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structure are recovered. Note that the thin low velocity layer, which is a very hard

feature to recover, is almost fully recoved, including the truncations. Note also that the

feature within the wadi and the low velocity zones within the Rus formation are also

recovered.

Figure 4.10(d) shows the absolute value of the difference between the estimated and

the true model. Most of regions of the model are recovered within less than +/- 500 m/s.

Note that the feature in the bottom of the model is caused by the thin layer at the very

edge of the model. Edge effects combined with this thin layer caused this sort of artifact.

Understanding such artifacts is crucial in assigning confidence levels to each region of the

model and subsequently smoothing or keeping such features.

One-dimensional profiles of the models in three locations are shown in Figure 4.11.

You can see that the initial model is an averaged version of the true model. Note how

closely the estimated result matches the true result. The estimated models are less

accurate in the thin layers. Recovering such small details would require inverting higher

frequencies.

We have calculated the one way vertical traveltimes from the acquisition surface to the

datum shown in Figure 4.12. Figure 4.12 shows the statics, vertical one-way traveltimes,

calculated in the models. Figure 4.15(a) shows the improvement we are able to achieve.

The statics in the initial model can be higher than +/- 40 ms. The statics calculated in

the estimated model are less than +/- 10 ms. With this much accuracy of estimating

the statics, residual statics methods would not have difficultly correcting for the rest of

statics.

4.4.2 Efficient Strategy

In this experiment, we use more efficient strategy of (Sirgue and Pratt, 2004a). The

efficient strategy suggests inverting only four frequencies: 2, 4.5, 10, 22.4 Hz. We used



61

30 iterations per frequency. The total number of iterations is 120. Figure 4.16 shows

the frequencies selected and their relation with the wavenumber. The selection strategy

is based on selecting those frequencies whose wavenumber range in total would span the

wavenumber domain. The redundancy of the data is fully utilized through the efficient

strategy.

Figure 4.13 shows the results. Note that we are able to recover the low velocity zone,

the wadi’s low velocity zone and in a bit less detail the Rus collapses. Note also that low

relief structure especially at Wasia formation is recovered in more details.

Although the result here seems to be less accurate, a closer look at the difference plot

shows that the resulting model is almost within +/- 500 m/s in many areas. A closer

look at the 1D profiles in Figure 6 shows how close the match is. The resolution of the

recovered model is comparable to that of the sequential approach for almost 37.5% of

the cost.

Obtaining more accurate models using the efficient strategy can be accomplished.

However, it would require more human input and interpretation through the application

of a more aggressive preconditioning scheme. A big advantage of the efficient strategy

is that it can be used as a tool for quick testing of an array of parameters. For such a

computationally intensive process, the efficient strategy can make a big difference.

We have calculated the statics for the models as shown in Figure 4.15. Note that

the statics are less accurate than the previous experiment. Nevertheless, in most regions

they are less than +/- 15 ms, which is accurate enough for residual statics to be effective

when applied afterward.

Figure 4.5 shows three shot records in different locations: left, middle and right-

hand side of the model. The shots generated using the true model (observed data), the

estimated and the difference between them. Note how close the match is between the

observed and the predicted data. The difference between them seems to be a scaled
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version of the observed data. This kind of match is what one should look for when using

real data.

4.5 Inversion from a higher frequency

Now, we will take a look at the results starting from a higher frequency. We use identical

parameters as we have used previously but the only difference is that we start the inversion

from a higher frequency, 5 Hz.

4.5.1 Sequential strategy

Using the sequential strategy and inverting the frequencies starting from 5 till 14.8 Hz

with 0.2 Hz interval, we get the result shown in Figure 4.17(b) and the associated 1D

profiles in Figure 4.18. The initial model is the same that used in the final inversion,

namely the true model smoothed by a 480 m x 480 m smoother.

In order to better compare this result with previous ones, the color bar of the estimated

result is scaled up to 6000 m/s although the highest result could reach about 10000 m/s,

as can be seen in Figure 4.17(d). We can note that the result is not as accurate as the

previous ones. As a matter of fact, small features, which are artifacts, are very visible in

the resulting model. Those seem to be indicative of possible divergence from the global

minimum. What is even more interesting is the fact that the thin layer above about

700 m to the left of the model is very visible. But quantitatively the layer is higher in

velocity rather than its soundings. A particular area of even more divergence is the wadi

area. The velocities there are more overestimated than any other area as shown in Figure

4.17(d).

