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Abstract

Seismic waveform inversion is a method with very ambitious goals. It attempts to obtain

Earth’s model parameters from seismic data in one encompassing and comprehensive

process. This thesis, however, is concerned with acoustic waveform inversion in the

frequency-domain with emphasis on areas with complex near surface.

We give an overview of seismic inversion and the method on which waveform inversion

is based, seismic migration. We review waveform inversion from a theoretical point

of view and attempt to coherently put together the different theories and conclusions

reached by some authors in the literature. We derive the formula of the gradient of the

misfit function for waveform inversion and, in one derivation, we explicitly invoke the well

known linearization, the Born approximation, and therefore we show how it is related

to seismic migration. We, also, compare and contrast waveform inversion with seismic

migration, in general, Kirchhoff migration and true amplitude inversion, in particular; in

addition to traveltime tomography.

Since the near surface is highly heterogeneous, we examine the effect of heterogeneity

on waveform inversion and whether it can perform in an acceptable manner to relatively

high frequency, almost 25 Hz. We then apply waveform inversion to a realistic model

representative of challenging near surface environments, like those in the Middle East.

Waveform inversion was able to give very high resolution models that can resolve the

issues associated with long-wavelength statics. We then examine if waveform inversion

can indeed resolve the challenging problem of first arrival shingling. We show that it can

indeed resolve this long standing problem.
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Chapter 1

Introduction

Seismic waveform inversion attempts to achieve a very ambitious goal, namely obtain

Earth’s model parameters from seismic data in one encompassing and comprehensive

process. In this chapter we conceptually review waveform inversion and the method on

which it is based, seismic migration. We summarize the thesis and we state the objectives

as well as the tools used.

1.1 Introduction

Seismology is concerned with inferring the interior of the Earth by recording and studying

its mechanical vibrations. The vibrations are either caused by natural sources such as

earthquakes or man-made sources such as explosions (Aki and Richards, 2002, p. 1).

Exploration seismology, which is our subject of interest, is concerned specifically with

the top few kilometers of the Earth crust for the purpose of exploration and development

of natural resources such as petroleum (see Yilmaz, 2001; Sheriff and Geldart, 1995).

1.2 Seismic data acquisition

Before we dive into the details, we attempt first to describe how the seismic data, we

are concerned with, are acquired. A more thorough treatment of the subject of seismic

acquisition is found in many books such as Yilmaz (2001); Sheriff and Geldart (1995);

Liner (2004) and Vermeer (2002). We are mainly concerned, in this thesis, with 2D

surface seismic surveys. Those 2D seismic surveys are acquired on the surface of the

Earth. The assumption embedded in using such a geometry is that the variations in the
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geology perpendicular to the profile are weak (Tarantola, 1984b). The receivers used in

the surveys can be one component receivers, three component or even four component

receivers. One component receivers measure the vertical (to the acquisition surface)

particle velocity or pressure in the case of a hydrophone. Adding two horizontal receivers,

we can measure particle velocity in the two planes perpendicular to the plane of the

vertical component, as shown in Figure 1.1. In this thesis, however, we are mainly

concerned with the vertical component.

The source used can be a dynamite explosion or a truck with a vibrating plate,

vibroseis truck, on land surveys or an air gun in marine surveys. Those sources emit

waves that travel into the subsurface and scatter in all directions. The receivers on the

surface receive the energy that return to the surface, where they record the wave field

pressure, particle velocity or acceleration depending on the type of receiver.

1.3 Inversion

Once the seismic data are acquired, we can then use them to infer the properties of the

Earth’s interior. The process of the inversion allows us to map the data from their space

to the model space which is, in our case, the space of the Earth’s parameters of interest

as shown in Figure 1.2. Inversion is essentially composed of two steps: an estimation

step and an appraisal step (Snieder, 1998). The estimation process involves estimating

the model parameters, whereas the appraisal process involves evaluating how close the

estimated model is to the true model. As Snieder (1998) mentions, the appraisal process

is well understood for linear problems but that is not the case for the more difficult

non-linear problems, such as waveform inversion.

As Weglein et al. (2009) classify it, inversion is divided into two types: direct and

indirect. Direct inversion outputs the model directly from the data: data in, model out.
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Figure 1.1: Schematic of 2D seismic acquisition survey.
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Figure 1.2: A schematic that shows the relation between forward modeling, inversion and
the member processes of inversion, the estimation and the appraisal problem. Figure is
adapted from Snieder (1998).
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Indirect inversion, on the other hand, outputs a model through an intermediate step

such as optimization based inversion, which attempts to minimize an objective function

that involves the observed data and the modeled data. An example of direct inversion is

the inverse scattering series (e.g. Weglein et al., 2003, 2009) and an example of indirect

inversion is waveform inversion.

We describe here the general flow of inversion. This is thoroughly discussed in any

standard book on geophysical inversion such as Tarantola (2005); Parker (1994); Menke

(1989); Aster et al. (2005) and Claerbout (1992). The general process of optimization-

based inversion, that uses local methods, is as follows :

1. Start with a background model. Set the background model to be the current model.

2. Generate synthetic data using the current model.

3. Subtract the synthetic data from the observed data to create the data residuals.

4. Update the model in such a way that minimizes the data residuals.

5. Repeat 2-5 until a certain criterion is met.

Inverse problems are generally very difficult. Aster et al. (2005, p. 11-12) give some

reasons why they are so. They mention that their difficulty stems from three issues:

existence, uniqueness and instability. Inverse problems may not have a solution because

the physics of the forward problem is too approximate or due to the noise in the data.

There might be infinitely many models that can fit the data. Inverse problems might be

ill-posed or ill-conditioned, where the solution is very sensitive to small changes in the

data.

Waveform inversion, in particular, is concerned with finding the models whose wave-

forms best match the observed waveforms. It is based on seismic migration, so we will

first discus seismic migration.
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1.4 Seismic migration

Sheriff (2002) in his dictionary defines seismic migration as an “inversion operation in-

volving rearrangement of seismic information elements so that reflections and diffractions

are plotted at their true locations.” So the goal of migration is to to produce an accurate

image of the geometry or the structure of the subsurface. It also aims at producing an

image that estimates the band limited reflectivity of the Earth. The reflectivity as Sher-

iff (2002) defines it is “the ratio of the amplitude of the displacement of the a reflected

wave to that of the incident wave.” The commonly used seismic migration algorithms

are based on some assumptions. Here we list the general assumptions and more detailed

discussion can be found in Claerbout (1985); Berkhout (1985); Yilmaz (2001); Stolt and

Benson (1986) and Biondi (2006). First, it is often based on the acoustic approximation

due mainly to computational cost. Second, it assumes that the velocity model is known.

Third, it is based on the first order Born approximation. In other words, it assumes that

the data have only single scattering as opposed to multiple scattering, as we will discuss

in detail in Chapter 2. Fourth, it assumes that the incident wavelet is known. Additional

assumptions might also be introduced by the specific migration method such as phase

shift methods that assume mild lateral velocity variations (e.g. Gazdag, 1978; Gazdag

and Sguazzero, 1984).

Seismic migration methods can be classified into two generic categories: wavefield

extrapolation methods and Kirchhoff or integral methods (Larner and Hatton, 1990;

Bevc and Biondi, 2005).

Wavefield extrapolation methods can be divided into two methods: those based on

the one-way wave equation and those based on the two-way wave equation (Sava and

Hill, 2009). Those based on the two-way wave equation are also referred to as reverse

time migration. For the one-way methods, the wavefield extrapolation is carried out in
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depth. The one-way wave equation methods tend to be less computationally expensive

and therefore enjoyed much more attention, see for instance Margrave and Ferguson

(1999); Margrave et al. (2006); Ma and Margrave (2008) and Al-Saleh et al. (2009).

Wavefield extrapolation methods, which image shot gathers independently, consist

of three steps. First the incident wavefield is extrapolated either in depth for one way

wave equation migration or in time for two way wave equation migration. The data are

backpropaged from the surface into the model. Then an imaging condition is applied,

where the forward propagated source wavefield and the back propagated data wavefield

are put together to produce an image. Imaging conditions include the deconvolution

imaging condition of Claerbout (1971) or the cross-correlation imaging condition which

is often used specially for reverse time migration (Baysal et al., 1983; McMechan, 1983;

Whitmore, 1983).

The Kirchhoff or integral methods are based on the concept of smearing the data

over isochrones or summation over diffractions (Hagedoorn, 1954; Schneider, 1978; Miller

et al., 1987). Isochrones are surfaces of constant cumulative time from the source to the

image point to the receiver. The isochrone is an ellipsoid (ellipse in 2D) for homogeneous

media (Miller et al., 1987).

Note that for historical reasons wavefield extrapolation methods are called wave equa-

tion methods. Kirchhoff methods are based on the wave equation but originally based on

heuristic methods that were shown later to be based on the wave equation (Schneider,

1978; Bevc and Biondi, 2005).

1.5 Waveform inversion

Waveform inversion can be used to infer the Earth’s properties including the compres-

sional velocities. It is more general than seismic migration. In fact, migration as Lailly
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(1983) and Tarantola (1984a) have shown, is roughly the first iteration of waveform inver-

sion if all the frequencies are migrated. This is indeed the case because the first iteration

of waveform inversion is roughly the migration of data residuals and the data residuals, if

left without preconditioning, would be dominated by reflections for smooth background

models (Shragge, 2007).

Waveform inversion can provide us with two main categories of useful information;

an image of the subsurface and also a quantitative measure of the physical properties

including velocities. Therefore, waveform inversion plays the role of migration and adds

more to it the quantification of the physical properties. Mora (1989) summarizes this

fact by the title of his paper, inversion = migration + tomography.

1.5.1 Complex near surface

The Earth’s near surface can distort those images we make of the deeper part of the

Earth. The near surface causes time shifts to the recored seismic data and therefore

obscures the deeper part of the crust that is of interest to the upstream hydrocarbon

industry (Sheriff and Geldart, 1995).

In order to correct for those distortions (time shifts), we often use some methods that

attempt to infer the near surface velocities. Those methods, e.g. refraction methods,

traveltime tomography etc. are robust and highly reliable, as it is well known (e.g.

Yilmaz, 2001; Cox, 1999; Sheriff and Geldart, 1995). However they fall short when

applied to areas with highly complex near surface geology. This is mainly due to the

fact that they are based on an attribute of the wave field, which is traveltime. Waveform

inversion, on the other hand, takes advantage the wavefield and attempts to directly

invert the waveforms rather than an attribute of the waveforms. Keeping this in mind, it

is not surprising then that waveform inversion is capable of creating such highly resolved

models (Pratt, 1999).
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The problems that arise from the near surface obviously depend on the complexity

of the near surface. Areas with relatively simple near surface may not need waveform

inversion since the existing methods do a good job. Areas with complex near surface on

the other hand are the ones that will benefit the most of waveform inversion since the

conventional methods are challenged. Therefore, we focus our attention particularly on

complex near surface environments.

