 

by 45° and 90° from the x-axis respectively.  Figure 2.6 compares the polarization within 

                                                 
1 The reason for this is a mathematical result known as Brouwer's fixed point theorem, which shows the 
impossibility of defining a smoothly varying vector field everywhere on a surface topologically equivalent 
to a sphere.  A mundane example is the hair on your head, which has a singularity where all hairs diverge 
(though since it is only partially covered, this example is not quite perfect). 
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the horizontal plane for the 0° and 45° degree cases shown in Figure 2.3 and Figure 2.4 

respectively. 

Two observations from Figure 2.3 to Figure 2.6 are particularly relevant to the 

subject of wavefield extrapolation through HTI media.  First, the variation of the phase 

velocity with angle for the shear waves is significant, depends upon the direction of the 

symmetry axis relative to the propagation plane, and is quite different for the two shear 

modes.  Second, the polarization directions are determined by a combination of the 

symmetry direction and the angle of propagation.  In particular for the 45° axis of 

symmetry the horizontal components of polarization do not remain invariant with phase 

angle.  In fact it is only along the symmetry plane and the isotropy plane that the 

horizontal polarization remains constant.  The implication is that the assumptions of 

standard shear-wave splitting processing methods, embodied in equations (1-31) and (1-

32) will be increasingly in error as the angle of wave propagation increases. 

2.2.2 Two-way equation 

Following the formalism of Shuvalov (2001), (see also Ting, 1996), the Fourier 

transform of (1-11) with respect to x, y and t, gives   

 ( ) 022
3,33, =+−+− ikikkkiikkik uuQuRRiuT ρωωω , (2-6) 

where ( )ω,, zu ri s  is the Fourier transform of ( )( )tzyxui ,,, , and the 3-by-3 matrices, Q, 

R and T, are given by  

 
( )

33

232131

2
222211221

2
111

kiik

kikiik

kikikikiik

cT
scscR

scssccscQ

≡
+≡

+++≡
. (2-7) 

In matrix notation, equation (2-6) is written 

 ( ) ( ) 02
2

2

=−−+− uIQuRRuT ρωω
dz
di

dz
d T . (2-8) 

Equation (2-8) is a second-order differential vector equation which is analogous to 

the second-order differential scalar equation (1-17).  As in the scalar case, the vertical 

direction is isolated from the other two spatial directions by the Fourier transform. 
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(a)  

(b)  

Figure 2.2. (a) P-wave polarization as a function of horizontal slowness, for an up-going 
wave in an isotropic medium with vP=3000m/s, vS=1500m/s.  The X (left) and Z (right) 
components are shown.  Real parts are blue solid, imaginary parts are red dashed.  The 
vertical lines show the evanescent cut-off boundaries for P-waves (solid lines) and for S-
waves (dashed lines). (b) SV-wave polarization for the same medium, X-(left) and Z-
(right) components. 
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(a)  

 

(b)  

Figure 2.3. Combined slowness and polarization plot for propagating (non-evanescent) 
slownesses in HTI media, given by Table 2.1 with axis of symmetry parallel to x-axis. 
Blue dashed line shows P-wave slowness, green solid line shows S1 (SH) -wave 
slowness, and red dotted line shows S2 (SV)-wave slowness.  Detail of two shear modes 
in (b) shows deviation of polarization for S2 mode from tangent to slowness curve. 
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(a)  

 

(b)  

Figure 2.4. Combined slowness and polarization plot for HTI media of Table 2.1 with 
axis of symmetry rotated 45° clockwise from x-axis. Blue dashed line shows P-wave 
slowness, green solid line shows S1 (SH) -wave slowness, and red dotted line shows S2 
(SV)-wave slowness.  Note the gradual change of the S-wave polarizations as 
propagation angle increases to 90°. 
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(a)  

 

(b)  

Figure 2.5. Combined slowness and polarization plot for HTI media of Table 2.1 with 
axis of symmetry rotated 90° clockwise from x-axis. Blue dashed line shows P-wave 
slowness, green solid line shows S1 (SH) -wave slowness, and red dotted line shows S2 
(SV)-wave slowness.  This is propagation in the isotropy plane for which velocity of each 
mode is constant with propagation direction, and polarizations are the same as for 
isotropic modes. 
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(a)  

(b)  

Figure 2.6. Projection of polarizations onto horizontal plane for axis of symmetry at 0° 
(a), and 45° (b) to propagation plane, corresponding to Figure 2.3 and Figure 2.4, 
respectively.  For propagation in the plane of the symmetry axis, the projections of 
polarization onto the horizontal plane do not vary with horizontal slowness.  This is also 
true for propagation in the isotropy plane (see Figure 2.5). However, for propagation in 
planes with other orientations such as shown in (b), the projections onto the horizontal 
plane can vary considerably. 

 

It is reassuring to verify that equation (2-8) is transformed into the Kelvin-

Christoffel equation (1-13), by applying a further Fourier transform over z and dividing 

through by 2ω to get 

 ( )[ ] ( ) 0,,, =− ωρ zrzr ss suIsΓ . (2-9) 

where ( ) ( ) QRRTsΓ +++= z
T

z ss2  is the Christoffel matrix as given in equation (1-13). 

2.2.3 Derivation of one-way extrapolator 

A one-way equation for elastic waves in a layered anisotropic medium is now 

derived. The development closely follows the approach and notation of Fryer and Frazer 

(1984; 1987), an extension of Kennett’s (1983) theory.   
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As an alternative to the second order differential equation in (2-8), the 

momentum and constitutive equations in (1-1) and (1-2) can be combined into a first-

order differential equation in z 

 Abb ωi
dz
d

= , (2-10) 

where b is a vector containing displacement and the vertical components of traction – 

properties which are continuous across a horizontal plane – given by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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i 332313
1 σσσ
ω

−=τ , (2-11) 
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⎝

⎛
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−−

−−

11

11

RTIQRRT
TRT

A
ρT

T

. (2-12) 

In seismology, A is referred to as the system matrix (Kennett, 1983; Fryer and 

Frazer, 1984).  In the mechanics literature, A is sometimes referred to as the fundamental 

elasticity matrix (Ting, 1996).  Equation (2-10) is an eigenproblem involving a 6-by-6 

system, so that there are in general six eigenvalues and eigenvectors.  These have a one-

to-one relationship with the three pairs of eigenvalues and corresponding paired 

eigenvectors which arise from the Kelvin-Christoffel equation (1-13).  Introducing the 

notational convenience for vertical slowness, 3ssq z ≡≡ , the eigendecomposition of A is 

 ( )D
S

D
S

D
P

U
S

U
S

U
P qqqqqqdiag 2121

1 ==− ΛADD , (2-13) 

where the subscripts P, S1 and S2 refer to the three modes, and the superscripts U and D 

distinguish between up- and down-going solutions respectively.  D is a matrix containing 

the six eigenvectors of A as its columns. 

Assuming a vertically homogeneous layer, such that D is independent of z, equation 

(2-13)  can be combined with equation (2-10) to give 

 Λvv ωi
dz
d

= , (2-14) 

where 
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  Dvb =    and   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

D

U

v
v

v , (2-15) 

where 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
U
S

U
S

U
P

U

v
v
v

2

1v  and 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
D
S

D
S

D
P

D

v
v
v

2

1v . 

The three elements of Uv  are the amplitudes of up-going P, S1 and S2 waves, 

while the elements of Dv  are the down-going amplitudes.  D is a composition operator 

which constructs the displacement-stress from the wave-mode amplitudes, whereas 1−D , 

is a decomposition operator, such that 

 bDv 1−= , (2-16) 

provided D is not singular, which is the case for propagating waves.  For values of 

slowness where D becomes singular, corresponding to the boundaries between 

propagating and evanescent wavenumbers, the use of complex velocities with small 

imaginary parts will avoid the singular behavior. 

Equation (2-14) has the solution 

 ( ) ( ) ( )0
0 zez zzi vv Λ −= ω . (2-17) 

 

Equation (2-17) describes two-way extrapolation in a homogeneous medium. Since 

the extrapolator for this case is diagonal, solutions can be split into up- and down-going 

one-way solutions 

 ( ) ( ) ( )0
0 zez U

zzi
U

U vv Λ −= ω , (2-18) 

and 

 ( ) ( ) ( )0
0 zez D

zzi
D

D vv Λ −= ω , (2-19) 

where 
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 ( )U
S

U
S

U
PU qqqdiag 21=Λ   and  ( )D

S
D
S

D
PD qqqdiag 21=Λ . (2-20) 

Equations (2-18)-(2-20) describe the extrapolation of the up and down going 

decomposed wavefields which can be used for backward extrapolating the (up-going) 

receiver wavefield and forward extrapolating the (down-going) source wavefield within 

each depth step. 

Recall that the columns of D are the six eigenvectors, which will be denoted 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

i
ii τ

u
b εˆ  ,    6,,1…=i , (2-21) 

where the normalization factors iε  are to be determined.  The notation ib̂  is used to 

indicate a unit length eigenvector as opposed to a general displacement-stress vector b. 

Then, with the rows of 1−D  denoted by T
iĝ  , the following orthogonality relationship 

obviously holds: 

 iji
T
j δ=bg ˆˆ . (2-22) 

Various authors (e.g. Fryer and Frazer, 1984) have shown the simple but very 

useful relationship 

 ii bJg ˆˆ = ,  for ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

33

33

0I
I0

J , (2-23) 

where 3I  and 30  are the 3-by-3 identity and zero matrices.  Consequently, the inverse of 

D is given by 

 ( )TJDD =−1 . (2-24) 

Both D and 1−D  are thus easily computed, given the eigenvectors ib̂ .  The top half 

of each ib̂  is iu , an eigenvector of the Kelvin-Christoffel equation, (1-13).  To obtain the 

stress vectors which make up the bottom half of each ib , equations (1-2), (2-7) and 

(2-11) are used, giving 
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 izi s uTRτ )( +−= . (2-25) 

The six eigenvectors correspond to up and down-going P, S1 and S2 waves.  Using 

the same notational convention as in equation (2-13), we have 

 
( )

( )D
S

D
S

D
P

U
S

U
S

U
P

DU

2121
ˆˆˆˆˆˆ bbbbbb

DDD

=

=
, (2-26) 

where 

 
( )

{ }.2,1,

,ˆ
,,

,
,

,

,
,,

SSPM

q DU
M

DU
M

DU
MDU

MDU
M

DU
MDU

M
DU

M

∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

uTR
u

τ
u

b εε

. (2-27) 

Finally, the eigenvector normalization factor is given (Fryer and Frazer, 1984) by 

 
DU

M
DU

M

DU
M ,,

,

2
1
τu ⋅

=ε . (2-28) 

Combining equations (2-15)-(2-19) and (2-26) gives the one-way extrapolation 

equations in terms of the displacement-stress vectors for a homogeneous medium 

 ( ) ( ) ( )0
0 zez U

L
U

zzi
UU

U bDDb Λ −−= ω , (2-29) 

and 

 ( ) ( ) ( )0
0 zez D

L
D

zzi
DD

D bDDb Λ −−= ω , (2-30) 

where L
U
−D  and L

D
−D  are the left inverses (e.g. Strang, 1988, p.90) of UD  and DD , 

containing the upper and lower three rows of 1−D , respectively. 

In Appendix D the displacement-stress eigenvectors are calculated for the special 

case of an isotropic medium.  

The square-root in equation (2-28) has an argument which is zero at the evanescent 

cut-off points, giving rise to a singularity which must be avoided.  The singularity can be 

avoided by the introduction of complex P- and S- velocities, with small relative 

imaginary parts, before computing the eigenvectors. Physically, this corresponds to 
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introducing a small viscous effect and thus departing from perfect elasticity.  The 

addition of imaginary velocity is a step which is also valuable for reducing wrap around 

of the phase-shift operator.  The relative magnitude of the imaginary parts required to 

manage the singularities is larger than required for wrap-around control, and is found 

empirically.  However, even with this precaution, the square-root still can cause 

complications since it introduces a branch cut.  The steps needed to properly address this 

issue are discussed in Appendix E. 

2.2.4 Vertical heterogeneity 

It is usual in wavefield extrapolation to approximate vertical heterogeneity by a 

stack of homogeneous layers, each of thickness z∆ , with discontinuous medium 

properties at interfaces between layers (Figure 2.7).  This is a good approximation to a 

continuously variable medium provided the step size is not too large.   

Conventionally the dynamic (i.e. amplitude) changes due to variation in the 

medium are often ignored in this process.  But how does the extrapolator then incorporate 

changes in the polarization which carry information on shear-wave splitting? 

The displacement-stress vector b is continuous across an interface.  The wave-mode 

vector v, is not.  The most obvious approach to extrapolation is to decompose b at the top 

interface of each layer to get v, extrapolate v within the layer using equation (2-17) [or 

(2-18) and (2-19) for one-way extrapolation], and then recompose b at the lower interface 

where the continuity of b is invoked to provide a boundary condition for the next depth 

step.  The complete extrapolation is described by recursive application of equations 

(2-29) (for up-going waves), or (2-30) (for down-going waves), as illustrated in Figure 

2.7.  This approach is revisited in Chapter 3, where lateral heterogeneity is contemplated. 
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Figure 2.7. Extrapolation in a vertically heterogeneous medium.  The medium is 
approximated by a series of homogeneous layers or "thin slabs".  For each layer, the 
displacement-stress wavefield b is decomposed into eigenmodes, which are extrapolated.  
The resulting wavefield is recomposed to displacement-stress, and continuity is invoked 
to provide a boundary condition for the next depth step. 

 

2.2.4.1 Interface propagators 

A more economical approach is possible for a medium which varies only with 

depth, as considered here.  This approach is based on computing the interface-propagator 

which extrapolates v infinitesimally across each horizontal interface.  In this thesis, an 

interface-propagator is a special case of the wavefield propagators used by Kennett 

(1983), in which the propagation distance is infinitesimal, but across a discontinuity.  

Based on continuity of b it is readily shown (e.g. Kennett, 1983) that the required 

interface-propagator to cross an interface at nz , from −nz   just above the interface to 

+nz  just below the interface (Figure 2.8)., is simply given by 

 ( ) 1
1, −

−=−+ nnnn zz DDW , (2-31) 

so that 
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 ( ) ( )−−+=+ nnnn zzzz vWv ),( , (2-32) 

where 1−nD  is the composition matrix in layer n-1 above the interface, and nD  is the 

composition matrix in layer n, below the interface. 

Hence, all that is required to generate the interface-propagator are the matrices D 

and 1−D , for each layer. 

Using equations (2-24) and (2-26), the interface-propagator of equation (2-31) is 

given by 

 

( ) ( )
( )

( ) ( )
( ) ( )⎟⎟⎠

⎞
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, (2-33) 

where 

 

( )

{ }.,,

,
ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ
,

)1(,2,2)1(,1,2)1(,,2

)1(,2,1)1(,1,1)1(,,1

)1(,2,)1(,1,)1(,,

DULK

zz
L

nS
K

nS
L

nS
K

nS
L

nP
K

nS

L
nS

K
nS

L
nS

K
nS

L
nP

K
nS

L
nS

K
nP

L
nS

K
nP

L
nP

K
nP

nnKL

∈

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

=−+

−−−

−−−

−−−

bgbgbg
bgbgbg
bgbgbg

W

 (2-34) 

Note that if there is no contrast in properties across the interface, both layers have 

the same eigenvectors, and the orthogonality property (2-22) comes into play, so that W 

is the identity matrix. 

 

nz
1−nz

−nz

+nz
nz

1−nz
−nz

+nz
 

Figure 2.8. Layered medium, consisting of homogenous layers with discontinuities at 
interfaces.  Interface-propagator ),( −+ nn zzW  translates wavefield from above interface 
at nz  to just below. 
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Equation (2-34) describes four 3-by-3 matrices corresponding to the 

combinations of up and down-going waves in layers (n-1) and n.  For the purposes of 

one-way extrapolation, we will be interested in DDW  for the source side and UUW  for the 

receiver side, consistent with the assumption that backscattered energy can be ignored. 

To clarify this last statement, consider the wave-mode vector v either side of the 

interface:  

 ( ) ( ) ( )−−+=+ nnnn zzzz vWv , . (2-35) 

Now assume that there is no up-going wave so that, at both −nz  and +nz  we have 

  ( ) ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
=

z
z

Dv
0

v . (2-36) 

where 0 is the 3-vector of zero values.  Substitution into (25) then gives 

 ( ) ( ) ( )−−+=+ nDnnDDnD zzzz vWv , . (2-37) 

Now, defining ( )D
S

D
S

D
PD qqqdiag 21=Λ , and using equation (2-17), the complete 

extrapolation from the bottom of layer (n-1) to the bottom of layer n, can be written 

 ( ) ( ) ( ) ( )+−+=+ −
− −

1
1, nD

zzi
nnDDnD zezzz nnD vWv Λω . (2-38) 

The one-way decomposition and composition relationships are given by 

 bDv L
DD
−= , (2-39) 

and 

 DDD vDb = , (2-40) 

where ( )D
S

D
S

D
PD 21

ˆˆˆ bbbD =  is the 6-by-3 matrix which generates the displacement-stress 

vector associated with only down-going P, S1 and S2 waves, and  ( )TD
S

D
S

D
P

L
D 21 ˆˆˆ gggD =−  

is the 3-by-6 matrix which takes a displacement-stress vector and extracts the down-

going wave-modes.  Substitution of (2-39) into (2-40) shows that the matrix L
DD
−DD  is a 

projection of b onto its down-going part, Db . 
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The combination of equation (2-39) applied at an initial depth, recursive 

application of equation (2-38), and the use of equation (2-40) at a final depth, describes 

forward extrapolation of the down-going elastic wavefield.  Similar equations involving 

( )+− nnUU zz ,W  describe backward extrapolation of the up-going wavefield.   

For use within a prestack migration algorithm, forward extrapolation using DDW  

and backward extrapolation using UUW  will be required. It is therefore convenient, and 

potentially more efficient, to find a way of computing one from the other.  A relationship 

between these matrices is derived in Appendix F, and shown to be simply 

 ).,(),( −+=−+ nnDDnnUU zzzz WW  (2-41) 

2.2.5 Comparison with Alford rotation 

Alford (1986) is generally credited with a method of rotating shear-wave data to 

their natural coordinate system, based upon normal incidence considerations.  In fact 

Alford's paper acknowledges that the theoretical basis was developed by Crampin (1981), 

which Alford's paper "ruthlessly simplifies" (Alford, 1986).  In fairness, Alford's 

intention was to: (a) provide a criterion by which the optimal rotation angle could be 

estimated, and; (b) demonstrate the benefit of doing so on a field data example.  Both of 

these objectives were realized.  Since Alford rotation is something of an industry 

standard, it is worth examining the relationship to the interface propagators which are 

implicit in the extrapolation algorithm of this thesis. 

2.2.5.1 Alford rotation 

Equation  (8) of Alford (1986) reads 

 ( ) ( ) ( )θθθ URRV T= , (2-42) 

where R is a 2x2 rotation matrix through an angle θ , taken to be the rotation angle 

between the acquisition inline direction and the "natural coordinates" determined by fast 

(S1) and slow (S2) shear-wave directions.  Specifically, 
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 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
θθ
θθ

θ
cossin
sincos

R . (2-43) 

The diagonal matrix U is referred to as the "natural solution", which would result 

from solving the wave propagation problem using the natural coordinate system.  The 

(non-diagonal) matrix V is the representation of these solutions in the field acquisition 

coordinates.  Alford rotation was originally based upon assuming a single anisotropic 

medium.  Often the method of (2-42) is generalized for more than one layer via "layer 

stripping" (Winterstein and Meadows, 1991; Thomsen et al., 1999) in which case the 

total effect is obtained by composition of the right hand side matrices.  For two layers 

with orientations this gives   

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )ϕϕθθ

ϕϕθθθ

RURUR

RURRURV

12

12

−=

=

T

TT

, (2-44) 

where the first layer (i.e. the anisotropic layer encountered first during the wave 

propagation from source to receiver) has orientation ϕ and the second layer θ.  The 

matrix ( )ϕθ −R  in (2-44) is a matrix which describes the reorientation of the natural (or 

principle) axes in passing from the first to second layers.  As pointed out by Thomsen et 

al. (1999, Appendix E), there is in fact a matrix missing from equation (2-44), describing 

the transmission effect of S1 in the first layer to S1 in the second layer etc. 

2.2.5.2 Vertical incidence case of interface propagator 

In Appendix G it is shown that for a vertical (normal) incidence wave at an 

interface between two media with identical HTI moduli but different orientations ϕ and θ 

of the symmetry axis, the interface propagator has submatrices 

 ( ) ( )
( ) ( )
( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−

−−−
==

100
0cossin
0sincos

,, ϕθϕθκ
ϕθκϕθ

ϕθϕθ UUDD WW , (2-45) 
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and 

 ( )
( )

( ) ( )ϕθϕθχ
ϕθχ

ϕθ ,
000
00sin
0sin0

, UDDU i
i

WW −=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
= , (2-46) 

where 

  
21

21

2 SS

SS

VV
VV +

=κ  and 
21

21

2 SS

SS

VV
VV −

=χ . (2-47) 

The velocities 1SV  and  1SV  are the fast (S1) and slow (S2) shear-wave velocities for 

propagation parallel to the vertical axis. The difference between DDW  and UUW  and the 

rotation matrix in (2-44) can be explained by the transmission effects across the interface.  

They are compensated by the non-zero terms contained in the reflection matrices UDW  

and UDW .  The quantities κ and χ can be rewritten in terms of Thomsen's dimensionless 

parameter γ  (Thomsen, 1988), which relates fast and slow shear-wave velocities via  

 ( )γ+= 121 SS VV . (2-48) 

After substitution of (2-48) into (2-47), and development as a power series, the 

results are 

 
( )

( ),
8

1
1

21 3
2

21 γγ
γ
γκ O++=

+
+

=  (2-49) 

and 

 
( )

( )3
2

2/1 4212
γγγ

γ
γχ O+−=

+
= . (2-50) 

From (2-49), the horizontal parts of the matrices DDW  and UUW  used in 

extrapolation differ from the standard rotation matrix in equation (2-44) by small terms of 

order 2γ .  Since γ  itself is generally small compared to one, the standard rotation matrix 

is a good approximation to these propagators, in the specific case of vertical wave 

propagation.   
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However, the derivation of (2-45) and (2-46) is related to the case where the HTI 

moduli did not change across the interface, only the symmetry axis.  In the case where 

there is a significant change in medium properties, this conclusion may not hold true. 

More importantly, the basic assumption underlying Alford's and related approaches, 

namely that of vertical incidence, is obviously suspect when dealing with at least 

moderate structure, or large offset. 

2.2.6 Examples of interface propagators 

Figure 2.9 shows interface-propagators graphically for an interface between two 

isotropic media with a P-wave velocity change from 2800m/s to 3200m/s, and an S-wave 

velocity change from 1400m/s to 1600m/s.  The propagators are shown for P-wave angles 

of (a) 0° and (b) 60°.  Figure 2.10 shows the same for an isotropic medium over an HTI 

medium with an axis of symmetry at 45° azimuth.  Salient points are: (i) that there are no 

off-diagonal terms for isotropic contrasts at vertical incidence, since there are no mode 

conversions, but at non-zero angles of incidence there are off-diagonal terms 

corresponding to conversion between P and SV modes; and (ii) for the HTI case there is 

strong normal incidence conversion to S1 and S2 modes from SV or SH modes, 

corresponding to shear-wave splitting, described approximately by a rotation matrix with 

45° azimuth.  This also occurs at non-zero angles, but is asymmetric, such that a simple 

rotation matrix based on 45° azimuth is no longer a good approximation (Figure 2.10(b)). 

The formulation of the extrapolator in terms of interface-propagators, as in equation 

(2-38), is more efficient than explicit mappings between v and b at each interface, but 

also affords another advantage.  Since the one-way interface-propagators DDW  and UUW  

are 3-by-3 matrices which describe the conversion between modes across interfaces, it is 

possible to be selective about which mode conversions are honoured when extrapolating 

the wavefield.  Doing so can reduce sensitivity to errors in the model, and so prevent the 

generation of spurious artifacts.  The same approach was taken by Silawongsawat (1998) 

in the context of forward modelling, as an aid to interpretation of the modelled results. 

The simplest approximation is to use only the diagonal elements of the interface-

propagators, which corresponds to ignoring all mode conversions during extrapolation.  
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In this case, the algorithm reduces to a pure scalar extrapolation for each mode, as in 

equation (2-1), except that the amplitudes are corrected for transmission effects. 

 

(a)   (b)  

Figure 2.9. Interface-propagator matrices for isotropic medium contrast, from layer n-1 
(vP=2800m/s, vS=1400m/s) to layer n (vP=3200m/s, vS=1600m/s).  P-wave incidence 
angles are (a) 0° and (b) 60°. 

 

(a)   (b)  

Figure 2.10. Interface-propagator matrices for isotropic (layer n-1) to HTI (layer n) 
medium contrast.  P-wave incidence angles are (a) 0° and (b) 60°.  The axis of symmetry 
for the second medium is at 45° azimuth. 
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2.2.7 Boundary conditions 

In order to commence downward extrapolation, we first need either a displacement-

stress vector, ( )0zb , or the wave-mode vector ( )0zv  in the top layer.  Since generally 

only displacement (or velocity, the time derivative of displacement) is measured, there 

remains the problem of determining the stress vector, or alternatively the wave-modes 

directly.  Two scenarios are now considered, and it is shown how this problem is resolved 

in each case, without additional measurements. 

2.2.7.1 Free surface boundary condition 

The simplest case is when the wavefield is recorded on a free surface, such as the 

earth-air interface.  A free surface has zero stress, which is easily incorporated into the 

vector ( )0zb , which simply becomes: 

 ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
u

b 0
0

z
z ,  (2-51) 

where 0 is the 3-vector of zero values. This can then be substituted into equation (2-39) to 

obtain the down-going wave-mode vector, ( )0zDv .  This is then used to initiate the 

recursion of equation (2-38). 

