Important Notice

This copy may be used only for
the purposes of research and
private study, and any use of the
copy for a purpose other than
research or private study may
require the authorization of the
copyright owner of the work in
question. Responsibility regarding
guestions of copyright that may
arise in the use of this copy is
assumed by the recipient.




UNIVERSITY OF CALGARY

Reservoir property prediction from well-logs, VSP and

multicomponent seismic data: Pikes Peak heavy oilfield, Saskatchewan

by

Natalia Soubotcheva

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF GEOLOGY AND GEOPHY SICS

CALGARY, ALBERTA
January, 2006

© Natalia Soubotcheva 2006



UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies for acceptance, a thesis entitled "Reservoir property prediction from well-logs,
VSP and multicomponent seismic data: Pikes Peak heavy oilfield, Saskatchewan"
submitted by Natalia Soubotcheva in partial fulfilment of the requirements of the degree

of Master of Science.

Supervisor, Dr. Robert Stewart, Department of Geology and Geophysics

Dr. Larry Lines, Department of Geology and Geophysics

Dr. Mehran Pooladi-Darvish, Department of Petroleum Engineering

Date



Abstract

Reservoir property estimation plays an important role in the exploitation and successful
development of oil and gas fields. In this thesis, well log data, VSP and 2D
multicomponent seismic data are combined to predict reservoir properties.

PP and PS synthetic seismograms generated from well logs correlate convincingly with
the surface seismic data. The productive formation has a Vp/Vs value noticeably lower
(1.7) than the overlying formations (which are around 4.4). The top of the productive
interval is interpreted as a PP impedance drop (5010 m/s*g/cc) and PS increase (3066
m/s*g/cc). Inversion and other seismic attributes were used to predict the density and
porosity along the seismic line. The Waseca oil sands are characterized as a low-density
(2170 kg/m®) and high-porosity (22%) zone. Angle and spectral maps were generated
from the PP seismic data to show the dipping angle of the geological structure and the
frequency content of the seismic data respectively. A low-frequency anomaly is found
below the reservoir and might be used as another indicator of the productive zone.

As a whole, combining different types of data provides a more confident geophysical

interpretation.
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Chapter 1

I ntr oduction

1.1 Introduction

The Pikes Peak oilfield is located 40 km east of Lloydminister, Saskatchewan (Figure 1.1)
and produces heavy oil from the Waseca sands of the Lower Cretaceous Mannville Group.
Over 42 million barrels of heavy oil have been produced at this site over the last 22 years.
Presently, it is one of the largest ail fields in Canada with a daily production of about 8000
barrels (Husky Energy reports, 2004).

Considerable effort has been expended to research the effect of steam injection in this area.
Hulten (1984) provided a comprehensive geologic description for the Waseca formation in
and around the Pikes Peak field. Downton (2001) performed an AVO study to map the
steam chamber. Xu et a. (2001) reported on the acquisition and processing of VSP data.
Newrick et al. (2001) presented an investigation of seismic velocity anisotropy at Pikes
Peak using VSP data. Zou at al. (2002) conducted time-lapse seismic modelling at Pikes
Peak. Watson (2004) investigated acoustic impedance inversion and showed the
stratigraphy of the reservoir.

It was shown by the above researchers that steam injection significantly changes the elastic
parameters of the reservoir. For example, they indicated that acoustic impedance is lowered
where steam has been injected into the reservoir formation. The significant time delay
caused by fluid substitution was observed on the time-lapse seismic data. VSP data were

used to generate the velocity model that allowed successful migration of the seismic data.



The main producing zone within the Waseca formation is a homogeneous sand unit. The
coa and sideritic shale of the McLaren and the shale at the top of the Waseca form an
excellent seal for the hydrocarbon (Hulten, 1984). Wells 1A15-6, D15-6, 3C8-6, B16-1 and
D2-6 were used to create P-P synthetic seismograms. Wells 1A15-6 and B16-1 were also
used to tie to the converted-wave seismic data, because they had S-wave sonic logs.

The primary objective for this research was to integrate different types of geological and
geophysical information to conduct the reservoir analysis. It implies the estimation of
elastic properties, lithology, acoustic impedance and porosity. As a continuation, the Vp/Vs
coloured section was created using multi-component data, gathered at Pikes Peak. To
estimate the PP and PS acoustic impedance, three post-stack seismic inversion methods
were used: model-based, recursive and sparse-spike.

Finally, a cokriging method was applied to integrate the sparse well measurements and the

dense seismic datato estimate the desired rock properties.
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Figure 1.1. Map of major heavy-oil deposits of Alberta and Saskatchewan, and location of
the study area (after Watson, 2004).



1.2 Geology

The Pikes Peak heavy oilfield is situated in the east-central part of the Western Canada
sedimentary basin. The productive Waseca formation is located about 500 m below the
surface and its thickness varies from 5 to 30 m (Figure 1.2).

The top of the Precambrian basement lies at a depth of approximately 1600 m. There are
essentially Devonian and Cretaceous age formations above the basement. The dominant
lithologies of the Devonian formation are limestone and dolomite, with the exception of the
Prairie Evaporate, which consists largely of salt. The dissolution of this Devonian salt

played an important role in the forming of the hydrocarbon trap at Pikes Peak.
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Figure 1.2. Pikes Peak stratigraphy (after Core laboratories-Stratigraphic Chart for
Saskatchewan).

There is a 250 million year gap between the Devonian and Cretaceous formations. This

boundary is also known as PreCretaceous Unconformity. A mixture of sand and shale



cycles were deposited above this Unconformity, and it formed the Lower Cretaceous
Mannville group. The Cretaceous strata are dipping largely to the southwest (Hulten, 1984).
In this chapter, only the Waseca formation is discussed in detail, since it is the focus for
exploration.

The productive Waseca formation consists of three main facies (Hulten, 1984). From top to
bottom they are:

1. Sderitic silty shale unit;

2. interbedded sand and shale unit;

3. homogeneous sand unit.

The homogeneous sand, which is saturated with heavy oil, is the main target for
development. This unit has the greatest thickness and continuity across the reservoir. The
sands are well sorted, fine- to medium-grained. The typical sedimentary structure in the
lower part of this unit is planar crossbeds. Parallel laminations are more common for the
upper part. The sands are locally cemented by siderite and calcium carbonates, which
deteriorate the porosity in the areas of cementation. The Sparky coal layer identifies the low
limit of this unit. In general, the homogeneous sand unit has excellent reservoir quality.
The interbedded unit is characterized with lamination of sand and shale, which makes well
log data “highly variable” in this part of a section. No carbonate cement has been observed.
Compared to the homogeneous sand, the interbedded unit has lower oil saturation. The
upper shale unit plays the role of a cap in the hydrocarbon trap. It has low porosity and
permeability, and creates a seal over the oil- or water-saturated sand. The ironstone, due to
its high cementation, forms a well defined boundary between the McLaren and the upper

Waseca.



The trapping mechanism at Pikes Peak is considered to be both structural and stratigraphic:
its stratigraphic component comes from the sealing shale unit, and the structural component
is determined by the dissolution of the Prairie evaporite.

Available log suites for most wells include P-wave sonic, density, gamma ray, resistivity
and SP logs. A simple way to differentiate the lithologies is to crossplot the Vp/Vs ratio

versus gammaray log (Figure 1.3).

Gamma Ray vs ¥pVs_Ratio{primary) — Color Key
¥p¥s_HRatiolunitlegs) <Vertical Depth>{m}

483

430

417

384

3a1

318

285

232

219

186

PR R R B B A e
10 250 .‘53

Gamma Ray{APl)

— Legend
[l Gamma Ray vs VpVs_Ratio{primary)

Figure 1.3. (4) Vp/Vsversus gammaray for the well 1A15-6.

This cross-plot was created for the well 1A15-6 which of all the wells is the closest to the
seismic line. Different coloured points represent different depths. In our case, three major
types of lithology were selected. Applying this result to the cross-section (Figure 1.4), we
can observe the shale zone (brown), the mixture of sand and shale cycles (green), and the
homogeneous or oil sands (yellow) for this well. This result slightly varies from well to
well at Pikes Peak; however the same sequence is observed along the whole section from

north to south.
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Figure 1.4. Cross-section for well 1A15-6 delineating zones with different lithology:

shales, mixture of sand and shale cycles and oil sand.

The mineralogy of the Waseca (from Hulten, 1984) is dominated by quartz (92%) and also
contains the small amount of feldspar (3%), kaolinite (3%) and other minerals (2%). Oil
saturation is relatively high at 80-90%. The porosity in the homogeneous sand is also high
at 32%; permeability ranges from 5 to 10 Darcies.

Cyclic Steam Stimulation (CSS) has been used at Pikes Peak to increase the mobility of oil
and facilitate its production. The steam is injected into the reservoir over a period of several
months. During this time, the well is shut in to let the heat propagate through the reservoir.

As the oil near the injector well warms, its viscosity is greatly reduced. Then the oil is



produced from the injector well. This process is repeated several times. Another method of
oil recovery is Steam Assisted Gravity drainage (SAGD). This method uses two horizontal
well vertically offset a few metres. Steam is injected into the upper wellbore, melted oil
drains down through the rock to the lower wellbore and is produced.

Presently, Pikes Peak is one of the largest fields in Canada with daily production 1,200-
1,300 m® which is equivalent to 7,600-8,300 bbl (from Husky production report). Since
many wells in the area are produced using cyclic steam stimulation, the production number

changes depending on the phases of a cycle, and may exceed this range.