1.5.2 Difficulty of waveform inversion

Waveform inversion shares the same mentioned difficulties of inverse problems in general

and has its own particular challenges. It is a highly non-linear problem and requires

special data that may not be available such as large offsets and low frequencies (Sirgue

and Pratt, 2004a). It is computationally expensive and therefore requires a very efficient

modeling scheme. Frequency-domain waveform inversion in particular requires numerical

forward modeling in the frequency domain, which is not a main stream modeling method,

and therefore requires special expertise for implementation. This is in contrast to the

often readily available time-domain modeling methods in any organization. Implementing

an efficient modeling algorithm in particular is more difficult. Waveform inversion also

requires an accurate initial model, relative to the available data frequencies. Such models

are often difficult to obtain in practice (Schuster, 1998).

Waveform inversion attempts to invert for seismic velocities. Inverting for velocities

is a very challenging problem in particular. As Symes (2009) mentions, in the last

few decades, very little progress has been made with respect to velocity inversion as

opposed to migration, for instance. In fact, some methods have been proposed and fall

under the category of migration velocity analysis (e.g. Al-Yahya, 1989; Biondi and Sava,

1999; Mosher et al., 2001) including the differential semblance method (e.g. Symes and

Carazzone, 1991; Plessix, 2000; Brandsberg-Dahl et al., 2003; Shen and Symes, 2008)
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and stereotomography (e.g. Billette and Lambaré, 1998; Billette et al., 2003; Lambaré,

2008). But they all come with their own limitations and therefore are still under active

research.

1.6 Thesis objectives

The objectives of this thesis are both theoretical and practical. We attempt to put

waveform inversion in context with other methods of imaging and inversion. Much of

this work has been published already but very few attempts have been made to put most

of it together in a coherent fashion. The other objective of the thesis is to study the

behavior of waveform inversion for areas with very challenging near surface problems.

We study how waveform inversion behaves for very heterogeneous near surface models.

We apply it to an area of very complex near surface, namely Saudi Arabia. Finally, we

study what waveform inversion can offer to solve the challenging problem of first arrival

shingling.

1.7 Thesis overview and contributions

The first chapter, the current one, is an overview of inversion, migration and specifically

our main interest, waveform inversion. In the second chapter, we discuss the theory of

waveform inversion and put it into context with other existing methods since the theory

is scattered in the literature for almost three decades. We derive, discuss and interpret

some properties of waveform inversion. We do that while trying to explicitly show the

embedded assumptions in waveform inversion and how it relates to migration in general,

Kirchhoff migration, traveltime tomography and true amplitude migration/inversion.

We address in the third chapter the heterogeneity of the near surface and its ef-

fects on waveform inversion. Complex near surfaces are obviously very heterogeneous;
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unconsolidated sediments, caves, gravels boulders mixed with soil/sand and so on all rep-

resent extreme velocity variations. We study how waveform inversion can address such

challenges and we show that it can handle such extreme variations.

We focus our attention in the fourth chapter on a realistic environment with very

complex near surface, namely that in Saudi Arabia, which is very well known for its

challenging near surface. We show how waveform inversion can address the challenges

associated with such areas. We evaluate the data requirement and weigh the potential

benefits. We also point out the potential pitfalls of waveform inversion for such environ-

ments.

In the fifth chapter, we address a specific long lasting challenge, namely first arrival

shingling. First arrival shingling is a particular problem that is associated with some

challenges in the near surface. As we will show, research into this problem has been

conducted since the 1950s, yet no generic solution exists, as far as we are aware. We

attempt to investigate what can waveform inversion can do to address this issue and we

show that waveform inversion can indeed resolve such a challenge.

1.8 Tools used

The results and the figures in the thesis have been created using different tools. The

schematic figures have been created using Microsoft Office member, Powerpoint. I have

used the ubiquitous scientific software package, Matlab from MathWorks, including the

CREWES MatLab toolbox authored by Dr. Gary Margrave and coworkers, at the Uni-

versity of Calgary CREWES project. The open source software package, Seismic Un*x,

from the Center for Wave Phenomena at Colorado School of Mines, is also used. I

have also used frequency-domain finite-difference modeling and inversion packages by

Dr. Gerhard Pratt, currently at the University of Western Ontario, and his coworkers.



12

Typesetting the thesis was done using LATEX.
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Chapter 2

Theory of waveform inversion

The goal of this chapter is to give a coherent theoretical treatment for this subject, wave-

form inversion. We attempt to glue together various methods from various sources in

the literature. We discuss the details of frequency-domain finite-difference modeling. We

derive the fundamental equation in waveform inversion. Namely we derive the gradient

of the misfit function using the Born approximation and using matrix formulation, as

well. We compare and contrast waveform inversion to the mainstream seismic imaging

method, seismic migration. We compare it to Kirchhoff migration, true amplitude in-

version/migration, as well as, traveltime tomography. We, also, detail the different steps

involved in regularizing and alleviating the non-linearity of the problem in order to obtain

a reasonable model.

2.1 Introduction

Inversion is a process of inferring the model parameters from the given data. Before

seeking the solution to the inverse problem, the forward problem needs to be formulated

first (Aster et al., 2005; Tarantola, 2005). Therefore, we discuss the forward problem,

first, which is, in our case, frequency-domain finite-difference modeling. We also discuss

the associated techniques that make solving such a problem not only efficient but also

feasible for such realistic models. The inverse problem is then investigated with the aim

of gaining some insight and understanding of its mechanics.

Inverting the waveforms is a highly non-linear process Sirgue (2003). Due to multiple

scattering, perturbations in the data do not map linearly to perturbations in the model.
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However, we can always linearize. The linearization of this problem is what’s commonly

referred to as the first-order Born approximation in physics. As we will see, the validity

of the Born approximation stems from the assumption that the model perturbation is

too weak to generate any significant multiples. In the context of seismic imaging and

inversion, this entails that we know very closely the background model and then our

task will be to estimate the model perturbation. Although this is a strict limitation to

migration and inversion, there exists some workarounds.

Waveform inversion is based on solving a highly non-linear problem by linearized

iterative inversion. The formula is linearized and then we approach the solution through

iteration. In other words, non-linear inversion is achieved by solving a linear problem

and then basing the next iteration of the previous result and so on.

2.2 Convention

Before diving into the theory, we will start by stating the conventions we will be using.

Since Bleistein et al. (2001) provide one of the most rigorous yet pragmatic presentations

of inverse scattering theory, we will try to follow their convention with slight differences

where necessary. To start with, we will use their convention of the Fourier transform.

The temporal Fourier forward and inverse transforms we will use are

f(ω) =

∫ ∞

−∞
F (t)eiωtdt Forward (2.1)

and

F (t) =
1

2π

∫ ∞

−∞
f(ω)e−iωtdω Inverse, (2.2)

where t is the time, and ωis the frequency. The spatial forward and inverse Fourier

transforms are

f(k) =

∫ ∞

−∞
F (x)e−ikxdx Forward (2.3)
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and

F (x) =
1

2π

∫ ∞

−∞
f(k)eikxdk Inverse, (2.4)

where k is the wavenumber and x is a spatial coordinate.

2.3 Forward modeling

Forward modeling is an integral part of waveform inversion. As we will see, the inverse

problem uses the adjoint of forward modeling, which is migration. Therefore, an efficient

modeling method is necessary in order to make the problem tractable.

In principle, any method can be used to carry out the forward modeling (Mora, 1987).

Methods such as the reflectivity method, Kirchhoff modeling, WKBJ method, Maslov

method, Gaussian beam, (Chapman, 2004; Aki and Richards, 2002) and numerical meth-

ods such as finite-difference, finite-element can all be used. However, any limitations of

the forward problem will certainly impose limitations on the inversion (Mora, 1987).

Frequency-domain finite-difference modeling is a very efficient method of modeling

specifically for waveform inversion (Štekl and Pratt, 1998). As we will discuss, solving

the inverse problem only requires modeling and inverting a number of frequencies.

2.3.1 Modeling equations

We start with the scalar, acoustic, variable density wave equation in the frequency-domain

∇
(

1

ρ(x)
∇u(x,xs, ω)

)
+

ω2

v2(x)ρ(x)
u(x,xs, ω) = −f(ω)δ(x− xs), (2.5)

where u(x,xs, ω) is the wavefield due to a source located at xs, f(ω) is the source signa-

ture, ρ(x) and v(x) are the density and the velocity of the medium, respectively (Bleistein

et al., 2001, p.94). The equation can also be written as

[
∇

(
1

ρ(x)
∇

)
+

ω2

v2(x)ρ(x)

]
u(x,xs, ω) = −f(ω)δ(x− xs). (2.6)
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By letting

A =

[
∇

(
1

ρ(x)
∇

)
+

ω2

v2(x)ρ(x)

]
, (2.7)

we can write the equation 2.6 as

Au(x,xs, ω) = −f(ω)δ(x− xs), (2.8)

where A is the forward modeling operator. For constant density media, equation 2.6

reduces to

[
∇2 +

ω2

v2(x)

]
u(x,xs, ω) = −f(ω)δ(x− xs), (2.9)

which is what is commonly referred to as the Helmholtz equation.

An advantage of modeling in the frequency domain is the simplicity of introducing

attenuation; we simply make the velocities complex (Štekl, 1997). The equation imple-

mented is

v(x) = vo(x)

[
1− i

2

Q

]
, (2.10)

where Q is the quality factor (Brenders and Pratt, 2007b; Pratt, 2008).

2.3.2 Frequency-domain finite-difference (FDFD) modeling

When descritizing the wave equation 2.8, the equation can be written in matrix form as

A(x,xs, ω)u(x,xs, ω) = f(ω), (2.11)

where A is the forward modeling operator matrix, u is the wavefield vector and f is the

source vector.

Equation 2.11 is solved using a direct method, LU decomposition (Pratt, 2008). Al-

though an iterative method might seem more efficient, currently, there exists no generic

method to solve this problem iteratively (Erlangga, 2008). It is an active area of research
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in applied mathematics. However, some iterative methods have been proposed (e.g. Er-

langga et al., 2004; Plessix, 2006) and some have been applied, only recently, to real data

(Plessix, 2009).

The forward operator matrix is a sparse matrix (Pratt et al., 1998). LU decompo-

sition is used to factorize the matrix, but produces matrices with more elements than

in the original matrix. This requires a lot of computer memory. To alleviate this is-

sue Štekl (1997); Štekl and Pratt (1998) applied nested dissection. Nested dissection

permutes/re-arranges the elements of the matrix in such a way that the resulting matri-

ces have minimum number of elements and therefore require less computer memory. The

implementation of FDFD is detailed in Pratt (1990); Jo et al. (1996); Štekl and Pratt

(1998).

