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Abstract

Since multi-component modelling provides an improved image of a target horizon, I

present a 9C-3D numerical modelling approach for comparison with real seismic data,

and synthetic data derived from fully elastic numerical methods. This modelling is posed

in the slowness domain due to its advantages over the time domain. To accomplish this

modelling, I extrapolate the known source wavefield from the surface to the reflector,

multiply it by the reflection coefficient, and then extrapolate back to the surface. As the

phase shift operator is prerequisite for performing this modelling, I compute the effective

ray parameter that is used to obtain vertical slowness, an essential parameter in order to

compute the phase shift operator. The presented modelling takes two data acquisition

geometries into account. The first corresponds to micro-seismic and walk-away vertical

seismic profiling (VSP) and the second corresponds to surface seismic methods. In order

to obtain multi-component data, I build a rotation matrix based on azimuth and dip be-

tween the grid point and P-wave polarization vector. The implementation of this matrix

on the extrapolated wavefield transforms the source polarization into the orientation of

multi-component geophone and yields the multi-component data that can be used for

analysis. Considering the first data acquisition geometry, the execution of the rotation

matrix takes place before the refection coefficient is multiplied. To execute the proposed

modelling for the second data acquisition geometry, it is necessary to obtain the reflection

(R) and transmission (T ) coefficients in the plane wave domain. To do so, a normal for

each individual plane wave based on the local velocity and vector cross product of this

normal with the normal to the reflector are computed. This cross product yields a ray

parameter that presently is used to compute corresponding R and T coefficients for a

given plane wave.

For the sake of simplicity, I first consider isotropic media and follow the procedure de-
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scribed in above paragraph for a known SH wavefield. By considering this case, I reveal

a problem associated with the data acquisition geometry. Further, as seismic anisotropy

plays an important role in exploration field, I perform the proposed modelling for trans-

verse isotropic media (VTI: when axis of symmetry is vertical, HTI:when axis of sym-

metry is horizontal) in behalf of the generally occurrence of these media in geophysical

exploration field. To continue a 9C-3D modelling for anisotropic media, I obtain the R

and T coefficients in plane wave domain for VTI and HTI media. Additionally, the influ-

ence of anisotropy on amplitude versus offset (AVO) analysis is also examined. For HTI

media, I present two more approaches for avoiding the problems associated with the pre-

viously proposed modelling. According to the first approach, I use a relationship between

the cosine of any angle with the horizontal axis and the angle of incidence considered

with respect to vertical, and azimuth. Further, this relationship leads to the effective ray

parameter for HTI media that is an essential component for the implementation of the

proposed modelling. In the second approach, I solve the Christoffel equation for obtain-

ing vertical slowness that is used to obtain the phase shift operator for the given media.

Authentication of modelling is demonstrated in light of the physical modelling presented

by another student of CREWES (Consortium for Research in Elastic Wave Exploration

Seismology) for orthorhombic media.

iii



Acknowledgements

First and foremost my heartfelt thanks and sincere gratitude to my supervisor, Dr.

Robert J. Ferguson, for his constant guidance, help, timely advice and continuous en-

couragement all these years. I am grateful to the faculty, staff and students of CREWES

(Consortium for Research in Elastic Wave Exploration Seismology) for their support. I

would like to express my sincere thanks to Dr. Rob Vestrum for his valuable discussion

and comments on this work. I would like thank to the sponsors of the CREWES and

NSERC (Natural Science and Engineering Research Council of Canada) for their finan-

cial support of this work. I would also like to acknowledge the partial financial support

from the Department of Geoscience through FGS (Faculty of Graduate Studies) summer

scholarship.

I am indebted to my father (Mr. Surendera Sharma) and mother (Mrs. Usha Sharma)

for their affection, encouragement and support. I am also indebted to my brother, Dr.

Yogesh Sharma, who is always a constant source of motivation, support and encourage-

ment. I also wish to acknowledge my friends, Mr. Tapesh Tyagi and Mr. Ravindra

Kumar, for being supportive to me at all time. I thank Mr. Irfan syed for his co-

operation. I would like to thank Mr. Satinder Chopra and Mr. Somnath Mishra for

their help in Calgary. Above all, I would like to thank the Almighty, for His kindness,

grace and blessings throughout my career.

iv



v

Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Role of seismic modelling in exploration . . . . . . . . . . . . . . . . . . 1
1.2 Seismic modelling methods . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 How to formulate RSM in plane wave domain . . . . . . . . . . . . . . . 4
1.4 Importance of different models and multi-component seismic in seismic

exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Consideration of data acquisition geometry . . . . . . . . . . . . . . . . . 7
1.6 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Plane wave reflection and transmission coefficients for SH-wave. . . . . . 10
2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Plane wave domain approach to obtain the R and T coefficients . . . . . 11

2.2.1 3D R and T coefficients for SH waves . . . . . . . . . . . . . . . . 13
2.2.2 Dipping interface problem . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 9C-3D modelling for VTI media. . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Wave propagation in transversely isotropic media . . . . . . . . . . . . . 26
3.4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4 R and T coefficients in the plane wave domain for VTI media. . . . . . . 50
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 R and T coefficients of SH wave for VTI media . . . . . . . . . . . . . . 52
4.4 Reflection and Transmission coefficients for P-SV wave . . . . . . . . . . 54
4.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5 Phase shift modelling for HTI media. . . . . . . . . . . . . . . . . . . . . 77
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Group velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 SV-case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



6 Phase shift modelling with new proposed approaches. . . . . . . . . . . . 103
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 First approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Second Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5 Surface seismic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5.1 HTI media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A Chapter2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.1 To find the value of slowness at which reflected amplitude would be zero 125
A.2 Energy flux for reflected and transmitted waves . . . . . . . . . . . . . . 125
B Chapter3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
C Chapter4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D Chapter5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
D.1 Methodology for obtaining analytic curves . . . . . . . . . . . . . . . . . 130
E Chapter6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
F Abbreviation and list of symbols . . . . . . . . . . . . . . . . . . . . . . . 136

vi



List of Tables

C.1 Model parameters for Class 1 AVO . . . . . . . . . . . . . . . . . . . . . 129
C.2 Model parameters for Class 2 AVO . . . . . . . . . . . . . . . . . . . . . 129
C.3 Model parameters for Class 3 AVO . . . . . . . . . . . . . . . . . . . . . 129