2.2.7.2 One-way boundary condition 

A second possible scenario assumes that up-down separation has been applied, so 

that it can be assumed that waves propagate in only the down-going direction (or up-

going, if at the receiver side).  In this case we have a wave-mode vector of the following 

form: 

 ( ) ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
=

0
0 z

z
Dv
0

v .  (2-52) 

From equation (2-39), we can deduce: 

 ( ) ( )00 zz DD vDu ′= , (2-53) 

where ( )D
S

D
S

D
PD 21 uuuD =′  is the 3-by-3 matrix containing the first 3 rows of DD .  
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Inverting equation (2-53) we get: 

 ( ) [ ] ( )00 zz L
DD uDv −′= . (2-54) 

In this case, the algorithm commences with equation (2-54), which then initiates the 

recursive extrapolation of equation (2-38). 

The down-going cases described here are relevant for the shot side.  Similar 

equations obtain for the up-going waves in both cases, as is required on the receiver side. 

2.3 Comment on dimensionality 

The theory discussed up to this point (with the exception of the illustrative scalar 

case in section 1.4) is applicable in three dimensions.   In particular equations such as 

(1-13) and (2-8) have been written for slowness vectors 3R∈s .  From here onwards, the 

theory is restricted to two dimensions, for simplicity and in order to be consistent with the 

examples provided.  In doing so, a non-physical assumption is introduced which is 

standard for two-dimensional imaging of seismic data.  This is the line-source 

assumption, which allows us to neglect dependence on the y-direction, by positing an 

infinitely long seismic source parallel to the y-axis, and generating a cylindrical 

wavefront.   This is entirely consistent with the assumptions made in the two-dimensional 

modelling codes used for the tests in Chapter 5 and 6.   

For real world applications, it is necessary to take account of the localized nature of 

a physical source.  This can be done by introducing corrections which arise when the y-

axis is integrated out of the equations.  The most obvious of these is the amplitude 

correction required to compensate for the difference in two-dimensional and three-

dimensional energy decay or "spreading". 

An important caveat needs to be mentioned however.  Although the wave 

propagation is henceforth restricted to two dimensions, the particle displacement is still 

taken to be a three dimensional quantity.  It is a fundamental feature of elastic wave 

propagation, that the slowness (or phase velocity) vector and the displacement vector are 

not required to be in the same plane.  So even if the former is restricted to two 

dimensions, the latter need not be.  The simplest example is that of a pure SH wave, 
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which propagates within the vertical plane containing the source and receiver, but is 

polarized orthogonal to that plane. 

If this were not the case, then the very phenomenon of immediate interest, namely 

shear-wave splitting, would not be possible.  This idealization is consistent with the fact 

that shear-wave splitting may be observed from two dimensional seismic surveys 

conducted over an earth which has no variation in the crossline direction, but does exhibit 

azimuthal anisotropy. 

2.4 Extrapolator impulse responses 

2.4.1 Homogeneous isotropic medium 

The first example used to illustrate the algorithm is wavefield extrapolation in a 

homogeneous isotropic medium.  The P and S velocities are 3000m/s and 1500m/s 

respectively.  Figure 2.11 demonstrates the operator construction by way of an impulse 

response for a 200m downward extrapolation of the up-going wavefield. The “impulse” 

is a bandlimited spike on the zu component (a).  After the decomposition step (here 

assuming a free surface condition), the P and SV (labelled S2 in figures) inputs, ( )0zvP  

and ( )0zvSV , are shown in (b).  Since this is isotropic, there is no SH response.  The 

extrapolated P and SV modes, ( )mzzvP 20001 +=  and ( )1zvSV , are shown in (c).  Finally 

the displacements at the new depth, ( )1zuU
x  and ( )1zuU

z , are shown in (d). 

During extrapolation, a small (1%) imaginary velocity has been added to the true 

velocity in order to both stabilize the decomposition by avoiding singularities and to 

suppress Fourier wrap around artifacts.  This acts as a sort of numerical anelasticity that 

preferentially suppresses artifacts with large traveltimes such as Fourier wrap-around 

events. 

Figure 2.12 shows the frequency-wavenumber (F-K) amplitude spectra of the 

extrapolated result as in Figure 2.11 (d), though in this case only 0.01% imaginary 

velocity was used, in order to better see the full F-K response.  In the F-K domain, the 

relationship between propagating and evanescent areas is easily seen, with an interference 

effect occurring where both P- and S-modes are propagating. In Figure 2.13 the output 
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from Figure 2.11 is extrapolated back upwards to the original depth.  The residual 

energy on the X component arises because the P-wave evanescent area between the 

maximum P- and SV-wave slownesses cannot be recovered. 

2.4.2 Homogeneous HTI medium   

In Figure 2.14, the operator in an HTI medium is illustrated by way of impulse 

responses, using the same input as for the isotropic example in Figure 2.11 Two examples 

are shown: one, (a), for an axis of symmetry aligned with the x direction; and another, 

(b), for an axis of symmetry at 45° azimuth to the x axis.  Only the extrapolated wave-

modes are shown in both cases.  The anisotropy gives rise to triplications along the plane 

which contains the symmetry axis, as can be seen in (a), and to an S2 response in the case 

where the symmetry axis is rotated as is seen in (b). 
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(a)  

(b)  

(c)  

Figure 2.11. Wavefield extrapolator impulse response construction for homogeneous, 
isotropic medium: (a) input bandlimited spike on Z component; (b) after decomposition 
into up-going P and SV (S2) modes; (c) after extrapolation downward by 200m; 



 

 

54

54

 

 

(d)  

Figure 2.11 (continued) (d) after recomposition to X and Z components.  Plots have the 
same display scaling applied. 
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Figure 2.12. FK spectra of extrapolated displacements, as in Figure 2.12(d) but using 
only 0.01% imaginary velocity. 
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(a)  

(b)  

Figure 2.13. Result of applying inverse extrapolation operator to impulse response shown 
in Figure 2.11: (a) upward extrapolated P and SV modes; (b) after recomposition to X 
and Z components.  Compare (a) with Figure 2.11 (b) and (b) with Figure 2.11(a).  Plots 
have the same display scaling applied as in Figure 2.11. 
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(a)  

(b)  

Figure 2.14. A comparison of impulse responses for HTI media with different symmetry 
axes.  The wave-modes prior to recomposition are shown, for the same impulse input as 
in Figure 2.11, after extrapolation 200m downwards in an HTI medium: (a) with axis of 
symmetry along the x direction; (b) with axis of symmetry at 45° azimuth to the x 
direction.  Note the presence of triplications for the SV (S2) mode when the plane 
contains the symmetry axis. 
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2.5 Application to modelled data 

2.5.1 Homogeneous HTI medium 

The wavefield extrapolation is now applied to modelled data, in a homogeneous 

HTI medium.  The modelled data are generated using the pseudospectral method (Bale, 

2002a; 2002b), for an HTI medium with an axis of symmetry at 45° azimuth to the x axis.  

The geometry for the modelling is shown in Figure 2.15.  The source is a vertical 

displacement force at 1000 m depth.  An absorbing boundary is placed along all four 

edges of the domain, so that only up-going waves are recorded, apart from some low 

level residual reflection due to imperfect absorption.  The wavefield was recorded at three 

different levels, A, B, and C, as shown in Figure 2.15.  This allows direct comparison of 

the data extrapolated from A to B or C, with the true data at those depths. 

 

 
Figure 2.15. Geometry of modelled data.  Vertical displacement source generates P and S 
waves at a depth of 1000m, these are recorded at three different levels shown by dashed 
lines: A (400m), B (600m) and C (800m).  Solid diagonal lines show angular aperture 
limitation during extrapolation. 
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Figure 2.16 shows the result of downward extrapolating the data from level A to 

level B.   The input data are shown in (a).  The extrapolation is broken down into the 

following steps: (b) decomposition into wave-modes, P, S1 and S2, at A; (c) 

extrapolation and recomposition at B.  Compare the result in (c) with the modelled 

wavefield at level B, shown in (d).  The differences are primarily the result of aperture 

limitations, since the angular aperture at A is smaller than that at B, for the same width of 

recording array.  This effect comes into play during downward (backward) extrapolation 

of the receivers in shot migration, and is inherent in the geometry. 

By contrast, consider Figure 2.17, which shows the upward extrapolation of the 

wavefield from level C, (a), to levels B, (b) and A, (c).  As can be seen by comparison 

with the modelled results in Figure 2.16, extrapolation gives accurate results in this 

direction.   This is because the angular aperture of the input wavefield is broader than that 

of either output.  This geometry (with the z axis inverted) is relevant to downward 

(forward) extrapolation of a shot.  The results in Figure 2.16 and Figure 2.17 confirm that 

the elastic wavefield extrapolation is working as intended for an HTI medium. 

2.5.2 Vertically heterogeneous HTI medium 

The final example illustrates the effect of vertical heterogeneity on the 

extrapolation.  The model used, as shown in Figure 2.18, consists of two layers: an 

isotropic layer overlying the same HTI layer as used in the previous example.  

Figure 2.19 shows the results of extrapolating input at level C by 400m upwards to 

level A: (a) using the full matrix for the one-way interface-propagator across the 

interface, corresponding to all transmission conversions; (b) including only diagonal 

terms of the matrix, corresponding to neglecting all conversions; and, (c) excluding the P-

to-S conversions but including the S1 to S2 conversions.  The weaker, flatter events are 

spurious reflections from the model boundary and should be ignored.  The result from 

using the full matrix, in (a), compares well with the modelled data in (d), even recovering 

the weak P-to-S conversion visible after the first arrival on the X component. While 

ignoring the P-to-S conversions has a small impact on the extrapolated data (compare (c) 

with (a), and with (d)), it is evident that ignoring all conversions, (b), is inadequate in this 

example.  To do so ignores the rotation of the anisotropy symmetry axis.  Including the 
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S1-S2 conversion terms in the interface-propagator matrix essentially embeds a 

generalized Alford rotation within the extrapolation, and is a necessary step when 

imaging in the presence of azimuthal anisotropy. 

 

(a)  

(b)  

Figure 2.16. Downward extrapolation of modelled HTI data: (a) displacement wavefield 
recorded at A (see Figure 2.15); (b) after wavefield decomposition into P, S1 and S2 
modes. 
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(c)  

(d)  

Figure 2.16 (continued) Downward extrapolation of modelled HTI data: (c) after 
extrapolation and recomposition to displacement at B; (d) data recorded at B from 
forward modelling.  Compare the result of extrapolation, (c), with modelled data at B, 
(d). 
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(a)  

(b)  

(c)  

Figure 2.17.  Upward extrapolation of modelled HTI data: (a) displacement wavefield 
recorded at C (see Figure 2.15); (b) extrapolated upwards to B - compare with Figure 
2.16(d); (c) extrapolated upwards to A – compare with Figure 2.16(a). 
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Figure 2.18. Two-layer model consisting of an isotropic medium overlaying an HTI 
medium with axis of symmetry at 45° azimuth.  Modelled data generated at levels A and 
C, located as before. 

2.6 Chapter summary 

The extrapolation of elastic waves consists of first decomposing the displacement 

wavefield into wave-modes P, S1 and S2, using an appropriate boundary condition 

assumption, and then recursive application of phase-shift operators and an “interface-

propagator” matrix operation which handles the effects of medium changes at each depth 

interface.  This is equivalent to reconstructing the displacement-stress vector which is 

continuous across each interface.  The operators which achieve this are found by solving 

the Kelvin-Christoffel equation.  The eigenvalues of the Kelvin-Christoffel equation lead 

directly to the phase-shift operators, while the eigenvectors give the polarizations of 

displacement. The relationship between stress and displacement is then used to compute 

eigenvectors of the appropriate one-way equation, and from these the interface-

propagators are determined.  The solution to the Kelvin-Christoffel equation is analytic 

for the HTI case, and the up- and down-going solutions are also simply related in this 

case.  The choice of whether to use down-going or up-going solutions depends on 
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whether we are forward extrapolating a downward propagating source wavefield, or 

backward extrapolating an upward propagating receiver wavefield.  

The structure of the interface-propagator matrices allows the selective inclusion of 

forward-scattered mode-conversions in the extrapolator. This allows the neglect of 

conversions which might become generators of spurious noise, due to model 

inaccuracies.  In particular, the author suggests that in many (though by no means all) 

cases, P-to-S conversion may be safely neglected (except, of course, for conversion on 

reflection, which would be dealt with in migration by an appropriate imaging condition).  

However, in the case of the interface between an isotropic and an HTI medium, it is 

found that inclusion of the S1-S2 conversions is important for proper extrapolation of the 

wavefield.  It is therefore expected that this form of extrapolator will be useful in imaging 

fractured media where shear-wave splitting is a significant factor.  Use of this kind of 

extrapolator could be regarded as a form of generalized Alford rotation, which is not 

limited by assumptions of dip or offset. 
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(a)   

(b)  

(c)  

(d)  

Figure 2.19. Upward extrapolation, from C to A, through two layer model of Figure 2.18: 
(a) extrapolation using full one-way interface-propagator matrices across boundary, 
including all mode conversions; (b) extrapolation using only diagonal matrices, 
neglecting all conversions; (c) extrapolation using matrix with P-S conversions neglected; 
(d) modeled data at level A. 
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CHAPTER THREE: ADAPTING ELASTIC WAVEFIELD EXTRAPOLATION 

TO LATERALLY VARYING HTI MEDIA 

3.1 Introduction 

In Chapter 2, the design of wavefield extrapolators for elastic, HTI (transversely 

isotropic, with a horizontal symmetry axis) media was discussed.  That chapter assumed 

that the medium varies only in the vertical direction.  Here the extension to more realistic 

media which have lateral variation of properties is investigated.  The problem of acoustic 

extrapolation in laterally varying media has been the subject of much previous research 

within the CREWES and POTSI consortia at the University of Calgary (Margrave and 

Ferguson, 1999; 2000; Ferguson and Margrave, 2002; Grossman et al., 2002a).  The 

conceptual framework which has been developed is to represent the ideal extrapolation 

operator as a ΨDO in which the phase shift applied depends on both x and xk  

simultaneously.  

There are two elementary, alternative ways this can be done, depending on whether 

the operator integral transforms the wavefield from the Fourier domain back to the spatial 

domain, referred to as "phase shift pluse interpolation" (PSPI) (Gazdag and Sguazerro, 

1984), or from the spatial domain forward to the Fourier domain, referred to as non-

stationary phase shift (NSPS) (Margrave and Ferguson, 1999).  For the PSPI method, the 

appropriate comparison with NSPS is based upon its more general form (Margrave and 

Ferguson, 1999), referred to here as GPSPI.  GPSPI and NSPS correspond to the standard 

and adjoint forms of a ΨDO respectively.  In either case, practical implementation of the 

operator is usually achieved by a windowed Fourier transform so that FFT codes can be 

used.  There are different ways to implement this, including the original interpolation 

method of Gazdag and Sguazzero's (1984) PSPI and an adaptive windowing approach.  

For scalar extrapolation, a Gabor domain method known as adaptive Gabor phase-shift 

(AGPS), which aims to optimize spatial windowing based on the spatial variation of the 

model, was investigated by Grossman et al. (2002a; 2002b).  In the present chapter, 

discussion is primarily concerned with the ideal limiting forms of the two methods.  The 

implications of windowing the operators are also discussed without considering details of 
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the window design.  An adaptive method for designing spatial windows for elastic 

extrapolation will be discussed in Chapter 4. 

In this chapter, the goal is to show how the GPSPI and NSPS approaches apply to 

elastic wavefield extrapolation, and to discuss some specific issues which arise in this 

context.   In the next section the key results of Chapter 2 are briefly restated in a form 

which is convenient for the development here, before proceeding to look at GPSPI and 

NSPS formulations of that theory.  The alternative formulation using the “interface-

propagator” matrix is investigated, due to the possible efficiency advantages. However, it 

proves to have limitations due to implicit inconsistencies between decompostion and 

recomposition steps.  The subsequent section illustrates the extrapolation operators with 

numerical examples for laterally discontinuous media. 

3.2 Review of laterally homogeneous case 

Writing equation (2-29) [or (2-30)] with the up and downgoing indices, U and D, 

suppressed, but instead indexing the depths explicitly, the elastic extrapolation operator 

for wave propagation in a 2-D1 laterally homogeneous HTI medium with horizontal 

slowness ωxx ks = ,  is 

 ( ) ( ) ( )ωω ω ,,,, 1
1 nx

L
n

zzi
nnx zsezs nnn bDDb Λ −−

+
+= , (3-1) 

with b as defined in equation (2-11). 

The 6-by-3 matrix nD  contains the eigenvectors, )(ˆ M
nb , for each 

mode { }2,1, SSPM ∈ , which are one-way solutions to equation (2-10) in layer n.  The 

direction of propagation is implied by context: up-going for backward extrapolation of 

the receiver wavefield, down-going for forward extrapolation of the source wavefield.  

The subscript n refers to the layer below the nth interface, with layers chosen sufficiently 

finely such that vertical variation of the medium may be neglected.  Layer n lies between 

nz  and 1+nz . The diagonal matrix ( )21 S
n

S
n

P
nn qqqdiag=Λ  contains the vertical 

slownesses for each mode in layer n.   

                                                 
1 See comments in section 2.3 
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Both nD  and nΛ  depend on xs , but not on ω , nor, in this case, on x.  

Alternatively, a more compact solution can be sought, premultiplying both sides of 

equation (3-1) by L
n
−

+1D , as for equation (2-38), to obtain 

 ( ) ( ) ( ) ( )ωω ω ,,,;,, 1
111 +−+=+ −

+++
+

nx
zzi

nnxnx zsezzszs nnn vWv Λ , (3-2) 

where 

  ( ) ( ) ( ) ( ) ( )ωωω ,,,,,, 1 −=+= − nxxnnxxnnx zsszsszs vDvDb , 

and 

  ( ) ( )xnx
L

nnnxxn sszzss DDWW −
++++ =−+= 1111 ),;()( . 

 

As discussed in Chapter 2, the three elements of v  are the amplitudes of P, S1 and 

S2 waves, which can be independently extrapolated in a homogeneous medium.  Recall 

that v, unlike b, is not necessarily continuous at nz , which necessitates the use of the - 

and + qualifiers, to indicate just above and just below nz , respectively (see Figure 2.7). 

Computation with equation (3-2) requires approximately half the memory of equation 

(3-1), and test results suggest it is approximately four times more CPU efficient, 

corresponding to the difference in operation count between applying two 3-by-6 matrix 

multiplies compared with a single 3-by-3 matrix multiply.  Hence it is preferable, where 

possible, to formulate extrapolation in this form.  An important question posed in this 

chapter is whether this same simplification can be used for laterally heterogeneous media.  

It will be seen that some difficulties arise. 

3.2.1 GPSPI and NSPS elastic extrapolation 

Just as for the scalar case, the elastic extrapolation can be implemented via a ΨDO 

under the locally homogeneous approximation, as discussed in section 1.4.3.   Both the 

standard (GPSPI) and adjoint (NSPS) forms of extrapolation can be defined as in the 

scalar case. 
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Let us now consider GPSPI and NSPS equivalents to equation (3-1), and the 

circumstances under which they may be transformed to the more efficient form of 

equation (3-2).  The key modification is that nD  and nΛ  now depend on both xs  and x. 

The GPSPI form of equation (3-1) is 

 ( ) ( ) ( ) ( ) ( )∫
∞

∞−

−−
+ = x

xsi
nxx

L
nxnxnnPSPI dsezssxsxsxzx xωωω

π
ωω ,,~,,,,
2

,, 1 bDEDb ,  

  (3-3) 

where 

  ( ) ( )∫
∞

∞−

= dxezxzs xsi
nnx

xωωω ,,,,~ bb , 

 ( ) ( )( )nnxn zzsxi
xn esx −+= 1,,, ΛE ωω , 

and 

 ( ) ( ) ( ) ( )( )x
S
nx

S
nx

P
nxn sxqsxqsxqdiagsx ,,,, 21=Λ .  

Similarly the NSPS form of the elastic extrapolator may be defined as follows 

 ( ) ( ) ( ) ( ) ( )∫
∞

∞−

−
+ = dxezxsxsxsxzs xsi

nx
L

nxnxnnxNSPS
xωωωω ,,,,,,,,~

1 bDEDb .  (3-4) 

Equation (3-3) and (3-4) are similar to inverse and forward Fourier transforms, but 

since the kernel depends on both x and xs , they are not standard Fourier transforms, but 

are instead pseudodifferential or Fourier integral operators1.  To numerically compute 

equations (3-3) or (3-4) requires applying the kernel xsiL
nnn

xe ω−DED , a 6x6 matrix 

operation, for each input value of x, and  each output value of xs .  This can be thought of 

as a matrix of matrix operators, and cannot be directly implemented using FFT code. 

                                                 
1 Fourier integral operators (FIOs) are a superset of ΨDOs, as they can have more general phase functions.  
Here, we are in fact dealing with FIOs which also happen to be ΨDO s. 
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3.2.1.1 Practical implementation issues 

The practical implementation of equations (3-3) or (3-4) is a complex issue.  The 

standard PSPI approach is to first find the range of velocity variation and to design 

operators for each of a number of reference velocities within that range, then to apply 

spatially invariant operators for each reference velocity, and finally to interpolate the 

results based upon the spatially varying velocity.  Unfortunately, while this is very 

effective for an acoustic extrapolation with only a single velocity parameter, we are here 

dealing with an operator which depends upon several parameters.  The issues which arise 

due to the multiparameter nature of the medium are addressed in Chapter 4. 

An alternative approach is to apply regular spatial windows for the operators, using 

either the parameter set corresponding to the center of the window, or some kind of 

window average.  Assuming reasonably smooth variation of the medium, this appears a 

more economical approach, certainly for 2-D (or any narrow azimuth) cases.  Other 

possibilities include an adaptive windowing approach, such as adaptive Gabor phase-shift 

(AGPS) (Grossman et al., 2002a; 2002b), or some kind of hybrid scheme.  For example, 

in a model where there are two main units, each with smooth internal variation but abrupt 

change across the boundary (e.g. entering an HTI region), it might be appropriate to keep 

the anisotropy parameters fixed within each unit, and use a standard PSPI approach to 

vary the velocities internally to the units, or an alternative method such as split-step 

(Stoffa et al., 1990).  Further discussion of the window design detail is deferred to 

Chapter 4.  Here is assumed that a set of windows is predetermined. 

3.2.1.2 Windowed forms 

Following Margrave and Ferguson (1999), (3-3) and (3-4) can be reformulated in 

terms of windows  jΩ  to obtain 

 ( ) ( ) ( ) ( )∑ ∫
∞

∞−

−
+ −Ω=

j

x
xsi

nxxjnjjnPSPI dsezssxxxzx xωωω
π

ωω ,,,,
2

,, 1 bPb , (3-5) 

and 
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 ( ) ( ) ( ) ( )∑ ∫
∞

∞−

+ −Ω=
j

xsi
njjxjnnxNSPS dxezxxxsxzs xωωωω ,,,,,, 1 bPb , (3-6) 

where 

 ( ) ( ) ( ) ( )x
L

nxnxnxn sxsxsxsx ,,,,,, −= DEDP ωω . 

Equations (3-5) and (3-6) arise from (3-3) and (3-4) when ( )ω,, xn sxP  is 

approximated by the sum of windowed locally constant functions 

  ( ) ( ) ( )∑ −Ω≅
j

xjnjjxn sxxxsx ωω ,,,, PP .  (3-7) 

The window functions jΩ  can be piecewise constant as in Margrave and Ferguson 

(1999), or linear (triangular), or a smoother function such as a Gaussian.  An important 

characteristic of these windows is that they must form a partition of unity  

 ( ) xxx
j

jj ∀=−Ω∑ ,1 .  (3-8) 

Piecewise constant and linear windows can be constructed to satisfy (3-8).  

Gaussians do not strictly satisfy (3-8), but can be modified by normalization to do so (as 

can any set of well-behaved windows which cover the domain of x).  Partitions of unity 

(POUs) are further discussed in Grossman et al. (2002b) and Bale et al. (2002). 

3.2.2 Interface-propagator method 

For laterally homogeneous media, equation (3-2) describes an efficient 

extrapolation using 3-by-3 interface-propagator matrices.  The question of whether such 

an approach is viable for laterally heterogeneous extrapolation, using ΨDO 

(GPSPI/NSPS) type operators, will now be considered. 

3.2.2.1 Exact interface-propagator derivation 

First, the extrapolation of the wave-mode vector, v, is written using two 

pseudodifferential equations, one of an NSPS type, and the second of a GPSPI type.  The 

choice is motivated somewhat by the observation, for the scalar case, that NSPS and 

GPSPI applied in combination have a tendency to cancel errors (Margrave and Ferguson, 
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1998).  This can obviously be done in more than one way, arriving at different but 

similar results.  The following is used 

 

( ) ( ) ( )

( ) ( ) ( )∫

∫
∞

∞−

′

∞

∞−

′
++

′+′′′=

′−′′=

,,,,,,

,,,,, 11

xdezxsxsx

xdezxsxzs

xsi
nxnxn

xsi
nxnnx

x

x

ω

ω

ωω

ωω

vED

vDb

 (3-9) 

and 

 ( ) ( ) ( )∫
∞

∞−

−
+

−
+ =+ x

xsi
nxx

L
nn dsezssxzx xωω

π
ωω ,,,
2

,, 11 bDv . (3-10) 

Substitution of equation (3-9) into (3-10) gives 

 ( ) ( ) ( ) ,,,,,
2

,, 11 ∫
∞

∞−

++ ′−′′=+ xdzxxxzx nnn ωω
π

ωω vWv  (3-11) 

where 

 ( ) ( ) ( ) ( )∫
∞

∞−

−′
−

− ′=′ x
xxsi

xnx
L

nn dsesxsxxx xωω ,,,, 1DDW . 

Since application of equation (2-32) entails a 3-by-3 matrix operation for each input 

point, 'x , and each output point, x, it will be considerably less efficient than the 

homogeneous version of equation (3-2).   

As before, windowed versions of the spatially varying filters are introduced, in the 

hopes of deriving a more efficient interface-propagator for heterogeneous media.  

