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Abstract 

Several prestack depth wave-equation-based migration algorithms are investigated in this 

thesis. The algorithms fall into two categories — those based on two-way (reverse-time) 

wave equations and those based on one-way wave equations (downward-continuation 

migration methods, such as phase-shift-plus-interpolation (PSPI), split-step Fourier 

method (SSF), and implicit finite-difference (IFD)). Some improvements on these 

methods are presented and their corresponding anisotropic depth migration algorithms are 

designed, analyzed and evaluated. 

An operator based on finite-element and finite-difference methods is presented and 

analyzed for seismic modelling and reverse-time migration, which has looser stability 

constraints and allows irregular grids to improve the efficiency and resolution of 

wavefield extrapolation. 

A technique is formulated for downward-continuation Fourier methods (PSPI, SSF and 

IFD) to implement migration from near-surface topography. These three depth migration 

methods are analyzed in their performance with regard to speed and resolution through 

numerical and field examples. 

The migration methods (reverse-time, PSPI, IFD and SSF) are extended to handle 

transversely isotropic media (TI). Anisotropic reverse-time migration and PSPI 

successfully deal with tilted TI media, whereas anisotropic IFD can only process VTI 

media and anisotropic SSF is only suitable in simple anisotropic cases. Many numerical 

and physical examples are applied to validate the anisotropic migration algorithms and 

illustrate the characteristics of each method in terms of efficiency and resolution. 
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Chapter One: Introduction 

1.1 Overview 

Areas of complex geology, such as the Canadian Foothills and mountain belts around the 

world, are dominated by a series of thrust faults, imbricate structures and steeply dipping 

formations. Conventional seismic processing, that includes such steps as scaling, 

deconvolution, statics and velocity analysis, the application of dip-moveout (DMO) 

correction, and common-midpoint (CMP) stacking, does not produce adequately valid 

structural images for interpretation. Seismic migration is required to provide an essential 

tool for sufficiently understanding complex geology by creating a true image of structures 

within the Earth. Migration is a process that removes the distortions from reflection 

records by moving reflection events to their correct spatial locations and by collapsing 

the diffraction energy from unmigrated records to their scattering points (Gray et al., 

2001). It can be performed as post-stack or prestack, in time or depth, or in two- (2D) or 

three-dimensions (3D). 

The CMP stack closely represents the common depth point (CDP) in simple geological 

areas, so the post-stack time or depth migration will provide a good image of the 

subsurface. In areas of complex geology, however, the CMP stack ceases to be equivalent 

to a zero-offset seismic section and time or depth migration prior to stacking becomes 

necessary (Yilmaz, 1987). For these areas, prestack depth migration can be used to 

provide a more interpretable subsurface image. 

With the increase in the performance of computer hardware and the increasing 

requirements for exploration accuracy, many prestack depth migration methods have 

been developed. In the context of this thesis, I have organized these methods into two 
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categories: ray-based methods and wavefield extrapolation methods. All of these prestack 

depth migration methods result from either the acoustic or elastic wave equation and 

depend more or less on high-frequency approximation. With the concept of up-going and 

down-going waves split from the acoustic wave equation, the wavefield extrapolation 

methods can be further subdivided into one-way wave equation migrations and two-way 

wave equation migrations. Each migration algorithm demonstrates its own characteristic 

blend of speed and accuracy, which also means that the choice of migration algorithm 

affects the quality of the resultant seismic image. 

Apart from the migration algorithm itself, there are many other factors that affect the 

seismic images from which interpretations are made. These include, for example, static 

corrections or topographic variations, the consideration of intrinsically anisotropic 

behaviour, and the velocity model used for the migration. The topography problem and 

anisotropic phenomena are more obvious in the Canadian Foothills. These factors that 

may affect the seismic image will be discussed in the following sections. 

1.2 Depth migration algorithms 

1.2.1 Ray-based and/or gridded traveltime methods 

Ray-based migration methods, such as the Kirchhoff (Schneider, 1978) and Gaussian 

beams migrations (Hill, 1990), are the most popular methods used for 3D prestack depth 

migration in the oil industry. The popularity is due to their flexibility in dealing with 

irregularly sampled 3D datasets, relatively higher computational efficiency, and generally 

good imaging capabilities. The basic characteristic of ray-based methods is their 

dependence on ray-tracing to obtain the traveltimes that are used for the migration 

mapping. The ray-based migration is utilized on data in the (x, t) domain by searching the 
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input data along the calculated diffraction curve for the respective point scatters that are 

summed and placed at the corresponding image point in the (x, z) domain. Dependent on 

the traveltime calculation, Kirchhoff migration shows great versatility in handling the 

irregular recording geometry and capability for easy extension from isotropic algorithms 

to anisotropic media.  

In complex geological structures, where multipathing occurs, and beneath rugose 

horizons such as faulted salt domes, ray-tracing may fail to obtain the proper traveltimes, 

thus leading to poor subsurface imaging. Recently, several methods have been developed 

to overcome such problems; for example, maximum-energy traveltime method (Nichols, 

1996), the semi-recursive Kirchhoff migration method (Bevc, 1997), and the common-

angle imaging gather migration method (Xu et al., 1998). Although these methods 

partially solve the multi-pathing problem, the improvements unfortunately increase 

algorithmic complexity and computational cost, hence losing some of the advantage of 

the ray-based methods. Traveltimes may also be computed directly on a grid (Popovici 

and Sethian, 1998) which computes the first arrival traveltimes. The use of the 

traveltimes could result in relatively poor imaging quality in complex structures. 

1.2.2 Two-way wave equation migration method 

Methods based on the full wave equation are capable of providing solutions for arbitrary 

complex media since all reflections, including all multiples, are involved in computations 

(Baysal et al., 1983; Whitmore et al., 1983; McMechan, 1983; Mulder and Plessix, 2004). 

Compared with Kirchhoff depth migration and the one-way wave equation methods, two-

way migration methods require significantly greater computational resources. However, 

their advantages are that they deal with multiarrivals, have virtually no dip limitation and 
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enable imaging of overturned reflections. Reverse-time migration is typically 

representative of two-way equation migration methods, solving the two-way acoustic or 

elastic wave equation by backward extrapolation in time, allowing for waves propagating 

in all directions, and correctly handling both multiarrivals and phase changes due to 

caustics. Reverse-time migration has been studied in detail for many years. Chang and 

McMechan (1987a, 1987b) applied reverse-time migration on offset vertical seismic 

profiling (VSP) data and implemented reverse-time migration using the elastic wave 

equation. Teng and Dai (1989) used a finite-element method to complete prestack 

reverse-time migration for elastic waves. Chang and McMechan (1994) extended reverse-

time migration from 2D to 3D elastic prestack migration. Wu et al. (1996) provided a 

detailed analysis of the use of high-order finite-difference schemes in 3D reverse-time 

migration. A lot of real data have been successfully migrated with reverse-time migration, 

such as prestack reverse-time depth migration of an Alberta foothills data set (the Husky 

experience) (Wu et al., 1998); 3D reverse-time migration for exploration-scale 3D 

seismic data (Mufti et al., 1998); 3D reverse-time migration of SEG/EAGE salt data set 

using the acoustic wave equation (Yoon, et al., 2004), and so on.  

Although reverse-time migration is potentially the most accurate method in the sense of 

faithfully honouring the wave equation, it also faces two challenging problems: artifacts 

from imaging condition in the prestack migration and computational issues. Undesired 

reflections from interfaces in the velocity models are easily suppressed in post-stack 

reverse-time migration by forcing the acoustic impedance to be constant; however, the 

zero-lag cross-correlation imaging in prestack reverse-time migration suffers from the 

creation of imaging artifacts when there is complex wave propagation (Valenciano and 
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Biondi, 2002). Unwanted correlation to headwaves, diving waves, and backscattered 

waves appear as image artifacts. Direct arrivals can be muted from shot gathers prior to 

migration. However, backscattered waves are difficult to deal with. Yoon et al. (2004) 

suggested using the Poynting vector (the direction of the wavefield), to modify the zero-

lag cross-correlation imaging condition. Fletcher et al. (2005) applied a directional 

damping term to the non-reflecting wave equation in areas of the velocity model where 

unwanted reflections occur. Although these solutions solve part of the problem, they 

require additional costs in storage and calculation on top of the already very significant 

costs of the method itself. Since reverse-time migration is just the finite-difference (FD) 

wave equation modelling run in reverse (Gray et al., 2001), it has the same problem with 

stability and numerical dispersion in FD modelling. To properly sample the wavefield, 

the size of grid cells must decrease to avoid the phenomena of numerical dispersion when 

the maximum frequency of the data increases. For stability reasons, the size of the time 

steps must decrease as the size of the grid cells decreases. Therefore, reverse-time 

migration method becomes the most expensive method when compared with other 

migration methods. Mufti et al., (1998) suggested using variable-grid finite-difference 

operators for 3D depth migration. Dong (2000) forwarded a finite-difference and finite-

element operator (FE-FD), in which the depth direction can be partitioned with irregular 

grid. Du and Bancroft (2004) gave a detailed analysis of the accuracy and stability 

characteristics of this operator. Irregular partitioned grids are applied in the reverse-time 

migration to reduce the computation cost while maintaining a certain level of accuracy 

(Du and Bancroft, 2005). 
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1.2.3 One-way wave equation downward-continuation depth migration methods 

In recent years, wavefield downward-continuation seismic imaging methods have been 

widely applied as computational power has steadily increased. Exploration for oil and gas 

has extended to areas with more complex structures, exhibiting strong lateral variations in 

seismic velocity. Wavefield downward-continuation enables geophysicists to predict 

wavefields in the subsurface by propagating the recorded seismic wavefield through an 

appropriate surface velocity model. The essence of wavefield downward-continuation 

depth migration methods is a recursive wavefield extrapolation based on one-way wave 

equations (Berkhout, 1981). The term “recursive” implies that the output wavefield from 

the last extrapolation is used as the input wavefield for the next extrapolation. Wavefield 

downward-continuation imaging methods typically show a superior capability for 

imaging complex structures compared with non-recursive ray-based methods such as 

diffraction-stack or Kirchhoff migration. It is widely accepted (Bevc and Biondi, 2002; 

Soubaras, 2002) that recursive extrapolators provide a more accurate solution to the wave 

equation over a wider range of velocities and seismic frequencies. Therefore, they can 

more easily deal with complex wave phenomena such as complex scattering. 

Many algorithms have been developed that fall into the category of recursive wavefield 

extrapolation, such as the implicit finite-difference method (Claerbout, 1985); the explicit 

space-frequency extrapolation (often called f-x) method (Berkhout, 1981); phase-shift-

plus-interpolation method (PSPI) (Gazdag and Sguazerro, 1984); the split-step Fourier 

method (Stoffa et al., 1990) and non-stationary phase shift method (NSPI) (Margrave and 

Ferguson, 1999). With various levels of approximation to one-way wave equations in the 

ω−x  domain, the implicit finite-difference method results in corresponding levels of dip 
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accuracy by solving a linear system of coupled equations, such as 15°, 45°, 65°, 80°, and 

90° accuracy finite-difference migration methods. A typical example of implicit 

extrapolation is the well-known 45° finite-difference method for depth migration 

(Claerbout, 1985). In contrast to the implicit methods of extrapolation, the f-x method 

approximates the extrapolation operator as finite impulse response filters (Berkhout, 1981) 

in the ω−x  domain. At each frequency ω , the output wavefield is obtained by 

convolving the input wavefield with an extrapolator that can accommodate local velocity 

variations. In contrast to the extrapolation methods mentioned above in the ω−x  domain, 

the implementation of the PSPI, NSPI and split-step Fourier methods is carried out in the 

ω−xk  (wavenumber-frequency) domain. The PSPI method uses a set of chosen constant 

reference velocities to compute reference wavefields with phase-shift in the ω−xk  

domain, and interpolates the extrapolated wavefield through the reference wavefields. 

The accuracy of extrapolation is strongly related to the number of reference constant 

velocities. A split-step extrapolator decomposes the slowness field into a constant 

reference field and a scattering field, which is developed based on perturbation theory. 

This infers that the method is not very capable of handling strong lateral velocity 

variations. The NSPI method is a transpose of PSPI that performs a simultaneous 

forward-Fourier transform with wavefield extrapolation. Compared with PSPI, NSPI 

shows wavefront “healing” in areas with lateral velocity discontinuities while PSPI 

maintains discontinuities in the wavefield (Margrave and Ferguson, 1999). 
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1.3 Depth migration from surface topography 

In mountainous areas such as the Canadian Foothills, topographic variation often exceeds 

several hundred meters. Static correction, assuming near-surface vertical ray-paths, is 

often insufficiently accurate to produce acceptable wavefields at the datum when the 

near-surface geology is complicated. Wave-equation redatuming is often required in 

these cases (Berryhill, 1984; Shtivelman and Canning, 1988). However, redatuming 

results in the loss of a near-surface image, which is often important for correlation 

analysis between a seismic image and actual geological outcrops. Direct imaging from 

topography improves this situation. Prestack migration from topography does not suffer 

from either the shortcoming of datum statics corrections or the assumption that common-

mid-points (CMPs) are the same as common-reflection points (CRPs). The problem in 

this specific region has been addressed by several authors. Gray and Marfurt (1995) 

showed improved near-surface images that were migrated from topography on a Foothills 

model by Kirchhoff depth migration. McMechan and Chen (1990) proposed a method for 

performing prestack reverse-time migration directly from the recording surface. Lines et 

al. (1996) also applied prestack reverse-time migration with eikonal solvers and finite-

difference wave equation solutions to real data. Better imaging quality of the shallow 

steeply-dipping reflections was obtained using prestack depth migration from topography 

over conventional processing from a flat datum. A technique (Reshef, 1991) downward 

continues the wavefield from a flat datum surface to the actual recording surface without 

changing the wavefield until it passes through the recording surface. Mi and Margrave 

(2001b) used a similar approach to carry out the NPSP migration from surface 

topography. A zero-velocity layer between surface and datum is set to produce a 
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downward-continuation time migration (Beasley and Lynn, 1992). The schemes of wave-

equation datuming, elevation static correction and migration from surface topography are 

shown in Figure  1.1. 

 
(a) 

 
(b) 

 
(c) 

Figure  1.1 Schemes showing raypaths associated with (a) wave-equation datuming, (b) 
elevation static correction of a wavefield from a recording surface to a higher datum 
elevation, and (c) the migration from surface topography. 

1.4 Anisotropic depth migration for anisotropic media 

In recent years, with the increasing need for exploration accuracy, there has been 

increasing interest in imaging issues related to P-wave anisotropy. To this point, we can 
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no longer ignore seismic velocity anisotropy in seismic data processing. Laboratory and 

field studies (e.g. Jones and Wang, 1981; Banik, 1984; Crampin et. al, 1985; Johnston 

and Christensen, 1995; Vernik and Liu, 1997; Leslie and Lawton, 1999) have provided 

compelling evidence that shales and thin beds with alternating high and low isotropic 

velocities exhibit intrinsic polar anisotropy. Note that the term polar anisotropy refers to 

the same properties as transverse isotropy (TI). With the context of this thesis, I will use 

the TI term due to its common use in the literature. In these TI cases, such an assumption 

that anisotropy is negligible, may result in imaging problems and mispositioning errors, 

as has been studied by several authors (Larner and Cohen, 1993; Alkhalifah and Larner, 

1994; Isaac and Lawton, 1999). Incorporating anisotropic effects in prestack depth 

migration can address the issue of mispositioning and misfocussing reflectors beneath 

dipping anisotropic layers. With more attention being paid to anisotropic effects on 

seismic imaging, a lot of migration algorithms have been adapted from the handling of 

isotropic cases to deal with anisotropic ones. Alkhalifah (1995) proposed Gaussian-beam 

depth migration for transversely isotropic media with vertical symmetrical axes (VTI). 

Kirchhoff true amplitude migration techniques (Tong et al., 1998) are applied to 

anisotropic media. Vestrum et al. (1999) adopted a ray-tracing algorithm to image 

structures below dipping TI media. Several methods have been proposed that are based 

on wavefield extrapolation in laterally varying VTI media. Rousseau (1997) and 

Ferguson and Margrave (1998) extended the phase-shift-plus-interpolation and non-

stationary phase-shift methods to transversely isotropic media. Ristow and Ruhl (1997) 

presented an implicit 2D depth migration scheme for VTI media based on coefficients of 

the finite-difference equation. Han (2000) forwarded two prestack converted-wave 
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migration algorithms for VTI media, including anisotropic PSPI, by analytically solving 

zk  with the Christoffel equation and an anisotropic FD algorithm. Zhang et al. (2001) 

proposed a short spatial convolution operator to extrapolate the wavefields recursively in 

the space-frequency domain for P- and -SV waves in dipping TI media. Zhang et al. 

(2002) presented a finite-difference scheme for the computation of first arrival traveltime 

on regular grids for TI media. Baumstein and Anderson (2003) combined the phase-shift 

and explicit correction operators to reduce costs by using a shorter explicit correction 

operator. Kumar et al. (2004) carried out a 2D Kirchhoff migration based on their 

traveltime algorithm. Du et al. (2005) derived the P- and SV-wave equations for dipping 

TI media and presented the anisotropic reverse-time migration for dipping TI media. 

Three prestack anisotropic migration algorithms (Kirchhoff method, PSPI method and 

reverse-time) (Du et al., 2006) for dipping TI are evaluated with regard to speed and 

accuracy. Zhu et al. (2006) extended Gaussian-beam depth migration methods to handle 

anisotropic media.  

1.5 Contributions of this thesis 

As a whole, this thesis focuses on prestack depth migration algorithms. The finite- 

element and finite-difference (FE-FD) operator is developed and applied to the reverse-

time migration to improve computational stability and efficiency. The topography 

problem with downward-continuation wavefield extrapolation methods is investigated, 

and a new technique is provided to implement prestack depth migration from surface 

topography, including a prestack phase-shift-plus-interpolation method, a prestack split-

step Fourier method and a prestack implicit finite-difference method. For polar 

anisotropic media, four prestack depth migration methods (anisotropic reverse-time, 



12 

 

anisotropic phase-shift-plus interpolation, anisotropic implicit finite-difference and 

anisotropic split-step) are presented to accommodate anisotropy. The research objectives 

that have been achieved are shown in Table  1.1. “Yes” indicates success while “No” 

denotes requiring future work. A slash means not being considered in this dissertation. 

Table  1.1 The migration algorithm research objectives 

Two-way wave equation One-way wave equation downward-
continuation methods 

 

Reverse-time migration PSPI SSF IFD 

FE-FD operator 
(isotropy) 

Yes    
Topography 
(isotropy) 

 Yes Yes Yes 

VTI Yes Yes No lateral 
variations  

Yes  

TTI Yes Yes No lateral 
variations 

No 

 
The contributions of the thesis in detail are as follows: 

1. Introduction and analysis of stability and accuracy for a FE-FD operator. 

2. Introduction and analysis of a FE-FD operator with irregular grids for seismic 

modelling and reverse-time migration. 

3. Implementation of post-stack and prestack reverse-time migrations using the FE-FD 

operator and traveltimes generated using the upwind finite-difference scheme based on 

the Eikonal equation. 

4. Presentation of a new technique for downward-continuation wavefield extrapolation to 

implement migration from surface topography. 

5. Application of this technique in (4) to prestack depth migration algorithms, such as 

phase-shift-plus-interpolation, split-step Fourier, and the implicit finite-difference method 



13 

 

from irregular surfaces, with analysis of the imaging quality and efficiency differences 

between them. 

6. Derivation and analysis of the individual P- and SV-wave equations for tilted 

transversely isotropic media. 

7. Implementation of an anisotropic post-stack reverse-time migration with the pseudo-

spectral method (Fornberg, 1987). Stability and accuracy using the Fourier method for 

the anisotropic wave equation are analyzed. 

8. Completion of the prestack anisotropic reverse-time migration with the zero-lag cross-

correlation imaging condition, with traveltimes calculated using the anisotropic ray-

tracing method for tilted TI media. 

9. Analytic solution of the vertical wavenumber for the complicated quartic equation, 

which is derived from the dispersion equation for tilted TI media. 

10. With the analytical solution for the vertical wavenumber, the post-stack and prestack 

anisotropic PSPI migration algorithms for tilted TI media are completed. 

11. A comparison of performance, in terms of efficiency and resolution, of three 

anisotropic migration methods (prestack Kirchhoff depth, prestack phase-shift-plus-

interpolation, and prestack reverse-time in tilted TI media) based on totally different 

principles. 

12. Extension of the implicit finite-difference method to handle VTI media with 

anisotropic implicit operators obtained through Taylor series expansion and optimization 

methods. With the vertical wavenumber calculation in TI media, the split-step method is 

also extended to deal with the TI media, but using simple anisotropy parameters. 
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1.6 Thesis structure  

In Chapter 2, a detailed theoretical review of two-way wave equation migration methods, 

one-way downward-continuation wave extrapolation methods, and the nature of 

anisotropy is given. 

In Chapter 3, the theory behind the FE-FD operator is introduced and then analyzed for 

stability and accuracy. With this operator for irregular grids, we achieve wavefield 

extrapolation with greater efficiency in comparison to the conventional FD operator. 

Traveltime calculations using the upwind finite-difference method is introduced, which 

combines with the FE-FD operator to implement the prestack reverse-time migration. 

Post-stack and prestack depth migrations of the Marmousi dataset are generated using 

this operator, and the results compared alongside those using the Kirchhoff migration 

method and several one-way downward-continuation methods. 

In Chapter 4, a new technique for one-way downward-continuation wavefield 

extrapolation is presented and applied to the prestack PSPI, split-step Fourier, and 

implicit finite-difference migration methods. A Foothills numerical model incorporating 

topography is used to verify the technique. Real data is also migrated from topography 

using the prestack Kirchhoff migration and split-step methods, to highlight some of the 

differences between ray-based and wave-equation-based methods. Migration from 

surface topography is also compared with the same after static correction. 

In Chapter 5, P- and SV-wave equations are derived for tilted TI media, and analyzed for 

the accuracy. The pseudo-spectral method is used to solve the coupled equations and its 

accuracy and stability are studied. With traveltimes generated by anisotropic ray-tracing, 

I implement the prestack anisotropic reverse-time migration. The validity of the 
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anisotropic migration algorithms for both post-stack and prestack migrations, are tested 

using numerical and physical data. 

In Chapter 6, a frequency domain equation for tilted TI media is derived, and a scheme is 

put forward to analytically solve this equation to obtain the vertical wavenumber, which 

is then applied to the phase-shift calculation in the PSPI migration algorithms. An 

assumption for the relationship between reference anisotropy parameters and reference 

lateral velocities is made to limit the number of reference wavefields. Numerical and 

physical data are processed to validate the post-stack and prestack anisotropic PSPI 

migration algorithms. 

In Chapter 7, performance comparisons are made between the anisotropic Kirchhoff 

depth migration method and the above two newly developed anisotropic migration 

methods (which are based on ray theory, one-way wave equations, and two-way wave 

equations), focusing on speed and accuracy. Each anisotropic algorithm is also compared 

with its isotropic counterpart regarding computational cost. 

In Chapter 8, implicit finite-difference and split-step Fourier migration methods are 

studied in their handling of TI media. Anisotropic implicit finite-difference method can 

well accommodate VTI media, whereas the anisotropic split-step method can only deal 

with simple anisotropic parameters in TI media. Both algorithms face challenging 

problems in processing tilted TI media. 