As mentioned previously, perhaps more accurate results can be obtained though more

aggressive preconditioning of the updates or the gradient of the misfit function. But the

issue is that much more interpretive analysis will need to be imposed on the result. In
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other words, the result will be more subjective.

The result in Figure 4.17(b) shows some indications of the artifacts, as well as, the

possible divergence from the global minimum. Small features show up in the result

including smile-shaped ones, which are typical of migration-based methods. In addition

to the small features, we were able to detect a thin layer in some areas but the quantitative

result is not accurate. The Wadi area as the least to be quantified accurately as shown

also in Figures 4.18(a) and 4.17(d). More attention should be paid to the Wadi area since

more artifacts result from it, possibly because of its relatively low elevation compared

with the surrounding areas.

4.5.2 Efficient strategy

For the efficient strategy the same analysis applies as in the previous section. But what

is of particular interest is that the result of using the efficient strategy is close to that

of the sequential strategy even in the case of possible divergence as shown in Figures

4.19(b) and 4.20. Although the resulting model has more small features, the thin layer

on top is very close to that of the sequential strategy.

4.6 Conclusions and Discussion

We have applied waveform inversion on a realistic model of an area of complex near

surface and low relief structure. Frequency domain waveform inversion successfully re-

covered the compressional velocity of the model using a smooth initial model. Waveform

inversion was able to recover the true model in using a sequential approach and less

accurately using the efficient strategy. The statics solutions in both cases are accurate

enough for residual statics to be effective. We have observed that in the case of starting

from a higher frequency, artifacts of small features are often visible especially when using

the efficient strategy. The result of the efficient strategy in this case even more closely
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resembles that of the sequential strategy.
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Figure 4.7: 1D velocity profiles from the preliminary inversion using the sequential strat-
egy. The profiles are from 3 different locations.
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Figure 4.8: Preliminary inversion using the efficient strategy. The frequencies inverted
are 2, 4.5, 10 and 22.4 Hz. The initial model is the true model smoothed by 240 m x 240
m smoother.
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Figure 4.9: 1D velocity profiles from the preliminary inversion using the efficient strategy.
The profiles are from 3 different locations.
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Figure 4.10: Final inversion using the sequential strategy. The frequencies inverted are
2-14.8 Hz with 0.2 Hz interval. The initial model is the true model smoothed by 480 m
x 480 m smoother.
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Figure 4.11: 1D velocity profiles from the final inversion using the sequential strategy.
The profiles are from 3 different locations.
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Figure 4.12: Statics for the sequential experiment. a) shows all the statics b) shows the
differences.
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Figure 4.13: Final inversion using the efficient strategy. The frequencies inverted are 2,
4.5, 10 and 22.4 Hz. The initial model is the true model smoothed by 480 m x 480 m
smoother.
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Figure 4.14: 1D velocity profiles from the final inversion using the efficient strategy. The
profiles are from 3 different locations.
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Figure 4.15: Statics for the efficient experiment. a) shows all the statics b) shows the
differences.
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Figure 4.17: The models associated with the inversion starting from a higher frequency
and using the sequential strategy. The frequencies inverted are 4-14.8 Hz. The initial
model is the true model smoothed by 480 m x 480 m smoother.
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Figure 4.18: 1D velocity profiles from the inversion starting from a higher frequency and
using the sequential strategy. The profiles are from 3 different locations.
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Figure 4.19: The models associated with the inversion starting from a higher frequency
and using the efficient strategy. The frequencies inverted are 5 and 11.2 Hz. The initial
model is the true model smoothed by 480 m x 480 m smoother.
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Figure 4.20: 1D velocity profiles from the inversion starting from a higher frequency and
using the efficient strategy. The profiles are from 3 different locations.
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Chapter 5

Waveform inversion and shingling

Seismic data possessing first arrival shingling is indeed difficult to interpret and infer

the velocities of their models. In this chapter, we attempt to explain the phenomenon

of shingling. As far as we know, there is currently no known general solution to this

problem. We will address the question of whether waveform inversion can indeed resolve

the velocity structure responsible for shingling.

5.1 Introduction

First arrival shingling is the phenomenon associated with the first arrivals possessing an

en echelon or stair-step shape. Cox (1999) defines it in his book of near surface geophysics,

as “a phenomenon characterized by a shift of energy to successively later cycles as the

offset increases producing an en echelon pattern” (Cox 1999, p. 158). In fact, Sheriff and

Geldart (1995) in their textbook also define and discuss this phenomenon. They define

it as ”the shift of peak energy to later in the wavetrain, as the offset distance increases

and the number of cycles increases” (Sheriff and Geldart, 1995, p. 169).