D.1 Thomson’s Parameters of a medium considered for P and SH waves prop-
agation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

D.2 Thomson’s Parameters of models considered for SV wave propagation. . . 131

E.1 Model parameters for HTI media . . . . . . . . . . . . . . . . . . . . . . 135

vii



viii

List of Figures

2.1 Schematic representation of unit normals to a plane wave and a horizontal
interface, the angle of incidence θI is the angle between normal p̂ and â.
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Chapter 1

Introduction

In this chapter, I will start from the role of seismic modelling in the exploration field,

then I will discuss the available methods for seismic modelling. The reason I have selected

the plane wave domain is also described in this chapter. How I accomplish the proposed

modelling in the plane wave domain, is also described in the current chapter. Further,

this chapter illustrates the importance of chosen models for present modelling. I finish

by demonstrating the considered data acquisition geometry and providing an outline of

thesis.

1.1 Role of seismic modelling in exploration

In seismic exploration, the main objective of the geo-scientist is to link the geology to

seismology. To do so, seismic modelling is one of the basic tools (Benxi et al., 2009).

Traditionally, seismic data and data from another sources are used to derive an indirect

description of a potential reservoir. Forward (seismic) modelling is a key to success to

an explorationist as it aids one in relating what one sees in the seismic data to what

one expects to see, based on the assumed geological model (Cameron et al., 1984). In

general, forward modelling is used to compare the seismic response of a given geological

model with actual data and the try to improve the match between these both data until

an acceptable level of accuracy is obtained (Sayersi and Chopra, 2009). Further, the

importance of forward modelling resides in the fact that it is employed to design the

seismic acquisition parameters, improve the seismic processing approaches and validate

the seismic interpretation (Anderson and Cardimona, 1995). It is used to simulate the
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seismic field from the sources to scatters to receivers and generate the seismic records.

1.2 Seismic modelling methods

Physical modelling is an effective method to generate a seismic response using a labo-

ratory scale model (Cooper et al., 2007). Considering the inconvenience and cost of a

field survey, it may be feasible to design and conduct a small seismic survey in the lab.

The assumption underlying the physical modelling is that scale models are built using a

real material with the same elastic properties as those of true geologic formations in the

Earth (Yang, 2003). After constructing a model, a source (a piezoelectric transducer), is

used to emit the seismic energy into the model, and the reflected wave-field is recorded by

receiver. The recorded data can then be processed and analyzed to compare with the real

field data. Historically, physical modelling was used because of a lack of adequate com-

puting technology for numerical modelling. The limitation of physical modelling resides

on the fact that the lab materials can not be exactly the same as the real sediments.

In numerical modelling one attempts to solve the wave equation for simulating wave

propagation in different media. Typically, numerical modelling methods are intended

to solve the partial difference equation by considering boundary and initial conditions

(Krebes, 2004). There are a number of numerical forward modelling methods available

and the choice of methods depends on a tradeoff between the accuracy necessary and

the desired computing time. Generally, the method that should be used is dictated by

the type of data to be modelled throughout, the aspects of the data that need to be

accurately modeled and the complexity of the model (Mellmani and Kunzinger, 1992).

Ray tracing and wave equation methods are two classes of seismic modelling. Ray trac-

ing methods are limited as these methods work for sufficiently smooth models whereas

we encounter with complex models in reality. This limitation can be overcome by using
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the wave equation methods that solve the propagation problem over the entire model

(Mellmani and Kunzinger, 1992). In this regard, there are many existing wave equation

solvers such as Kirchhoff and Born integral methods, finite-difference and finite-element

methods, and depth exploration method in frequency space domain (Benxi et al., 2009).

Although, finite difference methods can provide very accurate results in the most com-

plex media, these methods have limitations imposed by computing time that is high in

two dimensions and very high in three dimensions (Mellmani and Kunzinger, 1992).

Two methods, namely, Rayleigh Sommerfeld(RS) and Kirchhoff methods (Cooper et al.,

2008) have been adopted for forward modelling throughout in seismic exploration. Both

of these methods originated from optical diffraction theory (Ersoy, 2007).

Rayleigh Sommerfeld Modelling (RSM) is known as a 3D modelling technique and is

treated as an alternative to better known modelling techniques such as finite difference

and Kirchhoff (Margrave and Cooper, 2007). This modelling provides a high-frequency

seismic response that includes diffractor patterns. RSM can be more efficient than Kirch-

hoff modelling because it operates in frequency-wavenumber domain. In terms of com-

putational time, RSM takes O(NlogN) computing time while Kirchhoff modelling takes

O(N2) for 3D models (Cooper et al., 2008). In the past RSM was used to produce very

high frequency response but with no multiples, surface waves. Additionally, RSM was

limited to laterally but angle indipendent R and T coefficient. This work was elaborated

by Cooper and Margrave (2008) for RSM with AVO in order to produce a high frequency

seismic response that includes diffraction effects. By doing so the objective in modelling

in stratigraphic setting is obtained. To accomplish this work, ray tracing was used to

compute incident angle at reflecting interface. Presently, an approach is proposed for

RSM with AVO in the plane wave domain.
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1.3 How to formulate RSM in plane wave domain

Basic geometry and result of Rayleigh-Sommerfeld theory are described by (Margrave

and Cooper, 2007). Following this description, Rayleigh Sommerfeld modelling (RSM)

can be described in three major steps: 1) Extrapolation of source wave field from the

source to a datum reflector. 2) Multiplication of the extrapolated wavefield in step (1)

with a reflectivity function 3) Extrapolation of step (2) back to the surface. Presently, an

approach of going from spatial frequency domain into plane wave domain without τ − p

transformation, is described. The preceding argument describes the importance of this

approach in order to derive RSM in the plane wave domain.

It is known that wavefield extrapolation in the x − t domain involves two dimensional

convolution (Berkhout, 1982). Time can be replaced by temporal frequency or angular

frequency ω and now convolution, in one dimension only, is involved in the extrapolation

process. The space variable x is replaced by the spatial frequency variable kx by a second

Fourier transformation and only multiplication is involved for extrapolation in the kx−ω

domain. Now, an approach is invoked at this place in order to transform the wavefield

from x− ω domain into plane wave domain.