In Chapter 9, I draw some final conclusions and provide future work.  
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Chapter Two: Reviews of prestack depth migration methods and anisotropy 

2.1 Review of two-way wave equation migration method 

The two-way wave equation migration method was initially described by several authors 

(Baysal et al., 1983; Whitmore et al., 1983; McMechan, 1983) through the use of reverse-

time backward extrapolation. Mulder and Plessix (2002, 2005) used a two-way wave 

equation to implement the iterative migration by least-squares approximation of the 

seismic data. Both migration methods are based on the acoustic wave equation 

2

2

22

2

2

2 ),,(1),,(),,(
t

tzxP
vz

tzxP
x

tzxP
∂

∂
=

∂
∂

+
∂

∂ ,                             ( 2.1) 

where P(x, z, t) is the pressure wavefield, v is the velocity, z is the depth, x is the lateral 

direction, and t is the time variation. The equation is a second-order partial differential 

equation containing the second partial difference only. The conventional implementation 

of the reverse-time migration is relatively simple, only requiring the solution of a 

discretized version of the acoustic equation by the finite-difference method (FDM).  

FDM is a very popular numerical method in geophysics as it is capable of handling 

complex velocity models and is efficient. The most prominent early researcher applying 

FDM to seismologic problems was Alterman (1968). She and her co-workers developed 

numerous discrete solutions to the second-order elastic wave equations in homogeneous 

regions through the use of explicit time integration methods. Virieux (1986) developed 

the first of the currently very popular staggered-grid finite-difference algorithms based on 

first-order equations to simulate the P-SV wave propagation. Dablain (1986) applied a 

high-order difference method to solve the scalar wave equation and analyzed the 

characteristics of temporal and spatial dispersion. A set of indices i, j and n is chosen to 
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establish a discretization model with different grid spacing xΔ , yΔ  and tΔ  in x, y and t, 

respectively. We can use central uniform finite-difference schemes to approximately 

compute the second partial derivations (Lines et al., 1999). The conventional way to deal 

with temporal second-derivatives, the second-order approximation is applied, such as  

)][][2][(1 11
22

2
+− +−

Δ
≈

∂
∂ n

j
n
j

n
j iPiPiP

tt
P .                           ( 2.2) 

In the spatial domain, the second-order or fourth-order approximation is normally chosen, 

with second order being 
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and fourth-order being 
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For the second-order approximation, to avoid frequency dispersion, the computational 

grid required is considerably finer, which should be sampled at about ten points per 

wavelength. Higher order differences involve more operations but we need sample the 

wavefield at fewer points per wavelength. For 4th order in spatial domain, it is about four 

points per wavelength. The higher order differences in spatial domain encounter stability 

problems. The stability formula for finite-difference computations is 

α≤Δ
h

tv ,                                                           ( 2.5) 

where h  is a grid size and α  is stability limit value. As a recipe for stability in finite-

difference wave equation computation (Lines et al., 1999), we can find the higher the 

order difference, the smaller the constraint value for stability conditions as Table  2.1. 
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Table  2.1 Stability limits for 1D, 2D and 3D models using second- and fourth-order finite 
differences (Lines et al., 1999) 

Dimension Second Order Fourth Order
1-D 1 

2
3  

2-D 
2

1  
8
3  

3-D 
3

1  
2
1  

 

The discretized version of the acoustic equation can also be solved by the finite-element 

method (FEM). FEM fully discretizes the equation into a system of algebraic equations 

with discrete nodal values as the basic unknowns. Because of the large demands it places 

on computer time and memory, there has been little published work on solutions to 

seismic exploration problems, in comparison to the FDM. Some of the earliest 

applications of FEM modelling to seismic wave propagation came from the Lysmer team 

(Lysmer and Drake, 1972) who solved the elastic wave equations in the frequency 

domain. Hughes (1987) fully discretized the wave equation in the spatial domain into 

ordinary differential equations (ODEs) and solved them with the FDM. Kay and Krebes 

(1996) successfully implemented seismic modelling in non-ideal media with the FEM. 

The FEM was first applied to reverse-time migration by Teng and Dai (1989), who 

pointed out that FEM migration is a very accurate method solving the problems of 

arbitrary shape domain, lateral velocity variations, and complex and dipping interfaces. 

Dong (2002) forwarded a combined finite-element and finite-difference method (FE–

FDM), which is a numerical method that partially uses FDM and FEM in the spatial 

domain to solve partial differential equations (PDEs). In contrast to FEM, FE-FDM semi-
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discretizes the PDEs using the FEM in a partial spatial domain into a coupled system of 

PDEs. Therefore, these PDEs still depend continuously upon both time and space 

(although not all the space dimensions), and are solved with FDM. Thus, the strengths of 

FEM, such as adaptation to arbitrary domains and boundaries, are partially retained. The 

shortcomings of FEM, such as its large demand on computer memory and high 

computation cost, are reduced because of the semi-discretization. Compared with FDM, 

the computation cost is a little more due to the FEM semi-discretization. Du and Bancroft 

(2004) gave a detailed analysis of this method. The authors prefer to describe it as a 

finite-difference operator based on Galerkin’s method from the viewpoint of final 

discretization computation, but it is still called FE-FDM to avoid confusion. With this 

idea, in comparison to the FD operator of the same order accuracy, the FE-FD operator 

exhibits looser stability limit. The difference between the FD and FE-FD operators is 

simply shown in Figure  2.1 where 2nd order FD operators are involved in five points’ 

calculations whereas 2nd order FE-FD operators require nine points at the centre time 

slice. Making full use of the irregular discretization along the depth direction, Du and 

Bancroft (2005) showed improved efficiency with these irregular grids for reverse-time 

migration. More details of this method will be presented in Chapter 3. 
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Figure  2.1  FD and FE-FD operators: (a) conventional 2nd order FD operators; (b) 2nd 
order FE-FD operators. 

2.2 Review of one-way wave equation extrapolation methods 

Again starting from the 2D acoustic wave equation (Equation (2.1)), with a spatial 

Fourier transform in the z direction and a temporal Fourier transform, we have the 

equation in the frequency-wavenumber domain 

P
v

k
z
P

x )( 2

2
2

2

2 ω
−=

∂
∂ ,                                            ( 2.6) 

where kx is the wavenumber in the lateral (i.e. x-) direction, and ω  is the frequency. 

Taking the Fourier transform in the z-direction, we can obtain the frequency-dispersion 

relationship (Yilmaz, 1987) 

2

2
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v
kk zx
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=+ ,                                                ( 2.7) 
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k −±=
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and its corresponding one-way wave equation, 

(a) (b)



21 

 

Pik
z
P

z±=
∂
∂ ,                                                  ( 2.9) 

where the ±  signs denote the downward and upward wavefields, respectively. Analytical 

solutions for this one-way wave equation are 

dzik
xx

zekzPkdzzP ±=+ ),,(),,( ωω .                              ( 2.10)  

Wavefield extrapolation involves a simple phase-shift in the frequency-wavenumber 

domain. 

2.2.1 The PSPI method 

PSPI is a rational attempt to build an approximate extrapolation through )(xv  from a set 

of reference velocities, }{ jv . To implement wavefield extrapolation from 0=z  to 

zz Δ= , we go through the following steps: After an initial Fourier transform over time, 

we have the wavefield ),0,( ωxP  at 0=z , where ω  is the temporal frequency. Phase-

shift extrapolation with each jv  produces a reference wavefield ),,( ωzxPvj Δ , which is 

given by 

dxekkzxP xik
xvjxvj

x),(),0,(),,( ωαωϕω ∫
+∞

∞−
=Δ ,                     ( 2.11) 

where 

∫
+∞

∞−

−= x
xik

x dkexPk x),0,(),0,( ωωϕ ,                               ( 2.12) 

is the forward Fourier transform of the input data in the frequency domain, and the phase-

shift operator, vjα , is 
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The definition of phase-shift operator, vjα , ensures that evanescent energy suffers from 

exponential decay. A fundamental assumption for PSPI is that the desired extrapolation is 

equivalent to a reference velocity. That is 

),,(),,()( ωω zxPzxP vjxv Δ=Δ ,                            ( 2.14) 

if jvxv =)( . 

An approximation to ),,()( ωzxP xv Δ  is formed by some sort of linear (in terms of velocity) 

interpolation (LI), 

)),,(),,,((LI),,( 1)( ωωω zxPzxPzxP vjvjxv ΔΔ=Δ + , where 1)( +≤≤ jj vxvv .     ( 2.15) 

To maintain high accuracy for small dip, Gazdag and Sguazzero (1984) introduced a 

laterally varying time-shift in the ω−x  domain as a pre-processor for the input data. The 

modified field ),,(* ωzxP Δ  is 
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i
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So PSPI turns into a dual-domain method. In the wavenumber domain, the time-shift will 

be compensated by the dz
v j

ω  term and the phase-shift item will be rewritten as 
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The time-shift term is important in the implementation of PSPI algorithm, and is actually 

nothing but the thin-lens term, which also appears in other recursive methods, such as the 

split-step Fourier and implicit finite-difference methods to be discussed later. The 

accuracy of PSPI is directly related to the number of reference velocities used at each 

depth step, while the number is dependent on the level of lateral velocity variation at that 

depth. Bagaini et al. (1995) proposed an adaptive choice for the reference velocities at 

each depth step determined by the statistical distribution of velocity within that depth step. 

2.2.2 The split-step Fourier method 

The split-step Fourier method (SSF) (Stoffa et al., 1991) involves a wavefield 

extrapolation in the frequency-wavenumber domain and a local velocity correction with 

thin-lens term in the frequency-space domain, which means that it is also a dual-domain 

method. SSF is based on perturbation theory, according to which we can split the laterally 

varying slowness field into a constant term and a small perturbation, 

),()(),( 0 zxszszxs Δ+= ,                                        ( 2.18) 

where 0s  is the reference slowness that can be specified as the mean or average, and sΔ  

is the variation. For an acoustic wave in the frequency domain, it is 

0),,(),,( 222 =+∇ ωωω zxPszxP ,                             ( 2.19) 

where ),,( ωzxP  is the wavefield in the frequency and space domains. Substituting 

Equation (2.18) into Equation (2.19), we have 

)),,()2(),,(),,( 2
0

22
0

22 ωωωωω zxPssszxPszxP Δ+Δ−=+∇ .       ( 2.20) 

Omitting the higher-order item 2sΔ , the equation becomes 

),,(),,(),,( 2
0

22 ωωωω zxSzxPszxP −=+∇ ,                 ( 2.21) 
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where ),,(2),,( 0
2 ωωω zxsPszxS Δ= . The homogenous acoustic wave equation has been 

transformed into the inhomogeneous wave equation by the inclusion of the source item 

),,( ωzxS  due to the slowness variation. The solution to the inhomogeneous equation is 

summarized in the following steps: 

• Transform wavefield from the spatial domain to the wavenumber domain and 

apply a phase-shift based on the vertical wavenumber computed by the reference 

slowness,  

]exp[),,(),,( 22
0

2* dzksikzPkzzP xxx −±=Δ+ ωωω .            ( 2.22) 

• Inverse Fourier transform ),,(* ωxkzzP Δ+  back to ),,(* ωxzzP Δ+ , 

x
xik

x dkekzzPxzzP x−+∞

∞−∫ Δ+=Δ+ ),,(),,(* ωω .                ( 2.23) 

• In the space and frequency domains, apply a second phase-shift due to the 

perturbation in the slowness, 

])
)(),(

(exp[),,(),,(
0

* dz
zvzxv

ixzzPxzzP ωωωω −±Δ+=Δ+ .      ( 2.24) 

The second phase-shift is also called thin-lens correction, but its sequence of operation is 

exactly opposite to that of PSPI. For PSPI, the thin-lens correction is done first, prior to 

the wavefield extrapolation in the wavenumber domain. Instead of using multiple-

reference velocities to propagate the wavefield, SSF uses only one reference slowness 

(such as the average velocity or mean velocity), which benefits the efficiency of its 

algorithm compared with PSPI. 
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When there are strong variations in the velocity field, the perturbation theory will fail, 

which means more than one reference velocity has to be used for SSF. Thus with more 

multiple-reference velocities, the cost of SSF increases to that of PSPI. 

2.2.3 The implicit finite-difference method 

Since Claerbout put forward the implicit finite-difference method for migration in the 

early 1970s, it has been extensively used in seismic imaging. Unlike the dual-domain 

implementations of PSPI and SSF, implicit finite-difference also works in the frequency-

space domain, which shows that it is well adapted to arbitrary lateral velocity variation. 

Still, starting from the one-way wave equation in the frequency-wavenumber domain, we 

approximate the square-root appearing in zk  with continued fractions. For the square-root 

function, 

21 SR −= ,                                                   ( 2.25) 

where S  denotes some variable, we have the following recurrence relationship 
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1 .                                               ( 2.26) 

When ∞→n , nR  converges to R . For the second recurrence, we have 

1

2

2 1
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Using the Taylor series expansion, we can approximate 

2
1

2

1
SR −= .                                                 ( 2.28) 

Thus we can obtain the second-order approximation, 
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Using this equation to approximate the one-way frequency-wavenumber domain equation, 

we get 
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where xkvS
ω

= , which is the conventional 45° one-way wave equation. Further 

expansion can improve accuracy, but it becomes harder to implement the high-order 

approximation efficiently. Lee and Suh (1985) used a least-squares optimization 

technique to resolve the dipping limitation of the implicit finite-difference algorithm. The 

basic idea is to use a cascaded series to match the one-way frequency-wavenumber 

domain equation as 
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where zoptk  is the optimized approximation of zk , and xkvS
ω

≡ , and iα  and iβ  are the 

coefficients. The difference between zoptk  and zk  is minimized by adjusting variable 

parameters iα  and iβ  over the range of 0° to 90°. The optimization coefficients are 

solutions of the normal equations derived from the standard least-squares method. With 

the help of different pairs of optimized coefficients, the dipping accuracy can reach 

certain levels, such 65°, 80°, 87°, and even 90°. With the relationship zz ik ∂−↔  and 

xx ik ∂−↔ , the frequency dispersion equation in the space-frequency domain will 

become 
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where î  denotes the image number. The factor 
v

iω  is the thin-lens that we called in PSPI 

and SSF algorithms, which is responsible for the time-shifting in wavefields. The second 

term, called the diffraction term, serves to collapse the diffraction hyperbolas of seismic 

data. The thin-lens term is solved analytically, and the diffraction term is solved by using 

an implicit finite-difference method, which is the reason for its name. Since the wavefield 

),,( ωzxP  of the equation is related to the time-shift wavefield ),,(* ωzxP , it can be 

written as 

v
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Substituting it into Equation (2.32), we have 
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Considered as one cascaded calculation, Equation (2.34) can be written as the following 

expression 
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Based on the implicit finite-difference approximation, Equation (2.35) is formulated into 

a tri-diagonal linear system 

*
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*
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with the notation of 
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which can be solved efficiently using the Crank-Nicholson method. The introduction of 

implicit finite-difference constrains the algorithm to be stable, while explicit wavefield 

extrapolation (Berkhout, 1981) has problems with computation stability. 

2.3 Review of anisotropy  

2.3.1 Introduction to anisotropy 

In traditional seismic exploration, the area of interest in the Earth is assumed to be an 

isotropic medium, which means that seismic velocity doesn’t change with the direction of 

wave travel. However, the subsurface layers generally do not adhere to the simple and 

ideal cases that we assume. Seismic anisotropy is the variation of velocity with direction, 

which is widely observed in seismic exploration activities and has been measured in 

shales, thin beds, and fractured rock formations (Jones and Wang, 1981; Thomsen, 1986; 

Johnston and Christensen, 1995; Leslie and Lawton, 1999). 

There are many causes for seismic anisotropy (Thomsen, 1986), including the orientation 

of anisotropic mineral grains, the orientation of the shapes of isotropic minerals, the 

orientation of cracks, and thin bedding of isotropic or anisotropic layers. The most 

commonly considered type of anisotropy in seismic exploration is polar anisotropy. It has 

an axis of symmetry and typically the axis is perpendicular to bedding. The velocities on 

the plane normal to this axis are identical. When this axis of symmetry is vertical, the 
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media is termed vertically transversely isotropic (VTI) and isotropy is limited to the 

horizontal plane (Figure  2.2(a)). In the case of interbedded sandstones and shales in the 

field, the axis of symmetry is assumed to be bedding-plane normal, which means that the 

velocity is the same in all directions parallel to the bedding plane while the velocity 

decreases in the direction normal-to-bedding. When the axis of symmetry is not vertical, 

the media is referred to as tilted transversely isotropic (TTI) or dipping TI, which is the 

type of media my study focuses on (Figure  2.2(b)). In the Canadian Foothills (Lebel et al., 

1996), thick sequences of dipping sandstones and shales often overlie reservoirs in fold 

and thrust belts. The dipping anisotropic strata in the overburden will cause positioning 

errors on the seismic below if velocity isotropy is assumed during data processing and 

imaging. 

     

Figure  2.2 Polar anisotropic media (Vestrum, 2003): (a) transversely isotropic (TI) 
medium with a vertical axis of symmetry. (b) A TI medium with an arbitrarily tilted axis 
of symmetry. 

2.3.2 Theory for polar anisotropy 

In linear elastic media, the stress-strain relationship is linear and is described by the 

generalized Hooke’s law 

3,2,1,    , == jic klijklij εσ ,                                           ( 2.39) 

(a) (b) 
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where ijσ  is stress, ijε  is strain and ijklc  is the stiffness matrix. The symmetry of stress 

( jiij σσ = ) and strain ( jiij εε = ) reduces the number of independent ijσ  and ijε  elements 

to 6 and the number of independent ijklc  elements to 36. The path independence of the 

energy required to strain a material reduces the independent ijklc  to 21 (Love, 1927). 

According to the so-called “Voigt recipe”, each pair of indices (ij and kl) can be replaced 

by a single index: 11→1, 22→2, 33→3, 23→4, 13→5, 12→6. So the most general 

stiffness matrix can be written as 
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where the lower left triangular portion of matrix C has been left to indicate the symmetry 

of mnC (e.g., nmmn CC = ). The most general anisotropic model has 21 independent 

stiffness elements as shown in the above matrix. For polar anisotropy (transverse 

isotropy), the material only has 5 independent constants, 11C , 12C , 13C , 33C  and 44C  

(Love, 1927): 
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where )(
2
1

121166 CCC −= . For isotropy, the matrix will reduce to  
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The number of independent stiffness elements becomes 3. 

The wave equation for general anisotropic heterogeneous media satisfies (e.g., Aki and 

Richards, 1980) 
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where ρ  is the density, ),,( 321 uuu=u  is the displacement vector, ),,( 321 fff=f  is the 

body force, t is the time and xi is the Cartesian coordinate. Summation over 3,2,1=j  is 

implied. 3,2,1=i  is a free index. Substituting Equation (2.39) into Equation (2.43), we 

get 
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where stress ( kle ) is defined as 
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To give an analytic description of plane waves in anisotropic media, we make the 

equation homogenous by dropping the body force f: 
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The harmonic plane wave is used as a trial solution of Equation (2.46) and it is 
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where kU  are components of the polarization vector U, ω  is the angular frequency, v  is 

the velocity of wave propagation (usually called the phase velocity), and n is the unit 

vector orthogonal to the plane wavefront. Substituting the plane wave into Equation 

(2.46) leads to the so-called Christoffel equation for the phase velocity v  and polarization 

vector U 
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here ikG  is the Christoffel matrix, which depends on the medium properties, i.e. stiffness, 

and the direction of wave propagation: 

ljijklik nncG = .                                                ( 2.49) 

Daley and Hron (1977) gave a clear solution of the Christoffel matrix to obtain three 

phase velocities of directional dependence: 

)](sin)([
2
1)( 2

33114433
2 θθθρ DCCCCvp +−++= ,                 ( 2.50a) 

)](sin)([
2
1)( 2

33114433
2 θθθρ DCCCCvSV −−++= ,             (2.50b) 

θθθρ 2
44

2
66

2 cossin)( CCvSH += ,                                         (2.50c) 



33 

 

where θ  is the phase angle between the wavefront normal and the unique (vertical) axis 

in Figure  2.3. 

 

Figure  2.3 The definitions of phase (wavefront) angle and group (ray) angle (Thomsen, 
1986). 

)(θD  is compact notation for the quadratic combination 
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Equations 2.50(a), 2.50(b) and 2.50(c) denote the phase velocities of P-wave, SV-wave 

and SH-wave, respectively. When the wave travels in the horizontal ( °= 0θ ) and vertical 

( 090=θ ) directions, the P-wave phase velocities become 
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α 33
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α 11
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0 )90(
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v p == ;                 ( 2.52) 

where 0α  ( 0pv ) corresponds to the P-wave velocity measured parallel to the axis of TI 

symmetry and 90α  is the P-wave velocity vertical to the axis of TI symmetry . The SV-

wave phase velocities are: 
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The horizontal and vertical velocities ( 0sv  and 90β ) are equal to each other for SV-

waves. For SH-waves, we obtain 

ρ
γ 44
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0 )0(

C
vsh == , and 

ρ
γ 66

90
0 )90(

C
vsh == .                        ( 2.54) 

The SH-wave horizontal and vertical velocities ( 0γ  and 90γ ) will be the same in isotropic 

media due to the stiffness component 6644 CC = . 

The phase velocities may seem trivial, but the equations discussed above have been 

simplified by Thomsen (1986) for practical application. Three key anisotropy parameters 

ε , δ  and γ  instead of 5 stiffness elements are defined as: 
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These three anisotropy parameters are non-dimensional and they reduce to zero for 

isotropic media. Definitions given for the anisotropy parameters show that their 

relationships are to measured velocities rather than to elastic stiffness components; ε  is 

used to describe the P-wave velocity differences between parallel- and vertical-to TI axes 

of symmetry 
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where PV//  and PV⊥  represent the horizontal and vertical P wave velocities, respectively; 

γ  corresponds to the conventional meaning of “SH anisotropy”, which is similar to ε  

and denoted by 
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where SHV//   and SHV⊥  are the horizontal and vertical SH-wave velocities, respectively; 

finally, Thomsen (1986) described δ  in weak anisotropy as 

ε
α

δ −−
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= ]1
)45(

[4
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.                                            ( 2.58) 

Based on Equation (2.55), the five independent stiffness elements also can be described 

as the functions of  vp, vs, ρ , ε , δ and γ : 

2
33 pvC ρ= ,                                                       ( 2.59a) 

2
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4466 )21( CC γ+= ,                                          (2.59d) 
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Using Thomsen’s parameters to study the behaviour of the phase velocities of P- and SV-

waves, we can obtain the exact P- and SV-wave phase-velocity function expressed 

through the Thomsen parameters (Tsvankin, 1996) as 
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where 2
0

2
01

p

s

v
v

f −≡  is the only term containing the S-wave vertical velocity. For P-wave 

phase velocity, Equation (2.60) involves “+” sign calculation; the S-wave phase velocity, 

on the other hand, involves the “-” sign calculation in Equation (2.60). To gain analytical 

insight into the behaviour of phase velocity, Equation (2.60) can be simplified under the 
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assumption of weak anisotropy ( 2.0≤ε  and 2.0≤δ ). Expanding the radical in 

Equation (2.60) in a Taylor series and dropping quadratic terms in the anisotropy 

parameters ε  and δ , we have, for the P-wave, 
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θ 422
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.                         (2.61) 

Taking the square root and linearizing Equation (2.61) further in ε  and δ results in 

Thomsen’s (1986) weak-anisotropy approximation: 
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For the SV-wave, linearizing Equation (2.60) gives the SV-wave phase velocity in 

weak-anisotropy as 
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where σ  is the following combination of Thomsen parameters (Tsvankin, 1996) and 

))(( 2
0

2
0 δεσ −≡

s

p

v
v

. Equations (2.60), (2.61) and (2.62) will be frequently applied in the 

anisotropic depth migration algorithms that comprise this thesis. 