1.3 Review of acquisition and processing

A three-component seismic line, shot with a Vibroseis source, was collected in March 2000
by the CREWES Project and Husky Energy (Figure 1.5). This line was about 3.8 km long
with a receiver interval of 10 m and a source interval of 20 m (Hoffe, 2000). This source
was swept for 16 seconds over 8-150 Hz. The main difference for the processed PP and PS
data was in the bandwidth: for the PP data — 14-150 Hz, and for PS data — 8-40 Hz
(Appendix 1). The seismic data were acquired by Veritas DGC (Land) and processed by

Matrix Geoservices Ltd in May 2000.
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Figure 1.5. Map of the Pikes Peak field, Saskatchewan (Watson, 2004).

The data from 2000 were more noisy than 1991, because many more pump jacks were in
operation during acquisition. Nevertheless, the increased fold from 30 to 66 helped to stack

out much of this noise. Both sets of data were filtered and migrated.



Nine wells closest to seismic line (lying within 110 m of the 2D seismic line) were used in
this thesis. A typical suite of logs includes. gamma ray (GR), P-wave sonic, spontaneous
potential (SP), resistivity, neutron porosity and bulk density (Figure 1.6).

As mentioned previously, the SP and GR logs indicate a permeable sand interval (482-
500m) with high porosity (30-32%) from the neutron and density logs. Resistivity logs

indicate considerable oil saturation.
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Figure 1.6. Typical log suite used for well log interpretation over the zone of interest. The
well 3B9-6 islocated 87 m east of the seismic line (Watson, 2004).
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1.4 Software used

This thesis uses various Hampson-Russell software packages. With the help of the eLog
package, the well logs were manually correlated to the seismic data. The AV O application
was used to construct the synthetic seismograms and reflectivity curves with the offset. The
ProMc package, designed for multicomponent data, was the main tool to create Vp/Vs
sections and analyze PP and PS datasets simultaneously with one scale. Using Strata, both
PP and PS coloured impedance sections were constructed and analyzed. Also the Emerge
package was used to integrate the well log and seismic data in order to estimate some
reservoir properties using multi attribute analysis.

The AccuMap system was used to verify the well locations and current data on production
and operation. Finally, the dip and spectral maps for the seismic data were generated in

Resolution software from Calgary Scientific Inc.



11

Chapter 2

Basic inter pretation

2.1 Wdll log correlation to seismic data

The starting point of this geophysical interpretation is the correlation of the well logs to the
seismic data. By convolving the reflectivity and wavelet at the well location, the synthetic
traces (blue colour) are generated. Then each pick from the synthetic trace was correlated to

each pick from real seismic data (red colour). The well log was datumed according to this

correspondence (Figure 2.1).
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Figure 2.1.Well log, synthetic seismogram and surface seismic correlation for well 1A15-6.
Figure 2.1 demonstrates this application for well 1A15-6 corresponding to data around

CDP 231 on the seismic line.



12

Six blue traces on the left represent the zero-offset synthetic seismogram for this well. After
proper correlation, we can see that our synthetic trace (in blue) matches the real seismic
trace, extracted at the well location (in red) reasonably well. The similarity between these
two traces is shown in the window below (correlation — 64%).
The wavelet for the synthetic trace was extracted from the seismic data and we assume that
it is constant with time and space. The wavelet parameters are:

e wavelet length — 200 ms

e taper length—25ms

e samplerate—2ms

e frequency spectrum 10-150 Hz (the same asthe final filter used in the seismic data).
Taking a closer look at the well logs (Figure 2.1), we can observe the following:
P-wave sonic log
There is a slightly increase in velocities starting from the top of the Mannville (Colony
formation). The Waseca formation has an average Vp velocity equal to 2500 mv/s. The P-
wave log for thiswell is not very informative in the case of event discrimination. However,
the spikes on this log could be related to the facies boundaries, as confirmed by the
calculated impedance log.
Density log
The Base of Fish Scales appears as a density increase from 2035 to 2235 kg/m®. The next
density increase from 2282 to 2330 kg/m® corresponds to the Colony event on the seismic
section. The top of the Waseca formation corresponds to density decrease to 1900 kg/m®.

Then, at the beginning of the productive formation, the density increases to 2300 kg/m’,
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which corresponds to silty shale unit, and starts to get lower at the homogeneous sand

formation — 2100 kg/m®.

According to this correlation four possible layers have been identified (Table 2.1).

Formation Name Depth of Top (m)
BFS (Base of Fish Scale) 357
Colony 453
Waseca 468
Sparky 504

Table 2.1. Four layers from correlating well 1A15-6 and the PP seismic data.

The well did not encounter the Devonian horizon. However, according to Hulten (1984),
this formation would be found at about 640 m, and it is mainly represented by dolomite.

The gamma-ray log can be a good indicator of the natural radioactivity of the rocks. In
sediments the log mainly reflects the shale content, because minerals containing radioactive
isotopes tend to concentrate in clay and shale. Well 3C8-6 (Figure 2.2) has this type of log

and crosses the productive formation.
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Figure 2.2. Density and gammaray logs for well 3C8-6 correlated with the seismic data.
For this well, we can use the gamma ray log for sand and shale discrimination. Referring to
the geology, the productive formation starts with the so-called shale cap, which
corresponds to high values in the gamma ray log (80-90° API). When the log reaches the
sand formation (oil- or water-saturated), its radioactivity drops to about 25° API.
According to Figure 2.2, we can locate oil-saturated sands at depths from 470 to 495 m.
Similarly, the other wells were correlated to the surface seismic data and the correlation
coefficient for well D15-6 (CDP 195) is 54%, and for well D2-6 (CDP 419) is 61%.
One can notice that well ties are imperfect. There are several reasons for this, including:

1) velocity dispersion

2) problems with sonic logs, such as cycle skipping or mud invasion

3) noisy seismograms

4) non zero-phase wavelets



15

5) polarity differences between synthetic seismograms and seismic data (Lines and

Newrick, 2004).

Displaying correlated well logs on the seismic section (Figure 2.3) allows us to see how

well they are calibrated to the seismic data.
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Figure 2.3. Interpreted fragment of the PP section with inserted P-wave sonic logs.

In general, the highest peaks on the logs should correspond to the brightest reflections.
Figure 2.3 demonstrates that it is true for this case. The productive formation was found at
a depth 500 m and its thickness varies from 5 to 30 m within the reservoir. Four main

horizons were interpreted on the section: Base of Fish scale, Colony, Waseca and Sparky.
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The top of the producing Waseca was recognised as an impedance decrease (trough on the
seismic section) and at the bottom of the Waseca, impedance increases (peak on the seismic
section). For this field, the density mainly contributes into the impedance changes.

Overall, the corresponding formations on the PS section have similar signatures (Figure
2.4) as for PP data, since the density and velocity are usually changing in the same

direction for most of the ailfield.
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Figure 2.4. Interpreted fragment of the PS section in PS time with inserted P-wave sonic
logs.
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2.2 Synthetic modelling
It iswell known that the measured seismic trace is modeled as a convolution of the source

wavelet with reflectivity series:.
S(t) = r(t)* w,(t) (1)
In our case, P and S-wave logs are input values to calculate the reflectivity r(t) and the

source wavelet w, was extracted from the PP seismic data (Figure 2.5).

testPP —wavelet time response testPP —wavelet amplitude and phasge
Amplitude response
1,00 Amplitude Fhase (degrees)
1 k 1,00

0.50—_ 050 |

6|5|OI100 Frequency (Hz)

Legend
’7 Amplitude —— Phase (avg: 0.00)

Time (ms)

Figure 2.5. The amplitude of the wavelet with time (left) and frequency (right).

The wavelet test PP, extracted from the PP seismic data has the following parameters:
wavelet length — 100 ms, taper length — 10ms, sample rate — 2ms, zero phase.

Note that the frequency band for this wavelet is about 15-150 Hz. These values correspond
to the frequency content of the PP data.

| have chosen the Zoeppritz application in ProMc to create the synthetic seismogram
(Figure 2.6). However, the solution of Zoeppritz's equation cannot be taken as the exact
expected seismic response, because Zoeppritz's equation describes plane waves, while

actual seismic waves are spherical (Lines and Newrick, 2004). In addition, the synthetic
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seismogram is calculated in the absence of external effects such as transmission losses,

attenuation, geophone coupling, coherent or random noise, etc.

The parameters for the PP synthetic seismogram are shown in Table 2.2:

number of offsets 30
minimum offset 0
maximum offset 500 m
sample rate 2ms
start time 0

end time 700 ms
NMO corrected

Table 2.2. Synthetic parameters.
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Figure 2.6. Well logs, PP synthetic and surface seismic data for well 1A15-6.
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As we can see from the Figure 2.6, the main reflectors correlate reasonably well.

A Ricker wavelet was used to create the PS synthetic. Note the lower frequency content in
Figure 2.7 that was chosen to match lower frequency PS seismic data.

Wavelet parameters are: wavelet length — 200 ms, taper length — 30 ms, sample rate- 2ms,
phase type — constant phase.

Ricker Wavelet Parameters Mew Ricker Wavelet — wavelet time

response
Dominant Ir |' Phase Type

Am plitude
k10

Frequency - Minimum Phase

Phase Rotation I[I

Sample Rate |2 ms L %
(BB e
0
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@ Linear Phase

200

T 400

Wavelet Mame I ricker12

Time {(ms)
New Ricker Wavelet - wavelet New Ricker Wavelkt — wavelet
phase response frequency response

Phase {degrees) Am plitude

1003
nj
=100

Frequency (Hz) o ' 7’0 ' 100Hz
Figure 2.7. Ricker wavelet parameters for the PS synthetic seismogram.

As we can see from Figure 2.7, the dominant frequency is 25 Hz and the frequency band
for the wavelet is about 8-45 Hz. The result of the PS modelling is shown on the Figure 2.8.
The same input parameters as in previous case were used (Table 2.2), except that here a
Ricker wavelet was used for the PS synthetic.