Equation (3-9) becomes 

 

( ) ( ) ( )

( ) ( ) ,,,

,,,,, 1

∫

∑
∞

∞−

′

+

′+′−′Ω

=

xdezxxx

sxsxzs

xsi
njj

xjn

j

xjnnx

xωω

ωω

v

EDb

 (3-12) 

while equation (3-10) becomes 
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 ( ) ( ) ( ) ( )∫∑
∞

∞−

−
+

−
+ −Ω=+ x

xsi
nxxk

L
n

k

kkn dsezssxxxzx xωω
π

ωω ,,,
2

,, 11 bDv . (3-13) 

Substituting (3-12) into (3-13), and interchanging the order of integrations, gives 

 

( ) ( )

( )( ) ( ) ( ) ,,,,

2
,, 1

∑∫

∑
∞

∞−

+

′+′−′Ω−′

−Ω=+

j

nkj
jk

n

k

kkn

xdzxxxxx

xxzx

ωω

π
ωω

vY

v

 (3-14) 

where 

 ( ) ( ) ( ) ( ) ( )∫
∞

∞−

−= x
ysi

xjnxjnxk
L

n
jk

n dsesxsxsxy xωωω ,,,,, EDDY . (3-15) 

Application of equation (3-14) entails the following steps: 

1. For each j, apply the windowing function to v. 

2. For each j and k, apply (matrix) convolution of the windowed v by )( jk
nY , 

summing over j. 

3. For each k apply windowing function to the result of 2, and sum over k. 

Step 2 unfortunately makes this approach inefficient, compared with the more 

direct approach of equations (3-5) or (3-6), as it requires computation of the matrix 

convolution for all input and output window combinations.  So, unlike the homogeneous 

case (which can be thought of as one input window, one output window), the advantage 

of using a 3-by-3 interface-propagator matrix for extrapolation are outweighed by the 

additional cost of using interface-propagators for all window pairs.  An implemention of 

equation (3-14) has not been attempted, due to this undesirable cost. 

Is this a general conclusion, or an artifact of the choice of where NSPS and GPSPI 

integrals have been introduced? 

3.2.2.2 Approximate interface-propagator 

One could consider, as an alternative, direct approximation of equation (3-2) by a 

GPSPI operator, as follows 
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 ( ) ( ) ( ) ( ) x
xsi

nxxnxnn dsezssxsxzx xωωω
π

ωω ∫
∞

∞−

+++ +=+ ,,,,,
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In a windowed form this becomes: 
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Equation (3-18) describes a relatively efficient algorithm, which consists of 

applying both phase shift operators and interface-propagators for each window, in the 

spatial slowness domain, applying inverse Fourier transforms and then summing the 

spatially windowed results.   Because the matrices involved are 3-by-3, equation (3-18) 

has the same cost advantage as equation (3-2) when compared to equation (3-5). Another 

advantage with equation (3-18) is that the terms in W are can be selected to discriminate 

against some modes, such as P-S conversion.  However, comparison of numerical results 

from using equation (3-18) with those using equation (3-5) suggest that it gives a worse 

approximation when the assumption of smooth model variation is violated.  With 

reference to Figure 3.1, an explanation of this observation is now provided. 

3.2.2.3 Accuracy of approximate interface-propagator of equation (3-18) 

First of all it is important to reiterate that GPSPI and NSPS are approximations to 

the exact solution.  The nature of the approximation can be understood by considering 

extrapolation as generation of Huygens wavefronts using locally constant parameters 

(Margrave and Ferguson, 1998): velocity for the acoustic case, anisotropic stiffnesses for 

the elastic case. The parameters of the wavefield extrapolator are either those of the 

output position (GPSPI) or of the input position (NSPS), rather than those which 

characterize the path between the two.  The error in this approximation decreases as the 
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depth step becomes smaller, but in the presence of discontinuous lateral changes it 

never disappears.  In the case of acoustic extrapolation the result is a phase error, but in 

the elastic case a more serious error can occur if we are not careful, due to polarization.  

Consider the extrapolation of data from point A to point B in Figure 3.1, across the 

boundary between medium 1, and medium 2.  Assume also that there is a change in the 

polarization of the shear waves associated with the boundary.  If GPSPI extrapolation is 

performed using equation (3-5), then the decomposition and recomposition matrices used 

are ( )x
L

n sx ,2
−D  and ( )xn sx ,2D , corresponding to the output point B, with lateral 

position 2x .  These are self-consistent, in the sense that the polarization of the P, S1 and 

S2 modes are taken to be the same at A and B.  Similarly NSPS extrapolation using 

equation (3-6) uses decomposition and recomposition matrices defined at the input point 

with lateral position 1x .  While they clearly will give results different from equation (3-5), 

they are once again self-consistent.  Now, consider using equation (3-18).   At point A, 

the interface propagator used is ( )xn sx ,1W , which implies decomposition based on 

medium 1 parameters.  At point B, the interface propagator used is ( )xn sx ,21+W , which 

implies recomposition based on medium 2 parameters.  These are self-inconsistent 

operators.  For example, suppose the orientation of the axis of symmetry differs between 

the two media by 90°.  The polarization of S1 in medium 1, becomes approximately the 

polarization of S2 in medium 2.  The result of using equation (3-18) is an unwanted 

flipping of modes, as energy which started at point A with one polarization is interpreted 

at point B to have a completely different polarization.  It is in fact the need for self-

consistency which gives rise to the (expensive) interaction between windows in equation 

(3-15).  

The errors resulting from extrapolation across a discontinuity with equation (3-18) 

are illustrated in the following section in Figure 3.5.  However, as shown in Figure 3.6, 

the errors are small in the presence of continuous changes in polarization.  Hence, one 

could choose to use the less accurate, but more efficient equation (3-18) provided the 

changes in anisotropy axis are gradual.   
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Figure 3.1.  Extrapolation across a lateral discontinuity.  Medium 1 (white) and medium 2 
(shaded) are homogeneous with different anisotropic symmetry axes.  

3.3 Results 

The use of the above extrapolation operators is now illustrated with numerical 

results. 

3.3.1 GPSPI and NSPS elastic extrapolation tests 

Figure 3.2 illustrates the result of extrapolating three impulses by 400m downwards 

in a single step, for an HTI medium with an abrupt change in symmetry direction in the 

center.  Two homogeneous extrapolations are shown for reference.  In (a), the 

extrapolation is for a homogeneous medium with a symmetry axis in the x-direction.  In 

(b), the extrapolation is for a homogeneous medium with symmetry axis at 45° to the x 

direction.  In (c) and (d) the medium is the same as in (a) for the left half, and the same as 

in (b) for the right half.  In (c), extrapolation has been performed using the windowed 

GPSPI algorithm of equation (3-5), with a fixed window size of 80m (8 times trace 

spacing) and using linearly tapered windows.  For GPSPI the windowing is applied to the 

output, which is clearly visible in the abrupt onset of S1 energy in the center of the 

section.  In (d), the NSPS algorithm of equation (3-6) has been used, with the same 

window parameters as in (c).  Since the windowing is applied on input for NSPS, it is 

observed that 2 of the 3 impulses contribute to the S1 energy (the second impulse lies on 
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the boundary, which explains the lower S1 amplitude associated with it.  Figure 3.3 

shows the reverse extrapolation of the GPSPI and NSPS results in Figure 3.2.  The ideal 

result would be three bandlimited spikes only present on the vertical (Z) component.  

Note that, as was found to be the case for scalar extrapolation, the NSPS operator appears 

to invert the GPSPI result and vice versa.  This suggests that for the (vector) elastic case, 

as has been proven in the (scalar) acoustic case by Margrave and Ferguson (1998), NSPS 

and GPSPI are adjoint operators when used in opposite directions.  This is verified in 

Appendix H, where it is shown that for an appropriate definition of the inner product 

between two vector wavefields, the adjoint operator to GPSPI [equation (3-3)] is NSPS 

[equation (3-4)] in the opposite direction. 

3.3.2 Comparison with interface-propagator method 

Figure 3.4 shows two models used to test the interface-propagator approximation in 

equation (3-18), one with a discontinuous 90° change of symmetry axis, and the other 

with a linear change of symmetry axis over several windows. 

For the discontinuous jump [Figure 3.4(a)] the physics of anisotropic wave-

propagation dictate that no energy should be generated on the Y component, since the x-z 

plane is a plane of symmetry for both left and right halves of the model.  In Figure 3.5, 

the GPSPI extrapolation of three impulses by 200m, using equation (3-5) ((a) and (b)), is 

compared with the result using equation (3-18) ((c) and (d)).  In both cases linearly 

tapered windows of 40m (4 times trace interval) are used.  The wave-mode amplitudes 

are shown in (a) and (c).  The corresponding displacements are shown in (b) and (d).  In 

(b) the Y component amplitude remains zero as it should, whereas in (d) one observes 

(incorrect) assignment of energy onto the Y component.  In this case, it is seen that 

equation (3-18) gives significantly erroneous results in polarization, which are not present 

for equation (3-5).  Of course, it is still true for equation (3-5)  that there are errors of 

phase due to the GPSPI approximation. 
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(a)  

(b)  

(c)  

(d)  

Figure 3.2. Example of elastic GPSPI and NSPS extrapolation in a single step for a 
medium with a discontinuous change of anisotropic symmetry direction. (a) 
Homogeneous model with 0° symmetry axis; (b) homogeneous model with 45° symmetry 
axis; (c) GPSPI using linearly tapered windows spaced at 80m; (d) NSPS using same 
windows for discontinuous model. 
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(a)  

(b)  

(c)  

(d)  

Figure 3.3. Inverse extrapolation (a) GPSPI forward and reverse; (b) GPSPI forward, 
NSPS reverse; (c) NSPS forward and reverse; (d) NSPS forward, GPSPI reverse. 
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The last example, in Figure 3.6, considers the above comparison for the 

continuously varying symmetry axis direction of Figure 3.4(b).  In contrast to the abrupt 

change of symmetry direction in the previous example, it is no longer correct to expect 

absence of energy on the Y component, as the transition includes symmetry directions in 

all azimuths between 0° and 90°, which certainly generate rotated polarizations.  

Furthermore there is now very good agreement between the results using equation (3-5)  

and those using equation (3-18) (compare (b) and (d)), as anticipated.  This supports the 

assertion that equation (3-18) may still be appropriate for cases where there are expected 

to be smooth changes in anisotropy. 

 

(a)   (b)  

Figure 3.4. Rotation angle variation along 2-D line; (a) discontinuous jump; (b) gradient. 
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(a)  

(b)  

(c)  

(d)  

Figure 3.5. GPSPI with 40m window spacing for abrupt change of anisotropic symmetry 
direction. (a) Extrapolation using full displacement-stress representation at interfaces; (b) 
displacements corresponding to (a); (c) extrapolation using interface-propagators; (d) 
displacements corresponding to (c). 
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(a)  

(b)  

(c)  

(d)  

Figure 3.6. GPSPI with 40m window spacing for gradual change of anisotropic symmetry 
direction. (a) Extrapolation using full displacement-stress representation at interfaces; (b) 
displacements corresponding to (a); (c) extrapolation using interface-propagators; (d) 
displacements corresponding to (c). 
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3.4 Chapter summary 

The GPSPI and NSPS methods have been used to extend the elastic wavefield 

extrapolation algorithm to media with lateral variations, including changes in the HTI 

symmetry axis.  This can be done in more than one way, with a choice not only of GPSPI 

vs. NSPS, but whether to use full extrapolation of the displacement-stress wavefield, or 

the more compact extrapolation of wave-modes using interface-propagators.  The 

interface-propagators, if posed in a form which retains the efficiency advantage, have 

associated errors in the presence of rapid changes of symmetry axis.  Generally, one 

would therefore advocate the use of the full displacement-stress extrapolation.  

Nevertheless, if the medium can be assumed to have slowly varying changes of symmetry 

axis, then numerical results suggest the more efficient interface-propagator method is 

appropriate. 

For the remainder of this thesis only the GPSPI formulation is developed further.  

This is done in the interests of definiteness and avoiding repetitiveness.  It is not intended 

to imply a preference for one algorithm over the other.  Moreover, the perceptive reader 

will understand that there are no fundamental obstacles to developing the theory which 

follows based upon the NSPS formulation.  As illustrated above, the results obtained 

would be very similar, particularly for the typical depth step sizes used within a prestack 

migration code – the ultimate goal of this work. 
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CHAPTER FOUR: ISOTROPIC AND ANISOTROPIC ELASTIC PSPI 

METHODS 

4.1 Introduction 

In Chapter 2 an algorithm for extrapolation of elastic wavefields was described. In 

Chapter 3 this was extended to laterally variable media.  The laterally variable algorithm 

was formulated in terms of generalized PSPI (GPSPI) and NSPS type methods.  The 

theory was developed for extrapolation using the ideal but costly ΨDO, given in 

equations (3-3) and (3-4).  In addition, a more practical implementation based upon 

spatial windowing was described (see section 3.2.1).  However, these algorithms were 

described in general terms without reference to any particular scheme for designing the 

windows employed.  The examples of GPSPI and NSPS were implemented using fixed 

spatial windows. 

The purpose of this chapter is to explore two specific approaches to 

implementation.  The starting point is the GPSPI framework described in the previous 

chapter.  On one hand, the focus is narrower than that previously presented, since the 

NSPS framework is not pursued here. On the other hand, it goes deeper, in that some of 

the key practical issues for handling spatial variation are investigated. 

The first implementation is an adaptive extrapolation algorithm appropriate for 

anisotropic elastic media.  This will be referred to as “phase shift plus adaptive 

windowing” (PSPAW).  The second implementation is an alternative elastic PSPI 

extrapolator that is more closely related to the standard PSPI algorithm of Gazdag and 

Sguazzero (1984).  This can be applied when the medium is elastic and isotropic. 

4.2 Isotropic vs. anisotropic parameterization for PSPI 

Consider equation (3-3), which describes the GPSPI algorithm.  As written it is 

expensive, since it is not an inverse Fourier transform, but rather a Fourier integral 

operator. Therefore, it cannot be performed using an FFT.  To implement (3-3) in a code 

would involve performing the integral for every output point, using a matrix of operators, 

with a cost proportional to 2
xN , where xN  is the number of spatial points in the 

discretised domain.  A more practical implementation of this equation involves some 
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form of windowing or interpolation, using a smaller set of representative or reference 

operators.  Assuming there are refN  reference operators, the cost becomes proportional to 

 ( )xxref NNN 2log . 

Then, provided, ( ) xxref NNN <<2log , this approach is significantly less expensive 

than full GPSPI. 

The traditional PSPI approach (Gazdag and Sguazzero, 1984) is to compute several 

wavefields with reference velocities, return each to the spatial domain with inverse FFTs, 

and interpolate the results.  However, in the case of anisotropic elastic wavefield 

extrapolation, the traditional approach has a major drawback, which is now explained. 

4.2.1 Drawback to standard PSPI for anisotropic elastic media 

The minimum number of parameters required to represent an HTI medium is six, 

which can be defined (among various equivalent ways) as: 00 , SP VV , the P- and S-wave 

velocities of propagation along the symmetry axis; γδε ,, , the Thomsen (1986) 

parameters; and φ , the orientation of the axis of symmetry within the horizontal plane.  

The generalization of Gazdag and Sguazzero's approach would be to form a set of 

reference operators based on sampling each of the parameter axes, and generating an 

operator for each combination of parameters in the sampled parameter space. 

A subspace with just 3 of the 6 parameters is illustrated in Figure 4.1, where each 

node represents a unique reference operator.  The space shown has only 125 nodes, 

assuming (conservatively) that only 5 reference values are required for each parameter.  

For 6 dimensional parameter space, the total number of reference operators required 

is 1562556 = .   The full representation with 6 parameters is clearly intractable, unless the 

dependence on the parameters is somehow decoupled.  In general this is not possible.  

In section 4.4, the special case of an isotropic medium is examined, where the parameter 

dependence is approximately separable.  In section 4.3, we focus on the spatial 

windowing approach instead. 
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Figure 4.1.  Three-dimensional subspace of the parameter space describing an HTI 
medium.  Each node here represents one of 125 unique reference operators. 

4.3 Adaptive windowing  

Spatial windowing is an alternative approach to parameter interpolation.  For scalar 

extrapolation, windowing has been applied by Margrave and Ferguson (1999), and 

subsequently refined by Grossman et al. (2002a).  The basic idea is to apply operators 

which are approximately valid over some subset of the image domain, and window the 

results to include only that part of the domain.  It is important that the sum of the 

windows is unity.  Usually the windows are chosen to be smooth and overlapping.  The 

overlap implies that every output point, in practice, is the interpolated result from at least 

two different windows.  There is therefore a very close link to standard PSPI, which is 

based on interpolating results of extrapolation using two different reference velocities, as 

described by Gazdag and Sguazerro (1984). Nevertheless, the two approaches are not 

identical, since the interpolation weights in standard PSPI depend on the velocity of the 

output point only, whereas the interpolations weights in the window approach depend on 

the distance from the spatial reference points only. 

When considering elastic migration, particularly anisotropic elastic migration, the 

difference between these two approaches becomes significant for efficiency.  As 
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explained in section 4.2.1, the standard approach leads to an intractable number of 

reference operators (and hence extrapolations) to capture possible variability in the 

medium.  However, if instead the operators are designed for spatial windows (over 

regions for which an average set of anisotropic parameters is acceptable) the number of 

extrapolations depends only on the lateral variability of the medium. 

Spatial windowing could be implemented using a uniform partition of unity, 

consisting of fixed size windows which are simple translations of a "mother" window.  

However, in order to capture the variability of the medium for each extrapolation step, 

the size of the window required would be constrained by the fastest varying part of the 

medium.  This again would lead to an excessive number of windows, and hence 

extrapolations.  Instead, the number of windows can be kept to a minimum by using an 

adaptive approach.  This is now described. 

4.3.1 The PSPAW algorithm 

The algorithm will be referred to as “phase shift plus adaptive windowing” 

(PSPAW).   The PSPAW algorithm is related to the adaptive Gabor method (Grossman et 

al., 2002a), although the Gabor transform is not actually used here.  In PSPAW, spatial 

windows are constructed by combining elementary small windows, called “atoms”, into 

larger windows, referred to as “molecules”.  The molecules are built up along the 

horizontal spatial direction until some acceptance criterion is violated.  At this point a 

new molecule is started.  In this way, large windows are used when the velocity variation 

is mild, but smaller windows are used in areas of rapid variation.   For the scalar 

extrapolation of Grossman et al., the acceptance criterion is based purely on velocity 

changes.  For the elastic HTI case under consideration here, this is not possible, because 

there are 3 modes, each with a velocity which depends upon phase angle.   

For vector extrapolation, the following procedure is proposed: 

1. Phase slowness is computed for P, S1 and S2 modes, for a fixed set of phase 

angles using the anisotropic parameters at the spatial center of each atom. 

2. Within each molecule, a record is kept of the average, minimum and maximum 

phase slownesses, for each phase angle.  The average is computed using 

Schoenberg and Muir’s (1989) calculus for addition of anisotropic layers.  In 
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addition, the average, minimum and maximum symmetry-axis azimuths are 

recorded. 

3. A new atom is accepted to the current molecule on condition that including it does 

not cause the range between minimum and maximum slowness to exceed some 

limit, for any mode.   This limit is determined by requiring that the maximum 

phase error does not exceed one-half a cycle, at the maximum frequency. 

4. A new atom is accepted only if the symmetry axis variation within the molecule 

will remain less than some specified limit (10° is typical).   

5. If either of the criteria in 3 or 4 is violated, a new molecule is created starting with 

the current atom. 

4.3.2 Phase velocity  

Step 1, above, is illustrated in figure 4.2, except that phase velocity is displayed 

instead of slowness.  For the isotropic part of the model, to the right, the P velocity is 

constant with phase angle, and both S velocities are equal and constant.  For the HTI part, 

to the left, there are variations in all three velocities with phase angle, and the separation 

of S1 and S2 velocities is evident. 

Step 4 is important for two reasons.  First, it does not make sense to compare two 

S1 or two S2 phase slowness curves from nearby positions, unless the two symmetry axes 

are also closely aligned.  Second, the decomposition and recomposition matrices 1−
nD  and 

nD  in equation (3-3) are also subject to spatial variation, which depends on both the 

velocities and also the orientation of the symmetry axis. 
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Figure 4.2. Phase velocity curves as a function of horizontal position and phase angle for 
a medium with a step-type transition from an HTI medium (left) to an isotropic medium 
(right).  Upper sheet is the P-wave slowness, lower sheets are S1 and S2 slownesses. 

4.3.3 Atoms and molecules: operator "chemistry"  

The issue of basic atom design for scalar extrapolation has been discussed at some 

length in Grossman et al. (2002b), and the extension to 2-D windows for 3-D 

extrapolation1 is analyzed in Bale et al. (2002).  A brief overview is sufficient for our 

purpose here. 

The fundamental concept is that a set of atoms should cover the domain of interest 

in such a way as to form a partition of unity (POU), as given by equation (3-8).  The 

simplest example of a POU is a set of boxcars which cover the domain but do not 

overlap.  However, it is well-known from signal processing that multiplication by a 

boxcar in the spatial domain is equivalent to convolution by a "sinc" ( xxsin ) function in 

the wavenumber domain, and that this leads to unwanted ringing, known as Gibbs' 

phenomenon.  Another simple example of a POU is the set of triangular (linear) 

                                                 
1 The two dimensions required of the windows are the two directions transverse to the direction of 
extrapolation, usually the x and y directions for 3-D extrapolation. 
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windows, which overlap by half their width [see Figure 4.6(a) in next section].  

However, a triangular window can be constructed from convolving two boxcar windows, 

implying that in the wavenumber domain it has the shape of a squared sinc function.  

Hence, multiplying an operator by such a window would also cause Gibbs' phenomenon, 

though less extreme than the boxcar. 

Mathematically, the difficulty with both of these choices is that while they have 

compact support1 in the spatial domain, they do not have compact support in the 

wavenumber domain.  Compactness in the wavenumber domain is related to 

differentiability, or "smoothness", in the spatial domain.  Therefore a desirable quality of 

a windowing function is a high order of differentiability.  

A related issue is that they have poor localization properties.  There are absolute 

limits on simultaneous localization of a function in both space and wavenumber, imposed 

by the uncertainty principle. This is well-known from quantum mechanics as 

Heisenberg's uncertainty principle (e.g. Landshoff and Metherell, 1979), where it is 

associated with the inherent uncertainty in measuring position and momentum 

simultaneously.  In fact, this arises due to the simple linear connection between the 

wavenumber and momentum vectors in quantum mechanics.  The more fundamental 

uncertainty, that between spatial and wavenumber domains, is implicit in the properties 

of the Fourier transform.  For example, a Dirac delta function is precisely local in space 

but completely non-local in wavenumber, since 

 ( ) 0
0

ikxikx exxe =−∫
∞

∞−

δ . 

Ideally, then, a window of choice for the POU would have optimum localization in 

both space and wavenumber; would have high order of differentiability; and would be 

have compact support spatially, or nearly so. 

4.3.3.1 The Gaussian atom 

A Gaussian function that can be used as an atom has the form, 

                                                 
1 The term "compact support" is here used in its mathematical sense, as describing functions which are non-
zero on a closed finite subset of the domain. 
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 ( ) 22 σ

πσ
xexxg −∆

=  ,  

where σ  is the “halfwidth” of the Gaussian (standard deviation) and x∆  is the separation 

between atoms. The Gaussian function displays a host of desirable properties, making it 

particularly well suited for use as an “atom” in a POU: 

1. The Gaussian is infinitely differentiable, as may be readily verified.  

2. The Gaussian has optimal localization properties in the spatial and Fourier 

domains: it is the only function that exactly minimizes the uncertainty 

relationship, the fundamental limit on the product of resolutions in both domains. 

In fact, the Fourier transform of a Gaussian function is another Gaussian, given by 

 ( ) 222
ˆ xk

x xekg σπ−∆= . 

3. The Gaussian is not compactly supported, since it is non-zero everywhere. 

However, as shown in Bale et al. (2002), it decays sufficiently rapidly to allow 

truncation within approximately σ6 , so that the error is within machine precision.   

4. The Gaussian does not yield an exact POU. However, it is a very good 

approximation to one for good choices of  x∆  and σ  (Margrave and Lamoureux, 

2001).  Figure 4.3 illustrates the approximate construction of a constant unity 

function by summation of basic Gaussian functions.  

The result has a desirable "isotropic" response, in that the window function is 

invariant under rotation in the horizontal plane. 

With respect to this last point, the 2-D Gaussian is given by the product of 

Gaussians along the 2 axes 

 
( )

( )2222

2222
,

yx

yx

yx

yx

y

y

x

x

eyx

eyexyxh

σσ

σσ

πσσ

πσπσ

+−

−−

∆∆
=

∆∆
=

. 

See Bale et al. (2002) for a discussion of POUs constructed in two or more 

dimensions, including a proof that the 2-D Gaussian is the only function which achieves 
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the isotropic response described here.1  Figure 4.4 illustrates the approximate 

construction of a 2-D unity function by summation of 2-D Gaussian functions. 

Alternatives to the Gaussian have been explored in Grossman et al. (2002b).2   

 

 
Figure 4.3. One-dimensional partition of unity using a Gaussian atom. The numbering 
along the x-axis refers to the Gaussian atom number. Roll-off effects occur because a 
finite number of Gaussians are used. 

                                                 
1 Although this property is not immediately relevant to the application within this thesis, where the scope 
has been limited to 2-D extrapolation, it is potentially important should the methods described here be 
extended to 3-D extrapolation. 
2 It is possible, for example, to form a spline-based window (referred to in the above reference as a 
"Lamoureux window") which is compact in the strict sense.  Strict compactness allows efficient 
implementation without truncation effects or the need to taper the window.  However, in achieving 
compactness, other properties are sacrificed.  Unlike the Gaussian, it is not infinitely differentiable, 
although since an arbitrary degree of differentiability can be obtained, this particular drawback is somewhat 
academic.  Other limitations of spline-based windows are: they cannot achieve the Heisenberg limit of 
localization in both domains, and; they are not isotropic when extended to higher dimensions, since it can 
be shown that only the Gaussian satisfies this demand.  The question of which type of window is "best" 
depends on particulars of the extrapolation problem, and is in any case an open question.  In this thesis, the 
Gaussian window is used as the basic atom. 
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(a)  

(b)  

(c)  

Figure 4.4. Almost exact partition of unity using 2D Gaussian (“Gaussian hill”) atoms 
(a).  Summation of 2D Gaussians along a constant x coordinate of grid gives the  
“Gaussian ridge” (b). Summing Gaussian Ridges for all x coordinates gives the Gaussian 
plateau (c). Edge effects can be removed by extending summation beyond domain of 
interest. 
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4.3.4 Examples of PSPAW 

4.3.4.1 Triangular vs. Gaussian windows 

A simple example is now presented to compare the extrapolation responses using 

two different types of fundamental atom design, a triangular window and a Gaussian 

window.  Figure 4.5 shows the P and S-wave velocity profiles used.  The constant 

velocity zones to the left and right of the model are extrapolated with a single molecule 

each.  The central area, with a velocity gradient, requires several molecules to handle 

lateral velocity variation.  In total 9 molecules are needed.  The two different window 

designs are illustrated in Figure 4.6.  In both cases the atoms are spaced 80m apart, and 

the width is 160m.  In the linear case width means the full width, but in the Gaussian case 

the "width" is that part of the Gaussian lying within a single standard deviation.  The 

Gaussian window is truncated after 4 standard deviations, without noticeable effect. 

