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Abstract

Integrated geophysical studies in two areas (the Ross Lake heavy oilfield,
Saskatchewan, and a Saskatchewan potash mine) are described in this thesis.
Multicomponent seismic processing and interpretation, rock physics modeling, and well
log analysis are carried out to develop detailed descriptions of a heavy oil reservoir and
fractures which can pose problems in potash mining.

In the Ross Lake oilfield, the VSP data provide a reliable time-depth correlation,
image around the borehole, and real amplitude AVO gather for delineating the sand
channel reservoir. The relationship between seismic wave attenuation and rock properties
is investigated for shale and sandstone using zero-offset VSP data. Interval Q values from
V'SP data for the P wave and shear wave correlate interestingly with petrophysical
variables. Q values increase with P- and S-velocities and decrease with Vp/Vs and
porosity. Shaly sandstone shows more attenuation than pure shale and sandstone.

Simulation of fractures in the rocks overlying the potash ore displays a significant
velocity decrease and anisotropy for both P- and S-velocities. Seismic interpretation of
the time-lapse 3C-3D surveys indicate noticeable amplitude changes and push-down
effects at the Dawson Bay Formation and underlying formations in 2008 survey
compared with 2004 survey, especially on radial data. Vp/Vs and seismic curvature
attributes also outline the fractured zones. The analysis on anisotropic modeling seismic
data suggests that by searching for seismic anisotropy, shear-wave splitting on the
multicomponent seismic data, we may also be able to delineate the fracture orientation

and intensity in the potash mining area.
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Chapter One: Introduction

1.1 Motivation and objectives

It is well known that the exploration for subtle hydrocarbon reservoirs and
detailed description of them are becoming more and more important. Multicomponent
seismic data have increased in numbers since the 1980’s. The introduction of shear waves
into seismic exploration provides valuable information for imaging and rock property
prediction of reservoirs. In the Ross Lake oilfield and at a Saskatchewan potash mining
site, multicomponent VSP data and time-lapse multicomponent surface seismic data were
acquired. The first part of this thesis undertakes a detailed description of sandstone
heavy oil reservoir using multicomponent VSP data and well log data. In the second part,
time-lapse multicomponent seismic interpretation, rock physics modeling, and anisotropy
analysis are carried out to assess the significance of fractures which may pose problems
to potash mining. The objectives of this dissertation are to: 1) delineate heavy oil
reservoirs using multicomponent VSP data; 2) further understand seismic wave
propagation and investigate seismic attenuation utilizing the benefit of VSP geometry;
and 3) delineate fractures by time-lapse multicomponent seismic data for potash mining.
1.2 Vertical seismic profile (VSP)

A VSP is recording a seismic signal generated at the surface of the earth with
motion sensors secured at various depths in a well (Hardage, 1983, 2001; Toksoéz and
Stewart, 1984; Stewart, 2001). With a VSP geometry, both downgoing and upgoing
seismic events can be recorded in time and depth (Figure 1.1). Therefore, VSP data give
insight into some of the fundamental properties of propagating seismic waves. These

insights, in turn, can improve the structural, stratigraphic, and lithological interpretation
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of surface seismic recordings (Hardage, 1983, 2001; Stewart, 2001). The VSP plays four
important roles in assessing the rock and fluids close to the borehole (Stewart, 2001): 1) it
provides in situ rock properties in depth, particularly seismic velocity (Stewart, 1984),
impedance, anisotropy, and attenuation; 2) it assists in understanding seismic wave
propagation (e.g., source signatures, multiples, and conversions); 3) it provides its own
seismic reflection image; and 4) all of the above assist in further surface seismic data
processing and interpretation.

1.2.1 Seismic attenuation

Energy absorption is a fundamental feature associated with the propagation of
seismic waves in all real materials, and as a result, the shape of transient waveforms will
evolve with propagation distance or time (Kjartansson, 1979). Numerous physical
mechanisms have been proposed to interpret the attenuation including frictional
dissipation due to relative motions at grain boundaries and across crack surfaces (Walsh,
1966); dissipation in a fully saturated rock because of the relative motion of the frame
with respect to fluid inclusions (Biot, 1956a, b); inter-crack fluid flow (also known as
“squirt” flow) (Mavko and Nur, 1975); and partial saturation effects such as gas-pocket
squeezing (White, 1975). Nonlinear friction is commonly assumed to be the dominant
attenuation mechanisms, especially in crustal rocks (Johnston et al., 1979). In real
materials, we expect that multiple mechanisms of attenuation are present, each having its

own characteristic frequency and magnitude (Figure 1.2).
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Figure 1.1 Schematic diagram of a VSP survey (from DiSiena et al., 1984).

In these mechanisms, attenuation is assumed to be related to matrix anelasticity,
pore fluid, relative motion between matrix and pore fluid, or the fluid phase in the pore
space. As one of the basic seismic attributes of waves propagating in the earth,
understanding the causes of attenuation as well as the relationship between the
attenuation of seismic data and rock properties is important in the acquisition, processing
and interpretation of seismic data. Using attenuation measured on rock samples and well
logs, a number of authors (e.g., Klimentos and McCann, 1990; Best et al., 1994;
Koesoemadinata and McMechan, 2001) examined the relationship between lab measured
attenuation and rock properties for sandstones. Since each of the multiple mechanisms of
attenuation have their own characteristic frequency and magnitude, understanding the

relationship between attenuation estimated directly from seismic wave and rock



properties may be of more importance in seismic exploration. The VSP is particularly
valuable in the study of seismic attenuation because reliable seismic attenuation can be

measured due to the special geometry of a VSP survey.
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Figure 1.2 Superposition of multiple attenuation mechanisms (from Mavko, 2006).
In real materials, multiple mechanisms of attenuation are present, each having its
own characteristic frequency and magnitude (Mavko, 2006). The modulus M (green
line) tends to increase with frequency in most rocks. The highest attenuation (the
attenuation is plotted as blue line) tends to be in frequency range where M is
increasing most rapidly. Three mechanisms of attenuation, thermoelastic, squirt
flow, and Biot’s relative motion of the frame with respect to fluid inclusions, are
labeled at their corresponding characteristic frequencies.

1.2.2 Study area and objectives

The Ross Lake heavy oilfield (owned and operated by Husky Energy Inc.) is
located in south-western Saskatchewan (Figure 1.3). The producing reservoir is a
Cretaceous channel sand in the Cantuar Formation of the Mannville Group. The produced
oil is about 13° API gravity. In June 2003, the CREWES Project, Husky Energy Inc., and
Schlumberger Canada conducted a multi-offset VSP survey for the well 11-25-13-17W3,
including a zero-offset VSP survey using both vertical and horizontal vibrators as

sources, two far-offset VSP surveys and a walkaway VSP survey.



The objectives of the VSP data sets were to:

1. improve the characterization of a Cretaceous channel sand;

2. study the AVO effect of the reservoir using walkaway VSP;

3. study the relationship between seismic attenuation and rock properties.
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Figure 1.3 Location of the Ross Lake oilfield, Saskatchewan.

1.3 Fracture and brine inflow problems in potash mining

Cracks in rocks can be caused by geochemical interactions or thermal loading and

may appear as small thin intra- or inter-granular defects. Their dimensions range from

microns up to several millimeters. A typical aspect ratio for cracks (“thickness-to-length

ratio”) is 0.001 to 0.1 (Macbeth, 2002). Natural fractures are complicated macroscopic

planar discontinuities in the rock, generally caused by physical diagenesis or

deformation. They may appear as shear fractures that have displacements parallel to their



surfaces, or as joints that have experienced tensional/extensional displacement
perpendicular to the fracture surface. The apertures of joints are generally on the
millimeter scale, and a shear displacement can have an effective hydraulic aperture
several orders of magnitude lower. Fracture characterization is of great practical
importance in hydrocarbon recovery, mining, well stability, CO, sequestration, and
nuclear waste isolation. In hydrocarbon exploration and production, fractures are
generally favourable because fractures can increase the porosity and permeability of the
rock. In particular, significant amounts of hydrocarbon are trapped in tight reservoirs,
where natural fractures are the main factors controlling fluid flow. However, fractures are
a problem in potash mining operations. Any natural or induced fractures of normally
impermeable rocks can create reservoirs and/or provide migrating pathways from
subsurface aquifers to potash deposits, thus causing a brine inflow problem. It will not
only cause ore loss but also create problems for the mining operations (Gendzwill, 1969).

The large contrast in electrical conductivity between dry and wet salt (dry salt is
electrically resistive, with apparent resistivity ranging from 100-100,000 Q-m, but
becomes very conductive when wet, with resistivity on the order of 0.01-10 -m) makes
the use of ERI (electrical resistivity imaging) an attractive method for detecting water
inflows (Eso et al., 2006). Underground GPR method (Annan et al., 1988) was applied to
estimate the salt thickness and condition of the evaporite. Seismic techniques (Pesowski
and Larson, 2000; Prugger et al., 2004) have been successfully used for risk analysis and
mine planning by mapping the collapse features in the underground potash mining

environment.



Due to quality improvements in conventional seismic data and multicomponent
data, fracture induced anisotropy began to be widely used for fracture characterization
during the last 25 years (Helbig and Thomsen, 2005). In potash mining, the induced
fractures which can bring brine from an aquifer to a mine may be a good candidate for
seismic monitoring techniques.

Studied area and objective

To monitor the brine inflow problem, seven 3D seismic surveys, including five
3C surveys were recorded from 2003 to 2008 in a Saskatchewan potash mining area. The
objective of this study in the potash mining area was to integrate rock physics, seismic
modeling and interpretation, and time-lapse multicomponent seismic techniques for
characterizing fractures in areas where potash mining occurs.

1.4 Software

The codes for rock physics modeling, well log analysis, and seismic attenuation
estimation were developed using the Matlab programming language. The other software
or programs used in the thesis include:

1.4.1 Modeling software

The SYNGRAM program from the CREWES Project was used to generate
synthetic seismograms. SYNGRAM creates primaries-only synthetic seismograms for PP
and PS reflections from well logs, including trace gathers for a horizontally layered earth
showing the variation of amplitude with offset as well as the stacked response. The
reflection amplitudes, and optional transmission losses, are calculated from the Zoeppritz
equations (no approximation) and are therefore appropriate for plane-wave incidence.

Traveltimes and incidence angles are calculated by ray tracing.



A layer-matrix method computed in the frequency-wavenumber domain (by GX
Technology) was used for anisotropic numerical modeling. It models seismic waves in
flat-layer media for any type of anisotropy. Prestack synthetic seismograms are generated
by a reflectivity method, where plane waves are propagated downward through the flat-
layered earth model using Kennett’s recursion relations, anisotropic vertical slownesses
are calculated numerically, and the anisotropic eigenvectors are then obtained from the
Christoffel equations. The modeling data used in Chapter 6 was done by Dr. James
Gaiser, formerly of GX Technology. The modeling data include interbed multiples over
the zone of input model, but free-surface multiples is not included.

1.4.2 Processing and interpretation software

VISTA Seismic Processing package is donated to the University of Calgary by
GEDCO, and it was used to process the 3C VSP data and 3C-3D numerical modeling
seismic data. Seismic interpretation and time-lapse attribute analysis were performed
using SeisWare International Inc.’s SeisWare software and CGGVeritas Hampson-
Russell’s Geoview software.

1.5 Thesis outline

Chapter Two includes the processing and interpretation of offset VSP data, and
AVO processing of walkaway VSP data at the Ross Lake heavy oilfield. The interpretive
processing workflow used for VSP data and true reflectivity offset gathers analysis from
walkaway VSPs are described in detail.

In Chapter Three, the seismic attenuation parameters Op and Qs are first
estimated from zero-offset VSP data sets acquired with a vertical vibrator and a

horizontal vibrator. Then the Q values are compared with rock properties from well log



analysis. Considering the advantages of a VSP geometry to study wave propagation, the
Ross Lake VSP data were also used to investigate the frequency difference between P-
and S-wave data, generally seen on most multicomponent land data.

Fracture detection is one of the major topics of this dissertation. To study fracture
effects in the rock, two rock physics models are reviewed in Chapter Four. Naturally or
induced fractures may or may not be controlled by a directional stress field; thus the
fractures may be randomly or aligned distributed. Therefore, two models, the Kuster-
Toks6z model for randomly oriented fractures/cracks and Hudson’s model for aligned
fractures/cracks were investigated in terms of usage limitation and fracture behaviour in
shale, sandstone and carbonates at several field locations.

Chapter Five addresses the brine inflow problem in potash mining. Rock physics
and synthetic seismograms are used for a feasibility study for using multicomponent
seismic survey to monitor and detect fractures which may cause brine inflow to the mine.
Time-lapse 3C-3D seismic surveys are interpreted to look for the seismic signatures of
fractures previously seen in the modeling, in the hope of outlining the fractured zones.

Rock physics models suggest that aligned fractures can be related to seismic
velocity anisotropy. In Chapter Six, numerical seismic modeling results were used for
seismic anisotropy and shear-wave splitting analysis. The purpose was to determine
whether an assumed amount of aligned fractures in the study formation could be detected

by seismic velocity anisotropy, and shear-wave splitting caused by velocity anisotropy.
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Chapter Two: Processing and interpretation of 3C VSP data from Ross Lake heavy
oilfield, Saskatchewan

2.1 Introduction

The Ross Lake heavy oilfield (operated by Husky Energy Inc.) is located in south-
western Saskatchewan. The regional stratigraphy in this area is shown in Figure 2.1. The
exploration target is the Cretaceous channel sand in the Dimmock Creek member of the
Cantuar Formation of the Mannville Group. The Mannville Group sandstones and shales
unconformably overlie Jurassic sediments, and underlie the Joli Fou Formation of the
Colorado Group. The Cantuar Formation of the Mannville Group is composed mostly of
sediment developed within ancient valley systems (Christopher, 1974), which carved into
the Success Formation and the Upper Jurassic Vanguard Group (Figure 2.2). The Cantuar
Formation is further subdivided into the McCloud, the Dimmock Creek, and the Atlas
members (Figure 2.2, Christopher, 1974). The channel sands in the Dimmock Creek
member have high porosities, of about 30%, and very high permeability (up to the 3
Darcy range). The produced oil is about 13° API gravity.

Due to its acquisition geometry, VSP data can be used to improve the structural,
stratigraphic, and lithological interpretation of surface seismic recordings (Hardage,
1983; Stewart, 2001). At the same time, VSP data also play important roles in assessing
the rock and fluids close to the borehole (Stewart, 2001). For detailed mapping of the
Cantuar Formation channel reservoir, the CREWES Project, Husky Energy Inc., and
Schlumberger Canada conducted a multi-offset VSP survey in well 11-25-13-17W3 in
June 2003, to enhance the interpretation of surface 3C-3D seismic survey acquired in

2002. Table 2.1 shows the acquisition parameters for the VSP survey; the locations of the
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VSP source and the well are shown in Figure 2.3. All the surveys were conducted with a
downhole five-level, three-component VSP tool. The zero-offset VSP survey used both
vertical and horizontal (inline) vibrators as sources. A vertical vibrator only was used for
the far-offset VSP surveys, and the walkaway VSP surveys. The zero-offset VSP data
were processed to provide a reliable correlation between borehole and surface seismic
data; far-offset VSP data were processed for improved seismic imaging around the well,
and amplitude versus offset (AVO) effects of the reservoir were assessed using the

walkaway VSP data.
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Table 2.1 Acquisition parameters of the Ross Lake VSP surveys.

Survey Type Zero-offset VSP Far-offset VSP Walkaway VSP

Offset 53.67 m 399.12 m 698.72 m 149.99m |250.66m |558.08 m | 996.8 m
Source Elevation | 856.1 m 867.7m 861.2 m 856.3 m 856.7 m 860.7 m 859 m
Source Azimuth 16.3° 337.2° 301.5° 336.2° 337.6° 310.5° 319.5°

Litton 315 P-vibe:
sweep = 8-180Hz,
12 s linear sweep

Litton 315 P-vibe:

Litton 315 P-vibe:

Source Type IVI S-MINI-vibe i\;veell? - 8- 180 Hz sweep = 8 - 180 Hz, 12 s linear sweep
(inline): s linear sweep
Sweep =5 - 100 Hz;
12 s linear sweep

Top Level 197.5m 197.5m 954 m

Bottom level 1165 m 1165 m 1165 m

Number of Levels | 130 130 14

Receiver Spacing | 7.5 m 7.5 m I5Sm

Reference Datum | KB=871.6 m

el
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Figure 2.3 Locations of the well and VSP sources.
2.2 Zero-offset and far-offset VSP processing

To avoid processing artifacts which may lead to mis-interpretation as a result of
inappropriate choice of processing parameters, a methodology called interpretive
processing was followed (Hinds and Kuzmiski, 1996, 2001). The interpretive processing
enables the interpreter to examine each step of the processing flow. More importantly, it
allows the interpreter to fully examine the VSP data in the same manner as quality
control procedure for surface seismic data processing. Compared with surface seismic
data, a VSP dataset is smaller. Therefore such an examination is not only effective but
easily applicable. The processing flows used for zero-offset and far-offset VSP data are

shown in Table 2.2.
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Table 2.2 Processing flow for zero-offset (left) and far-offset VSP data (right).

1. Load geometry 1. Load geometry

2. First arrival picking and Horizontal rotation

velocity inversion Amplitude recovery

Horizontal rotation* )
Wavefield separation

Amplitude recove ) ) .
p y Time-variant rotation

Wavefield separation )
Deconvolution

VSP-CDP transform

Deconvolution

A R B

A

Corridor stack

* This step may not always be
necessary.

2.2.1 Zero-offset VSP data processing
The zero-offset VSP surveys used both vertical and horizontal vibrators as
sources. They were processed for PP and SS waves respectively.

Vertical vibrator source zero-offset VSP

In the case of the zero-offset VSP survey with vertical vibrator, energy will be
mostly recorded by the vertical (Z) component. However, some energy can still be
recorded by horizontal receivers. Figure 2.4 shows the horizontal radial (Hmax, the
horizontal channel in the source-receiver plane), horizontal transverse (Hmin, the
horizontal channel normal to the source-receiver plane) and vertical (Z) components of
the vertical vibrator zero-offset VSP (refer to the processing coordinates in Appendix A).
Hmax and Hmin result from a rotation of X and Y components (Appendix A). Various
wave types, including transmitted, reflected and direct S-waves are recorded on

horizontal components (Figure 2.4a, b). The reason for the generation of S-waves can be
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imperfect verticality of the source, horizontal heterogeneity of the near surface structure,
or perhaps azimuthal anisotropy. On the horizontal radial component, weak direct P
waves can also be seen. In the vertical component, direct and reflected P-waves can be
easily spotted (Figure 2.4c). Downgoing multiples can also be clearly recognized.
Besides, small amount of direct S-waves can also be seen at shallow receivers from 600
ms — 900 ms.

Considering that the P-waves are mostly recorded by the vertical component and
the upgoing S-waves are very weak, the vertical component was processed for PP waves.
The processing started with assigning the geometry for the VSP data. Then the first
arrivals were picked and traveltime inversion for velocity was conducted based on the
first arrival time. The resultant velocities will be used for NMO processing (especially for
far-offset VSP data) and sonic log calibration. The sonic log and velocity estimated from
the VSP are similar with the sonic values usually somewhat higher (Figure 2.5).

A mean scale gain function was calculated in a 100 ms window along the first
arrival time and then applied to entire traces to balance the amplitude between each trace.
A "% gain was also used for amplitude recovery.

The upgoing and downgoing waves were then separated using a 13-trace median
filter. First the data were aligned by the first arrival time, and the downgoing waves were
estimated by the median filter. The upgoing waves were then estimated by subtracting the
downgoing wave from the whole wavefield.

Since the downgoing wavefield is also recorded in the VSP survey, a

deterministic waveshaping deconvolution operator can be designed from downgoing P
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waves and applied to upgoing waves. After deconvolution, the resolution was improved

correspondingly. A comparison between the upgoing wavefield before and after
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vibrator). Hmax and Hmin are from a horizontal rotation of X and Y components.
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Figure 2.5 P-wave velocity (black line) estimated from zero-offset VSP (vertical
vibe) first arrival time. The red line represents P-velocity from the sonic log.

deconvolution is shown as Figure 2.6. Due to the velocity difference between P and S-
waves, the downgoing SV waves are not removed by wave separation using median
filter. It can be found at shallow receivers from 500 ms to 1200 ms (Figure 2.6), and
should be attenuated before stack.