In this case, the well log curves are displayed in PS time and PS seismic and synthetic data
are in depth. The first trace has no amplitude, because there is no conversion at zero offset.

| have chosen a positive polarity for displaying the PS synthetic and frequency band for the
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wavelet: 8-45 Hz. For this case, positive polarity can provide the better correlation of the

events and help us avoid the erroneous event below 525 m.
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Figure 2.8. Well logs, PS synthetic and surface seismic data for the well B16-1.

We can assemble well logs, synthetic seismograms, V SP data, and surface seismic data into
a composite plot, which often allows a more confident interpretation (Figure 2.9). The VSP
at Pikes Peak was conducted in well D15-6, which is fairly close to our seismic line. This
well was chosen because it had not been used for reservoir steaming, and it passed through
all the major area formations (Osborne and Stewart, 2001). The energy source was a
Vibroseis truck running a linear sweep from 8 to 200 Hz. Three-component receivers were
spaced in the well every 7.5 m. The VSP included in Figure 2.9 is the P upgoing wave VSP

with an offset of 180 m and a sample interval of 0.001s for atotal recording time of 3s.
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According to the acquisition parameters (Osborne and Stewart, 2001), the deepest
geophone was clamped at a depth - 514.5m in the well. If we refer to Figure 2.9, we can see
the last event registered by VSP, at zero offset, has about that depth.

Aswe can see from the Figure 2.9, the V SP supports our preliminary interpretation. All the

main events correlate well with all types of information.
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Figure 2.9. Composite plot for well D15-6 showing logs, synthetic seismograms, surface
seismic and 180-m offset V SP; where the bandwidth for the synthetic and seismic data is 8-
140 Hz and for VSP 8-120 Hz.

There is a noticeable bandwidth decrease as we move from the synthetic to VSP data
(Figure 2.9). For example, some minor events between 500 and 550 ms are not pronounced

on the VSP and surface seismic data because of their lower frequency content.



2.3 Interpreted data
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The results of interpretation are shown on Figures 2.10 and 2.11. Every 10" trace is plotted

to place all CDP's into one screen. We can trace amost all main horizons on both PP

(Figure 2.10) and PS (Figure 2.11) sections. However, the Waseca event is not clearly

recognizable on PS section, because of the lower frequency content of the data.

2.4 Vp/Vsestimation

Dividing P-sonic velocities with the S-sonic velocities provides a Vp/Vs value (Figure

2.12), which is important for lithology discrimination. The productive formation has a

Vp/Vsvalue noticeably lower (1.7) than the overlying formations (around 4.4).
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Figure 2.12. Calculated Vp/Vsvalue for well 1A15-6.

Since we have now interpreted both PP and PS horizons, we can link the corresponding

horizons in the multicomponent seismic interpretation package, ProMc. The program
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calculates a Vp/Vs value between the horizons and plots the colour section of Vp/Vs along

the entire line. This colour Vp/Vsoverlay is shown with a PS line in Figure 2.13.
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Figure 2.13. Vp/Vs value, computed from time thickness, overlain with the PS section.

To compute the Vp/Vs adong the seismic line we use the following formula:

Ve 28ty
VS AtPP

where At,, and At are the time thicknesses between the interpolated horizons on PP

(2)

and PS data set accordingly. A derivation of the above equation was described by Watson

(2004). One of the limitations in equation (2) isthat it is an average over the time thickness

interval.

A drop from 4.4 to 3.6 between 950 and 1100 ms in the seismic Vp/Vs value may be

explained by the effect of steam injection into the wells. It was shown by Watson (2003)
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that the injection of the steam causes increases in travel time and decreases in both Vp and
Vs velocities. However, Vp decreases at a greater rate than Vs, which causes a Vp/Vs drop
near the recently injected wells 3C8-6 and D2-6. Wells D15-6 and 1A15-6 do not exhibit
any anomalies since they had not been recently injected.

We can trace the general tendency of Vp/Vs: it is quite high in the Mannville shale (around
4) and goes down in the productive sand interval with the exception of coal layers. The coal
layers typically have higher Vp/Vs. In our case, this value goes up to aimost 4 within thin
codl layers of Waseca (at about 600 ms at the PP section). The productive interval has a
Vp/Vsat around 1.5 which is in reasonable accord with the well log data (Figure 2.12).

The Waseca-Sparky time interval of almost 25 ms correlates to a depth thickness of around

35 metres. Note that the Vp/V's value represents an average across this depth interval.
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Chapter 3

AVO analysisand inversion at Pikes Peak

3.1.1 Synthetic AVO example

AVO analysis consists of an examination of reflections at varying source-receiver offsets
and the search for an anomalous seismic response. According to Rutherford and Williams's
classification (1989), there are three main classes of AVO anomalies: Class 1 — dim out,
Class 2-phase reversal and Class 3 — bright spots. Since the Pikes Peak field is considered
as a low impedance reservoir, it should be related to the Class 3 and exhibit a reflectivity

decrease with the offset (Figure 3.1.)
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Figure 3.1. Classification of AVO responses (left) with corresponding linear approximation
(right), after Rutherford and Williams (1989).

The AVO Software package allows us to create a synthetic AV O response for a particular
well. For this example, | took the density and P-wave sonic logs for the well 3C8-6 and
then calculated the S-wave log, using Castagna's equation. A wavelet was extracted from

the seismic data using the well log (Table 3.1).
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Time from 0—2000 ms
Number of offsets 30

Wavelet length 150 ms
Taper length 20 ms
Samplerate 2ms
Extraction type Full wavelet

Table 3.1. Wavelet extraction parameters
Observing the Zoeppritz synthetic seismograms (Figure 3.2), we can notice that some
reflections exhibit an amplitude decrease with offset. For this well, a decrease in the

amplitude with offset at around 580 ms corresponds to the oil sands.
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Figure 3.2. P-wave sonic, calculated S-wave sonic, gamma-ray log and PP synthetic for
well 3C8-6. Note the amplitude decrease with offset a 580 ms.

Zoeppritz's equation can predict the change in amplitude for any combination of rock

properties. For example, when at a particular depth point both impedance and Poisson’s
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ratio increase (or decrease simultaneously), then reflectivity is increasing (Figure 3.4.c).
When they change in different directions, then the reflectivity is decreasing (Figure 3.4.b).

In the case of constant Poisson’sratio, the AVO response is amost flat (Figure 3.4.a).
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Figure 3.3. Computed Poisson’ s ratio, impedance and reflectivity for well 3C8-6, where the
target reflector exhibits the amplitude decrease with offset.

A theoretical relationship between the reflection amplitude and lithology was previously

described by Shuey (1985) and modified by Hilterman (1990):

jsm 0+—= . tan 60— sm 6}(3)

Acoustic impedance Poisson’' sratio P ave velocity
0°—» 90° 15°—» oC° 30°—» 90°

where RC — reflection coefficient, 8 - incident angle, « - P-wave velocity, - S-wave

velocity, p - density, and o - Poisson’sratio.



Figure 3.4.a AVO curve created for 370 m depth

Figure 3.4.b AV O curve created for 426 m depth

Figure 3.4.c AVO curve created for 445 m depth
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Figures 3.4a-c demonstrate how the P-wave reflectivity is changing with the offset from O
to 400 m. According to the Figure 3.3, the computed reflectivity ranges from -0.1 to 0.15.
Since there is a large difference in frequency content of the synthetic and well log
(reflectivity) data, we can trace just the general trend of reflectivity, whereas small changes

in the coefficient are not seen on the synthetic data.

3.1.2 Fluid replacement modelling

When shear logs are not available, we can attempt to estimate Vs using P-wave velocity
logs. Castagna' s equation is the most commonly used technique:

V,=CV, +C, 4
where C, =0.86190, C, =-1172.

This equation is used for the wet-sand model. So, our estimated log might be not
completely accurate for oil sands. The Fluid Replacement Model (FRM) allows modelling
gas or oil saturated sands. Within the FRM module, the Biot-Gassman equations are used to
convert the actual P-wave log from 50% to 100% water saturation (Russell, 2001). Then,
with the help of Castagna’'s equation, the shear-wave velocity for this water saturation is
calculated. Finally, the Biot-Gassman equations are used again to correct from 100% water
saturation back to 50%. Figure 3.5 shows the original P and S-wave logs (blue) and those,
calculated for 50% hydrocarbon saturation (red). The P-wave logs are identical; the S-wave
log, calculated in FRM module has slightly higher velocities (red curve), but keeps the
same trend. As a result, the FRM synthetic seismogram for this well looks very similar to

the wet synthetic.
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Figure 3.5. P-wave and S-wave Castagna's logs, wet synthetic and 50% oil synthetic
seismogram for well D2-6.

The reason for this similarity is the comparable petrophysical characteristics of oil and

water (Table 3.2).

Parameter Water Oil
Density 1.00 g/cc 0.95 g/cc
P-wave velocity 2300 m/s 2100 m/s
Poisson’ s ratio 0.5 0.5

Bulk moduli 2.2 GPa 1.62 GPa

Table 3.2. The averaged petrophysical characteristics for oil and water a normal

temperature and pressure (20°C, 50Atm) (Prohorov, 1990).
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3.1.3 Intercept and gradient analysisusing CDP gathersat Pikes Peak (array data)
AV O processing should preserve or restore relative trace amplitudes within CMP gathers
(Allen, 1993). To improve the data quality (reduce ground roll and surface waves), vertical
geophone arrays were used at Pike Peak. The group interval for the arrays was 20 m, with
maximum offset 1330 m (Hoffe et al., 2000 and Appendix 1).

The presence of gas and oil sometimes results in high-amplitude reflections known as
“bright spots’. In the Pikes Peak case, we can see the strong reflection at a time about 580

ms (Figure 3.6), which corresponds to the top of productive Waseca formation.
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For the Class 3 environment, the intercept and gradient can be used to support the presence
of hydrocarbons. Here, under the intercept (A) we assume a normal incident reflectivity,
and gradient or dope (B) is a function of P-wave velocity, S-wave velocity and density
(Hilterman, 2001). Since the productive zone is located at around 586 milliseconds, | chose
this time for the intercept and gradient calculation (Figure 3.7). The actual reflectivity is

shown as a squared line, and the smoothed version of reflectivity is shown asa solid line.