An impulse located at 1.28km and 0.511s is placed on the Z component of the input 

record, which is then extrapolated downwards by 200m.  First, for reference, the "exact" 

response is determined by applying the generalized PSPI of equation (3-3).  This is 

achieved by limiting the window size to a single CDP in the region of the velocity 

gradient.  The result, shown Figure 4.7, is regarded as the best solution possible using 

PSPI type methods, and is used to compare the subsequent windowed results. 

In Figure 4.8 the extrapolated shear-wave response is shown for both the linear 

atoms, in (a), and the Gaussian atoms, in (c).  The extrapolations appear broadly 

comparable in the x-t domain, both to each other and to the "exact" result of Figure 

4.7(a).  However, a comparison of their frequency-wavenumber (FK) transforms, in (b) 

and (d), with the ideal result of Figure 4.7(b) indicates that the linear atoms introduce 

Gibbs phenomenon, expressed as a "ringiness" in the spectrum, as predicted from theory.  

On the other hand, the greater smoothing inherent in the Gaussian atoms, does result in 

some loss of high frequency response.   
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Figure 4.5. Model used to compare linear and Gaussian window extrapolator responses in 
Figure 4.8. 

 

(a) (b)  

Figure 4.6. Partitions of unity for model in Figure 4.5: (a) using linear atoms to build 
molecules; (b) using Gaussian atoms.  In both cases the fundamental atoms are separated 
by 80m (or 16 CDPs). The linear atom width is 160m (32 CDPs). The Gaussian atom has 
a standard deviation of 80m, corresponding to a "width" of 160m between -1 and +1 
standard deviations. 

 

4.3.4.2 HTI medium with variation in symmetry axis 

An HTI model with the stiffness coefficients given in Table 2.1 was used to test the 

PSPAW algorithm, using an impulse on the vertical component as before. Though the 

stiffnesses were not varied spatially, the direction of the symmetry axis was varied 

between 0° and 90° over a central part of the model 320m in width, as shown in Figure 
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4.9 (a).   The resulting partition of unity for this model gives 6 windows ("molecules"), 

as shown in Figure 4.9 (b).  In addition to the variation in the partition of energy between 

S1 and S2 due to the rotation in the extrapolation, there is also a variation in the phase 

velocity surfaces as the S1 and S2 directions change relative to the inline direction.  This 

is illustrated in Figure 4.10.  Figure 4.10 also shows the subset of phase angles used for 

the evaluation in step 1 of the PSPAW algorithm, of section 4.3.1, indicated by the seven 

black curves on each of the surfaces.  These angles are found to adequately capture the 

variability which results from the change in symmetry axis.  Of course, if only the phase 

velocities for vertical incidence were used (as in the isotropic case), the algorithm would 

have not detected any change, since these velocities are spatially constant.  It is both this 

spatial variation of the phase velocity for non-zero phase angles, and the variation in the 

symmetry axis direction, which trigger the generation of new molecules in the PSPAW 

algorithm. In this case, deviation in the symmetry axis orientation was accepted with a 

tolerance of 30°. 

 

(a)    (b)  

Figure 4.7. Extrapolator impulse response for model shown in Figure 4.5, using "exact" 
operator.  The exact operator is the limiting form of the PSPI operator, known as 
generalized PSPI, and given by equation (3-3).   The impulse response is shown in the 
distance-time (x-t) domain in (a), and the magnitude of the frequency-wavenumber 
spectrum (the "FK amplitude spectrum") is shown in (b). 
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(a)    (b)  

(c)     (d)  

Figure 4.8. Extrapolator impulse response for model shown in Figure 4.5, using: (a) 
linear atoms [Figure 4.6 (a)], and; (c) Gaussian atoms [Figure 4.6 (b)].  The FK amplitude 
spectrum of the impulse response for the linear atoms (b) shows the characteristic Gibbs 
phenomenon, absent from the response using Gaussian atoms (d).  Both should be 
compared with the exact operator of Figure 4.7. 
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(a)  

(b)  

Figure 4.9. (a) Spatial variation of symmetry axis for example in Figure 4.11.  (b) 
Resulting partition of unity using Gaussian atoms to construct molecules.  Each atom is a 
Gaussian with standard deviation equal to 20m or 4 times the CMP interval.  Based on 
the acceptance criteria, the molecules shown in (b) have 51 and 49 atoms for the constant 
regions on the left and right, respectively.  For the linear ramp in the center, the molecule 
selection process is influenced both by the variation in phase velocity and the variation in 
symmetry direction, resulting in variable sizes. In this case, deviation in the symmetry 
axis orientation was accepted with a tolerance of 30°. 
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Figure 4.10 Variation of phase velocity with phase angle and spatial position.  Although 
the elastic properties do not change, the gradual rotation of the symmetry axis through 
90° [Figure 4.9(a)] causes the propagation direction to vary from the symmetry axis plane 
(left) to the isotropy plane (right).  The black lines indicate the phase angles used to 
check the acceptance criteria in the PSPAW algorithm (section 4.3.1). 

 

The results of the elastic extrapolation are shown in Figure 4.11.  For reference the 

extrapolation is first performed using the ideal GPSPI operator defined by using equation 

(3-3) in its ideal form, with a basic window ("atom") size equal to the CMP interval.  

This is assumed to give the optimal result, since no windowing or interpolation is used, 

and is shown in Figure 4.11(a).  Figure 4.11(b) shows the result of using PSPAW, with 

the 6 windows of in Figure 4.9(b), to extrapolate.  Comparing the two results, it is clear 

that the PSPAW method gives the primary branch of the operator accurately, though it 

smooths some of the details associated with the edges of the gradient zone.  This makes 

sense, since the real medium has a discontinuity in the first derivative (of the symmetry 

axis direction) which is smoothed by the Gaussian windows.  An important advantage of 

PSPAW compared to full GPSPI is cost.  There is approximately a factor of 10 runtime 

difference between Figure 4.11 (a) and (b). 
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(a)  

(b)  

Figure 4.11. Extrapolation of impulse downwards by 400m through the HTI model with 
symmetry axis variation of Figure 4.9 (a).  (a) using an 'exact' GPSPI algorithm by 
forcing window sizes to be the same as the CMP spacing, and; (b) using PSPAW 
algorithm with partition of unity shown in Figure 4.9 (b).  The run-time to generate (a) 
was approximately 10 times that required for (b). 

4.4 Alternative algorithm for isotropic media: PSPI  

The algorithm described in section 4.3 is applicable to isotropic media as well as to 

HTI media.  However, an alternative approach is also possible. 

In the case of an isotropic medium, the number of parameters is reduced from 5 to 

2; namely the P- and S-wave velocities.  The phase-shift operators for each mode depend 

on only a single parameter, just as for the acoustic extrapolation problem.  In general, the 

composition and decomposition operators D and 1−D  have a coupled dependence on both 

velocities, but this coupling is weak, as discussed below.  This observation suggests that 

the PSPI interpolation approach introduced by Gazdag and Sguazerro (1984) might be 

appropriate for isotropic extrapolation.  In particular, the drawback to this method 

referred to in section 4.2.1 is significantly less important in the isotropic case. 
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In the isotropic case, the vertical slownesses (which determine the phase shifts) 

for P-wave and S-wave modes are 

 221 xP pq −= α  (4-1)  

and 

  22
21 1 xSS pqq −== β . (4-2)  

where α  and β  are the P-wave and S-wave velocities for the layer in question.1   

The P-wave and S-wave eigenvectors for an isotropic composition matrix D are 

calculated in Appendix C.  Equations (C-2) and (C-3) show that even though the 

displacement eigenvector for the P-wave is independent of the S-wave velocity, the 

traction vector is not.  Therefore, the complete eigenvector D
Pb̂ , a column vector of D, is 

dependent on the S-wave velocity. So is the corresponding row-vector D
Pĝ  in the 

decomposition matrix 1−D .  This implies that we cannot exactly decouple the handling of 

P- and S-waves within the decomposition and recomposition steps.   However, in the case 

that βγα 0= , with 0γ , the SP VV /  ratio, being constant for a given layer, the dependence 

on β  in equation (C-3) can be replaced with a further dependence on α . 

Surprisingly, perhaps, the S-wave eigenvectors given in equations (C-4) and (C-5) 

are not dependent on the P-wave velocity. 

4.4.1.1 Laterally invariant SP VV /  

If it is assumed that the SP VV /  ratio is constant within each layer, then each 

eigenvector is controlled by a single parameter – the velocity of the corresponding wave-

mode.  In this case, a “conventional” PSPI approach can be employed, as follows: 

1. Choose N reference P-wave velocities { }Nαααα ,,,, 321 …  and define N reference 

S-wave velocities based on the constant SP VV /  ratio, 0γ , by 0γαβ JJ =  for 

NJ ,,1…= .  

                                                 
1 The use of α  and β  instead of Pv  and Sv  (as used in earlier chapters) is convenient, as it makes for 
less cumbersome notation when indexing different reference values. 
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2. For each reference P-wave velocity, decompose the wavefield using the 

decomposition matrix designed with that velocity. 

3. Extrapolate P-wave and S-wave wavefields using the appropriate vertical 

slowness for that mode. 

4. Interpolate the results for both P and S wavefields at each output location based 

upon local velocity, and the two bracketing reference velocities for each mode. 

4.4.1.2 Laterally variable SP VV /  

Even if the SP VV /  ratio varies within the layer, the above algorithm, with some 

modifications, will still be accurate for all steps except for computing the P-wave 

polarization in the composition and decomposition matrices.  The modified algorithm 

begins by computing the SP VV /  ratio based upon the ratio of mean P- and S-wave 

velocities, α  and β , over the aperture required for extrapolation (in a shot migration 

scheme this can be restricted to the variation within the aperture for each shot).  That is 

 βαγ =ave  (4-3)  

Next, the ranges of P- and S-wave velocity are adjusted, as follows: 

 

( )
( )
( )
( ).,max

,max
,min

,min

maxmaxmax

maxmaxmax

minminmin

minminmin

βγαβ
βγαα
βγαβ

βγαα

ave

ave

ave

ave

←
←
←
←

 (4-4)  

This is done to ensure that the reference velocities chosen are matched via a 

constant SP VV /  ratio given by aveγ .   

The P- and S-wave reference velocities are then selected based upon the harmonic 

sampling criteria of Gazdag and Sguazzero (1984).  Since the actual SP VV /  ratio varies 

laterally, the interpolation of P- and S-wave wavefields does not always use the 

corresponding reference values.  For example, the P-wave might be interpolated using 

reference (P-wave) velocities J and J+1, whereas the S-wave might be interpolated using 
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reference (S-wave) velocities K and K+1. This is possible since the phase shift’s 

dependence on velocity is decoupled.  

For the modal decomposition and recomposition, with variable SP VV / , the 

situation is more complicated.  The composition matrix depends on both P and S 

velocities.  We do not want to compute 2N  versions of nD  and 1−
nD  corresponding to 

every possible combination of P and S velocity.  That would be prohibitively expensive.  

Instead, the corresponding reference velocities are used, so that the SP VV /  ratio is 

always aveγ .   In addition, distinct displacement-traction vectors Pb  and SHb , SVb , are 

maintained, instead of the total displacement-traction b.  The composition equation (2-

15) is then written  

 ( )

( ) ,

ˆˆˆ

SVSHP

SV

SH

P

SVSHP

v
v
v

bbb

bbb

Dvb

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

=

 (4-5) 

where only the down-going (or up-going) waves are considered (omitting the U or D 

superscript for brevity), and where Mb̂  are the eigenvectors associated with modes M, so 

that MMM v bb ˆ=  for { }SVSHPM ,,∈ .  The qualifiers SH and SV are used rather than S1 

and S2, since isotropy is assumed here.  This extra book-keeping enables the appropriate 

local velocity to be employed for each mode, as described in Appendix I.  

In the case of the P-wave, this will result in a slight error, since the decomposition 

matrix includes a dependence on the (true) SP VV /  ratio, which has been replaced by the 

average value aveγ .  Numerical tests in section 4.4.2 indicate that this error is relatively 

small for reasonable variation of SP VV / .  

4.4.2 Examples 

In this section, the PSPI algorithm described in the preceding section is applied to a 

Ricker wavelet impulse, located at an offset of 1.28km and two-way time 0.511s.  In all 

of the examples in this section, the extrapolation is done in 50 steps of 4m, to match the 
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likely use of the extrapolation within a prestack migration scheme. This is done for 

various types of medium, to test the validity of the approximations being employed, in 

particular when the SP VV /  ratio is variable.  For the sake of comparison, the limiting 

case of GPSPI is used as a benchmark.  This is generated by using equation (3-3) in its 

ideal form, with a basic window ("atom") size equal to the CMP interval.  This is 

assumed to give the optimal result possible for each model (albeit slowly), since no 

interpolation or windowing is employed. 

4.4.2.1 Single layer, constant SP VV /  

The first model, a single layer with piecewise constant ("blocky") velocity variation 

in the lateral direction, is illustrated in Figure 4.12.  The layer has a constant SP VV /  ratio 

equal to 2.  Also shown are the values of the reference velocities, as determined by the 

harmonic sampling criteria of Gazdag and Sguazzero (1984), for the case of only 3 

reference velocities. (Note that the highest S-wave velocity and the lowest P-wave 

velocity are both equal to 2km/s, and are coincident on the plot as a result). 

The results of extrapolating downwards 200m through the model are shown in 

Figure 4.13, using different numbers of reference velocities.  Comparison of the result 

using 3 velocities (b), with the exact result in (a), suggests more than 3 reference values 

are needed for this model.  The result obtained with 7 velocities (c), is not noticeably 

inferior to that obtained with 20 velocities (d), and both compare well with the exact 

result. 

In the example of this section, there is no vertical velocity variation in the medium, 

so that the PSPI algorithm in effect only operates on the phase shift, and the polarizations 

in the composition and decomposition matrices have no impact.  Next, a model with two 

layers is examined to verify accuracy of the interpolation on the decomposition and 

recomposition steps. 

4.4.2.2 Two layers, constant SP VV /  

The second model contains two layers, the top with piecewise constant velocity 

variation in the lateral direction, and the second with constant velocities is illustrated in 

Figure 4.14.  Both layers have a common constant SP VV /  ratio equal to 2.  Since this is 
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the case, the model satisfies the assumptions of section 4.4.1.1, and it is expected that 

accurate results can be obtained with the PSPI algorithm described there. 

The results are given in Figure 4.15, using: (a) the exact operator, and; (b) PSPI 

with 7 reference velocities.  A careful comparison suggests only minor differences 

between the two algorithms. 

 

 
Figure 4.12. First model for evaluation of PSPI extrapolators.  The SP VV /  ratio here is 
constant, and equal to 2.  The cyan and magenta horizontal lines show the reference 
velocities for P- and S-wave extrapolations respectively, in the case of 3 reference 
velocities. 
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(a)  

(b)  

Figure 4.13. Extrapolation of impulse at 0.511s, downwards through model of Figure 
4.12, using 50 steps of 4m each.  The exact result is shown in (a), where "exact" means 
using equation (3-3) with window sizes reduced to a single CDP, so that each spatial 
output point uses a different set of parameters for extrapolation.  Other results using PSPI 
algorithm of section 4.4.1.1, using: (b) 3 P-wave and 3 S-wave velocities; 
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(c)  

(d)  

Figure 4.13 (continued) (c) 7 P-wave and 7 S-wave velocities; (d) 20 P-wave and 20 S-
wave velocities.  Results in (b), (c) and (d) should be compared with the exact result in 
(a). 

 

This result is an important addition to the result of the previous section, since the 

transition across the boundary involves decomposition and recomposition based on 

polarizations, with interpolation of the results, as described in section 4.4.1.1.  However, 

this test was using a model with constant SP VV /  ratio, where no approximations are 

needed, so good agreement is not unexpected.  Next, the approximation for variable 

SP VV /  ratio is tested. 
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4.4.2.3 Two layers, variable (piecewise constant) SP VV /  

Figure 4.16 shows a two layer model (a), in which the first layer has variation in the 

SP VV /  ratio.  As shown in (b), the SP VV /  ratio varies between 2.0 and 3.0, and jumps 

discontinuously. 

Figure 4.17 shows the results of extrapolation in this model using the exact 

approach (a), compared with using PSPI with 7 reference velocities (b), using the 

approximate algorithm described in section 4.4.1.2.  As expected, the results are 

kinematically equivalent.  That is, the operator shapes are the same.  However, there are 

some visible differences in amplitudes along the impulse responses.  These are evident 

most noticeably on the second branch of the S-wave operator, a part of the operator 

which corresponds to mode conversion from P to S.  The error in the PSPI operator in (b) 

is believed to be caused by the approximation error on the P-wave decomposition as 

described in section 4.4.1.2, and Appendix I [see equation (I-2)]. 

 

 
Figure 4.14. Two layer model with constant  SP VV /  ratio in both layers, used to test 
algorithm of section 4.4.1.1.  The results of extrapolation through this model are shown in 
Figure 4.15. 
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(a)  

(b)  

Figure 4.15. The results of extrapolation in model of Figure 4.14. The "exact" solution, 
using equation (3-3) with windows equal to the CDP interval, is shown in (a). The 
solution using the approximation of section 4.4.1.2 with 7 reference velocities is shown in 
(b). 
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(a)  

(b)  

Figure 4.16. Two layer model (a) with variable  SP VV /  ratio in top layer (b), used to test 
effect of approximation in section 4.4.1.2.  The results of extrapolation through this 
model are shown in Figure 4.17. 
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(a)  

(b)  

Figure 4.17. The results of extrapolation in model of Figure 4.16. The "exact" solution, 
using equation (3-3) with windows equal to the CDP interval, is shown in (a), the 
solution using the approximation of section 4.4.1.2 with 7 reference velocities is shown in 
(b). 

4.4.2.4 Two layers, variable (continuous) SP VV /  

The final example is also a two layer example, with variable SP VV /  ratio in the 

upper layer.  However, in this case the velocities vary continuously, without any jumps, 

and the SP VV /  ratio varies between 2.0 and 2.5 (see Figure 4.18). 

The extrapolation results are shown in Figure 4.19.  As before, the comparison is 

between the exact result (a) and the result of PSPI with 7 reference velocities (b).  In the 

absence of discontinuous velocity changes, the approximation of section 4.4.1.2 appears 

to give results which are very close to the exact operator. 
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4.5 Chapter summary 

In this chapter the algorithmic details of isotropic and anisotropic elastic wavefield 

extrapolation using PSPI methods have been explored.  Two alternative approaches to 

handling lateral heterogeneity have been presented, the first based upon spatial 

windowing functions, and the second more closely related to the conventional PSPI 

interpolation of velocities, commonly used in scalar wavefield extrapolation. 

Because of the higher dimensionality of parameter space, the only viable option for 

anisotropic extrapolation is believed to be the use of spatial windowing functions.  These 

are designed adaptively using Gaussian basis functions or "atoms".  The choice of the 

Gaussian is motivated by some of its desirable mathematical properties such as optimal 

localization (defined as satisfying the Heisenberg uncertainty limit), smoothness and 

natural isotropy when extended to multiple spatial dimensions.  The basic atoms are 

combined into "molecules", using acceptance criteria based upon restricting variation of 

phase velocity and of the symmetry axis within each such molecule. 

For isotropic extrapolation, an alternative approach has been proposed.  This 

approach exploits the approximate separability of the operator dependence on the P- and 

S-wave velocities. This allows an essentially conventional PSPI algorithm, but with 

implicit interpolation of the decomposition and recomposition steps.  The algorithm is 

accurate for constant SP VV /  ratio within each extrapolation step, and numerical 

examples suggest the approximation involved for a variable SP VV /  ratio is acceptable. 
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(a)  

(b)  

Figure 4.18. Two layer model (a) with variable  SP VV /  ratio in top layer (b), used to test 
effect of approximation in section 4.4.1.2.  Both P-wave and S-wave velocities have 
linear gradients in the top layer.  The results of extrapolation through this model are 
shown in Figure 4.19. 
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(a)  

(b)  

Figure 4.19. The results of extrapolation in model of Figure 4.18.  The "exact" solution, 
using equation (3-3) with windows equal to the CDP interval, is shown in (a), the 
solution using the approximation of section 4.4.1.2 with 7 reference velocities is shown in 
(b). 
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CHAPTER FIVE: ELASTIC SHOT RECORD MIGRATION 

5.1 Introduction 

In this chapter, the extrapolation methods developed in the preceding three chapters 

are used to construct an elastic wave-equation shot record migration algorithm.   

Wave-equation migration fundamentally consists of two steps, wavefield 

extrapolation and imaging.  Of these, wavefield extrapolation is the most demanding, 

both theoretically and computationally.  Elastic wavefield extrapolation has been 

described in chapters 2 to 4.  A key additional step discussed in the present chapter is the 

imaging condition.  This has much in common with standard scalar migration imaging 

conditions, but some subtleties arise due to the different propagation modes involved. 

Further algorithmic aspects, which are obvious adaptations of existing methods for 

scalar migration, are briefly discussed here: anti-aliasing of the imaging condition; 

interpolation to finer output sampling in depth; and split-step (or phase-screen) 

corrections. 

The shot-record migration is used to generate impulse responses for different 

configurations, and is tested on a synthetic example with an HTI layer inserted between 

two isotropic layers. 

5.2 Migration operator design 

5.2.1 Imaging condition 

During elastic wavefield extrapolation the displacement wavefield is decomposed 

into three wave-modes P, S1 and S2, in each layer.  To distinguish between the source 

wave-modes and the receiver wavefields, the notation of previous chapters is modified 

slightly.   For forward extrapolation of the down-going wavefield from the source, the 

vector of wave-mode amplitudes is given by 

 ( ) srcDD
TD

S
D
S

D
PD www ,

1
21 bDw −== . (5-1) 

For backward extrapolation of the up-going wavefield from the receiver, they are 

given by the wave-mode vector 
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 ( ) rcvUU
TU

S
U
S

U
PU vvv ,

1
21 bDv −== . (5-2) 

In these and subsequent equations, the layer subscript n is omitted, while sub- and 

superscripts U, D, src and rcv are used to distinguish up-going from down-going, and 

shot from receiver wavefields. The wave-mode amplitude wavefields, Dw  and Uv  are 

by-products of the extrapolation of shot and receiver wavefields using equations (3-3). 

The goal of elastic migration, assuming a P-wave source, is to produce images 

corresponding to P-P reflectivity, and P-S reflectivity for the isotropic case, or P-S1 and 

P-S2 reflectivity for the HTI case.1  To obtain these images, an imaging condition must 

be applied.  Two types of imaging condition are possible: a correlation imaging 

condition; and a deconvolution imaging condition. 

5.2.1.1 The correlation imaging condition 

A correlation imaging condition between the corresponding elements of equations 

(5-1) and (5-2) is written 

 ( ) ( ) ( ) ωωω
ω

dzxvzxwzxI U
N

D
M

corr
MN ∫=

max

0

. ,,,,, ,  (5-3) 

where MNI  is the image for down-going mode M, and up-going mode N, where 

{ }.2,1,, SSPNM ∈  The overscore here denotes complex conjugation. 

5.2.1.2 The deconvolution imaging condition 

A deconvolution imaging condition (Claerbout, 1971) is written 

 ( ) ( ) ( )
( )

ω
εω

ωω
ω

d
zxw

zxvzxwzxI
D
M

U
N

D
Mdecon

MN ∫ +
=

max

0

2
.

,,

,,,,,  ,  (5-4) 

where the division is stabilized by the addition of the small real value,ε .  

In principle the deconvolution imaging condition is preferable.  Claerbout defines 

the amplitude of a reflector as the ratio of the upgoing reflected wavefield to the 

downgoing incident wavefield, which leads to (5-4).   The division by the source 

                                                 
1 Additional images such as S1-S2 are also possible, if the source generates shear energy. 
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wavefield spectral density term ( ) 2
,, ωzxwD

M  corresponds to correcting for the 

geometrical spreading of the source wavefield, which would otherwise remain present in 

the image.  This leads to an operator which is asymmetric in amplitude, even when 

dealing with pure modes. Geiger (2001) placed the deconvolution imaging condition 

within the context of linear estimation theory, and showed that the integral in equation 

(5-4) corresponds to forming a least-squares estimate from measurements of frequency 

dependent reflectivity.  The main disadvantage of the deconvolution imaging condition is 

the risk of small values for some frequencies in the denominator.  This is addressed in 

equation (5-4) by the addition of the "white noise" stability term, ε. 

The correlation condition, on the other hand, is less ambitious.  The correlation 

condition relinquishes the goal of recovering the true amplitude, in favour of robust 

estimation of the phase response of the reflector. 

5.2.2 Split-step correction 

Both the PSPI and PSPAW algorithms described in chapter 4 are implemented with 

a split-step correction (Stoffa et al., 1990), also known as phase-screen (Fisk and 

McCartor, 1991; Huang et al., 1999).  The split-step correction improves the accuracy of 

extrapolation for small angles.  This is done by applying a residual phase shift in the 

spatial domain to correct for the difference between the reference and actual velocities.  

This is also referred to as the "thin lens" correction. A related wavefield interpolation (Fu, 

2004) is applied, to enable image output at finer depth sampling than the extrapolation 

step. 

For application of the split-step correction in anisotropic extrapolation, only the 

zero angle ( 0=θ ) phase velocity is corrected for – since it is this velocity which is 

applicable to the vertical static shift applied.  A consequence is that any variations in the 

anisotropy parameters that leave the zero angle phase velocity unaltered will have no 

effect on the split-step correction, and are in that sense "invisible". 