The above derivations and their corresponding equations all involve vertical transverse 

isotropy. To obtain these equations for dipping TI media with the properties being 

investigated, such as the stress-strain, stiffness matrix, and phase velocity, we turn to the 

rotation of coordinates (Krebes, 2005). Figure  2.4 shows the dipping TI medium with two 
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sets of Cartesian coordinates rotated about the y axis. The coordinate system (x, y, z) 

reflects the seismic observation. From the coordinate (x’, y’, z’), the dipping TI medium 

becomes a VTI one. The matrix R describing the rotation about the y axis by angle θ  is 
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Figure  2.4 The rotation coordinates about the y axis. 

In the observation coordinate system, with a Bond transform (Winterstein, 1990), the 

stiffness matrix becomes 

TMCMC =' ,                                               (2.65) 

where M is constructed from Cartesian rotation operators: 
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where ijR  is the component of Matrix R. Substituting Equation (2.64) to Equation (2.65), 

M is 

x 

z 

x'

z'

θ
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In the same way, when we substitute Equation (2.67) into Equation (2.65), we have a 

new stiffness matrix in the observation system 
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After the rotation, the stiffness matrix C ′  is still symmetric and the number of 

independent elements in the matrix becomes 13, which can be applied to the elastic 

anisotropic wavefield simulation. With a similar derivation, substituting it into Equation 

(2.48), we also derive the P- and SV-wave phase velocities as: 
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Actually, we also can obtain phase velocities in dipping TI media by rotating phase 

angles from Equation (2.60) 
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From Equation (2.72), the P-SV phase velocities in dipping weak TI media are 
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The phase velocities of Equation (2.72) are equivalent to Equations (2.69) and (2.70), 

which will be verified by the following numerical tests. The anisotropy parameters 

chosen are 3/000,1 mkg=ρ , 000,30 =pv m/s, 500,10 =sv  m/s, 2.0=ε  and 1.0=δ . In 

the first set of experiments, the dip angle is equal to 0°. In the second set, it is set at 45°. 

The phase velocities (P- and SV-waves) from the formula for rotating the stiffness matrix 

are compared with those from the formula for rotating the phase angle (including the true 

solution and weak approximation), which are shown in Figure  2.5. Figure  2.5(a) and 

Figure  2.5(b) correspond to the P- and SV-wave phase velocities with a dip angle of 0°, 

respectively, while Figure  2.5(c) and Figure  2.5(d) are the results of P- and SV-wave 

velocities with a 45° dip angle. In Figure  2.5(a) and Figure  2.5(c), there is no difference 

in P-wave phase velocities between rotating the stiffness matrix and rotating the phase 
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angle. We can reach the same conclusion for SV waves from Figure  2.5(b) and Figure 

 2.5(d). Due to the weak anisotropy approximation, only a small difference in P-wave 

velocities exists between the true formula and weak anisotropy approximation; however 

the difference is relatively obvious for S-wave velocities. Therefore, the weak 

approximation is more valid for P-waves than S-waves in weakly anisotropic media. 
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Figure  2.5 Phase velocity versus phase angle curves at different angles around the axis of 
symmetry. The blue solid lines in (a), (b), (c) and (d) represent the exact phase velocity 
from the formula for rotated symmetrical angles; the black dots denote the exact phase 
velocity from the formula for the rotated stiffness matrix; the red crosses show the phase 
velocity with linear approximation. (a) and (c) correspond to the P-wave phase velocity 
with 0° and 45° tilt angles around the axis of symmetry, respectively. (b) and (d) 
correspond to the SV-wave phase velocity with 0° and 45° tilt angles around the axis of 
symmetry, respectively. 

(a) (b) 

(c) (d) 

0° 0° 

45° 45° 
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Chapter Three: FE-FD operator for isotropic reverse-time migration 

3.1 Introduction 

In this chapter the FE-FD operator is introduced in detail. Its accuracy is analyzed and its 

stability limit is derived according to the order of the accuracy. The irregular grid 

discretization is applied for wavefield extrapolation, seismic modelling and reverse-time 

migration. To save hard disk space and computation cost, traveltime tables are computed 

using the upwind finite-difference method. These tables are used with the forward 

wavefields to correlate with the backward wavefield to implement prestack reverse-time 

with the zero-lag cross-correlation imaging condition. The post-stack and prestack 

Marmousi datasets are used to demonstrate the accuracy and stability of this operator. 

Kirchhoff and one-way wave equation downward-continuation methods are employed for 

comparison with the reverse-time method, and the characteristics of each method are 

described. The effect of traveltime accuracy on prestack reverse-time migration is also 

discussed. 

3.2 FE-FD theory  

The 2D acoustic wave equation is  
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∂ , in Ω ,                             (3.1a) 

where ),,( tzxu  denotes the wavefield at horizontal (lateral) coordinate x, vertical (depth) 

coordinate z , and time t, respectively; a(x, z) is the medium velocity.  

For seismic modelling, initial conditions are 

 0)0,,( ==tzxu , 0)0,,(
=

∂
=∂

t
tzxu , inΩ ,                          (3.1b) 
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and the boundary condition is 

                                                      ),,(),,( tzxtzxu ϕ= .                                            (3.1c) 

There are five explicit boundary conditions that are required: source excitation, and the 

four edges of the finite-sized grid. Source excitation is solved using Alterman and Karal’s 

(1968) approach. Absorbing boundary conditions (Clayton and Engquist, 1977) are 

chosen for the four edge boundary conditions. 

For seismic migration, the initial conditions are 

                                 0),,( == Ttzxu , 0),,(
=

∂
=∂

t
Ttzxu , inΩ ,                          (3.1d) 

where T is the maximum traveltime. We have the top boundary condition as the form: 

),(),0,( txtzxu ϕ== .                                          (3.1e) 

As for the other three boundary conditions, they are the same as the boundary conditions 

in the modelling. The purpose of reverse-time migration is to solve the above equation so 

that the recorded wavefield at t=T can propagate back to t=0. 

3.2.1 FEM semi-discretization with the z-coordinate  

P1 denotes the partial differential equation (Equation (3.1)). P2 denotes the 

corresponding Galerkin method of P1. P2 is obtained as follows: 

Find 1
ϕSu∈ , such that for all 1

0Sv∈  

0)(),( =− vFvuD ,                                                 (3.2) 
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where 
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),( vuD  can be rewritten as 
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Semi-discretizing the vertical coordinate (z) in the region of [0, Z], we construct finite-

element function space as 

∑
=

=
nN

i
iih zNxtutzxu

1
)(),(),,( ,                                               (3.4a) 

∑∑
==

==
∂
∂ nn N

i
ii

N

i
iih zBxtuzN

dz
dxtutzxu

z 11
)(),()(),(),,( ,                (3.4b) 

where nN  is the total number of nodes. By substituting Equations (3.3) and (3.4) into 

(3.2), we get the discrete style description of P2, 
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where eu , ev  is the each cell vector, e  meaning each cell. Since function v  is arbitrary, 

this expression can be simplified as semi-discretized PDEs, 
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among them, where 
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where eN  is the total number of elements. It can be seen that the matrices M, K and H are 

all symmetric. M and H are positive-definite, and K is positive-semi-definite. It should be 

emphasized that only the matrix M varies with depth. 

Consider a piecewise linear interpolation function. The linear element length is h and 

velocity is a . The interpolation function is
⎩
⎨
⎧

≤≤−
≤≤

=
+

−

1

1

,1
,

)(
ii

ii

zzz
zzz

zN
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ξ
, with 

h
zzi −

= +1ξ , and ii zzh −= +1 . The discretization along the z direction by the FEM can be 

seen in Figure  3.1. The interpolation functions at each node are shown in Figure  3.2. 

From them, we design the spacing interval according to the complexity of our research 

model. 

 

 
Figure  3.1 The discretization along the z direction by FEM. 
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(a) The shape function at the node of zi. 

 
(b) The shape function at the node of zi+1. 

 
 (c) The shape function at the node of zi+2. 

Figure  3.2 The shape function at different neighbouring nodes. 
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The unit matrix coefficient of Equation (3.5a) is 
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After all the elements are assembled, we get the global matrix. Considering the following 

assembled matrix A, 
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with jj βα =+1  (which can denote the mass matrix and stiffness matrix), it is tridiagonal 

and symmetrical. When we assume the discretization has the same space interval, the 

assembled matrix is as follows: 

,    , 
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and the assembled matrix M is similar to the assembled matrix H with each element 

divided by the velocity squared, which will be used in later numerical experiments. 

3.2.2 FDM solution for matrix PDEs 

 A set of indices i, j and n is chosen to establish a discretization model with different grid 

spacing, xΔ , yΔ and tΔ  in x,  y and t, respectively, 

xix Δ−= )1(             Ii ,...,2,1=  

zjz Δ−= )1(           Jj ,...,2,1=  

  tnt Δ−= )1(            Nn ,...,2,1= , 

where I, J and N are the number of samples in x, z and t, respectively. One of the explicit 

schemes of FDM — the three-point central scheme (2nd order accuracy) or the five-point 

central scheme (4th order accuracy) in the x direction — is selected to solve Equation 

(3.5). The difference equation has the form 
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where n
jiu ][  represents the discrete value of the wavefield at the grid point (i, j) and at 

time n, and τ and l are the time and space steps, assumed constant. The local truncation 

error of this scheme has the form of O( 22 l+τ ) (2nd order discretization in the lateral 

direction) or O( 42 l+τ ) (4th order discretization in the lateral direction) (Durran, 1999). 

Figure  3.3 is a representation of the spatial grid computation with linear discretization 
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along the depth direction. In contrast to the central FDM, each grid computation at time 

τ−t  or τ+t  is related to nine points (2nd order accuracy in the x direction; Figure 

 3.3(a)) or fifteen points (4th order accuracy; Figure  3.3 (b)) at time t , which will affect 

the stability condition. As the order gets higher, the size of the operator increases, which 

also increases the area of assumed locally constant velocities. 

 

Figure  3.3 The grid computation in the space and time domains; (a) is the 2nd order 
accuracy finite-difference in the x direction with the linear element along the depth 
direction; (b) corresponds to the 4th order accuracy finite-difference in the x direction.  

 

(a) 

(b) 
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3.3 Accuracy and stability analysis of the FE-FD operator 

3.3.1 Accuracy analysis of the 2nd order FE-FD operator 

Case I:  Comparison between the analytical solution and the numerical solution of the 
quarter-plane, and comparison between FE-FDM and FDM. 

The quarter-plane problem is a particular case of the infinite-wedge problem. As 

underlined by Wait (1959), the solution can be found using image theory. A source S 

inside the medium induces three virtual image sources (Figure  3.4). Two imaging points 

xS  and zS  are symmetric with respect to the real source along the x-axis and z-axis 

edges. The third image cS  is symmetric to the real source with respect to the corner. For 

grid boundary conditions on the two edges, xS  and zS  are in opposite phase to S, while 

cS  is still in-phase with S. Waves emitted by cS  represent the constructive interference 

of waves emitted by xS  and zS . This so-called corner wave is always in-phase with the 

incident wave. For a point source ),( ss zxS  with a time function )( stf , we can write the 

solution at point ),( zxM  as 

)(),,,,,( ssss tftzxtzxG ∗   incident wave, 

- )(),,,,,( ssss tftzxtzxG ∗−   edge reflection wave, 

- )(),,,,,( ssss tftzxtzxG ∗−   edge reflection wave, 

+ )(),,,,,( ssss tftzxtzxG ∗−−   corner reflection wave, 

where ),,,,,( sss tzxtzxG  is Green’s function for the infinite medium given as 

222 //)/( crtcrtH −−  with 222 )()( ss yyxxr −+−= . 
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Figure  3.4 Quarter-plane geometry: Image theory interpretation. 

 
Table  3.1 gives the physical parameters of the quarter-plane problem. Seismograms at the 

given points (Table  3.1) show more quantitatively the accuracy of the numerical solution 

in comparison to the analytical solution, given below. For the quarter-plane problem, the 

analytical solution and the numerical solution are shown in Figure  3.5. The solution for 

the two reflection pulses and one reflected impulse in-phase with the incident wave (the 

corner wave), is accurately matched between the numerical solution and the analytical 

solution. 

Table  3.1 Quarter-plane parameters 

Physical parameters 
Velocity 3000m/sec 

Source and  
receiver information 

Hzfmain 50= ; source position: (250m, 250m);  
                       observer position: (150m, 150m).  

Other parameters dx = 5m, dz =5m,  dt = 1.25E-3s, grid of 300*300 points 

 

),( ssz zxS −),( ssc zxS −−

),( ssx zxS −
),( ss zxS − ),( zxO
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Figure  3.5 Seismogram at the given observer position (Table 3.1). The solid blue line 
represents the analytical solution, and the dashed red line represents the numerical 
solution by the FE-FDM. 

 
 

3.3.2 Stability of the FE-FD operator with linear discretization along the z-direction 

The computation error can be expanded in a Fourier series as 

)exp(ι)exp(ι,, zqjxpie
p q

n
qp

n
ji ΔΔΓ= ∑∑ , 

where 1ι −=  and n
qp,Γ  is a complex coefficient. It is sufficient to consider only one 

component 

)exp(ι)exp(ι, zqjxpie nn
ji ΔΔΓ= .                                    (3.7) 

Considering the stability of Equation (3.6b), which has 2nd order FD accuracy in the time 

domain and 4th order FD in the x direction with linear discretization along the z direction, 

we substitute Equation (3.7) into Equation (3.6b) and obtain 

nnn AΓ+Γ−=Γ −+ 211 ,                                         (3.8) 
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with 2

22
,

, )(
)(

x
tv

g jiX
ji Δ

Δ
= , and 2

22
,

, )(
)(

z
tv

g jiZ
ji Δ

Δ
= . Since A is real, the real part and the imaginary 

part of nΓ  satisfy the same equation. So we can simply treat nΓ as a real quantity. 

Equation (3.8) is replaced by 

                                                        0122 =+− Arγ .                                            (3.9) 

Stability is assured if 11 ≤≤− A  as indicated by the computation result of Wu et al. 

(1996). This requirement on A yields the result, 
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If hzx =Δ=Δ , the Equation (3.10) reduces to 

[ ] 1)30)cos(16)2cos()(cos(2(
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where jig ,  becomes 2

22
,

,

)(
h

tv
g ji

ji

Δ
= . In order to analyze the Equation (3.11), we suppose 

that 

]3016)12()[2(
36
1)1(),( 2 −+−−++−= xxzzzxf   [ ]11, −∈zx ,           (3.12) 

where x denotes )cos( xpΔ , and z represents )cos( zqΔ . According to mathematical 

analysis, we can know the first-order derivative of the function with respect to z has no 

further dependence on z. The relationship of x, z and ),( zxf  is shown in Figure  3.6, and 

the corresponding contour is described in Figure  3.7. 
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Figure  3.6 Three-dimensional graph of the objective function corresponding to the 
stability analysis. 

 
Figure  3.7 Contour graph of the objective function corresponding to the stability analysis. 

By considering the variable range, we know that all of the values in it are less than zero. 

So we only care about the minimum of the function. We find out that the minimum is 

equal to 
4

13
−  when x is equal to 1 and z is equal to –1. Hence, the Equation (3.11) can be 

written as 

13
8)(

2

22
,

, ≤
Δ
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Therefore the stability condition should satisfy 

                                                                
13
8, ≤

Δ

h
tv ji ,                                               (3.14) 

which is looser than the stability of second order central FDM and fourth order central 

FDM (Lines et al., 1999), 
2
1  and 

8
3 , respectively. 

In the case of using the FEM in the z direction with the linear elements and using 2nd 

order FD in the x direction and in the time domain, we can derive the stability condition 

in the same way as the above derivation and find that it should satisfy 

                                                                
4
3, ≤

Δ

h
tv ji .                                              (3.15) 

Hence, according to the above analysis of the stability condition, we find that the 

algorithm based on the FE-FDM has looser stability limits than those based on 

conventional FDM under the same accuracy condition. 

To show the advantage of FE-FDM within the stability limit, we designed a homogenous 

model with the parameters shown in Table  3.2. According to the parameters and our 

previous analysis of the stability condition, we know the computation of the 2nd order 

accuracy FDM scheme will diverge, while that of FE-FDM will still remain convergent, 

which is also proven from the numerical simulation results shown in Figure  3.8(a) and 

Figure  3.8(b). Figure  3.8(a) is the result obtained from FE-FDM with 2nd order accuracy, 

and Figure  3.8(b) is that from 2nd order accuracy FDM. From Figure  3.8(a), we see that 

the wave propagates away from the source, while there is obvious numerical divergence 

in the traditional FD scheme from shown in Figure  3.8(b). 
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Table  3.2: Parameters for modelling wave propagation in a homogenous medium 

Physical parameters 
Velocity 1500m/sec
Source and  
Observer 
Position 

Hzfmain 50= ;  
source position: 150*150m2;  
observer time:    9ms.  

Other parameters dx = 2m, dz =2m,  dt = 1.00E-3s, grid of 
300*300 points 

 

           

Figure  3.8 Modelling results from the FDM and FE-FDM methods. (a) Modelling by FE-
FDM with 2nd order accuracy in the spaces. (b) Same modelling by 2nd order central 
FDM. 

 

3.4 Wavefield extrapolation with the FE-FD operator for variable grids 

In order to validate the algorithm for FE-FDM for irregular grids, three cases are chosen 

for modelling and migration. The numerical solution using irregular grids for the half-

plane problem is compared with the corresponding analytical solution. For modelling, we 

present an example of efficiently modelling wave propagation in a thin-layer model. For 

(m) 

(m) 

(m) 

(m) 

(a) (b) 
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migration, an oblique interface model with variable velocities is chosen to show the 

computation efficiency of the irregular grids. 

3.4.1 Comparison between the numerical solution with the irregular grids and 
analytical solution for the half-plane problem 

For the half-plane with rigid boundary conditions, the image theory is still used. A source 

S  inside the medium induces one virtual image source. The image 'S  is symmetric with 

respect to the real source. For a point source ),( ss zxS  with a time function )( stf , one 

can write the solution at the point ),( zxM  as 

)(),,,,,( ssss tftzxtzxG ∗               Incident wave, 

)(),,,,,( ssss tftzxtzxG ∗−−          boundary reflection wave.                                      

Table  3.3 Half-plane parameters. 

 

 

 

 

 

Table  3.3 gives the physical parameters of the half-plane problem. Considered the usual 

rule of using at least ten points for the shortest wavelength of the source in this FD 

scheme, the grid interval along the depth alternately changes between 4 meters and 6 

meters. The seismogram at a given point (Table 3.3) shows more quantitatively the 

accuracy of the numerical solution in comparison to the analytical solution (Figure  3.9). 

They are accurately matched except small differences in the amplitude. 

Physical parameters 

Velocity 3000 m/s 
Source and  
Observer 
Position 

Hzfmain 50= ;  
source position: (250, 250);  
observer position: (150, 150).  

Other 
parameters 

dx=5m, dz=4m(odd lines)/6m (even lines),  
dt=1.25E-3s, grids of 300×300 points 
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Figure  3.9 Seismogram at the given observer position (Table 3.2). The solid blue line is 
the analytical solution and the dashed red line is the numerical solution from FE-FDM 
with irregular grids. 

3.4.2 Comparison between the numerical solution with regular grid and irregular grid 
for a thin-layer model 

A thin-layer model is chosen to show the difference between FDM and FE-FDM for 

seismic modelling. Tests include both regular and irregular grid calculations. The size of 

the model is 1,500m×1,800m. A thin-layer, 12m thick, is embedded in the model. Our 

objective is to see if the effects of the thin-layer with lower velocity can be observed in 

snapshots of the wavefield. A Ricker wavelet of 50Hz is selected as the source centred in 

the horizontal direction and located 600m beneath the top. The velocity of the thin layer 

is 2,000m/s, while the background velocity is 4,000m/s, as shown in Figure  3.10. The 

horizontal grid spacing is 5m. For the regular grid calculation, a grid step of 6m vertical 

spacing is used. For the irregular mesh, the thin grid is used only in the region of lower 

velocity, as shown in Figure 3.10, and the grid interval is 3m. Grid spacing along the 

depth direction is 7m. Therefore, the regular grid requires a total of 300×300 points, 
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whereas the irregular one needs 300×260 points, which saves almost 24% of the points 

of the regular case. The same time step ( tΔ  = 0.001s) is used in both cases.  

 

Figure  3.10 The velocity model and the grid partitions. 

In order to show the result with the irregular grids, we apply a cubic spline interpolation 

function to interpolate the part with the regular grids. We focus our attention on the 

wavefield character when waves propagate into the thin-layer. Figure  3.11 shows a 

wavefield snapshot at time 0.15s. Reflections and transmissions from the thin low-

velocity layer can be seen. In Figure  3.11 (a), there is frequency dispersion in the region 

of the thin-layer because of the coarse grid used in the area, while the continuity of the 

wavefield in the thin-layer is clear shown in Figure  3.11(b). Furthermore, the 

computation cost with FE-DM is 85% that of FDM with the same fixed grid as identified 

in Figure  3.12, which saves some computer time. 

mz 3=′δ

mx 5=δ  

7z mδ =

FE-FD partition of thin layer

(m)

(m) 

(m/s) 
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Figure  3.11 (a) Snapshot of the wavefield (t=0.15s) with the regular girds, and (b) 
snapshot of the wavefield (t = 0.15s) with the irregular grids. 

 

Figure  3.12 The computational efficiency comparison for modelling between FDM and 
FE-FDM. 

 

3.4.3 Steeply oblique interface migration with variable velocities 

The model for this section is shown in Figure  3.13. The velocity of the model increases 

both laterally and with depth. The velocity at the top left corner is 3,600m/s, and that at 

the bottom right is 4,600m/s. There are four reflection interfaces with dips of 0º, 23º, 45º, 

and 70º. The seismogram is computed using the ray-tracing module in the SU Software 

Kit, and is displayed in Figure  3.14. From it, one can see that there is a lot of diffraction 

energy from the edges of the reflectors.  
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Figure  3.13 The steeply oblique model with variable velocities. 

 

Figure  3.14 Seismogram generated by FDM. 

 
Figure  3.15 Reverse-time migration result ( 04.0=Δz m). 
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Figure  3.16 (a) A greyscale display of the reverse-time migration result ( mz 15.0=Δ ), 
and (b) a wiggle trace display. 

The parameters for the reverse-time migration start with a grid interval of 10m and 

increase by 0.04m on each grid to a final interval of 20m. The velocity increases in the 

spatial direction from 3,600 to 4,500m/s. The regular grid with 10m spacing requires a 

total of 100×100, while the irregular grid requires only 100×85, which saves some 

calculations. The grid partitions are also shown in Figure  3.13. Figure  3.15 is the reverse-

time migration result, which correctly migrates the post-stack seismic section to the 

correct oblique interface. Since there is truncation of energy in the input seismogram, 

there is residual energy in the migration result. When the grid spacing increases to 0.15m, 

the irregular grid requires only 100×63, which saves a lot of memories and calculations. 

The migration results are shown in Figure  3.16. From Figure  3.16(a), we know there is an 

obvious frequency dispersion problem, but in Figure  3.16(b), there is still a good match 

between the events and the real interfaces. The computation cost of FE-FDM reduces to 

63% that of FDM in Figure  3.17. 

(a) (b) 

(km) (km) 

(km) (km) 
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Figure  3.17 The computational efficiency comparison for reverse-time migration between 
FDM and FE-FDM. 