CDP =337 X

Interce pt{A) f Gradient{ B) Calke ulation
Linear Stabilizing Factor =0 9%

1: Time =586 Linear Correlation =052 Robust Correlation =06
2: Tme =594 Linear Correlation =077 Robust Correlation =089

Trace Amplitude
2000

—5000 —

=10000 —

Offzet {Meters)
Maximum Angle =30 degrees
— Legend
—Jl— Event1:586 ms —Jl- Event2:594ms -==-=- Linear

Robust

Figure 3.7. Intercept and gradient calculation for two events (586ms, red and 594ms, blue)
from the seismic data. The P-wave sonic log from well 3C8-6 (CDP 337) and the array
gathers are used as an input.
Asit is seen from the graph (Figure 3.7), the reflectivity of the target event (red) decreases
with the offset, which corresponds to the reflectivity changes on the synthetic seismogram
for well 3C8-6 (Figure 3.3).

To maximize the indicator of possible pore fluids, the product of intercept and gradient is

often used (Figure 3.8).
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Figure 3.8. Coloured section showing the product of intercept and gradient and inserted
gamma ray log for well 3C8-6. Note that the anomaly coincides with the sand channel,
characterized by the gammaray log decrease.

The CDP gathers (Appendix 1) and P-wave velocity from well 3C8-6 are used as an input
to create this coloured section (Figure 3.8). The maximum number of CDP locationsis also
specified. Here, the wiggle traces are intercept traces, the colour attribute is the product of
intercept and gradient, A*B. In this case, we can see a strong red (negative) response at the
well location at about 580 milliseconds, which correlates with the inserted gamma ray log
for well 3C8-6 (CDP 337).

Finally, we can cross-plot the intercept and gradient for a particular time interval (Figure
3.9). The interval 480-680 milliseconds is chosen to fit the productive zone in the middle of
it. After delineating four zones with the similar intercept/gradient values, we can apply this

result to the cross-section (Figure 3.10).
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Figure 3.9. Cross-plot of intercept and gradient where different coloured points represent
different times.
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Figure 3.10. Fragment of the PP seismic section, showing zones with different
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36

Note that the anomaly is fairly well defined and its location matches CDP 337 where the
producing well 3C8-6 was drilled.

It is important to remember about the limitations of amplitude versus offset analysis. Since
the AVO theory is based on linearized approximations of Zoeppritz equations (Downton,
2000), the seismic data must be properly processed, otherwise the AVO anomalies can not
be related to the hydrocarbon zones. The relationship between the elastic parameters and
the rock properties is non-unique. There are many rocks and fluids that may influence the
elastic parameters, therefore, understanding the geology in the area of interest is crucial for

the successful AV O interpretation.
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3.2 Inversion of seismic data

Inversion can be defined as a procedure for obtaining models which adequately describe
adataset (Treitel and Lines, 1994). For this seismic case, post-sack migrated data plays
the role of the dataset to be inverted and the acoustic impedance is a desired property to
estimate. Our zone of particular interest is the Waseca formation, which is going to be
analyzed in detail in terms of the impedance anomalies. Since all inversion algorithms
suffer non-uniqueness, it is important to use some external information to limit the
number of possible models, which agree with the input seismic data. Well log data
provides the additional information to constrain our model and to make the inversion

result more accurate.

Geophysical data Model estimate

Figure 3.11. Anillustration of inversion (from Treitel and Lines, 1994).
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3.2.1PPinversion

With our wells now correlated to the seismic data, we can proceed with the inversion.

Using the convolution model of seismic traces, S(t) =r(t)* w,(t), and the wavelet, we

begin the inversion process.
There are two different approaches to estimate the wavelet:
a) Stetistical
This method estimates the wavelet from the seismic data alone and can be described as
following:
1) calculate the autocorrelation over a chosen window
2) calculate the amplitude spectrum of autocorrelation under the white
reflectivity assumption
3) takethe square root of the autocorrelation spectrum which approximates the
amplitude spectrum of the wavelet
4) compute the desired phase (zero, constant, minimum)
5) taketheinverse FFT to produce the wavelet (Todorov, 2000)
b) using awell log
This method combines the well log (density and velocity) and seismic information. The
reflectivity at the well location is computed from the density and sonic logs, then
deconvolving the reflectivity from the seismic data, we obtain the wavelet. (Lines and
Treitel, 1985). In theory, the exact phase information can be obtained at the well
locations.

So, the choice of the wavelet is crucial for the correct impedance model.
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Figure 3.12. Wavelet extracted from seismic data.
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Figure 3.13. Wavelet extracted from seismic data using all wells in the project.

Figures 3.12 and 3.13 illustrate the application of these two methods of wavelet

extraction. Since the wavelet extracted from the seismic data alone (Figure 3.12) looks

less complicated, it was chosen for the inversion modelling.

Multi-well analysis allows us to check the total correlation between the synthetic and

seismic traces at the well location (Figure 3.14). Four calculated impedance logs (blue)

along with the seismic trace (black) and synthetic (red) trace, extracted at the well

location, are shown in one window. By reducing the correlation window, we can

improve the quality of correlation. For this case, | reduced the window to 250-620 msto

get thetotal correlation coefficient 57%.
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Figure 3.14. Multi-well analysis window showing the calculated impedance log (blue),
seismic trace (black) and synthetic trace (red) extracted at the well location.

The correlation plot (Figure 3.15) allows us to check the correlation coefficient for the

particular well. Unsatisfactory wells can be excluded from the analysis.
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Figure 3.15. Correlation plot for four wells.
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The initial background model (Figure 3.16) is formed by blocking an impedance log from
the wells and interpolating the values between the wells. The colour bar on the right givesa
total impedance range for this section. Since the impedance is a product of density and

velocity it is measured in [m/s* g/cc].

Trace Data: vertical_mig_filt — Calor Key
Color Data: Model P—impedance 200 m
Inserted Curve Data: Computed Impedance P
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Figure 3.16. Initial/background P-wave impedance model constructed from 4 wells and PP
seismic data.

As it is expected, the impedance increases with depth with the exception of the productive
zone (yellow in the picture). The inserted impedance logs are shown on the section. An

enlarged plot for well 3C8-6 allows us to check the quality of prediction.

| performed three types of inversion for these dataz model-based, sparse spike and
recursive. Model-based inversion (Figure 3.17) produced the highest frequency result, but

this high frequency comes largely from the initial guess model, not from the seismic data.
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The sand channel can be traced here as a low impedance anomaly (yellow in the picture).

This anomaly (circled in the white oval) coincides mainly with the well locations.
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Flgure 3.17. Model-based inversion of PP seismic datato impedance.
A visible impedance drop is observed at about 580-600 ms (yellow), where the productive

formation lies.

The algorithm for the model-based inversion (Figure 3.18) has been described by Russell

(1988) and consists of the following steps:
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Figure 3.18. Algorithm for the model-based inversion (Russell, 1988).
The parameters chosen for the model based inversion are shown below:

e inversion option — constrained

o average block size—6 ms

e number of iterations—5

e processing sample rate—2 ms

e separate scaler for each trace

e singletraceinversion
Two main problems related to this type of inversion are a strong sensitivity on the wavelet
and non-unigqueness of the result.
The sparse-spike inversion (Figure 3.19) is based on a maximum-likelihood deconvolution
algorithm. It is assumed that the wavelet in the seismic data is known and the earth’s

reflectivity is composed of a series of large events superimposed on a Gaussian background
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of smaller events. For each trace, a sparse reflectivity sequence is estimated. Then, the
broadband reflectivity is gradually modified until the resulting synthetic trace matches the
real trace with some minor error (from Strata, 2006). It produces a broadband and high-
frequency result, which looks quite similar to the model-based inversion (Figure 3.17). The
main difference is that, the sparse spike puts events only where the seismic section

demands, and model-based is biased to putting events where the initial guess model
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Figure 3.19. Sparse spike inversion (maximum likelihood).

Geologically, the large events correspond to unconformities or the major lithologic
boundaries (Figure 3.19). Similarly, the productive zone here is seen as a low impedance
anomaly at around 600 ms.

The recursive inversion is also called band-limited because it produces a result (Figure

3.20) confined to just alimited range of frequencies. This frequency range is determined by
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the input seismic data (20-150 Hz in this case). The assumption is that the seismic trace
itself can be thought of a series of reflection coefficients that have been filtered by a zero-
phase wavelet (Strata, 2006); and samples are scaled properly, so reflection coefficients
must be the number between -1 and +1.

According to its algorithm, the initial background model is formed by filtering an
impedance log from awell (10 Hz high cut); the recursive equation is applied to each trace;

then we need to add alow frequency component from the well to get the final result (Figure

3.20).
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Figure 3.20. Recursive (band-limited) inversion (CDPs 170-445).

The known sand channel ideally should correlate with the low impedance values (yellow).
However, the producing well D15-6 is not located in a low-impedance area, which means

that the PP inversion may be ambiguous. The reasons for this mismatch could include:
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e Dband-limited character of the seismic data

e existence of noise

e someerrorsin the wavelet estimatio
In general, the oil wells are located in a low impedance anomaly at around 580-600 ms.
(1~5400 g/cc m/s). Figure 3.21 demonstrates the recursive inversion result for the southern

part of the seismic lin
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Fg e 3.21. Recur nversion (CDP' s 482-756).
An anomalou ould be observed between 670 and 705 CDP, where no wells have

been drilled so far.
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3.2.2 PSinversion
First, we transform the PS dataset to the PP time domain. After picking the horizons and
extracting the wavelet for PS data (Figure 3.22), we employ the same inversion procedure

as with the P-wave case to invert the data using S-wave reflectivity.