A monochromatic wavefield can be transformed from space domain into spatial frequency

domain as    
p (ikk•kx) pϕ k = Ψ(px)ω e dx, (1.1)

ω

where • is the dot product. Equation (1.1) can be written as

 k 
ω

iωpk =
•kx pdx,ϕ Ψ(px) (1.2)eω

ω

now using relation pk = ωpp, where pp is the slowness vector equation (1.2) is written as 
(iωkp•kx) pϕ (pp)ω = Ψ(px)ω e dx. (1.3)
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Thus using equations (1.1), (1.2), (1.3) a monochromatic wavefield can be described in

the plane wave domain without using τ − p transformation.

The importance of this approach in RSM is described presently. According to Rayleigh

Sommerfeld diffraction theory the source wavefield at any observation point can be de-

scribed as (Margrave and Cooper, 2007)

1
Ψ(x = P ) = Ψ0(xps)W (xpp − xps)ρ(s)ds, (1.4)

4π s

where P is the observation point and xpp = (xp, yp, zp), xps = (xs, ys, zs) are the coordinates

of the screen (reflector) and observation point, respectively. W is the z derivative of the

Green’s function, ρ(s = (xs, ys)) is the reflectivity function and ds = dxdy. Since equation

(1.4) is convolution, it can be described in Fourier domain (Margrave and Cooper, 2007)

as

Ψ(x) =
4

1

π s

Ŵ (kx, ky, zp − zs) Ψ̂0ρ (kx, ky, zs) e
ikxx+ikyydkxdky. (1.5)

where ‘hats’ indicate 2D Fourier transform over x and y. As per equation (1.5) Rayleigh

Sommerfeld modelling is just phase shift migration backwards (Margrave and Cooper,

2007).

It is revealed from the above equations that Fourier transformation takes place in RSM.

Now using transformation by equations (1.1), (1.2), and (1.3), RSM can be described

in plane wave domain. Further, to accomplish the RSM it is necessary to obtain the

reflection and transmission coefficients in plane wave domain.

1.4 Importance of different models and multi-component seismic in seis-

mic exploration

In seismic modelling, it is extremely important that we know how to synthesize a seismic

response that is as close as possible to what we measure in the real world (Anderson
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and Cardimona, 1995). Historically, Earth was treated as isotropic media for the sake

of simplicity but increasing demand for oil in world compels geoscientists for considering

the complexity of Earth. In reference to this, anisotropic models represents the Earth

at its most complex and play an important role in oil and gas exploration field in or-

der to improve the image of a target horizon (Grechka, 2009). Thus, it is reasonable

to expect anisotropic models to become the norm in future exploration. On consider-

ing anisotropy, the anisotropic models discussed presently are transverse isotropy with a

vertical axis of symmetry (VTI media), used to describe thinly layered media and shale

sequences (Thomsen, 2002), and with a horizontal axis of symmetry (HTI media).

Conventional seismic surveys record primarily P-waves using vertical component geo-

phones while multicomponent seismic surveys record compressional and shear waves using

multicomponent geophones. Once the multicomponent data is recorded, the processing

of this data is the next step and it may be several times more intensive than conven-

tional P-wave analysis. The reward of this great effort is an improved understanding of

the subsurface image. Using multicomponent seismic, there have been encouraging re-

sults in imaging through gas-obscured areas, finding sand-rich zones in clastic sequence,

and determining fractures zones and orientations (Chopra and Stewart, 2010). Beyond

these, multicomponent measurements provide improved imaging, direct hydrocarbon and

lithology indication in the exploration stage, and facilitates improved reservoir illumina-

tion and characterization in development stage (Hardage, 1983). Thus, considering the

importance of multicomponent seismic, presently 9C-3D modelling has been taken into

account.



7

1.5 Consideration of data acquisition geometry

In order to perform the forward modelling, the relationship between the seismic sources

and receivers must be known. Presently, two major data collection geometries have

been taken into account for the proposed modelling. The surface seismic method, which

includes the reflection method in which both seismic sources and receivers reside on the

surface, is the first data collection geometry. The second geometry is used to measure

seismic wavefield directly at the reflecting interface while the source is at the surface.

This can be referred to walk-away vertical seismic profiling or VSP and can be used for

Micro-seismic modelling.

1.6 Organization of thesis

The thesis proceeds as:

• As it is required to obtain R and T coefficients in the plane wave domain for

accomplishing RSM in that domain, Chapter 2 is devoted to isotropic media and

demonstrates how to obtain R and T coefficients in the plane wave domain for

SH wave field for the sake of simplicity. This chapter yields the basic concept

behind the way of determining an effective ray parameter that is used for obtaining

R and T coefficients in the plane wave domain. The problem of a special case of

dipping interface has been solved in current chapter. As forward modelling plays an

important role to design the seismic acquisition parameters, the problem associated

with data acquisition is also revealed.

• Chapter 3 describes the implementation of our proposed 9C-3D modelling for VTI

media. This Chapter introduces the method of building rotation matrix that is

based on azimuth and dip between the grid point and polarization vector of P-
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wave source and is applied on the extrapolated wavefield for obtaining the multi-

component data. The acquisition geometry for the multi-component data, and

registered energy versus offset and azimuth (REVO,REVA) analysis of a known

surface seismic source has been revealed in this chapter.

• In Chapter 4, I obtain the R and T coefficients in the plane wave domain at a

boundary between two transverse anisotropic media with the vertical axis of sym-

metry (VTI) due to the importance of these coefficients for numerical computations.

As Thomsen’s parameters are essential for understanding the seismic waves signa-

ture in anisotropic media, the way of describing R and T coefficients in terms of

these parameters by following Graebner’s approach, has been delineated in current

chapter. Further, as the dependency of the reflected waves amplitude on offset has

proven to be a valuable exploration tool for direct hydrocarbon detection, I have

demonstrated the influence of anisotropy on P-wave reflectivity by considering the

three models characterized by the Class 1, 2 and 3 type of Gas-sand anomaly in this

chapter. A test of accuracy of the popular Rüger’s approximation is also delineated

here.