The efficiency of FDFD for waveform inversion stems from a number of points:

1. Only a number of frequencies need to be modeled and inverted for waveform inver-

sion.

2. If direct matrix inversion methods are used, multiple shots can be modeled effi-

ciently since the forward operator matrix needs to be inverted/factored only once.

3. Inverting the low frequencies (e.g. < 10 Hz) requires sparser grid, although this

point applies to time-domain-finite difference, as well.

2.3.3 Boundary conditions

Absorbing boundary conditions are implemented on the boundaries of the model. The

45 degree one-way wave equation is used (Clayton and Engquist, 1977). At the corners

of the model, an additional sponge-like boundary condition is used with a finite value of

Q. But in order for the corner boundary condition to work effectively, the receiver needs

to be at least 10 grid points away from the corner (Brenders and Pratt, 2007b).
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2.3.4 Time domain synthetics

Since the synthetic data are generated as discrete frequencies in the frequency domain,

transforming them into the time domain results in aliased seismograms. This issue is

addressed by Mallick and Frazer (1987) and also explained by Brenders and Pratt (2007b).

Here, we discuss the details of the method.

Let u(ω) be the seismic trace in the frequency domain. When transforming u(ω) to

the time domain, we don’t get U(t), but rather, we get

Uw(t) =
∞∑

n=−∞
U(t + nTmax), (2.12)

which is a version of the trace with aliasing or wraparound. To attenuate aliasing, two

steps are involved:

1. Make the frequency imaginary by adding a small 1
τ

to the imaginary part. That is

let uc(ω
′) = u(ω + i 1

τ
).

2. Transform uc to time domain to get Uc. Multiply Uc by e
t
τ in order to obtain U ′

c.

To see why this works, let’s start with the first step. Making the frequency complex by

adding an imaginary term 1
τ

to any signal results in

1

2π

∫ ∞

−∞
dωe−iωtu(ω + i

1

τ
) = U(t)e−t/τ , (2.13)

when transformed to the time domain. Therefore, we get the signal in the time domain

but it is damped by the factor e−t/τ . In discrete form equation 2.13 becomes

∆ω

2π

∞∑
n=−∞

e−int∆ωu(n∆ω + i
1

τ
) =

∞∑
n=−∞

U(t + nTmax)e
−(t+nTmax)/τ = Uc. (2.14)

To undo the damping factor we multiply the Uc by et/τ . That is
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U ′
c = Uce

t/τ =
∞∑

n=−∞
U(t+nTmax)e

−(t+nTmax)/τet/τ =
∞∑

n=−∞
U(t+nTmax)e

−nTmax/τ , (2.15)

which is

U ′
c(t) = U(t) +

∑

n 6=0

U(t + nTmax)e
−n Tmax

τ . (2.16)

Therefore, we obtained the original signal U(t) plus some wraparound. The wraparound

can be effectively attenuated, then, by choosing a proper τ .

2.4 Waveform inversion

Waveform inversion is an iterative linearized inversion Tarantola (1984a). The Born

approximation is embedded into the method. We will derive the formulas for waveform

inversion to illustrate these points. We will use two methods. The first is based on that

of Tarantola (1984a) and Mora (1987) but in the frequency domain. The second is based

on Pratt et al. (1996) and we will compare the two methods. We first state the tools we

will need for such derivation.

2.4.1 Born approximation

We state in this section the integral solution to the wave equation, the so called the

Lippmann-Schwinger integral and its linearization, which is referred to as the Born ap-

proximation. We follow in this section the treatment given in Bleistein et al. (2001).

We state here, again, the Helmholtz equation,

[
∇2 +

ω2

v2(x)

]
u(x,xs, ω) = −f(ω)δ(x− xs) (2.17)

The Green’s function g(x,xs, ω) or the impulse response is the solution to the wave

equation when the source term is the delta function
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[
∇2 +

ω2

v2(x)

]
g(x,xs, ω) = −δ(x− xs) (2.18)

What is unique about the Green’s function is that once it is known, the wavefield

u(x,xs, ω) due to any arbitrary source wavelet can be obtained by

u(x,xs, ω) = f(ω)g(x,xs, ω), (2.19)

Let

1

v2(x)
= m(x) = m0(x) + δm(x), (2.20)

where m0(x) is the background model and δm(x) is a model perturbation. Also, let

uobs(x,xs, ω) = u(x,xs, ω) + δu(x,xs, ω), (2.21)

where uobs(x,xs, ω) is the observed wavefield, u(x,xs, ω) is the wave field in the back-

ground model m0 and δu(x,xs, ω) is the wavefield due to the perturbation δm(x) which

can be thought of as the scattered wavefield. uobs(x,xs, ω) is the total wavefield, In other

words, it is the sum of the wavefield in the background model and the scattered wavefield.

An integral solution to the wave equation for the scattered wavefield is

δu(xg,xs, ω) = ω2

∫

V

δm(x) [u(x,xs, ω) + δu(x,xs, ω)] g(xg,x, ω)d3x, (2.22)

which is often referred to as the Lippman-Schwinger integral formula, see (e.g. Bleistein

et al., 2001) for the derivation. The integral contains the total wavefield which includes

the scattered wavefield. This makes it nonlinear. If we assume that the model perturba-

tion, δm, is sufficiently weak, then we can drop the scattered wavefield term, δu(x,xs, ω),

and therefore linearize equation 2.22. This results in
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δu(xg,xs, ω) = ω2

∫

V

δm(x)u(x,xs, ω)g(xg,x, ω)d3x. (2.23)

This is what is referred to as the Born approximation. If we let

u(x,xs, ω) = f(ω)g(x,xs, ω), (2.24)

equation 2.23 can also be written as

δu(xg,xs, ω) = ω2f(ω)

∫

V

δm(x)g(x,xs, ω)g(xg,x, ω)d3x. (2.25)

2.4.2 Derivation using non-matrix formulation

We derive here the formula for waveform inversion using non-matrix methods. This

derivation follows that of Tarantola (1984a) and Mora (1987) but in the frequency do-

main. It is similar to that of Schuster (1998). We begin with defining the objective

function. The objective or misfit function is the L2 norm of the difference between the

observed waveforms and the modeled ones, as follow:

E =
1

2

∫
dω

∑
s

∑
g

|δu(xg,xs, ω)|2, (2.26)

where

δu(xg,xs, ω) = uobs(xg,xs, ω)− u(xg,xs, ω), (2.27)

which is the data residuals. We seek an iterative scheme to update the model by letting

m(x)(n+1) = m(x)(n) + µ(n)γ(x)(n) (2.28)

where

γ(x) = ∇mE =
∂E

∂m(x)
, (2.29)
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which is the gradient of the misfit function E and µ is the step length. Evaluating the

gradient, we get

γ(x) =

∫
dω

∑
s

∑
g

Re[
∂u(xg,xs, ω)

∂m(x)
δu∗(xg,xs, ω)]. (2.30)

where δu∗(xg,xs, ω) is the complex conjugate of δu(xg,xs, ω).

In order to find the Fréchet derivative ∂u(xg ,xs,ω)

∂m(x)
, we seek an operator D such that

δd = Dδm, (2.31)

which maps perturbations in the data δd to perturbations in the model δm. In continuous

form, this becomes

δd =

∫

V

d3x
∂u(xg,xs, ω)

∂m(x)
δm. (2.32)

The integral formula, which maps perturbations in the model space and to those in the

data space, is what we have seen previously, namely the Born integral formula 2.25. We

state it here again

δu(xg,xs, ω) =

∫

V

d3xω2f(ω)g(xg,x, ω)g(x,xs, ω)δm(x) (2.33)

Therefore,

∂u(xg,xs, ω)

∂m(x)
= ω2f(ω)g(xg,x, ω)g(x,xs, ω). (2.34)

Substituting equation 2.34 into equation 2.30, the gradient of the misfit function then

becomes:

γ(x) =

∫
dω

∑
s

∑
g

Re[ω2f(ω)δu∗(xg,xs, ω)g(xg,x, ω)g(x,xs, ω)]. (2.35)

We can interpret this formula as
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γ(x) =

∫
dω

∑
s

∑
g

Re[ω2

forward propagated wavefield︷ ︸︸ ︷
f(ω)g(x,xs, ω) δu∗(xg,xs, ω)g(xg,x, ω)︸ ︷︷ ︸

backpropagated wavefield

]. (2.36)

In other words, it is the time domain zero-large cross-correlation between the forward

propagated wavefield and the back propagated wavefield (Lailly, 1983; Tarantola, 1984a)

just as in done in reverse time migration (e.g. Pratt et al., 1998).

Although the notation in equation 2.35 implies that we model each receiver Green’s

function g(xg,x, ω) independently for every receiver, in reality we don’t need to do that.

We can model all of them simultaneously. This point is often not discussed in sufficient

detail. Here, we will see why it is true.

This point is valid because of the summation over the receivers for the objective

function and hence the gradient of the misfit function. The summation over the receivers

makes this point valid because of the linearity of the wave equation. We will illustrate

this point for two receivers at locations xg1 and xg2 . If we fix the shots and the frequencies

for simplicity and drop the real part notation, the gradient of the misfit in equation 2.35

for only two receivers then becomes

γ(x) = ω2f(ω)δu∗(xg1 , ω)g(x,xs, ω)g(xg1 ,x, ω)+ω2f(ω)δu∗(xg2 ,xs, ω)g(x,xs, ω)g(xg2 ,x, ω).

(2.37)

For simplicity, we dropped the dependence of δu∗on xs. By letting

ub(xg1 ,x, ω) = δu∗(xg1 , ω)g(xg1 ,x, ω) (2.38)

and

ub(xg2 ,x, ω) = δu∗(xg2 , ω)g(xg2 ,x, ω), (2.39)
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we can write the gradient as

γ(x) = ω2f(ω)g(x,xs, ω)[ub(xg1 ,x, ω) + ub(xg2 ,x, ω)]. (2.40)

So, that letting

ũb(xg1 ,xg2 ,x, ω) = ub(xg1 ,x, ω) + ub(xg2 ,x, ω), (2.41)

then we can simplify equation 2.40 further to

γ(x) = ω2f(ω)g(x,xs, ω)ũb(xg1 ,xg2 ,x, ω). (2.42)

We will seek a formula for ũb(x,xg1
,xg2 , ω) by taking advantage of the linearity of the

wave equation. Using the wave equation

Lu(xg1 ,x, ω) = −f(ω)δ(x− xg1), (2.43)

by the definition of equation 2.39 the source signature f(ω), then becomes

f(ω) = δu∗(xg1 ,xs, ω). (2.44)

Then, we can write equation 2.43 as

Lu(xg1 ,x, ω) = −δu∗(xg1 , ω)δ(x− xg1). (2.45)

In a similar manner,

Lu(xg2 ,x, ω) = −δu∗(xg2 , ω)δ(x− xg2). (2.46)

Adding equations 2.45 and 2.46 has the form

L[u(xg1 ,x, ω) + u(xg2 ,x, ω)] = −δu∗(xg1 , ω)δ(x− xg1)− δu∗(xg2 , ω)δ(x− xg2). (2.47)
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Using the definition of ũb(x,xg1
,xg2 , ω) in equation 2.41, the above equation can be

written as

Lũb(x,xg1
,xg2 , ω) = −δu∗(xg1 , ω)δ(x− xg1)− δu∗(xg2 , ω)δ(x− xg2), (2.48)

Equation 2.48 shows that we can model the wavefields at all receivers simultaneously

by making the adjoint of the data residuals as sources. In other words, there is no

need to model the wavefields at every receiver separately. This saves us a big number

of unnecessary forward modeling iterations. It saves for a single shot as many forward

modeling iterations as the number of data points plus an additional modeling iteration

for the source.