  

3.5 Traveltime calculation with the upwind finite-difference method for prestack 
reverse-time migration and Kirchhoff depth migration in isotropic media 

Traveltime calculations play an important role in many methods of seismic data 

processing such as Kirchhoff migration method, prestack reverse-time migration and 

seismic data modelling, which depend on traveltimes between survey points on the 

surface and depth points to create the velocity model. These traveltimes are often 

calculated by ray tracing (Cerveny and Hron, 1980); and because depth and surface 

points are usually distributed on a regular grid, the traveltimes along the rays are then 

interpolated onto the grid. For complicated velocity models, rays may cross each other or 

fail to penetrate shadow zones; interpolation is thus cumbersome and computationally 

expensive. Several methods have been introduced to calculate traveltimes directly on a 

regular grid. The key idea is to use a finite-difference approximation to the Eikonal 

equation, which is then integrated with a Runge-Kutta method. Vidale (1990) 
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approximated the Eikonal equation using a finite-difference scheme, and solved 

traveltimes directly using a planar or circular wavefront extrapolation. First-order upwind 

finite-difference was chosen to solve the Eikonal equation by Van Trier and Symes 

(1991), which is generally accurate enough. Note that this method only considers the first 

arrival traveltime not the maximum energy one. Based on its higher resolution, this 

traveltime method is applied in this thesis for Kirchhoff depth migration and prestack 

reverse-time migration. The basic principle will be described in the following paragraphs: 

The 2D Eikonal equation can be expressed as follows (Aki and Richard, 2002): 

),()()( 222 zxszx =+ ττ ,                                       (3.16) 

where ),( zxs  is the 2D slowness of the model, ),( zxτ  is the traveltime field, and 

subscripts x  and z  denote the traveltime partial derivative with respect to coordinates. 

Assuming the that gradient components of the Eikonal equation satisfies the hyperbolic 

conservation law, it can be written as 

22 usz −=τ ,                                                  (3.17) 

where xu τ= . Taking the derivative of Equation (3.17) with respect to x ,  

)(uFu xz = ,                                                      (3.18) 

where )(uF  is defined as (Van Trier and Symes, 1991) 

22)( usuF −= .                                                (3.19) 

)(uF  is conserved flux; if 0)( =uF , the rays cease flowing downward and travel 

horizontally. Thus by choosing a positive sign in front of the square root of the Eikonal 



64 

 

equation and by using xu τ=  instead of zw τ=  as the substitution variable, we limit our 

target to downward travelling rays. 

As an alternate method, the Eikonal equation in polar coordinates ),( θr  can be written as 

222 )()( s
rr =+ θττ ,                                            (3.20) 

and solved along expanding circular fronts; the conserved flux function in polar 

coordinates becomes 

22 )()(
r
usuF −= ,                                          (3.21) 

with θτ=u  satisfying 

)(uFur θ= .                                               (3.22) 

The first-order backward and forward finite-differences in the spaces can be written 

respectively as 

1−− −=Δ jj uuu ,                                              (3.23) 

and  

jj uuu −=Δ ++ 1 ,                                             (3.24) 

where ju  is the discrete representation of )(θu  on the grid θθ Δ= jj . The basic upwind 

scheme for Equation (3.22) is (Engquist and Osher, 1980) 
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with n, the discrete-radius index of the grid rnr n Δ= . The direction of the finite-

difference operator depends on )(uF ′ , the derivative of the flux function with respect to 
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u. If the flux increases from left to right, it means the flow is to the left. When it 

decreases, flow is to the right. The various upwind schemes differ in the way in which the 

intermediate cases are handled. When the sign of )(uF ′  changes among three points of 

the stencil, the formula will become 

))()((1 n
j

n
j

n
j

n
j uFuFruu +−−+
+ Δ+Δ

Δ
Δ

+=
θ

,                       (3.26) 

where 

)),(max()( uuFuF =− , )),(min()( uuFuF =+ ,                  (3.27) 

and u  is the stagnation point [ 0)( =′ uF ]. To show the accuracy of the upwind finite-

difference method in solving the Eikonal equation, a homogenous model is chosen to 

calculate traveltimes. The velocity of the model is 4,000m/s. The model is evenly 

sampled laterally and in depth, with a sample of 10m, and a size of 200×200. Figure 

 3.18 shows the traveltime function for a source on the surface and at the centre of the 

model with finite-difference in polar coordinates, and Figure  3.19 displays the difference 

between the function and the analytical solution, with symmetric errors on both sides of 

the source. Actually, the maximum error of the bottom horizontal line (Figure  3.20) is 

only about 0.005%, which is almost negligible. 
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Figure  3.18 The traveltime contour in homogenous media with the upwind finite-
difference solution. 
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Figure  3.19 The traveltime absolute difference between the analytical and finite-
difference solutions. 
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Figure  3.20 The relative maximum traveltime error of the bottom horizontal line in 
Figure  3.19. 
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3.6 Numerical and field data post-stack and prestack migration 

The Marmousi model data presents a challenge to exploration geophysicists in imaging 

complex geological domains (Versteeg, 1993). The model (Figure  3.21) contains very 

complex geological features, especially shallow steep faults and the underlying high-

velocity salt pillows. The target zone is shown with the black dashed rectangle. It has 

served as a standard test dataset for depth migration, inversion algorithms, and velocity 

analysis methods (Gray and May, 1994; Nichols, 1996; Zhu and Lines, 1998; Mi and 

Margrave, 2002a). 

3.6.1 Post-stack migration comparison and analysis of the Marmousi dataset 

Several different migration algorithms are applied to process the zero-offset synthetic 

data of the Marmousi model (Figure  3.22), including Kirchhoff depth migration, three 

one-way wave equation downward-continuation methods (the PSPI, split-step Fourier 

method and implicit finite-difference methods), and the reverse-time migration method 

with the FE-FD operator. The sampling interval of the synthetic data is 1ms and the 

lateral interval is 12.5m. Figure  3.23 is the migration result generated by Kirchhoff depth 

migration. Figure  3.24, Figure  3.25, and Figure  3.26 correspond to results from the PSPI, 

split-step Fourier, and implicit finite-difference methods, respectively. In the Kirchhoff 

depth migration, the shallow structures are clear whereas it is very difficult to describe 

the target zone since it suffers greatly from the difficulty of ray-tracing through the 

complex structures above. The three one-way wave equation downward-continuation 

methods show better imaging results than the ray-based method, with very clear 

structures and obvious target zone. Looking closely at the details of these three 

downward-continuation results, the PSPI migration result shows relatively clear 
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structures in the target zone compared with results from the implicit finite-difference and 

split-step methods, shown by the arrows annotating these figures. The implicit finite-

difference result has some high-frequency noise due to the frequency dispersion problem. 

The anticlinal structure (dashed rectangle) appears to be difficult to image with the split-

step Fourier method. Looking at the reverse-time migration with the FE-FD operator with 

4th order accuracy in the spatial domain (Figure  3.27), the clear structures and reduced 

noise are obvious, with each structure correctly migrated to its true position. The wedge 

structures (white ellipse) are especially vivid, with a clarity that is absent in the other 

methods mentioned above. From this comparison and analysis, the reverse-time 

migration method reveals its greater capability for imaging complex structures, due to the 

fact that the two-way wave equation can better describe the characteristics of wave 

propagation. The different kinds of waves, such as overturned waves and multiple-

reflections, are propagated back to their true position with the same reverse mechanism as 

wavefield modelling. 

 
Figure  3.21 The Marmousi velocity model. 
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Figure  3.22 The zero-offset section of the Marmousi model. 

 
Figure  3.23 Kirchhoff depth migration result from the Marmousi model. 
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Figure  3.24 PSPI migration result from the Marmousi model. 

 
Figure  3.25 The implicit FD migration result from the Marmousi model. 

 
Figure  3.26 The split-step Fourier migration result from the Marmousi model. 
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Figure  3.27 The reverse-time migration result from the Marmousi model. 

3.6.2 Prestack migration of the Marmousi dataset — comparison and analysis. 

Prestack synthetic data from the Marmousi model were also processed, including 240 

shot gathers. Each shot has 120 traces with 12.5m trace intervals. Upwind finite-

difference is employed to calculate the traveltime tables, which are used not only for the 

prestack Kirchhoff depth migration but also for the prestack reverse-time migration to 

save disk space and computational cost. Figure  3.28 corresponds to the prestack Kichhoff 

depth migration result. Although the resolution of prestack migration is higher than post-

stack migration shown in Figure  3.17, the anticline structures and the target zones prove 

difficult to image using either method. The first arrival traveltime can’t adequately 

provide enough information for Kirchhoff migration algorithm in complex structures. It 

also affects the prestack reverse-time migration algorithm, which is shown in Figure  3.29, 

although the resolution is quite a bit higher than the post-stack reverse-time result and the 

other post-stack downward-continuation migration results. However the structure of the 

target zone in the prestack migration result is not as clear as in post-stack result. The 

reason is that the traveltimes are used as the forward wavefield and applied to the 
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imaging condition. In fact, if we use source modelling as the forward wavefield, the 

result is as good as we want, but the large extra computational cost prevents this method 

from being used in the industry. Accurate traveltime calculations play a big role in the 

Kirchhoff depth and prestack reverse-time migrations. 

 

Figure  3.28 The prestack Kirchhoff depth migration result from the Marmousi dataset. 

 

Figure  3.29 The prestack reverse-time depth migration result from the Marmousi dataset. 
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3.7 Chapter summary 

A numerical method termed the finite element–finite difference method (FE-FDM) is 

presented in this chapter to solve the time-dependent differential equations such as 

parabolic and hyperbolic model equations. As numerical examples, 2D scalar wave 

equation modelling and reverse-time depth migration have been presented, and it is 

encouraging that the results are accurate and effective enough for the simulation of 

complex wavefields and steeply dipping interface migration. 

This method combines FEM and FDM based upon the semi-discretization of the spatial 

domain. The main strengths of FEM (adaptation to arbitrary depth variation) and FDM 

(computational efficiency) are partially inherited. As for the FE-FDM with 2nd order FEM 

along the z direction and 2nd order or 4th order FDM along the x direction, it has looser 

stability conditions than FDM with the same accuracy. With irregular grid discretizations, 

although partitioning grids and assembling global matrices are tiresome, the efficiency 

and resolution are notably improved. The reverse-time migration with the FE-FD 

operator is applied to process the Marmousi post-stack synthetic data and demonstrates 

the superior imaging quality of the full wave equation when compared to the one-way 

wave equation methods, including PSPI, SSF and IFD. 

The upwind finite-difference method is applied to obtain traveltime tables. With the 

traveltime tables, we implement the prestack Kirchhoff depth migration and prestack 

reverse-time migration. As with the Kirchhoff migration method, traveltime accuracy 

affects the prestack reverse-time migration method according to two migration results 

from the Marmousi model. 
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Chapter Four:  Topography problem for one-way wave equation downward-
continuation wavefield extrapolation methods 

4.1 Introduction 

Surface topography introduces a numerical problem for migration algorithms that are 

based on downward-continuation wavefield extrapolation. Since numerically efficient 

migration schemes start at a flat interface, wave-equation datuming (Berryhill, 1984; 

Shtivelman and Canning, 1988) is required prior to the migration. The computationally 

expensive datuming procedure is often replaced by a simple time-shift for the elevation to 

datum correction. For nonvertically travelling energy this correction is inaccurate. 

Subsequently, migration wrongly positions the reflectors in depth. Imaging from 

topography with wave equation methods is a natural extension of wave equation 

datuming techniques since they both are established on wavefield extrapolation theory.  

This chapter will address the technique for downward-continuation wavefield 

extrapolation methods, including the prestack PSPI migration, prestack split-step Fourier 

(SSF) and prestack implicit finite-difference (IFD) methods. Comparisons among these 

three methods are made using the numerical and field data to evaluate the performance of 

each one with respect to efficiency and resolution. 

4.2 Methodology for migration from topography using downward-continuation 
wavefield extrapolation methods 

In the 2D Cartesian coordinate system, the downward-continuation wavefield 

extrapolation obeys the one-way wave equation, 

2
2

2

xz k
v

k −±=
ω ,                                                        ( 4.1) 

or 
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Pik
z
P

z±=
∂
∂ ;                                                            ( 4.2) 

where the ±  signs are downward and upward wavefields, respectively. For the PSPI and 

split-step Fourier methods reviewed in Chapter 2, downward-continuation wavefield 

extrapolation is involved in the wavenumber-frequency domain, applying a simple phase 

shift from one depth point to another: 

dzik
xx

zekzPkdzzP ±=+ ),,(),,( ωω .                                ( 4.3) 

In contrast to the PSPI and split-step Fourier (dual-domain) methods, the extrapolation of 

the implicit finite-difference method is achieved only in the ω−x  domain as in Equation 

(4.4), 
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which has been discussed in Chapter 2. The technique presented in this thesis is not 

involved in detailed schemes of different downward-continuation migration methods 

since it only deals with the dataset after each wavefield extrapolation step. Given a flat 

datum above the topography with some constant velocity that approximates the average 

velocity of that depth step, the downward-continuation extrapolation can be described as 

),,()],(1[),()],,([),,( ωωω zxPzxWzxWzxPzzxP −+=Δ+ OPER ,           ( 4.5) 
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which represents different extrapolation schemes, and 
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which is a spatial function to judge if the step of wavefield extrapolation has reached the 

surface point, where )(xh  is the x-dependent topographic function shown in Figure  4.1. 

With this equation, after the original dataset ( tx −  domain) is transformed to the ω−x  

domain, we start wavefield extrapolation from the top of the grid that lies above the 

highest surface point (seen in Figure  4.1). At each extrapolation step, for each trace, when 

a surface point is reached, the new wavefield (in the ω−x  domain) can be updated, 

otherwise, it will keep the original input wavefield. 

 
Figure  4.1 Representation of surface topography. 

 
4.3 Comparisons among the phase-shift-plus-interpolation, split-step Fourier, and 
implicit finite-difference methods 

A theoretical introduction to the phase-shift-plus-interpolation (PSPI), split-step Fourier 

(SSF) and implicit finite-difference (IFD) methods has been given in Chapter 2. Here, we 

further investigate their performance in terms of speed and accuracy, according to each 
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algorithm’s mathematical principles. The adaptation of migration from the topographic 

technique for each algorithm will be subsequently discussed and analyzed. 

The common basis of PSPI, SSF and IFD is that they are based on the same equation, the 

one-way acoustic wave equation, and their extrapolation occurs in the frequency domain. 

Figure  4.2, Figure  4.3 and Figure  4.4 show the computational scheme for PSPI, SSF and 

IFD for analyzing each algorithm. Compared with the scheme for IFD, which is only 

involved in the ω−x  domain, PSPI and SSF are involved in dual domains, one part of 

the computation being done in the ω−x  domain to implement time-shift using a linear 

phase shift, and the other part being carried out in the ω−xk  domain to complete the 

focussing phase-shift. The PSPI method accomplishes the time-shift ahead of the 

focussing phase-shift, while SSF does the opposite: using a minimum velocity chosen 

from lateral velocities at each depth step for the focussing phase-shift and then applying a 

corrected slowness (the difference between true slowness and minimum slowness) for the 

time-shift. 

The minimum velocity and corrected slowness imply that SSF will fail in the case of 

strong variations in the field. However, it is very efficient due to the one-time phase-shift 

applied compared with PSPI, which is dependent on a reference number. The stronger the 

variation in the velocity field, the more reference velocities we require if we wish to 

obtain good imaging results. This also determines the method’s efficiency. The PSPI 

method is more expensive than the SSF method but it delivers relatively greater accuracy. 

IFD usually carries out extrapolation directly in the ω−x  domain, so the true velocity at 

each point will be applied, which means it is well adapted to strong variations in the 

velocity field. However, when the cascaded series approximate the one-way wave 
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equation, we reach the same conclusion as PSPI in that the more cascaded numbers, the 

more cascaded extrapolation. Han (1998) gave detailed statistics for several wavefield 

extrapolation methods. In general, IFD is the trade-off method of the three which is well 

adapted to arbitrary velocity variation; SSF is the most efficient method that involves the 

least computation possible; and PSPI is the slowest method even if we give relatively 

simple reference numbers for velocities. Since phase-shift calculation employs most of 

the computation cost, with the number of the reference velocities increasing, the 

computational expense increases proportionally. 

                      
Figure  4.2 The extrapolation scheme for SSF.  
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Figure  4.3 The extrapolation scheme for PSPI. 

 

 

Figure  4.4 The extrapolation scheme for implicit finite-difference. 
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4.4 Imaging conditions for prestack downward-continuation migration algorithms 

To implement the prestack depth migration, we not only require extrapolating the 

recorded wavefield downwards, but also need to extrapolate the seismic source impulse 

downward into the Earth. The reason is that the shot gathers contain both the down-going 

wavefield information from the source and the up-going information to the receivers 

through the velocity field. The source extrapolation is the same as the receiver 

extrapolation except for the input wavefields. Estimation of reflectivity from wavefields 

at a certain depth level is called an imaging condition. We will use two methods to define 

the imaging conditions: one is a deconvolution imaging condition and the other is a cross-

correlation imaging condition, which is typically done in the frequency domain. 

The deconvolution imaging condition estimates reflectivity using the ratio between the 

receiver and source wavefields. The process uses the wavefields just after the reflection 

and just before reflection. Energy loss, due to geometrically spreading from both the 

source and the receiver, is automatically corrected. Each frequency slice produces a 

frequency-dependent estimation of the reflectivity and all are averaged to eliminate 

frequency-dependence. The deconvolution imaging condition can be written as 

(Claerbout, 1971) 
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This method involves both amplitude and phase correction and should be more accurately 

called an inversion process. The cross-correlation imaging condition sets the amplitude of 

the source wavefield to a constant value, normally 1.0, which means that the cross-

correlation imaging condition involves only the phase and geometric-spreading 
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corrections to the receiver wavefield. Source-side geometric spreading loss is ignored. It 

can be written as (Claerbout, 1971) 
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The deconvolution imaging condition is theoretically a true amplitude condition for 

migration; however, it is unstable for real seismic evaluations due to embedded noise. 

Furthermore, when compared with the cross-correlation imaging condition, it is 

obviously expensive. The cross-correlation imaging condition is more stable and image 

quality can be superior to the deconvolution imaging condition. The migration results 

from the prestack downward-continuation method have been computed using the cross-

correlation imaging condition. 

4.5 Numerical and field data migrations from topography 

4.5.1 Numerical data migration from topography 

A complex velocity model (Gray and Marfurt, 1995) has been designed to represent a 

geological cross-section (Figure  4.5), consisting of a number of faulted layers typical of 

mountainous thrust regions, such as the Canadian Foothills. High near-surface velocities 

present an additional challenge to depth migration algorithms. The model is 12,000m 

long, and the depth is 10,000m: the top of the model is 2,000m above sea level and the 

bottom of the model is 8,000m below the sea level. The top layer is air, and the surface of 

the Earth is indicated by the areas filled with a constant velocity (4,000m/s) (orange color) 

for wavefield extrapolation. The total relief of the Earth’s surface along this cross-section 

is approximately 1,600m. The velocity of the model ranges from 3,500m/s (the reddest 

areas near the top) to 5,900m/s (the bluest areas near the bottom). A total of 278 2D 
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synthetic shot gathers were generated using an acoustic wave equation (implying 

cylindrical energy loss) with finite-difference modelling. The shot spacing is 90m, the 

sample interval is 4ms, and the sample intervals in the horizontal and vertical directions 

are 10m. Figure  4.6 is a shot gather located approximately in the middle of the model. 

Rapid topographic variation and a high velocity near-surface strongly affect the energy 

arrivals, such as the first arrivals (yellow arrow) and reflections (red arrows), which 

present significant challenges to depth migration algorithms.  

 

Figure  4.5 A velocity/depth model representative of northeastern British Columbia (after 
Gray and Marfurt, 1995). There is roughly 1600m of elevation relief along the seismic 
section. 

No processing was done prior to prestack depth migration, such as the removal of direct 

waves and geometrical spreading correction. The dataset was not only used for the three 

prestack downward-continuation migration methods (a constant velocity of 4,000m/s is 

used to substitute the air), but also for the prestack Kirchhoff depth migration. The 

traveltime tables were calculated using the upwind finite-difference method with the 
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Eikonal equation, as illustrated in Chapter 3. With these tables, a Kirchhoff migration 

algorithm provided by Don C. Lawton produced the depth migration. 

The Kirchhoff depth migration result is shown in Figure  4.7. The folds, the thrusts, and 

the inclined basement plain are clearly and correctly migrated except for some of the 

shallower structures due to the algorithm placing lower priority on the resolution of 

shallow parts. At the same time, the result strongly validates the accuracy of the 

traveltime calculation obtained from the upwind finite-difference method with the 

Eikonal equation mentioned in Chapter 3. The dashed rectangle in this figure shows 

migration artifacts in a complex area, which is an obvious characteristic of Kirchhoff 

depth migration. 

For the three downward-continuation extrapolation methods, each shot was padded to 8 

seconds in order to accommodate the energy wrapped around by the extrapolation and 

Fourier transform, which becomes background noise if not properly handled. Each shot 

was also padded in the horizontal direction with 15 traces on the both sides to increase 

the imaging aperture when the source is located in the middle. These migrations were 

done in a PC machine with a memory of 512M and CPU processor of 1.86G Hz. From 

the migration results shown in Figure  4.8, Figure  4.9 and Figure  4.11, the three prestack 

migration algorithms all successfully image the model structure, and delineate the faults, 

thrust structures, and the inclined basement flat. Compared with the prestack Kirchhoff 

migration result, these imaging results are clearer and more natural, with fewer artifacts. 

The near-surface imaging is also clearer. There is no obvious difference between PSPI 

and SSF, but minor differences are evident. Artifacts in the near-surface with PSPI are 

fewer than that with SSF. The corresponding dashed blue rectangles in Figure  4.8 and 
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Figure  4.9 show slight imaging differences in this area, and it seems that PSPI looks 

better since more reference wavefields are computed. 

Figure  4.10(a) shows the velocity information used for the shot gather of Figure  4.6, and 

its corresponding migration result (Figure  4.10(b)), which gives us a detailed comparison 

between model and migration results. The white dashed rectangle delineates the near-

surface imaging, and yellow arrows show surface topography and fold structure. Figure 

 4.11 is the prestack migration result from the implicit finite-difference method with the 

87° accuracy. Compared to results obtained by the two downward-continuation 

extrapolation methods involving the wavenumber domain, the result from the implicit 

finite-difference method shows better imaging for fold structure since the algorithm 

applied the true velocity at each point in the spaces. The white dashed rectangle shows 

the fold structure clearly imaged. The yellow arrows indicate more consistent fold 

structure imaging, which is not relatively obvious in Figure  4.8 and Figure  4.9. From the 

viewpoint of efficiency, measured by computation time in Figure  4.12, SSF is the most 

efficient method among three wave equation based methods that only employs one hour 

while PSPI is the slowest method (almost two hours run-time). In fact, IFD is the most 

preferred method as it is relatively fast (about one and half hours) while achieving the 

higher resolution. The Kirchhoff depth migration only costs about 40 minutes to obtain 

the reasonable result, which shows the dominant advantage in computer runtime over the 

wave equation based methods. 
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Figure  4.6 A shot gather located approximately at the mid-point of the model (14,500m 
position). The yellow arrow shows the uneven direct wave energy due to the effect of 
surface topography, and green arrows indicate reflections from the fault structures. 

 

 

Figure  4.7 Result of the prestack Kirchhoff depth migration. The dashed rectangle shows 
the obvious smiles in complex areas. 
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Figure  4.8 Result from the prestack PSPI migration. The blue rotated rectangle denotes 
the imaging of shallow structures for comparison with the SSF migration below. 

 

Figure  4.9 Result from the prestack SSF method. The dashed blue rotated rectangle 
denotes the imaging of shallow structures for comparison with the PSPI migration above 
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 (a)                                                                            (b) 

Figure  4.10 (a) Velocities used for migrating the shot shown in Figure 4.7; (b) the 
migration of the shot gather using the prestack SSF method. The yellow arrows shown in 
(b) indicate the imaging quality for shallow structures. 