• Fractures play an important role in hydrocarbon production as they determine the

pathways and volume of crustal fluid movement. The horizontal transverse isotropic

(HTI) is the simplest effective model of a formation that contain a single fracture

system. Further, in the continuation of 9C-3D modelling for VTI medium, I present

phase shift modelling for HTI medium by considering the first data acquisition

geometry in order to seek the dynamic and kinematic signature of the seismic waves

in HTI media. These analysis can be useful for fracture analysis. This modelling is

delineated in Chapter 5. However, in order to perform seismic modelling for HTI

media while considering the surface data acquisition geometry, I have implemented
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constraint by using only P-wave in my studies. This constraint depends on the fact

that compressional data generally have better quality and are cheaper to acquire

and process than shear wave data.

• In order to perform phase shift modelling for HTI media, I have implemented a

constraint on a layer of infinitesimal thickness above the HTI media that its veloc-

ity is the maximum velocity of the lower HTI medium. To avoid this constraint, I

have presented two more approaches and these are described in Chapter 6. Accord-

ing to first approach, I use the relationship between the cosine of any angle with

the horizontal axis and the angle of incidence considered with respect to vertical

and azimuth. This relationship yields the effective ray parameter for HTI media.

After obtaining this parameter the vertical slowness is computed using Thomsen’s

parameters of equivalent VTI media of HTI media and effective ray parameter. In

the second approach, I solve the Christoffel equation for obtaining vertical slowness

that is used to obtain the phase shift operator for anisotropic media. Following the

second approach, I have described seismic modelling for an orthorhombic media to

test the accuracy of my modelling in reference to the physical modelling presented

by another student of CREWES. Further, numerical method of calculating the R

and T coefficients in the plane wave domain for HTI and orthorhombic media is

discussed in this chapter.

• Chapter 7 summarizes the conclusions of all chapters.
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Chapter 2

Plane wave reflection and transmission coefficients for SH-wave.

2.1 Summary

The calculation of R and T coefficients at any interface is an important problem of

elastodynamic theory. Historically, the R and T coefficients have been obtained in several

domains according to their importance. It is known that for the isotropic case the R and

T coefficients depend on the acoustic impedance contrast and angle of incidence. The

angle of incidence can be computed by using cross product of two known unit normals.

In this approach, derived R and T coefficients will be in the plane wave domain. By

deriving R and T coefficients in the plane wave domain for 3D media, determination

of the dip and azimuth of the interface are avoided, and thereby, we avoid ray tracing

and exposure to caustics especially in anisotropic media. The problem that I solve,

in this regard, is problem of a special case of dipping interface and how to rotate the

plane wave coordinate system from that determined by the computational grid, and the

system determined by a dipping interface. Classical R and T coefficients in the plane

wave coordinates are worked out for reflectors aligned with the computational grid. For

non-aligned reflectors, those with dip and azimuth, computation of effective R and T

coefficients is not straight forward, for this the coordinate system must be rotated. To

do this, a normal for each individual plane wave based on the local velocity and vector

cross product of this normal with the normal to the reflector are computed. This cross

product yields a ray parameter that presently is used to compute the corresponding

R and T coefficients for a given plane wave. The importance of this approach is the

automatic adaptation of the R and T coefficients expression to the special case of a
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dipping interface. These coefficients can then be used to scale the amplitude component

of plane wave extrapolation across a reflector as is done in seismic forward modelling.

Another importance of the R and T coefficients in the plane wave domain, is their use in

Rayleigh Sommerfeld Modelling(RSM) of seismic data. In line and cross line traces are

required in order to model the plane wave inputs. Presently, the problem associated with

data acquisition is studied here by changing the number of cross line traces. Further, it

reveals the problem associated with data acquisition and the requirement of proper data

acquisition.

2.2 Plane wave domain approach to obtain the R and T coefficients

Historically, the calculation of R and T coefficients for plane waves on a free surface and

at a welded contact interface was obtained by Zeoppritz (Borejko, 1996). This work was

elaborated by Aki and Richards (Aki and Richards, 1980). The analytic expressions of

the R and T coefficients are known in term of the incident angle. The angle of incidence

is the angle, that of the incident and scattered plane make with the normal to the plane

reflector. The plane of incidence can be represented by the unit normal vector to the

plane wave in the propagation direction and can be computed as (Ferguson and Margrave,

2008)
ˆ ˆ ˆp1i+ p2j+ qk

p̂ = P , (2.1)
2 2 2p1 + p2 + q

where p1, p2 are the input plane wave parameters and q is the vertical slowness in the

incident medium. p1, p2, q are coupled according to a relation derived from the dispersion

relation as P1
q = 1− (vp1)2 − (vp2)2. (2.2)

v
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Figure 2.1: Schematic representation of unit normals to a plane wave and a horizontal
interface, the angle of incidence θI is the angle between normal p̂ and â. x1, x2 are the
horizontal coordinate axis and x3 is the vertical axis.

where v is the velocity of the incident medium. The unit normal associated with a

reflecting subsurface plane can be computed as

ˆ ˆ ˆâ = sin θa cosφai+ sin θa sinφaj+ cos θak. (2.3)

where θa is the dip and φa is the azimuth of the normal to the interface. These two unit

normals are shown in Figure 2.1. This Figure shows two unit normal vector, p̂, normal

to the plane wave in the propagation direction, and â, is the normal to the horizontal

interface shown by shaded plane. Now, following simple vector calculus, the cross product

of these two unit normal vectors is used to obtain the angle of incidence θI as

sin θI = |p̂× â|, (2.4)
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The sine of the angle of incidence is related to the slowness along the interface as 
sinθI 2 2 2pI = = |p̂× â| p1 + p2 + q . (2.5)
v

where pI is the slowness along the interface (ray parameter). Thus, the angle of incidence

is obtained according to equation (2.4). After obtaining the angle of incidence from

equation (2.5), this value is substituted in the known analytic expression (Kennett, 2001)

in order to obtain the R and T coefficients in the plane wave domain.