The data was then shifted to two-way traveltime by applying first-arrival time
statics (Hardage, 1983). Considering the time lag of multiples, the upgoing wavefield
recorded close to reflectors is assumed to be largely noise free. Therefore, before stack, a
50 ms corridor mute was applied to the data to remove multiples and other noise. By
comparing the stack with and without a corridor mute, we see that the corridor stack has a
higher resolution (Figure 2.7). The corridor stack result of a zero-offset VSP provides a

multiple-free trace with frequency bandwidth from 10 Hz to 95 Hz. Compared with the
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corridor stack trace, residual multiples can be determined by event discrepancies.
Multiples can be estimated by subtracting the corridor stack from the non-corridor stack
(Figure 2.7e). The multiples can cause event delay, at 1000 ms and 1100 ms, or
amplitude change at 1150 ms, and sometimes decrease the seismic resolution, at 750 ms,
900 ms, and 1100 ms. Since the multiples are very difficult to recognize on surface
seismic data in some cases, the VSP data can be very helpful in the interpretation of

surface seismic data.
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Figure 2.6 Upgoing wave (with mute) before (a) and after (b) deconvolution (source
offset 54 m). The downgoing SV waves can be found at shallow receivers from 500
ms to 1200 ms.
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Horizontal vibrator source zero-offset VSP

The processing of the horizontal vibrator source zero-offset VSP data is similar to
that of vertical vibrator source zero-offset VSP data. Figure 2.8 displays the horizontal
radial (Hmax), horizontal transverse (Hmin), and vertical (Z) components of the
horizontal vibrator zero-offset VSP. Both downgoing and upgoing S-waves can be seen
on the radial component, Hmax. The upgoing S-waves are comparatively weak on the
transverse component, Hmin. On the vertical component, downgoing P-waves, upgoing
P-waves, and direct S-waves can be seen. Figure 2.9 shows the shear velocity estimated
from S-wave direct arrival. The sonic values are usually higher than the velocity
estimated from the VSP due to velocity dispersion (Stewart et al., 1984).

Both the horizontal radial component Hmax, and the horizontal transverse
component Hmin, are processed for SS wave images. The processing follows the same
sequence as that for vertical vibrator VSP. The processed Hmax, Hmin (before corridor
stack) and corresponding SS corridor stack traces are shown in SS time as Figure 2.10.
Hmax displays a higher S/N (signal-to-noise ratio) than Hmin. The stack traces from

Hmax and Hmin have similar reflection character.
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2.2.2 Far-offset VSP data processing

The far-offset VSP data were processed using a 3C processing flow. Vertical and
horizontal components are processed for PP and PS images, respectively. Compared with
zero-offset VSP, some different processing steps are required for the far-offset VSP.
Here, mainly the techniques different from the zero-offset VSP processing flow will be
discussed. One of the indispensable processing steps is that the wave polarization must be
determined for the far-offset VSP (it is required for zero-offset VSP too, however, it is
not necessary for vertical component processing especially when the offset is very small).

Hodogram analysis (Appendix A) can be used to determine the polarization of the

various wave modes. Figure 2.11 displays the hodogram analysis in an analysis window
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of one period/cycle after the first arrival, and the comparison between the horizontal
channel data before and after rotation (Appendix A) at a depth level of 234 m. The
linearity of the polarization is quite good. There is no distinct amplitude difference
between the x and y data on raw data, while most energy is redistributed to Hmax
(horizontal radial, the horizontal channel in the source-receiver plane) after data rotation.
A polarity reversal is found at the depth level of 302 m (Figure 2.11), and it is corrected
after hodogram analysis and data rotation. Random orientation can also be found on the x
and y components of offset 399 m VSP data (Figure 2.12), very little coherent signal can
be seen on the raw x and y data. After data rotation, most of the P and SV energy was
redistributed to Hmax. Both the downgoing and upgoing waves become clearer after data
rotation. There is very little P energy on Hmin (the horizontal channel orthogonal to
source-receiver plane), but some shear energy exists on Hmin (Figure 2.13). It is thought
to be created by imperfect verticality of the source, horizontal heterogeneity of the near
surface structure, or perhaps azimuthal anisotropy. Since the upgoing SH waves are very
weak on Hmin, only the Z component and Hmax were processed for P and SV wave
images.

To unravel the upgoing P waves and upgoing SV waves, the upgoing wavefields
were first separated from both channel Z and Hmax. By a time-variant rotation
(Appendix A) of the two data sets, the upgoing P and upgoing SV wave can be separated

as shown in Figure 2.14.
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Most of the rest of the processing resembles that of the zero-offset VSP data.
Because of the far offset, there will be a large moveout left if only static shifts are applied
to the data, especially for the shallow part. When both NMO and static shift were applied
to the data, the reflections were flattened. Finally, a VSP-CDP transform was introduced
to map the time- depth domain data into the offset-time domain similar to surface seismic

images (Figure 2.15). The frequency bandwidth is 10 Hz to 90 Hz.
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Figure 2.15 VSP-CDP mapping of upgoing P waves (a) and its average amplitude
spectrum (b).

2.3 AVO processing of walkaway 3C VSP data

In addition to the near-offset VSP and the far-offset VSPs, a walkaway VSP
survey with four shots was also acquired. The source and receiver locations for these
VSP shots are listed in Table 2.3. The top receiver of the walkaway VSP is 954m, which

is above the Viking Formation and within the Lower Colorado Group. The top of the
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studied reservoir sand is approximately 1048m from the surface. The bottom receiver of
all the VSP shots is in the channel sand.

Table 2.3 VSP surveys for walkaway VSP processing.

Survey Source Number of Top Receiver Bottom Receiver Receiver
Type Offset (m) Receivers Depth (m) Depth (m) Spacing (m)

Zero Offset 54 130 (14) 197 (954.5) 1165 7.5 (15)
Offset 399 130 (14) 197 (954.5) 1165 7.5 (15)
699 130 (14) 197 (954.5) 1165 7.5 (15)

Walkaway 150 14 954.5 1165 15

250 14 954.5 1165 15

558 14 954.5 1165 15

997 14 954.5 1165 15

Note: the numbers parenthesized in the table are the values actually used for AVO
processing.

Due to its geometry, a VSP survey has some advantages for AVO analysis
(Coulombe et al., 1996): (1) VSP data generally have a broader bandwidth than
comparable surface seismic data due to the short travel path from the source to receiver,
especially only one-way through the near surface; (2) the S/N (signal-to-noise ratio) is
higher than that of surface seismic data due to the quiet borehole environment; (3) a
deterministic waveshaping deconvolution operator can be designed because the
downgoing wavefield is also recorded, thus wave-field propagation effects such as
multiples and attenuation along the incident travel path can be removed; (4) the
downgoing (incident) waves and upgoing (reflected) waves are both recorded near the

interface and largely free of undesirable wave propagation effects, thus a good estimate



32
of the reflection coefficient of an interface is relatively easy to obtain. The walkaway
VSP geometry is especially suitable for AVO analysis (Figure 2.16). Considering all
these advantages, walkaway VSP data were processed for AVO analysis at the reservoir
interval. In addition to the four shots of the walkaway survey, the zero-offset VSP and

far-offset VSP data were also processed using the same workflow and included in the

AVO analysis.
Source locations
BB B >
welll
offsetVSP source
P walkaway VSP source
R ES
T

Figure 2.16 Schematic diagram of the advantage of walkaway VSP geometry for
AVO processing. Since the receivers are located very close to the reflectors, the
incidence wave amplitude 4i approximately equal to the downgoing wave amplitude
A7. Thus the reflectivity R can be calculated by dividing the upgoing wave
amplitude Ar by downgoing wave amplitude A;. Shots at varied locations give
different incidence angles, therefore AVO gather can be built.

The walkaway VSP data were processed using a workflow described by
Coulombe et al. (1996, as shown in Figure 2.17). The processing of the 558 m offset will

be used as an example to illustrate the processing procedure. Firstly, each shot was
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processed individually with a workflow similar to that for offset VSP. Horizontal rotation
was applied initially to correct for tool spin. The resultant Hmax (horizontal radial
direction) and Hmin (horizontal transverse direction) for the 558 m offset VSP are shown
in Figure 2.18. Upgoing and downgoing P and SV waves were separated from Hmax and
Z component data by “wave-by-wave” algorithm (Blias, 2007). A significant merit of the
“wave-by-wave” algorithm compared with a conventional median filter or FK filter
methods is that the separated wavefields are largely noise free. Figure 2.19 displays the
downgoing and upgoing P waves, and SV waves, derived from the Hmax and Z
component data. Then deterministic deconvolution was applied to the upgoing wavefield
using the deconvolution operator designed on the downgoing P wave for each shot.
Figure 2.20 shows the comparison of the downgoing P wave before and after
deconvolution, respectively. After deconvolution, the downgoing P wave was
compressed to a real zero-phase wavelet, its corresponding amplitude spectrum was
whiter that for the raw data. The deconvolved upgoing P and SV waves using the

operator designed form downgoing waves are shown as Figure 2.20.
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Figure 2.17 The walkaway VSP processing workflow for AVO analysis (modified
after Coulombe et al., 1996). Each offset was processed individually to get a
reflectivity trace from each shot, and then all shots were combined to form an offset-
dependent gather for AVO analysis.



35

t
Hmax).

~—
25 5
=5
S E o=
= o P 2
L o
&= 2.5
298 3
R~ = e
ST 2 e
> = d ] [ e —]
[ m ot — =]
== . = E——
R e == —
sz e
p— D omm
R O .m..
= 5 5
S &< 9 O g =y
.E m L = m. Cm S Py e
PP S S — £ 5 = € e
o) o e e — = [>) = I
N iy, NSRS P cN » = g g g
I e s = v_ll.. = | D e
S P ~ o= 215 S
1IN RSy SR R S = 5 o X
-~ - —— e —_— o =
_—] . oI = m%
P N By = O P
U S A (e = g e
L g N e - SE = F—f == e g Ve gV
=] =" = m dev P S
I 1 s m ) T }\]Hht}f\lla
=R o =9 ¢ =
= e _— <
=4 < I N NI .- o Y o0 - -~ — = - = ]
b |, o am] Y = —
S R— s R N - = e T T A
B —4 N I - £ A E———— ——
i NP N W - I R et
2 : AN - — s —] e e aat e
- A PN = O =) A T
St+—1—4 R e e [=PT—
= —— I S e ~ < 5
= i I R e )
I e e e ] = (@] = |
E=0% gl e g =g g =
H ~Na A w o = ==} (=7
W = PA = N {sw)
= =2 2 = o -
& -— e
= (sw) N = _m
X7

d Z data of the offset 558 m
al picks).

going P waves (a), downgoing SV waves (b), upgoing P waves (¢),
dicates the first arriv

wn
and upgoing SV waves (d) separated from Hmax an

Figure 2.19 Do
shot (AGC applied, the green line in



36

DEPRCV] ‘JEI’O 1l]|00 10:15 10?5 11|l]4 11|35 11!35 DEPRCV] 9?-"0 10!]0 10:15 10?5 11|l]4 11|35 11,35
80 80
100 100
£ 120 £ 120
w w
= 140 = 1401
= F
160 160
180 180
dB Max 44.92287827 FREQ {(HZ} Average Trace dB Max 0.7701024413 FREQ {(HZ) Average Trace
20 40 60 80 100 120 140 20 40 60 80 100 120 140
Al f I At Y e
2 2w
(] [ N ST
> > :
o 01 o 07 e
= = | b
10}~ A8,
: : H ' ' ' ' N ottt ot |__ H "I"""'I" W .|
Max 180 [-180] FREQ (HZ) Average Trace Max 180 [-180] FREQ (HZ) Average Trace
20 40 60 80 100 120 140 20 40 60 80 100 120 140
9 150 i i . i i i i g ; ] ] ] i
2 ? 2
= f=]
@ 4
a a

Figure 2.20 Downgoing P waves before (top left) and after (top right) deterministic
deconvolution, as well as the corresponding amplitude spectra (the average
spectrum is in blue) and average phase spectra (shot offset 558 m).
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Figure 2.21 Upgoing P and SV waves after a deterministic deconvolution with
operator derived from downgoing P waves (shot offset 558 m, the green line
indicates first arrival picks).

To recover the true amplitudes for the P- and S-waves, scale factors were first

calculated by normalizing the downgoing P waves and applied to the upgoing P and shear
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wavefields. This processing compensates for the energy decay during the downward
propagation; thus the incident waves will be at the same relative amplitude level at each
depth level. Figure 2.22 displays the mean scaling of downgoing P waves. Before scaling,
the P wave amplitude decreases with depth but after mean scaling over a window from 90
ms to 110 ms, the downgoing P wave at each receiver depth was normalized to the same
amplitude. Then a t'° gain was used to correct spherical divergence losses. The final step
for amplitude processing was dividing the upgoing wavefield by the peak amplitude of
the downgoing P wave to get the reflectivity traces. Figure 2.23 displays the upgoing P

and SV offset-dependent reflectivity gather at a receiver depth 1075 m, from the seven

VSP shots.
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Figure 2.22 Downgoing P waves before and after mean scaling (flattened to 100 ms,
shot offset 558 m). Note amplitude decay of direct P waves with increasing receiver
depth before scaling.

After amplitude processing, NMO correction was applied to each shot. Also the
traces were flattened to the reflection time of a specific event to remove the effect of
small time shifts between each trace due to source statics. Here the reflection of the base

of the sand channel was chosen, considering that it is close to the reservoir and its
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reflection is strong and easy to pick. The two-way P wave traveltime was determined
after applying NMO correction and first-arrival time flattening of the upgoing P
wavefield of the zero-offset VSP. This process will also correct the static due to source
elevation and near surface velocity variation between each shot. The reflection of the
same horizon, the base of sand channel was corrected to 1096 ms for every VSP shot and
the results are shown as Figure 2.24.

Finally, the upgoing P and S waves from each shot were stacked as one trace to
improve the signal-to-noise ratio, and were then sorted into offset-dependent gathers for
AVO analysis. Figure 2.25 shows the offset gather from common shot stack of the
upgoing wavefield, flattened to the reflection time of the base of the sand channel. NMO
exists between the shots at different offset locations. The PP reflection time difference on
stacked traces between offset 54 m and 699 m is 10 ms for the high-amplitude peak at
about 1.15 s. The PS time difference for the same horizon is about 12 ms at about 1.2 s.
Combining NMO and channel base reflection flattening, the time shift between different
offset locations was removed (Figure 2.24). Figure 2.26 show the stack P and SV traces
sorted in the order of source offset. Compared with the results shown in Figure 2.25, the
time shift between traces caused by NMO is basically removed not only for the reflection

of the channel sand base but for the reflections of other interfaces, too.
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Figure 2.23 Upgoing P and SV offset-dependent reflectivity gather at a receiver

depth of 1075 m.
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Figure 2.24 NMO and static correction (by flattening the 1096 ms event) applied to
an upgoing P and SV offset-dependent reflectivity gather at a receiver depth of 1075

m.
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shot stack of 1096 ms event flattened gathers (no NMO correction). Note that only
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shot stack after NMO and static correction (by flattening the 1096 ms event). SV
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Mean scaling factors calculated from the downgoing P wave were applied to the
upgoing wavefields to account for incident wave amplitude decay due to increasing

propagation distance. However, it is only accurate for the reflections recorded at the
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receivers very close to the reflectors. Furthermore, spherical divergence and transmission
losses were also very difficult to be fully compensated. However, for reflections recorded
by receivers close to reflectors, the amplitude recovery measures used are effective and
accurate. Therefore a corridor stack will yield more reliable reflectivity traces. Figure
2.27 displays the corridor mute of upgoing P and SV waves. We find that the amplitude
of each event on the corridor muted traces is fairly consistent at different depths. Then,
each shot was stacked and sorted to offset-dependent gathers for AVO analysis (the P and

SV offset-dependent reflectivity traces are shown in Figure 2.28).
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Figure 2.28 Offset-dependent gathers of upgoing P and upgoing SV waves from
corridor stack of each shot.

2.4 Results and interpretation
2.4.1 Well log analysis

Figure 2.29 displays well log curves with formation tops of well 11-25-13-17W3
from the Ross Lake oilfield. Clay content in the rock was estimated from the gamma-ray
curve by linear scaling between its minimum and maximum values. The total porosity
was calculated from the average of density-porosity and neutron-porosity logs. Effective
porosity was estimated from the average of the shale-corrected density-porosity and
neutron-porosity. Water saturation in this well was calculated from the resistivity curve
based on Simondoux model (Crain, 2005). The results are plotted in Figure 2.30. A PE
(photoelectric) log was unavailable for this well. According to the neutron-density
porosity difference and regional geology in southwest Saskatchewan, the lithologies in

this well are mostly shale, shaly sandstone and sandstone.
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There are two clean sand intervals with good permeability at 1148 m-1160 m and
1164 m-1180 m respectively (Figure 2.30), which are interpreted to be sand channels in
the Cantuar Formation. The rock properties of the two sand intervals are list in Table 2.4.
The porosity of the channel sand is quite high, about 30%. There is about 12 m of oil pay
of the upper sand, whereas the lower sand is wet. The Vp/Vs value for the upper channel
sand (reservoir) is about 1.8. The wet lower channel sand also has a Vp/Vs value of 1.8.
Between the upper and lower sand, there is a tight formation with low porosity, about
7%. Here, Vp/Vs value is 1.66.

For the shallow sector (above Milk River Formation) in this well, the rocks have a
shale content of more than 50%, although the calculated porosities are quite high. The
total porosity is approximately 40%. The effective porosity is about 20%. To investigate
the reason for such high porosity in high shale content rocks, a crossplot between total
porosity and P-wave velocity was created (Figure 2.31). From the characteristics of the
well log curve, the P-wave velocity and total porosity are separated into three parts: from
198 m to 617 m (data in blue), from 617 m to 781 m (the data in red), and from 781 m to
the bottom of the well (data in green). These three groups distribute differently in the
crossplot of Vp and total porosity. According to the model described by Muker;ji and
Mavko (20006), this perhaps indicates diagenetic differences of these three depth ranges.
The data in the shallow part are mostly around the suspension line and display poor
cementation. The compaction and diagenesis of the rock are poor in the shallow part of
this well. The rock below the Milk River Formation displays much greater diagenesis.
Clean sand tends to be within a narrow region and relatively far from the suspension line.

Shaly sand and sandy shale are generally located on the left side of clean sand.
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Figure 2.29 Well log curves for the Well 11-25-13-17W3. Top: From left to right -
spontaneous potential (SP); resistivity (deep measurement in red, medium
measurement in blue and shallow tools in green); gamma-ray (GR); density porosity
(red, sandstone-scale) and neutron porosity (blue, sandstone-scale); Slowness (shear
wave in blue, and P wave in red); and Vp/Vs. The bottom plots are the same as the
top plots focusing on the channel sand portion of the well.
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Figure 2.30 Top, rock properties from well log data, from left to right: shale volume,
effective porosity, total porosity, water saturation, and Vp/Vs. Bottom, rock
properties from the top, focusing on the channel sand part of the well.

Table 2.4 Rock properties of the two sand intervals.

Thickness/depth

Density

Porosity

Vp (m/s Vs (m/s Vp/Vs
Upper 1 15 /1148-1160 3010 1660 2130 28 1.8
sand (oil)
Lower 16/1164-1180 2980 1630 2130 32 18

sand (wet)
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Figure 2.31 Crossplot between Vp and total porosity. Blue: 198 m-617 m (above the
Milk River); red: 617 m-781 m (from the Milk River to the Colorado Group); green:
781 m-1276 m (the Colorado Group and below).

2.4.2 Velocity inversion from VSP data

Figure 2.32 displays the P- and S-wave velocities estimated from zero-offset VSP
first-arrival time (plotted in blue) and the velocities from dipole sonic logs (plotted in
green. The sonic log velocities are blocked to the same depth location as those from the
VSP). The sonic log and velocity estimated from the near-offset VSP are similar but with
the sonic values somewhat higher (Figure 2.32). It is considered to be caused by velocity
dispersion (Stewart et al., 1984). The shear velocities from the shear wave first-arrival
time inversion range from 500 m/s to 1360 m/s (Figure 2.32b). The Vp/Vs values from
VSP traveltime inversion are close to that from dipole sonic logs. According to well logs
analysis, above the upper Cretaceous unconformity (refer to the generalized stratigraphic
chart in southwest Saskatchewan shown as Figure 2.1; the unconformity locates between

the Lea Park Formation and the Milk River Formation, at a depth of 600 m). Above the
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unconformity, the rocks display poor cementation and compaction. The Vp/Vs values are
generally higher, averagely 2.85. Below the upper Cretaceous unconformity, the Vp/Vs
values are relatively lower, averaging 2.2 for sandier rocks from depth 600 m to 900 m,
and 2.6 for shaly formations from depth 900 m to the bottom receiver level of the VSP
(Figure 2.32).