2.4.3 Derivation using matrix formulation

We follow here the derivation given in Pratt et al. (1998). We state again the modeling

equation for one single shot in the frequency-domain

Au = f , (2.49)

where A is the modeling operator matrix, u is the vector containing the wavefield at

every grid point and f is source vector. Our objective again is to minimize some function

that involves the difference between the observed data, d, and the synthetic data,u. This

difference, which is given by

δd = d− u. (2.50)

To be more precise we should let u be Ru, where R is a matrix that restricts the

synthetic wavefield vector to the observed data points only and we should letd be Pd,

where P pads the data vector with zeros where observation points do not exist (Virieux
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and Operto, 2009). However for simplicity, we dropped them. The objective function or

misfit function is the L2 norm of the data residuals

E =
1

2

∑
ω

∑
s

δdtδd∗. (2.51)

An iterative method like the steepest decent would look like

m(n+1) = m(n) − µnγn, (2.52)

where γ = ∇mE = ∂E
∂m

. So, we start by finding the gradient of the misfit function,∇mE,

which is

∇mE =
∂E

∂m
= Re{Jtδd∗}, (2.53)

where J is the Fréchet derivative matrix, which can also be written as

Jij =
∂ui

∂mj

, (2.54)

where i = 1, 2, .., n where n is the number of receivers and j = 1, 2, 3, .., m, where m is

the number of model parameters. The Fréchet derivative matrix is a huge matrix that

requires a big number of forward modeling iterations. This number is roughly equal to

the number of model parameters for every shot. In order to better visualize the matrices

we have them here written explicitly, just as shown in Pratt et al. (1998)




∂E
∂m1

∂E
∂m2

...

∂E
∂ml




= Re








∂u1

∂m1

∂u2

∂m1
· · · ∂ul

∂m1

∂u1

∂m2

∂u2

∂m2
· · · ∂ul

∂m2

...
...

. . .
...

∂u1

∂ml

∂u2

∂ml
· · · ∂ul

∂ml







δd∗1

δd∗2
...

δd∗l








. (2.55)

We can lump together the columns of equation 2.55 and write it as
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


∂E
∂m1

∂E
∂m2

...

∂E
∂ml




= Re








∂ut

∂m1

∂ut

∂m2

...

∂ut

∂ml







δd∗1

δd∗2
...

δd∗l








.

Therefore we can write the formula for the Fréchet derivatives in a more compact form

as

Ji =
∂u

∂mi

. (2.56)

However, in order to find a more efficient solution, we first start by taking the deriva-

tive of the forward modeling equation 2.49

A
∂u

∂mi

= − ∂A

∂mi

u,

which can be re-written as

∂u

∂mi

= −A−1 ∂A

∂mi

u. (2.57)

Substituting equation 2.56 into 2.57, we obtain

Ji = A−1 ∂A

∂mi

u. (2.58)

In order to obtain an expression for the gradient of the misfit function, we substitute

2.58 into 2.53 to obtain

∂E

∂mi

= Re{Jt
iδd

∗} = Re{− ut ∂At

∂mi︸ ︷︷ ︸
Forward wavfield

A−1δd∗︸ ︷︷ ︸
Backprop. wavefiled

}. (2.59)

Notice that the matrix ∂At

∂mi
has obviously zeros everywhere except at the elements that

depend on mi. In addition the matrix A itself is a sparse matrix as mentioned previously.
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Therefore, equation 2.59 for all model elements is essentially equivalent to equation 2.36

but in matrix form (Pratt et al., 1998).

2.4.4 Analytic example

In order to gain further insight into the machinery of waveform inversion, we will look at

an analytic example. We will use the far field approximation and therefore approximate

the Green’s functions with plane waves and see what waveform inversion does to every

plane wave component. We follow here the derivation by Sirgue and Pratt (2004a).

So let the source Green’s function be

g(x, ω) ≈ eikor̂s·x, (2.60)

and the receiver Green’s function

g(x, ω) ≈ eikor̂g ·x, (2.61)

where r̂s and r̂g are the unit vectors that point from the source to the scatterer or image

point and from the receiver to the image point, respectively and k0 = ω
v
. Substituting

those Green’s functions into the formula for the gradient of the misfit function (equation

2.35), we get for a single temporal frequency

γ(x) =

∫
dxs

∫
dxg Re[ω2F (ω)δu∗(r̂g, r̂s, ω)eikor̂s·xeikor̂g ·x], (2.62)

re-arranging, we get

γ(x) = ω2F (ω)

∫
dxs

∫
dxg Re[δu∗(r̂g, r̂s, ω)eikox· (r̂s+r̂g)]. (2.63)

We will seek now a formula for the data residuals δu(r̂g, r̂s, ω) so that we could invoke

the model perturbation into equation 2.63. In order to do that, we plug in the plane

waves into the Born integral formula, equation 2.25, and we get
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δu(xg,xs, ω) = ω2f(ω)

∫

V

δm(x)eikox· (r̂s+r̂g)d3x. (2.64)

Notice that the integral in equation 2.64 is nothing but the Fourier transform of the

model perturbation δm(x). Therefore, we can write equation 2.64 as

δu(xg,xs, ω) = ω2f(ω)δM(ko(r̂s + r̂g)), (2.65)

where δM(ko(r̂s + r̂g)) is model perturbation in the wavenumber-domain.

Now that we sought an expression for the data residuals δu that invokes the pertur-

bation, we will plug in this formula into the gradient of the misfit function to get

γ(x) = ω2f(ω)

∫
dxs

∫
dxg Re[

[
ω2f(ω)δM(ko(r̂s + r̂g)

]∗
eikox · (r̂s+r̂g)]. (2.66)

Note that equation 2.66 is nothing but the inverse Fourier transform of the model per-

turbation and therefore, we can write equation it as

γ(x) = ω4f 2(ω)δm(x). (2.67)

Therefore, the gradient of the misfit function was able to recover the model perturbation

δm(x) except that it is off by a complex scalar f 2(ω), which is the source strength,

and multiplied by the frequency raised to the fourth power, ω4. As Sirgue and Pratt

(2004a) point out, the term ω4 can be interpreted as the derivative operator, which is a

roughening operator, raised to the fourth power. That is

γ(x) = (−iω)(−iω)(−iω)(−iω)︸ ︷︷ ︸
roughening operator

f 2(ω)δm(x). (2.68)

This shows the necessity of preconditioning the gradient of the misfit function since it

contains some rough unnecessary features. We will discuss this point further in section

2.6.3.
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2.4.5 Waveform inversion and Kirchhoff migration

We show in this section the relation between Kirchhoff migration and waveform inversion.

This was first explained by Tarantola (1984b). We follow here the derivation of Tarantola

(1984b) and Schuster (1998). We start with 3D Green’s function for homogeneous media

g(x,xs, ω) =
eiωτs

4πrs

, (2.69)

where rs is the radius from the source to the image point.

Plug in this Green’s function for both source and receiver wavefields into the formula

of gradient. For a single source, we obtain

γ(x) =

∫
dxg

∫
dω Re[

1

16π2
F (ω)

1

rsrg

ω2δu∗(xg,xs, ω)eiω(τs+τg)]. (2.70)

Letting

δu′(xg,xs, ω) = F (ω)δu(xg,xs, ω), (2.71)

we get

γ(x) =

∫
dxg

1

rsrg

1

16π2

∫
dω ω2δu′∗(xg,xs, ω)eiω(τs+τg). (2.72)

Taking the conjugation to the whole integrand, we get

γ(x) = − 1

8π

∫
dxg

1

rsrg

1

2π

∫
dω [(−iω)(−iω)δu(xg,xs, ω)e−iω(τs+τg)]∗. (2.73)

Transforming equation 2.73 to the time domain, we get

γ(x) = − 1

8π

∫
dxg

1

rsrg

δÜ ′(xg,xs, τs + τg), (2.74)

where
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δU ′(xg,xs, t) = F (t) ∗ δU(xg,xs, t). (2.75)

We compare now the result we obtained in equation 2.74 to the Kirchhoff migration

formula adapted from (Yilmaz, 2001, p. 1346)

I(x) =
1

4π

∫
dxg

cosθ

vrs

U̇obs(xg,xs, τs + τg), (2.76)

where I(x) is the output image and cosθ is the obliquity factor.

We note here that that waveform inversion uses the second time derivative of the

data residuals δÜ ′(xg,xs, τs + τg) whereas in Kirchhoff migration the first time derivative

of the observed data themselves is used U̇obs(xg,xs, τs + τg). The second difference is

that the correction factor used, 1
rsrg

is used for waveform inversion whereas that used for

Kirchhoff migration is cosθ
vrs

. As pointed out by Tarantola (1984b), those differences are

due to the fact the waveform inversion is trying to invert for a different quantity, namely

the velocity. However, the kinematics of the two methods are the same since both spread

the data over the isochrones of time τs + τg.

2.4.6 Amplitude preserving migration/inversion

Amplitude preserving migration (APM) or true amplitude migration is a migration pro-

cess that produces a migrated image which preservers the relative amplitudes. The

migration method by Bleistein et al. (2001) produces an image whose amplitudes honors

the transport equation. In this section we will try to compare it to waveform inversion.