2.2.1 3D R and T coefficients for SH waves

It is known that evaluating the R and T coefficients is beneficial to interpret the field

records for lithology, fluid content etc by generating synthetic seismograms (Upadhyay,

2004). Incident, reflected, and transmitted plane P- and S- waves make a pertinent sys-

tem. The assumption of two dimensional plane waves ensures our discussion for two

separate groups of waves (Slawinski, 2003). These groups are the coupled P- and SV-

waves, and the SH- wave. The analytical expression of the R and T coefficients for three

dimensional plane waves in elastic media were given by Borejko (Borejko, 1996). Gen-

eralized ray- integral representation of pertinent waves were illustrated in that paper.

Generalized ray integral representation of SH-wave for dipping structure was given by

Zieger and Pao (Pao et al., 1984). Further, assuming isotropy, the standard ‘2D’ formulas

(Krebes, 2004) can be used for any plane reflector regarding its 3D orientation. According

to seismic reflection theory, when an incident plane wave encounters the discontinuities in

the properties at a horizontal interface between two homogeneous layers, there both the

phenomenas: reflection from the boundary and transmission through the boundary take

place. The boundary conditions, the continuity of displacement and traction, are consid-

ered at the boundary to obtain the amplitude information of reflected and transmitted

waves. After applying these boundary conditions, R and T coefficients for SH-wave are
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known in terms of the angle (Krebes, 2004). These expressions are transformed into plane

wave coordinates by estimating the angle of incidence using equation (2.5) and written

as

ρ1v1
2q1 − ρ2v2

2q2
= , (2.6)RSH 2 2ρ1v1q1 + ρ2v2q2

and

2ρ1v
2
1q1TSH = , (2.7)

ρ1v1
2q1 + ρ2v2

2q2

where ρ1, v1 are the density and velocity of the incident medium, respectively. ρ2, v2 are

the density and velocity of the refracted medium, respectively and q1 is described as

1
q1 (pp) = 1− (v1pI)

2, (2.8)
v1

and q2 is described as

1
q2 (pp) = 1− (v2pI)

2. (2.9)
v2

2.2.2 Dipping interface problem

The above expressions of the R and T coefficients can be used for the special case of a

dipping interface. In this case, the normal to the interface (see the Figure 2.2) would be

different from the horizontal one and can be computed from equation (2.3). Figure 2.2

shows the tilted interface where â is normal to this interface. An assumption, that the

normal to the interface lies in plane of propagation, is considered here. This constraint is

applied to equation (2.3). This assumption ensures that SH wave is still decoupled from

P and SV waves (Sten and Wysession, 2002). Now, the ray parameter for each individual

plane wave is computed according to equation (2.5) and used in equations (2.6) and (2.7)

in order to obtain the R and T coefficients for dipping interface, respectively.

In-line and cross-line slices of the R and T coefficients can be obtained using p2 = 0,

p1 = 0, respectively. Recalling equation (2.5) for p2 = 0, the ray parameter is the same

as horizontal slowness (p1) in the 2D case and for p1 = 0 it would be p2. Further, in-line
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â

x
1
 (m)

p̂

x 3 (
m

)

Figure 2.2: Schematic representation of unit normals to a plane wave and a tilted in-
terface, the angle of incidence θI is the angle between normalp̂ and â. x1, x2 are the
horizontal coordinate axis and x3 is the vertical axis.

and cross line R and T coefficients can be obtained using equations (2.6) and (2.7) with

different q1 and q2 from equations (2.8) and (2.9). These equations are deduced and given

as

q1 (pp) =
1

1− (v1p1)
2, (2.10)

v1

and

q2 (pp) =
1

1− (v2p1)
2, (2.11)

v2

for the in-line, and

q1 (pp) =
1

1− (v1p2)
2, (2.12)

v1

and

q2 (pp) =
1

1− (v2p2)
2. (2.13)

v2

for the cross line.

For the zero slowness, the R and T coefficients are the same for both the in-line and
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cross line cases and are independent of frequency. These are given as

ρ1v1 − ρ2v2
RSH = , (2.14)

ρ1v1 + ρ2v2

and

2ρ1v1
TSH = . (2.15)

ρ1v1 + ρ2v2

respectively.

2.3 Examples

Now to explore the R and T coefficients change with p1 and p2 for a horizontal reflector,

an example in which v1 = 1500m/s and v2 = 2500m/s with the same density across the

reflector is considered. Figure 2.3 shows the schematic representation of the 3D real and

imaginary part of the R and T coefficients, respectively obtained from equations (2.6)

and (2.7) . Presently, 512 in line and cross line traces have been taken into account for

a particular frequency of 40Hz. Considering the equations from (2.10) to (2.13), the in

line and the cross line slices of the R and T coefficients are shown in Figure 2.4. At

zero slowness, the R and T coefficients attain the values as expected . As horizontal

slowness increases to larger values, the amplitude of the transmitted wave increases and

the reflected amplitude approaches zero. Recalling equation (2.6), the reflected amplitudeP 
would be zero when horizontal slowness p1 is equal to 1/ v1

2 + v2
2 (see the appendix A

for mathematical manipulation). Despite crossing a significant change in velocity, there

is no reflected wave for a plane wave at this horizontal slowness while the transmitted

wave has amplitude 1. Further, as the slowness value increases beyond to this particular

slowness, the amplitude of transmitted wave continues to increase. This amplitude of

the transmitted wave increase due to an increase in the horizontal orientation of the

transmitted wave. At the critical slowness, the transmitted wave would be horizontal.

This implies that the vertical slowness in the second medium will be zero. According
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Figure 2.3: a) Real part b) Imaginary part of reflection coefficient. c) Real part d)
Imaginary part of transmission coefficient for a horizontal reflector. 512 in line and cross
line traces are used.

to equation (2.11), this occurs at p1 = 1/v2 = 0.0004s/m. At this value of slowness,

the amplitude is 2 for the transmitted SH wave and 1 for reflected wave. Beyond the

critical slowness, there is no transmitted wave in the lower layer and q2 is imaginary

in this situation. They are known as evanescent waves and their amplitudes decay with

depth. Due to the imaginary vertical slowness, the reflection and transmission coefficients

become complex beyond the critical slowness. Once the coefficients become complex, the

shape of the reflected pulse and transmitted pulse is modified (Kennett, 2001). Following

this theory, there will be a distortion of the reflected and transmitted pulses at p1 > 1/v2

as depicted in Figure 2.4. Further, cross-line slices of the R and T coefficients can be

describe in light of the above description of the in-line slices.