The P wave velocity difference from near-offset VSP and well logs also displays
fairly good correlation with the Vp/Vs, generally a lower value of Vp/Vs correlates to a
low velocity difference between VSPs with different source offset locations. It can also
be rephrased that lower Vp/Vs correlate with smaller P velocity dispersion. The shear
velocities display a similar general trend.
2.4.3 VSP processing results

Zero-offset VSP data yields a time-depth correlation between seismic reflections
from VSP data and well logs. Compared with synthetic seismograms from well logs, the
measurement frequency of VSP data is fairly close to that for surface seismic data, thus
the drift between the VSP and surface seismic is negligible. A composite plot (Stewart
and DiSiena, 1989) of the zero-offset corridor stack, flattened shot gather and well logs is
shown in Figure 2.33. The correlations between well logs and seismic signatures of
chosen geological markers are marked by red lines. Figure 2.34 shows the detailed
correlation between zero-offset VSPs and well logs focusing on the reservoir part. The
synthetic seismogram (by SYNGRAM) generated from well log data (after VSP
calibration) ties the VSP processing results very well. The P and S-wave velocities from
the sonic log increase at the top of the Mannville Group and the Cantuar Formation, and

the corresponding events on PP and SS data of zero-offset VSP data is a peak. For the
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Figure 2.32 Comparison of the P (a) and shear (b) velocities from VSP first-arrival
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channel sand (reservoir), the velocities increases at the top. However the P wave seismic
signature on the VSP data is a trough, the SS seismic response is a zero-crossing (the
reason is thin bed tuning, as there are several layers above the sand with only several
meters layer thickness); at the bottom of the channel sand, the P and S velocity again
increases and the corresponding seismic event is a peak on both PP and SS VSP data.

A good correlation is also found for the VSP results and an intersecting surface
seismic section (Figure 2.35). The correlations between VSP data and surface seismic
data for P wave and shear wave (displayed in PP time) are shown in Figure 2.35. The

surface seismic section is extracted from a 3-D volume described by Xu and Stewart

(2003).
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Figure 2.34 Correlation between well logs and zero-offset VSPs focusing on the
reservoir part. The PP and SS data are from the processing results of zero-offset
VSP acquired with vertical vibe and horizontal vibe, respectively.
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b: vertical component corridor stack of zero-offset

VSP(repeated five times); c: PP wave VSP-CDP mapping from the offset 399 m VSP; d: synthetic PP seismogram from sonic

and density well logs (repeated three times);

e: surface PS seismic data tied in PP time (from Xu and Stewart, 2003); f: PS
wave VSP-CDP mapping (PP time) of the offset 399 m VSP.
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Event mismatch can be found between the corridor stack traces of Hmax and
Hmin of the horizontal vibrator VSP data in Figure 2.33. Figure 2.36a shows the
comparison between the two corridor stack traces. Positive time shift can be found on the
Hmin stack trace compared with the Hmax stack trace. It is possibly caused by S-wave
velocity anisotropy. Cross-correlations between the two traces were calculated for the
whole trace, and five 1000 ms windows (Figure 2.36b). The time shift changes a little
with time, from 18 ms for shallow window, 1000-2000 ms, to 25 ms for deeper window,
3000-4000 ms (Table 2.5). The time shift from the whole trace cross-correlation is
similar, 20 ms. The results suggest that if the time shift between the stack traces of Hmax
and Hmin is caused by velocity anisotropy, it should be mostly in the near surface. The
velocity in S-N direction is faster than that in E-W direction. Below depth 198 m, which
is the depth of the shallowest receiver, no obvious velocity anisotropy is observed from
the zero-offset VSP data.
2.4.4 AVO interpretation

The composite plots shown in Figure 2.37 and Figure 2.38 display the detailed
(compared to Figure 2.35) correlation between well logs (gamma ray and velocity as
examples) and upgoing P (PP) and upgoing shear (PS) waves from VSP data (the PP data
was from the near-offset VSP, the PS data was from the 558 m walkaway VSP shot)
within the walkaway VSP receiver depth range. The geological markers for correlation
are the top of the Mannville Group, the Cantuar Formation, and the channel sand (the
reservoir is in the upper porous sand of the channel). The tops of the Mannville Group
and the Cantuar Formation both correlate to peak reflection on PP and PS data on the

VSP data. The top of the reservoir appears as a trough on PP reflection, and zero-crossing
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point (negative to positive) on PS reflection. The bottom of the reservoir expressed as a
weak peak reflection on PP data and a zero-crossing point (positive to negative) on PS

data.
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Figure 2.36 Comparison of the corridor stack of Hmax and Hmin of the horizontal
vibrator zero-offset VSP (in SS time) and the cross-correlation of the two traces.
The cross-correlations are calculated using five 1000 ms window data and the whole
trace data.

Table 2.5 Time shift calculated from the cross-correlations between corridor stack
traces of Hmax and Hmin of the horizontal vibrator zero-offset VSP.

Window Whole trace 1-2s 1.5-25s 2-3s 25-35s 3-4s

Time shift (ms) 20 18 20 22 25 25
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Figure 2.37 Correlation between well logs and zero-offset VSP within walkaway
VSP receiver depth range. a: upgoing P wave corridor stack; b: upgoing P wave in
two-way P traveltime (applied NMO and first-arrival time flattening).
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Figure 2.38 Correlation between well logs and source offset 558 m VSP within
walkaway VSP receiver depth range. a: upgoing PS wave corridor stack; b: upgoing
PS wave in two-way P traveltime (applied NMO and first-arrival time flattening).

The PP and PS VSP data were then correlated to the synthetic seismograms.
Figure 2.39 displays the correlation of PP data from walkaway VSP data and synthetic
seismograms. The synthetic seismograms were generated with VSP calibrated well logs.
The corridor stack (Figure 2.39a) of zero-offset VSP data correlates to the stack trace

(Figure 2.39d) of the synthetic seismogram very well. They display very good event
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matches, however, there are still amplitude differences between the real and synthetic
data. Although the stack was based on the reflection of the base of the channel (1096 ms
on PP data), good correlations can still be seen on the reflections of the top and the base
of the reservoir. On the synthetic gather (Figure 2.39¢), the top of the reservoir displays
an amplitude increase (negative amplitude, here the change means the absolute value
variation trend) with offset. The offset gather (Figure 2.39b) resulting from the walkaway
VSP processing displays the same trend except for the trace at offset 1000 m. At the
bottom of the channel sand the VSP offset gather and synthetic gather display the same

amplitude decrease (peak) with offset.
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Figure 2.39 Comparison of PP offset gathers from walkaway VSP processing and

PP synthetic seismogram from sonic and density logs. a: upgoing P wave corridor
stack of the zero-offset (54 m) VSP (repeated five times); b: PP offset gather from

walkaway VSP; c: PP synthetic offset gather; d: stacked traces of the PP synthetic
seismogram (repeated three times).
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The correlation of PS data from walkaway VSP data and synthetic seismograms is
shown as Figure 2.40. It also displays good correlation between the PS corridor stack
(Figure 2.40a) of offset (558 m) VSP data and the stack trace (Figure 2.40d) of the PS
synthetic seismogram. As found for PP data, good event matches, while amplitude
differences between the real and synthetic data are observed. At the top of the reservoir,
both the synthetic gather (Figure 2.40c) and the offset gather (Figure 2.40b) resulting
from the walkaway VSP processing are zero-crossings. At the bottom of the channel sand
the VSP offset gather and synthetic gather display the same amplitude increase (peak)

with offset.
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Figure 2.40 Comparison of the PS offset gather from walkaway VSP processing and
PS synthetic seismograms from sonic and density logs. a: upgoing PS wave corridor
stack of offset (558 m) VSP (repeated five times); b: PS offset gather from walkaway
VSP; c: synthetic PS offset gather; d: stacked traces of the synthetic seismogram
(repeated three times). All PS data are plotted in two-way P wave traveltime.
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Figure 2.41 displays the comparison of amplitude versus offset at the base of the

channel sand between walkaway VSP data and synthetic seismograms. The amplitudes of
synthetic seismograms were scaled to those of the VSP data by multiplying factors
deriving from the ratio of average amplitudes of VSP data to those of synthetic data. Both
the PP and PS data display similar variation trends of amplitude versus offset. The
amplitude differences at each offset are small for both PP and PS data. The mean
amplitude difference is 0.2% for PP data, and -0.1% for PS data (Table 2.6). These results

give us promise of rock properties inversion using AVO gather from walkaway VSP.
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Figure 2.41 Comparison between the amplitude at the base of the channel sand from
walkaway VSP and synthetic seismograms (generated by Syngram) for PP and PS
data. The amplitude of synthetic data were scaled to the average amplitude level of
VSP data.
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Table 2.6 Amplitude of offset gathers from walkaway VSP data and synthetic
seismograms at the base of the channel sand base and their difference.

Offset (m)
50 150 250 400 550 700 1000
Amplitude
VSP 0.147 | 0.15137 | 0.13118 | 0.10217 | 0.1313 | 0.11317 | 0.07217
synthetic 0.1577 | 0.1510 | 0.1323 | 0.1082 | 0.1138 - -
PP mean 0.18 i
difference (%) )
standard
deviation (%) 845 )
VSP 0.01303 | 0.05671 | 0.09677 | 0.14156 | 0.19037 | 0.14256 | -0.0308
PS synthetic 0.0326 | 0.0640 | 0.01035 | 0.1428 | 0.1578 | 0.1402 -
mean
difference (%) ) 0.13 )
standard i 116 i

deviation (%)
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Chapter Three: Seismic attenuation analysis from zero-offset VSP data

Attenuation is one of the basic seismic attributes of waves propagating in the
rock. Understanding the causes of attenuation as well as the relationship between seismic
attenuation (Q) and rock properties is important in the acquisition, processing and
interpretation of seismic data. A number of authors (e.g., Klimentos and McCann, 1990;
Koesoemadinata and McMechan, 2001) have examined the relationship between lab
measured attenuation and rock properties. In this chapter, the relationship between
seismic attenuation and rock properties is studied in shale and sandstone using well logs
and VSP data from well 11-25-13-17W3 at the Ross Lake heavy oilfield, Saskatchewan.
Seismic attenuation was derived from zero-offset VSP data. The rock properties were
calculated from well logs. Based on this study, attenuation characteristics of seismic data
are expected to provide information helpful to seismic interpretation and reservoir
characterization. Since the attenuation derived from VSP data is in seismic frequency
range, it is of more importance in seismic exploration. Considering the advantages on
studying the wave propagation by VSP geometry, attenuation effects on P and shear
waves were also studied using the Ross Lake 3C VSP data.

3.1 Q value estimation

A variety of methods have been developed to estimate the Q values from VSP
data. Tonn (1991) compared these methods and concluded that none of these approaches
is significantly better than the others in all situations. In noise-free cases, the spectral
ratio method (Hauge, 1981; Toks6z and Johnson, 1981) is optimal. Considering the high
signal-to-noise ratio of the VSP data, especially downgoing waves, the spectral ratio

method should be appropriate for Q value estimation in this study.
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Supposing first arrival wavelets, g (¢) and g, (¢) are recorded at depths Z; and

Z,. The amplitude spectra, G;(f) and Gx(f), of these two geophone responses are plotted as
a function of frequency. In such a case,
G,(f)=kG(f)e ™",

G-1)

where f'is the frequency and £ is a frequency independent factor that accounts for
amplitude effects such as spherical divergence, variations in recording gain, and changes
in source and receiver coupling. The exponent, A, is the cumulative seismic attenuation
between depths Z; and Z,, and it is assumed to be independent of frequency. This

equation can be rewritten as

G,(f)|_
h{—Gl(f)}_ Af +1n(k),

(3-2)
The left-hand side of this equation is the log spectral ratio of the VSP data

recorded at two depths, Z; and Z,. The cumulative attenuation value, 4, is determined by
the slope of the best straight line fit to this spectral ratio trend. The average Q value, Q,ye,

between depths Z; and Z, can be calculated from cumulative attenuation A4,

Qave = ﬂ'(tz - tl)/A ’
(3-3)

where ¢, and ¢, are the first arrival time at depths Z, and Z,.
Both vertical vibrator and horizontal vibrators were used for the Ross Lake zero-
offset VSP survey, Op and Qs values were derived from the two zero-offset VSP data

separately. To estimate the Q values, downgoing P waves and shear waves should be
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extracted from vertical vibrator data and horizontal vibrator zero-offset VSP data,
respectively.

Although the source-well distance of the zero-offset VSP data is fairly small, the
seismic waves are still not propagating vertically at the receivers even when the earth is
an ideally layered medium. Thus it is impossible that the P waves were only recorded by
the vertical component, the horizontal component will also record part of the P wave
energy. For the same reason, the vertical component will also record some shear waves.
Thus hodogram analysis based 3C rotation (Appendix A.2) of the zero-offset VSP data
was carried out to isolate the primary downgoing wavelet. Hmax’ (in the source-receiver
direction, shown as Figure 3.1a) instead of vertical component of vertical vibrator zero-
offset VSP data, and Z’ (normal to the source-receiver direction, Figure 3.1b) instead of
Hmax component of horizontal vibrator zero-offset VSP data were used for downgoing P
and shear wave separations. Down-going P- and shear waves (Figure 3.2) were then
extracted using F-K filter from these two data respectively. It is clear that shear waves
were attenuated much more severely than P waves. Then, the amplitude spectra for all the
levels were calculated using a 500 ms window (Figure 3.3). Considering the signal-to-
noise ratio, frequency bands from 20 Hz to 120 Hz for P waves and 20 Hz to 40 Hz for
shear waves were chosen to build the cumulative attenuation curves for Q value
estimation. To avoid unreasonable Q values, the cumulative attenuation curves were
smoothed using a 7-point smoothing window before calculating average Q values from
the surface to each depth. Using the surface sweep signal as reference, average Q values

at each receiver depth were calculated.
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To examine the relationship between attenuation and rock properties, interval Q
values are necessary. The interval Q values (Q;,,) for a layered medium are estimated

from the average Q values (Q,..) using a method by Bale and Stewart (2002),

1 1 ( T(n+1) T(n)

Qint(n + 1) - T(n + 1) — T(n) Qave(n + 1) - Qave('n)>,n = 1, 2, 3, ,N - 1

(3-4)

where T(n) is the first arrival time at the n” depth level, O.ve(n) is the average Q value
between the reference depth and the n™ receiver depth, Oy(n+1) is the interval Q value
between the n” and (n+1)™ receivers.

Using equation (3-4), attenuation-depth structures for P waves and shear waves
were determined from smoothed average Q values using a 21-point window (the right
curves of Figure 3.3). The Qp values are from 20 to 120, and Qs values range from 10 to
80. All of them are in reasonable range. They are also comparable to average Q values by
Haase and Stewart (2004), which are 67 for the P-wave and 23 for the shear-wave over

an interval of 200 m to 1200 m.
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Figure 3.1 Hmax’ (in the direction of source-receiver) of vertical vibrator VSP data
(a), and Z (in the direction perpendicular to source-receiver direction) of horizontal
vibrator VSP data (b).
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Figure 3.2 Flattened down-going P waves (a) and shear waves (b) separated from
the Hmax’ and Z’ shown in Figure 3.1.
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Figure 3.3 Top, from left to right: amplitude spectrum (sweep source in red, the
first depth level in blue and the bottom receiver in green) as well as spectral ratio at
the first receiver, cumulative attenuation from the spectral ratio method, and
estimated interval Q values of the P wave. The lower plots are for the shear wave.
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3.2 Q value and rock properties

The cumulative attenuation curves in Figure 3.3 show that the values gradually
increase with depth from 400 m to 1050 m. The Q values for P waves are considered
reliable for this interval. For shear waves, since the frequency bandwidth for Q estimation
was narrow, the cumulative attenuation at each depth level was more scattered. A
decreasing cumulative attenuation was found over some scattered intervals and the
bottom part of the well, which means the interval Q value will be negative (not physically
reasonable). Therefore, the following analysis will focus on the depth intervals with
reliable Q values.

Figure 3.4 displays Q values for the P- and shear-wave data, and rock properties
from the well log analysis. Some correlations between Q values and rock properties can
be seen from these curves. Generally high attenuation corresponds to low velocity, high
porosity and high Vp/Vs, and vice versa. From the crossplot between Op values and P-
and S-wave velocities (Figure 3.5), we see that Op values increase approximately linearly
with P and shear velocities. A similar variation is also observed for Qs values and
velocities, although the correlation is not as compelling (Figure 3.6). Decreasing quasi-
linear relationships are found between Q values and Vp/Vs (Figure 3.7).

From the crossplot between Q value and shale volume (Figure 3.8), the maximum
P-wave attenuation was found in shaly sandstones. The attenuation of P-wave was lower
in clean sand and shale. However, it is generally observed that Vp/Vs increases with
shale content. However, this is not obvious in our current case. The Q vs. Vp/Vs

relationship and the Q vs. shale volume relationship seem to be contradictory here.
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Figure 3.4 Top, from left to right: Op, Vp/Vs, Vp, Vs, shale volume, porosity
(effective porosity in blue, density porosity in red and neutron density in green), and
P-wave impedance. The bottom plots are for the S wave (the right frame is shear-
wave impedance). Well log data were smoothed using a 15m window.
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Figure 3.5 Crossplot between Qp and P velocity (left), and crossplot between Op and
shear velocity (right). The red lines are linear regression lines. In the equations, the
velocity unit is km/s.
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Figure 3.6 Crossplot between Qs and P velocity (left), and crossplot between Op and

shear velocity (right). The red lines are linear regression lines.
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Figure 3.7 Crossplot between Op and Vp/Vs (left), and crossplot between Qs and
Vp/Vs (right). The red lines are linear regression lines.
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According to the relationship between attenuation and fluid, it is possible that the
interaction between mobile water in the pores and clay-bound water generates a large P-
wave attenuation. To investigate this idea, a crossplot between Q values and clay-bound
water was created (Figure 3.9). Neutron porosity responds to the total water volume in
the rock, which includes clay-bound water and free water. Thus, the clay-bound water
volume was estimated from the difference between neutron porosity and effective
porosity and normalized by neutron porosity. When the water is 100% bound to clay, the
attenuation seems small. When part of the water is free and the other is bound to clay, a
larger attenuation seems to be measured. For the shear waves, a similar relation is
observed, although it is less distinct, because the S-wave does not mobilize the free water

as much.

0 01 02 03 04 86 0B 07 08 08 1 n 01 02 0% 04 08 0O 07 08 089 1
Vsh Vsh

Figure 3.8 Crossplot between Op and shale volume (left), and Qs vs. shale volume
(right). The red lines are linear regression lines.
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Figure 3.9 Crossplot between Op and clay-bound water (left), and Qs vs. clay-bound
water (right). The red lines are linear regression lines.

Since there are correlations between the Q values and the rock properties,
empirical equation can be used to approximately calculate Q values from rock properties.
Assuming linear relationship between the Q values and the rock properties in the studied
well, firstly each single rock property is used to predict the Q value using least-square
regression method (Appendix B). The purpose is to see which rock property is the most
effective for Q estimation. Figure 3.10 shows the fit between the actual Q values and
predicted Q values from Vp, Vs, P modulus, shear modulus, Vp/Vs, shale volume,
effective porosity, and density. The Op correlates more with velocities and Vp/Vs, while
the Qs influence more by Vp/Vs and shale volume. Then least-square regression for
multiple rock properties is also implemented. The results indicate that moduli are better
than velocities for Op prediction, while velocities are a little better for Qs prediction. To
test the sensitivity of each rock property on the prediction accuracy, one rock property is
excluded from the calculation each time. The results are shown as Figure 3.11 for both
Op and Qs. The prediction using all the testing rock properties is also displayed (the far

right-end bar) for comparison. Compared with estimating Q value with one rock property,
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multiple rock properties yield better results (higher R* value). No exclusion of one rock
property has much influence on the result for Op. Relatively, density and shear moduli
have the least influence. The Os values seem to be affected more by shale volume and

porosity.

Figure 3.10 Correlation between real Q values and the Q value from single rock
property values. The prediction of Q value is from linear regression equation
including only one rock property. The higher R’ value indicates higher correlation.

According to the analysis, P modulus, Vp/Vs, effective porosity, and shale
volume are chosen to build empirical equation for Q prediction using multiple parameter

least-square regression method (Appendix B). The equations for Op and Qs are:

Qp=1.95*M—13.63*%+37*¢+21*Vsh+28.6

QS=66.4*M—13.38*%+285*®+101*Vsh—210

(3-5)
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where M is P wave modulus, unit: GPa; ¢ is effective porosity; Vsh is shale volume. The

comparison between the real and predicted Q values using equation (3-5) is shown as

Figure 3.12. It shows better prediction quality of Op (R*=0.65) than Os (R*=0.48).