Bleistein et al. (2001) use an approximation to the Green’s functions, using the WKBJ

method, to arrive to their inversion formula. Waveform inversion, on the other hand, uses

the more accurate numerical methods, such as finite difference, to calculate the Green’s

functions. Although the two methods are intended to evaluate two different quantities,
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velocity for waveform inversion and band-limited reflectivity for APM migration, they

are similar. The formula adapted from (Bleistein et al., 2001, p. 247)is

β1(x) =
1

πc

∫
dω

∫
dxs

∫
dxg (

rs

r2
g

) (iω) e−iω[rs+rg ]/cuobs(xg,xs,ω), (2.77)

where β1 is the APM image with , rsand rgare the distances between the source and

image point and the receiver and image point, respectively. It can also be written as

β1(x) =
1

πc

∫
dω

∫
dxs

∫
dxg (

rs

r2
g

) (iω) e−iω(τs+τg)uobs(xg,xs,ω). (2.78)

Notice that the main difference between equation 2.78 and equations 2.76 and 2.74 is

roughly the weighting factor but they are kinematically equivalent.

2.4.7 Waveform inversion and traveltime tomography

Traveltime tomography and waveform inversion are closely related. The first to point

this out is Woodward (1992). Traveltime tomography is based on the integral equation

which is

δt(xg,xs, ω) =

∫
d3xDray(x,xg,xr)

1

δv(x)
, (2.79)

where δt(xg,xs, ω) is the traveltime residual and Dray(x,xg,xr) is raypath. Waveform in-

version on the other hand is based on the first order Born approximation. For comparison

we state here again the Born integral formula

δu(xg,xs, ω) = ω2F (ω)

∫

V

dx3g(xg,y, ω)g(y,xs, ω)δm(y) (2.80)

Let Dwave = g(xg,y, ω)g(y,xs, ω). Then the integral equation becomes

δu(xg,xs, ω) = ω2F (ω)

∫

V

dx3Dwave(x,xg,xs)δm(x), (2.81)

Dwave is analogous to the raypath Dray(x,xg,xr) but it is based on waves instead of

rays. Hence Woodward (1992) referred to it as the wavepath. Therefore, traveltime
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tomography is based on back projecting the the time residuals over the raypaths and

waveform inversion is based on back projecting the data residuals along the wavepaths

(Woodward, 1992).

2.5 Nonlinearity

Since waveform inversion is highly non-linear, certain steps need to be taken in order to

overcome converging into a local minimum. Several strategies have been developed and

we will discuss them in this section.

2.5.1 Multiscale strategy

The mutliscale strategy is simply based on the idea of updating the model first with the

large features and progressively adding more details or the small features. The first paper

to show the effectiveness of such strategy on waveform inversion is that of Bunks et al.

(1995). They used multiple grids as as the name suggests. Early iterations of inversion

use sparse grid and later iterations use progressively finer and finer grid. An equivalent

strategy is to invert the low frequencies of the data first and progressively higher and

higher frequencies (Sirgue and Pratt, 2004a).

2.5.2 Damping late arrivals

The late arrivals are often dominated by reflections and multiple arrivals. Damping or

windowing out the late arrivals yields an objective function that is much better behaved,

i.e. smoother and has fewer local minima as Sheng et al. (2006) show. Apparently, the

first paper to advocate such a strategy was Pratt and Worthington (1988).
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2.5.3 Preconditioning the updates/gradient

As we have stated in section 2.5.1, preconditioning the gradient of the misfit function is

a very important step since the gradient is operated upon by a roughening operator. It

is therefore, necessary to stabilize the inversion. The simplest method of preconditioning

the gradient is simple convolutional smoothing. However, more sophisticated methods

have been developed and tested, such as using the inverse of the approximate Hessian

Sheng et al. (2006), dynamic smoothing of Nemeth et al. (1997) and filtering in the

wavenumber domain of Sirgue (2003). The method that is implemented in the software

package of Pratt and coworkers is wavenumber domain filtering .

2.6 Conclusion

We derived in this chapter the important formulas in waveform inversion. We discussed

the forward problem and derived the formula for the gradient of the misfit function of

waveform inversion. We also compared waveform inversion with Kirchhoff migration, true

amplitude-preserving migration and traveltime tomography. We also discussed the prop-

erties of waveform inversion, the necessity of preconditioning and the rest of strategies

used to mitigate the highly non-linear nature waveform inversion.
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Chapter 3

Waveform inversion and local heterogeneity

3.1 Introduction

The near surface is often characterized by strong heterogeneity. Unconsolidated sedi-

ments, gravels and hard rocks, to name a few causes, can all be found side by side in the

near surface. This chapter examines the effect of such abrupt strong variations in veloc-

ities on waveform inversion and whether certain strategies are needed. For this purpose

we created two velocity models: one with those variations, and one without. We inverted

both of them using the sequential strategy. We used different initial models and different

starting frequencies. We also examined the efficient strategy of Sirgue and Pratt (2004a).

3.2 Modeling

Our objective is to examine the effect of heterogeneity on waveform inversion. For this

purpose, we created two velocity models. The first velocity model is shown in Figure

3.1(c), hereafter referred to as model 1. The prominent characteristics of this model are

the sinusoidal feature and the velocity gradient within the layers. Although this model

might look simple, it is not. A quick look at the synthetic data generated for this model

as shown in Figure 3.3, clearly demonstrates this point. The diffractions and reflections

and scattering in general are very predominant.

We include the sinusoidal feature in the model because such a feature causes long

wavelength statics problems, which are not resolved using residual statics (Yilmaz, 2001;

Cox, 1999). This model is somewhat similar to that used by (Sheng et al., 2006).

The second velocity model 3.2(c), hereafter referred as model 2, is the same as model 1
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except that some random velocity variations are added to it. The variations are normally

distributed with a mean of 500 m/s and a standard deviation of 200 m/s. The model

is then smoothed by a 20 m x 20 m smoother since our goal is not to drastically make

model 2 different from model 1, but rather to make the large features similar. Model 2

exhibits some abrupt velocity variations, a general characteristic of the near surface.

The size of the models is 500 x 100 grid points in x and z respectively, where each

grid point corresponds to 10 m. Synthetic data are then acquired over these models.

The receiver interval is 20 m and the source interval is 25 m. The location of the first

source is 115 m from the left side of the model and the location of the first receiver is

110 m. The depth of the sources and receivers is 11 grid points below the top of the

model since the sponge boundary conditions in the corners need at least 10 points to be

effective. The total number of shots is 191 and the number of traces per shot is 240. We

use frequency-domain finite-difference modeling, to generate the synthetic data. The top

boundary is a free surface, whereas the rest are absorbing. A sponge boundary condition

is used for the corners. A sample time-domain shot record whose location is in the middle

of model 1 is shown in Figure 3.3(a).

Since the modeling is carried-out in the frequency domain, the data generated are

obviously in the frequency domain, as well. Therefore, we show the data in frequency-

domain. Figures 3.4 and 3.5 show the real part of the frequency domain panels plotted

as surfaces, as a function of source and receiver locations, for two frequencies. This

representation can be useful in analyzing the data. The effect of the sinusoidal feature of

the model is clear for the higher frequency panel in Figure 3.4, but for the lower frequency

it is smoother. In other words, the low frequencies of the data are obviously sensitive

to the large features of the model but not its small details. This explains why the low

frequencies are needed for inversion since they are more sensitive to the low wavenumber

component of the model (Sirgue, 2003). Since model 2 is more complex than model 1,
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Figure 3.1: Velocity models associated with model 1. The inversion scheme is referred
to, in the text, as Part 1 of the inversion. The initial model is the true model smoothed
by 300 x 300 m smoother. The sequential inversion strategy is used. The frequencies
inverted are from 2-24.8 Hz with 0.2Hz frequency interval.



40

Distance (m)

D
ep

th
 (

m
)

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

500

1000
m/s

2000

3000

4000

(a) Initial Model

Distance (m)

D
ep

th
 (

m
)

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

500

1000
m/s

2000

3000

4000

(b) Estimated Model

Distance (m)

D
ep

th
 (

m
)

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

500

1000
m/s

2000

3000

4000

(c) True Model

Distance (m)

D
ep

th
 (

m
)

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

500

1000
m/s

0

200

400

(d) Absolute value of the difference between a and b

Figure 3.2: Velocity models associated with model 2. The inversion scheme is referred
to, in the text, as Part 2 of the inversion. The initial model is the true model smoothed
by 300 x 300 m smoother. The sequential inversion strategy is used. The frequencies
inverted are from 2-24.8 Hz with 0.2Hz frequency interval.
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Figure 3.3: Sample shot records, a) for model 1 and b) for model 2.

the effect of the sinusoidal feature is less clear as shown in Figure 3.5; but the lower

frequency panel is still smoother.

3.3 Inversion

3.3.1 Sequential strategy

Part1: higher resolution initial model and low starting frequency

Since the result of waveform inversion strongly depends on the lowest frequency used and

the resolution of the initial model, we start the inversion with a higher resolution initial

model and lower starting frequency. We use an initial model which is the true model

smoothed by a 300 m x 300 m smoother. The starting frequency used in inversion is 2

Hz. The initial model for model 1 is shown in Figure 3.1(a), whereas that for model 2 is

shown in Figure 3.2(a).

We inverted the data for both models, using the multiscale strategy, where low fre-

quencies are inverted first and then higher frequencies. In other words, the model is up-

dated first using the low frequencies and then we progressively invert higher and higher

frequencies.The highest frequency component of the data used is 24.8 Hz. The number

of sequential iterations per frequency is 5, and the frequency interval is 0.2 Hz. The
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Figure 3.4: Frequency domain panels (real part) for seismic data of model 1.

Figure 3.5: Frequency domain panels (real part) for seismic data of model 2.
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gradient of the misfit function was preconditioned by a low-pass filter in the wavenumber

domain (Sirgue, 2003), as we discussed in Chapter 2.

The final inversion result of model 1 is shown in Figure 3.1(b). Figure 3.1(d) shows

the absolute value of the difference between the true and the estimated models. The

result is very well-resolved in most areas. The exact interfaces are not exactly resolved

since they might require even higher frequencies. The right and left edges of the model

are not resolved to the same degree as the middle part of the model, and this is due to the

finite aperture of the source-receiver coverage. The same analysis applies to the result of

inverting model 2, as shown in Figure 3.2(b) and 3.2(d). Because the interfaces are not

as well defined as in model 1, the inversion result of model 2 is even more resolved at the

interfaces. The small velocity variations in model 2, which are beyond the resolution, are

not completely recovered as shown in Figure 3.2(d).

Figures 3.6(a) and 3.6(b) show the L2-norm of the difference between the true and

the estimated models for each depth. The red curve excludes the left and the right-hand

edges of the models since the error is higher in these areas. The blue curve includes all of

them. Both Figures 3.6(a) and 3.6(b) show a general trend. In Figure 3.6(a), the error

is particularly higher within the sinusoidal structure since it is more complex than the

flat layers below. On the other hand, Figure 3.6(b) does not exhibit this characteristic

clearly, since complexity is randomly distributed in the model. Note that the error is

higher on the top part of Figure 3.6(b), and this is due to the fact that the receivers are

at depth in the model.