5.2.3 Image condition aliasing 

Zhang et al. (2003) point out that there is an often neglected operator aliasing effect 

in prestack wave-equation migration.  This effect occurs because the source and receiver 
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wavefield are cross-correlated (or deconvolved, if a deconvolution imaging condition 

is used) according to corresponding image point locations in the extrapolated wavefields.  

The correlation is applied in the spatial domain after applying inverse Fourier transforms. 

Correlation involves a series of multiplicative operations.  Since multiplication in the 

spatial domain is equivalent to convolution in the wavenumber domain, there is an 

associated risk of wrap-around to wavenumbers which are twice the Nyquist 

wavenumber.  Zhang et al. (2003) correct for this effect by generating output at half of 

the receiver interval, so that the spatial Nyquist wavenumber for the image is twice that 

of the extrapolated wavefields.  This anti-aliasing procedure has been applied in the 

elastic migration algorithm of this chapter. 

5.2.4 Source Green's function 

Care is needed when generating the down-going source wavefield, according to the 

type of source function being modelled.  As shown in Wapenaar (1990), the one-way 

representation for a monopole source function, such as an airgun marine source, is found 

by convolving the source function by an "inverse square root operator":  defined by 

division of the source function (a bandlimited impulse) by the vertical wavenumber for 

each mode, )(M
zk  on the first extrapolation step.  If this step is neglected, there are angle 

dependent amplitude errors, and more obviously a 90° phase error. 

However, if the source to be modelled is a dipole source, corresponding to a vertical 

force such a vibroseis, then this correction is not required (Wapenaar, 1990). 

5.2.5 Repolarization steps 

The term "repolarization step" is used to indicate the combination of recomposition 

and decomposition (to and from the displacement-stress form), across a boundary, as 

described by equations (2-15) and (2-16).  In previous chapters, these repolarization steps 

have been described as being applied after every extrapolation step.  However, for 

practical implementation within a shot migration algorithm (in which the extrapolation 

steps are generally small in size), repolarization steps are not carried out at every depth 

level, for both stability and efficiency reasons. 
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5.2.5.1 Stability 

To understand the stability issue, recall from Chapter 2 that we can define an 

interface propagator ABW , for a change of medium, by a product of the composition 

matrix for medium A, DA, and the decomposition matrix for a different medium B, 1−
BD , 

(i.e. ABAB DDW 1−= ).  The stability issue arises near the evanescent cut-off, where the 

product ABW , becomes ill-conditioned.  Although ABW  is not singular (in fact the 

determinant is unity), it has a very large condition number1 at this point.  This results in 

numerical instability if the medium is rapidly changing.  A discontinuous lateral change 

in the parameters of the medium is sufficient to cause this, since some amount of energy 

propagates across the lateral boundary on every depth step.  This produces a growth in 

amplitude in the area between the evanescent cut-offs for media A and B. The amplitude 

growth appears to be polynomial, since the interface propagator is effectively multiplied 

by itself on every depth step.  This problem is mitigated, but not solved, by the use of 

complex velocities as described in section 2.2.3.    

A practical solution to the problem is to reduce the frequency of the repolarization 

steps to every few depth steps.  This allows the evanescent suppression, which is 

exponential, to counteract the polynomial growth due to the ill-conditioning.  Ten steps 

appear to be adequate, based on empirical tests.  A model with a sharp contrast in 

medium parameters is tested in section 5.3.2.1, demonstrating instability using 5 depth 

steps. 

5.2.5.2 Efficiency 

A second reason for applying the repolarization step sparingly is cost.  For an 

isotropic medium test with seven reference velocities, the cost of the repolarization step 

averages approximately eight times the cost of an extrapolation step alone.  The details of 

cost depend on a number of variables, and the implementation in Matlab is not 

necessarily the most efficient possible. Nevertheless, it is assumed that the relative cost of 

a repolarization step and a pure extrapolation step are reasonably reflected by these  

                                                 
1 The condition number of a matrix is the ratio of maximum to minimum eigenvalues  
Strang, G., 1988, Linear Algebra and its Applications, Harcourt Brace Jovanovich. 
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figures. 

In the examples of this chapter, repolarization was performed at every 10th depth 

step, or every 100m of depth.  In between these repolarization steps, the extrapolation 

proceeds as independent scalar extrapolations for P, S1 and S2 wavefields [see equations 

(2-17) and (2-18)]. For the fault planes, this has the effect of approximating the dips by a 

"stair-case" with each step having a 100m depth.  The accuracy of this approximation, 

and the possibility of better approximations, have not been addressed within this thesis. 

They would be a fruitful avenue for further investigation. 

5.3 Impulse responses 

The impulse response of a linear system can be considered to provide a complete 

description of the system's behaviour.  This is true because the response of the system to 

an arbitrary input is derived by a linear superposition of the impulse responses weighted 

by the components of the input, and can be described by (possibly multidimensional) 

convolution. 

When generating impulse responses for conventional (scalar) migration, the 

impulse response depends upon the shot-receiver offset, and on the time of the impulse 

(as well as the model of course).   When impulse responses for elastic migration are 

generated, there are four further variables: (1) the source component excited; (2) the 

receiver component to which the impulse is assigned; (3) the wave-mode on the source 

side, and; (4) the wave-mode on the receiver side.  The first two might be considered as 

data space variables, and the second two as image space variables.  The kinematics of the 

impulse response depend on the wave-modes, and not the components excited.  However, 

the impulse response dynamics (amplitudes) do depend on the components excited.  For 

example, an impulse on the vertical component for a vertical source excitation, gives 

responses on the P-wave and S-wave images which differ from those arising from an 

impulse on the horizontal inline component for the same source.   

For this reason, observing the full characteristics of the operator would require 

examination of impulse responses for 3 source directions, and 3 receiver directions, and 

for each of these, potentially 9 different mode combinations involving P, S1 and S2 for 

source and receiver side.  Such exhaustive analysis is unlikely to lead to a deeper 



 

 

120

120

understanding of the migration, and in any case would be unwieldy.   The impulse 

responses shown within this section are chosen selectively instead, to illustrate certain 

key points.   

All the impulse responses are generated using a bandlimited representation of an 

impulse, a Ricker wavelet with dominant frequency of 60Hz. 

5.3.1 Isotropic homogeneous model 

Impulse responses are generated for an offset of 512m, with an impulse at a two-

way time of 510 ms.  Even the simplest of models, for a medium which is homogeneous 

and isotropic, gives impulse responses which have some interesting, and perhaps 

unexpected, features.  It is worth considering these before moving on to the more 

complex examples of HTI media.  Doing so helps us to distinguish between those 

features which are associated with elastic migration operators in general, and those which 

are specifically related to anisotropy. 

The impulse response can be regarded as the set of all possible reflector positions 

and amplitudes which cause the observed impulse to be present on the seismic trace for 

this particular offset and time. Consider Figure 5.1, which depicts the P-SV reflections 

from possible reflectors in the earth.1  Two reflector segments, labelled A and B, are 

assumed to lie on the isotime surface corresponding to our impulse time. 

 

                                                 
1 Recall that the SV mode is the shear-wave mode which is polarized in the plane of propagation, and is 
coupled to the P-wave mode, for isotropic media. 
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Figure 5.1. Reflection polarities associated with a positive impulse on the vertical 
receiver.  The convention assumes that a positive P-P reflection coefficient is represented 
as a positive impulse (that is, as an upward motion at the receiver).  Using this 
convention, a negative P-SV reflection coefficient at A would produce the SV particle 
motion shown, corresponding to a positive peak on the vertical receiver.  However, at 
point B, a positive P-SV reflection coefficient would be required to produce upwards 
motion at the receiver. 

 

In order for the amplitude of an impulse from the vertical source and vertical 

receiver to be positive, and also to correspond to a P-SV reflection, a possible reflection 

is one with a negative reflection coefficient on segment A.  This would give rise to the 

SV wave polarized as shown along the dot-dash raypath. This has an upward component 

of vertical particle motion at the receiver.  Alternatively, if the actual reflection occurs at 

B, then it must be positive, giving rise to the SV wave polarized as shown along the 

dotted raypath.   This again has an upward component of vertical particle motion at the 

receiver, as required.   From this observation, we would expect that the impulse response, 

which includes all possible reflection positions and their corresponding reflection 

coefficients, must change polarity between A and B.  In fact the position of polarity 

change lies directly below the receiver, since it is here that the change in the sense of SV 

polarization is required, in order to preserve the vertical particle motion.  Similar 

reasoning leads one to expect polarity changes associated with the source position for 

mode combinations which have down-going SV. 
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In Figure 5.2, these effects are seen on an impulse response which has been 

generated using the elastic shot migration, for a vertical source and vertical receiver.  In 

this, and all subsequent impulse responses, the shot and receiver positions are indicated 

by an asterisk and a triangle, respectively.  For comparison, Figure 5.3 shows the impulse 

response for a vertical source and horizontal receiver.  Once again, the polarity changes 

of the impulse response can be understood by considering the signs of reflection 

coefficient required to generate positive horizontal particle motion at the receiver, for 

different reflection positions. 

For vertical source and receiver polarizations, using a correlation imaging 

condition, the operator displays the following symmetries: 

Both pure mode images (P-P and SV-SV) have impulse responses which are 

symmetric about the source-receiver midpoint, both kinematically and dynamically (i.e. 

in amplitude) [see Figure 5.2 (a) and (d)]. 

The P-SV and SV-P impulses responses are symmetric about the midpoint, with 

respect to each other.  In other words, if the modes are interchanged, and the impulse 

response is simultaneously reflected about the midpoint, then the net result is unchanged. 

For a vertical source and horizontal receiver, no such symmetries are immediately 

apparent.  However, the vector reciprocity principle (Thomsen, 1999) implies that if this 

is compared with an impulse response from a horizontal source and vertical receiver, 

certain symmetries should be observed.  The impulse response for this configuration is 

shown in Figure 5.4.    We can observe reciprocity relationships between: P-P responses 

[Figure 5.3(a) vs. Figure 5.4(a)]; P-SV and SV-P responses [Figure 5.3(b) vs. Figure 

5.4(c) and Figure 5.3(c) vs. Figure 5.4(b)]; and SV-SV responses [Figure 5.3(d) vs. 

Figure 5.4(d)].1 

Some features are specific to the isotropic homogenous case.  The pure mode 

responses, P-P [e.g. Figure 5.2(a)] and SV-SV [e.g. Figure 5.2(d)] are elliptical responses, 

with source and receiver at the foci, as is the case for a scalar migration in a homogenous 

                                                 
1 In fact, there is an additional multiplication by -1 between corresponding images.  This results from the 
fact that the act of interchanging source and receiver roles is not exactly a mirror image operation.  The 
horizontal orientation of the source in Figure 5.4, and the receiver in Figure 5.3, both point in the same 
direction.  A true mirror image reflection would have them pointing in opposite directions. 
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medium.  Furthermore, in none of these impulse response examples is an SH-wave 

response generated by the impulse.  For isotropic media (and also for VTI media) the SH-

wave is not coupled to the P-wave or the SV-wave. Instead, it can only be generated by 

an impulse polarized in the direction orthogonal to propagation, i.e. parallel to the y-axis. 

An interesting point to note is that both kinematic and dynamic (amplitude) reciprocity 

hold true for the correlation imaging condition of equation (5-3).  This occurs because the 

source and receiver wavefield are treated symmetrically in the correlation imaging 

condition. 

5.3.1.1 Deconvolution imaging condition impulse response 

Use of a deconvolution imaging condition rather than a correlation imaging 

condition has a similar impact as for the scalar migration case. The operator no longer 

displays dynamic reciprocity, since the source and receiver wavefields are not treated 

symmetrically in equation (5-4).  Figure 5.5 shows the P-P (a) and P-SV (b) responses for 

a vertical source and a vertical receiver impulse, using the deconvolution imaging 

condition.  These should be compared with Figure 5.2 (a) and (b).  
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(a)  

 

(b)  

Figure 5.2. Impulse response, using correlation imaging condition, for isotropic medium 
with VP=3000m/s and VS=1500m/s.  The source position is indicated by the '*', the 
receiver by the '∇'. The impulse is for a vertical source and vertical receiver component.  
Different mode combinations are (a) P-P; (b) P-SV; (c) SV-P, and; (d) SV-SV.  There is 
no response for SH (either shot or receiver) in this case, since the impulse has no out of 
plane component. Polarity changes occur at locations, indicated by the arrows, where the 
vertical component of shear-wave particle motion changes sign. (see Figure 5.1 for an 
explanation of the P-SV case). 
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(c)  

 

(d)  

Figure 5.2 (continued) 
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(a)  

 

(b)  

Figure 5.3. Impulse response, using correlation imaging condition, for isotropic medium 
with VP=3000m/s and VS=1500m/s.  The impulse is for a vertical source and horizontal 
receiver component.  Compare with Figure 5.2, the impulse response for a vertical 
receiver.  In this case, polarity changes occur - at the position of the receiver - when the 
horizontal component of particle motion changes sign: on the P-P image (a), and SV-P 
image (c).   
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(c)  

 

(d)  

Figure 5.3 (continued) 
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(a)  

 

(b)  

Figure 5.4. Impulse response, using correlation imaging condition, for isotropic medium 
with VP=3000m/s and VS=1500m/s.  The impulse is for a horizontal source and vertical 
receiver component.  Compare with Figure 5.3, the impulse response for a vertical source 
receiver and horizontal receiver.  In particular observe reciprocity relations between: P-P 
responses [Figure 5.3(a) vs. Figure 5.4(a)]; P-SV and SV-P responses [Figure 5.3(b) vs. 
Figure 5.4(c) and Figure 5.3(c) vs. Figure 5.4(b)]; and SV-SV responses [Figure 5.3(d) 
vs. Figure 5.4(d)]. 
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(c)  

 

(d)  

Figure 5.4 (continued) 
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(a)  

 

(b)  

Figure 5.5. Impulse response, using deconvolution imaging condition, for isotropic 
medium with VP=3000m/s and VS=1500m/s.  Only mode combinations P-P (a) and P-SV 
(b) are shown.  Compare with Figure 5.2 (a) and (b). 



 

 

131

131

5.3.2 Isotropic laterally inhomogeneous model 

Consider the vertically homogeneous, isotropic medium, with lateral variations of P 

and S velocity as shown in Figure 5.6.  This model is used to illustrate two aspects of the 

elastic operators: the effect of the repolarization steps and the split step correction. 

 

 
Figure 5.6. Lateral variation of P and S velocities for impulse response tests. 

 

5.3.2.1 Repolarization  

The repolarization step is used to repartition energy from P to S, and back, in the 

isotropic case (it has a more important role in repartitioning energy between S1 and S2 

modes for the HTI case).  One effect of this is that lateral changes in velocity result in 

some local mode conversion in propagation.  Figure 5.7 illustrates the impulse response 

for the vertically homogeneous but laterally inhomogeneous medium of Figure 5.6, 

without applying any repolarization steps (except for the initial decomposition at the 

surface).  In other words, the migration in this case uses pure scalar extrapolation, after 

the initial wavefield decomposition. 
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Compare this example with Figure 5.8.  This shows the impulse response from 

migration with repolarization after every 10 depth steps.  The repolarization steps here 

have the effect of including a "shadow" SV-SV response on the P-SV response.  The 

most plausible explanation for this shadow is that SV down-going energy is being 

momentarily converted into P-wave energy at the velocity contrast location, before being 

included in the P-SV imaging condition. The net result is an event with the kinematics of 

the SV-SV response, but which is registered on the P-SV section.  The converse can also 

occur. This explains the presence of a P-SV shadow on the SV-SV section. 

As discussed in section 5.2.5.1, applying repolarization too frequently can lead to 

instability in the presence of strong medium contrasts, such as that of Figure 5.6.  In 

Figure 5.9, the migration impulse response is generated using a repolarization step after 

every five depth steps.  This results in an unstable extrapolation, due to the poor 

condition number of the interface propagator used near the evanescent boundary.  

Remedial steps are possible, such as smoothing the velocity field, as shown in Figure 

5.10.  This mitigates the problem (Figure 5.11), by effectively reducing (locally) the size 

of velocity contrast.   However, this is at the undesirable cost of seriously limiting lateral 

resolution.  It seems preferable to accept the limitation on the frequency with which 

repolarization can be applied. 
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(a)  

(b)  

Figure 5.7.  Impulse response using two reference velocities, but omitting repolarization 
steps.  After initial wavefield decomposition at the surface, the P and S modes are 
extrapolated independently. 
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(a)  

(b)  

Figure 5.8.  Impulse response using two reference velocities, with repolarization steps 
every 10 extrapolation steps.  The repolarization steps permit the conversion of P to S and 
vice versa at the vertical boundary.  This results in an "echo" of the SV-SV response 
present on the P-SV response (a), due to local mode conversion of S-wave energy to P-
wave energy at this interface.  Similarly there is an echo of the P-SV impulse response on 
the SV-SV response.  Compare with Figure 5.7, where no echos are present. 
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(a)  

(b)  

Figure 5.9.  Impulse response using two reference velocities, with repolarization steps 
every 5 extrapolation steps.  The transmission of energy across the boundary and poor 
condition number of the interface propagator near the evanescent boundary causes an 
unstable response.  For less frequent repolarization steps, this is suppressed by the 
evanescent damping (Figure 5.8). 
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Figure 5.10. Lateral variation of P and S velocities by smoothing velocities in Figure 5.6, 
using a 20 point Gaussian window. 

 

5.3.2.2 Split-step correction 

Figure 5.12 compares the impulse response generated for this medium using a 

single reference velocity with a split-step correction (b), with the "exact" impulse 

response from PSPI with two reference velocities (a).  The split-step correction gives 

accurate results for the small dips, but is inaccurate at larger dips.  In practice, it is 

applied in conjunction with PSPI or PSPAW to improve the accuracy of the operators in 

the presence of rapid velocity variations. 
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(a)  

(b)  

Figure 5.11. Impulse response for smoothed velocity model of Figure 5.10, with 
repolarization steps every 5 extrapolation steps, using seven reference velocities.   The 
instability is suppressed, but at the expense of sacrificing lateral resolution. 
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(a)  

(b)  

Figure 5.12.  Impulse responses using only a single reference velocity with a split-step 
correction, for medium in Figure 5.6.  Compare with PSPI using two reference velocities 
Figure 5.7 and Figure 5.8.  The reference velocity used for the split-step correction is the 
harmonic mean of the two velocities. Split-step correction is accurate for small dips. 
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5.3.3 HTI homogeneous model, with symmetry axis parallel to line direction  

The introduction of HTI anisotropy creates a number of effects.  These will now be 

now examined. 

First, the case where the axis of symmetry is aligned with the propagation plane is 

considered, as shown in Figure 5.13.  This means that we can think in terms of an S2-

mode which is equivalent to a (quasi-)1 SV-mode, and an S1-mode which is equivalent to 

a SH-mode.  If the axis of symmetry was orthogonal to the plane of propagation, then 

these identifications would be reversed. 

Figure 5.14 shows the impulse response for a vertical source and vertical receiver 

in an HTI medium with parameters of Table 2.1.  The most significant changes from the 

isotropic impulse response is the non-elliptical shape of the pure mode responses [(a) and 

(d)], and the presence of triplications in the shear-waves [(b), (c) and (d)].  Triplications 

arise whenever the phase-slowness surface has a concavity.  This is the case for SV-mode 

propagation in the plane containing the symmetry axis, using the parameters of Table 2.1, 

as can be seen from Figure 2.3. The subject of phase-slowness concavity and 

corresponding triplication in the impulse response is explored in Dellinger's (1991) Ph.D. 

thesis, Appendix B. 

For a symmetry axis parallel to propagation direction, the HTI impulse response 

shares many attributes with the isotropic case.  For example, the reasoning illustrated in 

Figure 5.1 is still valid, and polarity reversals occur at the shot or receiver coordinate 

associated with down-going or up-going SV-wave modes respectively [Figure 5.14 (b)-

(d)].  As for the isotropic and VTI cases, for this choice of HTI symmetry axis, the SH-

wave mode is not coupled to P- or SV-wave modes. An impulse polarized within the 

propagation plane generates only P- and SV-wave modes.2  To generate a pure SH-wave, 

an impulse on the Y- (crossline-) source and receiver component is needed.  Figure 5.15 

illustrates the resulting SH-wave impulse response, using the same parameters as for 

                                                 
1 The term quasi- is technically necessary for anisotropic media, as discussed in section 1.2.2.  However, 
for brevity it will be omitted in the remainder of this chapter.  
2 In section 5.3.4, it will be seen that this behaviour is not true for an arbitrarily oriented symmetry axis.   
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Figure 5.14.  Unlike the SV-wave, there are no concavities in the SH-wave phase 

velocity, and there are therefore no triplications present in the impulse response. 

5.3.4 HTI homogeneous model, with symmetry axis at 45° to line direction  

Let us now consider the case of an HTI medium with a symmetry axis rotated in the 

horizontal plane by 45°, relative to the line direction, as depicted in Figure 5.16. 

The resulting impulse response is shown in Figure 5.17, once again using vertical source 

and receiver components.  Only the P-wave mode source responses are shown.  In 

contrast to the previous example, both S1 and S2 responses are generated from the P-

wave mode source, due to the coupling between all three modes.  The S1-P and S2-P 

images (not shown) are related to the P-S1 (b) and P-S2 (c) responses respectively by 

symmetry about the midpoint.   

Consideration of the corresponding phase velocity curves in Figure 2.4 indicates 

that there are no concavities in either S1 or S2 phase slowness curves. Consequently, no 

triplications are observed in the impulse response.  See Dellinger's (1991) Ph.D. thesis for 

a very thorough illustrated analysis of the relationship between the 3-dimensional 

anisotropic phase-slowness surfaces and the 2-dimensional slices through them, which 

determine the presence or absence of features such as triplications.  
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Figure 5.13. Symmetry axis oriented parallel to inline direction (plane of propagation). 
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(a)  

(b)  

Figure 5.14. Impulse response, for HTI medium with stiffness coefficients given in Table 
2.1, and symmetry axis parallel to line direction.  The impulse is for a vertical source and 
vertical receiver component.  Mode combinations P-P (a), P-S2 (b), S2-P(c) and S2-S2 
(d) are shown.  Since the plane of propagation contains the symmetry axis, the S2 mode 
could also be considered as an SV mode.  Triplications occur due to VTI-type behaviour 
of phase velocity in symmetry axis plane. 
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(c)  

(d)  

Figure 5.14 (continued) 
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Figure 5.15. Impulse response, with parameters as in Figure 5.14 , but using crossline (Y) 
source and receiver components. Since the plane of propagation contains the symmetry 
axis, the S1 mode could also be considered as an SH mode, and is decoupled from the P 
and S1 modes.   
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Figure 5.16. Symmetry axis oriented in the horizontal plane 45° from inline direction 
(propagation is parallel to the x-z plane). 
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(a)  

(b)  

Figure 5.17. Impulse response, for HTI medium with stiffness coefficients given in Table 
2.1, and symmetry axis rotated in the horizontal plane by 45° relative to line direction.  
The impulse is for a vertical source and vertical receiver component.  Mode combinations 
P-P (a), P-S1 (b) and P-S2 (c) are shown.   
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(c)  

Figure 5.17 (continued) 

 

5.4 Migration of HTI modeled data 

The elastic shot-record migration developed in this chapter, based upon the 

PSPAW extrapolators of Chapter 4, has been tested on a synthetic HTI dataset.  This was 

modelled using the pseudospectral technique, as used for the example in Chapter 2.  A 

description of the 3-D pseudospectral modeling algorithm used is given in Bale (2002a; 

2002b; 2003).  A 2-D version of the code has been applied here. 

The model and geometry for the test are shown in Figure 5.18. 

5.4.1 Extrapolated wavefields  

During migration, the extrapolated wavefields are extracted at several depth 

positions to illustrate the gradual resolution of the shear-wave splitting.  The positions 

displayed are indicated by the dashed lines marked A, B and C, in Figure 5.18.  Depth 

level A (500m) lies at the interface between the isotropic medium and the left side of the 

faulted HTI layer.  Similarly depth level B lies at the upper interface for the middle 

portion of the HTI layer, and depth level C at the upper interface for the right side of the 

HTI layer.   
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Figure 5.19 shows the P-wave source wavefield (a), and the three modes, P, S1 

and S2, of the receiver wavefield (b-d) at the depth step at A in Figure 5.18.  The position 

of the downgoing source wavefield is indicated by the dashed line on each wavefield.  

Where this coincides with the downward extrapolated receiver wavefield, an image of the 

reflector at the left side of level A is formed.  Interestingly, there is energy on both S1 

and S2 wavefields corresponding to this reflection, but not on the P wavefield (b).  This is 

a result of the relative asymmetry of the S-wave raypaths and the aperture of the receiver 

spread.  Since the reflector is flat, the P-wave specular1 reflection would take place at 

source-receiver midpoints.  However none of the source-receiver midpoints for this 

source lie on the reflector.  As pointed out by Bleistein et al., (2001, p.152),  non-specular 

energy is generated from an interface, but is significantly lower in amplitude (in the high 

frequency limit) than the specular ray.  On the other hand P-S wave conversions have 

asymmetric raypaths which permit specular reflections on this reflector for the source 

position and some of the left-most receivers. 

To see the impact of progressing from the isotropic layer into the HTI layer, the 

wavefield is plotted at each horizontal boundary of this layer.  This is done for two depth 

steps: one just on the interface, and one after transmission through it.  For example, 

Figure 5.19 shows the entire wavefield just above level A (i.e. still in the isotropic layer), 

whereas Figure 5.20 shows the shear-wave parts of the wavefield just after crossing level 

A, such that the left-hand side of the wavefield has entered the HTI medium.  Similarly 

Figure 5.21 and Figure 5.22 show the wavefield just above and just below level B 

respectively.   The size of the depth step is 10m.  Since the difference is only a single 

depth step, the kinematic effects are minor.  However, careful comparison of the S1 and 

S2 wavefields on either side of each boundary shows the impact of the repolarization 

steps in the elastic extrapolators. 