PS_inPPtime — wavelet time PS5 wavelet — wavelet time response

response :
Amplitude amplitude
1,00 1,00

050 0.50—_

-50 50 -50 -50

Time {ms) Time {ms)

Strata ProMc
Figure 3.22. PS wavelet from Strata (PP domain) and ProMc (PS domain).

Thus PS inversion flow is mainly arepeat of the PP inversion flow with the difference that
the initial model is created using an S-impedance. Since at Pikes Peak only one well from
the vicinity of seismic line had an S-wave sonic log, this log was used to construct the
initial model. PS horizons in PP time were also included into the model.

The initial/background model (Figure 3.23) looks pretty flat because only one well

containing S-wave sonic was used.
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Figure 3.23. The initial/background model for PS data, where the wiggle traces are PS data
in PP time and the color attribute is S-impedance.

The inversion analysis window (Figure 3.24) allows us to experiment with the different

inversion types, in order to select the most reliable one.
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Figure 3.24. Inversion analysis window showing the calculated S-impedance log (blue),
initial model trace (yellow) and inverted trace (purple) at well 1A15-6 location.
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Figure 3.24 demonstrates the total impedance correlation after the model-based inversion.
According to the annotations, the blue trace represents S-wave impedance log from the well
1A15-6, the yellow trace gives us the smoothed version of S-wave impedance log, and the
result (purple) repests the shape of the initial model but also contains the high-frequency
component obtained from the seismic trace (black). The total correlation between the real
and predicted impedance tracesis 79%.

The result of the model-based inversion with the corresponding well is shown on Figure
3.25. Here the productive formation is recognised as an impedance increase (as opposed to
adecrease in the PP case). The reason for thisis a considerable increase in S-wave velocity
within the Waseca formation (Figure 3.26). This velocity contrast will result in an abrupt
impedance change at the top and the bottom of the oil sands (even though density is

decreasing). The same tendency can be traced laterally across the whole section.
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Figure 3.25. Model-based inversion result.
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Figure 3.26 The P-wave sonic, density and S-wave logs for well 1a15-6 used in PS
inversion process.

The high impedance zone in Figure 3.25 is wider than the Waseca interval. The reason for
this would be the behaviour of S-wave sonic log, which gives the higher velocities in
Colony, Waseca, and also at the top of the Sparky. The result shown in Figure 3.25 is quite
approximate, as we are assuming that PS reflectivity is directly proportional to pure S
reflectivity, and only serves as an indicator of S-wave velocity changes.

Since we now have inverted both PP and PS data, it is possible to take a ratio of them.

Figure 3.27 was obtained dividing the inverted PP dataset with corresponding PS dataset.
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Figure 3.27. The ratio of the PP inversion to the PS inversion in PP time (trace increment
equal 10).

We can observe some similarity between this image and Figure 2.13 (coloured Vp/Vs
section). The productive formation is recognizable on both sections as having low values of

Vp/Vs (Figure 2.13) and low values for the impedances ratios (Figure 3.27).
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Chapter 4

Reservoir property prediction using well logs and seismic data
Mapping the physical properties of areservoir isimportant for assessing and developing the
reservoir’'s hydrocarbon content. The Pikes Peak heavy oilfield is a heterogeneous
reservoir, so we employ geodatistical methods to predict the rock properties between
drilled wells. The geostatistical idea is to find and quantify the relationship between the log
and seismic data at the well location and use this relationship to predict or estimate the log
property at all locations of the seismic line using cokriging techniques.
In this thesis, | examine the prediction of density and porosity logs along the seismic line
using multi-attribute analysis.
4.1 Density prediction
Our aim is to find an operator which can predict the density logs from the neighbouring
seismic data. The desired operator can be found by analysing different seismic attributes. In
this case from Pikes Peak, | find that the most important internal attributes are the:

e integrated trace

e interpolated absolute amplitude of trace

e AVO intercept/gradient

e frequency and seismic velocity.
Geogtatistical methods sometimes use external attributes to improve the final prediction.
Since we have two inverted datasets (for PP and PS data), it might be helpful to use one of

them as an external attribute.
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4.1.1 Application to the PP data
Single attribute analysis is conducted for both the PP and PS datasets. First, | consider the
density estimate using only P-wave data. The PP inversion result was chosen as an external

attribute to predict the density along the seismic line (Figure 4.1).
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Figure 4.1. Data window with density log (red), seismic trace extracted from the PP dataset
at the well location (black), slowness and PP inversion trace (blue).

First of al, we are going to use the wells which contain the density logs and are located
close to the seismic line HOO-131. Since the procedure requires sufficient well control,
seven density logs were loaded into the project (Figure 4.1). The same window contains an
extracted seismic trace (from PP dataset) a the well location and two external attributes:
the slowness and PP inverted trace.

Considering the geology of this region, we should expect a moderate density for the tight

shale of the upper Mannville group and a lower density zone will correspond to the Waseca
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sand formation. The density drop a about 570 ms roughly corresponds to the productive
zone. As mentioned before, the software will be analyzing the seismic attributes and the

seismic traces. Several attributes are plotted for well 1A15-6 in Figure 4.2.
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Figure 4.2. Density log and seismic attributes for well 1A15-6.
Here | have chosen to display amplitude envelope, dominant frequency, derivative and the
PP inversion result for the well 1A15-6. Hampson (1988) modelled each target log sample

as alinear combination of attribute samples at the same time:

PO =W W A+ W, A O+ W A +w, A, ®)
where A-isaseismic attribute and w - its weight.
Equation (5) can be written as a series of linear equations or in matrix form. The solution is

optimal in a least-square sense.
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The problem is that the frequency content of the target log is much higher than that of the
seismic attribute (Figure 4.3), therefore the convolution operator is recommended to resolve

the difference.

PO =W+ W A®O+wW* A +w* A () +w,™ A, (D) (6)

In this case, each target sample is predicted using a weighted average of a group of
samples on each attribute (Figure 4.3). This could be done in multi-attribute analysis, by
setting the operator length equal 7 (In the case of a single sample weighting, it equals 1).

So we need to analyse our attributes to determine which combination of attributes is more
reliable for density prediction. The analysis was performed using a step-wise regression
method.

On the prediction error graph (Figure 4.3), the average error is plotted versus attribute
number for two datasets. a training dataset (in black) and a validation dataset (in red). The
operator for a training dataset was created using all wells in the project. To estimate the
validity of the result, the target well (for example well 1A15-6) was “hidden”, and the
operator was calculated from the other wells. The derived operator then used to predict the
values at well 1A15-6. As we add attributes, the training error decreases. But the validation
error at some point starts to increase. So in our case, the optimum number of attributes to
use is 6 to avoid overtraining the data.

Table 4.1 shows the list of attributes selected by the step-wise regression as the best
predictors of density. Each row includes all the attributes above. (Row 1 — best single
attribute, 2 — best pair, 3 — best triplet, etc.) The corresponding training error and validation

error are given in kg/m”.
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Figure 4.3. The prediction error plot, where the prediction error is the error between the

predicted and real logs.

i _ Training Validation
Target Final attribute error error
1 [Density Amplitude Weighted Cosine Phase (inversion)  [70.75 71.38
2 [Density Derivative 69.01 70.60
3 |Density 1/(Slowness) 67.04 69.52
4 [Density (inversion)**2 65.49 68.42
5 |Density Quadrature trace (inversion) 63.98 67.67
6 [Density Amplitude Weighted Frequency 62.75 & 67.02
7 |Density Integrate (inversion) 62.09 68.11
8 |Density Cosine I nstantaneous Phase (inversion) 61.50 68.04

Table 4.1. Multi-attribute list with corresponding error for PP data.
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One more way to check the quality of prediction is to cross-plot the actual density versus
predicted density (Figure 4.4). If we compare the actual correlation and error (at the top of
Figure 4.4), we can see that the result of using 6 attributes (Table 4.1) is better than that

with 5 attributes .

Application of Multi-Attribute Transform r Well Name — Application of Multi-Attribute Transform r Well Name —
Using all wells sing all wells
Using5 Attributes Uzing 6 Attributes
Crogs—corielation =0671239 3066 Crozg-correlation =0 682726 3086
Error =63.9878 Error =62,7499
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Figure 4.4. Cross-validation of predicted and actual density using 5 (left) and 6 (right)
attributes.

The different colours of the points represent different wells and the red line is a line of
perfect correlation.

Now, we can check how the program predicts the logs from the seismic data. In other
words, each predicted log has used an operator calculated from the other well and we can
see how well the process will work on a new well. Figure 4.5 demonstrates this application
using 5 attributes, and Figure 4.6 using 6 attributes. The correlation of predicted (red) and
real (black) density logs using 6 attributes (Figure 4.6) is 68 %. Although the predicted log
looks smoother than the real one, the main log futures are preserved reasonably well. Thus
each well exhibits the density drop at around 570-600 ms, which corresponds to the Waseca

oil sands.
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Figure 4.5. Application of multi-attribute regression using 5 attributes, where the predicted
density log (red) is plotted versus the original log (black). The correlation is 0.67.
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Figure 4.6. Application of multi-attribute regression using 6 attributes, where the predicted
density log (red) is plotted versus the original log (black). The correlation is 0.68.
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Ultimately, we are able to apply our attributes to the seismic data. Figures 4.7 and 4.8 show

the density, predicted along the seismic line. In this case, geostatistical methods helped us

to predict the reservoir property between the drilled wells. The productive zone here is seen

as a density decrease at about 600 ms (red and yellow colours). If we assess the southern

part of the line, a density anomaly is observed between CDPs 685 and 700. Also, this low-

density zone correlates with a low impedance anomaly on the PP impedance section (see

recursive inversion result, Figure 3.16). No wells have been drilled at this location (Figure

1.5). Geologically, this site could be prospective for oil accumulation as the predicted

density here is noticeably lower than for the surrounding area.
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Figure 4.7. Coloured density section along the PP seismic line with inserted density logs.