Part 2: Smoother initial model and higher starting frequency

Now we challenge the inversion method by using a smoother initial model and a higher

starting frequency. The initial model is the true model smoothed by a 500 m x 500 m

smoother. The lowest frequency inverted is 5 Hz. Both of those values were used by
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Figure 3.6: L2 norm of the difference between the true and the estimate models for each
depth. a)-e) are associated with Figures 3.1, 3.2, 3.7, 3.8 and 3.9.
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Ravaut et al. (2004). The rest of the inversion parameters are identical to those of Part

1 from the previous section.

Figure 3.7(b) shows the result of the inversion. Although the result is still well

resolved, it is not as accurate as that of Part 1. The L2 norm of the difference of each

depth is also higher for this result than from Part 2, as shown in Figures 3.6(b) and

3.6(c). This result clearly shows that when using this inversion scheme, the inversion

result is less accurate if higher frequencies are used and, as well as, a less resolved initial

model.

3.3.2 Efficient strategy

Now we apply the efficient strategy of Sirgue and Pratt (2004b), as we have discussed

in Chapter 2. The strategy provides a way to take advantage of the redundancy of

information and hence select as few frequencies as possible for inversion. The first step

is to calculate αmin, which is equivalent to the inverse NMO (normal-moveout) stretch

factor as (Sirgue and Pratt, 2004b), as follows:

αmin =
1√

1 + (hmax

z
)2

, (3.1)

where hmax is half the offset, and z is the depth. Then we can calculate the frequencies

from a starting frequency as follows:

fn+1 =
fn

αmin

(3.2)

The depth of the model is 1000 m, which is z. Since the width of the interior of

the model that is properly imaged is around 3000 m in x, we can set hmax to 1500 m.

Therefore, starting from 5 Hz, the strategy then suggests using 9 Hz, 16.3 Hz and 29.3

Hz. The highest frequency we have available is 24.8 Hz. The inversion was carried out

using parameters identical to the previous examples, except that the number of sequential
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Figure 3.7: Inversion of dataset 2 using a smoother initial velocity model (500 m x 500
m smoother dimensions) and a higher starting frequency, 5Hz. The efficient strategy is
not used.
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iterations per frequency was increased from 5 to 30, in order to further minimize the misfit

function (Brenders and Pratt, 2007b).

Figure 3.8 shows the result using 5, 9 and 16.3 Hz. Figure 3.9 shows the result

using 5, 9, 16.3 as well as the highest available frequency, 24.8 Hz. Notice that minimal

improvement was achieved by inverting the highest available frequency, 24.8 Hz.

Comparing the efficient strategy result in Figure 3.8 and the result in Figure 3.7, we

can observe that they are comparable, although the very shallow part of the model seems

to be better resolved in the case of the non-efficient method. The very deep part of the

model on the other hand seems to be better imaged using the efficient method as shown

in Figures 3.6(c) and 3.6(d).

Since the number of iterations used per frequency is 30, the total number of iterations

for the efficient method using three frequencies is 90 iterations. On the other hand, the

total number of iterations used in the non-efficient method is 500 iterations. In this case,

the efficient method costs almost 20% of the cost of the non-efficient method.

3.4 Conclusion and discussion

Waveform inversion provides an effective and efficient way of imaging the near surface.

We showed that even in the presence of locally strong variations of velocity, waveform

inversion is capable of resolving such models. Local heterogeneity has minimal effect on

waveform inversion if an accurate initial model is used and low frequencies are inverted.

Waveform inversion provided models with very high resolution regardless of the hetero-

geneity of the model. The efficient strategy was able to recover the velocity model with

comparable resolution of that of the non-efficient method, but with about 80% decresase

in the computational cost.
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Figure 3.8: Inversion of dataset 2 using a smoother initial velocity model (500 m x 500
m smoother dimensions) and a higher starting frequency, 5Hz. The efficient strategy is
used.
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Chapter 4

Waveform inversion and complex near surface

As we have shown in chapter 3, the benefits applying waveform inversion to areas of

complex targets are clear. Our focus, however, is on areas of complex near surface. For

this purpose, conventional methods like traveltime tomography and refraction statics are

often applied. Although those methods are robust, they are only applicable to relatively

simple near surface models. Complex near surface models need more rigorous solutions.

In this chapter, we apply waveform inversion to an area of very challenging realistic near

surface geology. The complex near surface of the model makes it difficult to image a

low relief structure at depth. The goal of the inversion is to recover the near surface

compressional velocity and to detect some indication of the of the low relief structure.

We inverted the data using both the sequential and the efficient strategies. We compare

the statics provided by the estimated models.

4.1 Introduction

Many methods exist for inversion of the near surface velocities. Refractions statics,

traveltime tomography and others are robust and efficient methods for this purpose (Yil-

maz, 2001, p. 370). However, in areas with complex near surface geology, conventional

methods are challenged. We use frequency-domain waveform inversion to go beyond the

traveltimes, and extract the compressional velocity information of the near surface from

the waveforms directly.

Waveform inversion has been applied to synthetic and real data (e.g. Sheng et al.,

2006). It also has been applied, in one case study, for the purpose of extracting near
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surface compressional velocities (Sheng et al., 2006). However, the areas that most need

waveform inversion are the ones for which conventional methods fail. In this study, we

apply waveform inversion to a model of complex near surface geology. The model bears

some near surface challenges that obscure the subtle feature buried underneath, the low

relief anticlinal structure.

We first describe the model and its complexity. Then, we generate synthetic data

using the model and invert them. We first invert the data using a sequential scheme.

Then, we test the efficient strategy of Sirgue and Pratt (2004a). Finally, near-surface

vertical traveltimes, or statics, are calculated from the estimated models and compared

with the true statics.

4.2 Model description and Synthetic data

4.2.1 The model

Figure 4.1 shows the model in detail. Alkhalifah and Bagaini (2006) describe the model

fully. We give a brief description here. The model bears some of the near surface

challenges observed in a complex near surface desert environment such as Saudi Arabia.

The sand dunes with their relatively low velocity cover some parts of the surface. Some

of them can be over 150 meters high. The wadi in the middle contains some relatively

low velocity unconsolidated sediments. Below those features is a thin low velocity zone

(LVZ) that is often very difficult to detect and properly correct for.

Below the LVZ are other low velocity anomalies, which model the collapse features

within the Rus formation. The collapses result from the dissolution of carbonates within

this formation. Below this complex burden is a structure with low relief. The complex

near surface and the subtle relief of the structure makes imaging and delineating the

anticlinal structure a difficult task.
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Figure 4.1: The velocity model used in this study, from Alkhalifah and Bagaini (2006).

The elevation profile of the model is shown in Figure 4.2. The elevation can vary by

over 200 meters. The picture in Figure 4.3 shows some of the complexity of the near

surface in Saudi Arabia and the topographical challenges.
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Figure 4.2: The elevation profile of the model.

Waveform inversion is based on inverting mainly transmissions (Pratt, 2008; Sheng

et al., 2006). In order to determine the maximum depth of the model that can be
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Figure 4.3: An example area that shows how extreme the near surface and the topography
can be in Saudi Arabia. Picture from Wikipedia (2009).

reliably inverted, we model diving waves. Figure 4.4 shows, the diving waves modeled in

a smoothed version of the model. We can see that the diving waves could reach about 2

km of depth. Therefore we truncate the model to this depth, since there is no point of

including the rest of the model that may not be recovered reliably.
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Figure 4.4: Diving rays traced in a smoothed version of the model.
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4.2.2 Synthetic data

The original synthetic data has a fairly limited offset. To image the full near surface and

some reflectors at depth, we have generated the data with a maximum offset of about

9500 m. The receiver interval, for the dataset is 25 m and the source interval is 35 m.

The entire spread is alive for this experiment. The source wavelet is a Keuper wavelet

with 5.5 Hz dominant frequency, similar to that used by Brenders and Pratt (2007b).

Figure 4.5(a) shows three sample shot records.

The frequency-domain finite-difference software package does not allow non-flat free

surface. Including the free surface effects would require modification to the already well-

tested and robust package, a non-trivial task. After all, Brenders and Pratt (2007b,a)

have successfully inverted viscoelastic data without including the free surface effects.

For those reasons, we do not use a free surface for both modeling and inversion. In

fact, Brenders and Pratt (2007b) have successfully inverted the viscoelastic data using

pressure formulation, whereas the data are in particle velocity.

4.3 Preliminary inversion

It is customary to show the final result of the inversion without discussing the interme-

diate ones, or what lead us to the final result. Here, we avoid this approach. We show

how we arrived to the final result, by discussing the easier tests we conducted.

Our convention of organizing the results, just like in chapter 3, will be to show the

initial model on the top, then the estimated model, the true model and finally the absolute

value of the difference between the true model and the estimated one. We will follow this

convention so that the reader could compare the models on the same page rather than

on completely separate pages, although this convention might lead to repeating some the

figures. The 1D profiles will immediately follow the figures containing the full models,
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so that more quantitative comparison can be made.

4.3.1 Sequential Strategy

We start the inversion by using an initial model that is relatively close to the true model.

The initial model is the true model smoothed by a 240 m x 240 m smoother. Just as in

Chapter 2, we use the Seismic Un*x program smooth2 with a parameters of 20 x 20 as

the smoothing factors. Given that the grid size is 12 m, that is almost equivalent to using

a smoother with dimensions 240 m x 240 m. The initial model in this case simulates one

that can be obtained for a mature field. The plethora of data collected over decades for

such fields makes building such an initial model possible. Well logs, borehole data, check

shots, VSP, crosswell data, traveltime tomography, refraction statics, migration velocity

analysis and other methods are commonly used in the industry for building such models

as detailed in the book by Yilmaz (2001). As we will see, what waveform inversion will

obtain a model with substantially higher resolution.

We inverted the frequencies from 2-14.8 Hz sequentially with 0.2 Hz interval. In other

words, we inverted 2 Hz by itself and updated the initial model. Then we inverted 2.2

Hz and updated the model from the previous frequency, and so on and so forth. This

strategy is essentially equivalent to using multiple scales or multigrid, and therefore, it is

often refereed to as the multiscale strategy (Sirgue and Pratt, 2004a; Pratt, 2008; Bunks

et al., 1995). Since we are using a gradient based method, a number of iterations needs to

be performed in order for the method to converge. We perform 5 iterations per frequency

just as in Brenders and Pratt (2007b).

The result of the inversion is shown in Figure 4.6(b). The inversion has much higher

resolution than the initial model. More importantly, it accurately resembles the true

model. The important and difficult features are accurately resolved. The Wadi, the thin

low velocity zone and the low velocity zones within the Rus formation are all in the
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inversion result. As Figure 4.6(d) shows, the error of the result is less than about +/-

400 m/s. It is actually much better than that in most places as shown in the 1D velocity

profiles in Figure 4.7.