So it is a rather unique way for the amplitudes to decay with offset producing an en

echelon pattern. The term ’shingling’ seems to first appear in the literature in the paper

by Press et al. (1954); however, they attribute the naming to another person. Another

term that is used interchangeably but perhaps less commonly is echeloning as used by

Press et al. (1954), for instance.

Figure 5.1 shows an example from Cox (1999). Note that if one were to pick a curve

of the first arrivals, the curve would look blocky and shaped like a stair step .
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Figure 5.1: An example of first arrival shingling from Cox (1999).
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First arrival shingling is a very long lasting issue. It is known for many decades now.

First arrival shingling makes it very difficult to interpret the first arrivals accurately

enough and therefore to infer the Earth’s velocities.

Before seismic reflection surveys were common, seismic refraction surveys were more

common. The refraction surveys rely heavily on refractions, mainly head waves and/or

diving waves, as the name implies. Therefore, such a problem as shingling posed a serious

obstacle for reliable interpretation.

Some studies have been conducted to further understand this phenomenon. Most

of those studies relied on physical modeling experiments, possibly due to the expense

of numerical modeling at the time. Press et al. (1954) have shown that the refracted

arrivals decay rapidly if the beds are thin. They showed this using a physical modeling

experiment that incorporated such materials as Plexiglass , brass and aluminum.

Lavergne (1961) conducted another physical modeling experiment and showed the

difficulties associated with quantifying the velocities of thin layers. Lavergne (1966)

attempted to quantify the thickness of the beds. They showed that if the refactor is

thinner than λ/6 significant decay would result. Poley and Nooteboom (1966) studied

thin fast layers which significantly reduce the penetration of energy to further depths.

Screening effect is the term they used to describe such a phenomenon. Given the signal

to noise ratio at the time, this posed as a serious issue.

Rosenbaum (1965) conducted a physical modeling experiment, as well. He showed

that the shingling effect can indeed result from thin beds. Spencer (1965) has also

shown that the interference of multiples with the the head wave and primary reflection

can indeed cause shingling. Figure 5.2(a) shows a numerical example illustrating such

interference resulting from a model that contains a thin fast layer as shown in Figure

5.2(b). We used a Ricker wavelet to generate the shot with 30 Hz dominant frequency.

Although those studies have explain some aspects of the this phenomenon, they have



83

(a) Shot record

1000 1500 2000 2500

0

100

200

300

400

500

Velocity Model

Velocity (m/s)

D
ep

th
 (

m
)

(b) Velocity model (1D profile)

Figure 5.2: An example of first arrival shingling in the rectangle in (a). The shingling is
caused by a thin fast layer shown in (b). The reflections including the multiple reflections
interfere with the head wave producing the shingling effect.
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not resulted in any mainstream technique to tackle this issue, as far as we are aware.

Since the kinematics of shingling get more obscured and complex, they don’t always

seem to be sufficient to come up with a consistent answer. Spencer (1965) studied the

amplitude decay theoretically and proposed an analytic modeling formula using geometric

ray theory.

Therefore, those studies have shown that thin beds cause the shingling effect since they

cause the refracted arrivals to decay much more rapidly and may cause the reflections,

including multiple reflections, to interfere with the refractions, as well.

Another scenario that causes shingling is shown in Figures 5.3(c) and 5.4 . The model

shows two low velocity zones sandwiched between layers whose velocities increase linearly

with depth. The model consists of a top layer of velocity increasing linearly with depth.

Below that is a low velocity zone. Beneath that is a layer whose velocity increases with

depth, followed by a low velocity zone and then another layer whose velocity is increasing

linearly with depth.

A shot record was created for this model (with a ricker wavelet of 30 Hz dominant

frequency) and is shown in Figure 5.5. The first arrivals first decay and then appear again

and decay once again. To understand this further, we traced rays through the model as

shown in Figure 5.6. Notice that there exists some shadow zones where no diving rays

reach the surface. The presence of such shadow zones caused the shingling of the first

arrivals.
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Figure 5.3: The true model that produces shingled first arrivals the its associated models
resulting and used in waveform inversion.
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Figure 5.4: 1D velocity profiles for the models shown in Figure 5.3.
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Figure 5.5: An example of first arrival shingling (in the rectangle) caused by two separate
low velocity zones sandwiched between layers whose velocities increase linearilly with
depth as shown in Figure 5.4.