CDP 180-282.
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Figure 4.8. Coloured density section along the PP seismic line with enlarged zone of
interest. CDP 617-714.

4.1.2 Application to the PS data

To further assess the seismic, | repeated the full process described in Chapter 4.1.1 for the
converted wave data. Here, the PS data in PP time were used as a basic seismic volume,
and the PS inversion result — as an external attribute. The PP data were not included in this
experiment. According to the multi-attribute analysis, the minimum validation error that
can be achieved for these data is 60.74 kg/m® (Table 4.2). Application of the multi-attribute
regression to the seismic data using 5 attributes shows the density predicted along the line
(Figure 4.9). Similar to the previous case, the producing wells are concentrated in the low-
density zone (yellow); and the southern part of the line reveals the anomaly at around CDP

700.



61

Training Validation

Target Final attribute error error
1 [Density Time 66.81 72.37
2 |Density (PSinv)**2 61.76 66.54
3 |Density Amplitude Envelope 57.69 61.47
4 [Density Filter 15/20 — 25/30 56.33 60.77
5 |Density Filter 5/10 — 15/20 55.76 (60.74
6 |Density Quadraturetrace 55.23 60.79
7 |Density Filter 35/40 — 45/50 54.95 60.81
8 |Density Apparent Polarity 54.74 61.53
Table 4.2. Multi-attribute list with corresponding error for PS data.
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4.1.3 Application to the PP and PS data and their inversion results
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In an attempt to reduce the validation error, we can include all available information into

the process of density prediction. Figure 4.10 demonstrates the Emerge input data, where

the target log is shown in red, the row seismic (PS datain PP time) — in black, and the three

external attributes arein blue.
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Figure 4.10. Data window with density log (red), seismic trace extracted from the PS
dataset a the well location (black), PS inversion trace, PP data and PP inversion trace

(blue).

After multi-attribute analysis we can check how the step-wise regression sorted the

attributes (Table 4.3). Here, the maximum number of attributes to use is 10, and the best

single attribute is 1/PP inversion. The minimum validation error is achieved when using 6

attributes.
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Target Final attribute Trec';lirrgrrl g Valeir??)tri on
1 [Density Y(PPinv) 62.48 68.86
2 |Density (PSinv)**2 54.63 60.06
3 |Density Amplitude Envelope ) 53.50 59.64
4 |Density Integrate 52.65 59.79
5 |Density Time 52.05 58.66
6 [Density Amplitude Weighted Frequency| PSdaa  |51.58 Q@D
7 [Density Filter 15/20-25/30 51.24 59.09
8 |Density Dominant Frequency 50.89 61.69
9O |Density Apparent polarity 50.58 62.81
10 |Density (PP data)**2 j 50.30 62.82

Table 4.3. Multi-attribute list with corresponding error for PP and PS data.

Therefore, | used 6 attributes to estimate the density values at all locations of the seismic

line (Figure 4.11). As expected, the predicted density section looks very similar to that

using PS data alone. However, the zone of interest is characterised by the slightly higher

density values, which could be explained by the different attributes used in the process.

Summarizing the results (Chapters 4.1.1-4.1.3), we can see that the combination of PP and

PS data and their inversion results gives the minimum validation error (Table 4.4), and thus

makes the density prediction more reliable.
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Figure 4.11. Coloured density section along the PS seismic line (in PP time) with inserted

density logs. Trace increment - 10.

Seismic data used for density prediction

Minimum validation error (kg/m°)

PP data and PP inversion 67
PS data and PS inversion 60.7
PP and PS data, PP and PS inversion 58.1

Table 4.4. Dataset for density prediction and its corresponding minimum validation error.
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4.2 Porosity prediction

In terms of exploration and development, the porosity and permeability are reservoir
properties of considerable interest, since they determine the volume of fluids and its ability
to flow. Since neutron-porosity logs were not conducted at the Pikes Peak area, we
approximate the porosity in the area using the density log. To make the result more
realistic, | decided to use different wells than those used in the density prediction
(Appendix 2, wells marked in black). All of these wells are located within 150 m from the
seismic line.

L3
Specify Constants for Calculation of Porosity

Fluid De nsity )o_f I 1.09000 gramsfcc Default Brine —_

Matrix Density )'o:wa |2.65l]l]l] gramsfcc Default Sandstone —
Porosity Calkculation: o
¢ _ J'o:wﬂ J'oabj
Joma_ - Jof

#55;  is the log density

Figure 4.12. Constants used in prediction porosity from density.

New density-porosity logs were calculated using the standard formula (Figure 4.12), where
the fluid density and matrix density were defined according to the lithology and the
observed density was taken from the conventional density log. After experimenting with
different matrix density values (Figure 4.13), it was determined that a matrix density of 2.4
g/cc (yellow colour) gives the best approximation for the calculated density porosity log,

since this value corresponds to the sandstone matrix.
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4.2.1 Application to the PP data

Using the same procedure as for the density prediction, seven porosity logs were processed
along with the surface seismic and PP inversion result (Figure 4.14). Here, the Mannville
shales are recognizable as a moderate porosity zone (up to 15%) and the Waseca sand
formation is seen as a considerable porosity increase (25-30%). Note that the P impedance,
in general, increases with time and exhibits a low impedance anomaly at around 590 ms.

After multi-attribute analysis, the software selected the following attributes, as the best

porosity predictors (Table 4.5).
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Figure 4.14. Training data window with porosity logs (red), seismic trace extracted at the
well location (black) and the PP inverted trace (blue).

Training Validation

Target Final attribute error error
1 [Porosity 1/ (inversion) 5.71 6.06
2 |Porosity Dominant Frequency 5.61 6.20
3 |Porosity Average Frequency 5.32 5.88
4 [Porosity Amplitude Envelope 5.21 5.82
5 |Porosity Integrated Absolute Amplitude 5.10 5.84
6 |Porosity Amplitude Weighted Frequency 4.99 5.73
7 |Porosity Apparent Polarity 4.92 5.70

Table 4.5. Multi-attribute list with corresponding error for PP data (% porosity).
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Application of multi-attribute regression to the real logs (Figure 4.15) gives us a tota

correlation of 62%, which is very close to the correlation coefficient for the density logs

(619%).
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Figure 4.15. Application of multi-attribute regression using 7 attributes, where the
predicted porosity log (red) is plotted versus the original log (black). The correlation is

0.63.

Applying this result to the seismic section, we can estimate the porosity between the control
points (Figures 4.16, 4.17). As might be expected, the well locations coincide with the high
porosity zones (blue and purple colour). Again, the anomalous zone is observed between

CDP 680-700 on the southern part of the seismic line (Figure 4.18).
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Predicted porosity section along the seismic line with inserted porosity logs.
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Figure 4.17. Predicted porosity section along the seismic line with the circled zone of

interest. CDP 605-705.
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Figure 4.18. Predicted porosity within the zone of interest (CDP's 680-700). Note the
porosity increase at around 590 ms.

4.2.2. Application to the PS data

Based on the density and porosity prediction along the PP seismic line, an anomalous zone
was found between CDPs 680 and 700 on the seismic line. To confirm the anomaly, | also
incorporated the PS data and PS inversion result into the multi-attribute analysis. S-waves,
being generally less sensitive to rock saturants, can be used to penetrate gas and oil-
saturated sediments (Stewart, 2002). They demonstrate high sensitivity to the lithological
changes, so can be used to discriminate highly porous sands from non-porous sands and
shales. The whole process of porosity prediction is analogous to one for the PP data except
that it used the PS data in PP time as a primary seismic data and the PS inversion result as

an external attribute (Figure 4.19).



Emerge Training Data
Time{ms)

200 g‘ /
"

2 [ 3
Start 'l— 4 é
200 T > ;
_ é % éll % 5 ﬁ
400 : " . i
> g i "'="i i ¢ BFSC
] BFSC 1 = ||
oo ] = Il S a
R £l Al
B = Plesbaricor r e R dConi
a4 Bpafkyd BRAHKY
] :r,
_ ] b
700 — L
CARY e
PS gata | [PS[tRversion z ‘=1 3}‘
00 i m: I 5
] »
4|
i g ,
900 = === E S e == e
L1} 23 1000 ZUU!J 3 3000 1] 25 1000 2000 3000 L1} 25
(114
AD10-6 4D7 -5 3B8-5
b | ||
Legend
’7 Target: Porosity (%) —— Seigmic data External attribute
Tops — Analysie windour

Figure 4.19. Training data window with loaded porosity logs (red), seismic trace extracted
from the PS data a the well location (black) and the PS inverted trace (blue).

After multi-attribute analysis, the program selected the amplitude envelope from the PS
data as a best single attribute, the amplitude envelope and integrated absolute amplitude as
a best couple of attributes, and the amplitude envelope, integrated absolute amplitude and
squared PS inverted trace as a best triplet. The application of the step-wise regression to the
PS seismic data gave us the desired rock property between the drilled wells (Figure 4.20).
In general, the producing wells are concentrated in the high porosity zones (marked with
ovals). Note that the porosity anomaly is observed between CDPs 685 and 710 on the PS
seismic line (Figure 4.21). Comparing the predicted porosity using the PP (Figure 4.16) and
PS datasets (Figure 4.21), | can confirm the existence of the anomaly between CDPs 680
and 700, with the best porosity characteristics corresponding to CDP 687 on the seismic

line.
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4.3. Hydrocarbon reserves estimation

Besides the oil output at the Pikes Peak field, a certain amount of gas and water is also
produced. Figure 4.22 shows the comprehensive production for well 3C1-6, which
corresponds to CDP 409 on the seismic line. This type of information is stored in the
AccuMap system and updated every month. So, for the last three months (year 2005) 62370
m® of oil, 516 m® of gas, and 1907+ 10 m® of water (Figure 4.22b) was produced from well

3C1-6. Figure 4.22a represents the same diagram but for the whole well life cycle.
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Figure 4.22. Comprehensive production summary for well 3C1-6, showing the cumulative
production (&) and last three months production (b) of oil, gas and water (from AccuMap).