 

                                                 
1 According to Webster's online dictionary specular means "Capable of reflecting light like a mirror".  It is 
used in geometrical optics and in seismology to specify those ray-paths which have incident and reflection 
angles which obey Snell's law at the reflector.  For P-P reflections this implies that the angle of incidence is 
equal to the angle of reflection.  For P-S reflections, the S-wave ray generally has an angle which is less 
than the P-wave angle, leading to a reflection closer to the receiver for a flat reflector. 
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Figure 5.18. Model for synthetic tests.  Top (blue) and bottom two (orange and red) 
layers are isotropic.  Middle, faulted layer is HTI, with parameters based on those in 
Table 2.1, but with spatial variation of density: the left block has ρ = 2300kg/m3; the 
middle block has ρ = 2200kg/m3 and the right block ρ = 2100kg/m3.  The receiver line, 
extending from 560m to 4560m with 10m receiver spacing, is indicated by black dots on 
the surface.  Shot positions range from 160m to 4960m, and have a 10m interval.  The 
shot at 2560m is indicated by the asterisk. The extrapolated wavefield from this shot is 
examined, in subsequent figures.  The three dashed horizontal lines labelled A, B and C, 
are the depth levels referenced in later figures. 

 

The shear-wave arrivals measured at the surface are complicated due to the shear-

wave splitting in the HTI layer.  As the downward extrapolation proceeds, these 

wavefields become gradually simplified as the rotation implicit in the operator isolates 

the S1 and S2 arrivals onto their respective components (Figure 5.20, Figure 5.22).  The 

black solid arrows indicate shear-wave arrivals of interest.  Compare the top arrows (at 

approximately 1.3 seconds) for the wavefield just above level A [Figure 5.19(c), (d)] with 

the corresponding wavefield just below level A [Figure 5.20(a), (b)].   These arrows 

indicate energy which has been converted to shear waves at the bottom of the left block 

in the faulted layer.  Where double S-wave events are observable in both of the first two 

sections, these have been resolved into single events on the S1 and S2 sections, in Figure 



 

 

148

148

5.20.  Similarly the bottom arrows in these two figures indicate energy reflected from 

the reflector at 1700m depth, which has become split on passage through the left block of 

the faulted layer.  Once again, the double events on the section just above level A are 

resolved into single events on the S1 and S2 section, after crossing the boundary. 

Figure 5.21 and Figure 5.22 show the same effect on the split shear-wave energy 

for the middle block of the faulted layer, by examining the wavefield just above and just 

below level B.   

Finally, the shear-wave sections immediately above and below level C are shown in 

Figure 5.23 and Figure 5.24, respectively.  These show the same effect on the shear 

waves which have propagated through the right-hand block of the HTI faulted layer. 

5.4.2 Migration images 

Figure 5.25 illustrates the migrated images that result from application of the elastic 

shot record migration algorithm on the HTI modeled data.  The correlation imaging 

condition has been used.  Although the deconvolution condition is theoretically superior 

for amplitude recovery, it was found to generate unwanted artifacts in the shallow part of 

the section.  The elastic migration used the exact model shown in Figure 5.18, with a 

depth step of 10m and repolarization (composition-decomposition) steps every 100m.   

In addition to the P-P image in (a), two separate P-S images are generated, one for 

the fast (S1) mode and one for the slow (S2) mode.   Since the model contains both 

isotropic and HTI layers, it is necessary to define a convention for assigning energy to the 

shear-wave images when no S1 and S2 waves are naturally defined.  The convention 

adopted here is that for isotropic layers, the SV mode is assigned to the S2 section.  This 

is a natural identification for cases in which the HTI symmetry axis is in the plane of 

propagation, but is otherwise arbitrary.  Based upon this convention, the S1 mode only 

responds to the top and bottom of the HTI layer, and not to any other interfaces. This 

explains the absence of the flat basement reflector in Figure 5.25(b).   Also, as observed 

in Figure 2.4 (which uses the same model as the HTI layer of this example), the S2 

polarization rotates to gradually become orthogonal to the plane of propagation as the 
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(a) (b)  

(c) (d)  

Figure 5.19. Wavefield immediately above level A:  (a) downward extrapolated P-wave 
source wavefield; (b) downward extrapolated P-wave receiver wavefield; (c) downward 
extrapolated S1 receiver wavefield; (d) downward extrapolated S2 receiver wavefield.  
White dashed line shows position of source wavefield, coincident with receiver wavefield 
for top of HTI layer at left side.  The black arrows indicate split shear-wave arrivals, 
arising from transmission through left-hand block of HTI layer.  The S1 and S2 arrivals 
are represented in the isotropic coordinate frame of the first layer, and are not properly 
resolved. 
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incidence angle increases.  This observation explains the relative weakness of the 

dipping structure on P-S2 (c) compared to P-S1 (a).  Evidence of the stair-step 

approximation in the repolarization step can also be observed as artifacts on the shear-

wave images.  A satisfactory solution to this problem has not yet been discovered. 

For comparison, Figure 5.26 shows the result of migrating the same anisotropic 

data using isotropic migration.  The velocities used are the vertical P-wave velocity and 

the vertical fast shear wave (S1) velocity.  The P-P image, in (a), shows some indication 

of defocusing.  Overall, this image is comparable to the HTI migrated image of Figure 

5.25(a).  However, the P-S2 image, in (b), suffers from the presence of the split shear 

waves which have not been isolated, in contrast to the results in Figure 5.25(b) and 

Figure 5.25(c).  In Figure 5.26, there is no P-S1 image, since this corresponds to the non-

existent crossline (or SH) polarization with the convention used here. 

 

(a) (b)  

Figure 5.20. Shear-wave wavefield immediately below level A: (a) downward 
extrapolated S1 receiver wavefield; (b) downward extrapolated S2 receiver wavefield.  
Compare with Figure 5.19 (c) and (d), respectively.  The S1 and S2 arrivals are now 
represented in the HTI coordinate frame of the faulted layer, and are resolved.  Resulting 
simplification of the wavefield is especially apparent on the S2 wavefield at 1.3 seconds. 
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(a)  (b)  

(c)  (d)  

Figure 5.21. Wavefield immediately above level B:  (a) downward extrapolated P-wave 
source wavefield; (b) downward extrapolated P-wave receiver wavefield; (c) downward 
extrapolated S1 receiver wavefield; (d) downward extrapolated S2 receiver wavefield.  
Position of source wavefield (white dashed line), is now coincident with receiver 
wavefield for top of HTI layer at middle block.  Black arrows identify split shear-wave 
arrivals in middle block. 
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(a) (b)  

Figure 5.22. Shear-wave wavefield immediately below level B.  (a) downward 
extrapolated S1 receiver wavefield; (b) downward extrapolated S2 receiver wavefield.  
Compare with Figure 5.21 (c) and (d), respectively.  The S1 and S2 arrivals in middle 
block are now resolved, resulting in further simplification of the wavefield. 

 

(a) (b)  

Figure 5.23. Shear-wave wavefield immediately above level C.  (a) downward 
extrapolated S1 receiver wavefield; (b) downward extrapolated S2 receiver wavefield.  
Black arrows identify shear-wave split arrivals in right-hand block. 
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(a) (b)  

Figure 5.24. Shear-wave wavefield immediately above level C.  (a) downward 
extrapolated S1 receiver wavefield; (b) downward extrapolated S2 receiver wavefield.  
Compare with Figure 5.23. 

 

5.5 Chapter summary 

This chapter has described the construction of a shot record migration algorithm 

from the elastic extrapolators derived in previous chapters, utilizing either a correlation or 

a deconvolution imaging condition.  It can be argued theoretically, and observed, that the 

impulse responses display certain symmetries which depend on both data space (i.e. shot 

component and receiver component) and image space variables (i.e. down-going and up-

going wave-modes).   The principle of vector reciprocity can be used as a guide for 

interpreting these impulse responses. 

The HTI migration operators depend on the relative orientation of the shot profile 

and the symmetry direction.  When the shot direction is parallel to the symmetry plane, 

the P-SV (P-S2) impulse is decoupled from SH (S2).  In general, however, the HTI 

impulse responses contain both P-S1 and P-S2 images.  Also, triplications can occur if 

the anisotropic phase slowness surface has concavities. 
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The shot-record migration was applied to modeled data, where the model 

included a faulted HTI layer.  Snapshots at strategic depths reveal the progress of the 

extrapolation, and how split shear waves are resolved into their appropriate images. 

 

 

(a)  

(b)  

Figure 5.25. Migrated images from HTI model after HTI elastic migration, using the 
correlation imaging condition: (a) P-P image; (b) P-S1 image; (c) P-S2 image. 
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(c)  

Figure 5.25 (continued) 

 

The image obtained was acceptable, though includes some artifacts.  These are 

believed to result from the coarse depth intervals used in the repolarization steps in the 

extrapolation.  To overcome this problem, issues of efficiency and stability would need to 

be addressed.  These are possible directions for future research.  A comparison with 

isotropic migration applied on the same modeled data showed that the anisotropic 

migration is essential for proper resolution of the split shear-waves. 
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(a)  

(b)  

Figure 5.26. Migrated images from HTI model after isotropic elastic migration with 
vertical velocities, using the correlation imaging condition: (a) P-P image; (c) P-S2 
image.  The P-S1 image is zero, since the convention assumed here is that S1 corresponds 
to the crossline polarization when isotropic migration is performed.  Compare with 
Figure 5.25(a) and (c). 
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CHAPTER SIX: ELASTIC SHOT-RECORD MIGRATION OF THE 

MARMOUSI-2 MODEL 

6.1 Introduction 

In this chapter the elastic shot-record migration is applied to the numerically 

modeled Marmousi-2 data.  Unlike the model data presented in Chapter 5, these data are 

isotropic. On the other hand, they present a difficult imaging challenge due to the 

structural complexity of the model, resulting in rapid spatial variations in velocity, 

complex ray-paths, numerous multiples and mode conversions.  Since the model is 

isotropic, the PSPI migration algorithm of section 4.4 may be applied. 

6.1.1 Marmousi-2 

The Marmousi-2 dataset was generated by the Allied Geophysical Laboratory at the 

University of Houston (Martin et al., 2002; Martin, 2004), using an elastic finite 

difference algorithm.  It uses a model which is based upon the original acoustic 

Marmousi model (Versteeg, 1994). Like the original Marmousi model, Marmousi-2 is 

isotropic, yet highly heterogeneous.  Unlike the original Marmousi model, it has several 

modifications and extensions.  First, it has been extended laterally to a total line length of 

17km.  The extensions are less structurally complex than the central section, but include 

stratigraphic features and hydrocarbon accumulations.  Second, it has been submerged 

under 450m of water and 50m of soft sediments.  Finally, it is an elastic model with 

density and shear velocity determined from empirical rock physics equations (Greenburg 

and Castagna, 1992; Castagna et al., 1993).   

The modelled data are very rich, including both OBC and towed streamer data.   

The source signature used in the modelling was a zero-phase Ormsby (trapezoidal) 

wavelet 5-10Hz ramp at the low end and 60-80Hz ramp at the high end, resulting in a 

broader spectrum than the original Marmousi.  The grid spacing used for the finite 

difference modelling was 1.25m, which allows adequate modelling of shear waves with 

velocities above 400m/s and frequencies below 65Hz without dispersion (Martin, 2004).  

However, the receiver spacing used for the OBC was 12.32m, which causes significant 

aliasing of the slower velocity arrivals. 
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In Martin's M.Sc. thesis (Martin, 2004) the streamer data from Marmousi-2 has 

been processed and imaged using different migration algorithms including a (scalar, 

acoustic) wave equation migration.  Martin shows results both before and after 

application of a free surface multiple attenuation.  The results after demultiple are 

excellent.  However, no attempt to process or image the OBC data was made. 

For the purposes of this dissertation, attention has been confined to the X and Z 

components of the OBC dataset.  It is believed that this is first attempt to produce a 

migrated image from the OBC data. 

Marmousi-2 poses contains distinctive challenges for elastic imaging.  In particular, 

the central area, corresponding to the original model, poses considerable imaging 

problems.  There are also very strong long period water layer multiples in the data..  

These are absent from the original Marmousi data. 

6.2 Migration 

Before migration, the data were processed with a gapped deconvolution to partially 

attenuate the multiples.  This gave some benefit in the stratigraphic region but not in the 

structural area.  The direct arrival was muted.  

The initial step in the migration is a single extrapolation step to redatum the shot 

from the sea surface to seabed, using the water velocity of 1500m/s. The shot-record 

elastic migration was then performed using the PSPI algorithm of section 4.4, using 9 

reference operators, and including the split-step correction (Stoffa et al., 1990).  The 

extrapolation step size used was 10m, with the PP and PS images interpolated to 2m 

sampling in depth, using the method of Fu (2004).   The P- and S-wave velocity fields 

were smoothed before migration using a 100m Gaussian smoothing window in both x and 

z directions.  The offset range included in the migration was -1000m to 1000m, and the 

migration aperture was extended by a further 500m on either side.  The deconvolution 

imaging condition (section 5.2.1.2) has been used.  No additional scaling has been 

applied. 
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6.2.1 Problems with boundary condition at ocean bottom 

As was discussed in Chapter 2, (sections 2.3.7.1 and 2.3.7.2), there are two 

straightforward cases where a boundary condition is well defined.  The first is where the 

data have been recorded on a free surface, in which case the boundary condition consists 

of setting the traction to zero.  The second is applicable when the receivers are in an 

infinite half space, so that the wave propagation at the receiver level is purely up-going.  

In practice, this would be applicable if the data have been decomposed by a separate 

wavefield decomposition step, such as those proposed by Amundsen and Reitan (1995), 

Osen et al.(1999) and Schalkwijk et al. (2003).  However, all of these methods require the 

presence of pressure data (i.e. hydrophones) at the seabed, which unfortunately has not 

been modelled in Marmousi-2.  The results here were computed instead assuming a one-

way wavefield, which results in an imperfect decomposition. 

 

 
Figure 6.1. Geological model for Marmousi-2, based on the original Marmousi model 
with extensions. The extension of the Marmousi-2 model has been done in a manner 
consistent with the regional geology but with attempts to reduce the structural complexity 
away from the central area (a), thereby providing a dataset that possesses both simple and 
complex areas for AVO calibration. (used with permission). 
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6.2.2 Computational cost 

The implementation of the elastic migration is a primarily in Matlab®, with C being 

used for the more compute intensive parts.  The migration was run on 442 shots from 

Marmousi-2, with each shot having up to 164 receivers within 1km of offset.  The trace 

length was 2500 time samples, and frequencies up to 90Hz were migrated. The 

extrapolation was for 300 depth steps at 10m sampling, then resampled to 2m.  The 

migration was run on X and Z components to produce P-P and P-S images.  The runtime 

was approximately 2 hours per shot on one node of a linux based cluster with clock speed 

3GHz chip speed and 2GB RAM.  Using 10 nodes, the entire dataset can be migrated in 

approximately 4 days. 

For comparison, a scalar migration on the original Marmousi dataset with 200 

depth steps, and trace length 500 samples, takes less than a minute per shot on the same 

architecture (Liu, 2005).  The difference is explained in part by the longer trace and 

higher bandwidth for the elastic Marmousi, which results in about an order of magnitude 

higher cost.  Some improvements to the cost might be achieved through tabulation of the 

phase shift and composition-decomposition operators.  For optimal performance, 

complete recoding of the algorithm in C or Fortran is probably desirable. 

6.3 Results 

The results presented here focus on two parts of the model. First, the migration 

results from the structurally less complex area [indicated by the blue rectangle in Figure 

5.6(a)] are considered. This is referred to as the stratigraphic area.  Second, results from 

the central, structurally complex, area [indicated by the red rectangle in Figure 5.6(b)], 

which corresponds (approximately) to the original Marmousi model, are examined. 

6.3.1 Stratigraphic area 

Figure 6.2 shows the P- and S-wave impedance sections from a shallow, 

stratigraphic portion of the model, the area indicated by the blue rectangle in Figure 

5.6(a).  This area is considerably less structured than the central area.  Note that the 

horizontal scale in Figure 6.2 has been compressed for display. 
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Figure 6.3 shows the corresponding P-P and P-S migrated images.  As seen in 

Figure 6.3(b), the shallow P-S imaging is remarkable, displaying clear resolution 

advantages over the equivalent P-P section in Figure 6.3(a).  This is anticipated from 

theory, due to the slower S-wave velocities, but is striking nonetheless. 

Also of interest are the markedly different responses to the gas sand at 0.6km depth 

to the left of the image.  Significantly, the ability of elastic wave data to provide 

discrimination between lithology and fluid is exhibited clearly in this example.   The P 

waves respond to changes in both the rock matrix and the fluid fill, and are particularly 

responsive to gas which has a low velocity and density.  In contrast, the shear waves are 

insensitive to the fluid fill, and so do not respond to the presence of gas. 

At present, the over-migration of the P-P gas sand (evidenced by the "smile" which 

extends above the sand) is not understood. One possible reason would be an error in the 

seabed depth.  The best fitting seabed depth was determined by comparing the 

extrapolated source wavefield at the seabed with the recorded first arrival after 

decomposition.  Using 500m as the depth give the best matching result, shown in Figure 

6.4.  This differs from the stated depth of 450m. However, migration with either 450m or 

500m as the seabed depth gives similar overmigration artefacts.  The results here were 

produced using 500m. 

Another possibility would be an incorrect velocity model.  However, unless this 

was a localized effect, such errors should lead to overmigration everywhere.  There does 

indeed appear to be other suggestions of overmigration in these sections, but not in the 

central complex area (section 6.3.2). 

Finally, the reader should be aware that the effect is exaggerated by the very high 

amplitudes of the P-P response to the sand, when this is compared to the relatively low 

amplitude response on the P-S image.   The P-P image is plotted with 1/10th of the scaling 

in Figure 6.5, for comparison. 

6.3.2 Structural area 

Figure 6.6 shows the P-wave (a) and S-wave (b) impedance sections in the central 

section, roughly equivalent to the original Marmousi area. The water layer is not shown.   
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Figure 6.7 shows the P-P and P-S migrated images for this section of the model. Both 

images suffer somewhat from the presence of water layer multiples, and some aliasing 

artifacts, as will be discussed in section 6.4.1.  In this regard the P-P image is more 

affected by the multiples.  Generally speaking, the P-P image is fairly well defined, 

whereas the P-S image is less clearly defined and is noisier.  The reasons for this are 

discussed in section 6.4. 

In order to assess image fidelity, parts of the PP and PS images have been 

redisplayed using variable area wiggle plots in Figure 6.8.  The PP detailed images are 

superimposed on P-wave (i.e. acoustic) impedance sections, and the PS detailed images 

are superimposed on S-wave impedance sections.  Note that the colour table is varied for 

the last two images [Figure 6.8 (e) and (f)], in order to clarify the structure of the model. 

When this is done, there is seen to be very good agreement with the image and the 

impedance boundaries for the PP sections, and reasonable agreement for the PS sections. 

However, it is noticeable that the PS fidelity deteriorates with increasing depth to a 

greater extent than does the PP fidelity. 

Additionally, in Figure 6.8 (a) and (c), the locations of two gas-sand traps are 

indicated (compare with Figure 5.6).  This is of interest because they give a definite 

response on the PP images, but are not seen on the PS images.  As was mentioned 

previously, this is due to the fact that P-waves respond to acoustic contrasts associated 

with fluids, whereas S-waves only measure changes in the rock matrix. 
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(b)  

Figure 6.2. Marmousi-2 elastic model, showing (a) acoustic (i.e. P-wave) impedance and 
(b) S-wave impedance.  This area corresponds to a shallow section on the left of the main 
structural area.  The horizontal axis has been compressed relative to the vertical, for 
display purposes.  The gas sand is clearly identified by its low P-wave impedance 
compared to local sediments. 
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(a)  

(b)  

Figure 6.3. Migrated images: (a) P-P and (b) P-S of X and Z component data from elastic 
modeling.  Area shown is that of model in Figure 6.2.  Note the superior resolution of the 
P-S image, and the significantly weaker response to the gas sand.  This is an example of 
fluid-lithology discrimination with elastic waves. 
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(a) (b)  

Figure 6.4. Comparison of shot wavefield extrapolated to seabed with recorded P-wave 
wavefield at seabed, after decomposition from X and Z component data.  The time of the 
recorded direct wave agrees well with the extrapolated shot.  For actual migration this 
direct wave is muted. 

 

 
Figure 6.5. Migrated image of P-P data scaled by 0.1 compared with Figure 6.3(a). 
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(a)  

(b)  

Figure 6.6. Part of Marmousi-2 elastic model, showing (a) acoustic (i.e. P-wave) 
impedance and (b) S-wave impedance.  This area corresponds approximately to the 
original Marmousi acoustic model.  
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(a)  

(b)  

Figure 6.7. Migrated images for area shown in Figure 6.6, corresponding to original 
Marmousi model: (a) P-P and (b) P-S of X and Z component data from elastic modeling.  
Migration performed using PSPI algorithm of section 4.4, with 9 reference operators and 
a split-step correction. The deconvolution imaging condition has been applied. 
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(a)
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(b)  

(c) 
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 (d)  

(e)  (f)  

Figure 6.8. Detail of migrated images in Figure 6.7, superimposed on impedance model, 
for: (a) and (b) 8.5-9.5km, 0.6-1.3sec.; (c) and (d) 9.7-10.7km, 0.3-1.0sec., and; (e) and 
(f) 10.8-11.8km, 1.2-1.9sec.  PP image on P-wave impedance is shown in (a), (c) and (e).  
PS image on S-wave impedance is shown in (b), (d) and (f).  Also indicated in (a) and (c) 
are the locations of two gas-sand traps which cause strong PP response. 
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6.4 Discussion 

There appear to be two main issues which are responsible for the relatively poorer 

performance of the PS imaging in the structural area, as compared with the shallow area.  

These are first; spatial aliasing of the converted waves in the shot record, and second; 

deviation of the polarity change location from zero offset. 

6.4.1 Spatial aliasing of converted waves 

Both the wavefield extrapolation operator and the composition/decomposition 

operators are designed to be correct for energy which has not been spatially aliased.  

However, because of the slow shear wave velocities, and the relatively coarse sampling 

(12.32m) of the receivers, any shear-wave energy which is propagating at large angles 

relative to vertical can suffer from significant spatial aliasing.  This effect is important for 

the structural area, where the larger dips reflect much more energy at such large angles, 

than it is for the stratigraphic area.  Figure 6.9 shows the X- and Z component data for 

shot 251, with lateral position 9.25km, situated near the center of the structural region 

(Figure 6.6).  In Figure 6.10(a), the same shot is shown after wavefield decomposition at 

the ocean bottom.1  Visible on both components are two sets of parallel reflections which 

intersect the direct arrival, as indicated.  These can be identified as PP and PS reflection 

events arising from the steeply dipping structure which extends to the water bottom.  

Considering Figure 6.9, it appears on both components that the PP event is not aliased for 

the dominant frequencies, whereas the PS event is aliased.  This observation is confirmed 

on the FK spectra of the decomposed data in Figure 6.10(b).  The impact on the migrated 

image is profound.  Figure 6.11 shows detailed view of the migrated images from Figure 

6.7, with a horizontally compressed scale.  Migration artifacts are present on both PP and 

PS images.  Since the wavefield decomposition is incorrect for aliased energy, a 

substantial amount of the aliased data is present on the PP image, even though it arises 

from a PS reflection event. 

                                                 
1 This was not fully successful.  As was discussed in section 6.2.1, there is a difficulty with performing the 
decomposition at the water bottom in general, due to the boundary condition involved. 
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Compare shot record 251 (Figure 6.9 and Figure 6.10) with shot record 61 at 

lateral position 4.5km (Figure 6.12 and Figure 6.13, after decomposition).  Observing the 

FK spectrum in Figure 6.13, it is clear that there is little evidence of spatial aliasing in 

this location.  Correspondingly, there is little evidence of associated artefacts in the 

migrated image of Figure 6.3. 

Returning to analysis of shot 251, the effect of low-pass filtering the shot record to 

a maximum frequency of 20Hz is shown in Figure 6.14.  After this filtering, the PS 

reflection is no longer visibly aliased, but unfortunately the frequency content of the PP 

data has also been (unnecessarily) limited.  In order to retain the bandwidth available for 

unaliased imaging of P-waves, and to reduce the effect of aliasing on PS, the following 

compromise is possible.  The wavefield can be extrapolated with all frequencies up to 

90Hz (as in Figure 6.7), but when applying the imaging condition, the frequencies used 

are limited to a lower number, based on the requirement that energy propagating at a 

given maximum angle to vertical, maxθ , is not aliased for the relevant mode velocity.  The 

frequency limits for the PP and PS images are computed as 
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where x∆ is the receiver sampling, and min,Pv , min,Sv  are the minimum P and S velocities 

respectively.   For the area shown in Figure 6.11, this gives Hz1.69max, =PPf , and 

Hz5.18max, =PSf .  The result of applying this modified imaging condition is shown in 

Figure 6.15. This should be compared with the results in Figure 6.11.  Here, we see that 

most of the aliasing artefacts have been eliminated from the PS image.  However, this is 

only a partial solution. It still leaves the effect of aliasing present on the PP image, where 

higher frequencies are desirable, to obtain the optimal image.   Moreover, the filtering 

effect may be unduly harsh on less steeply dipping events which would benefit from the 

inclusion of higher frequencies on the PS image. 

A more complete approach to addressing the aliasing problem would be to apply a 

prestack interpolation.  Methods have been developed in the last few years which allow 
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interpolation beyond the traditional limits imposed by aliasing (Spitz, 1991; Liu and 

Sacchi, 2004).  Even better, would be to acquire (or in this case, numerically model) with 

a finer sampling of the receivers, so that much less of the useful PS reflection energy is 

subject to spatial aliasing! 

 

PS

PP

PS

PP

 
Figure 6.9. Shot 251 (9.25 km) showing reflections off of steeply dipping fault block.  
Note the aliasing of the PS event, further illustrated after wavefield separation in Figure 
6.10.  Also, observe that the polarity changes on the steeply dipping reflections occur 
well away from zero offset. 
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(a)  

(b)  

Figure 6.10. Shot 251 after wavefield separation, in (a) offset-time domain and (b) wave-
number offset-frequency (FK) domain.  Note the spatial aliasing (wrap-around) of the PS 
events. 
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(a) (b)  

Figure 6.11. Detail of migrated images in Figure 6.7, showing effect of aliased energy on 
both PP and PS images. 