Considering a dipping interface, Figure 2.5 shows the real and imaginary part of the 3D
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Figure 2.4: a) In line slice b) Cross line slice of the reflection coefficient. c) In line slice
d) Cross line slice of the transmission coefficient for a horizontal reflector. 512 in line
and cross line traces are used
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Figure 2.5: a) Real part b) Imaginary part of the reflection coefficient. c) Real part d)
Imaginary part of the transmission coefficient for a dipping interface. 512 in line and
cross line traces are used

R and T coefficients. This Figure differs from the Figure 2.3 in a way that the obtained

results are not symmetric any more with respect to the zero slowness. In line and cross

line slice of the R and T coefficients corresponding to the considered case are shown

in Figure 2.6, which illustrates that the R and T coefficient curves have been shifted

towards to the positive value of the slowness and have lost the symmetrical behavior

about the zero slowness as expected.

In order to reveal the effect of the data acquisition geometry on the concluding results,

two more cases have been considered. In the first case, 128 cross-line traces are considered.

For performing the second case, 8 cross-line traces have been used. The number of in-

line traces does not change for both given cases and it is 512. Using 512 in-line and 128

cross-line traces, the in-line and cross-line slices of the R and T coefficients are shown
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Figure 2.6: a) In line slice b) Cross line slice of the reflection coefficient. c) In line slice
d) Cross line slice of the transmission coefficient for a dipping interface. 512 in line and
cross line traces are used
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in Figure2.7. The obtained in-line slices follow the same pattern as in the previous

case. Further, on considering the cross-line slices of the R and T, it is demonstrated

that the R and T coefficients follow the expected value at zero slowness. The R and

T coefficients curve deviate from the expected behavior at the critical slowness as the

R and T coefficients are not attaining values of 1 and 2, respectively. This discrepancy

resides on the fact that there is no sample point used by MATLAB corresponding to the

critical slowness. As the sample rate is inversely proportional to the number of traces,

it is the 0.000019 s/m for the considered case. Now, following the theory, 0.000343

s/m is expected as the critical slowness while 0.0004039 s/m is the nearest point to the

critical slowness calculated by MATLAB. Additionally, in order to obtain the R and T

coefficients corresponding to all points in between two sample points, interpolation is

used by MATLAB. It is also demonstrated from Figure 2.4 and can be shown by theory

that there is a huge difference in the obtained value of the R and T coefficients affiliated

to the nearest slowness on either side of the critical slowness. However, MATLAB is not

sensitive to this type of contrast and comes up with underestimated results as shown in

Figure2.7.

On continuation of the presented analysis, Figure 2.8 shows the in-line and cross-line

slices of the R and T coefficients obtained using 8 cross-line traces. The inspection of

the cross-line slices illustrates that the R and T coefficients follow the expected behavior

at zero slowness. As slowness increases, the distorted picture of the R and T coefficients

is obtained. Even though the density and the velocity of the reflector were consistent for

all cases in the current study, we obtain the distorted pattern of the R and T coefficients if

appropriate data acquisition geometry is not considered. Thus, data acquisition geometry

plays an important role in order to image the target horizon. The 3D reflection and

transmission as well as in-line and cross-line slices of the R and T coefficient for a

dipping interface are given by (Sharma and Ferguson, 2009b)
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Figure 2.7: a) In line slice b) Cross line slice of reflection coefficient. c) In line slice d)
Cross line slice of transmission coefficient for a horizontal interface. 512 in-line and 128
cross-line traces are used.

2.4 Conclusions

The angle of incidence is obtained by using the cross product of two known unit normals.

This value of incident angle is used in the analytical expression of the R and T coefficients.

By doing this, the R and T coefficients have been obtained in the plane wave domain.

First of all, the R and T coefficients have been obtained for the reflector aligned with the

computational grid. Presently, it has been shown that obtaining the R and T coefficients

for the reflector non-aligned with the computational grid required an ordinary effort only.

The importance of this approach is an automatic adaptation of the R and T coefficient
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Figure 2.8: a) In line slice b) Cross line slice of the reflection coefficient. c) In line slice
d) Cross line slice of the transmission coefficient for a horizontal interface. 512 in-line
and 8 cross-line traces are used.
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expressions to the special dipping interface case. The power of this is, that no ray tracing

is required. The R and T coefficients obtained for the same number of in line traces but,

different numbers of cross line traces, show the deviation from the expected one. It

reveals the problem associated with data acquisition that make it necessary to acquire

the data correctly.
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Chapter 3

9C-3D modelling for VTI media.

3.1 Summary

For comparison with real seismic data, and with synthetic data derived from fully elastic

numerical methods, I present a 9C-3D numerical modeling approach that is posed in the

slowness domain. The slowness domain approach has a number of advantages: 1) multi-

pathing with no internal reflection“ simpler event registration”. 2) Parallelizable over

temporal frequency. 3) Stable. 4) High frequency. 5) Selectable propagating mode.6)

No discontinuity of slopes. Following the Fourier decomposition, wavefield extrapolation

proceeds as a set of distributed, monochromatic extrapolation steps in depth. 3D phase

shift operators in anisotropic media have been used to extrapolate a 3C source wavefield

to each grid point. There, source polarization is transformed into the orientation of the

multicomponent geophone by applying a rotation matrix on the extrapolated field. The

polarization angle(dip) of compression wave computed from the incident angle that is the

angle between the slowness vector and the normal to each grid point and the horizontal

projection of the associated slowness vector at each grid point are the essential parameters

of the rotation matrix. Traveltimes in anisotropic media are accommodated though plane

wave transformation and phase shift, and a propagation angle is produced. For each

geophone component, the polarization angle is calculated from the propagation angle.

Finally, extract the desired component for analysis. My numerical results demonstrate

that all 9 source-receiver combinations are reliably estimate using my procedure.
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3.2 Introduction

Seismic anisotropy plays an important role in oil and gas exploration field in order to im-

prove the image of target horizons (Grechka, 2009). Consequently, it is less forgiving and

more detrimental to our data acquisition and processing efforts to ignore the anisotropy.