 

Figure  4.11 Result from the prestack implicit finite-difference migration. The white 
dashed rectangle delineates good fold structure imaging. The yellow arrows indicate 
more consistent fold structure imaging. 
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Figure  4.12 Computational time of prestack PSPI, SSF and IFD migration methods. 

4.5.2 Field data migration from topography 

The real data were sampled from an area of the Canadian Foothills. The surface 

topography model is shown in the Figure  4.13, where the top position to datum is almost 

500m. The surface topography variation is not as severe as in the numerical model 

discussed as above. The investigated area is 12,000m long. There are 134 shot gathers. 

For each shot, the trace interval is 15m and temporal sample interval is 4ms. The shot 

spacing is 90m. There is no affordable velocity model for migration. However, in the 

experiment with constant velocity, the migration structures look reasonable. Two 

prestack migration methods are tried here — the prestack Kirchhoff depth migration and 

the prestack SSF methods. Due to the constant velocity model (4,200m/s), there are no 

differences between PSPI, SSF and IFD. Considering the computation cost, the efficient 

SSF method is chosen for the migration experiment. Figure  4.14 is the migration result 

from the prestack Kirchhoff migration method. The syncline structure is very clear in the 

near-surface area, as also shown in Figure  4.15, the migration result from the prestack 
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SSF method. In comparing the two results, the result from wave-equation-based method 

seems better than that of the ray-based method. The reflection energies indicated by white 

dashed rectangle in Figure  4.14 are more consistent than those of Figure  4.15. The yellow 

dashed ellipse shows a similar result. The reflector energy indicated by the yellow arrow 

is very strong in the SSF migration result while it is unnoticeable in the Kirchhoff 

migration result. 

The prestack SSF method is also applied after elevation correction from the original data 

using convention “statics” processing. The result is shown in Figure  4.16, which is not as 

natural as the results in Figure  4.14 and Figure  4.15. It is common that a lot of traces 

appear “shaky”. Many reflector events are not very consistent. Some structural shapes 

have obvious changes compared to the results migrated from surface topography, such as 

the structure denoted by the yellow arrow in Figure  4.16. So a simple time-shift for the 

elevation-to-datum correction can’t guarantee the correctness of data for migration, 

which will result in wrongly positioned reflectors in depth. 

 

Figure  4.13 A constant velocity/depth model for real data depth migration. There is 
roughly 500m of elevation relief along the seismic section. The red colour denotes the air 
with velocity set as 1m/s. 
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Figure  4.14 The result of prestack Kirchhoff depth migration with a constant velocity of 
4,200m/s from surface topography. The dashed white rectangle and yellow ellipse shows 
the poor imaging quality when compared with the result from the prestack SSF method. 

 
Figure  4.15 The result of prestack SSF depth migration with a constant velocity of 
4,200m/s from surface topography. The dashed white rectangle and yellow ellipse shows 
the better imaging quality compared with the result from the prestack Kirchhoff depth 
method. The yellow arrow shows the structure unnoticeable in the Kirchhoff result. 

     
Figure  4.16 The result of prestack SSF depth migration with a constant velocity of 
4,200m/s after elevation correction with filed statics. The dashed blue rectangle shows 
the phenomena of traces “shaking”, and the arrow indicates the changed shape of the 
reflection event when compared with the results in Figures 4.13 and 4.14. 
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4.6 Chapter summary 

A technique for downward-continuation wavefield extrapolation has been presented and 

applied to three prestack depth migration methods — PSPI, SSF and IFD. Details of three 

extrapolation methods from topography are given, and the characteristics of each 

algorithm are compared and analyzed for performance in terms of speed and accuracy. 

Three prestack depth migration algorithms are developed and applied to Foothills 

synthetic data and real data. The prestack Kirchhoff migration was also included in the 

comparison and analysis. 

The three downward-continuation extrapolation methods from Foothills surface 

topography all demonstrate their excellent capability in handling extreme lateral-velocity 

and topographic variations. Comparisons among the downward-continuation methods 

show IFD is more capable of imaging the near surface while SSF exhibits higher 

efficiency with almost the same resolution as PSPI for this model. Comparisons between 

the images produced by the downward-continuation algorithms and that generated with 

the Kirchhoff algorithm indicate that the wave-equation-based algorithm is more capable 

of recovering the near-surface structures and high-angle fault planes. At the same time, 

the traveltimes generated by the upwind finite-difference method with the Eikonal 

equation are validated by the prestack Kirchhoff migration result. Comparisons between 

the SSF and Kirchhoff migrations on the field data highlight the imaging quality of wave-

equation-based migration methods and the efficiency of ray-based migration methods. 
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Chapter Five: Prestack anisotropic reverse-time migration for tilted TI media 

5.1 Introduction 

To implement the prestack anisotropic reverse-time migration method for tilted 

transversely isotropic (TTI) media, we first need to derive the anisotropic P- and SV-

wave equations. The pseudo-spectral numerical method is applied to solve these 

equations based on the characteristics of the derived equations. At the same time, the 

stability and accuracy of pseudo-spectral method for anisotropic P and SV wave 

equations are analyzed. Anisotropic ray-racing is used to obtain the traveltime of the 

forward wavefield. It will be correlated with the backward wavefield estimated by 

reverse-time extrapolation. The prestack depth migration will use the zero-lag cross-

correlation imaging condition. Numerical and physical examples are processed with post-

stack and prestack anisotropic reverse-time migration, which validate the algorithm and 

show its capacity to adapt to lateral variable velocities and anisotropy parameters.  

5.2 Theory for P- and SV-wave equations for TTI media 

5.2.1 Simplified P- and SV-wave equations for TTI media 

To simulate acoustic wave propagation in a VTI medium, Alkhalifah (2000) proposed an 

acoustic wave equation by setting the shear wave velocity 0sv  to 0. He showed that the 

new acoustic VTI wave equation yielded a kinematically acceptable approximation of P-

wave propagation when compared to the full elastic solution in VTI media. Zhang et al. 

(2003) extended the acoustic wave equation for VTI media to one for TTI media. 

However, contrary to conventional wisdom, setting 0sv  to 0 eliminates only the 

component in the principal axis and introduces diamond-shape artifacts, indicating that it 

does not eliminate the shear-wave phase velocity in the orthogonal directions. Grechka et 
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al. (2004) gave a detailed discussion about shear waves in acoustic anisotropic media. 

Alkhalifah (2000) proposed placing the source in a thin isotropic layer to reduce artifacts. 

This imposes limitations on his formulation not only for modelling anisotropic cases, but 

also for possible extensions to other seismic processing and imaging stages. Strong shear 

waves will contaminate P-wave data produced by any full-waveform modelling code 

(Grechka et al., 2004). Moreover, imaging techniques such as reverse-time migration will 

produce artifacts from these shear waves. Klie and Toro (2001) used a weak anisotropy 

approximation to successfully suppress these “artifacts”. To implement the P- and SV-

wave reverse-time migrations in TTI media, we require the individual P- and SV-wave 

equations. We start with the VTI phase-velocity equation (Tsvankin, 1996) written as 
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where the ± sign yields )(θpv and )(θsv , respectively. When we rotate the symmetry axis 

from vertical to a tilt angle of φ , the phase velocity in the direction measured from the 

vertical direction is: 
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where θ   is phase angle, 2
0

2
01

p

s

v
v

f −= , and ε  and δ  are Thomsen parameters (Thomsen, 

1986), which are defined as: 
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where ijc  are the elastic moduli which have been reviewed in Chapter 2. Noting that 

anisotropic reverse-time migration is expensive and weak anisotropy is a reasonable 

assumption in many real cases (Thomsen, 1986), we will use the assumption of weak 

anisotropy, which also results in simpler equations that save computation effort while 

somewhat retaining accuracy. This allows us to simplify the phase-velocity expression of 

Equation (5.2). Expanding the radical in a Taylor series and dropping the quadratic and 

higher terms of the anisotropy parameters ε  and δ , we obtain the P- and SV-wave phase 

velocity formula as: 
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To obtain this acoustic wave equation for anisotropic VTI media, Alkhalifah (2000) set 

00 =sv , which makes 1=f . Then, from Equation (5.2), the acoustic wave equation can 

be written as 
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. ( 5.6) 

By rotating the symmetry axis from vertical to a tilt angle φ , we can get the phase 

velocity for P- and SV-waves in the direction measured from the vertical direction. The 

P- and SV-wave phase velocity formulas are shown as follows:  
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Using a similar approach, we can write Alkhalifah’s acoustic wave equation for tilt angle 

φ  as 
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If we try to maintain higher accuracy for weak anisotropy, we can also expand the radical 

in Equation (5.2) in a Taylor series and retain the quadratic terms in ε  and δ . We then 

obtain 
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For plane waves travelling in the vertical (x, z) plane, the phase angle is given by  

ω
φθ

θ xkv ),(
sin = ,   

ω
φθ

θ zkv ),(
cos = ,         ( 5.12) 

where ),( φθv  is the phase velocity for tilted coordinates, xk  is the horizontal 

wavenumber and zk  is the vertical wavenumber. When we multiply Equations (5.7) and 

(5.8) with the wavefield in the Fourier domain ),,( tkkU zx , and apply an inverse Fourier 
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transform in frequency only with (
t

i
∂
∂

→ω ), we can obtain P- and SV-wave equations in 

the time-wavenumber domain for tilted TI media. The new P-wave equation for tilted 

transversely isotropic media is 
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The new SV-wave equation for tilted transversely isotropic media is 
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The coefficient σ , 

)()( 2
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0 δεσ −=
s

p

v
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 ,                                                 ( 5.15) 

which was introduced by Tsvankin and Thomsen (1994) as the influential parameter in 

the SV-wave moveout and velocity equations. In anisotropic seismic modelling and 

migration, we can use Equations (5.13) and (5.14) to obtain separate P and SV 

wavefields. 
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5.2.2 Discussion of the simplified P- and SV-wave equations for TTI media 

To evaluate the accuracy of the above wave equations, we demonstrate their impulse 

responses for axes of symmetry of 0°, 30°, 60° and 90°. We plot phase velocity versus 

phase angle using 25.0=ε  and 1.0=δ . We compare the differences among Alkhalifah’s 

acoustic wave formula, the weak anisotropy formula, the quadratic approximation 

anisotropy formula, and the exact P-wave phase velocity formula for TTI media in Figure 

 5.1. There is only a slight difference among the curves. Alkhalifah’s formula and the 

quadratic approximation are closer to the exact solution. The accuracy of the weak 

anisotropic approximation is adequate for weak anisotropic media while saving 

considerable computer time. Figure  5.2 illustrates the SV-wave phase velocities for three 

cases: the weak anisotropy case with a linear approximation, the anisotropy case with a 

quadratic approximation, and the exact formula. The linear solution now differs from the 

exact one; however, if Equation (5.8) is modified by retaining the quadratic terms in ε  

and δ  from the exact SV phase velocity formula, the accuracy is greatly improved. This, 

of course, results in an increase in computation cost. 



98 

 

 

0 10 20 30 40 50 60 70 80 90
3000

3100

3200

3300

3400

3500

3600

3700

Phase Angle(degrees)

Dip angle=0 degree

    
0 10 20 30 40 50 60 70 80 90

3000

3050

3100

3150

3200

3250

3300

3350

3400

3450

3500

Phase Angle(degrees)

V
p(

m
/s

)

Dip angle=30 degrees

 

0 10 20 30 40 50 60 70 80 90
3000

3050

3100

3150

3200

3250

3300

3350

3400

3450

3500

Phase Angle(degrees)

V
p(

m
/s

)

Dip angle=60 degrees

    
0 10 20 30 40 50 60 70 80 90

3000

3100

3200

3300

3400

3500

3600

3700

Phase Angle(degrees)

V
p(

m
/s

)

Dip angle=90 degrees

 

Figure  5.1  P-wave phase velocities for a TI medium with an axis of symmetry with 
angles of 0°, 30°, 60° and 90°. In each graph, the black line corresponds to P-wave phase 
velocities with the Alkhalifah formula, the red dotted line plots P-wave phase velocities 
with the weak anisotropy formula, the green x-line is the quadratic approximation 
formula, and the solid blue line plots the exact formula. The medium has a P-wave 
velocity of 3,000 m/s and a SV-wave velocity of 1,500 m/s in the direction parallel to the 
symmetry axis with Thomsen parameters 25.0=ε  and 1.0=δ . 
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Figure  5.2 SV-wave phase velocities for a TI medium with a symmetry axis with angles 
of 0°, 30°, 60° and 90°. In each graph, the red dots correspond to SV-wave phase 
velocities from the weak anisotropy formula with linear approximation, the green x-line 
denotes SV-wave phase velocities from weak anisotropy with the quadratic 
approximation, and the blue line plots SV phase velocities with the exact formula. The 
velocities and Thomsen parameters are same as those in Figure  5.1. 
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Figure  5.3 shows the phase velocities of Figure  5.1 and Figure  5.2 in polar coordinates. 

The subfigures correspond to the wavefield snapshots in a homogeneous medium, where 

the blue solid lines are the exact phase velocities of the P- and SV-waves and the red-

cross lines denote the velocity of the P- and SV-waves based on the simplified Thomsen 

formula. The upper subfigures show P-wave phase velocity curves with 0° and 30° axes 

of symmetry. The lower subfigures correspond to the SV-wave phase velocity curves 

with 60° and 90° axes of symmetry. In the case of P-waves, there is hardly any difference 

between the simplified and exact formulas. Some differences appear in the SV wave 

curves, but the shapes are fairly consistent. 
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Figure  5.3 P and SV-wave phase velocities plotted in polar coordinates. The red line 
corresponds to the weak anisotropy formula and the solid blue line to the exact formula. 
The upper two graphs correspond to the P-wave with the symmetry axis having angles of 
0° and 30°. The bottom two denote the SV-wave with the symmetry axis having angles of 
60° and 90°. The velocities and Thomsen parameters are same as those in Figure  5.1. 

In Figure  5.4, we now estimate a maximum difference between the true and the linear 

approximation phase velocities, which we refer to as the maximum velocity difference. 

The parameters ε  and δ  were varied from 0 to 0.25 in increments of 0.01 to estimate a 

distribution of absolute maximum relative velocity difference. The absolute maximum 

relative velocity difference for P-waves is plotted as a histogram in Figure  5.4(a). This 

figure shows that the absolute maximum relative velocity difference values are mainly 

distributed within a 2% range that indicates little deviation. Consequently, the simplified 

formula for P-wave can be accurately used in seismic modelling and processing in tilted 
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TI media. Figure  5.4(b) shows the absolute maximum relative differences between the 

simplified SV velocity formula values and the exact velocity values. The SV relative 

difference distribution area is larger than that of the P-wave distribution, which mainly 

ranges within a 5% margin of error. The simplified formula for SV waves can be 

effectively applied in cases of weak anisotropy. 
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Figure  5.4 (a) The distribution of absolute maximum relative velocity differences 
between phase velocities from the simplified P-wave velocity formula and those from the 
exact formula. The medium has a qP-wave velocity of 3,000 m/s and a qSV-wave 
velocity of 1,500 m/s in the direction parallel to the axis of symmetry. The Thomsen 
parameters ε  and δ  both varied from 0 to 0.25 in increments of 0.01; (b) the 
corresponding analysis of simplified SV-wave. 
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5.3 Numerical solution method for P- and SV-wave equations for TTI media 

The P- and SV-wave equations (Equations (5.13) and (5.14)) can also be written in the 

space-time domain. However, space and time are coupled in the terms 224 / txu ∂∂∂  and 

224 / tzu ∂∂∂ , and these cause computation difficulties in finite-difference schemes which 

are avoided in the wavenumber-time domain. Therefore, we use the pseudo-spectral 

method (Fornberg, 1987) in reverse-time migration to solve these wave equations. The 

pseudo-spectral method has higher accuracy than lower order finite-difference methods, 

such as 2nd order and 4th order accuracy in the spatial domain, and thus it requires fewer 

grid points per wavelength to obtain the desired accuracy. It successfully eliminates the 

spatial frequency dispersion problem that results from a limited finite-difference operator 

in reverse-time migration. In the numerical computation, using Equations (5.13) and 

(5.14), we transform data from the spatial domain to the wavenumber domain,  
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perform the wavenumber calculation,  
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return to spatial domain and apply the velocities and anisotropy parameters (ε , σ , φ ) in 

the spatial domain, 
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 and then use the finite-difference method in the time domain to calculate the wavefields 

at the previous time. The process of each loop is continued for each reverse time step 
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until zero time, where we get our migration result. The calculation flow is illustrated in 

Figure  5.5.  

 

Figure  5.5 The computation flow for implementing anisotropic reverse-time migration 

5.4 Analysis of accuracy and stability of pseudo-spectral methods for the anisotropic 
wave equation in tilted TI media 

To analyze the accuracy and stability of pseudo-spectral method for the anisotropic wave 

equation in tilted TI media, we consider them by estimating the error in the solution 

methods discussed above. The error in a formula is commonly referred to as a “truncation 

error” because in the Taylor series type of derivation, the error comes from the truncation 

of the series (Hamming, 1962). The form of the error is written in terms of some high-

order derivatives. We establish criteria for stability based on a model of uniform velocity 

through the entire domain. Using this model, we also estimate the truncation errors 

resulting from the time differencing schemes. When velocity and anisotropy parameters 

are constant, the solution to Equations (5.13) or (5.14) differs from the initial wavefield 

in that some phase shift is applied to the Fourier coefficients 

zx
tzkxki

zx dkdketkkUtzxu zx )()0,,(),,( ω++== ∫∫ .                   ( 5.19) 

There is no interaction between Fourier modes, and thus each Fourier component 

maintains its identity; only its phase angle changes with increasing time. Consequently, 

such a model does not account for truncations in the spatial frequency domain. Aliasing, 
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the generation of spatial frequencies above the cut-off (Nyquist) frequency, is problem 

dependent. The magnitude of aliasing errors depends upon the relationship between the 

frequency spectrum of the true solution and the highest frequency which can be 

supported by the computation grid. The effect of truncation in the frequency domain is 

almost independent of the numerical method used. Therefore, aliasing effects are ignored 

when the accuracy of the method is considered. 

Substituting trial solution )( tzkxki zxe ω−+  in the discretized Equation (5.13) for the 

anisotropic P-wave with a 2nd order central finite-difference scheme gives the dispersion 

relation 
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The equation seems very complicated for stability analysis. Different anisotropy 

parameters determine the different stability limits, even when there are different tilt 

angles with the same Thomson parameters. In general, the stability constraints of vertical 

TI media are analyzed here. From Equation (5.20), setting φ  equal to 0 for real ω , 
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Assuming )}(),(min{ δεα absabs= , we obtain the following expression 
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With the Nyquist spatial frequencies in x and y and for a uniform dΔ  grid spacing in x 

and  y, we obtain the 2D stability criterion 
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A similar derivation for the stability criterion of SV-waves is applied and we get the 

inequality for SV-waves in vertical TI media 
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Finally, the stability for SV-waves in vertical TI media can be expressed as 

π
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Δ
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From Equations (5.23) and (5.25), the constraint of anisotropic P-wave equation is looser 

than that of anisotropic SV-wave. 

To estimate the differencing error of these equations, we can express the theoretical 

values of p in the neighbourhood of t by Taylor series expansion 

∑
∞

=

Δ±
∂

∂
=Δ±

0 !
)()()(

l

l

l

l

th l
t

t
tpttp                                         ( 5.26) 

From the wavefield given at time t  and tt Δ− , we approximate its value at time tt Δ+  

by the expression 
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Then we calculate the error as 
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After taking into account the cancellation of terms with odd l values, we obtain  
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For most practical purposes, the lowest order error estimate, 
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is adequate. 

5.5 Traveltime generation by ray-tracing for prestack reverse-time migration  

5.5.1 Ray-tracing in anisotropic media 

A 2D raytracer developed by Grech (2002) calculates the ray-path and traveltime. It still 

starts from the phase velocity equation with weak anisotropy approximation (Equation 

5.4). The corresponding derivative θθ ddvp /)(  is also computed as given in the following 

equation: 

{ }θθεθθθθδ
θ
θ 333

0 sincos4]sincossin[cos2
)(

+−= a
d

dv p  .          ( 5.31) 

The relationship between the phase and group velocity is shown in Equations (5.32) and 

(5.33): 
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and 
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v
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where g  is the group velocity of the P-waves, φ  is the angle between the group velocity 

and symmetry axis, and θ  is the angle between the phase velocity and symmetry axis. 

Equation (5.32) gives the relationship between the magnitude of phase and group vectors. 

Equation (5.33) shows the relationship between the angles of the two vectors relative to 

the symmetry axis. For anisotropic ray-tracing, we trace a ray across an interface with 

different anisotropy parameters according to Snell’s law. Figure  5.6 illustrates the 

relationship between phase angle θ , ray angle φ , incident phase angle β , and incident 

ray angle α . At the same time, it can be found that 

γφα += ,         γθβ += ,                                  ( 5.34) 

where γ  is the angle of the TI symmetry axis. From the source position, a set of rays are 

emitted. When different rays arrive at the interface, the phase angles are obtained through 

scanning calculation and interpolation using Equation (5.34) for a range of phase angles 

from 0° to 90°. Since the ray parameter p  is constant for a given ray across an interface, 

which is calculated from 
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we use the same method to get the refracted phase angle. In each layer, Equation (5.32) is 

used to obtain the group velocity. Consequently the traveltime is generated with ray path 

length over the group velocity. Through the traveltime interpolation, we get the 

traveltime table for each grid in the spaces.  

 

Figure  5.6 The relationship between the ray and phase angles with the TI axis (Grech, 
2002). 

5.6  The implementation of prestack anisotropic reverse-time migration 

The procedure (seen in Figure  5.7) has four parts: 

1. Determine the excitation-time imaging condition by ray-tracing to obtain 
traveltimes from source position. 

2. Extrapolate the receiver wavefields backward in time using P- or SV-wave 
equations in anisotropic media. 

3. Apply the zero-lag cross-correlation imaging condition. 

4. Sum the individual migrated shot to produce the final migration result. 
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Figure  5.7 The wavefield extrapolation scheme for prestack anisotropic reverse-time 
migration 

5.7 Numerical examples 

To verify the anisotropic reverse-time migration’s effectiveness and accuracy, two 

numerical models were used. The first model was used to show the impulse responses of 

P and SV waves in a homogeneous, anisotropic medium. The second model was used for 

an anisotropic depth migration with a variable velocity model with constant anisotropy 

parameters. The P- and SV-wave impulse responses show excellent dipping angle 

imaging ability and are comparable with the phase-shift wave extrapolation shown in 

Zhang, et al. (2001). The variable velocity model with constant anisotropy parameters is 

designed to exhibit the accurate imaging ability of anisotropic reverse-time migration in 

TTI media. 
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5.7.1 P- and SV-wave impulse response  

Figure  5.8 shows the P-wave impulse response in a tilted TI medium with tilt angles of 

0°, 30°, 60°, and 90°. Figure  5.9 shows the corresponding SV-wave impulse response. 

The vertical tilt velocity of the P-wave is 3,500m/s and that of the SV-wave is 1,500m/s. 

The homogeneous medium has Thomsen anisotropy parameters of 25.0=ε  and 1.0=δ . 