Oil reservoirs are shut in when the production rate drops below the economic limit, i.e.
when the profit generated from oil salesis less than the cost of continued operation. To find
out the approximate volume of hydrocarbon to be produced, the Original Qil in Place

(OOIP) index istypically calculated:
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OOIP=A*Z*S*¢*S,/B @)
Where A isthe area size, Z is the average pay thickness, Sis the sand percentage, ¢ isthe
porosity, Sisthe oil saturation and B is the formation factor. For the Pikes Peak field these

parameters have been evaluated and summarized in the Table 4.6.

Average pay thickness (2) 22m

Oil saturation (S;) 85 %
Porosity (¢) (25 £5%
Sand percentage (S 80%
Areasize (A) 5760000 nm*
Formation factor (B) 11

Table 4.6. Reservoir parameters for the Pikes Peak field (Husky Energy report, 2004).

By substituting everything into the Equation (7), the OOIP index was found to be equal
19,584,000+ 3,916,800m" or 123,185,306+ 24,637,061 barrels of oil. The same parameter
estimated by Husky looks more optimistic (150 million barrels) since they approximated
the average porosity as 34%. However, it was suggested by Hulten (1984) and indicated
from the porosity logs (Figure 4.13), that 25% of porosity is perhaps a more geologically
realistic number. Thus, the oil reserves may be approximately 99-148 million barrels of

heavy oil.
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Chapter 5

Conclusions

5.1 Conclusions

The integration of well logs and multicomponent seismic data has been described in this
thesis. In the Pikes Peak case, the productive zone has been delineated using three different
methods: inversion, geogtatistics and texture map analysis.

| have shown that the main changes in the well logs roughly correspond to the facies
changes. Calculated Vp/Vs values were helpful for sand and shale discrimination. The
considerable Vp/Vsdrop from 4.4 to 1.7 indicates the beginning of the Colony formation.

In the Chapter 3, the PP and PS impedance sections were created and analysed. The top of
the productive interval has been interpreted as a PP impedance drop and PS increase.
Inversion and other attributes have been used to predict the reservoir properties along the
seismic line. Examples of predicted porosity and density sections have been shown and
interpreted. The productive zone has been characterised as a density decrease (2170 kg/m®)
and porosity increase (22%).

Dip and spectral maps were also used to determine the subsurface architecture and
frequency content of the seismic data. An anomalous low-frequency zone was observed just
below the reservoir.

Combining different types of information can lead to greater understanding of the data and

successful development of existing fields.



5.2 Future work
1. Estimate and compare Vp/V's from amplitude inversions versus Vp/Vs from time-
thicknesses in more detail.
2. Account for reflectivity changes with offset for the PS inversion.

3. Investigate any association of attenuation of seismic waves and reservoir location.
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Appendix 1

Processing flow for PP data

Filtered migration (whiten + f-x) Matrix Geoservices Ltd., May 2000

Area Pikes Peak, Sask. Line HOO-131 (Vertical) UTM coordinates CM=111W

Shot March 2000 for Husky Oil Ltd. by Veritas DGC (Land) Party 5

Instrument: ARAM 24 Serial NO

Datatraces/record 381 auxiliary traces/record CDP Fold 6600%

Sample interval 2 ms sampleg/trace 8001 this tape 751

Recording format SEGY Format thisreel SEGY Measurement system Metric, Sample
code: IBM floating PT field gain type: FP, Filters: 3-164 Hz dope: - Db/oct Notch out
Source: Type Vibroseis Number/point 1 Point interval 20 meters, 2 Vibrators, 4
SweepSNP, 16 Sec sweep, 8-150 Hz non-linear, Spread:1310-10-V P-10-1310meter, Group
interval 10meters, Geophones. single 3-component, Processing: for Husky Oil Ltd.
Reformat: Record length 16000 ms, Sample rate 2 ms

Sum and Correlate Field Records; Extract Vertical Component, Geometry Assignment;
Trace Kills and Edits

Amplitude Recovery: Spherical divergence correction + 4 dB/second, Surface-Consistent
Deconvolution: Spiking

Resolved: Source, Receiver, CDP, Offset Applied: Source, Receiver, CDP, Operator length
60 ms, Prewhitening 0.1 %

Design window 196-1348 ms at 0 m offsel 880-1422 ms at 1319 m offset, Phase
Compensation: Correction for vibroseis deconvolution, Time-Variant Spectral Whitening:
2/8-150/170 Hz

Refraction Statics. Datum elevation 630 m Replacement velocity 2000 mvs, Velocity
Analysis

Surface-Consistent Statics: Max shift 20 ms 4 event-tracking windows, Normal Moveout
Correction

Front-End Muting: Offset(m) 180 220 600 1320 T(ms) 0 177 658 891, Time-Variant
Scaling: Center-to-center 0-300,200.900,700-1300

CD P Trim Statics: Max shift 8 ms Correlation window: 1 00-1200 ms

CD P Stack: Alpha-trimmed, reject 15%, 1 00 ms bulk shift

Time-Variant Spectra Whitening: 2/8-150/170 Hz

Trace Equalization: mean window 100-1200 ms

fox Prediction Filtering: 40 traces by 1 00 ms, 50% overlap, 7 point filter

Wave Equation Datuming: Final Datum: -10 ms Replacement velocity 2000 nmvs
Migration: Phase-shifl Aperture 0-90 degrees, 100% smoothed stacking velocities
Bandpass Filter: Orrnsby 10/14-150/170 Hz

Trace Equalization: 100-1200 ms
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Processing flow for PS data

Filtered migration (whiten + f-x) Matrix Geoservices Ltd., May 2000

Area Pikes Peak, Sask. Line HOO-131(Slow shear) UTM coordinates CM=Il1W
Shot March 2000 for Husky Oil Ltd. by Veritas DGC (Land) Party 5
Instrument: ARAM 24 Serial NO

Datatraces/record 381 auxiliary traces/record CDP fold 6600%

Sample interval 2 ms samples/trace 8001 this tape 1751

Recording format SEGY Format thisreel SEGY Measurement system Metric
Sample code: IBM floating PT field gain type: FP

Filters. 3-164 Hz dope: - Db/oct notch out

Source: type Vibroseis, number/point 1 Point interval 20 Meters

2 Vibrators, 4 Seeps/VP, 16 sec Sweep, 8-150 Hz non-linear

Spread: 1310 - 10 - VP - 10 - 1310 meter Group interval10 meters

Geophones:. single 3-component

Processing: for Husky Oil Ltd.

Reformat: Record length 16000 ms, Sample rate 2 ms

Sum & Correlate Field Data; Extract Horizontal Components; Rotate Into Slow
Assign Geometry; Asymtotic Binning, Vp/Vs=3.16

Reverse Polarity of Negative Offsets; Trace Kills & Edits

Amplitude Recovery: Spherical divergence correction + 4 dB/second

Shot f-k Filter; Arbitrary polygons to remove source noise

Surface-Consistent Deconvolution: Spiking

Resolved: Source, Receiver, CDP, Offset Applied: Source, Receiver, CDP
Operator length 90 ms, Prewhitening 0.1%

Design window 252-2453 ms at 10 m offset, 1156-2529 ms at 1319 m offset
Phase Compensation: Correction for vibroseis deconvolution

Time-Variant Spectra Whitening: 2/8-60/80 Hz

Structure Statics: source from vertical data, receiver from shear refraction
Velocity Analysis; Residual Receiver Statics

Surface-Consistent Statics: Max shift 20 ms 3 event-tracking windows
Converted-Wave NMO Correction

Front-End Muting: Offset(m) 210 250 640 960 1310 T(ms) 0 410 810 1256 1500
Time-Variant Scaling: Center-to-center 0-600,400-1700,1400-2400,2100-3400
ACP Trim Statics: Max shift 12 ms Correlation window: 350-2350 ms
Converted Wave Stack: Vp/Vsfrom vertical correlations, +300 ms bulk shift
Time-Variant Spectra Whitening: 2/8-60/80 Hz

Trace Equalization: mean window 200-1900 ms

f-x Prediction Filtering: 40 traces by 150 ms, 50% overlap, 7 point filter
Migration: Kirchhoff, Aperture 0-40 degrees, 100% P-S migration velocities
Bandpass Filter: Ormsby 2/8-40/50 Hz; Trace Equalization: 200-1900 ms



Processing flow for array gathers

Filtered migration gathers (NMO applied) Matrix Geoservices Ltd., May 2000
Area Pikes Peak, Sask. Line HOO-131(Array) UTM coordinates CM=I11W
Shot March 2000 for Husky Oil Ltd. by Veritas DGC (Land) Party 5
Instrument: ARAM 24 Serial NO

Datatraces/record 381 auxiliary traces/record CDP fold 6600%

Sample interval 2 ms samples/trace 8001 this tape 751

Recording format SEGY Format this reel SEGY Measurement system Metric
Sample code: IBM floating PT field gain type: FP

Filters. 3-164 Hz dope: - Db/oct notch out

Source: type Vibroseis, number/point 1 Point interval 20 Meters

2 Vibrators, 4 Seeps/VP, 16 sec Sweep, 8-150 Hz non-linear

Spread: 1310 - 10 - VP - 10 - 1300 meter Group interval 20 meters
Geophones. 6 geophones over 10 m

Processing: for Husky Oil Ltd.