Figure 3.11 The influence of a single rock property value on prediction accuracy of
Q value from rock properties. The prediction of Q value is from linear regression
equation including all the rock properties listed at the bottom of each plot, except
for the one right below the bar plot. “None” in the figure indicates that all the
previous six values are used for linear regression calculation.
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Figure 3.12 Comparison between real and predicted Op and Qs values using
equation (3-5).
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3.3 Frequency analysis of Ross Lake 3C VSP data: does attenuation account for the
frequency difference of PP and PS waves?

In multicomponent seismic exploration, the frequency content of the PP and PS
waves are often found to be different. At the reflector where wave-mode conversion
occurs, if there is no variation of the amplitude relationships (defined by the Zoeppritz
equations, Aki and Richard, 1980) between P and S waves with frequency, the frequency
content of P and S waves should be equivalent at the interface. When the waves leave the
interface, they will diminish in amplitude as a result of several factors, such as spherical
divergence, transmission losses, energy mode conversions, and dissipation. Some of these
factors will not affect the frequency content. Others, such as dissipation, will have
different frequency effects on P and shear waves. Due to its particular source-receiver
geometry, a VSP records the different wave modes close to the interface besides the
reflected waves which propagate some distance from the interface (which are the wave
types recorded by surface seismic data). Therefore, VSP offers us an opportunity to gain
a better understanding about seismic wave propagation, and the analysis of frequency
relationships between different wave modes at or close to the reflector and some distance
from the reflector becomes to be convenient.

3Cfar-offset VSP data, with source offset 399 m, is used for frequency analysis.
The frequency analysis was implemented on both raw and attenuation compensated PP
and PS waves to analyze the frequency content, and the reason for the frequency
difference that we generally see between P and shear waves in multicomponent seismic

exploration.
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3.3.1 Frequency analysis of PP and PS waves on raw data

Frequency analysis was first undertaken on the raw PP and PS data. Two
windows were designed for the frequency analysis on the same traces. One window is
designed along the first arrival (Figure 3.13, outlined by red dot-dashed lines). The
purpose of a frequency analysis in this window is to investigate the frequency
relationship between PP and PS waves close to the reflectors. We assume that in the short
window from the first arrival the waves travel for just a short distance from the interface,
the attenuations for both PP and PS waves are comparatively small and the frequency
relationship should be similar to that at the interface. Figure 3.13 shows the amplitude
spectra of the upgoing PP wave and PS wave in the 300 ms window starting from the first
arrival. The frequency components of PP waves and PS waves are similar. The frequency
bandwidth of the PS wave is generally narrower than that of the PP wave at each trace.
The amplitude spectra at depths 700 m, 900 m, and 1100 m (Figure 3.13e) show more
attenuation of the high frequency content of PS waves than for PP waves. The frequency
bandwidth of the PP wave decreases with depth (Figure 3.13c), and the PS wave displays
a similar trend (Figure 3.13d).

The second window (Figure 3.14, outlined by yellow dot-dashed lines) is along
the reflections. The aim is to study the frequency relationship between PP and PS data at
different distances from the reflectors. The window is 400 ms for PP data, and the
window length for the PS data is calculated based on the average Vp/Vs in order to
include the same reflections as in the PP data. Figure 3.14 display the analysis windows
for PP and PS data and the corresponding amplitude spectra. The frequency difference

between PP and PS data is much larger in this case than in the window along the first
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Figure 3.13 Frequency analysis of raw PP and PS data in a 300 ms window (VSP

offset 399 m). The red dot-dashed lines in figures a and b outline the analysis
windows for PP and PS data, respectively. The amplitude spectra of PP and PS data

at each receiver are shown as ¢ and d. The amplitude spectra at depths of 700 m,

1090

900 m, and 1100 m are average spectra of the traces within 30 m from each chosen

depth.

arrival. The high frequency content of PS waves also shows much more attenuation than

that of PP waves. The amplitude spectra chosen at depths 700 m, 900 m, and 1100 m

show the frequency difference increasing with distance from the reflector. At depth 1100
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m, the reflections are relatively close to the reflectors, therefore the frequency content

difference between PP and PS waves is small. At depths of 700 m and 900 m, the

difference gets larger when the reflections travel further from the reflectors.
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Figure 3.14 Frequency analysis of raw PP and PS data in a window along the
reflections (VSP offset 399 m). The yellow dot-dashed lines in figures a and b outline
the analysis windows for PP and PS data, respectively. The window for PP data is
400 ms, the window length for PS data is calculated assuming an average Vp/Vs 2.4.
The amplitude spectra of PP and PS data at each receiver are shown as ¢ and d. The
amplitude spectra at depths of 700 m, 900 m, and 1100 m are average spectra of the
traces within 30 m from each chosen depth.
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The analysis on raw data shows that the frequency contents of PP and PS waves
are similar close to the reflector, and the difference between PP and PS waves relates to
the distance from the reflectors. Thus the difference might be caused by different
attenuation of P and shear waves. If it is possible to compensate for the attenuation of the
different type of waves, then it should be possible to recover a similar frequency content.
3.3.2 Frequency analysis of PP and PS waves after attenuation compensation

From the Q value estimated from zero-offset, the attenuation of P and S waves
changes with depth. So time-variant inverse Q filters were used to remove the attenuation
effect of P wave and S wave. However, the algorithm of the inverse Q filter is designed
for surface seismic, and the Q values are given according to downgoing P wave time,
therefore, the O compensation is basically valid close to the first arrival. For the waves
travel further from the reflector, they will be under-compensated.

After applying inverse Q filters to the data, frequency analysis is executed
following the same idea as aforesaid: a window along the first arrival for frequency
relationship close to the reflectors and a window along reflections for traveling distance
effect on the PP and PS wave frequency content. The amplitude spectra of upgoing PP
wave and PS wave in the 300ms window starting from the first arrival are shown as
Figure 3.15. The frequency content of PP wave and PS wave are almost the same after
applying inverse Q filter. The amplitude spectra at depth 700m, 900m, and 1100m
(Figure 3.13c) shows that PP and PS wave have almost the same frequency bandwidth.
The frequency bandwidth variation with depth is very small for both the PP and PS wave.

Figure 3.16 displays the frequency analysis in the window along the reflections

(the analysis windows are outlined by yellow dot-dashed lines). The frequency difference
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between PP and PS data get smaller comparing with that without attenuation
compensation. It can also be found that the variation of frequency bandwidth with travel

distance also decreases after applying inverse Q filter. Since the O compensation is
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Figure 3.15 Frequency analysis after attenuation compensation in a 300 ms window
(offset=399.1 m). The red dot-dashed lines in figures a and b outline the analysis
windows on PP and PS data. The amplitude spectra of PP and PS data at each
receiver are shown as ¢ and d, respectively. The amplitude spectra at depths of 700
m, 900 m, and 1100 m are average spectra of the traces within 30 m from each
chosen depth.
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Figure 3.16 Frequency analysis after attenuation compensation in a window along
the reflections (VSP offset 399 m). The yellow dot-dashed lines in figures a and b
outline the analysis windows for PP and PS data, respectively. The window for PP
data is 400 ms, the window length for PS data is calculated assuming an average
Vp/Vs 2.4. The amplitude spectra of PP and PS data at each receiver are shown as ¢
and d, respectively. The amplitude spectra at depth 700m, 900m, and 1100m are
average spectra of the traces with 30 meters from the chosen depths.
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inadequate in the analysis window, especially the PS wave, the PP and PS wave still
display apparent difference at the high frequencies.

From the above analysis, we found that the frequency difference often showing on
the field data might be caused by different attenuation of P and S waves. If we can
accurately account for such attenuation in data processing, the frequency content of PP
and PS should be similar.

3.4 Summary

Well log analysis indicates the studied depth interval contains mainly shale and
sandstone. An interesting correlation between the Q values and rock properties was found
over a reliable Q estimation interval. Generally, increasing P- and S-velocities
accompany a decreasing attenuation of P- and S-waves. Greater pore space in the rock
and higher Vp/Vs values coincide with low Op and Qs values. Interestingly, attenuation
was found to decrease with clay content for clay-rich sandstone. Clean sand in this well
shows less attenuation of P and S-waves than shaly sandstone. The crossplot between Op
and clay-bound water indicates more attenuation of shaly sandstone possibly caused by
the interaction between mobile water and clay-bound water.

Since the attenuation data over the reservoir and wet sand interval in this well
were not obtained in this study, the effect of different pore fluids on attenuation was not
addressed. If reliable attenuation data could be acquired from surface seismic data, then
attenuation variation with different pore fluids could possibly be studied. Thus, we might
be able to use the attenuation characteristics of seismic data to differentiate hydrocarbons

from water in the reservoir.
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To understand the reason for the frequency difference generally found in
multicomponent seismic exploration, especially in surface seismic data, frequency
analysis was undertaken on the 3Cfar-offset VSP data. The results revealed that: 1) the
frequency contents of PP and PS data are similar near the reflector; 2) the difference
between the frequency of PP and PS becomes larger when the waves travel farther from
the reflector; 3) the differences are mostly explained by attenuation, and the frequency

contents of PP and PS data are similar after attenuation compensation.
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Chapter Four: Rock physics model for cracked/fractured media

4.1 Introduction

Cracks and fractures are commonly caused by stress exceeding the rock strength.
They are generally produced as strain due to natural stress on the rock. Cracks and
fractures are important as they relate to flow characteristics of fluids in the rock.
Furthermore, cracks and fractures contribute no more than a few percent to overall
porosity (Macbeth, 2002), and hence have a very small effect on the bulk density of the
rocks. However, they can introduce large changes in seismic velocity. Aligned
cracks/fractures can also cause velocity anisotropy, in which the velocity parallel to
fractures is larger than the velocity perpendicular to fractures (Thomsen, 1986).

Several theoretical models have been developed to predict the effective elastic
moduli of a mixture of grains and pores. These models can be used to model the
cracks/fractures in the rocks. The Kuster-Toks6z model (Kuster and Toks6z, 1974;
Berryman, 1980) calculates the effective moduli of randomly distributed cracks/fractures
based on scattering theory, assuming that the cavities are isolated with respect to flow.
The Hudson’s model (1980, 1981) predicts the effective moduli for aligned
cracks/fractures, assuming the cracks/fractures in the rock to be thin and penny-shaped.
Cheng (1993) proposed a model for the effective moduli of transversely isotropic rocks,
which is valid for arbitrary aspect ratios.

In this chapter, two rock physics models for cracked media are examined to
investigate the velocity effects of crack/fractures in the rocks: the Kuster-Tokséz model
for randomly oriented cracks/fractures and Hudson’s model for aligned cracks/fractures.

Since there are some limitations on the use of these two rock physics models, the effects
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of crack/fracture shape, aspect ratio, and crack/fracture density are also discussed, using
rock properties from several field locations: the Ross Lake, Saskatchewan, the Violet
Grove, Alberta, and a Saskatchewan mining area.

4.2 Rock physics models for seismic velocities of cracked/fractured media
4.2.1 Kuster-Toksoz Model

Based on a long-wavelength, first-order scattering theory, Kuster and Toks6z
(Kuster and Tokso6z, 1974; Berryman, 1980) derived a method to calculate effective
moduli for randomly distributed inclusions. A generalization of the expressions for the

effective moduli K* and u* can be written as (Kuster and Toksoz, 1974; Berryman, 1980):

N
K, +2 .
(K = K)ot = ) (K — KOP™,
takm o
4-1)
N
(u —u*)M = Zc (i — 1)Q™
m - - i\Mm — Hi )
u+ Fy o
4-2)
and
N
p1—p" = Z ci(p1 — pi),
i=2
(4-3)
where,

e ¢; = Q;/Qis the volume concentration of each inclusion type, and ¥, ¢; = 1, £2

: volume;
e K;, u;: bulk and shear moduli of inclusion;

Ko, Um: bulk and shear moduli of matrix;

4
k = pvy —pvi, p=pvs;
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o k= (.um/6)[(9Km + 8.um)/(Km + ZMm)];

e P™ Q™ coefficients describing the effect of an inclusion of material 7 in a

background medium m (Table 4.1);

® pq, pi,p": density of matrix, inclusion, and effective density.

Table 4.1 Coefficients P™ and Q™ for four types of inclusion. F = (u/6)[(9K +

8w)/(K+2w],y = ul(3K + w)/BK + 7w], B = u[(3K + p/(BK + 4w))], a. is the
aspect ratio. The expressions for spheres, needles, and disks were derived assuming

Ki/K,, < 1and p/p, < 1.

Inclusion shape P o
4
K + 3 Hm Pm + Fn
Spheres —4 T
Ki + §.um Hi m
L[ Am Hm + Ym
1 5 + u t2 4
Km + Um + §:ui HUm K 25 Ym
Needles 1 4
Ki + tm + 351 Ki + 3t
1
Ki+ pim + 314
4
Disk Km+§ﬂm Um + F;
isks — 0+ F,
K; + §.um
1 8
14 Hm
K.+ é . 5 4.“1' + T[a(.um + Zﬁm
m T FHi
Penny cracks
1 K 2 2
Ki +zu; + mafn, ) it t 3,

K; + %Hi + wafy,
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4.2.2 Hudson’s model
The Hudson’s model (1981) is based on a scattering theory analysis of the mean

wavefield in an elastic solid with aligned thin, penny-shaped ellipsoidal cracks or

f

inclusions. The effective moduli Ciejf are given by:

eff

— -0 1 2
Cij~ =Cij +ci; ¢

ijo
(4-4)

1

where cl-Oj are the isotropic background moduli, and ¢;;,

cl-zj are the first- and second- order

corrections, respectively.

ocoxT oo o
oOT|W OO OO
FOOOOOI

(4-5)
where A = p(vj — 2v¢), u = pvé.

For a single fracture set with the fracture normal aligned with the 3™ axis (Figure

4.1), the fractured medium exhibits transversely isotropic symmetry as equation (4-6),

and the corrections are,

€11 €12 C13 0 0 0 1
C12 €11 Ci13 0O 0 O
€13 €13 (33 0O 0 O
1l o 0 0 ¢4 O 0 'C66=§(C11_C12)
0 0 O 0 ¢y O
L0 0 0 0 0 cg

(4-6)



Figure 4.1 Schematic diagrams of aligned fractures (shown in blue).
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The second-order corrections are
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q
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A? A 2 2 2
o q=15u2+28;+28,/1=p(vp—sz),u=pvs;

N 3 :
o €= Va3 = 4—12 = crack/fracture density.
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The isotropic background elastic moduli are A and p, ¢ is the porosity, while a and

1

a are the fracture radius and aspect ratio (Appendix C), respectively. The corrections cjj,

cizl- obey the usual symmetry properties for transverse isotropy or hexagonal symmetry.

The term U; and Uz depend on the fracture conditions.

For dry fractures

_16(A+2u) 4+ 2p)
17 3@A+4p) 3T 30+

For “weak” inclusions

_16(A+2w) 1 4+ 1
VT3@A+4 A+ M) T30 +p) (1+x)
where
! 4 !
4 (A+2p) KT+ @A+ 20)
Comap (34 +4u) *= mapu (31 + 4p)

K’ and p’ are the bulk and shear moduli of the inclusion material, respectively.
The criterion for an inclusion to be “weak’ depends on its shape or aspect ratio a as well
as on the relative moduli of the inclusion and matrix material. Dry cavities can be
modeled by setting the inclusion moduli to be zero. Fluid-saturated cavities are simulated
by setting the inclusion shear modulus to be zero.

Both models assume no fluid flow between spaces, thus they simulate high-
frequency, saturated-rock behaviour. At low frequencies, when there is time for wave-
induced pore pressure increments to flow and equilibrate, dry-rock moduli should first be
calculated from the two models. Then, Gassmann (1951, Appendix D) fluid substitution
for isotropic media, and Brown and Korringa’s (1975, Appendix D) fluid substitution for

anisotropic media can be used to predict saturated rock properties.
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The overall effect of randomly distributed inclusions in a rock from the Kuster-
Toks6z method is an isotropic medium. The overall effect of the aligned fractures from
the Hudson’s model is an anisotropic medium.
4.3 Parameter test on rock physics models for cracked/fractured media

The assumptions for both fracture models indicate that there are some limitations
on the fracture parameters including fracture shape, aspect ratio, and fracture density.
Several rock types were selected to provide values for numerical tests: a Cretaceous-
aged, high-porosity (about 30%) channel sand, and a tight sand from the Ross Lake heavy
oil field, another Cretaceous-age low-porosity (about 12%) sandstone from Violet Grove,
Alberta, and a Devonian carbonate and a shale from a potash mining area in
Saskatchewan. These rock properties are listed in Table 4.2. The porous channel sand and
tight sand from Ross Lake area were used for various parameter tests with the Kuster-
Toks6z model and Hudson’s model. For this modeling, the Hashin-Shtrikman bounds
(Appendix E) were also calculated for comparison. These bounds are the narrowest
constraints when the geometries of the constituents are not known. Fractured rock
properties are then calculated for all the chosen rocks, assuming penny-shaped fractures,
with a fractional fracture porosity of 0.01 and an aspect ratio 0.01. For all the tests, the
void spaces are filled with brine with a density of 1100 kg/m’ and a velocity of 1430 m/s.
4.3.1 Kuster-Toksoz Model

Figure 4.2 and Figure 4.3 display the results for randomly oriented inclusions in
the porous channel sand of the Ross Lake heavy oil field calculated by the Kuster-Toksoz
model. Dry moduli were calculated first by assuming that both the bulk and shear moduli

of the porosity are 0 (air filled), then the Gassmann equations were used to calculate the
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effective moduli when the void space is filled with brine. As shown in Figure 4.2a, the
velocities decrease significantly, depending on the inclusion shape. Smaller aspect ratios
yield larger decreases of velocities. The velocities of the sphere pore shape are coincident
with the Hashin-Shtrikman upper bound. The sphere inclusion shapes give the same
results from the Kuster-Toks6z (1974) formula and a generalized formula (Berryman,
1980). The effective velocities of the small aspect ratio shapes approach the Hashin-
Shtrikman lower bound at a smaller volume fraction of pores. Except for the spherical
shaped inclusions, all other inclusion shapes have a limitation on volume fraction values
for reasonable effective velocity values. The concentration value limitations decrease
with aspect ratio. For needle shape inclusions, there is no dependence on aspect ratio. The
results are valid for a large range of concentration values. The same calculation was
carried out for the tight sand of the Ross Lake heavy oil field (Figure 4.2b). The

concentration limitations for each inclusion shape are quite similar to those of the porous

sand.
Table 4.2 Rock properties for numerical tests of fractured media.
Ross Lake \G/irzl\?; Sask. mining
Lithology Sandstone | Sandstone | Sandstone | Carbonate | shale
Depth 1148m 1160m 1605m 970m 1006m
Vp (m/s) 3026 5689 3778 5538 3765
Vs (m/s) 1721 3413 2237 2954 2074
Density (kg/ m®) 2133 2630 2420 2695 2326
Porosity 30% 2% 12% 3% <5%
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Figure 4.2 Variation of effective velocities with the volume concentration of
inclusions for several fracture shapes from the Kuster-Toksoz model. All the
velocity values are normalized to the range from fluid to unfractureed rock
velocities. The aspect ratio value for the oblate spheroid shape is 0.1. For the penny
shapes, an aspect ratio of 0.1 (noted as penny KTB) and 0.05 (noted as penny KTB2)
are used. KT: results from the Kuster-Toks6z formula for sphere and oblate-
spheroid pores; KTB: results from the generalized Kuster-Toksoz model by
Berryman. The green dash-dot lines are Hashin-Shtrikman bounds (Appendix E). a.

Ross Lake porous channel sand; b. Calculations as in Figure 1a, for the Ross Lake
tight sand.

Figure 4.3 shows the variation of effective velocities with aspect ratio a for
spheroid and penny shape pores. The volume fraction porosity, ¢, of the pores was set to
be 0.1. When the aspect ratio is too small, the assumption of no fluid flow cannot be
satisfied, thus the model can’t give reasonable results. When the aspect ratio increases,

velocity drops will decrease. The results of spheroid shapes will approach those of the
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sphere. For penny-shaped fractures, the aspect ratio cannot be too large, otherwise, the

predicted velocities will exceed the upper bound.
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Figure 4.3 Ross Lake porous channel sand: the variation of effective velocities (from
the Kuster-Toksoz model) with fracture shape and aspect ratio. All the values are
normalized to the range from fluid to unaltered rock velocities. The volume fraction
of the fractures c is 0.1. The green dash-dot lines are the Hashin-Shtrikman bounds
(Appendix E). KT: results from the Kuster-Toksoz formula; KTB: results based on
the generalized Kuster-Toksoz model by Berryman.