When tilt angles are changed, the symmetry axis changes accordingly. The advantage of 

reverse-time migration is illustrated with energy reaching dips of 90°. Although the 

amplitude of the SV-impulse response is weaker at higher angles (due to obliquity 

effects), it is non-zero that is similar to the amplitude of a semicircular response in an 

isotropic medium. The effect of anisotropy causes the wavefronts of P- and SV-waves to 

differ from the circular ones of an isotropic medium and is consistent with the results 

shown in Figure  5.3.  
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       a)               b) 

 

          
     c)              d) 

Figure  5.8 P-wave impulse response. (a), (b), (c) and (d) correspond to the results from 
symmetry axis tilt angles of 0°, 30°, 60°, and 90° as indicated by the arrows. The vertical 
velocity of the P-wave is 3,500m/s and that of the SV-wave is 1,500m/s. The 
homogenous medium has Thomsen parameters of 25.0=ε  and 1.0=δ . 
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      a)                 b) 

  
c)           d) 

Figure  5.9 SV-wave impulse responses. (a), (b), (c) and (d) correspond to the results from 
symmetry axis tilt angles of 0°, 30°, 60°, and 90°. The velocities and Thomsen 
parameters are the same as those in Figure  5.8. 

 
5.7.2 Anisotropic depth migration for a variable velocity model 

A variable velocity model is shown in Figure  5.10 consisting of one reflector with three 

horizontal and three dipping segments. The media has anisotropy parameters of 2.0=ε  

and 1.0=δ , and the tilt angle is 60°. The P-wave velocity in the direction parallel to the 

symmetry axis of the model is v(x, z) =1,500+0.3z +0.1x(m/s). Figure  5.11 shows a 

synthetic zero-offset section for this model. Figure  5.12 is the isotropic migration result 
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obtained from isotropic reverse-time migration using the finite-difference method of 4th 

order accuracy in space and 2nd order accuracy in time. Figure  5.13 shows an anisotropic 

reverse-time migration result. The correct medium anisotropy parameters and velocity 

values are used in the anisotropic reverse-time migration method. We find that the 

migration result is an excellent match with the exact model interface. Clearly the image 

in Figure  5.13 is superior to that in Figure  5.12. The image from the isotropic migration 

(Figure  5.12) is not only undermigrated but it also has reflectors at shallow depths. Thus 

the anisotropic RT method gives a substantially better image than the corresponding 

isotropic RT method. However, the overall runtime of the anisotropic RT method is 

approximately five times longer than the isotropic case. 

 
Figure  5.10 Variable velocity model with homogenous Thomsen parameters of 2.0=ε  
and 1.0=δ , and a tilt angle °= 60φ . P-wave velocities parallel to the symmetry axis 
vary along the distance and depth as xzzxv 1.03.0500,1),( ++= (m/s). 
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Figure  5.11 Synthetic zero-offset seismogram obtained using SU code from the Center 
for Wave Phenomena (CWP) for the structural model shown in Figure  5.10 of a tilted TI 
medium. 

 

         

Figure  5.12 Migration result from the isotropic reverse-time migration method. The P-
wave velocity model in Figure  5.10 is used without taking into consideration the effect of 
anisotropy. The blue lines represent the true position of interfaces. 
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Figure  5.13 Migration result from the anisotropic reverse-time migration method. The 
exact velocity model and Thomson parameters have been applied. The migration result 
exactly matches the true interfaces. 

 

5.8 A physical model example 

A scaled physical model, including an isotropic reef with a TTI overburden, was 

constructed by the Foothills Research Project (FRP) at the University of Calgary. It was 

used to compare the magnitude of imaging errors incurred in using isotropic processing 

routines when there is seismic velocity anisotropy present in the dipping overburden. 

Post-stack and prestack migrations of the collected seismic data show that anisotropic 

reverse-time migration yields accurate image positioning while isotropic migration gives 

considerable errors in physical position and energy focus. 

Seismic data were recorded on the anisotropic physical model described by Isaac and 

Lawton (1999) and used to test the post-stack and prestack migration algorithm. The 

model represents an isotropic reef below a TTI overburden. The modelling system used a 

scale factor of 1:10,000 to relate the model dimensions to field dimensions. Field 

dimensions are used here for easier reference to practical application. This physical 

model is very relevant for the exploration situation where we are trying to image targets 
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beneath anisotropic dipping layers such as dipping shale layers in the Canadian Foothills 

(the Banff shale). 

The cross-section of this model is shown in Figure  5.14; it includes a TTI overburden 

layer with the axis of symmetry dipping at 45°. The layer has parameters 0pv = 2,950m/s, 

241.0=ε , and 100.0=δ . An isotropic layer that contains a simulated reef edge with 

0pv =2,740 m/s underlies this anisotropic overburden. Figure  5.15 shows a zero-offset 

seismic section with the surface wave muted. Since the dipping angle is 45° in the 

anisotropic overburden, we adopt the measured velocity along vertical direction 

( 145,345 =v m/s) for the upper layer in isotropic depth migration. 

Migrating the zero-offset section using isotropic reverse-time migration yields an image 

of the reef edge which is displaced by about 350m to the left of its true position (Figure 

 5.16). Migration by anisotropic reverse-time migration correctly positions the edge of 

reef, as shown in Figure  5.17. In this case, the input to the migration consisted of a grid 

containing values of 0pv , ε , δ , and the tilt of the symmetry axis at each node. Although 

there are some artifacts caused by interface reflections, which are shown by the blue 

dashed rectangles in Figure  5.16 and Figure  5.17, these do not affect the basement. For 

all practical purposes, the reef is imaged to its true position. The prestack data has 43 shot 

gathers and the receiver interval is 20m. The prestack isotropic migration result is shown 

in Figure  5.18, in which the same lateral shift of about 350m can be measured. The 

interface aliasing reflections are hardly noticeable compared with the post-stack isotropic 

migration. Although the lateral shift exists in the prestack isotropic migration result, it 

has higher resolution than the post-stack reverse-time migration result. As for the 
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prestack anisotropic reverse-time migration result in Figure  5.19, a clear and correct 

image is obtained. Given the cost statistics of the isotropic and anisotropic migration of 

the data, the increased cost for prestack anisotropic reverse-time migration is still almost 

five times that of the prestack isotropic case. 

    

Figure  5.14 Model of an isotropic reef with an anisotropic overburden from the Foothills 
Research Project showing the 45° dipping anisotropic overburden above horizontal 
reflectors. The Plexiglas layer is isotropic. 

 

Figure  5.15 Seismic data acquired with coincident source and receiver (the true offset 
scales to about 200m). 
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Figure  5.16 Isotropic reverse-time migration result for the reef model. The measured 
velocity along the vertical direction for the anisotropic overburden and the exact velocity 
of the isotropic layer are used. The isotropic migration images the reef edge ~ 350 m left 
of its true position. The blue lines represent the true reef interface while the red lines 
denote the misplaced migration position. 

 
 

 

Figure  5.17 Anisotropic migration result from the reef model with an exact velocity 
model and Thomsen parameters. Anisotropic migration provides a correct image, and the 
events exactly fit the interfaces. 
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Figure  5.18 Prestack isotropic reverse-time migration result from the reef model. The 
measured velocity along the vertical direction for the anisotropic overburden and the 
exact velocity of the isotropic layer are used. The isotropic migration images the reef 
edge ~ 350 m left of its true position. The blue lines represent the true reef interface while 
the red lines denote the misplaced migration position. 

 

 
Figure  5.19 Prestack anisotropic reverse-time migration result from the reef model with 
an exact velocity model and Thomsen parameters. Anisotropic migration provides a 
correct image, and the events exactly fit the interfaces. 
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5.9 Chapter summary 

 The above analysis demonstrates that anisotropy has a large influence in obtaining 

accurate migrated images. Using a migration algorithm that takes anisotropy into account 

can substantially improve images when anisotropy is present. 

To implement the reverse-time migration in tilted TI media, we first obtained an 

appropriate P-wave equation to use in place of the isotropic acoustic wave equation 

employed in isotropic reverse-time migration. With Thomson’s weak anisotropy 

assumption, the wave equations for weakly anisotropic P-waves and SV-waves in tilted 

transversely isotropic media were derived. Furthermore, the accuracy of the P- and SV-

wave equations was analyzed and compared with other acoustic wave equations for TTI 

media. The pseudo-spectral method was used to solve these equations in implementing a 

reverse-time migration. The anisotropic ray-tracing method was used to obtain 

traveltimes as the forward wavefield, which was used in conjunction with a backward 

wavefield by reverse-time extrapolation for prestack depth imaging using zero-lag cross-

correlation imaging. According to the results obtained from numerical and physical 

model seismic data, anisotropic reverse-time migration yields high accuracy for TTI 

media. The post-stack anisotropic algorithm, the anisotropic traveltime table computation 

and the prestack anisotropic depth migration algorithm were all successfully tested for 

their correctness. Although there is a large increase in computer run-time from isotropic 

reverse-time migration to anisotropic reverse-time migration, it is still promising and 

increasingly feasible with the rapid development of computer hardware. 



122 

 

Chapter Six: Prestack anisotropic phase-shift-plus-interpolation for tilted TI media 

 
6.1 Introduction 

This chapter covers post-stack and prestack anisotropic PSPI for tilted TI media, based on 

the one-way wave equation using downward-continuation migration methods that are 

extended from the corresponding isotropic algorithms. In contrast to the phase velocity 

being independent of phase angles in the isotropic algorithm, here phase velocity is 

determined by phase angle, which results in two challenging problems. One is the 

difficulty of calculating the vertical wavenumber zk . The other is the number of 

reference wavefields. Rather than use an approximated solution of zk , such as table-

driven interpolation (Rousseau, 1997) and polynomial interpolation (Ferguson and 

Margrave, 1998), we solve zk  analytically from the quartic dispersion equation. The 

assumption for the reference anisotropy parameters is that the variation in anisotropy 

parameters is the same as that of lateral velocities at each step when the anisotropy 

parameters vary laterally as well. The extra run-time is roughly counted when 

considering anisotropy parameters. Numerical and physical examples are applied to 

validate the anisotropic PSPI algorithm (A-PSPI) and demonstrate its characteristics as 

well. 

6.2 Prestack anisotropic phase-shift-plus interpolation migration 

Since the anisotropic phase-shift-plus-interpolation migration is derived from PSPI to 

which we gave a detailed introduction in Chapter 2, here we quickly review the basic 

PSPI approach and describe the relationship between them. 
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Given a homogeneous velocity field in the frequency-wavenumber domain, the 2D 

acoustic wave equation is given by 

2 2
2

2 2x
Pk P P

z v
ω∂

− =
∂

,                                                (6.1) 

where P is the pressure field, z is the depth, ω  is the circular frequency, v is phase 

velocity and xk  is the wavenumber in the lateral direction. Its corresponding one-way 

wave equation is 

Pik
z
P

z±=
∂
∂ .                                                    (6.2) 

Assuming that v(z) is constant over the depth interval dz, we can get the analytic 

solutions for the one-way wave equation 

),,(),,( ωω x
zik

x kzPekzzP z±=Δ+ .                              (6.3) 

Thus the wavefield in depth involves a simple phase-shift in the frequency-wavenumber 

domain. The above theory is provided by the Gazdag phase shift migration (Gazdag, 

1978). The advantage of this method is its stability with no special requirement for grid 

spacing and its accuracy up to 90° dip. When the velocity field varies laterally, the phase-

shift method fails, for it assumes that the velocity is constant along depth increment zΔ . 

Thus, Gazdag and Sguazzero (1984) introduced the phase-shift-plus-interpolation method 

that used several reference velocities to account for the lateral velocity variation at each 

step. The true wavefield is obtained by linearly interpolating the reference wavefield 

using the relationship between the local velocity and reference velocities. 
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When the velocity field varies not only with lateral direction but also with the phase 

angle in anisotropic media, zk  is a function of vertical velocities and the anisotropy 

parameters. Similar to the isotropic case, we have the anisotropic dispersion relationship, 

2
2

2

),( xz k
v

k −±=
φθ

ω ,                                               (6.4) 

where ω  is the frequency, ),( φθv  is the angle-dependent velocity, θ  is the phase angle 

with the symmetry axis and φ  is the tilt angle of the symmetry axis. For all the phase-

shift-based migration algorithms, the key is to relate zk  to xk  with known xk . In the 

isotropic case, ω  and v are constant, so zk  can be readily computed from xk , ω  and v 

using the isotropic frequency dispersion equation. In anisotropic media, the angle-

dependence of velocity makes the computation more complicated. 

Similar to the basic derivation in Chapter 5 for anisotropic P- and SV-wave equations, we 

still start from the phase velocity for tilted TI media: 
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Considering weak anisotropy is common in nature and using the weak-anisotropic 

assumption, the expression for the anisotropic phase velocity can be simplified by 

expanding it to first order in the small parameters ε  and δ : 
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Using Equation (6.5) as the starting point, Rousseau (1997) developed an anisotropic 

PSPI algorithm for migration wherein he precomputed a table of )(θzk  and )(θxk  while 

considering the angle dependence of velocity for the anisotropy parameters, located or 

interpolated a given input xk  in a table, and found the corresponding zk . The accuracy of 

this table-driven algorithm is directly related to the size of the table — the finer the 

increment in phase angle θ , the better the result. With a larger table, it is obvious that 

searching is time-consuming. Ferguson and Margrave (1998) suggested using an 

interpolating polynomial to get approximated solutions of zk . They first estimated an 

empirical polynomial relationship between phase angle θ  and horizontal slowness p by a 

series of numerical experiments, and then used the θ  expression to calculate vertical 

slowness to get zk . A difficulty presents itself when the axis of symmetry φ  of a TI 

medium is non-zero. The horizontal slowness versus phase angle for a dipping TI 

medium shows that some values of p correspond to two values of θ , so we have to turn 

to other methods for a remedy. Du et al. (2005) analytically solved the vertical 

wavenumber directly through Equation (6.4). 

6.2.1 The solution of the vertical wavenumber for tilted TI media 

For plane waves travelling in the vertical (x, z)-plane, the phase angle is given by  

                             
ω
φθ

θ xkv ),(
sin = , 

ω
φθ

θ zkv ),(
cos = .    (6.7) 

Substituting Equation (6.7) into the phase velocity Equation (6.6), we can obtain a quartic 

equation, from which zk  can be analytically solved (see  Appendix A:). The quartic 

equation is 
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where ia  ( 3 ,2 ,1 ,0=i ) is related to xk , ε , δ , 0pv  and φ . Two roots of the four in the 

quartic dispersion equation are chosen for down- and upgoing-qP waves, respectively. 

Figure  6.1 shows a solution of the quartic dispersion equation for a TI medium with a tilt 

angle of 0°, 30°, 60°, 90°. The solutions from the table-driven method (Rousseau, 1997) 

are shown in this figure in cyan color. As for the analytical solutions, the black solid lines 

denote the real part of zk , the blue dashed lines are the imaginary part of zk . The 

analytical solutions exactly match those obtained by the table-driven method. 

6.2.2 The reference wavefield assumption for tilted TI media 

The accuracy of isotropic PSPI is directly related to the number of reference velocities 

used at each depth step and that number is dependent on the amount of lateral velocity 

variation at that step. Ideally, reference wavefields would be generated for each velocity, 

which would be very expensive. In an effort to do automatic reference velocity picking, 

Bagaini et al. (1995) proposed an adaptive choice for the reference velocities at any step 

determined by a statistical distribution of the velocity with that depth step. As in the 

isotropic PSPI algorithm, several sets of reference parameters must be used for the 

anisotropic PSPI migration. Considering five reference values are used for the four 

Thomsen parameters 0pv , ε , δ  and φ , we would require 625 different sets of reference 

parameters. To make the computation affordable, it is assumed that parameters 0pv , ε  

and δ  have related lateral variation. Since tilt angle φ  has a big effect on the wavefront 

dip direction, we take full account of the tilt angle. For anisotropic PSPI, balancing the 

computation cost and the number of reference parameters remains an unresolved issue. 
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The same issue of treating independent lateral variations in all four Thomsen parameters 

exists for a lot of anisotropic algorithms such as the explicit downward-continuation 

method (Uzcategui, 1994). 
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Figure  6.1 Dispersion relationship of P-waves in a TI medium. (a), (b), (c) and (d) 
correspond to the result of a tilt angle of 0°, 30°, 60°, and 90°. The black solid lines 
denote the real part of kz, the blue dashed lines are imaginary parts of kz and the cyan 
solid lines represent the solutions obtained by the Rousseau method. 

6.2.3 Implementation of the prestack anisotropic PSPI algorithm 

The wavefield extrapolation for the anisotropic PSPI algorithm is shown in Figure  6.2. 

There is no obvious distinction between the A-PSPI and PSPI algorithms, just differences 

in the phase-shift calculation. Only the reference velocity is considered in the isotropic 

algorithm whereas anisotropy parameters are used for anisotropic media. With the 

assumption of the relationship between velocity and anisotropy parameters, the number 
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of reference wavefields for TI media is the same as that where anisotropy isn’t considered 

if there is no variation in the tilt angle in polar anisotropic media. The cross-correlation 

imaging condition is applied in the prestack A-PSPI, and the whole algorithm procedure 

is shown in Figure  6.3.  

 

Figure  6.2 The wavefield extrapolation scheme for anisotropic PSPI. 

),,( ωzxP
z

v
i

e
Δ

ω

),,( ωzxP

),,( ωzzkP x Δ+

FFT 

),,( ωzzxP Δ+

z
v

ki ze
Δ− )( ω z

v
ki ze

Δ− )( ω

Interpolation

IFFT IFFT 

),,(1 ωzzkP x Δ+ ),,(2 ωzzkP x Δ+  

),,(1 ωzzxP Δ+ ),,(2 ωzzxP Δ+  

111 ,, δεv
222 ,, δεv  



129 

 

 

Figure  6.3 The procedure for prestack anisotropic PSPI. 

After downward-continuation extrapolation at each step, the incident extrapolation 

wavefields are cross-correlated with reflection extrapolation wavefields to achieve 

reflectivity in space-frequency domain. At the same time, with the new extrapolation 

wavefields, the next-step wavefield is extrapolated in the same way until the final step. 

The performance of the phase-shift operator can be exemplified through a study of 

migration impulse response. As with the anisotropic reverse-time impulse response, we 

employ the anisotropy parameters 24.0=ε  and 1.0=δ . Figure  6.4 illustrates the 

impulse response of the P-wave propagation modes with tilt angles of 0°, 30°, 60°, and 

90°. The arrows represent the symmetry axis which shows a good correspondence with 

each tilt angle. Furthermore, the phase-shift method exhibits excellent performance in 

dipping angles up to 90° that are better than the optimum explicit operators by Zhang et 

al. (2001).  
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Figure  6.4 P-wave impulse responses. (a), (b), (c) and (d) correspond to the results of tilt 
angles of 0°, 30°, 60°, and 90° as indicated by the arrows. 

 

6.3 Numerical and physical examples 

To validate the A-PSPI algorithm, we will use one similar numerical example and 

physical example for anisotropic reverse-time migration. 

6.3.1 Anisotropic imaging reflectors with different angles using a variable velocity 
model 

Although the same variable velocity model and anisotropic parameters as the numerical 

model in Chapter 5 (Figure  6.5) was adopted, the tilt angle is different and the value is 0° 

(i.e., VTI media is simulated), which results in a different zero-offset section (Figure  6.6) 

and different isotropic migration results (Figure  6.7). The isotropic migration result is 

obtained using the isotropic PSPI migration method with true vertical velocity. There are 

(a) (b) 

(c) (d) 
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obvious differences between the isotropic PSPI migration result and that generated by 

isotropic reverse-time migration (Figure  5.12). Although both results are undermigrated 

and energy is unfocused, migration positions are different due to tilt angle. The correct 

imaging result, using anisotropic PSPI with exact vertical velocity and anisotropy 

parameters, is shown in Figure  6.8. The migration reflectors exactly match with those of 

the model. When we compare computer run-time between the isotropic and anisotropic 

cases for this algorithm, the computational cost does not change much. This is because 

the homogenous anisotropic media is designed with just one reference anisotropic 

parameter and a relatively simple vertical wavenumber calculation for the vertical TI 

media issued. In such homogenous anisotropic media, we only need to care about the 

reference velocity. The vertical wavenumber is calculated with the reference velocity and 

anisotropy parameters. The vertical wavenumber calculation in vertical TI media also 

shows that the solution of quartic equation (Equation (6.8)) is effective in special cases 

when the tilt angle is zero. 

 

 

Figure  6.5 Variable velocity model with homogenous Thomsen parameters 2.0=ε  and 
1.0=δ , and a tilt angle °= 60φ . P-wave velocities parallel to the axis of symmetry vary 

along the distance and depth as xzzxv 1.03.0500,1),( ++= (m/s). 
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Figure  6.6 Synthetic zero-offset seismogram obtained using an SU routine from the 
Center for Wave Phenomena (CWP) for the structural model shown in Figure  6.5 in tilted 
TI media. 

 

         

Figure  6.7 Migration result from the isotropic PSPI migration method. The P-wave 
velocity model in Figure 6.5 is used without considering the effect of anisotropy. The 
blue lines represent the true position of interfaces. 
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Figure  6.8 Migration result from the anisotropic PSPI migration method. The P-wave 
velocity model in Figure  6.5 is used taking into account the effect of anisotropy. The blue 
lines represent the true position of interfaces, and the true position exactly matches with 
the migration result of A-PSPI. 

6.3.2 Depth migration for an isotropic reef with a TTI overburden 

The same isotropic reef with a tilted TI overburden model as discussed in Chapter 5 is 

also used for the anisotropic PSPI method, as repeated in Figure  6.9. Figure  6.10 shows a 

zero-offset seismic section, again with the surface wave muted. The same isotropic 

velocity model is also used for isotropic migration algorithm to produce a similarly 

incorrect result to the one generated by isotropic reverse-time migration, where measure 

vertical velocity 045v  is applied for the upper layer. 

The post-stack migration result (Figure  6.11) of the zero-offset section by isotropic PSPI 

yields an image of the reef edge which is displaced by about 350m to the left of its true 

position, the same as the isotropic reverse-time migration result except for the multiple 

artifact reflection. The post-stack anisotropic PSPI result with true velocity and 

anisotropic parameters shows the correctly positioned reef edge, as shown in Figure  6.12, 

which appears superior to the anisotropic reverse-time migration since there are some 

reflection artifacts evident in the Anisotropic reverse-time migration result in Figure  5.17 
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due to velocity interfaces. Since the anisotropic model is relatively simple, the 

computational cost of A-PSPI increases by less than that for the isotropic PSPI method.  

The 43 shot gathers are also applied to the implementation of the prestack migration and 

summed together. Isotropic and anisotropic algorithms are both used. Figure  6.13 and 

Figure  6.14 correspond to the isotropic migration result and the anisotropic result with 

true anisotropy parameters. The lateral shift of about 350m to the left of its true position 

is verified again in the prestack migration result that doesn’t consider anisotropy (Figure 

 6.13). In comparison to the post-stack migration results, the two prestack migration 

results yields higher resolution and fewer artifacts, which are shown in the blue dashed 

rectangle and ellipse (Figure  6.11 and Figure  6.12). 

 

Figure  6.9 Isotropic reef with a TTI overburden. 
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Figure  6.10 Zero-offset seismic section of the reef model. 

 
Figure  6.11 Post-stack isotropic PSPI migration result from the reef model. 
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Figure  6.12 Post-stack anisotropic PSPI migration result from the reef model. 

 
Figure  6.13 Prestack isotropic PSPI migration result from the reef model. 