4.3.2 Efficient Strategy

Now, we will put the efficient strategy to test. Using the same method mentioned in

Chapter 2 and 3, the inversion strategy suggests using 2, 4.5, 10 and 22.4 Hz only. The

inversion result is shown in Figures 4.8(b) and the 1D profiles in Figure 4.9. The inversion

parameters used are identical to those used in the previous experiment. Although the

result is more accurate than the initial model, it is as accurate as that resulting from

the sequential strategy. This does not imply, however, that more accurate models cannot

be obtained using the efficient strategy. Quite the contrary. More accurate models can

indeed be obtained. However, more aggressive preconditioning of the updates/gradients

needs to be performed. This makes the results more subjective and human involved. But

our goal is lessen the human intervention as much as possible.

4.4 Final inversion

4.4.1 Sequential Strategy

We inverted for the model using an initial model that is a much more smooth version of

the true model. The smoother used is about 480 m x 480 m. We inverted sequentially each

frequency from 2-14.8 Hz, with an interval of 0.2 Hz. We used 5 iterations per frequency.

The preconditioning used is based on filtering the gradient of the misfit function in the

wavenumber domain.

We can see that the estimated result in Figure 4.10(b) matches closely the true result.

The near surface is recovered accurately and more details about the curvature of the
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Figure 4.6: Preliminary inversion using the sequential strategy. The frequencies inverted
are 2-14.8 Hz with 0.2 Hz interval. The initial model is the true model smoothed by 240
m x 240 m smoother.
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structure are recovered. Note that the thin low velocity layer, which is a very hard

feature to recover, is almost fully recoved, including the truncations. Note also that the

feature within the wadi and the low velocity zones within the Rus formation are also

recovered.

Figure 4.10(d) shows the absolute value of the difference between the estimated and

the true model. Most of regions of the model are recovered within less than +/- 500 m/s.

Note that the feature in the bottom of the model is caused by the thin layer at the very

edge of the model. Edge effects combined with this thin layer caused this sort of artifact.

Understanding such artifacts is crucial in assigning confidence levels to each region of the

model and subsequently smoothing or keeping such features.

One-dimensional profiles of the models in three locations are shown in Figure 4.11.

You can see that the initial model is an averaged version of the true model. Note how

closely the estimated result matches the true result. The estimated models are less

accurate in the thin layers. Recovering such small details would require inverting higher

frequencies.

We have calculated the one way vertical traveltimes from the acquisition surface to the

datum shown in Figure 4.12. Figure 4.12 shows the statics, vertical one-way traveltimes,

calculated in the models. Figure 4.15(a) shows the improvement we are able to achieve.

The statics in the initial model can be higher than +/- 40 ms. The statics calculated in

the estimated model are less than +/- 10 ms. With this much accuracy of estimating

the statics, residual statics methods would not have difficultly correcting for the rest of

statics.

4.4.2 Efficient Strategy

In this experiment, we use more efficient strategy of (Sirgue and Pratt, 2004a). The

efficient strategy suggests inverting only four frequencies: 2, 4.5, 10, 22.4 Hz. We used



61

30 iterations per frequency. The total number of iterations is 120. Figure 4.16 shows

the frequencies selected and their relation with the wavenumber. The selection strategy

is based on selecting those frequencies whose wavenumber range in total would span the

wavenumber domain. The redundancy of the data is fully utilized through the efficient

strategy.

Figure 4.13 shows the results. Note that we are able to recover the low velocity zone,

the wadi’s low velocity zone and in a bit less detail the Rus collapses. Note also that low

relief structure especially at Wasia formation is recovered in more details.

Although the result here seems to be less accurate, a closer look at the difference plot

shows that the resulting model is almost within +/- 500 m/s in many areas. A closer

look at the 1D profiles in Figure 6 shows how close the match is. The resolution of the

recovered model is comparable to that of the sequential approach for almost 37.5% of

the cost.

Obtaining more accurate models using the efficient strategy can be accomplished.

However, it would require more human input and interpretation through the application

of a more aggressive preconditioning scheme. A big advantage of the efficient strategy

is that it can be used as a tool for quick testing of an array of parameters. For such a

computationally intensive process, the efficient strategy can make a big difference.

We have calculated the statics for the models as shown in Figure 4.15. Note that

the statics are less accurate than the previous experiment. Nevertheless, in most regions

they are less than +/- 15 ms, which is accurate enough for residual statics to be effective

when applied afterward.

Figure 4.5 shows three shot records in different locations: left, middle and right-

hand side of the model. The shots generated using the true model (observed data), the

estimated and the difference between them. Note how close the match is between the

observed and the predicted data. The difference between them seems to be a scaled
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version of the observed data. This kind of match is what one should look for when using

real data.

4.5 Inversion from a higher frequency

Now, we will take a look at the results starting from a higher frequency. We use identical

parameters as we have used previously but the only difference is that we start the inversion

from a higher frequency, 5 Hz.

4.5.1 Sequential strategy

Using the sequential strategy and inverting the frequencies starting from 5 till 14.8 Hz

with 0.2 Hz interval, we get the result shown in Figure 4.17(b) and the associated 1D

profiles in Figure 4.18. The initial model is the same that used in the final inversion,

namely the true model smoothed by a 480 m x 480 m smoother.

In order to better compare this result with previous ones, the color bar of the estimated

result is scaled up to 6000 m/s although the highest result could reach about 10000 m/s,

as can be seen in Figure 4.17(d). We can note that the result is not as accurate as the

previous ones. As a matter of fact, small features, which are artifacts, are very visible in

the resulting model. Those seem to be indicative of possible divergence from the global

minimum. What is even more interesting is the fact that the thin layer above about

700 m to the left of the model is very visible. But quantitatively the layer is higher in

velocity rather than its soundings. A particular area of even more divergence is the wadi

area. The velocities there are more overestimated than any other area as shown in Figure

4.17(d).

As mentioned previously, perhaps more accurate results can be obtained though more

aggressive preconditioning of the updates or the gradient of the misfit function. But the

issue is that much more interpretive analysis will need to be imposed on the result. In
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other words, the result will be more subjective.

The result in Figure 4.17(b) shows some indications of the artifacts, as well as, the

possible divergence from the global minimum. Small features show up in the result

including smile-shaped ones, which are typical of migration-based methods. In addition

to the small features, we were able to detect a thin layer in some areas but the quantitative

result is not accurate. The Wadi area as the least to be quantified accurately as shown

also in Figures 4.18(a) and 4.17(d). More attention should be paid to the Wadi area since

more artifacts result from it, possibly because of its relatively low elevation compared

with the surrounding areas.

4.5.2 Efficient strategy

For the efficient strategy the same analysis applies as in the previous section. But what

is of particular interest is that the result of using the efficient strategy is close to that

of the sequential strategy even in the case of possible divergence as shown in Figures

4.19(b) and 4.20. Although the resulting model has more small features, the thin layer

on top is very close to that of the sequential strategy.

4.6 Conclusions and Discussion

We have applied waveform inversion on a realistic model of an area of complex near

surface and low relief structure. Frequency domain waveform inversion successfully re-

covered the compressional velocity of the model using a smooth initial model. Waveform

inversion was able to recover the true model in using a sequential approach and less

accurately using the efficient strategy. The statics solutions in both cases are accurate

enough for residual statics to be effective. We have observed that in the case of starting

from a higher frequency, artifacts of small features are often visible especially when using

the efficient strategy. The result of the efficient strategy in this case even more closely
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resembles that of the sequential strategy.
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Figure 4.7: 1D velocity profiles from the preliminary inversion using the sequential strat-
egy. The profiles are from 3 different locations.
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Figure 4.8: Preliminary inversion using the efficient strategy. The frequencies inverted
are 2, 4.5, 10 and 22.4 Hz. The initial model is the true model smoothed by 240 m x 240
m smoother.
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Figure 4.9: 1D velocity profiles from the preliminary inversion using the efficient strategy.
The profiles are from 3 different locations.
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Figure 4.10: Final inversion using the sequential strategy. The frequencies inverted are
2-14.8 Hz with 0.2 Hz interval. The initial model is the true model smoothed by 480 m
x 480 m smoother.
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Figure 4.11: 1D velocity profiles from the final inversion using the sequential strategy.
The profiles are from 3 different locations.
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Figure 4.12: Statics for the sequential experiment. a) shows all the statics b) shows the
differences.
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Figure 4.13: Final inversion using the efficient strategy. The frequencies inverted are 2,
4.5, 10 and 22.4 Hz. The initial model is the true model smoothed by 480 m x 480 m
smoother.
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Figure 4.14: 1D velocity profiles from the final inversion using the efficient strategy. The
profiles are from 3 different locations.
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Figure 4.15: Statics for the efficient experiment. a) shows all the statics b) shows the
differences.
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Figure 4.17: The models associated with the inversion starting from a higher frequency
and using the sequential strategy. The frequencies inverted are 4-14.8 Hz. The initial
model is the true model smoothed by 480 m x 480 m smoother.
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Figure 4.18: 1D velocity profiles from the inversion starting from a higher frequency and
using the sequential strategy. The profiles are from 3 different locations.
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Figure 4.19: The models associated with the inversion starting from a higher frequency
and using the efficient strategy. The frequencies inverted are 5 and 11.2 Hz. The initial
model is the true model smoothed by 480 m x 480 m smoother.
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Figure 4.20: 1D velocity profiles from the inversion starting from a higher frequency and
using the efficient strategy. The profiles are from 3 different locations.
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Chapter 5

Waveform inversion and shingling

Seismic data possessing first arrival shingling is indeed difficult to interpret and infer

the velocities of their models. In this chapter, we attempt to explain the phenomenon

of shingling. As far as we know, there is currently no known general solution to this

problem. We will address the question of whether waveform inversion can indeed resolve

the velocity structure responsible for shingling.

5.1 Introduction

First arrival shingling is the phenomenon associated with the first arrivals possessing an

en echelon or stair-step shape. Cox (1999) defines it in his book of near surface geophysics,

as “a phenomenon characterized by a shift of energy to successively later cycles as the

offset increases producing an en echelon pattern” (Cox 1999, p. 158). In fact, Sheriff and

Geldart (1995) in their textbook also define and discuss this phenomenon. They define

it as ”the shift of peak energy to later in the wavetrain, as the offset distance increases

and the number of cycles increases” (Sheriff and Geldart, 1995, p. 169).

So it is a rather unique way for the amplitudes to decay with offset producing an en

echelon pattern. The term ’shingling’ seems to first appear in the literature in the paper

by Press et al. (1954); however, they attribute the naming to another person. Another

term that is used interchangeably but perhaps less commonly is echeloning as used by

Press et al. (1954), for instance.