Reformat: Record length 16000 ms, Sample rate 2 ms

Sum & Correlate Field Data; Extract array data

Assign Geometry; Trace kills and edits

Amplitude Recovery: Spherical divergence correction + 4 dB/second
Surface-Consistent Deconvolution: Spiking

Resolved: Source, Receiver, CDP, Offset Applied: Source, Receiver, CDP
Operator length 60 ms, Prewhitening 0.1%

Design window 196-1348 ms at 0 m offset, 880-1422 ms at 1319 m offset
Phase Compensation: Correction for vibroseis deconvolution
Time-Variant Spectra Whitening: 2/8-150/170 Hz

Refraction statics: datum elevation 630 m, Replacement velocity 2000 nv/s
Surface-Consistent Statics: Max shift 20 ms 4 event-tracking windows
Velocity analysis, NMO correction

Trace equalization: 100-1200 ms

CDP trim gtatics: Max shift 8 ms, Correlation window: 100-1200 ms
Form common offset planes, 25-1305 m, 40 mincrement between planes
f-x Filtering: 40 traces by 80 ms window, 50% overlap, 7 point filter
Migration: Prestack Kirchhoff, 100% of smoothed stacking velocities
Restore normal moveout

Long offset normal moveout correction

Shift to final processing datum time of 100 ms.
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Appendix 2
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Figure A2.1. Fragment of Pikes Pegk oil field from AccuMap system, where the wells
indicated in red were used for the density prediction, wells indicated in black were used for
the porosity prediction.
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Appendix 3

Application of the Stockwell transform

A3.1 Theory

The P-wave seismic data from Pikes Peak heavy oil field were also analyzed using various
signal processing transforms in the Resolution software package from Calgary Scientific
Inc (Figure A3.2). This software allows display of both standard Fourier transform and
Stockwell (S) -transforms for creating seismic image, angle and frequency maps. The
software can also be used to filter the area of interest on the seismic image. The basic
theory for the Stockwell transform was developed by Pinnegar (2003).

The S-transform is a time-frequency spectral localization method, similar to the short-time
Fourier transform, but with a Gaussian window whose width scales inversely, and whose
height scales linearly with the frequency. The time-domain expression of the S-transform of

a continuous function h is given by the formula

S(r, f,p)= Th(t)w(r—t, f, p) exp(—2ift)dt , (A)
wheret is tir:e, f isfrequency, wis the modulating window which translates along the time
axis, 7 is the position of the modulating window, and p is any parameters that define w.
The S-transform has an advantage over the wavelet transform because it retains the
absolute phase of each localized frequency component. This led to its application for
detection and interpretation of events in time series in a variety of disciplines including
seismology.

Any seismic image analysed in the Resolution package can be treated as a number of white

and black stripes (peaks and troughs) at different directions. For cases with simple geology,
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these stripes are close to parallel; for complex subsurface structures, like salt domes or
thrust faults, the directions of seismic events vary considerably throughout the area. The
idea of the Resolution software is to find the number of wave cycles, later referred as wave
number k; in both horizontal k, and vertical k, directions for any image.

Based on the wave number, some approximations about the frequency at a particular point

of the seismic image are made, and this, in turn, can help to localize any frequency

anomalies on the seismic section.

Let us consider a signal with the wave vector (e.g. 6,4 inthe k, , k, domain), as shown in

Figure A3.1a. According to the Fermat’s principle, the vector of the dominant frequency is

perpendicular to the wave front (Pinnegar, 2003).

time

(ms) Vector of dominant 2]
frequency >

N\ kx

offset (meters)

(@ (b)

Figure A3.1. (&) The schematic diagram of the signal with a wave vector (6,4), and (b) its
decomposition in frequency domain.

The frequency vector can be characterized by its length r and the angle from the horizontal
direction 6 (Figure A3.1b). So, the wavelength and the angle of the dominant frequency

can be defined as follows:
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r=,k’+k’ (A2)

X y

6= arctan(%j (A3)

The above mentioned parameters (Equations (A2) and (A3)) play a key role in generating

the spectral and dip maps.

A3.2 FFT and local spectrum for the Pikes Peak data

P-wave data from the Pikes Peak multicomponent seismic line are analysed using the above
techniques (Figure A3.2). The software interface is divided into four panes. where two
windows on the left have the units of space, and two on the right have units of spatial
frequency. The standard Fourier transform is shown here for the whole seismic image. As
seen from the FFT window (Figure A3.2b), all useful frequencies are concentrated in a

narrow frequency range (the two symmetrical light blue zones), where Kk, is close to zero
and k, varies from O to 0.15 scaled units of frequency. Since the Pikes Peak geology is

quite flat, the main direction for a dominant frequency is almost vertical, no cycles can be
detected in the horizontal direction. The fast Fourier transform representation is shown here

with the direct current in the middle so the image looks symmetrical.
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Figure A3.2. Pikes Peak seismic data, where (a) is the seismic image in time, (b) Fourier transform for the whole image, (c) voice
image and (d) local spectrum for the particular point.
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Both top images (Figure A3.2a and A3.2b) are standard ways to represent seismic signals
and their spectra. The S-transform (Figure A3.2c and A3.2d) is a unique method which
allows usto create another representation or decomposition of a seismic image.

Figure A3.2d is generated for a single point selected at the image pane (a, red star). Here |
transformed the signal from the time to the frequency domain using Equation (Al). The
result or local spectrum is used to identify all frequenciesthat are present at a selected point
in the image. If we draw the line between two dominant frequencies (Figure A3.2d, dark
red points) we can get an impression about the direction of the frequency vector. In our
case, the dominant frequency comes from the vertical direction, which indicates almost
horizontal layering in the area of survey. Figure A3.2c shows the corresponding “voice’
image for a single frequency selected from the local spectrum. We define the voice image
as a spatial distribution of one conjugate pair of frequencies. It is generated to show all
points within the signal image where the chosen frequency occurs. Typically, the voice
image can be useful in identifying unwanted signals.

The local spectrum (Figure A3.2d) is an input to create dip, spectral and peak amplitude
maps in MatLab using the scripts developed by Calgary Scientific Inc. The dip map is
intended to show the angle of layering for a geological structure and the spectral map — its
frequency component. The peak amplitude map indicates the points where seismic

amplitude is at its maximum.
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A3.3 Dip, spectral and peak amplitude maps
A portion of the seismic data (400-900 ms) was loaded into Resolution (Figure A3.2) and

the S-transform calculated for the seismic image. Then the maps of interest were generated.

Peak amplitude map
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Figure A3.3. Seismic image (@) and peak amplitude map (b).

The PP seismic data and corresponding peak amplitude map are shown on Figure A3.3.
Note that the visible amplitude peaks correspond to the brightest reflections on the seismic
section. In other words, the maximum amplitudes occur when a considerable contrast in
densities and seismic velocities between two neighbouring layers exists. For this case, the
main reflections can be easily seen by the naked eye. However, for some cases, when the
seismic image is not that clear, the peak amplitude map provides additional information

about the main horizons and position of the anomaly on the section.

Originally, the dip map returned the angle of frequency vector for every pixel from the
seismic image. Since we know that the vector of dominant frequency is perpendicular to the
bedding, we rotate the dip values by 90 degrees to come up with the dipping angle for the

structure.
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Figure A3.4 demonstrates the dip and spectral maps for the same line. As we can see, the
majority of points have zero degree dip (Figure A3.4a). According to the colour bar, we can
assume that the left part of the image (yellow and light blue) is tilted to the left, the right
part of the image (dark blue, blue) is tilted to the right, which confirms the presence of a

mild anticline centred a around 400 CDP.

D\p mag

Time, ms
Time, ms

. . L W O Y . .
100 200 300 400 500 500 700
CDP nurbers

200 300 400
CDP numbers

Figure A3.4. Dip (a) and spectral (b) maps.
The spectral map (Figure A3.4b) shows the wavelength of the frequency vector (Equation
(A2)) at different spatial points. It is given in units of sampling frequency from O to 0.4.
The interesting detail that we found is the low-frequency anomaly (dark blue) just below
the productive zone. The first anomalous zone (dark blue, CDP 150-500) coincides with the
well known productive zone (however it is shifted down at about 100 ms), and the second
zone matches the areathat | picked as a proposed channel location earlier in the thesis.
According to Hilterman (2001), there are some indicators of a hydrocarbon reservoir:

- Amplitude changes on stack section

- Velocity changes

- Wavelet changes

- Frequency changes
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- Hat spots

- Changes in amplitude with offset.
In terms of frequency changes, there can be a decrease in frequency immediately beneath
the reservoir because of deconvolution and attenuation (Hilterman, 2001). We were
encouraged by this fact, since the same situation was observed with the other data. In
particular, 10 datasets out of 15 processed in Resolution revealed the low-frequency
anomaly below the productive interval (Figures A3.5, A3.6).

On the dip maps (Figures A3.5b and A3.6b) the transition from yellow to blue indicates
the centre of the anticline structure. Both spectral maps (Figures A3.5c and A3.6¢) reveal

the low frequency anomaly (dark blue) below the proposed reservoir location.
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A3.4 Congderation on the application of dip and spectral maps

1. Dip maps are a seismic transform that allow us to:
e determine the dipping angle of the layers

e determine the position of an anomaly (anticline or syncline) on a seismic section

However, they give us no idea about the lithological content of an anomaly:

whether it is gas sand, oil sand, a shale channel or sand saturated with water.

2. Spectra maps indicate the frequency content of the data. So they can provide some
idea about the lithology. Harder rocks may have a higher quality factor, so waves
within such rocks attenuate dowly. Similarly, in a softer rock, the attenuation might
be high. Rocks have a range of quality factors. So, we can make some
approximations about the nature of the rock, looking at spectral maps.

3. A low-frequency anomaly on the spectral map might be considered as an additional
indicator of a hydrocarbon reservoir.

4. All maps should be used in conjunction with the seismic section. Combining all the
types of available data (seismic section, CSI Maps, well log data) may well lead to a

more accurate prediction of the productive zone.