It has been demonstrated that wavefield propagation through anisotropic media deviates

from the isotropic case (Aki and Richards, 1980) and is composed of two parts: kine-

matic and dynamic. Of interest here is the kinematic analysis of wave propagation in

anisotropic media. The use of travel time information to infer anisotropy of the subsur-

face and to image seismic data motivates this choice. In order to attain this information

it is worth to review wave-field propagation in the transverse isotropic media.

3.3 Wave propagation in transversely isotropic media

Dealing with anisotropy in the oil and gas industry contains two main objectives at

the exploration and field development stages. In exploration, we would like to improve

the velocity model by estimating anisotropy from available seismic data and migrate

the data using this model in a hope to improve the image of target horizons compared

to the image obtained by using the best isotropic velocity model (Grechka, 2009). As

long as it happens our job is done and we do not care about the physical reason of

anisotropy. Conversely, we do want to find out the physical reason for the measured

anisotropy at the field development stage. In consequence, a sound understanding of the

basic principles of seismic wave propagation in anisotropic media and the ability to model

the main characteristics of propagating waves are required. The equation of motion for

a transversely isotropic solid can be represented as

∂2ui ∂τij
ρ = , (3.1)
∂t2 ∂xj



27

where the ui are the components of particle displacement,the τijare the stresses and ρ is

the density of the corresponding medium and i, j=1,2,3.

To solve equation 3.1 in a unique fashion, the displacement vector u and the stress tensor

τ are related to each other as given by Hooke’s law and can be expressed as

τij = cijklfkl, (3.2)

where c is the fourth-rank stiffness tensor and fij=
1
2
( ∂ui/∂xj +∂uj/∂xi), and i, j=x, y, z

or 1,2,3. The substitution of equation 3.2 into equation 3.1 yields the wave equation as

∂2 ∂2ui uk
ρ = cijkl . (3.3)
∂t2 ∂xl∂xj

Its standard solution is a harmonic plane wave of the form

iω(nj xj /V−t)uk = AUke , (3.4)

where U is the polarization vector, ω is the angular frequency, n is the unit wavefront

normal and V is the phase velocity. Substitution of the plane wave solution 3.4 into

equation 3.3 leads to the Christoffel equation (Tsvankin, 2001) ⎤⎡⎤⎡ ⎢⎢⎢⎢⎢⎢⎣
G11 − ρV 2 G12 G13

G21 G22 − ρV 2 G23

⎢⎢⎢⎢⎢⎢⎣ 
⎥⎥⎥⎥⎥⎥⎦ 

U1

U2

⎥⎥⎥⎥⎥⎥⎦ = 0. (3.5)

G31 G32 G33 − ρV 2 U3

with Gik=cijklnjnl.

The Christoffel equation (3.5) is the most important equation for analysis of wave phe-

nomena in anisotropic media. In fact this equation is treated as an eigenvalue-eigenvector

problem for the symmetric, positive definite matrix G. The positive definiteness of ten-

sor c ensures the positive definiteness of G while its symmetry is the consequence of the

symmetry of the stiffness tensor. Since the kinematic and dynamic signature of body

waves for HTI media can be obtained from known analysis of VTI media, I consider a
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transversely isotropic medium where the z axis coincides with the normal to the plane

of transverse isotropy and can be treated as the axis of rotational-symmetry. However,

it is known that such a medium can be characterized by five elastic constants (Slawin-

ski, 2003) and using these constants in equation 3.5, the eigenvalues of the Christoffel

equation can be obtained from

det[Gij − ρV 2δik] = 0. (3.6)

which yields a cubic equation for ρV 2. The Christoffel equation yields three possible

values of the phase velocity which belongs to the P-wave and two shear waves for a

given phase direction n. Therefore, the S-wave is splitted into two modes with different

velocities and polarizations. However, the three eigenvalues of G(n) are the squared

phase velocities of the three body waves and can be expressed as

Vp
2(θ) =

1
[(c11 + c44) sin

2(θ) + (c33 + c44) cos
2(θ) +D], (3.7)

2ρ

Vsv
2 (θ) =

1
[(c11 + c44) sin

2(θ) + (c33 + c44) cos
2(θ)−D], (3.8)

2ρ

V 2
sh(θ) =

1
[c66 sin

2(θ) + c44 cos
2(θ)], (3.9)

ρ

where

D = ([(c11 − c44) sin
2(θ)− (c33 − c44) cos

2(θ)]2 + 4(c13 + c44)
2 sin2(θ) cos2(θ))1/2. (3.10)

The complexity of these equation is a main problem to use of anisotropic model for

seismic exploration but it can be reduced by using Thomsen’s parameters (Thomsen,

1986a). These parameters play an important role for understanding seismic signatures

in anisotropic media and can be expressed as

c33
α0 = , (3.11)

ρ
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c55
β0 = , (3.12)

ρ

where α0, β0 are the P-wave and S-wave velocities along the rotational-symmetry axis

and anisotropy can be characterized by the dimensionless coefficients

c11 − c33
f = , (3.13)

2c33

c66 − c55
γ =

2c55
, (3.14)

and

δ =
(c13 + c55)

2 − (c33 − c55)
2

2c33(c33 − c55)
. (3.15)

The instinctive application of the coefficients f and γ is clear as they vanish in isotropic

media. Thus, the magnitude of the P and SH-wave anisotropy can be measured from the

values of f and γ. The intuitive appeal of the coefficient δ is not as transparent as those

of f and γ and might seem unexpected. The significance of δ becomes apparent once it

is noticed that

d2Vp |θ=0= 2δα0. (3.16)
dθ2

Consequently, δ is not just an arbitrary combination of the elastic coefficients. Instead,

the curvature of the P-wave velocity function at the vertical is governed by δ. It also

governs the P-wave normal moveout velocities from horizontal reflectors and plays a key

role for seismic reflection data (Grechka, 2009). On being acquainted with Thomsen’s

parameters, the phase velocity expression of the body waves can be expressed as

Vp
2(θ) = α2

0[1 + f sin2 θ +D∗(θ)], (3.17)