Figure 5.1 shows an example from Cox (1999). Note that if one were to pick a curve

of the first arrivals, the curve would look blocky and shaped like a stair step .
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Figure 5.1: An example of first arrival shingling from Cox (1999).
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First arrival shingling is a very long lasting issue. It is known for many decades now.

First arrival shingling makes it very difficult to interpret the first arrivals accurately

enough and therefore to infer the Earth’s velocities.

Before seismic reflection surveys were common, seismic refraction surveys were more

common. The refraction surveys rely heavily on refractions, mainly head waves and/or

diving waves, as the name implies. Therefore, such a problem as shingling posed a serious

obstacle for reliable interpretation.

Some studies have been conducted to further understand this phenomenon. Most

of those studies relied on physical modeling experiments, possibly due to the expense

of numerical modeling at the time. Press et al. (1954) have shown that the refracted

arrivals decay rapidly if the beds are thin. They showed this using a physical modeling

experiment that incorporated such materials as Plexiglass , brass and aluminum.

Lavergne (1961) conducted another physical modeling experiment and showed the

difficulties associated with quantifying the velocities of thin layers. Lavergne (1966)

attempted to quantify the thickness of the beds. They showed that if the refactor is

thinner than λ/6 significant decay would result. Poley and Nooteboom (1966) studied

thin fast layers which significantly reduce the penetration of energy to further depths.

Screening effect is the term they used to describe such a phenomenon. Given the signal

to noise ratio at the time, this posed as a serious issue.

Rosenbaum (1965) conducted a physical modeling experiment, as well. He showed

that the shingling effect can indeed result from thin beds. Spencer (1965) has also

shown that the interference of multiples with the the head wave and primary reflection

can indeed cause shingling. Figure 5.2(a) shows a numerical example illustrating such

interference resulting from a model that contains a thin fast layer as shown in Figure

5.2(b). We used a Ricker wavelet to generate the shot with 30 Hz dominant frequency.

Although those studies have explain some aspects of the this phenomenon, they have
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Figure 5.2: An example of first arrival shingling in the rectangle in (a). The shingling is
caused by a thin fast layer shown in (b). The reflections including the multiple reflections
interfere with the head wave producing the shingling effect.
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not resulted in any mainstream technique to tackle this issue, as far as we are aware.

Since the kinematics of shingling get more obscured and complex, they don’t always

seem to be sufficient to come up with a consistent answer. Spencer (1965) studied the

amplitude decay theoretically and proposed an analytic modeling formula using geometric

ray theory.

Therefore, those studies have shown that thin beds cause the shingling effect since they

cause the refracted arrivals to decay much more rapidly and may cause the reflections,

including multiple reflections, to interfere with the refractions, as well.

Another scenario that causes shingling is shown in Figures 5.3(c) and 5.4 . The model

shows two low velocity zones sandwiched between layers whose velocities increase linearly

with depth. The model consists of a top layer of velocity increasing linearly with depth.

Below that is a low velocity zone. Beneath that is a layer whose velocity increases with

depth, followed by a low velocity zone and then another layer whose velocity is increasing

linearly with depth.

A shot record was created for this model (with a ricker wavelet of 30 Hz dominant

frequency) and is shown in Figure 5.5. The first arrivals first decay and then appear again

and decay once again. To understand this further, we traced rays through the model as

shown in Figure 5.6. Notice that there exists some shadow zones where no diving rays

reach the surface. The presence of such shadow zones caused the shingling of the first

arrivals.
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Figure 5.3: The true model that produces shingled first arrivals the its associated models
resulting and used in waveform inversion.
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Figure 5.4: 1D velocity profiles for the models shown in Figure 5.3.
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Figure 5.5: An example of first arrival shingling (in the rectangle) caused by two separate
low velocity zones sandwiched between layers whose velocities increase linearilly with
depth as shown in Figure 5.4.
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Figure 5.6: Rays traced in the true model shown in Figures 5.3(c) and 5.4. Notice the
shadow zones, where no diving rays reach the surface.
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5.2 Waveform Inversion

We have applied waveform inversion to invert for the shingling model shown in Figures

5.3(c) and 5.4. We first created the synthetic data of 191 shots and each has 240 receivers

with 25 m shot spacing and 20 m receiver spacing. The first shot is placed at 115 m and

the first receiver is placed at 110 m from the left-hand side of the model. The initial

model used is the true model smoothed by 300 m x 300 m smoother. The frequencies

inverted are 2-15Hz with 0.2 Hz interval and the gradient of the misfit is preconditioned by

filtering the wavenumber domain. The results are shown in Figures 5.3(b) and 5.4. The

result illustrate that waveform inversion does not struggle at all in successfully inverting

for the velocity.

5.3 Conclusion

We have attempted to explain and discuss the phenomenon of shingling in this chapter.

We applied waveform inversion to a realistic model that causes the shingled first arrivals.

We have shown that waveform inversion can indeed resolve such models.
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Chapter 6

Conclusions and discussion

We started the thesis with chapter one, where we have given an overview of the thesis and

the fields of seismic migration and inversion. In chapter two, we discussed the theoretical

aspects of waveform inversion. We emphasized the fact that waveform inversion is based

on the well-known linearization, the Born approximation, and that in turn makes it

based on the well established method of seismic migration. Waveform inversion is similar

to traveltime tomography with one main difference: traveltime tomography uses the

high frequency thin raypaths whereas waveform inversion uses the finite-frequency band-

limited wavepaths.

Waveform inversion for homogeneous media is roughly the same as Kirchhoff migra-

tion and kinematically equivalent. True amplitude inversion of Bleistein et al. (2001) is

also similar to waveform inversion with some differences; roughly the weighting of the

data is different and the fact that true amplitude inversion uses an approximate Green’s

functions, namely those based on the WKBJ approximation, whereas waveform inversion

typically uses the more accurate numerical methods such as the finite-difference method.

Needless to say, waveform inversion is iterative whereas true amplitude inversion is not.

In chapter three, we have shown that strong velocity heterogeneity, a character of

complex near surface environments, does not seem to cause issues with waveform inver-

sion. In fact we have inverted the two models, one with strong velocity variations and

one without, using the same parameters and both results where highly accurate.

In chapter four, we have inverted a realistic model from a region with highly complex

near surface environment. Using realistic preconditioning of the gradient of the misfit

function, waveform inversion was able to achieve accurate results starting from 2 Hz.
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Starting the inversion from a higher frequency with the same initial model caused wave-

form inversion to diverge. This implies that in real experiments where low frequencies

are to be acquired, it is much safer to use 2 Hz geophones rather than, for instance, their

4.5 Hz counterparts. Although the model we used is indicative of such complex near

surface environments, it might be more difficult to invert that even real models due to

its high degree of blockiness, a characteristic of models that often causes migration and

inversion methods to struggle as noted by Gray et al. (2001).

In chapter five, we have discussed the phenomena of first arrival shingling, a difficult

near surface problem. We have demonstrated that waveform inversion can indeed resolve

models causing such a phenomenon.

Applying waveform inversion to real data, especially surface seismic data, is indeed

a difficult task. This explains the relatively few case studies in the literature, although

there are some (e.g Crase et al., 1990; Operto et al., 2004; Sheng et al., 2006). As we

mentioned in chapter 1, the main reason why it is difficult is due to the fact that real

data often do not contain the necessary information to make waveform inversion work,

namely the low frequencies and the large offsets. In addition, other phenomena like

attenuation, elasticity and anisotropy might need to be taken into account depending

on the complexity of the model. In fact, as waveform inversion becomes more popular,

more practical aspects of waveform inversion will soon become much more understood.

Industrial strength software packages have recently been created (for instance GeoTomo

and Wester Geco). This will certainly make it much more understood as more case

studies are easily done.

Perhaps, one of the reasons the acoustic approximation is often used is that realis-

tic viscoelastic and anisotropic modeling is computationally expensive. However, due to

some theoretical developments, this trend may not continue. Source encoding is a promis-

ing method that allows lumping together the entire shot records acquired in the seismic
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survey into a single encoded record. Then migration and inversion can be performed to

only a single record. If this method proves robust in practice, then 3D viscoelastic wave-

form inversion may not be too far in the future as Virieux and Operto (2009) speculate.

Waveform inversion is indeed a promising technique that would be explored much further

especially as computers become even much more powerful.



94

This page is intentionally left blank.



95

Bibliography

Aki, K. and P. Richards, 2002, Quantitative seismology: University Science Press.

Al-Saleh, S. M., G. F. Margrave, and S. H. Gray, 2009, Direct downward continuation

from topography using explicit wavefield extrapolation: Geophysics, 74, S105–S112.

Al-Yahya, K., 1989, Velocity analysis by iterative profile migration: Geophysics, 54,

718–729.

Alkhalifah, T. and C. Bagaini, 2006, Straight-rays redatuming: A fast and robust alter-

native to wave-equation-based datuming: Geophysics, 71, U37–U46.

Aster, R. C., B. Borchers, and C. H. Thurber, 2005, Parameter estimation and inverse

problems: Burlington, Massachusetts: Elsevier Inc.

Baysal, E., D. D. Kosloff, and J. W. C. Sherwood, 1983, Reverse time migration: Geo-

physics, 48, 1514–1524.

Berkhout, A. J., 1985, Seismic migration: Elsevier Science Publ. Co., Inc., Amsterdam.

Bevc, D. and B. Biondi, 2005, Which depth imaging method should you use? a road

map through the maze of possibilities: The Leading Edge, 24, 602–606.

Billette, F., S. L. Bégat, P. Podvin, and G. Lambaré, 2003, Practical aspects and appli-
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Štekl, I. and R. G. Pratt, 1998, Accurate viscoelastic modeling by frequency-domain

finite differences using rotated operators: Geophysics, 63, 1779–1794.

Weglein, A. B., F. V. Araujo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R. T. Coates,

D. Corrigan, D. J. Foster, S. A. Shaw, and H. Zhang, 2003, Inverse scattering series

and seismic exploration: Inverse Problems, 19, R27–R83.

Weglein, A. B., H. Zhang, A. C. Ramı́rez, F. Liu, and J. E. M. Lira, 2009, Clarifying the

underlying and fundamental meaning of the approximate linear inversion of seismic

data: Geophysics, 74, WCD1–WCD13.

Whitmore, N. D., 1983, Iterative depth migration by backward time propagation: SEG

Technical Program Expanded Abstracts, 2, 382–385.

Wikipedia, 2009, Geography of saudi arabia — wikipedia, the free ency-



102

clopedia: http://en.wikipedia.org/w/index.php?title=Geography_of_Saudi_

Arabia&oldid=317815619. ([Online; accessed 9-November-2009]).

Woodward, M. J., 1992, Wave-equation tomography: Geophysics, 57, 15–26.

Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpretation of

seismic data: SEG.