 
Figure  6.14 Prestack anisotropic PSPI migration result from the reef model. 
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6.4 Chapter summary 

In this chapter, the PSPI algorithm has been extended to deal with tilted TI media. A new 

technique to obtain an analytical solution for the vertical wavenumber of tilted TI media 

is presented. Compared to other methods of solving the vertical wavenumber, this method 

is more efficient and accurate. The assumption that variable anisotropic parameters keep 

pace with variable lateral velocity is made to reduce the calculation of reference 

wavefields and improve efficiency. With these techniques and assumptions, post-stack 

and prestack anisotropic PSPI migration algorithms have been developed. Through 

numerical and physical examples, anisotropic PSPI has been successfully verified as 

accurate method using true vertical velocity and anisotropic parameters. In addition, the 

computational cost of A-PSPI is only slightly more than that of isotropic PSPI for 

relatively simple anisotropic models and will be discussed in Chapter 7. 
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Chapter Seven: Evaluations of prestack anisotropic Kirchhoff, phase-shift-plus-
interpolation and reverse-time depth migration methods for tilted TI media 

 
7.1 Introduction 

The previous two chapters introduced the prestack anisotropic PSPI migration and 

prestack anisotropic reverse-time migration methods. To illustrate the characteristics of 

the two different migration methods, in conjunction with prestack anisotropic Kirchhoff 

depth migration method, some evaluations of these three anisotropic migration 

algorithms are given from the point of accuracy and efficiency. Each algorithm is 

analyzed with regard to the theory behind the three anisotropic migration methods, and 

taking into account the increase in computation cost between each anisotropic migration 

algorithm and its corresponding isotropic case. A numerical example with different 

dipping reflectors is designed to show the dipping angle imaging capability of three 

methods, and physical model data applied to prestack depth migration demonstrates the 

algorithms’ efficiency in performance. Note that anisotropic IFD and SSF are not 

considered in this section as IFD has not been extended to the tilted TI case and SSF only 

handle simple anisotropic media. 

7.2 Theory 

Anisotropic depth migration methods, as with isotropic methods, can be based on various 

approaches such as ray-tracing, one-way wave equation, and two-way wave equation. 

The prestack anisotropic Kirchhoff migration method presented in this chapter is based 

on ray-tracing theory. The prestack anisotropic PSPI starts from the one-way wave 

equation and carries out downward-continuation wavefield extrapolation. The prestack 

anisotropic reverse-time migration employs recursive extrapolation backward in time 
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using the full wave equation. The three representative methods are chosen to demonstrate 

their characteristics for dipping TI media in terms of performance, accuracy and 

efficiency. 

The Kirchhoff migration method is still the most popular migration in the industry for its 

effective imaging and low cost. There is little variation between isotropic and anisotropic 

Kirchhoff depth migration algorithms except for changing the traveltime tables in the 

presence of TI media. Vestrum et al. (1999) similarly adopted a ray-tracing algorithm to 

get the traveltime to image structures below dipping TI media. Kumar et al. (2004) 

developed a direct method of traveltime computation in dipping TI media for use in 

Kirchhoff anisotropic depth migration. As with the case in isotropic media, traveltime 

calculation in TI media pushes the Kirchhoff method further in terms of accuracy as well 

as practical application to seismic imaging. 

In contrast to the Kirchhoff migration algorithm, which remains unchanged in anisotropic 

media, the prestack anisotropic PSPI migration algorithm involves complicated phase-

shift calculations compared to its counterpart isotropic algorithm, introduced in Chapter 6. 

The PSPI depth migration method adapts to lateral velocity variation through wavefield 

interpolation; however, with anisotropy parameters also varying in the lateral direction, it 

is very important to identify the relationship between the anisotropic parameters and 

velocity to reduce the calculations of the reference wavefields. 

Compared with the above two migration methods, reverse-time migration is the most 

expensive method, propagating the measured wavefield backward in time using a 

hyperbolic wave equation, as discussed in Chapter 5. However, with the two-way 

hyperbolic wave equation, it does not suffer from the dip limitation of one-way 
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downward continuation algorithms and handles multi-arrivals, steep dips, and overturned 

reflections. Furthermore, the algorithm is well adapted to arbitrary variable velocities and 

parameters in spaces. 

7.2.1 The anisotropic Kirchhoff depth migration 

The anisotropic Kirchhoff migration approach can be described mathematically as the 

integral solution to the scalar wave equation (Schneider, 1978; Berryhill, 1984). The 

solution is expressed as a surface integral over the known seismic observations. Based on 

the WKBJ approximation of Green’s function to the Kirchhoff integral solution of the 

acoustic wave equation, the migration integral of a single shot can be expressed by the 

surface integral 

rssrssrsrsrrs duAR xxxxxxxxxxxxxnxx )),,(),(,(),,(),,(),( 2/1 τττ +∇⋅= ∫Σ ,    (7.1) 

where Σ  is the recording surface; sτ  and rτ  are the traveltimes from the source position 

sx  to the subsurface position rx , and n  is the outward normal of the surface Σ . Here, 

2/1u  denotes the time derivative of the recorded traces for the 2D case. The term 

),,( sr xxxA  is the geometrical spreading term that functions here as an amplitude 

modulator to the recording traces. Using the far-field approximation, a migration using 

the Equation (7.1) is basically a weighted summation of the derivative travelling along 

the presumed diffraction trajectory rst ττ += . The weights are often approximated based 

on a constant velocity model. In such cases, the weights can be analytically expressed as 

a function of velocity, travelled distance, and obliquity of the emergence ray at the 

recoding surface. Thus, the determination of traveltimes plays the key role in the 

calculation of the integral. These determinations are traditionally accomplished by ray-
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tracing. Ray-tracing will essentially yield all the information about sτ  and rτ , and will 

simultaneously give us the directions of the rays. For post-stack constant velocity 

migration, an input sample on the unmigrated time section (x, t) is mapped onto a 

semicircle in the output space (x, z). The migrated image is formed by superimposing all 

the semicircles corresponding to each sample on the unmigrated time section. In the 

prestack constant velocity case, where the source and receiver are physically separated, 

the semicircles are replaced by ellipses, as illustrated in Figure  7.1. In this figure, the sum 

of the source traveltime sτ  and the receiver traveltime rτ  remain constant along the 

ellipse. 

Kirchhoff migration is one of the most versatile migration schemes. It can be easily 

modified to account for irregular recording geometry, topography, converted-wave 

imaging, and anisotropic depth migration. As there is no change in the depth migration 

algorithm itself in the presence of TI media, the computation cost remains the same as in 

the isotropic case. Although the change is the traveltime table, that only accounts for a 

very small part of depth migration process. 

 

Figure  7.1 Prestack Kirchhoff migrations (Bancroft, 2006). 
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7.2.2 The anisotropic PSPI and reverse-time depth migrations 

As for anisotropic PSPI and reverse-time depth migration algorithms, since we gave 

detailed introductions in Chapters 5 and 6, here we give only a quick review of the two 

methods. Making the isotropic PSPI algorithm an anisotropic PSPI algorithm depends on 

two key techniques. The first is the vertical wavenumber calculation in tilted TI media. 

The other is an assumption of the number of reference anisotropy parameters. The 

vertical wavenumber is successfully solved by the analytical solution, which will increase 

computational costs since the quartic equation is solved as many times as the number of 

frequency, reference velocity, and anisotropy parameters. The more complicated the 

anisotropy model involved, the greater the computer time required. The second technique 

is still an unresolved issue, although some assumptions are made, such as the variation of 

the anisotropy parameters keeping pace with that of lateral velocity at each step where the 

anisotropy parameters vary strongly. With this assumption, the anisotropic PSPI method 

works well for relatively simple anisotropic models, which has been proven through the 

numerical and physical examples shown in Chapter 6. Resolution greatly decreases when 

facing complex anisotropic models with strong laterally varying anisotropic parameters. 

It is straightforward to implement the isotropic reverse-time migration with the acoustic 

equation. However, for anisotropic reverse-time migration, we should first get an 

appropriate P-wave equation for dipping TI media. Du et al., (2005) discussed the 

individual P- and SV-wave equations for dipping TI media. A pseudo-spectral method is 

applied to solve them due to the complexity of the two equations. Anisotropic ray-tracing 

is used to obtain the traveltime tables, which are used for the forward wavefield to 

correlate with the reverse-time backward. This method reduces computer time by half 
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when compared to the modelling methods used to obtain the forward wavefield, making 

traveltime computation quite efficient. The post-stack and prestack anisotropic reverse-

time migration algorithms have been verified in Chapter 5. Unlike the Kirchhoff depth 

migration in Kumar et al. (2004), or the optimized depth extrapolator operator in Zhang 

et al. (2001), which incurs minor cost increases when transferred from isotropic to 

anisotropic cases, anisotropic reverse-time migration is a much more expensive 

calculation in comparison to its isotropic counterpart because so many more elements 

need to be calculated. However, its advantage — excellent adaptability to arbitrary 

complex variable anisotropy parameters and velocity in the spatial domain — is also 

quite significant. 

7.2.3 Performance evaluations 

Anisotropic Kirchhoff depth migration differs from the isotropic case only in the 

adjustment of the traveltime calculation, so the increase in computational expense is a 

very small part of the whole imaging process. Based on ray theory, it does not possess the 

high degree of accuracy of wave equation migration methods. For anisotropic PSPI 

algorithm, there is no obvious improvement in computer run-time if we obtain the 

vertical wavenumber before the wavefield extrapolation calculation. We make the 

assumption that strong variable anisotropy parameters are related to the lateral velocity. 

However, if the algorithm encounters a complicated geometry model with strong variable 

anisotropy parameters and dipping angles, the method will fail. 

Although anisotropic reverse-time migration can be well adapted to arbitrary variable 

velocity and anisotropy parameters in dipping TI media, it faces a big challenge in 

computation cost. Compared to the isotropic algorithm, it takes almost five times as long 
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to run (based on our understanding of the anisotropic wave equation shown in Chapter 6). 

A general comparison of the three anisotropic migration algorithms is shown in Table  7.1, 

which is based on a model of zx NN ×  grid points and the shot gathers of N  traces, with 

tN  spatial sampling numbers and fN  frequency sampling numbers. 

Table  7.1 Differences between anisotropic Kirchhoff, PSPI, and reverse-time migrations 
for shot gathers 

 Kirchhoff PSPI Reverse-time 
Recursive No Yes Yes 

Selective window Yes No No 
Accuracy good Very good Excellent 

Favor frequency High f High f Low f 
Inclusion of topography Easy With some effort Reasonably easy 

Computation cost )( ' NNNO zx  )( '
fzx NNNO  )( '

tzx NNNO  
Cost and frequency 2~ ff∝  2~ ff∝  3f∝  

Vectorization Good Good Excellent 
Parrallelization Excellent Excellent Excellent 

Data preparation Easy Easy With some effort 
 

7.3 Examples 

7.3.1 Imaging reflectors with different angles for a variable velocity model 

A variable velocity model is shown in Figure  7.2 that consists of seven dipping reflectors 

(0°, 15°, 30°, 45°, 60°, 75°, and 90°). The media has homogenous anisotropy parameters 

of 2.0=ε , 1.0=δ  and a tilt angle of 0. The velocity of the model is v(x, z) =1,500+0.3z 

+0.3x (m/s). The zero-offset synthetic data is shown in Figure  7.3. Figure  7.4 is the 

isotropic migration result obtained using the isotropic PSPI migration method, which 

shows unfocused energy and incorrect migration positions. Correct imaging results, using 

anisotropic Kirchhoff, anisotropic PSPI and anisotropic RT migration algorithms with 

exact anisotropy parameters, are shown in Figure  7.5, Figure  7.6 and Figure  7.7. The 
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energy from the 90° reflector is weak for the anisotropic Kirchhoff and A-PSPI migration 

results while in the A-RT migration it seems stronger. The energy from the 75° and 60° 

reflectors in A-RT is stronger than that from the anisotropic Kirchhoff and A-PSPI 

methods as well. It is obvious that A-RT demonstrates a greater ability in dipping angle 

imaging compared with other two methods. With regard to computation cost, anisotropic 

Kirchhoff only requires 1 minute, A-PSPI 5 minutes, and A-RT 8 minutes run-time. 

Anisotropic Kirchhoff exhibits excellent computational efficiency and A-PSPI strikes a 

balance between accuracy and efficiency. By comparison, run-times are 1 minute, 4 

minutes and 5 minutes for isotropic Kirchhoff, PSPI and RT, respectively. An overall 

comparison of computational cost is shown in Figure  7.8. There isn’t any cost increase 

between isotropic and anisotropic Kirchhoff migration methods. When we compare 

computer run-times among the isotropic and anisotropic cases for PSPI and reverse-time 

migration algorithms, although there is some increasing computation cost for anisotropic 

cases over isotropic cases, the change is not very significant due to the relatively simple 

anisotropic model. 

 

Figure  7.2 A variable velocity model with homogenous anisotropy parameters that 
consist of six dipping reflectors. 
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Figure  7.3 The synthetic data for six dipping reflectors in the model shown in Figure  7.2. 

 
Figure  7.4 Migration result from the isotropic PSPI method. 

 
Figure  7.5 Migration result from the anisotropic Kirchhoff method. 
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Figure  7.6 Migration result from the anisotropic PSPI method. 

 

Figure  7.7 Migration result from the anisotropic reverse-time method. 

 

Figure  7.8 Efficiency comparison of the different methods (Post-stack depth migration). 
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7.3.2 Migration for a TTI thrust sheet in an isotropic background 

7.3.2.1 Migration of seismic data sampled in the physical model 

The physical model (Figure  7.9) is a deep flat reflector overlain by a TI thrust sheet 

embedded in an isotropic background. The thrust sheet is composed of four blocks; each 

with a unique axis of symmetry. They have parameters of 0pv = 2,925m/s, 224.0=ε  and 

100.0=δ . The isotropic background has a flat basement with 0pv = 2,740m/s. The 

prestack seismic dataset has 86 shot gathers acquired at 60m intervals along the line. 

Each source gather consists of 256 traces and 512 samples per trace with a 4ms sample 

rate. Figure  7.10 corresponds to the zero-offset seismic section, where the high velocity 

of the thrust structure results in the “pull-up” phenomena (identified by the dashed blue 

rectangle) of the flat basement. 

A shot gather is shown in Figure  7.11 with a source location at 2,040m, spanning the first 

4,000m of the model. The major reflection at the bottom of the gather corresponds to the 

flat basement. The apparent moveout of the reflection to the left side of the source is 

continuous because most of the energy is propagated through the isotropic material part 

of the model and the TI block with the vertical axis of symmetry. The reflection energy to 

the right of the source has propagated through the three blocks with tilted axes of TI 

symmetry and so appears discontinuous (Ferguson, 1999). The surface wave and head 

wave are very strong, but we didn’t do any processing to investigate the sensitivity of 

migration algorithms to noise. High-frequency noise is dominant due to the physical 

sample in the labs. 

Isotropic prestack Kirchhoff, PSPI, and reverse-time migrations produce very similar 

results in Figure  7.12, Figure  7.14 and Figure  7.19, respectively. Although the basement 
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is partially flat, the basement beneath the thrust sheets exhibits substantial “pull up” and 

the energy cannot be focused through them. Looking closely at the blue rotated arrow in 

each of these three figures, we easily see the bottom dipping events becoming 

progressively clearer from the prestack isotropic Kirchhoff depth migration algorithm, 

through the prestack isotropic PSPI migration algorithm, to the prestack isotropic reverse-

time algorithm, whereas the computation cost becomes more and more expensive. The 

run-times are 8 minutes, 11 minutes and 15 minutes, respectively, which implies that the 

cost difference is not so much due to the model being less complicated. 

Migration results from the prestack anisotropic Kirchhoff, PSPI, and RT migration 

methods (Figure  7.13, Figure  7.15 and Figure  7.20) show more accurate positioning of 

the reflectors and an almost flattened basement reflection. Prestack anisotropic reverse-

time migration shows stronger reflection energy in the dipping interfaces of the thrust 

structure, which is emphasized by displaced yellow arrows in the corresponding figure. 

At the same time, the traveltime table calculation obtained by anisotropic ray-tracing is 

also verified. Figure  7.16 and Figure  7.17 show the traveltime contour results generated 

by isotropic ray-tracing and anisotropic ray-tracing, respectively, at the same source 

position. It is obvious that the P-waves propagate faster through the four TI blocks, 

because they propagate almost parallel to their bedding. This can also be observed in the 

traveltime difference contour in Figure  7.18. The prestack anisotropic Kirchhoff method 

(Figure  7.13) also produces reasonable results, due to fewer multiple arrivals observed 

with this model. However, the imaging of the thrust structure in the anisotropic PSPI 

migration result (Figure  7.15) is not as clear because limited reference wavefields are 

applied for the wavefield interpolation. Regarding computation cost, there is no increase 
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(7 minutes) for the prestack anisotropic Kirchhoff depth migration over that for the 

isotropic case because anisotropy only affects the traveltime calculation. As mentioned 

previously, the traveltime calculation only accounts for a small part of the imaging 

process. However, due to the relatively complex physical model, when compared to the 

isotropic reef with TTI overburden in Chapters 5 and 6, the anisotropic wave equation 

migration algorithms greatly increase computation time. Isotropic PSPI takes 11 minutes 

whereas anisotropic PSPI takes almost 24 minutes. Isotropic reverse-time migration takes 

15 minutes, which is similar to the PSPI methods, but anisotropic reverse-time migration 

takes almost 60 minutes. The overall efficiency comparison is shown in Figure  7.21. A 

big computational cost jump occurs for prestack anisotropic reverse-time migration over 

the isotropic case. However the prestack anisotropic Kirchhoff exhibits an enormous 

advantage in the efficiency. Although the prestack anisotropic PSPI algorithm is expected 

to be a trade-off method, the interpolation issue is not yet resolved, indicating further 

investigation is required. 

 

Figure  7.9 Model of an anisotropic thrust sheet embedded in an isotropic background 
with the same anisotropy parameters and different dipping angles. 
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Figure  7.10 Zero-offset seismic section of the TTI thrust model. 

 

Figure  7.11 Physical model and shot gather corresponding to source location 2,040m. 
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Figure  7.12 Prestack isotropic Kichhoff depth migration result from the TTI thrust model. 

 

 

Figure  7.13 Prestack anisotropic Kirchhoff depth migration result from the TTI thrust 
model. 
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Figure  7.14 Prestack isotropic PSPI migration result from the TTI thrust model. 

 

 

Figure  7.15 Prestack anisotropic PSPI depth migration result from the TTI thrust model. 
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Figure  7.16 The traveltime contours ignoring the anisotropic effect when the source 
position is located at the centre of the model. 

 
Figure  7.17 The traveltime contours showing the effect of anisotropy when the source 
position is located at the centre of the model. 

 

 

Figure  7.18 The traveltime difference contours between Figure  7.17 and Figure  7.16. 
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Figure  7.19 Prestack isotropic reverse-time migration result from the TTI thrust model. 

 
Figure  7.20 Prestack anisotropic reverse-time migration result from the TTI thrust model. 

 
Figure  7.21 Efficiency comparison of the different methods used with the TTI thrust 

model (Prestack depth migration). 
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7.3.2.2 Migration of numerical simulation data from the same model 

Although the physically modelled seismic data amply demonstrate the performance of the 

three anisotropic algorithms, the imaging quality is not perfect in that the physical model 

lacks certain natural characteristics, such as energy absorption and attenuation. 

Numerical simulation data are generated according to anisotropy theory, so ideal 

migration results are ensured with the correct parameters and migration algorithms. We 

used the same processing as with the physical sampled data — isotropic and anisotropic 

Kirchhoff depth migrations, isotropic and anisotropic PSPI migrations, and isotropic and 

anisotropic RT migrations. 

The three isotropic migration results, Figure  7.22, Figure  7.25 and Figure  7.28, give 

almost the same results, with unfocused energy and partially flat horizontal basement 

reflections. The three anisotropic migration results (Figure  7.23, Figure  7.26 and Figure 

 7.29) are ideal, with clear thrust segments and flat basement reflections. Regardless of 

isotropic or anisotropic algorithms, the migrations from numerical data yield higher 

resolution results than those from physical data. Figure  7.24 shows partial migrated 

sections of shot gathers using the anisotropic PSPI migration method. They correspond to 

source locations at 1,140m, 1,740m and 2,340m, respectively. Top subfigures are the 

isotropic PSPI migration results at these source positions; bottom subfigures correspond 

to the anisotropic PSPI results of these same shot gathers. The anisotropic results each 

correspond with the isotropic results directly above them. The yellow arrows indicate the 

differences between them. The anisotropic algorithm successfully focuses the reflection 

energy from the basement and flattens the interface. Figure  7.27 generated by anisotropic 

reverse-time migration, shows similar results to Figure  7.24, except for some low-
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frequency noise. Consequently, the anisotropic algorithms successfully migrate the 

energy to its true position with correct parameters. 

 

Figure  7.22 The prestack isotropic Kirchhoff depth migration from the numerical dataset. 
 

 

Figure  7.23 The prestack anisotropic Kirchhoff depth migration from the numerical 
dataset.
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(a) 

 
(b) 

Figure  7.24 Migration sections of shot gathers corresponding to source location at 
1,140m, 1,740m and 2,340m, respectively. Top subfigures (a) are the isotropic PSPI 
migration results at these source positions; bottom subfigures (b) are the anisotropic PSPI 
results of these same shot gathers. The results on top correspond to those directly beneath 
them. The yellow arrows emphasize the differences between them. The anisotropic 
migration algorithm successfully focuses the reflection energy from the basement and 
flattens the interface. 
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Figure  7.25 The prestack isotropic PSPI migration result from the numerical dataset. 
 

 

Figure  7.26 The prestack anisotropic PSPI migration result with correct velocity and 
anisotropy parameters. 
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(a) 

 
(b) 

Figure  7.27 Migration sections of shot gathers corresponding to source locations at 
1,140m, 1,740m and 2,340m, respectively, which are similar to the migration analyses of 
Figure  7.24. Top subfigures are the isotropic RT migration results at these source 
positions; bottom subfigures correspond to the anisotropic RT results of these same shot 
gathers. When compared to the migration results in Figure  7.24, the RT methods exhibit 
obvious low-frequency noise, which is easily removed by a low-frequency filter. The 
isotropic and anisotropic RT migration algorithms show the same characteristics as the 
corresponding examples of the PSPI methods. 
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Figure  7.28 The prestack isotropic RT migration result from the numerical dataset 

 

Figure  7.29 The prestack anisotropic RT migration result with correct velocity and 
anisotropy parameters. 

7.4 Chapter summary 

The chapter briefly reviews the theory governing the prestack anisotropic Kirchhoff, 

prestack anisotropic PSPI and prestack anisotropic reverse-time migration methods for 

TTI media. An overall analysis for the three algorithms is given, both for isotropic and 

anisotropic cases with respect to both accuracy and efficiency. Numerical and physical 

(m) 

(m) 

(m) 

(m) 



162 

 

examples are presented. We find the prestack anisotropic Kirchhoff, PSPI, and RT results 

are promising and encourage further investigation. The anisotropic Kirchhoff migration 

maintains the greatest advantage in the computation cost. The anisotropic RT migration 

shows excellent capability for dip angle imaging, whereas the anisotropic PSPI strikes a 

good balance between accuracy and efficiency. The anisotropic Kirchhoff depth 

migration doesn’t involve any extra cost when handling any complex anisotropic media 

due to its unchanged migration algorithm. The anisotropic PSPI uses almost twice the 

computation time of isotropic PSPI, while the computational cost of the anisotropic RT is 

nearly five times larger than that for the isotropic RT. However, with the rapid 

development of computer hardware, the two wave-equation-based anisotropic depth 

migration algorithms are likely to become widely used for more accurate seismic 

imaging. 
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Chapter Eight: Challenging problems for the anisotropic implicit finite-difference 
and anisotropic split-step Fourier methods from isotropic cases 

8.1 Introduction 

In Chapters 5 and 6, two prestack depth migration algorithms, reverse-time and PSPI, 

were successfully extended from handling isotropic media to dealing with tilted TI 

media. In this chapter, implicit finite-difference (IFD) and split-step Fourier (SSF) 

methods are studied in their handling of TI media. The anisotropic implicit finite-

difference method (A-IFD) can well accommodate VTI media, whereas at this point in 

time, the anisotropic split-step method (A-SSF) can only deal with TI media with simple 

anisotropy parameters. Both algorithms face challenging problems to process tilted TI 

media. 