The results displayed in Figure 4.3 indicate that there are limits for the o/c value
to ensure the predicted velocities falling within the Hashin-Shtrikman bound. To
investigate the value range, a test of the o/c values with different ¢ values (0.01, 0.05, and
0.25) was carried out, and the results are shown in Figure 4.4a for the Ross Lake porous
channel sand. The velocity values in Figure 4.4a were normalized by the Hashin-
Shtrikman upper and lower bounds. For various ¢ values, both P- and S-velocity results
indicate relatively stable minimum o/c values of approximately 0.2. However, for penny-
shaped inclusions, the maximum o/c values for reasonable velocities change drastically
with respect to the fracture concentration value c. Small ¢ values will still have
reasonable effective velocities for large a/c values. The P-velocities are less dependent on

the o/c values than the S-velocities. For spheroid inclusions there is no upper limitation
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on the o/c value. However, the effective velocities approach the upper bound quickly for
larger ¢ values. Calculation carried out for the tight sands of the Ross Lake heavy oil field

(Figure 4.4b) yields a similar conclusion.
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Figure 4.4 Variation of effective velocities (from the Kuster-Toks6z model) with a/c
(aspect ratio/volume concentration). All the values are normalized to the range of
Hashin-Shtrikman bounds (Appendix E). a. Ross Lake porous channel sand; b.
Calculations as in Figure 3a, for the Ross Lake tight sand.
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4.3.2 Hudson’s model

Figure 4.5a display the modeled P- and S-velocity variations with fracture density
for the Ross Lake porous channel sand from Hudson’s model for penny-shaped fractures,
with three aspect ratios (a): 0.002, 0.01, and 0.05. When the rock contains fractures
aligned in one direction, it will appear transverse anisotropy with respect to the axis along
the normal to the fractures. The P-velocity drops very little when the waves travel parallel
to the fracture plane, but will display a distinct decrease when the wave travels normally
to the fractures. For SV waves, the velocity will change the same amount whether it
travels normal to the fractures or across the fracture plane. Fractures with an aspect ratio
of 0.05 were also modeled by the Kuster-Tokséz model for penny-shaped fractures. The
effective P velocities from the Kuster-Toksoz model are between the P velocities from
Hudson’s model along the fracture normal and fracture plane.

For given aspect ratio fractures, when the fracture density exceeds a certain limit,
the velocities will display an abnormal increase with fracture density value, especially for
Vs. This is about 0.05 (0.1% fracture porosity) for fractures with an aspect ratio of 0.002,
and 0.2 (around 1% fracture porosity) for fractures with an aspect ratio of 0.01.

From the modeling results for tight sand from the Ross Lake area (Figure 4.5b),
the P-velocity variations with fracture density show an apparent dependence on the
properties of the unfractured rock, whereas the S-velocity displays a similar variation
with crack density for the two different rock samples. Reasonable fracture density ranges
for each aspect ratio are still the same due to the similar variation of S-velocity with

fracture density.
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Figure 4.5 Variation of effective velocities of fractured rock from Hudson’s model
with fracture density €. The velocity plot range are from the velocities of fluid and
isotropic unfractured rock, respectively. KTB denotes the effective velocities from
the Kuster-Toksoz model. a. Ross Lake porous channel sand; b. Calculations as in
Figure 4a, for the Ross Lake tight sand.
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4.4 Seismic velocity changes associated with cracks/fractures

Assuming a 1% fracture porosity induced by penny-shaped fractures with an

aspect ratio of 0.01, the effective P- and S-velocities from Kuster-Tokséz and Hudson’s

model are plotted in Figure 4.6 for sample 1) the Ross Lake porous sand, sample 2) the

Saskatchewan mining shale, sample 3) the Violet Grove sand, sample 4) the

Saskatchewan mining carbonate, and sample 5) Ross Lake tight sand. The findings are:

1.

These fractures can produce up to a 22% velocity decreases in Hudson’s
model, a P-velocity decrease of 16% and an S-velocity decrease of 11% using
the Kuster-Toks6z model;

The changes (in percentage) of P-velocity along fracture planes from Hudson’s
method and S-velocity from both models have almost no dependence on
unfractured rock properties;

The changes (in percentage) of S-velocity along fracture normal are very
similar from Hudson’s method without or with fluid substitution;

The change trends (in percentage) of P-velocity (P-velocity along the fracture
normal for Hudson’s model results) are consistent with the values of
unfractured rocks from the Kuster-Toks6z model and Hudson’s model without

fluid substitution.
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Figure 4.6 Modeled effective P- and shear velocities for selected rocks (rock samples
number 1 through 5) assuming penny shape fractures with aspect ratio of 0.01 and
a fracture density of 0.01. KT: velocities from Kuster-Toksoz model. Hudson 1:
velocities along the fracture plane; Hudson 2: velocities along fracture normal;
Hudson; 2: velocities along fracture normal without fluid substitution. The plots on
the right are percentage changes with respect to the original velocity.

4.5 Summary

Two rock physics models, Kuster-Toks6z and Hudson’s model for fractured
media are discussed. When the assumptions of the models are satisfied, the Kuster-
Toks6z and the Hudson’s methods can predict rock properties for randomly oriented
fractures and aligned fractures, respectively.

The results of the Kuster-Toksdz model indicate that the rock properties depend

largely on the pore shape. Generally, the smaller aspect ratios yield a larger decrease of
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moduli and velocities. For both spheroid and penny shaped pores, o/c values should not
be smaller than about 0.4 (equivalent to ¢c<2.5a). For penny-shaped inclusions, the valid
maximum o/c values change drastically with respect to the concentration value c¢. Small c
values will still give reasonable effective moduli for large a/c values.

For the Hudson’s model, smaller aspect ratio fractures have a smaller valid
fracture density range, especially for Vs, approximately 0.05 (for a fracture porosity of
about 0.1%) for fractures with aspect ratio 0.002, and 0.2 (equivalent to about 1%
fracture porosity) for fractures with aspect ratio 0.01.

The modeling results for several rocks assuming 1% fracture porosity, and penny-
shaped fractures with an aspect ratio of 0.01 indicate: the percentage changes of the S-
velocity from both models, and the P-velocity along fracture planes from Hudson’s
method have almost no dependence on unfractured rock properties. The percentage
changes of the P-velocity (P-velocity along fracture normal for Hudson’s model results)
are consistent with the property values of unfractured rocks for the Kuster-Tokséz model
and Hudson’s method without fluid substitution; anisotropic fluid substitution introduces

a higher percentage of P-velocity changes and similar S-velocity changes.
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Chapter Five: Seismic detection of cracks/fractures associated with potash mining

5.1 Introduction

The middle Devonian Elk Point Group contains the largest volume of salt deposits
preserved in the Western Canada Sedimentary Basin. These deposits (Figure 5.1) extend
from the USA northward for more than 1900 km (1200 miles) to Canada’s Northwest
Territories (DeMille et al., 1964). In the study area (outlined by the dashed line in Figure
5.1), the most widely developed deposit is that within the Prairie Evaporite Formation,
which is present through much of the Williston Basin region. Its thickness ranges from 0
m to about 220 m. Potash (the common name for potassium carbonate (K,COs) and
various mined and manufactured salts that contain the element potassium in water-
soluble form, http://en.wikipedia.org/wiki/Potash) ore (used as fertilizer and other
products) is situated 20-30 m below the top of a 100-200 m thick salt unit, approximately
1000 m below the ground surface. Mining is undertaken using a long room and pillar
method (The rooms here refer to the tunnels cut into the ore body, the pillars are the
material around the rooms left standing to hold up the rock ceiling for roof support in the
mining. The description of the mining method can be found at
http.//en.wikipedia.org/wiki/Room_and_pillar.). The ore body is 30m thick on average
with a typical composition of 55% halite, 40% sylvite, 4% carnallite and 1% insoluble
matters (Maxwell et al., 2005). A generalized stratigraphic column around the mining
interval for the area is shown as Figure 5.2.

A major potential problem for potash mining in this area is brine inflow. This may
cause ore loss, operational problems, or danger to personnel. There are two situations

associated with brine movement: flows or dissolution before mining and
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Figure 5.1 Areal distribution of potash-bearing rocks in the Elk Point Basin (from
Fuzesy, 1982).

inflows during mining. The existence of brine prior to mining can cause disruption to the
normal Phanerozoic stratigraphy by way of collapse structures. Collapse structures are
localized regions of considerable, sometimes complete, removal of original geological
layers and resultant overlying collapse. These features are thought to result from the
dissolution of Prairie Evaporite salts, with associated brecciation and collapse of the
overlying strata (mostly carbonate, then shale) into the washout caverns (e.g. Gendzwill

and Lundberg, 1989). Collapses are often assumed to take the shape of sub-vertical
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cylinders, 100m to 1000m in diameter, extending from a depth of over 1000m possibly to

the surface. Mining into one of these collapse zones results in cost increases for the

mining operation at best, and in some instances the loss of the mine (Prugger et al.,

2004).
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The use of the long-room and pillar mining method may cause subsurface stress
fields to change, thus potentially inducing fractures. In the potash mining area, there are
two aquifers, one is near the base of the Souris River Formation, the other aquifer is at
the top part of the Dawson Bay Formation (Figure 5.2). Between the aquifers and ore
zone, the formation is composed of shale, dolomite and dolomitized limestone. All these
rocks are apt to be fractured. Any fracturing of normally impermeable carbonate rocks
could create a brine inflow path that might compromise potash mining operations.

An effective way to mitigate the risk posed by brine flows is to map and predict
the volume and location of potentially affected areas prior to mining. 3D seismic surveys
have been used successfully to map the subsurface, including collapse structures
(Gendzwill, 1969; Hamid et al., 2004; Prugger et al., 2004). To predict fractures induced
by mining processes, multicomponent and repeated (time-lapse) seismic methods might
be useful. In this study, rock physical modeling of fractured media was used to assess the
feasibility of detecting fractures by multicomponent and time-lapse seismic methods.
Kuster-Toks6z modeling (Kuster and Toksoz, 1974; Berryman, 1980; Mavko et al.,
1998) was first undertaken to simulate randomly oriented and distributed fractures,
whereas Hudson’s model (Hudson, 1980, 1981) was used for studies of aligned fractures.
In this study, data and results from two wells are shown: Well A and Well B. Well A is
particularly useful as it penetrates to the Cambrian. Well B is within the studied mining
area.

5.2 Well log analysis and properties of potash ore
Table 5.1 shows the well log properties of the minerals for some of the lithologies

involved in the study. The essential wireline logs to differentiate the potash ore from



101
other lithologies are the spectral gamma ray and neutron logs. Potash ore displays high
radioactivity due to the potassium-40 isotope existing in sylvite (KCI). Sylvite’s gamma
ray value is about 730 API. Additionally, the ore will display a slightly higher neutron-
porosity compared with pure sylvite due to presence of water in carnallite (KCI, MgCly,
6H,0). For a typical composition, the gamma ray of the potash ore is about 290 API, the
neutron porosity will be in the vicinity of 0%.

Table 5.1 Well log properties of selected minerals (from Crain, 2005)

Neutrgn- DENSITY Acoustic

porosity (ke/m’) slowness PE

(fractional) & (us/m)
Clean Quartz -0.028 2650 182 1.82
Calcite 0 2710 155 5.09
Dolomite 0.005 2870 144 3.13
Anhydrite 0.002 2950 164 5.08
Fluorite -0.006 3120 150 6.66
Halite -0.018 2030 220 4.72
Sylvite -0.041 1860 242 8.76
Carnallite 0.584 1560 256 4.29

Figure 5.3 shows logs from Well A, the shear log is of poor quality over the
shallow part of the well, about above 580 m. The Prairie Evaporite is about 150m thick,
at a depth of 1010m. The Prairie Evaporite displays overall low neutron-porosity (-5%)
and high density-porosity (40%). The ore interval is situated at about 10m from the top
of Prairie Evaporite Formation and is composed of several thin ore beds, and it is about
50m thick. The ore beds display high radioactivity. On the neutron-porosity log, the ore
beds generally show a slightly higher value. Deviation of the neutron- porosity values

from the normal trend might be caused by the variation of carnallite content in the ore:
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carnallite-rich ores related to a higher neutron-porosity and vice versa (Figure 5.3 b).
Sonic velocities in the Paleozoic interval are in the area of 5000m/s for P waves and
2900m/s for S-waves. Vp/Vs values are typically around 1.8.

Figure 5.4 displays the log curves of well B, which is within the mining area
under investigation. The Prairie Evaporite is overlain by the 2" Red Bed Shale of the
Dawson Bay Formation, which is largely dolomite and dolomitized limestone. Above the
Dawson Bay lies the 1*' Red Bed shale and a porous zone which belongs to the Souris
River Group and is saturated by water. This aquifer is about 15m thick, with quite high
porosity, about 20%. In the upper Dawson Bay is another aquifer, approximately 10m
thick with a porosity about 16%. The rock layers between the aquifer and the Prairie
Evaporite consist of shale, dolomite and dolomitized limestone. They are all likely to be
fractured. Both horizontally and vertically aligned fractures may exist in the Dawson Bay
Formation. If fractures occurred in these formations prior to or during mining process,
brine in the aquifer could flow into the mining interval. Thus, it is necessary to identify if

fractures occur and where the fractures are located.
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5.3 Modeling cracks/fractures in the rock overlying the potash ore interval

In the potash mining area, an aquifer exists in the Souris River Formation (Figure
5.2). Just below the aquifer lies the First Red Bed Shale and the Dawson Bay Formation.
All these formations, together with the Second Red Bed Shale above the Prairie Evaporite
Formation, may be fractured. To investigate possible elastic changes caused by fractures
in these formations, rock physics modeling for cracked media was applied to the full
Dawson Bay Formation, including the Second Red Bed shale. In Well A, this amounts to
a 40 m interval whereas in the Well B area, it is 43 m thick. The Kuster-Toksoz (Kuster
and Toksoz, 1974; Berryman, 1980) method was used for randomly oriented fractures,
and Hudson’s (1980, 1981) model was used for aligned fractures. The randomly oriented
fractures display overall isotropy, while aligned fractures introduce azimuthal anisotropy.
Both the Kuster-Toksoéz and Hudson’s methods assume isolated fractures, thus they are
valid only at high-frequencies. For low-frequency (seismic frequency range) moduli
calculation, dry moduli were first predicted using effective moduli theory for fractured
media. Then, the saturated moduli were calculated through fluid substitution using the
Gassmann (1951) equations for randomly distributed fractures. Since aligned fractures
induce anisotropy, the effective saturated moduli were calculated using Brown and
Korringa’s (Brown and Korringa, 1975) low-frequency relationships.

The sequence for modeling fractures and fractures is:

1. Edit the well log values (especially shear logs);

2. Predict shear logs using P-velocity and density logs where the shear log is not

reliable;
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3. Model dry fractures using the Kuster-Toks6z method and undertake fluid
substitution using Gassmann’s equation for randomly oriented fractures;
4. Model dry fractures using Hudson’s theory and fluid substitution using Brown-
Korringa’s low frequency relation for aligned fractures;
5. Calculate P- and S-velocities for the fractured media.
5.3.1 Predicting shear velocity from density and P-velocity
Before modeling the fractured media with values from well logs, it is necessary to
investigate the quality of those logs. In Figure 5.3, poor S-wave data are evident in the
shallow part of the well, the Davidson Evaporite, and the Prairie Evaporite Formations.
The P-wave velocity and density logs are of reasonable quality. Utilizing the relationship
proposed by Han and Batzle (2004), the S-wave modulus can be predicted from P-wave
velocity and density. The coefficients in equation (5-1) were calculated using the data
over the interval with reasonable shear log values (positive shear velocity values from
depths 600m to 1378m):

u=0.0xM?+0.2687 x M + 1.7864

(5-1)
where, p is the shear modulus and M is the P modulus (M = pvg. p: density, g/cm’; Vp: P
velocity, km/s.).
Figure 5.5 displays the cross-plot between actual shear velocity from the dipole
sonic log and the predicted shear velocity from equation (5-1). A reasonable correlation
can be seen (with a correlation coefficient of 0.99). Figure 5.6 also shows the predicted

and actual shear velocity logs and their differences, which are mostly within £200m/s.



All the shear velocities over the questionable intervals will be replaced by the values

predicted by equation (5-1).
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Figure 5.5 Comparison of predicted and actual Vs (using M from Vp and p) for Well
A (over depths 600m-1378m with positive velocity values).
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5.3.2 Modeling randomly oriented fractures

We first used the Kuster-Tokso6z theory (Kuster and Toksdz, 1974; Berryman,
1980) to calculate the effect of fractures on velocities. Some basic definitions of fractures
are outlined in Appendix A. For fracture modeling, we assumed that the porosity
introduced by fractures is 1%, the aspect ratio is 0.01, and the fractures are penny-shaped.
Figure 5.7 displays the modeled logs of Well A using the Kuster-Toks6z model for
randomly oriented brine saturated fractures. The density and P-velocity of brine are set to
1100 kg/m® and 1430 mv/s respectively. The P-velocity drops about 0.7 km/s (12.5%), and
the shear velocity decreases by 0.6 km/s (20%). For a 40m fractured interval, this
amounts to about a 2 ms delay in P-wave reflection times and a 3.5 ms delay in PS
reflection traveltime.

5.3.3 Modeling vertical aligned fractures

If the fractures are aligned with specific directions (see Figure 5.8), the elastic
properties of the rock can be modeled by Hudson’s (1981) theory, and the rock will
display azimuthal anisotropy.

Figure 5.9 shows the modeled logs of Well A assuming vertically aligned
fractures in the formations overlying the mining interval. The rock displays transverse
isotropy with respect to the x direction, or azimuthal anisotropy in the x-y plane. The P-
velocity along the vertical direction shows a small decrease, less than 0.2 km/s (3.5%),
while the SV-velocity propagating vertically drops significantly, about 0.8 km/s (26%).
For horizontally traveling waves, the P-velocity decreases by about 0.75 km/s (13.5%)

and the SV-velocity decreases by the same amount as for the vertical propagation.
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Figure 5.8 Schematic diagrams of vertical fractures (a, shown in blue, velocities are
modeled assuming waves travel in the green plane.), and vertically and horizontally

aligned fractures (b:www.nature.com/.../n6771/images/403753aa.2.jpg)
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propagating waves through a vertically fractured medium.
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Figure 5.10 shows the velocity variation with angle from the symmetry axis (the x axis).
The P-velocity will gradually drop at small incidence angles from 0° to 45°, and then
increase for incidences from 45° to 90°. The SV-wave velocity reaches its minimum at 0
and 90° incidences, and peaks at a 45° incidence. The SH-wave velocity drops gradually

from vertical to horizontal propagation.
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Figure 5.10 P- (red), SV- (blue) and SH- (green) velocity variation with angle (0)
from the symmetry axis (x-axis) for the fractured medium. The rock properties of

unfractured media (velocities shown by the dashed line) are the average over the
Dawson Bay Formation (including the Second Red Bed Shale) of Well A.

5.3.4 Modeling vertically and horizontally aligned fractures
There could be two sets of fractures in the rocks of the Dawson Bay Formation,
one of which is aligned in the vertical direction and the other is in a horizontal direction

(see Figure 5.8b). This orthogonal symmetry fracture system can be modeled with



113
Hudson’s theory and will display azimuthal anisotropy. We assume the total porosity
induced by these two set of fractures is still 1%, the aspect ratio is 0.01, and the fractures
are penny-shaped.

Figure 5.11 shows the modeled P- and S-velocities for Well A. For vertically
propagating P- and S-waves, the velocities will decrease significantly (Figure 5.11a). The
velocity decrease is about 0.5km/s (about 10%) for the P wave, and 0.75km/s (25%) for
the SV wave. The velocities for waves propagating horizontally in the XZ plane are
similar to that of vertically travelling waves (Figure 5.11b). However, the horizontal
traveling velocities in the YZ plane are quite different (Figure 5.11c). Both the P- and
SV-velocities drop less than the previous two cases, 0.2km/s (3.5%) for the P-wave and
0.35km/s (11.5%) for the SV-wave. The velocity variations with incidence angle (from
the z-axis) are shown in Figure 5.12. All the velocities show different variations with
angle when traveling in the XZ and YZ planes. P- and SV-velocities drop more in the XZ
plane than in YZ plane. The SH-velocity shows no anisotropy in the XZ plane, but
anisotropy is apparent in the YZ plane.