 

 
Figure 6.12. Shot 61 (4.5 km) showing reflections from more layered part of model.  No 
aliasing is evident and the X component polarity change occurs near zero offset. 
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(a)  

 

(b)  

Figure 6.13. Shot 61 after wavefield separation, in (a) offset-time domain and (b) wave-
number offset-frequency (FK) domain.  
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Figure 6.14. Shot 251 after wavefield separation, and application of a 20Hz high-cut 
filter.  Note that steep dips are not aliased within this frequency range. 

 

 

(a)  (b)  

Figure 6.15. Detail of migrated images, after applying frequency limited imaging 
condition.  Compare with Figure 5.6. 
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6.4.2 Deviation of polarity change from zero offset 

It is a common misconception that the polarity of a converted-wave reflection 

changes sign at zero offset.  The polarity change arises because the displacement 

direction of the S-wave which is generated by an incident P-wave depends on the sign of 

the reflection angle.  The polarity change is therefore associated with the normally 

incident ray, which for many simple situations is synonymous with zero offset.  In 

particular this equivalence holds if either: the SP VV ratio is constant, or if the structure is 

horizontal (Rosales and Rickett, 2001; Sun and McMechan, 2001; Hou and Marfurt, 

2002).  If neither of these conditions hold, then the normal incidence ray is associated 

with P and S rays which have quite different paths, and generally are not coincident at the 

surface (therefore not zero-offset).1   The reason for the different ray-paths is that Snell's 

law of refraction causes different degrees of bending for P- and S-wave rays, which are 

normally incident (and therefore parallel) at the image point, due to difference in the 

relative change in VP and VS along the ray-paths.  This phenomenon is illustrated in 

Figure 6.16. 

For Marmousi-2, the first of these conditions (constant SP VV ratio) is not valid 

anywhere.  This is clearly observed in Figure 6.17, which shows SP VV for both the full 

model and a profile at the lateral position of the shot record in Figure 6.9.  The variation 

in SP VV is quite large, with values ranging from 1.58 to 5.24. 

The second condition is a reasonable approximation for the stratigraphic area of the 

model.  This is evident from analysis of the X component in Figure 6.12, where all events  

appear to change polarity at approximately zero-offset.  By contrast for structural area the 

PS polarity change occurs well away from zero offset, as can be seen in Figure 6.9.   

Determining the correct location of the polarity change is extremely challenging in 

areas of structural complexity, but can in principle be done if the model is known 

accurately. 

                                                 
1 For PP events, there is also a polarity change observed on the horizontal component, which occurs (for an 
isotropic medium) at the location where the ray is vertical at the surface (at this location there is zero 
horizontal displacement for a P-wave). 
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Figure 6.16.  Position of polarity change for P-S conversion in a medium with variable 

SP VV  ratio, and dipping reflectors.  The polarity change is associated with normal 
incidence at the reflector, for which the P-S reflection coefficient vanishes.  Snell's law 
gives different amounts of ray-bending for P- and S-wave ray-paths, due to the 
differences in relative velocity contrast which are implied by variable SP VV .  Therefore 
the polarity change is observed at a non-zero source-receiver offset. 
 

 (a) (b)  

Figure 6.17. (a) Plot of SP VV ratio for Marmousi-2 model.  (b) Profile at lateral position 
9.25km.  Values range from 1.58 to 5.24. 
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To be applied within the context of a wave-equation migration scheme, the 

following steps are required: 

1. Compute angle gathers for both PP (Rickett and Sava, 2002; Sava and Fomel, 

2003) and PS (Rosales and Rickett, 2001; Rosales and Biondi, 2005).   

2. Determine the polarity flip angle from the local structural dip in the model.  

Rosales and Rickett (2001) suggest using plane-wave destructors applied to the 

data to determine this. They go on to describe how to find the position of the 

polarity reversal from the structural dip.  An alternative to plane-wave destructors, 

which might be applicable in the Marmousi-2 case, would be to measure the 

gradient of the velocity field to estimate local dip. 

Unfortunately, the examples provided in Rosales and Rickett (2001) and Rosales 

and Biondi (2005) use considerably simpler synthetics than the Marmousi-2 model, with 

easily defined structural dip at every point.  There are serious difficulties in uniquely 

defining a structural dip direction at every point in the Marmousi-2 model, where dipping 

reflectors often abut fault planes.  Their method has been attempted by the present author 

without success on Marmousi-2.  The results produced in this chapter have been 

corrected simply by changing the polarity of the S-wave receiver wavefield at the 

beginning of the first extrapolation step, as shown in Figure 6.10 and Figure 6.13.  This 

approach has proved successful in the stratigraphic regions, but less so in the structural 

regions.  This is as expected.  Erroneous correction of the polarity is believed to be 

largely responsible for some of the degraded imaging of the steeper dips on the PS image 

in Figure 6.7(b). 

6.4.3 Further comments 

It is perhaps worth noting that, apart from the presence of free surface multiples, 

none of the deleterious effects encountered here are a problem for the surface streamer 

data generated for this model (Martin, 2004).  Since the spatial aliasing is a low-velocity 

phenomenon, it is only present on OBC data which measures shear waves. It is not 

present on the streamer data.  Additionally, ray-path related polarity changes are not 

present on hydrophone data. 
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6.5 Chapter summary 

The isotropic PSPI migration algorithm of section 4.4 has been applied to a new, 

elastic version of the well-known Marmousi dataset.  The image obtained for the 

stratigraphic parts of the model are excellent for both PP and PS modes, with the latter 

displaying the expected resolution advantages associated with shorter wavelengths. The 

PP image in the central structural area is also good.  However, the PS image in this area 

suffers from effects of aliasing and from errors related to the polarity change.  In both 

areas, the images are adversely affected by the presence of long-period free surface 

multiples, with these being more evident on PP than PS. 

In applying the elastic migration to this dataset, several issues were encountered.  

These lie outside the scope of this thesis, and in some cases point to limitations in the 

design of the acquisition geometry used.  Although these issues are not resolved here, this 

chapter includes some discussion of possible routes towards solution for each identified 

issue.  It is suggested that this might provide a starting point for future work on this 

challenging and fruitful dataset. 
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CHAPTER SEVEN: SUMMARY, FUTURE DIRECTIONS AND 

CONCLUSIONS 

7.1 Summary 

As outlined in the Introduction, the development of the ideas in this thesis was 

initially motivated by the observation that two apparently disparate processing steps for 

shear waves, namely shear-wave splitting correction and wave-equation migration, were 

fundamentally limited when applied as separate steps to elastic data.  Instead, it is more 

natural and theoretically accurate to combine them into an anisotropic elastic migration 

scheme based on vector wavefield extrapolation.  The use of vector extrapolation 

distinguishes the work of this dissertation from other so-called elastic migration schemes 

which use scalar extrapolation of the P- and S-wavefields. This could have been done for 

general anisotropy, but, for practical and illustrative reasons, the scope has been limited 

to addressing the case of horizontal transverse isotropy (HTI).   Since the extrapolation 

step, which includes the effect of passing from one medium to another, should ideally 

satisfy continuity of displacement and traction, the most natural framework for design of 

the wavefield extrapolators is that of anisotropic propagator matrix theory, as developed 

by Fryer and Frazer (1984; 1987).  This existing body of theory was completely 

appropriate for the simplest case of extrapolation in a horizontally homogeneous medium, 

as described within Chapter Two.  The basic steps are: (1) decomposition, in which a 

vector wavefield consisting of six components of displacement and vertical traction is 

decomposed into six eigenmodes, three upgoing and three downgoing; (2) extrapolation, 

in which the desired wavemodes (upgoing for receiver wavefields, downgoing for source 

wavefields) are propagated by one or more depth steps, and; (3) recomposition, in which 

the vector wavefield is reconstituted at the new depth.  Careful attention must be given to 

the behaviour near the various critical angles, corresponding to transitions from 

propagating to evanescent wave behaviour.  These cause polarization vectors as well as 

the vertical slownesses to become complex. 

To be useful as an imaging tool, it is necessary to extend this theory to handle 

lateral velocity variations, and more generally (for anisotropic media) variations in any of 

the medium properties.  The approach used is based upon the generalised PSPI (GPSPI) 
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methodology, a form of ΨDO which allows the application of a spatially variable 

extrapolator.  The existing theory of GPSPI, applicable to scalar wavefield extrapolation, 

was extended to vector extrapolation in Chapter Three.  The adjoint form of the operator, 

a vector form of non-stationary phase shift (NSPS) was also discussed in that chapter, but 

not pursued further.  The choice of GPSPI over other possible methods, such as explicit 

or implicit operators acting in the space-frequency domain, is not clear cut.   The main 

advantage is one of simplicity, since both the phase shift and the decomposition-

recomposition steps are applied via scalar and matrix multiplication respectively for 

GPSPI, whereas they would require matrix convolution for the alternatives.  Furthermore, 

there are additional problems of stability associated with the explicit operator approach, 

and difficulties in design for anisotropic implicit operators.  Nevertheless, it might be 

expected that, in the future, migration researchers might chose one of these approaches 

for computational efficiency reasons.   

The main disadvantage with the GPSPI approach is cost – since the variation of the 

medium laterally requires the use of a Fourier integral operator rather than a Fourier 

transform.  A Fourier integral operator cannot be applied directly using a fast Fourier 

transform (FFT). 

Practical application within a migration operator therefore requires that the ideal 

form of GPSPI be approximated in some way. This is done either by: (1) spatial 

windowing, or; (2) by interpolation between parameters, leading to an algorithm akin to 

PSPI (Gazdag and Sguazerro, 1984).  In Chapter Four it is shown that the first approach 

is really the only viable option for a medium with anisotropy, due to the dimensionality 

of the parameter space which would have to be interpolated otherwise.   Therefore an 

appropriate adaptive windowing algorithm, PSPAW, was devised for the HTI case.  This 

is based upon an error criterion measured over all phase angles of interest.  On the other 

hand, it was shown that for isotropic migration, the second approach (using an 

approximate form of PSPI) is possible.   

In Chapter Five, the wavefield extrapolators were applied within the context of a 

shot-record migration, using downward extrapolation of the source and receiver 

wavefields, together with an imaging condition, which selects the mode combinations 
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required for output images.  The migration algorithm exploits well-known additional 

steps such as the split-step correction, vertical interpolation of the wavefield and an anti-

aliasing imaging condition.  The locations of decomposition and recomposition determine 

where it is possible to account for phenomena such as mode conversion and shear-wave 

splitting.  The wavefields are treated as scalar entities in between these "repolarization" 

depths. 

This migration algorithm was demonstrated using an anisotropic elastic dataset 

which had been modelled using the pseudospectral technique, and compared with 

isotropic migration on the same dataset.  The comparison shows the benefit of including 

the shear-wave repolarization step to handle shear-wave splitting via the anisotropic 

migration, a task which the isotropic migration is unable to achieve.  This is most clearly 

and informatively seen by monitoring the downward continued receiver wavefield, as it 

enters and leaves the HTI layer. 

The isotropic elastic migration using the PSPI approach was demonstrated on a new 

elastic version of the well-known Marmousi model, Marmousi-2.  Various processing 

issues remain unsolved with this dataset, but the images are indicative of a useful 

algorithm.  Some difficulties were encountered obtaining a satisfactory PS image from 

the central part of Marmousi-2.  It is likely that this is due to: aliasing of the shear-wave 

arrivals, a consequence of the acquisition parameters chosen for modelling, and; 

structural effects which violate the zero-offset assumption for the location of polarity 

changes.  In parts of Marmousi-2 where gentler dips are present, so that aliasing is not an 

issue and the zero-offset assumption is valid, the results obtained for the PS image are 

excellent. 

7.2 Future directions 

During the course of the work in this dissertation, a number of avenues for future 

work have become apparent.  These basically fall into two overlapping categories: 

limitations in the current approach which might be overcome, and; extensions of the 

theory to widen the applicability of the methods.  Some of these areas are now briefly 

discussed. 
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7.2.1 Stability, efficiency and the "stair-case" approximation 

As mentioned in section 5.2.5, the repolarization steps are not executed on every 

depth step, due both to stability and efficiency considerations.   A related issue is that 

each repolarization step is based upon the (exact) boundary conditions for a horizontal 

interface, whereas lateral changes are treated by the GPSPI type approximations.  In 

particular, no account is taken explicitly of polarization changes due to medium changes 

across non-horizontal interfaces.  The accuracy of this "stair-case" approximation is 

assumed to improve as the steps become smaller, but always treats the horizontal and 

vertical parts of a boundary condition differently.  The fact that smaller steps also give 

rise to stability and efficiency problems, it suggests that a different approach is called for.  

One possibility would be to define macro-interfaces which are based on horizons where 

significant conversion or shear-wave splitting effects will occur, and use scalar 

propagators elsewhere.  The extrapolation across the macro-interfaces could be applied in 

a rotated coordinate system with a propagation direction which is locally parallel to the 

normal to the interface, so that appropriate boundary conditions are applied.  

Extrapolation using rotated coordinate systems has been recently applied in the context of 

turning wave migration (Shan and Biondi, 2004).  Doing this would require a more 

general treatment of anisotropy, since an HTI medium would be a tilted TI medium in the 

rotated coordinates.  Since the macro-interfaces would be generally spaced at several 

times the depth step, this would also address efficiency and stability concerns. 

7.2.2 Other anisotropic symmetry systems 

The theory developed here has focused on a specific form of anisotropy, HTI.  This 

symmetry system was selected both because it is associated with fractures, and is 

therefore of exploration interest, and because it illustrates the advantages of an elastic 

(vector) extrapolation algorithm to properly handle shear-wave splitting.   However, there 

is no fundamental reason why the elastic extrapolation cannot be adapted for other 

symmetry systems.  Both VTI and orthorhombic anisotropy have horizontal planes of 

symmetry, which make the computation of up- and down-going eigenmodes relatively 

straightforward, involving solution of a cubic equation (see Appendix A).   Orthorhombic 

anisotropy may well be the system which best approximates many real world geological 
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setting with a combination of fine layering, such as shales, and fractures, as found in 

carbonates.  Another important system of exploration interest is tilted transverse isotropy 

(TTI).  This would require a more significant modification to the theory in this 

dissertation, as it no longer has a horizontal plane of symmetry.  The eigenvalues require 

solution of a quartic equation, and no longer appear in up- and down-going pairs. This 

generalization would have the additional advantage of allowing propagation in rotated 

coordinate systems as described in the previous section. 

7.2.3 Extrapolation in 3-D 

The derivation of the extrapolators has been limited to 2-D in this dissertation.  

However, as was discussed in section 2.3, the basic theory is applicable to 3-D.  Apart 

from cost, the main issue which requires attention for a 3-D algorithm is the adaptation of 

the PSPAW algorithm to forming windows in the x-y plane, since each depth step 

requires a 2-D velocity function.  As illustrated in 4.3.3, suitable windows (molecules) 

can be built up from Gaussian atoms, but a technique to "grow" the molecules in 2-D 

needs to be devised.  (For 2-D extrapolation, with 1-D velocity slices, this consists of 

starting from one end of the model and proceeding towards the other.)  Ideas from image 

processing or cluster analysis would likely contribute to a solution to this problem. 

7.2.4 Angle gathers and polarity correction 

A method for polarity correction in highly structured areas is needed if better 

results are to be obtained on models like Marmousi-2.  The method developed by Rosales 

and Biondi (2005), and outlined in section 6.4.2 could be explored further.  A key 

question is whether the best determination of polarity changes is based on the model or 

on the data.  Except for cases of a few isolated reflections, it is likely to be difficult to 

asses polarity changes from the data alone.  On the other hand, the model may not 

generally be known with sufficient confidence to predict them.  Even in cases where it is 

known exactly (such as Marmousi-2) assigning unique dip directions at every point is 

problematic.  Determining polarity behaviour is perhaps the most important issue for the 

use of converted waves in highly structured areas.  
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7.2.5 Improved factorization of the elastic Helmholtz equation 

It has been pointed out (Fishman and McCoy, 1985)  that the factorization of the 

scalar Helmholtz equation into up- and down-going square-root operators is only valid  

for media which are invariant in the transverse direction (i.e. horizontal for vertical 

extrapolation).  Fishman (2002) has subsequently drawn upon developments in quantum 

mechanics and microlocal analysis to derive a "uniformly asymptotic" approximation to 

the relevant one-way operator, which factorizes the Helmholtz equation in a transversely 

heterogeneous medium.  This has provided a sound theoretical basis for improved scalar 

wavefield extrapolation, and is likely to result soon in new algorithms for seismic 

acoustic migration.  To this author's knowledge, an equivalent theory does not yet exist 

for the elastic wave-equation.  Such a theory might well address some of the short-

comings of the "stair-case" approximation described above, since the handling of lateral 

medium variations is done in a more correct fashion than the standard square-root 

operator. 

7.2.6 Application to real data 

The elastic migration method developed here has been applied to two synthetic 

datasets, one of structural simplicity but including anisotropy, and the other (Marmousi-

2) much more structurally challenging.  In both cases, a known model of velocity (and 

anisotropy in the first case) was used. 

Some further issues arise if this is to be applied on real data, from a 

multicomponent seismic survey.  The key additional complication is the fact that the 

earth model is a priori unknown and must be estimated from the seismic data.  Depending 

on the structural complexity, this might be done with standard velocity analysis, or it 

might necessitate more advanced approaches such as tomography.  [See Gray et al. 

(2001), for a discussion on model building for depth migration.]  In addition, the 

azimuthal anisotropy must also be estimated.  For structurally simple areas, methods such 

as 3-D Alford rotation (Gaiser, 2000) or transverse polarity changes (Bale et al., 2000) 

can be used.  For structurally complex areas, this step poses challenges which require 

further work. 
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Aside from uncertainty in the earth model, the application on real data would 

require careful attention to issues such as: vector fidelity (required to permit vector 

extrapolation to be appropriate); statics for land data (with shear-wave statics typically 

significantly larger than P-wave statics); multiples for marine data, and; coherent noise 

suppression (e.g. ground roll). 

An ideal initial test dataset would be either a land survey with relatively small 

statics or an OBC dataset with good vector fidelity and successful up-down separation 

using seabed hydrophones.  The first would allow use of the free-surface boundary 

condition, and the second would permit use of the one-way condition (see section 2.2.7). 

7.3 Conclusions 

The extrapolation of elastic data through both isotropic, and azimuthally 

anisotropic, heterogeneous media has been described and demonstrated.  The azimuthally 

anisotropic formulation achieves the natural combination of shear-wave splitting 

correction and migration into a single extrapolation method, enabling the simultaneous 

output of P-P, P-S1 and P-S2 images from a migration of multicomponent data.   

An elastic version of GPSPI extrapolation has been formulated, which allows 

extension to laterally variable media.  Additionally, two new interpolation algorithms to 

economically apply elastic PSPI have been described.  The first, PSPAW, is applicable to 

arbitrary media, and the second, elastic PSPI, is appropriate for isotropic media. 

The elastic extrapolation has been used in a shot-record migration to successfully image 

different mode combinations. This has been demonstrated using an azimuthally 

anisotropic synthetic, and using Marmousi-2. 
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APPENDIX A: NECESSARY AND SUFFICIENT CONDITIONS FOR CUBIC 

SOLUTIONS TO THE KELVIN-CHRISTOFFEL EQUATION  

 

The Kelvin-Christoffel equation has the associated characteristic equation (2-2), 

which is  

 ( )( ) 0det =− IsΓ ρ , (A-1) 

For a slowness vector ( )Tsss 321=s , and 6-by-6 stiffness matrix C, the 

Christoffel matrix, Γ, can be written as follows: 
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and  

 TTT
233213311221 ,, GGGGGG === . (A-3) 

Note that these matrices can be related to the Q, R and T matrices used in this 

thesis [as defined in equation (2-7)] by 
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33

223113

2
222212112

2
111

GT
sGsGR

sGssGGsGQ

=
+=

+++=
. (A-4) 

Irrespective of symmetry, it is assumed that the diagonal elements of 2211,GG  and 

33G  are non-zero.  Therefore Γ has the form: 
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where the ijΓ̂ ’s are polynomials of at most degree 2 in 321 ,, sss . 

We now seek the most general form of ijΓ̂ ’s (and hence IJG ’s) such that the 

characteristic equation (2-2) is cubic (or lower degree) in 2
3s , with no odd powers of 3s , 

for all choices of 21, ss . 

A.1 Lemma 1 

2211
ˆ,ˆ ΓΓ  and 33Γ̂  must have only even powers of 3s .   

Proof 

Assume this is not so – i.e. assume that at least one of 2211
ˆ,ˆ ΓΓ  and 33Γ̂  contains odd 

powers of 3s . Then ( )( )IsΓ ρ−det  includes the term ( )( )( )ρρρ −Γ−Γ−Γ 332211
ˆˆˆ , which has 

odd powers of 3s , violating the assumption on the characteristic equation. 

A.1.1 Corollary 1 

2211
ˆ,ˆ ΓΓ  and 33Γ̂  do not depend on 3s  at all.   

This is true because, apart from the matrix 33G  in equation (A-2), the other IJG  

matrices only contribute terms that are linear in 3s .  Since 33G  has been explicitly 

included along the diagonal of Γ in equation (A-5), the other terms in that matrix are at 

most linear in 3s .  But, from A.1 Lemma 1, 2211
ˆ,ˆ ΓΓ  and 33Γ̂  can only contain even powers 

of 3s , implying that they do not depend on 3s . 

A.1.2 Corollary 2 

2313 ,GG  must take the form 
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This follows immediately from Corollary 1, under the condition it must hold for all 

21 , ss , which implies that both 3113 GG +  and 3223 GG +  have zero diagonals.  Since 

T
1331 GG =  and T

2332 GG = , the diagonals of 13G  and  23G  are zero. 

Hence 

  0342456354615 ====== CCCCCC . (A-7) 

A.2 Lemma 2 

2313
ˆ,ˆ ΓΓ are linear in 3s .  

This is shown by direct computation.  Using (A-2), (A-5), (A-6) and (A-7), we have 

 ( ) ( ) .ˆ
323645315513211413 ssCCssCCssC ++++=Γ  (A-8) 

and 

 ( ) ( ) .ˆ
313645324423212523 ssCCssCCssC ++++=Γ  (A-9) 

 

A.2.1 Corollary 3 

 02514 == CC . (A-10) 

This follows from equations (A-8) and (A-9).  If this is not so, then  ( )( )IsΓ ρ−det  

would contain terms odd in 3s , resulting from the quadratic expressions 2
13Γ̂  and 2

23Γ̂  

which arise during evaluation of the determinant. 

Combining conditions given by equation (A-6) and (A-10), we have forms of 

the IJG  matrices which are necessary to ensure a cubic solution 
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A.2 Proposition 

The forms of IJG  in equation (A-11) are necessary and sufficient to ensure that the 

characteristic equation (2-2) is cubic (or lower degree) in 2
3s . 

Proof 

The necessary part has been proven in A.1 Lemma 1, Lemma 2 and associated 

corollaries.  To show that it is sufficient, perform direct substitution.  Using (A-11), 

equation (A-5) can be written as 
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where 
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Evaluation of  ( )( )IsΓ ρ−det   using (A-12) gives a cubic in 
2
3s .  

Hence the most general stress-strain matrix C, which gives rise to a Christoffel 

matrix with a characteristic equation that is cubic in 2
3s  is  
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with the lower half of the matrix implied by symmetry.  This form corresponds to a 

general orthorhombic symmetry, with a horizontal symmetry plane. 
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APPENDIX B: SLOWNESS SOLUTIONS TO KELVIN-CHRISTOFFEL 

EQUATION AND ASSOCIATED BRANCH POINTS FOR HTI MEDIUM 

 

An HTI medium has a stiffness matrix, when expressed using Voigt notation in a 

coordinate system such that the symmetry axis is parallel to the x-axis, with the form 

[equation (1-14)] 
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with the constraint ( )23332
1

44 CCC −= , and spaces implying zeros, as usual. 

This leads to a Christoffel matrix with the form 
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B.1 Slowness solutions 

The required eigensolutions are found by solving the characteristic equation 

( )( ) 0det =− IsΓ ρ for the vertical slowness 3sq ≡ . 

The velocity v is related to the slowness via 

 2
3

2
2

2
12

1 sss
v

++= . (B-3) 

Following Musgrave (1970, p.95), the following quantities are defined: 
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( )
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6644662333

6633

22

CvH

CCh

CCCCg
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ρ

 (B-4) 

Defining ( )2
3

2
2

22 ssvm += , and 22
1

22 1 msvn −== , the characteristic equation leads 

to a cubic in H, which can be separated into a linear equation 

 02
2
1 =− cmH  ,  (B-5) 

and a quadratic equation 

 ( )( ) 022222 =−−− dnmhnHamH . (B-6) 

Since the medium is transversely isotropic, it supports P-, SV- and SH-type wave-

modes, with the first two having polarizations in the plane defined by the vertical and the 

symmetry axis, while the SH-wave is polarized in the “isotropy plane” orthogonal to the 

symmetry axis.   

The horizontal slownesses may be expressed in terms of a radial slowness, p, along 

the propagation direction, ϕ  (relative to the symmetry axis), by ϕcos1 ps =  and 

ϕsin2 ps = . 

The first equation, (B-5), then leads to the SH-wave type solution  

 
44

22
44

22
6622

3
sincos

C
pCpCqs SH

ϕϕρ −−
== . (B-7) 

 Equation (B-6) provides the P-wave and SV-wave type solutions.  Rearranging 

into a quadratic in 2
3

2 sq = , we get 

 024 =++ γβα qq , (B-8) 

where 
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Equation (B-8) is solved for 2q  using the standard solution for quadratics, giving a 

P-wave solution 

 
α

αγββ
2

42
2 −−−

=Pq , (B-9) 

and an SV-wave solution 

 
α

αγββ
2

42
2 −+−

=SVq . (B-10) 

Equations (B-7), (B-9) and (B-10) obviously provide two solutions each for the 

vertical slowness, corresponding, when real, to up and down going solutions. 

B.2 Branch points 

Branch points occur for each mode { }SHSVPM ,,∈  when 2
Mq  becomes zero, 

corresponding to the transition between propagating energy and evanescent energy.  For 

SH-waves this is easily seen from equation (B-7) to be at the point 

 ( ) ϕ
ρ

2
446644

2
)(

2

cosCCC
pp SHbp −+

== . (B-11) 

For P- and SV-waves the branch points are obtained by setting 0=q  in equation 

(B-8), which then requires 0=γ .  This leads to two solutions 
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where 
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2
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ϕρβ

ϕϕα
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dahdahahCaCC

−++−=
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. 