8.2 Anisotropic implicit finite-difference method 

Ristow and Ruhl (1997) first extended the implicit finite-difference method to handle 

VTI media using implicit operators. Two schemes are available to obtain implicit 

operators, of which one is the Taylor series expansion method and the other is via the 

optimization method. Shan (2006) emphasized the optimization method and 

demonstrated the technique’s ability to cope with a complex VTI model with laterally 

varying anisotropy parameters. Two schemes are also presented here and together 

demonstrate calculation accuracy in complex VTI media. With these operators, the 

anisotropic implicit finite-difference extrapolation is almost same as that in the isotropic 

case. 
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8.2.1 Taylor series expansion method for VTI media with weak anisotropy 
approximation 

The Taylor series expansion method is actually an analytical method, which 

approximately obtains the vertical wavenumber as the function of the Thomsen 

parameters and the horizontal wavenumber. As in the case of anisotropic PSPI, we start 

from the frequency-dispersion equation for TI media with a vertical axis of symmetry,  

2
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ω ,                                                    ( 8.1) 

where )(θpv  is the phase velocity we mentioned in the A-RT and A-PSPI algorithms. 

Considering that the exact phase velocity is quite complicated, we turn to the weak 

anisotropic formula shown below to obtain the approximate solution: 
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Introducing ϕ , which refers to the phase angle in isotropic media with same vertical 

velocity as the TI media, we have the following relationship of isotropic and anisotropic 

phase angles: 
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With the help of Equations (8.2) and (8.3), the dispersion equation can be written after 

solving a quadratic equation and Taylor series expansion:  
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The vertical wavenumber in TI media becomes a function of frequency, vertical velocity, 

isotropic phase angle and anisotropy parameters. Based on the principle of IFD, the one-

way equation (Lee and Suh, 1985) can be written as  
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Making full use of Equations (8.4) and (8.5), and expanding both in a Taylor series, we 

can obtain a different approximation for the one-way wave equation in TI media, 

2
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where  
2
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=a , and 01 =b . Assuming that 0=δ , the coefficients become a 150 

isotropic operator. 

An improved approximation is given by: 
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A further improvement for the maximum dip migration is 
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We should mention that the coefficients should satisfy the constraint condition 

0>ia , and 0>ib ,                                                   ( 8.9) 

so we can achieve a recursive wavefield extrapolation. In addition, the coefficient can 

only be used in weakly anisotropic media since so many approximations are applied to 

the coefficient derivation. 

8.2.2 Optimization method for VTI media 

Lee and Suh (1985) forwarded the linear least-squares optimization method to 

approximate the one-way wave equation for implicit wavefields. The technique can be 

similarly applied for TI media. The difference lies in the fact that phase velocity is 

dependent on phase angle. The objective function can be denoted as 
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which is the error due to the truncation of the rational approximation of the square-root 

equation. The optimization procedure is to estimate the coefficients by minimizing the 

integral: 
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φ
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With the linear least-square principle, we have 
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After solving the normal equations, we can get the optimization coefficients. The more 

variables involved, the higher the accuracy obtained. 

When we compare the two schemes, the characteristics of each method become apparent. 

The Taylor series expansion method is very straightforward and highly efficient, but is 

only used in simple calculations, and only applied to weakly anisotropic media. The 

optimization method can be widely used on any anisotropic media, but requires pre-

computation of the coefficient tables according to each group of anisotropy parameters, 

which seems very troublesome due to solving many linear equations according to 

different anisotropy parameters. With two schemes to obtain the coefficients for TI 

media, we can give a clear analysis of them in the following paragraphs. 

8.2.3 Comparisons of implicit operators obtained from the Taylor series expansion 
method and the optimization method 

8.2.3.1 Experiment I. 

Coefficients from Equation (8.8) are calculated to represent the Taylor series expansion 

method. Fourth-order accuracy coefficients are obtained using the optimization method. 

Table  8.1 shows the coefficients obtained from the two schemes when the anisotropy 

parameters are 2.0=ε , and 1.0=δ . With these coefficients, Figure  8.1 shows the 

dispersion curves. The blue solid line is the true dispersion relationship; the blue dashed 

point is the approximation dispersion of the Taylor series expansion method; and the line 

of red crosses is the approximation dispersion of the optimization method with 4th order 

accuracy. Two approximation curves approach the true curve at different levels. The 

dispersion curve from the optimization method almost matches with the true solution, 
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whereas the curve from the Taylor series expansion method strays far from the true curve 

with increasing dipping angles, which is also clearly seen in relation to the curves of the 

vertical wavenumber versus phase angle (Figure  8.2). The maximum migration angle 

from the Taylor series expansion method is approximately 65° while the one from the 

optimization method is almost 90°. 

Table  8.1 Coefficients for wavefield extrapolation in TI media with 2.0=ε , 1.0=δ  

 Coefficients for anisotropy parameters 
2.0=ε , 1.0=δ  

Power series expansion method 0.1830 1 =a ,          01 =b  
0.41702 =a ,         0.67142 =b  

Optimized method 0.00652041 =a ,   1.31181 =b  
0.563152 =a ,       0.491132 =b  
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Figure  8.1 Dispersion relationship for anisotropy parameters 2.0=ε , 1.0=δ : blue solid 
line is the true dispersion relation; blue dashed point is the approximation dispersion by 
Taylor-series analysis; red cross is the approximation dispersion by the 4th order 
optimization. 
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Figure  8.2 The relationship curve of the vertical wavenumber versus phase angle for 
anisotropy parameters 2.0=ε , 1.0=δ  in Figure  8.1: blue solid line is the true dispersion 
relation; blue dashed point is the approximation dispersion by Taylor-series analysis; line 
indicated by red crosses is the approximation dispersion by the 4th order optimization. 
 

The model with different dipping events, described in Chapter Seven is chosen again for 

the migration with these coefficients. The model has homogenous anisotropy parameters 

2.0=ε  and 1.0=δ  and the tilt angle is 0°. The vertical velocity of the model is v(x, z) 

=1,500+0.3z +0.3x(m/s). Figure  8.3, Figure  8.4, and Figure  8.5, respectively, show the 

isotropic migration result with vertical velocity, anisotropic migration result with 

coefficients from the Taylor series expansion method, and anisotropic migration result 

with coefficients from the optimization method. Figure  8.3 shows an under-migrated 

result. The dip-imaging capability just attains 65° in Figure  8.4 while with the 

optimization method it is 90° in Figure  8.5, which verifies the accuracy of this method as 

illustrated in Figure  8.2. 
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Figure  8.3 Migration result from the isotropic implicit FD method. 

 

Figure  8.4 Migration result from the anisotropic implicit FD method with coefficients 
obtained using the Taylor-series expansion method. 

 

Figure  8.5 Migration result from the anisotropic implicit FD method with 4th order 
accuracy coefficients obtained using the optimized method. 

8.2.3.2 Experiment II 

We only need to change the anisotropy parameters to do the similar experiment. The new 

anisotropy parameters are 0=ε  and 2.0=δ . The coefficients with 6th order accuracy 

are additionally computed through the optimization method. Table  8.2 shows the 

coefficients obtained from the two schemes. Note that the coefficients from the Taylor 

(m) 

(m) 

(m) 
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series expansion method can’t be applied since they can’t satisfy the constraint condition 

of Equation (8.9). The same curves as Figure  8.1 and Figure  8.2 are correspondingly 

shown in Figure  8.3 and Figure  8.4 except for the addition of the curve with coefficients 

of 6th order accuracy. It’s hard to tell the difference between 4th order and 6th order 

coefficients from Figure  8.3 and Figure  8.4. They both approximate the true solution. 

The same model with different dipping events that was employed in Experiment I is 

chosen again, with the anisotropy parameters changed to 0=ε  and 2.0=δ . Figure  8.8 

and Figure  8.9 give almost the same correct migration results, which correspond to the 4th 

order and 6th order coefficients, respectively. It is obviously that 4th order accuracy has 

achieved adequate dipping angle imaging capability in this model. 

Table  8.2 Coefficients for wavefield extrapolation in TI media with 0=ε , 2.0−=δ  

 Coefficients  for anisotropy parameters 
0=ε , 2.0−=δ  

Taylor series expansion method 9.5346 1 =a ,           01 =b  
-9.23462 =a ,         -0.0265312 =b  

Optimized method 
(4th order accuracy) 

0.00652041 =a ,     0.976641 =b  
0.303822 =a ,        0.567392 =b  

Optimized method 
(6th order accuracy) 

0.1671 =a ,            0.0181 =b  
0.08222 =a ,          0.8032 =b  
0.0503 =a ,             0.833 =b  
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Figure  8.6 Dispersion relationship for anisotropy parameters 0=ε , 2.0−=δ : blue solid 
line is the true dispersion relationship; blue dashed point is the approximation dispersion 
by Taylor-series analysis; line of red crosses is the approximation dispersion by the 4th 
order accuracy optimization; yellow dot that closely matches with red crosses is the 
approximation dispersion by the 6th order accuracy optimization. 
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Figure  8.7 The relationship curve for the vertical wavenumber versus phase angle for 
anisotropy parameters 0=ε , 2.0−=δ  shown in Figure  8.6: blue solid line is the true 
dispersion relationship; broken blue line is the approximation dispersion by Taylor-series 
analysis; red crosses indicate the approximation dispersion by the 4th order accuracy 
optimization; yellow dot that closely matches with red crosses is the approximation 
dispersion by the 6th order optimization. 
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Figure  8.8 Migration result from the anisotropic implicit FD method with 4th order 
accuracy coefficients obtained through the optimized method. 

 

Figure  8.9 Migration result from the anisotropic implicit FD method with 6th order 
accuracy coefficients obtained through the optimized method. 

8.2.4 The anisotropic Marmousi model and migrations 

To demonstrate the anisotropic A-IFD algorithm, the complex Marmousi model is chosen 

again. The anisotropy parameters are put in the shallow overburden, which are shown in 

Figure  8.10. The pseudo-spectral method is applied to generate zero-offset synthetic data 

with the exploding reflector principle. The synthetic seismic section processed without 

consideration for anisotropy (Figure  8.11(a)) is based on the acoustic wave equation. 

Figure  8.11(b) corresponds to the zero-offset seismogram based on the anisotropic P-

wave equation (Du, et al., 2005). The reflectors in Figure  8.11(b) all move up, in 

comparison to the isotropic case, due to the effect of anisotropy, as indicated by the 

yellow arrows. Isotropic and anisotropic IFDs are adopted to process the anisotropic 

synthetic data, in order to investigate the imaging differences. 
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(c) 

Figure  8.10 Vertical velocity and anisotropy parameters of the Marmousi model: (a) 
vertical velocity; (b) anisotropy parameter ε ; (c) anisotropy parameter δ . 
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(a) 

 
(b) 

Figure  8.11 Zero-offset seismic sections from the pseudo-spectral method: (a) isotropic 
synthetic data based on the acoustic wave equation; (b) anisotropic synthetic data based 
on the anisotropic P-wave equation (Du et al., 2005). All the events from the anisotropic 
modelling in subfigure (a) move up due to the effect of anisotropy when compared with 
those from the isotropic modelling in subfigure (b), as indicated by the yellow arrows. 
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Figure  8.12 Isotropic implicit FD migration result with the vertical velocity shown in 
Figure 8.10. The fault planes are not in their correct positions, delineated by blue curves; 
the diffraction energy can’t be focused; the anticline is distorted (dashed ellipse); and the 
objective target zone (dashed black lines) obliquely moves up. 

 

Figure  8.13 Anisotropic implicit FD migration result with the vertical velocity and 
anisotropy parameters in Figure 8.10. The fault planes are in accord with the true model 
as the anisotropic effect of the overburden is accounted for. The reflections are correctly 
migrated to their true positions, as is the target zone. 
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Considering the complexity of the model, the optimization coefficients of 4th order 

accuracy are chosen for implicit wavefield extrapolation. Figure  8.12 is the isotropic 

migration result. It is obvious that the fault planes are not in their correct positions 

delineated by blue curves. In addition, the diffraction energy can’t be focused, the 

anticline is distorted (dashed ellipse), and the objective of target zone (dashed black lines) 

obliquely moves up. The anisotropic IFD migration result gives us a correct image with 

focused energy and clear structures, which achieves good correspondence with the true 

model. From the viewpoint of computation cost, there is a slight increase from the IFD to 

the A-IFD algorithm since calculating the coefficients tables only accounts for a very 

small proportion of the total calculation. It seems that the A-IFD migration algorithm has 

a distinct advantage in computation time compared with the A-PSPI and A-RT 

algorithms.  

8.2.5 The challenging problem for the anisotropic implicit finite-difference method 

Compared with the A-PSPI algorithm, A-IFD can well adapt to variations in lateral 

velocity and anisotropy parameters. When compared with the A-RT algorithm, it has the 

dominant advantage in computational efficiency. Currently, however, A-IFD can only 

deal with VTI media. Furthermore, it is very difficult to adapt the algorithm to handle 

tilted TI media. When the axis of symmetry isn’t vertical to the observation system for TI 

media, the phase velocity becomes asymmetric while the implicit wavefield assumes that 

the operator is symmetric. 

Things become more promising if the observation coordinates are rotated to match the 

axes of symmetry of the TI media, so that the problem of TTI can be handled by the 
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solution to VTI media discussed in the above. However, the “diffraction item” of the 

implicit finite-difference method, 
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becomes quite complicated after the coordinates are rotated, becoming a 4th order partial 

differential equation over depth. The challenging problem of solving this equation awaits 

further investigation. 

8.3 The anisotropic split-step Fourier method 

The split-step Fourier method is based on velocity perturbation theory and was discussed 

in Chapters 2 and 3. When phase velocity is dependent on phase angle, the usefulness of 

this method becomes comparatively restricted. The phase shift based on the anisotropic 

vertical wavenumber computed by the reference slowness can’t compensate for the effect 

caused by the variable anisotropy parameters at each step. Neither can the second phase-

shift correction, due to perturbation in slowness in the space and frequency domains, take 

into account anisotropy parameters. Therefore the extended split-step Fourier method can 

only deal with simple anisotropic models, such as cases with no laterally varying 

anisotropy parameters or velocities. When Shan and Biondi (2005) imaged steeply 

dipping reflections in TI media using wavefield extrapolation, the split-step method was 

only used to handle the isotropic operator. 

The synthetic data, velocity model, and anisotropy parameters from the different dipping 

reflectors model, which were applied to test the anisotropic IFD algorithm in Experiment 

I, were also chosen to identify the limitations of the anisotropic SSF method. The 

migration result is shown in Figure  8.14. We can see that the reflectors under 45° are 
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undermigrated whereas the reflectors above 45° are over-migrated. When we chose 

homogenous anisotropy parameters and reduce velocity so that it only varies with depth, 

such as zzxv 3.0500,1),( += (m), as viewed in Figure  8.15, we obtained the correct and 

clear migration result in Figure  8.16. There is a significant amount of theoretical work 

waiting to be done to adapt the split-step Fourier method for use on any complex 

anisotropic media. 

 

Figure  8.14 Anisotropic split-step Fourier migration result from the same vertical model 
and with the same anisotropy parameters as the anisotropic implicit FD shown in Figure 
 8.5. The vertical velocity function of this model is zxzxv 3.01.0500,1),( ++= (m/s), and 
the homogenous anisotropy parameters of the model are 2.0=ε  and 1.0=δ . The 
synthetic data for migration was generated with the above parameters. The migration 
result is partially over- and undermigrated since the anisotropic algorithm can’t deal with 
cases possessing lateral velocity variation. 

 

 
Figure  8.15 Vertical variable velocity zzxv 3.0500,1),( += (m/s). 
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Figure  8.16 Anisotropic split-step Fourier migration result where velocity has no lateral 
variation. The vertical velocity function of this model is zzxv 3.0500,1),( += (m/s), and 
the homogenous anisotropy parameters of the model are 2.0=ε  and 1.0=δ . The 
synthetic data for migration was generated using the above parameters. The migration 
result shows the six dipping reflectors correctly migrated since the anisotropy parameters 
are homogenous and there is no lateral vertical velocity variation. 

8.4 Summary 

The implicit finite-difference algorithm has been extended to handle VTI media. Two 

methods to obtain the implicit operators are presented and analyzed. The dipping 

reflectors model is employed to show the dip-angle imaging capability of the two 

operators. The anisotropic Marmousi model is used to show the excellent adaptability of 

A-IFD to variable velocity and anisotropy parameters. At the same time, the challenging 

problem of A-IFD for tilted TI media is presented and a possible technique to solve the 

problem is proposed for future investigation. 

The split-step Fourier method for TI media is also discussed. Because of the principles 

underlying this method, it is very difficult to extend SSF to handle complex anisotropic 

models. Currently, it only handles models with no laterally varying velocities or 

anisotropy parameters. The dipping reflectors model is used to verify this conclusion. To 

adapt this method for lateral variations, challenging theoretical work needs to be done in 

the future. 
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Chapter Nine: Conclusions  

This thesis has focused on prestack depth migration methods, not only for isotropic media 

but also polar anisotropic media. Three types of migration algorithms are discussed, 

based on ray-tracing, one-way wave equation, and two-way wave equation, respectively. 

In conjunction with the migration algorithms discussed in this thesis, theoretical reviews 

are presented of the two-way wave equation (reverse-time) and one-way downward-

continuation methods, including the PSPI, SSF, and IFD methods. Theories of anisotropy 

are discussed in detail. Two categories of phase velocities for dipping TI media — 

rotating phase angle and rotating stiffness matrix — are each derived and proved. 

The FE-FD operator is presented and analyzed for accuracy and stability in wavefield 

modelling and reverse-time migration. Compared to the finite-difference operator at the 

same order of accuracy, it exhibits looser stability constraints. The operator allows for 

irregular discretization along the depth direction with a looser stability condition than FD, 

which can adaptively adjust the grid spacing to improve efficiency and avoid frequency 

dispersion according to velocity variations. As an example, the reverse-time migration is 

used to process the Marmousi post-stack synthetic data and demonstrates the superior 

imaging quality of the full wave equation when compared to the one-way wave equation 

downward-continuation methods, including PSPI, SSF and IFD. In conjunction with 

calculating traveltimes using the upwind finite-difference method based on the Eikonal 

equation, a prestack reverse-time depth migration has been developed and used on 

Marmousi prestack synthetic data. As with the Kirchhoff migration method, traveltime 
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accuracy affects the reverse-time migration method according to two migration results 

presented here. 

To implement migration from near-surface topography, a technique was formulated for 

downward-continuation Fourier migration methods (including prestack PSPI prestack 

SFF, and prestack IFD). Three algorithms to handle surface topography for prestack 

depth imaging were developed. The technique was successfully applied with three 

extrapolation schemes to a Foothills synthetic dataset specifically developed for 

investigating migration from surface topography. They are all proven to be highly 

capable of handling high near-surface velocities and extensive topographic variation. 

Compared with other methods, the prestack split-step method demonstrates its greater 

efficiency in computational performance. The prestack implicit finite-difference method 

exhibits a trade-off between resolution and speed. The prestack Kirchhoff method is 

applied as well, and structures (folds and thrusts) are well imaged when using the 

Marmousi model, which demonstrates that first-arrival traveltimes are suitable for this 

kind of area. The Foothills real data is processed using the prestack Kirchhoff and split-

step methods with constant velocity. The split-step algorithm, as a wave-equation 

migration method, yields higher resolution than the ray-based Kirchhoff algorithm. 

The individual P- and SV-wave equations for tilted TI media are also derived and 

analyzed. The linear simplified equations can be effectively used in weakly anisotropic 

media. The pseudo-spectral method is applied to implement the anisotropic post-stack 

reverse-time migration. The Fourier method’s stability and accuracy with the anisotropic 

wave equation has been demonstrated. In a similar manner to the prestack isotropic 
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reverse-time migration, a prestack anisotropic reverse-time migration was developed with 

traveltimes calculated using the anisotropic ray-tracing method for tilted TI media. 

Numerical synthetic data from the anisotropic variable velocity model, and physical data 

from the anisotropic reef model were processed to validate the post-stack and prestack 

anisotropic reverse-time migration algorithms. 

A quartic equation for wavenumbers and anisotropy parameters was obtained from the 

dispersion equation for tilted TI media, and analytically solved to obtain the vertical 

wavenumber. Two solutions are chosen from four possible solutions and applied to the 

phase-shift calculation in the anisotropic PSPI migration algorithm. An assumption 

regarding the relationship between reference anisotropy parameters and reference lateral 

velocities was made to limit the number of reference wavefields. A cross-correlation 

imaging condition was used for the prestack PSPI migration algorithm. Using numerical 

synthetic data from the anisotropic variable velocity model and physical data from the 

anisotropic reef model, the post-stack and prestack migration results validate the 

anisotropic PSPI migration algorithm. 

Performance comparisons in terms of speed and accuracy were made between the 

anisotropic Kirchhoff depth migration method and the two newly developed anisotropic 

migration methods, which are based on ray-theory, one-way, and two-way wave 

equations, respectively. To demonstrate dipping angle imaging ability, a numerical model 

with six dipping reflectors in an anisotropic variable velocity media was designed and a 

physical model with anisotropic thrust structures was chosen. Post-stack and prestack 

migrations were both processed. The anisotropic reverse-time maintains its high imaging 
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quality but the computation cost shows a big jump, becoming very expensive. The 

anisotropic Kirchhoff migration method will maintain its popularity in the oil industry 

since there is eventually no change for the migration algorithm itself, only with the 

traveltime calculations. On the other hand, the cost of the anisotropic PSPI method seems 

relatively cheap; but as an interpolation method, the reference wavefields are not only 

dependent on lateral velocity variations but also on Thomsen’s three anisotropy 

parameters, which cause interpolation to become more complicated in complex 

anisotropic media. 

The implicit finite-difference and split-step Fourier methods have not been successfully 

extended to handle tilted TI media. The implicit finite-difference algorithm can currently 

handle VTI media well. Two methods to obtain the implicit operators were presented and 

analyzed. An anisotropic Marmousi model was designed and used to demonstrate the 

excellent adaptability of A-IFD to variable velocities and anisotropy parameters. The 

challenging problem for A-IFD in tilted TI media is to solve the 4th order partial 

differential equation. The split-step Fourier method for TI media was also discussed. Due 

to the principles underlying this method, it is very difficult to extend it to handle complex 

anisotropic models. With the vertical wavenumber in TI media, it only deals with cases in 

which there are no variations in lateral velocities and anisotropic parameters. In order to 

adapt this method to handle lateral variations, challenging theoretical work needs be done 

in the future. 
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Appendix A: A quartic dispersion equation for P-waves in weakly anisotropic media 
and its analytical solution 

 

The frequency dispersion relationship can be described with the following equation 
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To simplify the expression, it can be written as the following quartic equation 
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To get the analytical solution, we try to find the real root of the cubic equation 
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and determine the four roots of the quartic as solutions of the two quadratic equations 

(Abramowitz and Stegun, 1970) 
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Considering the cubic equation 001
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If 023 >+ nm , one real root and a pair of complex conjugate roots, 

If 023 =+ nm , all roots real and at least two are equal, 

If 023 <+ nm , all roots real. 

As for the cubic equation (A-2), the three roots are given as follows (Abramowitz and 

Stegun, 1970): 
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