Table 5.2 gives the values for the Dawson Bay Formation. The matrix values for
modeling are the averages of the Dawson Bay Formation from Well A. Three cases of
fractures were modeled: randomly oriented fractures, vertically aligned fractures, and
vertically plus horizontally aligned fractures. Densities and velocities are calculated for
both dry and water-saturated fractures (brine density 1100kg/m’, P-velocity 1430m/s).
There is generally a substantial decrease in P-wave and S-wave velocity with fracturing.
In addition, the amount of this decrease can depend significantly on fracture orientation

with respect to seismic wave propagation (azimuthal seismic anisotropy).
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fractured rock for vertically and horizontally aligned fractures (Left: P wave; right:
SV wave) for Well A. a: vertically propagating waves; b: horizontally propagating
waves in the XZ plane; c: horizontally propagating waves in the YZ plane.
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Figure 5.12 P- (top), SV- (middle) and SH- (bottom) velocity variation with angle
from the z-axis for media with horizontally and vertically aligned fractures, the left
side is for the wave propagating in the XZ plane and the right is for the wave
propagating in YZ plane. The rock properties of unfractured media (velocities
shown by red line in each plot) are the average over the Dawson Bay Formation
(including the Second Red Bed Shale) of Well A. The Z-axis is in the vertical
direction, and the X-axis is in the horizontal direction which is normal to vertical

fractures.
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Table 5.2 Rock properties for unfractured and fractured rocks. The values of the
matrix for modeling are the averages over the Dawson Bay Formation in Well A. The
density and P-velocity of brine are 1.1g/cm3, and 1430m/s. Vert: vertically
propagating waves; Hxz: waves travelling horizontally in the XZ plane; Hyz: waves
travelling horizontally in the YZ plane. Random: randomly oriented fractures; Vert.:
vertically aligned fractures; Vert.+Hor.: vertically and horizontally aligned fractures.

Dry fracture Water saturated fracture
Matrix
Random Vert. Vert+Hor. | Random Vert. Vert.+Hor.
Density 26834 2656.6 2667.6
~
B Vert - 3851.9 5437.7  5069.3
S
§ Vp | Hxz | 5514.7 | 3980.9 - 3851.9 4926.2 50124 5069.3
~
& Hyz - 5073.9 - 5390.7
N
S 2175.6 2171.1
S
g (XZ) (X2z)
Q Vert - 2301.1
& 2595.6 2590.2
°§ Vsv 2941.7 | 2499.4 (YZ) 2494.2 (YZ)
»
§ Hxz - 2175.6 2301.1 21711
Hyz - 2595.6 - 2590.2
Density 2250.4 2227.9 2238.9
2 Vert - 2538.2 3545.2 3495.0
[\
S Vp | Hxz | 3609.1 2650 - 2538.2 3330.1  3125.7 3495.0
D
~
- Hyz - 3368.0 - 3585.4
S
al 1460.9 1457.3
<
S Xz) Xz7)
2 Vert - 1551.9
& 1748.3 1744.0
E Vsv 1984.8 | 16814 (YZ) 1677.3 (YZ)
=
N Hxz - 1460.9 1551.9 1457.3

Hyz - 1748.3 - 1744.0
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The same work was also carried out for Well B. Figure 5.13 and Figure 5.14 show

the modeled well logs of vertically aligned and vertically plus horizontally aligned
fractures for Well B, which is located within the mining area. This modeling gives similar

results as for Well A.
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Figure 5.13 Top: vertical propagation velocity from Hudson’s model and velocity
differences between unfractured and vertically aligned fractures (Left: P wave;
right: shear wave) for Well B. Bottom: the same plots for horizontally propagating
waves.
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Figure 5.14 Vertical propagation velocity from Hudson’s model and velocity
differences between unfractured, and vertically and horizontally aligned fractured
rocks (Left: P wave; right: shear wave) for Well B.

5.4 Synthetic seismograms for P- and converted waves

We now use these “fractured” (results from Hudson’s model) and unfractured
logs to generate synthetic seismograms. The purpose of this simulation is to investigate
the change in the seismic response caused by the fractures. Figure 5.15 shows the Ricker
wavelet used (based on the likely bandwidth of field seismic energy). Synthetic
seismograms calculated from our modeled velocities and densities for vertically aligned
fractures are illustrated.

The software used for synthetic seismogram generation is the SYNGRAM
program from the CREWES Project. It assumes isotropic velocities, so vertical velocities
from Hudson’s model were used. Figure 5.16 through Figure 5.19 show the original well
logs and their accompanying synthetic seismograms along side the “fractured” well logs

and their synthetic seismic response.
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Figure 5.15 Ricker wavelet used for synthetic PP (left, dominant frequency 106Hz)

and PS (right, 28.85Hz) seismograms.
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Figure 5.18 Well logs (P velocity in blue, S-velocity in green, and density in red) and
PP synthetic seismogram (NMO removed gather and summed response, duplicated
three times) focusing on The Dawson Bay Formation (including the Second Red Bed
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Figure 5.19 Well logs (P velocity in blue, S-velocity in green, and density in red) and
PS synthetic seismogram (NMO removed gather and summed response, duplicated
three times) focusing on The Dawson Bay Formation (including the Second Red Bed
Shale) for Well A. left: unfractured rock; right: fractured rock. The red arrow
marks the interval containing the fractures.

From the previous synthetic seismograms for Well A, we observe the following

changes caused by fractures in the Dawson Bay Formation:

1) Some delay (time increase) in the PP reflection times and an amplitude versus
offset (AVO) effect;

2) Delay and dimming (amplitude loss) in the PS wave;
3) The effects are much stronger on the PS data than PP data.

Small AVO effects on the PP seismogram (Figure 5.20) and reflection character
changes in the PS response (Figure 5.21) over the fractured interval are observed in the
synthetic seismograms for Well B. Assuming that the PS data have the same frequency
content as the PP data, amplitude brightening and time delay can be found in the PS

response (Figure 5.22). A strong PS character change is observed.
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Figure 5.20 Well logs (P velocity in blue, S-velocity in green, and density in red) and
PP synthetic seismogram (NMO removed gather and summed response, duplicated
three times) for Well B. Left: unfractured rock; right: fractured rock. The red
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Figure 5.21 Well logs (P velocity in blue, S-velocity in green, and density in red) and
PS synthetic seismogram (NMO removed gather and summed response, duplicated
three times) for Well B. Left: unfractured rock; right: fractured rock. The red
arrow marks the interval containing the fractures.
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Figure 5.22 Well logs (P velocity in blue, S-velocity in green, and density in red) and
PS synthetic seismogram using wavelet with PP frequency content (NMO removed
gather and summed response, duplicated three times) for Well B. Left: unfractured
rock; right: fractured rock. The red arrow marks the interval containing the
fractures.

Because logs in Well A extend the deepest, we preliminarily tie them to the
surface seismic data although the two data sources are many kilometres apart. Somewhat
surprisingly, there is a reasonable tie between P-wave synthetic seismograms and the PP
field seismic section (see Appendix F, Figure F.1). Then, we tie our PS synthetic
seismograms to the field PS seismic data (see Appendix F, Figure F.2). Again, a
reasonable correlation. We note that there is a strong Dawson Bay reflection in the PS
seismic section. This bodes well for measuring changes in it. Finally, we correlate the PP
and PS sections (see Appendix F, Figure F.3).

We note that there may also be attenuation changes due to fractures and fluid

saturation that would also affect the seismic response.



124

5.5 Time-lapse 3D surface seismic interpretation

To assess the brine inflow problem, seven 3D seismic surveys including five 3C
surveys were shot from 2003 to 2008 in the mining area. In 2009, two 3C-3D surveys,
which were acquired in 2004 and 2008, were processed to monitor and characterize the
brine inflow. Figure 5.23 shows the location of the processed time-lapse (2004 and 2008)
3C-3D surveys in the mining area. The “trap door” outlined by red line is the main

interpreted brine inflow area. The size of the survey is about 6.5 km?”. The processing

workflow is shown in Figure 5.24 (Sensor Geophysical).
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Figure 5.23 The time-lapse 3C-3D survey location within the mining site (shown in
the green box), the grey lines are the mining plan (rooms). The red circle outlines
the trap door area (where push-downs interpreted from seismic reflections around
the mining level were caused by brine inflow) interpreted from previous work (from

John Boyd, personal communication, 2009).
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Figure 5.24 Processing workflow used for the time-lapse 3C-3D seismic data (from
Sensor Geophysical Ltd.).

5.5.1 Well-seismic correlation, and PP and PS data registration

We first proceed to correlate the wells to the 3C-3D seismic data before
interpreting the seismic data. Figure 5.25 displays the correlation between the synthetic
PP seismogram of well GROUT 59-1 and the migrated PP data of the 2004 survey. The
P-wave synthetic seismogram ties fairly well with the PP field seismic section. Then, the
PS synthetic seismogram is tied to the field PS seismic data (Figure 5.26). Again, a
reasonable correlation is found. Then the PP and PS sections (Figure 5.27 and Figure

5.28) are registered for both 2004 and 2008 surveys. The difference between the
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frequency bandwidth of the PP data and the PS data is significant. The effective
frequency of the P waves is up to 120Hz, while it is only about 60Hz with the PS events.
The reflections of the interfaces of porous zone, the Dawson Bay Formation, and the
Prairie Evaporite Formation within the target zone can all be recognized (Figure 5.25,
Figure 5.26, and Figure F.8 in Appendix F). However, due to the frequency difference,
they are not easily picked on radial data individually. Therefore, to pick the PP and PS
horizons at exactly the same depth is particularly difficult. However, the structure from

PP and PS data can still represent relative features despite of the picking errors.
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Figure 5.25 Correlation between the synthetic PP seismogram of well GROUT 59-1
and migrated PP data of 2004 survey. The synthetic seismogram is displayed in blue
and repeated for S times, the seismic traces adjacent to the well are displayed in
black. The corresponding frequency spectrum is shown at the bottom.
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Figure 5.26 Correlation between the synthetic PS seismogram of well GROUT 59-1
and migrated PS data of 2004 survey. The synthetic seismogram is displayed in blue

and repeated for S times, the seismic traces adjacent to the well are displayed in
black. The corresponding frequency spectrum is shown at the bottom.
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Figure 5.27 Registration of the PP data and PS data of the 2004 survey, both data
are in PP time. The picked horizon at about 750ms is the base of the porous zone,
and the horizon at about 800ms is approximated the top of Prairie Evaporite
Formation. The horizontal bars on the well log curve are the geological markers.
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5.5.2 Time-lapse interpretation

Figure 5.29 and Figure 5.30 display the PP data and the PS data of a west-east line
(line number 76) from the two 3D surveys. There are visible changes such as time shift
and amplitude difference on both PP and PS data, especially within the red ellipse in the
figures. Both components show apparent push-down effects due to velocity drops
between the 2004 and 2008 surveys. Amplitude dimming can be seen at the Dawson Bay
Formation in the 2008 PS data compared with the 2004 survey. Difference data between
the 2004 and 2008 survey were also calculated after applying a match filter derived in the
420-620 ms widow for PP data, and 600-1250 ms for PS data. The difference is relatively
small for PP data. Based on the rock physics modeling result, the reason should be a
small P velocity change when fractures exist in the formation. However, in the trap door
area some difference can still be found. On the PS data, an apparent difference can be
seen below the Dawson Bay Formation (the bottom is approximately the green horizon
on the seismic line). All these features are consistent with the modeling results: when
fractures exist in the formation, a significantly greater decrease of S-wave velocity will
be observed. Figure 5.31 also displays the RMS amplitude difference between the two
surveys for the Dawson Bay Formation. There were two main areas where fractures
might exist in the Dawson Bay Formation, one is outlined by blue circles and the other is
shown in red circles. The area of change (red circle) is also observed on the vertical and
PS data in Figure 5.29 and Figure 5.30, respectively. An evident push-down effect can be

seen in this region.
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Figure 5.29 PP data of a west-east line (line number 76). Top: 2004 survey; middle:
2008 survey; bottom: difference between the two data sets. The red arrows mark
the location of the top of the Dawson Bay Formation. The red ellipse denotes the
trap door area.
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Figure 5.31 RMS amplitude difference of PS data from the Dawson Bay Formation
to mine level between 2004 and 2008 survey.

To investigate the time shift caused by the changes in the Dawson Bay Formation,
the top and the bottom of the Dawson Bay Formation were picked to see the time
structure changes between the 2004 and 2008 surveys. Due to the low frequency of the
PS data, however, the base of the Dawson Bay Formation, which is also the top of the
Prairie Evaporite Formation, was difficult to pick. Therefore, on the PS data, the mine
level will be picked. Figure 5.32 and Figure 5.33 show the time structure on the top of the
Dawson Bay Formation. The difference on PP data is fairly small. A visible difference
can also be seen on the PS data, pull-up effect appears at the top of the Dawson Bay
Formation in the 2008 survey compared with the 2004 survey. Since the difference
between the two surveys of the Birdbear Formation is fairly small (refer to Appendix F,
Figure F.4 and Figure F.5), it indicates that some changes happened in the formations

between Birdbear Formation and the Dawson Bay Formation.
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At the bottom of the Dawson Bay Formation, the time structure of the PP data
shows mostly of a push-down on the 2008 data (Figure 5.34). However, the time-shift is
only up to about 2ms. On the PS data, a significant time-shift (push-down) can be seen at
the mining level (Figure 5.35). The time shift can exceed 10ms. The modeling of
fractures in the Dawson Bay Formation indicates that the P velocity will decrease less
than the S-velocity, so the time-shift of PS data caused by fractures should be much
larger than that of the PP data. Considering the time-shift values of the PP and PS data,

the rocks between the top of Prairie Evaporite Formation and mine level should also be

fractured.
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Figure 5.32 Time structure of the top of the Dawson Bay Formation on the PP data.
a: 2004 survey; b: 2008 survey.
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Figure 5.33 Time structure of the top of the Dawson Bay Formation on the PS data,
a: 2004 survey; b: 2008 survey.
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According to the rock physics modeling result, Vp/Vs will increase when
fractures are present in the Dawson Bay Formation due to relatively larger shear-wave
velocity change. Therefore, interval Vp/Vs map of the Dawson Bay Formation can be
used as an indicator of fractures in the formation. The Vp/Vs maps are constructed using
the isochron maps from both PP and PS data for the same interval according to the

formula (Margrave, et al., 1998),

Vp _ 2880s — Blpp
7 At,p
(5-2)
where At,,s,and At,,, are the PS and PP isochron maps for a particular interval.

Considering the difficulty to accurately pick the top and the base of the Dawson
Bay Formation as well as robust Vp/Vs calculation, two intervals were chosen for
interval Vp/Vs analysis using equation (5-2): interval 1 is from the Birdbear Formation to
the Dawson Bay Formation, and interval 2 is from the Birdbear Formation to
(approximately) the Shell Lake anhydrite below the Dawson Bay Formation (Figure
5.36). By comparing the Vp/Vs maps of these two intervals, the relative Vp/Vs change
trend caused by the Dawson Bay Formation can approximately estimated.

From Figure 5.37, it can be found that there is almost no variation of interval
Vp/Vs values between the two surveys from the Birdbear Formation to the Dawson Bay
Formation. About 10% Vp/Vs increase is observed within the trap door area (outlined by
red ellipse) on the interval Vp/Vs values of 2008 data from the Birdbear Formation to the
Shell Lake anhydrite (Figure 5.38). These results indicate that: 1) above the Dawson Bay
Formation, there are no fractures created between 2004 and 2008; 2) fracturing process

might happen in the strata from the Dawson Bay Formation to the Shell Lake anhydrite
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between 2004 and 2008. A west-east line across the south edge of the trap door area was
chosen for detailed interval Vp/Vs analysis of the Dawson Bay Formation (Figure 5.39).
The Vp/Vs values of the Dawson Bay Formation for the 2004 survey are around 2.0. In
the 2008 survey, a generally increasing trend of Vp/Vs can be seen, especially from CDP
80 to CDP 140, where is in the trap door area. The Vp/Vs increase suggests a larger S-
wave velocity decrease caused by fractures in the formation. However, the Vp/Vs values
seem to be too large (Vp/Vs for carbonate is 1.8). It should attribute to the large picking
errors of the top and the base of the Dawson Bay Formation on the PS data (which is also
the top of Prairie Evaporite Formation) due to their low frequency content. Since the
horizon picked on seismic data following distinct wave features, such as peak, trough, or
zero crossing, it is unlikely that PP and PS picks will coincide consistently in depth. It
will also cause deviation between the Vp/Vs values estimated from seismic data and real

values (Margrave, et al., 1998).
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Figure 5.36 The arrow marks the intervals used for interval Vp/Vs calculation.
Interval 1 is from the Birdbear Formation to the Dawson Bay Formation; interval 2
is from the Birdbear Formation to (approximately) the Shell Lake anhydrite below
the Dawson Bay Formation (Vp/Vs extrapolated from well values superimposed on
the seismic sections).
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Figure 5.37 Interval Vp/Vs map from the Birdbear Formation to the Dawson Bay
Formation. a: 2004 survey; b: 2008 survey.
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Porous zone and the top of Prairie Evaporite Formation. The red line denotes the
values from the 2004 survey, the blue line shows the values of the 2008 survey.

5.5.3 Fracture detection using curvature

Compared with coherency methods, reflector curvature is a seismic attribute
relating more directly to fracture distribution (Lisle, 1994; Roberts, 2001). It helps to
remove the regional dip effects and emphasizes the small scale features (Ganguly et. al.,
2009). It can be used to quantify the distribution of brittle strain in strata and thus can be
used to predict fracture orientations and distributions. The most positive and negative
curvatures were found to be the most useful for delineating faults, fractures, flexures, and
folds (Al-Dossary and Marfurt, 2006). To delineate the fractured zone which could poses
a brine inflow problem to potash mining, the curvature attribute is calculated for the top
of the Dawson Bay Formation and the mining level on 2008 radial data (Figure 5.40 and
Figure 5.41). Compared with the top of the Dawson Bay Formation, the curvature
calculated at the mining level shows much more developed fractures. This indicates that
above the Dawson Bay Formation, fractures are rare. However, fractures are well

developed in the Dawson Bay Formation and mining level. Curvature values also showed
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the distribution patterns of the fractured zone: around the edge of the trap door area,
fractures were well developed; another fractured zone lies at the top right corner of the
survey, which can also be easily seen on the time difference map of the mine level

between 2004 and 2008 radial component data (Figure 5.35 c).
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5.5.4 Discussion

The seismic signatures of the fractures can be found on various aspects of the
time-lapse 3C-3D seismic survey. However, the overlying differences of the seismic data
were not effectively removed for the Dawson Bay Formation. The match filters were
derived in a window from 420-620 ms for vertical data, and 600-1250 ms for radial data
respectively. From the time shift and amplitude difference, there were also some changes
of the strata between the Birdbear Formation and the Dawson Bay Formation. To
separate the difference caused by the fractures in the Dawson Bay Formation, the
windows for match filter calculations are relatively narrow. It is best to calculate the
filter from the top of the Devonian to the top of the Dawson Bay Formation. The reason
to exclude the shallow window is accounting for mute parameter difference in the
processing.

Curvature has proved to be an effective attribute to delineate the fractures in this
study. Since they were only calculated using the full wave-bandwidth data, we are
confident on detecting the overall fracture effect. To account for subtle features at
different wavelengths, it might be better to examine curvature at various scales.

5.6 Summary

This chapter first presents the results of a petrophysical and seismic simulation
study in a potash mining area of western Canada. The goal of the work is to model the
effects of fractured rocks in the Dawson Bay Formation on seismic reflection character.
Shear-wave sonic logs sometimes display unrealistic values. We can effectively edit
these values, in this study, by using P velocity and density logs. Rock physics modeling

(from Kuster- Toks6z and Hudson’s models) indicates that P-wave and S-wave velocities
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will decrease (often significantly) with cracks or fractures. These fractured strata may
also display various types of anisotropy or velocity variation with direction. Synthetic
seismogram calculation using the original log values and those with fractures shows
observable changes. Those changes include “push-down” effects or time lags and
amplitude variations with offset. The seismic character differences are especially evident
in the PS reflections.