88

0
0

200

400

600

800

1000

D
ep

th
 (

m
)

0 1000 2000 3000 4000 5000
Distance (m)

Figure 5.6: Rays traced in the true model shown in Figures 5.3(c) and 5.4. Notice the
shadow zones, where no diving rays reach the surface.
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5.2 Waveform Inversion

We have applied waveform inversion to invert for the shingling model shown in Figures

5.3(c) and 5.4. We first created the synthetic data of 191 shots and each has 240 receivers

with 25 m shot spacing and 20 m receiver spacing. The first shot is placed at 115 m and

the first receiver is placed at 110 m from the left-hand side of the model. The initial

model used is the true model smoothed by 300 m x 300 m smoother. The frequencies

inverted are 2-15Hz with 0.2 Hz interval and the gradient of the misfit is preconditioned by

filtering the wavenumber domain. The results are shown in Figures 5.3(b) and 5.4. The

result illustrate that waveform inversion does not struggle at all in successfully inverting

for the velocity.

5.3 Conclusion

We have attempted to explain and discuss the phenomenon of shingling in this chapter.

We applied waveform inversion to a realistic model that causes the shingled first arrivals.

We have shown that waveform inversion can indeed resolve such models.
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Chapter 6

Conclusions and discussion

We started the thesis with chapter one, where we have given an overview of the thesis and

the fields of seismic migration and inversion. In chapter two, we discussed the theoretical

aspects of waveform inversion. We emphasized the fact that waveform inversion is based

on the well-known linearization, the Born approximation, and that in turn makes it

based on the well established method of seismic migration. Waveform inversion is similar

to traveltime tomography with one main difference: traveltime tomography uses the

high frequency thin raypaths whereas waveform inversion uses the finite-frequency band-

limited wavepaths.

Waveform inversion for homogeneous media is roughly the same as Kirchhoff migra-

tion and kinematically equivalent. True amplitude inversion of Bleistein et al. (2001) is

also similar to waveform inversion with some differences; roughly the weighting of the

data is different and the fact that true amplitude inversion uses an approximate Green’s

functions, namely those based on the WKBJ approximation, whereas waveform inversion

typically uses the more accurate numerical methods such as the finite-difference method.

Needless to say, waveform inversion is iterative whereas true amplitude inversion is not.

In chapter three, we have shown that strong velocity heterogeneity, a character of

complex near surface environments, does not seem to cause issues with waveform inver-

sion. In fact we have inverted the two models, one with strong velocity variations and

one without, using the same parameters and both results where highly accurate.

In chapter four, we have inverted a realistic model from a region with highly complex

near surface environment. Using realistic preconditioning of the gradient of the misfit

function, waveform inversion was able to achieve accurate results starting from 2 Hz.
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Starting the inversion from a higher frequency with the same initial model caused wave-

form inversion to diverge. This implies that in real experiments where low frequencies

are to be acquired, it is much safer to use 2 Hz geophones rather than, for instance, their

4.5 Hz counterparts. Although the model we used is indicative of such complex near

surface environments, it might be more difficult to invert that even real models due to

its high degree of blockiness, a characteristic of models that often causes migration and

inversion methods to struggle as noted by Gray et al. (2001).

In chapter five, we have discussed the phenomena of first arrival shingling, a difficult

near surface problem. We have demonstrated that waveform inversion can indeed resolve

models causing such a phenomenon.

Applying waveform inversion to real data, especially surface seismic data, is indeed

a difficult task. This explains the relatively few case studies in the literature, although

there are some (e.g Crase et al., 1990; Operto et al., 2004; Sheng et al., 2006). As we

mentioned in chapter 1, the main reason why it is difficult is due to the fact that real

data often do not contain the necessary information to make waveform inversion work,

namely the low frequencies and the large offsets. In addition, other phenomena like

attenuation, elasticity and anisotropy might need to be taken into account depending

on the complexity of the model. In fact, as waveform inversion becomes more popular,

more practical aspects of waveform inversion will soon become much more understood.

Industrial strength software packages have recently been created (for instance GeoTomo

and Wester Geco). This will certainly make it much more understood as more case

studies are easily done.

Perhaps, one of the reasons the acoustic approximation is often used is that realis-

tic viscoelastic and anisotropic modeling is computationally expensive. However, due to

some theoretical developments, this trend may not continue. Source encoding is a promis-

ing method that allows lumping together the entire shot records acquired in the seismic
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survey into a single encoded record. Then migration and inversion can be performed to

only a single record. If this method proves robust in practice, then 3D viscoelastic wave-

form inversion may not be too far in the future as Virieux and Operto (2009) speculate.

Waveform inversion is indeed a promising technique that would be explored much further

especially as computers become even much more powerful.
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