From equations (B-9) and (B-10), the P-wave branch point (with 02 =Pq ), 

corresponds to 0<β  (recall that 0=γ  for the branch point), whereas the SV-wave 

branch point corresponds to a 0>β .  In equation (B-12) the minus is associated with the 

P-wave and the plus sign with the SV-wave.  This identification could be demonstrated 

by substitution of equation (B-12) in the formula for β  in equation (B-8), to confirm that 

a minus sign in (B-12) leads to 0<β , while a plus sign in (B-12) leads to 0>β , though 

the resulting algebra is cumbersome.   

An alternative argument can be made.  Equations (B-9) and (B-10) imply that 
22
PSV qq >  for all values of p.  Hence SVq  is real when 02 =Pq , but Pq  is imaginary when 

02 =SVq .  Assuming that both slowness curves progress from real values to imaginary 

values as 2p  increases, it then follows that the P-wave branch points )(Pbpp±  are reached 

before the SV-wave branch points )(SVbpp± .  Hence 2
)(

2
)( PbpSVbp pp > , which requires the 

plus sign to  be assigned to the SV-wave in equation (B-12), as asserted. 
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APPENDIX C:  ISOTROPIC MEDIA POLARIZATION VECTORS 

 

Defining 

 ( ) IsΓA ρ−= , (C-1)  

and assuming propagation in the x-z plane, so that 02 =s , we find for an isotropic 

medium, with density ρ and Lame parameters λ and µ , that 
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The eigenvectors are to be determined by computing the adjugate of A, adj(A), as 

described in (2-4), for P- and S-wave velocities, α and β, respectively, then multiplying 

by an arbitrary vector w. 

C.1 P-wave solution 

Choosing ( ) T001=w , is equivalent to selecting the first column of ( )AC adj= .  

The elements in the first column of C are given by cofactors of A, which are 
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Setting 

  
µλ

ρα
2

1. 22
3

2
1 +

==+= ssss , 

in order to obtain a P-wave solution, we get 

 ( ) ( )
( ) ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
+

=

3

1
1

2

0
2

s

s
sP

µλ
ρµλd . (C-4) 

Apart from the scaling factor, this is the solution provided in equation (2-5). 
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C.2 S-wave solutions 

To find an S-wave solution, we must set   

 
µ
ρβ ==+= 22

3
2
1 1. ssss . (C-5) 

However, this has the effect of making 22A  in equation (C-2) equal to zero.  When 

the adjugate of A is calculated, C has only one non-zero element, 22C .  The consequence 

is that, irrespective of which w is chosen, the resulting eigenvector Cwd = , is parallel to 

the y-axis.  This corresponds to the SH-wave polarization vector in equation (2-5). 

To obtain the SV-wave vector, the term ( ) ][ 2
3

2
1 ρµ −+ ss  must first be factored out of 

C.  Letting  

 ( ) ρµ −+
=′

2
3

2
1 ss

CC , (C-6) 

we obtain 
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Then, using equation (C-5), and setting ( ) T001=w , gives the eigenvector 
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This agrees with equation (2-5) aside from the arbitrary scale factor. 
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APPENDIX D: ISOTROPIC MEDIA DISPLACEMENT-STRESS 

EIGENVECTORS 

 

In this appendix, the eigenvectors required to construct composition and 

decomposition matrices are evaluated for isotropic media. It is shown that the 

eigenvectors for each mode depend only on two parameters, one of which is the SP VV /  

ratio.   

The composition matrix D  is constructed from the eigenvectors [equation (2-21)]  

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

i
ii τ

u
b εˆ  ,    6,,1…=i . (D-1) 

where the iu  are found by solving the Kelvin-Christoffel equation, and the iτ  are related 

to them through the stress-strain relationship.  The iε  are normalization constants, as 

defined by (2-28). The 6 indices correspond to three different modes with up and down-

going wave directions.  Once D  is known, the decomposition matrix 1−D  is given simply 

by equation (2-24). 

Only the down-going waves are considered in the following analysis.  Similar 

analysis applies to the up-going waves.  In the isotropic case, using a coordinate frame 

such that SV modes are polarized in the x-z plane, the displacement eigenvector 

associated with the down-going P-wave is  

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

P

x
D
P

q

s
0αu , (D-2) 

where α  is the P-wave velocity, xs  is the horizontal slowness, and Pq  is the vertical 

slowness for the P-wave. 

Using equation (2-25) the corresponding traction eigenvector is  
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22

2

21
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x
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D
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s

qs

β

β
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where ρ  is density and β  is the S-wave velocity. 

For the SV wave-mode the corresponding eigenvectors are: 
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and 
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D
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222

2
0

β

β
βρτ , (D-5) 

where Sq  is the vertical slowness for the S-waves (SV or SH). 

For isotropic propagation the SH-wave is completely decoupled from the P- and 

SV-waves, and can be independently extrapolated. 

Because of the simple form of the decomposition matrix in equation (2-24), the 

above P and SV eigenvectors define fully the decomposition for the corresponding 

modes. Equations (D-2) and (D-3) show that even though the displacement eigenvector 

for the P-wave is independent of the S-wave velocity, the traction vector is not.  

Therefore, the complete eigenvector D
Pb̂ , a column vector of  D, is dependent on the S-

wave velocity. So is the corresponding row-vector D
Pĝ  in the decomposition matrix 1−D .  

This implies that we cannot exactly decouple the handling of P- and S-waves within the 

decomposition and recomposition steps.   However, in the case that βγα 0= , with 0γ , 

the SP VV /  ratio, being constant for a given layer, the dependence on β  in equation 

(D-3) can be replaced with a further dependence on α . 

Surprisingly, perhaps, the S-wave eigenvectors given in equations (D-4) and (D-5) 

are not dependent on the P-wave velocity. 
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APPENDIX E: EIGENVECTOR NORMALIZATION AND BRANCH POINTS 

 

In this appendix the behaviour of the normalization coefficient in equation (2-28) is 

examined near the evanescent cut-off points. This behaviour is important to avoid the 

introduction of artifacts during the composition and decomposition steps in the wavefield 

extrapolators of equations (2-29) and (2-30).  Care about the choice of branch is required 

to avoid introducing discontinuous behaviour in equation (2-28), after the introduction of 

imaginary velocity to avoid the singularity.     

Let us consider the isotropic case from an analytic point of view first.  Only the P- 

and SV- modes are considered, as it may be readily shown that the SH-mode has the 

same normalization as the SV.  

From equations (D-2)-(D-5), we have  

 M
D
M ζε /1=   and  SV

D
SV ζε /1= , (E-1) 

where  
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D
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D
SVSV
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D
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D
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q

q

ρβζ

ραζ

−=⋅=

−=⋅=

τu

τu
 

 

If the exact (i.e. pure real) velocities, α  and β , are used to calculate  Pq  and 

SVq , then Pζ   ranges along the real axis between ρα2−  and 0, for propagating modes, 

and along the imaginary axis from 0 to ∞± i  for evanescent modes. 

The factors Pζ  and Pζ  are plotted in the complex plane for the isotropic case in 

Figure E.1.  In this case a branch cut chosen along the positive real axis, as shown, allows 

evaluation of the square root without introducing a discontinuity.  For the isotropic case, 

the square roots SVζ  and  SHζ  are similarly well defined for the same branch cut. 

Figure E.2, on the other hand, illustrates the situation for an HTI medium, with the 

parameters of Table 2.1.  In this case, for both S1 and S2 modes, the function Mζ  

completes a circuit around the origin.  This means that the branch cut cannot be avoided 
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when evaluating the square root.  To ensure continuity, the function must be "phase 

unwrapped", by constraining the phase to vary smoothly as a function of slowness.  

Mathematically, this implies changing from one sheet of the Riemann surface to another 

as Mζ  completes a circuit around the origin.1   

If the phase unwrapping is not performed, then a discontinuity in the square root 

arises, as illustrated in Figure E.3, which show the enlarged results, as in Figure E.2 (c) 

and (d), but using only the principle value of the square root.  To avoid artifacts when 

designing the extrapolation operator, the phase unwrapped version of the normalization 

must be used. 

 

Figure E.1. P-wave normalization factors Pζ  and Pζ  [see equation (E-1)], for isotropic 
medium with P-wave velocity 3 km/s and density 2 gm/cm3.  In calculating the 
normalization, the velocity has been perturbed by the addition of 1% imaginary velocity, 
to avoid the singular point (circle).  The branch cut can be chosen to ensure a continuous 
evaluation of the square root.  The point αρ2−  indicated on the Pζ  curve corresponds to 
vertical propagation ( 0=xs  ). 

                                                 
1 For a discussion of branch cuts and  Riemann surfaces, see box 6.2 on page 197 of Aki and Richards  
Aki, K., and Richards, P.G., 2002, Quantitative Seismology: Second Edition, University Science Books, 
Sausalito, California.) 
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(a) (b)  

(c) (d)  

Figure E.2. Plots of: (a) S1-wave normalization factors 1Sζ  and 1Sζ , and; (b) S2-wave 
normalization factors 2Sζ  and 2Sζ , for an HTI model with anisotropy given by Table 
2.1.  Both factors 1Sζ  and 2Sζ  encircle the origin, which is a branch point, as shown in 
the enlarged figures (c) and (d).  In order to obtain continuous values for the square root, 
it is necessary to move onto a different sheet of the Riemann surface. 
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(a) (b)  

Figure E.3. Plots of: (a) S1-wave normalization factors 1Sζ  and 1Sζ , and; (b) S2-wave 
normalization factors 2Sζ  and 2Sζ , using only a single sheet of the Riemann surface 
(i.e. without "unwinding" the phase).  The result is discontinuous behaviour of  1Sζ and 

2Sζ . 
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APPENDIX F: RELATIONSHIP BETWEEN FORWARD DOWN-GOING 

AND BACKWARD UP-GOING INTERFACE PROPAGATORS 

 

For a general medium the relationship between displacement u and traction τ can 

be written [see equations (2-7) and (2-23)] 

 uTRτ )( 3sT +−= , (F-1) 

where 

 
33

232131

kiik

kikiik

cT
scscR

≡
+≡

. 

There are 6 displacement eigenvectors and associated tractions, which in the case of 

a medium with a horizontal symmetry plane can be separated into up and down going 

pairs.  Using the shorthand 3sq ≡ , and adding subscripts { }2,1, SSPM ∈  to denote the 

wave mode, and superscripts U and D to denote up or down-going waves, equation (F-1) 

gives 

 DU
M

DU
M

TDU
M q ,,, )( uTRτ +−= . (F-2) 

For anisotropic symmetries of orthorhombic or higher, by an appropriate choice of 

coordinate system such that symmetry axes are aligned along coordinates axes, we have 

the following form of stiffness matrix in Voigt notation: 
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with absent entries equal to 0. 

The resulting matrix forms for R and T are 
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Because the horizontal plane is a symmetry plane, we have the following two 

conditions for waves propagating upwards and downwards: 

 D
M

U
M qq −= , (F-5) 

and 
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These equations are valid for real slownesses and polarizations irrespective of the 

direction of extrapolation.  However, for evanescent waves in which the slownesses and 

polarizations are complex, we have to be more careful.  Equations (F-5) and (F-6) 

correspond to waves which decay in the direction of forward propagation.  The imaginary 

part of slowness is positive for down-going waves and negative for up-going, leading to 

the correct decay.  When we consider backwards propagation, on the other hand, the 

conjugates of the slowness and polarization must be used, to ensure correct decay.  Hence 

the equations which are valid for downward extrapolation of both up and down-going 

waves are: 
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U
M qq −= , (F-7) 

and 
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Using equation (F-4), equation (F-2) gives traction for down-going waves  
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and for up-going waves 
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Substituting equations (F-7) and (F-8) into (F-10), recalling that the stiffness tensor 

C is real for an elastic medium, and that the horizontal slownesses 1s  and 2s  are also 

real, we get 
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Rearranging gives 
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Combining (F-8) and (F-12) gives 

 ⎟
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The eigenvector normalization scalars are related [equation (2-26)] by 
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So 
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U
M bKb ˆˆ = , (F-15) 

where  
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and 
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The composition matrix is ( )DU DDD = , where ( )DU
S

DU
S

DU
PDU

,
2

,
1

,
,

ˆˆˆ bbbD = ,  as 

given in equation (2-24).  We therefore have 

 DU DKD = . (F-18) 

Now consider the relationship between up and down-going interface propagators 

UUW  and DDW , defined by [see equation (2-28)] 
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where ±nz  refer to depths infinitesimally above (-) and below(+) the depth position nz , 

where a change in medium properties is assumed to take place, and L
M
−D  indicates the left 

inverse of MD .  In particular 
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where ⎟⎟
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⎞
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J . 

Using equation (F-18), 

 ( )[ ] ( ).),( −+=−+ nD
T

nDnnUU zzzz DKDJKW  (F-21) 

To proceed further, some easily verified properties of J and K are 

 KJJK −= , KK =T  and IK −=2 . (F-22) 

Using these 
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So we see that once the interface propagator for down-going waves has been 

computed, it is trivial to obtain the corresponding propagator for up-going waves. 
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APPENDIX G: COMPUTATION OF THE INTERFACE PROPAGATOR FOR 

VERTICAL INCIDENCE 

 

This appendix is a derivation of equations (2-35) and (2-36), which describes the 

interface propagator for vertical propagation across an interface between two birefringent 

media with identical elastic moduli, but different symmetry axes. 

Consider the stiffness matrix, expressed in Voigt notation [equation (1-5)], which 

describes an orthorhombic medium.1 
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where, as usual, the absent entries are taken to be zero.  The matrix corresponds to a 

coordinate frame aligned with the symmetry planes of the medium.  For computation of 

the Christoffel matrix, it is convenient to consider the tensor form in the aligned 

coordinate frame, ijklc , and rotated versions of it,  
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For rotation of the symmetry axis by θ about the vertical axis, the rotation matrices 

in equation (1-4) have the form  

                                                 
1 Though orthorhombic symmetry is generally beyond the scope of this thesis, the derivation in this 
appendix does not require HTI assumption, and so the more general symmetry is considered. 
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The direction of propagation is assumed now to be vertical so that the slowness 

vector is ( )Ts300=s .  The Christoffel matrix in equation (1-13) then becomes [c.f. 

equation (2-6)] 
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In Voigt notation, and using the abbreviation 3sq ≡ , equation (G-4) reads 
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The plane wave solutions are then determined from substitution of (G-5) into 

equation (2-6). The vertical velocities are determined by the three eigenvalues, which are 

(assuming 4455 CC > ) 
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The Christoffel matrix for a medium which has been rotated by θ relative to the 

coordinate axes can be computed, using equation (1-4) or the Bond transformation of 

equation (1-15), as  
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Clearly the eigenvalues remain unchanged under the rotation, though the 

eigenvectors do change.  The displacement eigenvectors are found to be 
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In order to compute the interface propagator for two such media with different 

symmetry axes, the first step is to obtain an expression in terms of θ for the full 

displacement-stress eigenvectors for the system matrix, as given in equation (2-10).  

Making use of equations (2-22) and (2-24), the three eigenvectors for down-going waves 

are found to be 
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Similarly the three eigenvectors for up-going waves are given by 
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Consider now two layers, separated by a horizontal interface, with the same 

anisotropic moduli, but with two different orientations of their symmetry planes relative 

to the horizontal axes, described by azimuthal angles ϕ  for the upper layer, andθ  for the 

lower. Using the relationship between ib  and ig  of equation (2-20), and the definition of 

the interface propagator in equations (2-26) and (2-27), it can be shown (after some rather 

tedious but straightforward algebra) that  

 ( ) ( )
( ) ( )
( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−

−−−
==

100
0cossin
0sincos

,, ϕθϕθκ
ϕθκϕθ

ϕθϕθ UUDD WW , (G-11) 

and ( )
( )

( ) ( )ϕθϕθχ
ϕθχ

ϕθ ,
000
00sin
0sin0

, UDDU i
i

WW −=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
= , (G-12) 

where 
21

21

2 SS

SS

VV
VV +

=κ  and 
21

21

2 SS

SS

VV
VV −

=χ , with the relationship 

 122 =− χκ . (G-13) 

As a check on the algebra, it is a requirement that the interface propagator, given by  
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 ( ) ( ) ( )
( ) ( )⎟⎟⎠

⎞
⎜⎜
⎝

⎛
=

ϕθϕθ
ϕθϕθ

ϕθ
,,
,,

,
DDDU

UDUU

WW
WW

W , (G-14) 

has a determinant equal to unity.  To check that this is the case, it is not necessary to 

explicitly compute the determinant, which would be somewhat arduous.  Instead, it is 

easy to show, using equation (G-13), that 

 ( ) ( ) 6,, IWW =ϕθϕθ T , (G-15) 

where 6I  is the 6-by-6 identity matrix.  Since ( ) ( )WW detdet =T , equation (G-15) can 

only be satisfied if ( )( ) 1,det ±=ϕθW . 
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APPENDIX H: ADJOINT RELATIONSHIP FOR ELASTIC GPSPI AND 

NSPS 

 

Margrave and Ferguson (1998) proved, for scalar extrapolation, that GPSPI in one 

direction is adjoint to NSPS in the opposite direction, and vice versa, under a standard 

inner product integral.  In this appendix, a similar proof of an adjoint relationship for the 

elastic case is provided.  The proof follows that of Margrave and Ferguson, but is made 

slightly more involved because it involves matrices and vectors, where commutativity 

cannot be assumed, and it is necessary to define a suitable inner product and adjoint. 

The equations for elastic GPSPI and NSPS extrapolation, through a homogeneous 

medium from 0z  to z, can be written [c.f. equations (3-2) and (3-3)] as operators PSPIL  

and NSPSL , via 

 ( ) ( ) ( ) ( )[ ]∫ ∫
∞

∞−

∞

∞−

−== xxxPSPIPSPI dsdxxxsizxsxLzx ''exp,,',,
2

,, 0 ωωω
π

ωω bPbb , (H-1) 

and 

 ( ) ( ) ( ) ( )[ ] xxxNSPSNSPS dsdxxxsizxsxLzx ∫ ∫
∞

∞−

∞

∞−

−== ''exp,,',,'
2

,, 0 ωωω
π

ωω bPbb , (H-2) 

where  

 ( ) ( )( )0,,, zzsxi
x

xesx −= ΛE ωω , (H-3) 

 ( ) ( ) ( ) ( )( )x
S

x
S

x
P

x sxqsxqsxqdiagsx ,,,, 21=Λ , (H-4) 

and 

 ( ) ( ) ( ) ( )xxxx sxsxsxsx ,,,,,, 1−= DEDP ωω . (H-5) 
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To define an adjoint operator for either equations (3-3) or (3-4) it is first 

necessary to define a related inner product.  Consider the following function for arbitrary 

displacement-stress vectors 1b  and 2b  

 ( ) ( ) 2121, bJbbb HF = . (H-6) 

where J is defined by equation (2-23), and Ha  is the Hermitian transpose of a vector a, 

i.e. TH aa ≡ .  For real a, the Hermitian transpose is the same as the standard transpose. 

First, ( )bb,F  is shown to be a measure of energy, for propagating (non-evanescent) 

waves.  Using (2-15) and (2-21), b is expressed in terms of the 6 eigenvectors, ib̂ , as  

 ∑
=

=
6

1

ˆ
i

iiv bb . (H-7) 

Now substituting (H-7) into (H-6), using (2-22) and (2-23), and recalling that all ib̂  

are real for propagating waves (though the iv  may not be) 
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ˆˆ

ˆˆ

,

6

1

2

6

1

6

1

6

1
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∑∑

∑∑

=

= =

==

=

=

=

=

i

i

i j

j
T
iji

j

jj

i

T
ii

H

v

vv

vv

F

bg

bbJ

bJbbb

 (H-8) 

The following inner product is now introduced 

 
( ) ( )( )

( )[ ] ( ) .

,,

21

2121

dxxx

dxxxF

H bJb

bbbb

∫
∫

=

≡

 (H-9) 

To confirm that (H-9) does indeed constitute an inner product on a complex vector 

space, it must also be proven that  
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 abba ,, = . (H-10) 

From (H-9), it is sufficient to prove that ( ) ( ) 1221 bJbbJb HH = .  Making use of the 

definition of  J, and starting from the right hand side expression 

 
( ) ( )

( ) 12

2121

bJb

JbbbJb

H

HH

=

=
. 

Now let us define the adjoint operator ^
PSPIL  for elastic GPSPI as the operator 

which satisfies 

 2
^

121 ,, bbbb PSPIPSPI LL = , (H-11) 

for arbitrary 1b  and 2b .   

Evaluating the left-hand side of (H-11) gives 

( ) ( ) ( )[ ] ( )dxzxdsdxxxsizxsxL

H

xxxPSPI ωωωω
π

ω ,,''exp,,',,
2

, 020121 bbJPbb ∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞− ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−= .  

  (H-12) 

Reordering the spatial integrations, and switching dummy integration variables, 

equation (H-12) may be written 

( ) ( ) ( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ] .''exp,,',,'
2

,,

''exp,,',,',,
2

,

0201

020121

dxdsdxxxsizxsxzx

dxdsdxxxsizxsxzxL

xx
H

x
H

xx
H

x
H

PSPI

∫ ∫ ∫

∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=

−=

ωωω
π

ωω

ωωωω
π

ω

bJPb

bJPbbb

 

  (H-13) 

To proceed further, we need to rearrange the term [ ]HJP , using the definitions of P, 

from equation (H-5), and J, from equation (2-23), and using standard matrix properties 
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[ ]
( )[ ]

( )

.

1

PJ

DEDJ

JDEDJ

JJDED

JPJP

=

=

=

=

=

−

T

HT

HH

 (H-14)  

Substituting back into equation (H-13) 

( ) ( ) ( ) ( )[ ]

( )[ ] ( ) ( ) ( )[ ]

.,

''exp,,',,'
2

,,

''exp,,',,'
2

,,,

21

0201

020121
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xxx
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xxx
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dxdsdxxxsizxsxzx

dxdsdxxxsizxsxzxL
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⎬
⎫

⎪⎩

⎪
⎨
⎧
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⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=

∫ ∫ ∫

∫ ∫ ∫
∞

∞−
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∞

∞−

∞

∞−

∞

∞−

∞

∞−

ωωω
π

ωω

ωωω
π

ωω

 

  

 (H-15)  

By comparison with equation (3-4), when PSPIL  describes downward extrapolation 

with GPSPI, the adjoint operator H
NSPSL  describes upward extrapolation with NSPS. 
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APPENDIX I: MULTIPLE REFERENCE VELOCITY COMPOSITION-

DECOMPOSITION 

 

In this appendix, an algorithm for interpolating the isotropic composition and 

decomposition operators is described. The algorithm is not exact in the case of variable 

SP VV / , but is an acceptable approximation when SP VV /  variation is moderate.  To 

simplify notation, the layer index is dropped, to write the recomposition and 

decomposition matrices as D  and 1−D . 

As given in equation (4-5) the displacement-stress vector b can be written as the 

sum of three displacement-stress vectors corresponding to the three modes 

 ( )

SVSHP

SV

SH

P

SVSHP

v
v
v

bbb

bbb

Dvb

++=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

=

ˆˆˆ . (I-1) 

The qualifiers SH and SV are used rather than S1 and S2, since isotropy is assumed 

here. 

The wave-mode specific displacement-stress vectors SHP bb ,  and SVb  may be 

stored separately.  Since the spatial variation of P- and S-wave velocities is not 

necessarily according to a constant ratio, at any given output location x the total 

displacement-stress vector ( )ω,, zxb , a combination of these vectors, will be obtained 

using different reference values.   

For example, assume a set of reference media NJ ,,1…=  such that JaveJ βγα = . 

Define the reference vectors using (4-5) with each reference medium as JP,b  and JSV ,b  

( SHb  is independent of any parameters – and can be completely decoupled).  Suppose at 

0xx = , the local P-wave velocity α  is between Jα  and 1+Jα , whereas the S-wave 

velocity β  is between Kβ  and 1+Kβ , with  KJ ≠ .  Then we have: 
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 ( ) 1,, )1(,, +−+= JPPJPPP zx bbb λλω , (I-2) 

and 

  ( ) 1,, )1(,, +−+= KSVSKSVSSV zx bbb λλω , (I-3) 

where 

 
JJ

J
P αα

αα
λ

−
−

=
+

+

1

1  and 
KK

K
S ββ

ββ
λ

−
−

=
+

+

1

1 . 

As noted in Appendix C, the vectors Pb̂  depend on both α  and β , whereas the 

vectors SVb̂  only depend upon β .  So the only approximation involved in the above is 

using Jβ  rather than Kβ  within equation (I-2).  If the variation of SP VV /  is not large, the 

error involved can be expected to be small. 

Similarly, for decomposition, we can write: 

 
( ) ( )SVSHP

T
SVSHP bbbggg

bDv

++=

= −

ˆˆˆ

1

, (I-4) 

where, from equation (2-23), 

 MM bJg ˆˆ = . 

Equation (I-4) can be evaluated directly, using appropriate reference velocities to 

compute Pĝ  and SVĝ  - where again SHĝ  is parameter-free and decouples.  As for the 

composition equation, Pĝ  is evaluated with the correct α , but a possibly incorrect β , 

constrained by the average SP VV /  ratio.  In terms of reference vectors, they are written 

[c.f. equations (I-2) and (I-3)] 

 ( ) 1,, ˆ)1(ˆ,,ˆ +−+= JPPJPPP zx ggg λλω , (I-5) 

and 

  ( ) 1,, ˆ)1(ˆ,,ˆ +−+= KSVSKSVSSV zx ggg λλω . (I-6) 

The result, taking into account the decoupling of the SH mode, is 
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T
P

bg

bg
bg

bg

bg
v

ˆ
0

ˆ

0
ˆ

0

ˆ
0

ˆ
. (I-7) 

The cross-over terms SV
T
Pbĝ  and P

T
SV bĝ  correspond to mode converted energy.  

Alternatively, the mode conversions can be neglected, to give  

 
⎟
⎟
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⎜
⎜

⎝

⎛

=′

SV
T
SV

SH
T
SH
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T
P

bg
bg
bg

v
ˆ
ˆ
ˆ

. (I-8) 

Use of equation (I-8) rather than (I-7) essentially reduces the elastic migration to a 

set of scalar migrations which handle transmission effects. 