Then the interpretation of time-lapse 3C-3D surveys was implemented. The PP
and PS synthetic seismograms correlate reasonably well with field time-lapse 3C-3D
surface seismic data. This suggests that, by searching for anomalies in multicomponent
seismic data or by looking for changes in repeated seismic surveys, we may be able to
detect fractures in the Dawson Bay Formation and similar intervals. Seismic
interpretation on the time-lapse 3C-3D surveys saw noticeable amplitude changes and
push-down effects at the Dawson Bay and underlying formation in the 2008 survey
compared with the 2004 survey, especially on radial data. Vp/Vs analysis displayed
increasing values on the 2008 survey within the trap door area. Finally, seismic curvature
attributes were calculated at the top of the Dawson Bay Formation and the mining level.
The curvatures suggest that the fractures are well developed in the Dawson Bay

Formation.
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Chapter Six: Numerical modeling of shear-wave splitting analysis associating
potash mining

Many crustal rocks are found experimentally to be anisotropic (Thomsen, 1986).
When aligned cracks/fractures occur in rock, they will cause velocity anisotropy. The
rock physics modeling results in chapter 5 showed that 1% vertically aligned fractures in
the Dawson Bay Formation bring about measurable azimuthal anisotropy. Gupta (1973a,
b) and Crampin (e.g., 1981, 1983) pointed out that azimuthal anisotropy effects are
measurable, and two- and three-component seismic data are suitable to measure the
corresponding shear-wave splitting thus the orientation and the intensity of fractures can
be determined (Helbig and Thomsen, 2005; Pérez et al., 1999). Numerous authors (e.g.
Crampin, 1985; Tatham et al, 1992; Slack et al, 1993; Gaiser and Van Dok, 2002;
Verdon et al., 2009; Verdon et al., 2010) evaluated the degree of anisotropy from shear-
wave splitting. If the anisotropy is due to cracks/fractures, their orientation and intensity
can also be determined by analyzing shear-wave splitting (e.g. Tatham et al., 1992).

In Chapter Five, rock physics models and seismic simulation were used to predict
the effects and seismic signatures of cracks/fractures in the Dawson Bay Formation.
However, the synthetic seismogram modeling program in chapter 5 is for isotropic
velocities, seismic signatures of anisotropy caused by aligned fractures can not be seen.
The feasibility of using anisotropy analysis of time-lapse 3C seismic data for fracture
detection in the Dawson Bay Formation was not evaluated yet. Thus, in this chapter,
seismic modeling of 3C data for unfractured (isotropic) and fractured (anisotropic) earth
models will be used for shear-wave splitting, seismic velocity anisotropy, and time-lapse

seismic signature analysis.
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6.1 Acquisition of 3D-3C seismic modeling data
6.1.1 Input earth models

Two laterally homogeneous earth models were input for 3C-3D seismic
modeling. The unfractured earth model was built from the blocked well logs from the
study area. By replacing rock properties of the full Dawson Bay Formation by the rock
physics modeling results of vertically aligned fractures formation, an anisotropic (HTI)
earth model was created for seismic modeling.

Figure 6.2 shows the general stratigraphic chart and blocked well logs for the
density and velocity models. The shallow parts are shales and sandstones of Cretaceous
and Triassic age. The Devonian strata are mainly carbonates with two evaporite intervals:
the Davidson Evaporite and the Prairie Evaporite. Underlying the Prairie Evaporite is the
Winnipegosis carbonate. The red rectangle denotes the location of the fractured layer, the
Dawson Bay Formation. The upper part of it is mostly dolomite or dolomitized
limestone, the lower part is the Second Red Bed shale. The rock properties for the

Dawson Bay Formation are listed in Table 6.1.
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Figure 6.1 Stratigraphy chart (modified after Fuzesy, 1982) and blocked well logs.
The red rectangle denotes the location of the modeled HTTI layer.

Table 6.1. Rock properties of the Dawson Bay Formation, the values are averaged
over the formation (coordinate used for stiffness matrix: x1 - normal direction of
fracture plane (horizontal); x3 - vertical direction).

Top 970.8 m

Thickness 404 m

Fracture 1% penny-shape fractures, filled by brine with Vp 1430m/s, density 1100
parameters |kg/m’.

fractured unfractured

Density 2603.9 kg/m? 2630.2 kg/ m*

Stiffness 5.610 2.354 2.354 0 0 0 Vp: 5184.7 m/s

aigj‘)’( 235468132710 0 O O Vs: 2792.9 m/s

kg/m2:s) 2.3542.7106.813 0 0 0

0 0 0 2.052 0 0
0 0 0 0 1.243 0
0 0 0 0 0 1.243
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Figure 6.2 shows the interval P- and S-wave velocity models for numerical
modeling. The layered models are created based on the blocked well logs. The maximum
measured depth of well logs is 1378.2 m. The velocities at deeper locations than this

depth are set to be equal to the velocities at 1378.2 m.
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Figure 6.2 Input interval P-wave and shear-wave velocity layered models for
numerical modeling. The HTI models are the same as for the isotropic model except
for replacing the rock properties of the Dawson Bay Formation by values for
vertically aligned fractures. The anisotropic layer (the Dawson Bay Formation)
location is denoted by the red arrow.
6.1.2 Survey design and raw data analysis

An exhaustive wide azimuth survey was designed for shear-wave splitting and
seismic velocity anisotropy analysis (Figure 6.4); the parameters of the survey are shown

in Table 6.2. Since the earth models are laterally homogeneous, only one shot was

modeled with the source location at the center of the survey. The recording coordinate
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used is denoted by blue arrows in Figure 6.3. X is in the direction normal to the fracture
plane (isotropy axis). Y is along the fracture plane (isotropy plane). The seismic
modeling was done by Dr. Jim Gaiser using the frequency-wavenumber method. 3-C
data sets were modeled for both isotropic and anisotropic models.

Table 6.2 Survey design parameters for numerical modeling

Survey size 4km X 4km

Source type Dynamite at the surface

Source location One source at the centre of the survey
Receiver spacing 20m

Receiver line spacing 20m

Sample rate 2ms

Record length 2048 ms

Modeling frequency range 2-110Hz

Figure 6.4 displays azimuth and offset distribution of the survey. The offset
ranges from 0 to 2824 meters. The azimuth is from 0 to 360 degrees. The number of
offsets for each azimuth is relatively even with some variation, and is suitable for the
shear-wave splitting and velocity anisotropy analysis described later in this report.

Figure 6.5 and Figure 6.6 show the 3-component seismic data at the selected
azimuth, 0°, 45°, 90°, and 135° (negative offsets at 180°, 225°, 270°, and 315° were
combined respectively) for the isotropic model and anisotropic model respectively. In the
recording coordinates, x-component receives no signal at 0° and 180°, while y-
component has no signal at 90° and 270° for both isotropic and anisotropic earth models.
Since there is no low velocity layer at the near surface, there is P wave and shear-wave

leakage on horizontal components and the vertical component respectively. Amplitude
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spectra were also calculated for x, y, and z components of isotropic model (Figure 6.7),

the frequency ranges are quite similar for all the three components, about 10-120 Hz.
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Figure 6.3 Schematic plot for coordinate system used for data recording and
processing. The horizontal components were originally recorded in X and Y
directions. For processing, the two components should be reoriented to radial and
transverse directions. The source location is at the survey centre, red dash line
denotes the direction from receiver point to source point. The azimuth used in
processing is denoted by the green cross.
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Figure 6.4 Azimuth and offset distribution of the survey.
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Figure 6.5 X, Y, and Z components for the isotropic earth model at azimuths of 0°,
45°,90°, and 135°.
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Figure 6.6 X, Y, and Z components for the anisotropic earth model at azimuths of
0°, 45°, 90°, 135°.
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Figure 6.7 X (a), Y (b), and Z (c) components amplitude spectra for the isotropic
earth model.

6.2 Seismic data processing

Table 6.3 shows the seismic processing workflow used for shear-wave splitting
analysis. First, the geometry information, including source receiver locations, processing

grid bin size, azimuth etc., were loaded for all the data sets.
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Since the original horizontal components were recorded in the x and y directions,
they were reoriented to radial and transverse directions prior to other processing steps
(denoted as red arrows in Figure 6.3). Figure 6.8 and Figure 6.10 display the horizontal
rotation results for isotropic and HTI earth model data. As shown in Figure 6.8, for the
isotropic earth model, the shear wave energy is recorded in the radial direction (SV
wave). On the transverse component, no shear wave (SH wave) energy is found. For the
HTTI earth model, except for the dominant SV wave recorded on the radial component,
SH wave is also found below the fractured layer location (about 850ms) on the transverse
component except at azimuths 0° and 90° (Figure 6.10). Figure 6.9 also displays polarity
change of horizontal component between original recording coordination and rotated
coordinates. On the x-component of x-direction receiver line across the source location,
the polarity reverses at zero offset for both direct arrival and reflections. After horizontal
rotation, the polarity is consistent across the source location on radial component for both

wave types.
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Table 6.3 3C seismic data processing workflow for shear-wave splitting analysis.
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Figure 6.8 Radial component of the isotropic earth model from horizontal rotation
of X and Y components (at azimuths of 0°, 45°, 90°, 135°). For laterally
homogeneous isotropic media, the transverse component receives no energy.
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Figure 6.9 Comparison of reflection (left) and direct arrival (right) between x-
component and radial component from the horizontal rotation of the isotropic
model data (at azimuth of 90°). Note the polarity difference between the two data
sets.
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Figure 6.10 Radial (top) and transverse (bottom) components of the HTI model
from the horizontal rotation of X, Y components (at azimuths of 0°, 45°, 90°, 135°).

Spherical divergence was corrected by PP and PS velocities for vertical and
horizontal components, respectively. According to deconvolution test results, zero-phase
deconvolution was then chosen to improve the data. Figure 6.11 shows the comparisons
of a vertical component gather, autocorrelation function and amplitude spectrum at

azimuth 0° before and after deconvolution of the data from the isotropic model. After
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deconvolution, the reflection character is clearer (Figure 6.11). From the autocorrelation
function of the data, we can see that the wavelet sidelobes are suppressed and lateral

coherency is improved by deconvolution. The frequency spectrum is also flattened and is

more spatially coherent (Figure 6.11).
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Velocity analysis was performed for both PP waves and PS waves. Since both
earth models are laterally homogenous, a receiver line in the x direction across the source
point is considered to be a CRP gather for velocity analysis. By comparing NMO
corrected gathers, velocity functions converted from velocities input for seismic
modeling were adopted. Hyperbolic NMO is found to be imperfect (Figure 6.12c and
Figure 6.12f), thus n parameters were picked for 4th order NMO (Figure 6.12a and
Figure 6.12d). By applying 4th order NMO corrections, far-offset events are somewhat
better flattened (Figure 6.12b and Figure 6.12¢).

Figure 6.13 displays NMO corrected azimuth-offset gathers of the vertical
component for the isotropic model and the corresponding FK spectrum. Some coherent
noise can be found (Figure 6.13a). By applying an FK filter, the coherent noise is mostly
attenuated (Figure 6.13c). The data was then sorted into azimuth-offset supergathers.
Azimuth gathers were grouped by an azimuth increment of 6°. Within each azimuth
supergather, offsets were also grouped by 40 meters panels. For seismic anisotropy
analysis, the azimuth-offset supergathers were also sorted in offset-azimuth order (Figure
6.14, Figure 6.15, and Figure 6.16). For shear-wave splitting analysis, common azimuth
supergathers were stacked. The vertical, radial and transverse components stack results

are shown as Figure 6.19, Figure 6.20 and Figure 6.21.
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Figure 6.12 Velocity analysis for PP (top) and PS (bottom) data. From left to right:
a) and d) velocity spectrum and n for 4™ order moveout correction; b) and e) 4™
order NMO corrected gather, and c¢) and f) hyperbolic NMO corrected gather. The
black line in the spectrum is the RMS velocity, the red line is the interval velocity,
the green line in (d) denotes the velocity picks of P waves from (a) superposed on the
velocity spectrum for the PS data.
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Figure 6.14 Well logs (Vp: blue; Vs: green; density: red) and offset-azimuth
supergathers of the vertical component for the isotropic (top) and the HTI (bottom)
earth models. The red plots at the bottom are azimuths. Common-offset gathers are
separated by space and offset increases to the right.

6.3 Results and discussions
6.3.1 Velocity anisotropy
Evidence of azimuth velocity anisotropy can be seen on the offset-azimuth super-

gathers of the vertical, radial and transverse components of the data (Figure 6.14, Figure



161
6.15 and Figure 6.16). On the vertical and radial component gathers of the isotropic
model, there is no sign of azimuthal velocity variation from near to far offset (the top
gathers of Figure 6.14 and Figure 6.15). On the corresponding gathers from the
anisotropic model, since isotropic NMO correction was applied to the gathers, residual
moveout was left on the NMO gathers. Azimuthal variation of residual moveout is
noticeable on the gathers from the anisotropic model below the reflection of the top of
the Dawson Bay Formation. The variation range increases with offset, the largest
variation is seen at the far offset. On the far offset panels (offset > 660 m), azimuthal
variation of reflection time can also be seen above the Dawson Bay Formation, it should
be caused by over-NMO-corrected events (very mild mute was applied to the NMO-
corrected gather). A similar phenomenon can also be observed on the gathers of the
transverse component (Figure 6.16).

Based on the azimuthal super-gathers, azimuthal velocity analysis was carried out
for both vertical and radial components for the anisotropic model. Figure 6.17 shows the
velocity spectrum at four selected azimuths, velocity section and picked velocity plots of
the vertical component focused on the fractured formation. The same plots for radial
component are displayed as Figure 6.18.

The azimuthal velocity spectrum shows difference from the top of the First Red
Bed Shale, at about 665 ms on vertical component data, and at 848 ms on radial
component data. The stack energy peak locations of the base of the Dawson Bay (705 ms
on vertical component data, 906 ms on radial component data) vary with azimuth. The

Shell Lake anhydrite (762 ms on vertical component data, 984 ms on radial component
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data) shows smaller variation on velocity spectrum. The velocity map shows the velocity

to be constant above the top of the Dawson Bay Formation. The largest variation of stack
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Figure 6.15 Well logs (Vp: blue; Vs: green; density: red) and offset-azimuth
supergathers of the radial component for the isotropic (top) and the HTI (bottom)
earth models (mild mute is applied to the gahters). The red plots at the bottom are
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right.
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Figure 6.16 Well logs (Vp: blue; Vs: green; density: red) and offset-azimuth
supergathers of the transverse component for the HTI earth model. The red plots at
the bottom indicate the azimuths.

velocity with azimuth exists at the bottom of the fractured Dawson Bay. A similar
observation can also be made on velocity plots for the six azimuths from 0 to 90 degree.
For the P wave data, the maximum stacking velocity at the bottom of the Dawson Bay
Formation is at azimuth 0°, which is parallel to the isotropy plane. The minimum
stacking velocity at the base of the Dawson Bay Formation for the PS data is found to be
at azimuth 45°.
6.3.2 Shear-wave splitting analysis

Figure 6.19 and Figure 6.20 show the azimuth bin stacks of vertical and radial
components for both isotropic and HTI models. The stack results were also correlated to
synthetic seismograms from well logs. The correlations between synthetic seismograms
and azimuth bin stacks are quite good for both vertical and radial components. The four
events picked (from top to bottom) are: the top of the First Red Shale (Event 1), the top
of the Dawson Bay Formation (Event 2), the base of the Dawson Bay Formation (Event

3), and the top of the Shell Lake Anhydrite (Event 4). At the top of the First Red Bed



164
Shale, stacks of isotropic and anisotropic models are quite consistent. Below Event 1, the
reflections are coherent with azimuth on stack results of the isotropic model. On the stack
results of anisotropic model, however, there are variations of amplitude and time with
azimuth. This is especially evident on the radial component. The differences between
stack results of isotropic and anisotropic models, is the smallest at azimuth 0° and 180°

(along fracture plane direction) for both vertical and radial components, while the
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Figure 6.17 Vertical component velocity spectra (the black line denotes the velocity
picks on the present spectrum, the yellow line is the picks on the adjacent spectrum)
of HTI model at azimuth 0° (a), 30° (b), 60° (c), and 90° (d), stack velocity section (e)
and stack velocity plots at the seven azimuths (f) from 0° to 90°.
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Figure 6.18 Radial component velocity spectra (the black line denotes the velocity
picks on the present spectrum, the yellow line shows the picks on the adjacent
spectrum) of the HTI model at azimuths 0° (a), 30° (b), 60° (c), and 90° (d), stack
velocity section (e) and stack velocity plots at the seven azimuths (f) from 0° to 90°.

difference is the largest at azimuths of 90° and 270° (along the fracture normal direction).
On the bin stack of transverse component (bottom of Figure 6.21), only the reflections
below the top of the Dawson Bay can be seen, and no sinusoidal shape reflections time
variation is found. However, polarity flip happens across 0°, 90°, 180° and 270°. From
the amplitude plots of the bottom two selected reflections in Figure 6.22, the base of the

Dawson Bay Formation and the top of the Shell Lake Anhydrite, we can see that
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amplitude crosses 0 at these four azimuths. Within each quadrant, amplitude increases

with azimuth for the first 45 degrees then decreases.
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Figure 6.19 Top, from left to right: well logs (Vp: blue; Vs: green; density: red), PP
synthetic seismograms (duplicated stack traces), azimuth bin stack of vertical
component for isotropic earth model, and azimuth bin stack of vertical component
for anisotropic earth model. Bottom, from left to right: azimuth bin stack of vertical
component for isotropic (left) and anisotropic (middle) earth model, and their
difference (right) focused on the fractured layer. The four events picked (from top
to bottom) are the top of the First Red Shale, the top of the Dawson Bay Formation,
the base of the Dawson Bay Formation, and the top of the Shell Lake Anhydrite.
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Figure 6.20 Top, from left to right: well logs (Vp: blue; Vs: green; density: red), PS
synthetic seismograms (duplicated stack traces), azimuth bin stack of the radial
component for the isotropic earth model, and azimuth bin stack of radial
component data for the anisotropic earth model. Bottom, from left to right: azimuth
bin stack of the radial component for the isotropic (left) and anisotropic (middle)
earth model, and their difference (right) focused on the fractured layer. The four
events picked (from top to bottom) are the top of the First Red Shale, the top of the
Dawson Bay Formation, the base of the Dawson Bay Formation, and the top of the

Shell Lake Anhydrite.
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Figure 6.21 shows the interpretation result for the fast and slow shear-wave

directions. The fast shear-wave, S1, is along 0°-180° direction, which is consistent with

the fracture plane direction of the input model. The slow shear-wave orientation is along

the 90°-270° direction, the direction normal to the fractures of the input model.
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Figure 6.21 Radial (top) and transverse (bottom) component azimuth bin stacks of
the fractured earth model. The red dashed lines show the fast shear-wave (S1)
polarization direction, and the blue dashed lines show the slow shear-wave (S2)
polarization direction. The four events picked (from top to bottom) are the top of
the First Red Shale, the top of the Dawson Bay Formation, the base of the Dawson
Bay Formation, and the top of the Shell Lake Anhydrite.
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Figure 6.22 Amplitude plots of transverse component azimuth bin stack of the
anisotropic model. The three events are the top of the First Red Shale (E1), the base
of the Dawson Bay Formation (E2), and the top of the Shell Lake Anhydrite (E3).

Then the horizontal components were processed in S1 and S2 coordinates. The

results are shown as Figure 6.23. It can be seen that there is no shear-wave splitting

above the fractured layer. When the shear-wave propagates through the fractured layer,

the waves split into slow and fast waves and the time shifts can be seen on azimuth stack

results in the S1 and S2 directions.
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6.3.3 Time-lapse attribute analysis

Time-lapse attribute analysis was performed for time and amplitude of the three
picked events mentioned before, the top of the First Red Shale (E1), the base of the
Dawson Bay Formation (E2), and the top of the Shell Lake Anhydrite (E3). Figure 6.24
displays the time and amplitude plots of the three events for the vertical component of
isotropic and HTI models together with the corresponding differences. At the top of the
First Red Bed Shale (E1), since all the overlying strata of the two models are the same

and isotropic, there is almost no time shift from azimuth 0 to 360 degree. However, small
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amplitude difference, up to a 3.2% increase, exists at the top of this layer. At the bottom
of the Dawson Bay Formation (E2), up to a 0.75ms time delay and £3.7% amplitude
change can be seen due to the fractures. Although all the formations underlying the
Dawson Bay Formation are the same for the two earth models, and both are isotropic,
larger time delay (up to 1.1ms) and amplitude change (up to 12.2%) are found at deeper
reflections, e.g., the top of the Shell Lake Anhydrite (E3). The reason for the increases of
time delay and amplitude change could be the incidence angle difference for E2 and E3
when P waves travel through the anisotropic layer.

Figure 6.25 shows the time and amplitude plots of the three events on the radial
component of the isotropic and anisotropic models, together with corresponding
differences. At the top of the First Red Bed Shale (E1), since all the overlying strata of
the two models are same and isotropic, there is almost no time shift for azimuths from 0
to 360 degree. Similarly, a small amplitude difference, up to 2.2% increase, can also be
seen at the top of the anisotropic layer on radial component. At the bottom of the Dawson
Bay Formation (E2), we can see a larger time delay (up to 3.75 ms) and amplitude
change (up to 46% decrease) compared with the vertical component. As seen for the
vertical component, although all the formations underlying the Dawson Bay Formation
are identical for the two earth models and both are isotropic, an increasing time delay (up
to 4.9 ms) is found at deeper reflections, e.g., the top of the Shell Lake anhydrite (E3),
and the amplitude change is up to 30%. The reason should be similar to that observed in

the vertical component case.
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Figure 6.24 Time (a) and amplitude (b) plots of the three events on the vertical
component azimuth bin stacks for the unfractured (denoted as ISO) and fractured
(denoted as HTT) earth model. The amplitude differences are on a percentage scale.
The three events are the top of the First Red Shale (E1), the base of the Dawson Bay
Formation (E2), and the top of the Shell Lake Anhydrite (E3).
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Figure 6.25 Time (a) and amplitude (b) plots of the three events on radial
component azimuth bin stacks for the unfractured (denoted as ISO) and fractured
(denoted as HTI) earth model. The amplitude differences are on a percentage scale.
The three events are the top of the First Red Shale (E1), the base of the Dawson Bay
Formation (E2), and the top of the Shell Lake Anhydrite (E3).

The resultant time shift from shear-wave splitting can be used to calculate the
fracture density using a method by Tsvankin (1997). At the bottom of the fractured layer,

the time shift between slow- and fast-shear waves is 3.75 ms, which is equivalent to 1.2%
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porosity caused by fracture. The result is comparable to the input model value, 1%
fracture porosity.
6.3.4 Discussion

The previous analysis shows that the anisotropy caused by vertically aligned
fractures in the Dawson Bay Formation is evident on PP and PS data. From the offset-
azimuth gathers, residual moveout can be clearly seen since only isotropic NMO is
applied on the data of HTT models. We can see the proof of anisotropy, on the other side,
the time shift and amplitude difference might not be the same if NMO is accurately
corrected by considering anisotropy effects.

However, vertically aligned fractures in the 40 m Dawson Bay Formation can be
detected by 3C seismic data. The time shift and amplitude changes are significant,
especially for radial component data. The fracture orientation can also be determined by
the shear-wave polarization. Thus multicomponent seismic data may be an effective way
to map and monitor fractures in the Dawson Bay Formation for potash mining.

6.4 Summary

This chapter presents the processing and interpretation of seismic modeling data
of the earth models generated based on well logs in a potash mining area. The goal of the
work is to study the evidence of azimuthal seismic anisotropy, shear-wave splitting, and
time-lapse seismic signals caused by HTI anisotropy from vertically aligned fractures in
the Dawson Bay Formation. The results show that seismic velocity anisotropy can be
detected by both vertical and horizontal components of the HTT earth model, it is
especially evident on radial component data. Shear-wave splitting is distinctive, and the

fracture orientation determined by the polarization of fast and slow shear waves is
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consistent with the input model. The time-shift and amplitude changes due to the
anisotropic layer are also apparent on both vertical and radial component data. The time-
shift on radial data is up to 5 ms at the top of the Shell Lake Anhydrite, and the amplitude
change is up to 46% at the base of the Dawson Bay Formation.

Combined with the correlation results of well and surface seismic data in the
previous study, this suggests that multicomponent seismic data could be interpretable in
this potash area of western Canada. This also suggests that by searching for seismic
anisotropy, shear-wave splitting on the multicomponent seismic data or by looking for
changes in repeated seismic surveys, we may be able to detect/monitor fractures, and
fracture direction as well as intensity in the Dawson Bay Formation and similar intervals

can also be determined.
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Chapter Seven: Conclusions and future work

7.1 Conclusions

In this dissertation, integrated petrophysical and multicomponent seismic studies
were carried out for two study areas, the Ross Lake heavy oil field and a Saskatchewan
potash mining site. The 3C VSP data were used for characterizing a Cretaceous age
channel sand at Ross Lake. By utilizing the VSP advantages in a wave propagation study,
a true reflectivity AVO gather was processed from walkaway VSP data, and seismic
attenuation was also estimated for additional information in seismic interpretation. In the
Saskatchewan potash mining case, rock physics, multicomponent seismic and time-lapse
seismic techniques were integrated for brine inflow monitoring and prevention. The main
target formation is a dolomitized carbonate unit of Devonian age with a thin shale layer
at the bottom.

The 3C VSP study at Ross Lake revealed that: 1) the VSP data is valuable for
providing a reliable correlation between well logs and seismic data, as well as good
quality image of the rocks close to the borehole; 2) the walkaway VSP data can yield a
true reflectivity offset gather for AVO analysis; 3) in situ rock properties in depth, such
as seismic velocity and attenuation can be derived from VSP data; 4) an interesting
correlation was found between the Q values and rock properties, such as Vp, Vs,
porosity, and Vp/Vs. The relationship between Qp and clay-bound water also indicates
seismic attenuation influenced by the phase of the fluid in the pore space; 5) frequency
analysis on the 3C far-offset VSP data displayed that the frequency contents of PP and
PS are similar near the reflectors, and the difference between the frequency of PP and PS

data at some distance from the reflectors are mostly explained by attenuation.
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The study using the Kuster-Toks6z and the Hudson’s models for
fractured/cracked media indicated that there are limitations for using the models, and the
rock properties of fractured media are largely dependent on the pore shape. A small
quantity of thin fractures/cracks can cause large velocity changes for various kinds of
rocks.

At the Saskatchewan potash mining area, the petrophysical and seismic
simulation study indicated the feasibility of using repeated multicomponent seismic to
detect and monitor fractures which might pose a brine inflow problem to the mining
operation. Seismic interpretation on the time-lapse 3C-3D surveys saw visible seismic
signature changes similar to those on the modeling results. Based on the interpretation,
three possible fractured zones were delineated. Fractured zones can also be outlined by
seismic curvature attributes. From rock physics modeling results, aligned fractures in the
rocks will produce velocity anisotropy. To study the evidence of azimuth seismic
anisotropy, shear-wave splitting and time-lapse seismic signals caused by vertically
aligned fractures, numerical seismic data were modelled. The results show detectable
seismic velocity anisotropy and distinctive shear-wave splitting. From shear wave
splitting, the fracture orientation and intensity can be determined. There are also
detectable seismic difference attributes between unfractured and fractured models.

7.2 Future work

The well logs and the 3C VSP data of the Ross Lake oilfield provide a good
opportunity to study the relationship between seismic attenuation and rock properties.
However, the relationships for the channel sands are not acquired due to lack of

downhole receivers beneath the reservoir. 3C surface seismic data was also acquired in
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the studied area. Therefore, Q values of the channel sands can be derived from the
surface seismic data. Since the upper and lower sand in the studied area have similar rock
properties, but saturated by oil and water, respectively, the fluid effect on the relationship
is expected to be found. The processing results of horizontal radial (Hmax) and
transverse (Hmin) suggest that there is possibly near-surface shear velocity anisotropy.
Further analysis from multicomponent surface seismic can be done to confirm the
existence of the anisotropy and then to delineate it.

The interpretation of the time-lapse 3C-3D post-stack seismic data at the
Saskatchewan potash mining indicate the possibility of fractures created between 2004
and 2008 in the Dawson Bay Formation. But fracture information such as fracture
intensity and fracture orientation can not be determined by post-stack seismic data. The
analysis on the numerical modeling data based on the well logs suggests that such
information can be acquired from velocity anisotropy and shear-wave splitting analysis.
For detailed fracture description, velocity anisotropy and shear-wave splitting analysis on

the field 3C-4D pre-stack seismic data should be carried out in the future.
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APPENDIX A: 3C orientation of VSP data

A.1 Horizontal rotation

In downhole measurement, the geophone sonde twists and the horizontal
components randomly orient from depth to depth. Generally, 3C geophone does not have
systems for either downhole orientation or for measuring downhole relative orientation.
Thus the coherency of the seismic events of the horizontal components is very poor.
Figure A.1 displays the X and Y components of vertical vibrator zero-offset (54m) VSP
data. It shows that the horizontal sensors are oriented randomly. Very little coherent
signal can be seen on the raw x and y data. It is necessary to orient the horizontal
components to consistent directions.

The orientation of horizontal components can be determined by hodogram
analysis (Hinds et al., 1996). At each depth level, the angle for the rotation is chosen
using a line through the hodogram constructed using the data in a window of one period /
cycle after the first arrival. Once the rotation angle is determined, the horizontal
components can be rotated into two horizontal directions (Figure A.2) using equation
(A-1): horizontal radial, Hmax, which is tangent to source-receiver frame, contains most
of SV wave and P wave; and horizontal transverse, Hmin, which is orthogonal to source-
receiver frame, containing mainly SH wave. The coordinate system of x, y, and z
components at the local receiver depth along with the coordinate axis used after rotation

are shown in Figure A.2.

Hmax(t)\ cos(68) —sin(0)
(Hmin(t)) = (x(0 y0) <sin(9) cos(@))

(A-1)
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where,
Hmax(t), Hmin(t): horizontal radial/transverse component;
x(t), y(t): X, Y components (field record);

6: angle between X direction and horizontal radial direction.
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Figure A.1 X (a) and Y components (b) of vertical vibrator zero-offset VSP data
(source offset 54 m). It shows that the horizontal sensors are oriented in randomly
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Figure A.2 The coordinate system of x, y, and z components at the local receiver

depth along with the coordinate axis that will be used after rotation (after Hinds et
al., 1996).

The Hmax and Hmin from rotation of X and Y components of vertical vibrator
zero-offset (source offset 54 m) VSP data are shown in Figure A.3. Coherent events can
be seen on the Hmax and Hmin components. Various wave types, including transmitted,
reflected and direct S-waves were also recorded by horizontal receivers (refer to the
wave type analysis of zero-offset VSP data in Chapter Two).

Figure A.4 displays the Hmax, and Hmin from horizontal rotation of X and Y
component, and Z components of source offset 699 m VSP. On the horizontal
component, transmitted, reflected and direct S-waves can be found. On the vertical

component, direct and reflected P-waves can be easily spotted. Comparing with small
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source offset VSP data, much larger amount of direct S-waves can be seen on vertical

component.
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Figure A.3 Hmax (horizontal radial, a) and Hmin (horizontal transverse, b) of zero-

offset VSP (offset 54m, vertical vibrator). Hmax and Hmin are from horizontal

rotation of X and Y components.
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A.2 Primary downgoing wavelet isolation

The downgoing P-waves (or SV waves) are sometimes expected to be isolated
onto a single channel from the raw X, Y, and Z channels, for instance downgoing P
waves are needed to design deconvolution operators. Assuming that the first-arrival
wavelet is not contaminated by other wavefields such as upgoing P- and SV-events and
downgoing SV-events, the primary downgoing wavelet can be isolated through two
series of data rotations using hodogram analysis (Hinds et al., 1996). The first step is
horizontal rotation described in A.1.The second step is to transform Hmax and Z data
into Hmax’ and Z’ (described by Figure A.2) following a similar procedure: Hmax’ is
along the source-receiver direction, all the downgoing primary P-wave is redistributed to
this data; Z’ is orthogonal to source-receiver direction. The downgoing P-wave separated
from Hmax’ can then be used for deconvolution operator design or amplitude recovery.
A.3 Time-variant polarization

The incidence angles of the upgoing P-waves (or SV waves) change with
increasing traveltimes at a single geophone location (Figure A.5). To separate upgoing P-
wave and SV wave, a time-variant rotation is needed. A series of polarization angles for
various reflections arriving on a single trace can be computed through ray-tracing using
the velocity model derived from first-arrival times of zero-offset VSP data. For each
trace, the upgoing P and SV waves will be separated by matrix equation (A-2) using a

time-variant angle 6(¢) (Hinds et al., 1996),

( Zup'"'(t)

cos(6(t)) — sin(0(t))
Hmax_up'' (t) )

) = (Zup(t) Hmax_up(t)) <Si7’l(9(t)) cos(6(t))

(A-2)
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where,
Hmax_up' (t): the component mainly contains upgoing SV wave;
Zup''(t): the component mainly contains upgoing P-wave;
Zup(t), Hmax_up(t): upgoing wavefield from Z and Hmax component;

0(t): time-variant angle between Z and P-wave propagation direction.

source
R

Z
Z,

V3
Z3

Vy
Z,

Figure A.S Schematic diagram of time-variant polarization concept. The reflection
angle for upgoing raypaths emerging at receiver R changes with depth. 6;: the
incidence angles; V;: the layer velocities; Z;: the layer depths; i=1, 2, ..., n.
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APPENDIX B: Linear least-square regression method for empirical relationship
between Q values and rock properties

Supposing the relationship between Q values and rock properties are linear, and it

can be written as:

Ay * X171+ Az * X3 + o+ Ay * X1y + Qo = Q4
A1 * X1 + Ay ¥ Xgp + o0+ Ay * X+ Qg = Q2

Aq * Xpg + Az *Xpp + -+ Ay * Xy + Qo = @y

(B-1)
where a;, ay, ..., a,, are the unknown coefficients; and xy, is the " rock properties at
measurement depth &, k=1, 2, ..., n is the measurement depth, /=1, 2, ..., m is the rock
properties used for Q prediction, Qy is a unknown constant, and Q;, Q, ..., O, are the Q
values measured at each depth. Equation (B-1) can be rewritten as,

XA=Q
(B-2)
where
X11 X1m 1
o X =— X21 Xom 1 :
xnl o xnm 1

L A:(ab a2; ceey an’ Q()),’

o 001 Oz ..., O0);

If n is greater than the number of unknowns, then the system of equations is over-

determined, and the coefficients can be solved using the least square solution of the
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equations. The least squares solution to the problem is a vector A, which estimates the

unknown vector of coefficients. The normal equations are given by

(XTX)A = XTQ
(B-3)
where X7 is the transpose of the design matrix X. Solving for A,
A=XTX)"1XTQ

(B-4)
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APPENDIX C: Crack Description

There are several parameters often used to describe simplified versions of a

cracked rock:

Aspect ratio: the quantity a=b/c is called the aspect ratio.

side view front view

Figure C.1 The oblate spheroid is used to model a representative crack or pore, thus
making the mathematics for the replacement medium tractable. This ‘Hudson
crack’ is an ellipsoid of revolution, which a circular cross-section and a small width
or thickness. The aspect ratio is defined as the ratio of half-width, b, to radius of the
crack face, ¢ (after Macbeth, 2002).

Crack density: the crack density is the number of cracks per unit volume:

where
e N: number of cracks in volume Vypyi;

e (: semi-major axis value of cracks.
If we assume a rock contains N/V}, thin oblate spheroidal cracks per unit bulk
volume, each having semi-major axis and semi-minor axis b=c.c, where a is the aspect

ratio, the crack porosity will be:
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_N4nczb_N4nc3a
Vv 3 VvV, 3

where N is the number of cracks in volume Vy,; ¢: semi-major axis value of cracks; a.:
aspect ratio.

Thus, crack density is:
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APPENDIX D: Fluid substitution

B.1Fluid substitution for isotropic media: Gassmann’s relation

Generally, when a rock is loaded under an increment of compression, such as
from a passing seismic wave, an increment of pore pressure change is reduced, which
resists the compression and therefore stiffens the rock. The low-frequency Gassmann
(1951) - Biot (1956) theory predicts the resulting increase in effective bulk modulus,
Ksat, of the saturated rock through the following equation:

Ksat — Kdry Kfl
Ko — Ksar Ko —Kary (Ko — Kyy)

Usar = Hary
(D-1)
B.2 Fluid substitution in anisotropic rocks: Brown and Korringa’s relations
(Mavko, et al., 1998)
Brown and Korringa derived theoretical formulas relating the effective moduli of
an anisotropic dry rock to the effective moduli of the same rock saturated by fluid.

(@) _ g0

jjaa ijaa

d
(S — 8§90

klaa

(Suapy = Svaps) + B — Bo)?

(dry) _ o(saturate) _
S ijkl Sijkl -

(D-2)
where
o S — effective elastic compli t fd k
Lkl pliance tensor of dry roc
. Sl.(jslfltumte) = effective elastic compliance tensor of rock saturated with pore fluid

e S L'Ojkl = effective elastic compliance tensor of mineral material making up rock
e ff = compressibility of pore fluid

[y = compressibility of mineral material = Sp, 55
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¢ = porosity
There are some assumption and limitations applied to the method:
Low frequencies
All minerals making up rock have the same moduli
Fluid-bearing rock is completely saturated
For clay-filled rocks, it is often best to consider the “soft” clay to be part of the
pore filling phase rather than part of the mineral matrix.
For partially saturated rocks at sufficient low frequencies, one can usually use an
effective modulus for the pore fluid that is an isostress average of the moduli of

the liquid and gaseous phases:

Bri =SB+ (1= 95)Bg

[, = the compressibility of the liquid phase
B = the compressibility of the gas phase

S = the saturation.
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APPENDIX E: Hashin-Shtrikman bounds (Mavko, et al., 1998)

When the geometries of each constituent in the rock are unknown, the upper and
lower bounds of effective moduli of the rock can be estimated, given the volume fraction
and moduli of each constituent. When only volume fraction and elastic moduli are given
for each phase in the rock, Hashin-Shtrikman bounds are the narrowest bound without
knowing the geometries of the constituents. They were used to validate the modeling

results. The equations can be written as:

f2
KHSi = Kl + 1

(K, —K)™ + f; (K1 + %l’ll)

f2
HSt+ _ +
t 2f1 (K4 +2p4)

(pz — )1+ )
Spy (K1 + §ﬂ1)

(E-1)

where
¢ K, K, : bulk moduli of individual phases;
® |y, Uy : shear moduli of individual phases;
e fi, f>: volume fractions of individual phases.
The upper and lower bounds are calculated by interchanging which material is
phase 1 and which is phase 2. When the stiffest material is termed 1, the upper bound
will be given, otherwise, when the softest phase is termed 1, the lower bound will be

calculated.
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APPENDIX F: Appendix figures for the Saskatchewan potash mining

In the study mine area, wells were drilled for various purposes, especially for
draining the underground water which has the potential to threaten the mining operation.
For multicomponent seismic study, only one well Grout 59-1 has dipole sonic logs.
However, none of the wells in the mining area was drilled deeper than the Dawson Bay
Formation. Within the studied wells, the deepest well, Well A was drilled through the
Ordovician formations. Although it is located some distance from the mining area, it is in
the same basin as the mine and the geology is generally similar to that in the mining area.
For correlating the formations underneath the Dawson Bay Formation, especially the
Prairie Evaporite which includes the potash ore interval, correlation between Well A and
the seismic data in the mining area was also implemented to aid the interpretation.
Despite of the many kilometres distance from Well A to the seismic data, somewhat
surprisingly, there is a reasonable tie with P-wave synthetic seismograms to the PP field
seismic section (Figure F.1). When we tie our PS synthetic seismograms to the field PS
seismic data (Figure F.2), again a believable correlation was found. We note that there is
a strong Dawson Bay reflection in the PS seismic section. This bodes well for measuring
changes in it. Finally, we correlate the PP and PS sections (Figure F.3).

For time-lapse 3C-3D seismic data interpretation, the time structures of the
Birdbear Formation (approximately 625 m deep in Well A) and the Winnipegosis
Formation (right below the Prairie Evaporite, approximately 1185 m deep in Well A)
were also created on both PP and PS data (Figure F.4, Figure F.5, Figure F.6, and Figure
F.7) to investigate the seismic signatures of the formation above and below the target

formation. Figure F.8 shows the picking of the top and the bottom of the fracture zone on
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a line across the dipole sonic well for Vp/Vs calculation. The top of the zone can be

I

determined by the chosen well in the mining area. However, the bottom of the zone can

not be determined by the correlation between seismic data and Grout 59-1 well since the

well is too shallow (only reaches the Dawson Bay Formation). The seismic signature of

the bottom of the studied zone was determined from the Well A.
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Figure F.4 Time structure of the top of the Birdbear Formation on the PP data, a:
2004 survey; b: 2008 survey. There is almost no time shift between the two surveys.
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Figure F.5 Time structure of the top of the Birdbear Formation on the PS data, a:
2004 survey; b: 2008 survey. The time shift between the two surveys is fairly small.
A little delay was found on 2008 survey.
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Figure F.6 Time structure of the top of the Winnipegosis Formation on the PP data,
a: 2004 survey; b: 2008 survey. Small time delay can be found on 2008 survey, it
could be attributed to fractures in the overlying formation.
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Figure F.7 Time structure of the top of the Winnipegosis Formation on the PS data,

a: 2004 survey; b: 2008 survey. An obvious time delay was seen on 2008 survey,
especially at the survey center, where is the trap door area. It was thought to be

overlying formation fracture effects.
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Figure F.8 The bottom of the Porous Zone and the bottom of the Dawson Bay
Formation pickings and the correlation with well logs. On the vertical component,
the bottom of the Porous Zone is a peak, the bottom of the Dawson Bay Formation

corresponds to zero-crossing point on seismic traces. On the radial component,
there is no accurate picks for the two geological markers due to low resolution.

Approximately they correspond to two zero-crossing points.
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