α2 α2

V 2 (θ) = β2[1 + 0 f sin2 θ − 0 −D∗(θ)], (3.18)SV 0 β2 β2
0 0
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V 2
SH(θ) = β0

2[1 + 2γ sin2 θ], (3.19)

where

β

α

2
04(1− + f)f1 β2 4δ 2
0D∗(θ) = (1− 0 ){[1 +

α2
0

sin2 θ cos2 θ + sin4 θ]1/2 − 1)}. (3.20)
β

α

2
0 β

α

2
02 )2 )2(1− (1−2

0
2
0

Once the eigenvalues of the Christoffel equation are known from equations 3.17, 3.18 and

3.19, the corresponding eigenvectors U can be computed from any two equations of the

three equations of the Christoffel equation 3.5. Since the Christoffel equation is real and

symmetric, the obtained polarization vectors of the body waves are mutually orthogonal

for any given phase direction n (Tsvankin, 2001). However, the polarization are generally

neither parallel nor orthogonal to the wavefront normal (Tsvankin, 2001).

Further, it is known that multicomponent seismic analysis is an effective technology for

risk reduction in exploration and development. In exploration stage improved imaging,

direct hydrocarbon and lithology indication can be offered by multicomponent measure-

ment while development setting facilitate improved reservoir illumination and character-

ization by multicomponent measurements (Grechka, 2009).

The importance of the anisotropy and multicomponent seismic over the isotropy and sin-

gle component seismic motivates the author to model 9C-3D for the vertical transverse

isotropic (VTI) media. Here, VTI media is taken into account because of its simplicity

in the case of the anisotropic media beyond the isotropic media.

3.4 Theory

To investigate seismic wave interaction with anisotropic media, I extrapolate the wavefield

first and then apply a rotation matrix on this wavefield in order to obtain multicompo-

nent data. Now, two parts: phase extrapolation of a known source wavefield, and how
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to build the rotation matrix are discussed in the following section.

Wave field extrapolation in the plane wave domain insures efficiency in terms of compu-

tational time (Sharma and Ferguson, 2009b). Given a source type, the source wavefield

is extrapolated from the earth surface to the reflector as

iΔz q ωϕΔz = ϕ0e (3.21)

where ϕ0 is the spectra of the source wavefield at the surface obtained via the Fast Fourier

Transform (FFT)

(t→ ω, x→ p1 ω, y → p2 ω)

of the source wavefield. Vertical slowness, q is dependent on horizontal slownesses p1

and p2 and seismic velocity through the scalar wave-equation. In anisotropic media, q

depends on a set of elastic coefficients - α0, β0, δ, f, and γ for transversely isotropic (TI)

media. The source wavefield ϕΔz is the wavefield at depth Δz after extrapolation, and q

is the vertical slowness and is known for the different seismic wave modes in anisotropic

media (Ferguson and Margrave, 2008) and shown in Appendix B.

After extrapolation, the source wavefield resides on the reflecting plane. Together,

the polarization directions of P-, SV-, and SH-waves (compression, vertical shear, and

horizontal shear respectively) characterize a 3 dimensional co-ordinate system defined

here as the survey co-ordinate system, while the recording coordinate system is charac-

terized by the three component directions of a 3C geophone.

To model the arrival of a 3C wave, I rotate the co-ordinate system from the survey co-

ordinate to the recording co-ordinate system to register the source energy on the vertical,

in-line, and cross-line components. With the basic method of a co-ordinate system trans-

formation (Neufeld and Clayton, 2000), I transform the survey coordinate system into

the recording system by a rotation of θ1 degrees about the x axis followed by a rotation

of φ degrees about the z axis.
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The polarization angle (θ1) is the angle that the polarization vector of the incident com-

pressional wave makes with the vertical component of the 3C geophone. From the basic

knowledge of wave propagation through anisotropic media it has been demonstrated that

the polarization direction of compression waves deviate from the propagation direction

but can be computed for a given propagation angle (Slawinski, 2003). Now to compute

the polarization angle (θ1), the propagation angle(θ) is computed first. Angle θ is the

angle that the slowness vector of an incident plane wave makes with the vertical compo-

nent of a 3C geophone and can be computed as described below. These angles (θ, φ) are

defined pictorially in Figure 3.1.

A hypothetical geophone indicated by three orthogonal blue lines are aligned with spa-
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Figure 3.1: A hypothetical 3C geophone at a grid point . “I” represents the normal to
an incident plane wave and azimuth is measured relative to y axis. Azimuth 0 indicates
the in-line direction and the cross-line direction is characterized by 90◦.
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cial axes x, y, and z. The normal to an incident plane wave is indicated by the symbol

“I”, and the horizontal projection of “I” is indicated by Hp. Azimuth φ is the angle

which the horizontal component y makes with Hp and is indicated on this Figure. The

propagation angle θ is the angle between the vertical component z and “I”.

The slowness vector p̂ characterizes the direction of the incident wavefield and can

be computed using equation 2.1. The unit normal associated with a 3C geophone at a

grid location is

ˆ ˆ ˆâ = sin θa cosφa i+ sin θa sinφa j+ cos θa k, (3.22)

where θa and φa are the dip and azimuth of the normal to the interface respectively.

The angle θ between p̂ and â is then computed by a cross product according to

(Ferguson and Margrave, 2008)

sin θ = |p̂× â| , (3.23)

where × indicates a cross product. Note, though I restrict my discussion here to horizon-

tal interfaces â = k̂ for simplicity, I anticipate implementation of dipping interfaces as

an extension to this approach.

The propagation angle θ, once computed, is used to calculate the polarization angle

in terms of elastic coefficients (Slawinski, 2003). I develop a relationship between these

two angles in terms of Thomsen parameters (Thomsen, 2002) according to  
α2 (θ)− β2 sin2 θ − α2 cos2 θ−1 0 0θ1 = tan P . (3.24)

[α0
2 − β0

2] [α2
0 [2 δ + 1]− β0

2] sin θ cos θ

where θ1 is the polarization angle of P-wave if α (θ) is considered as the P-wave velocity

and by conceiving α (θ) as the shear wave velocity it is polarization angle of SV-wave ,

θ is the propagation angle computed from equation 3.23. The P-wave polarization angle

can be computed from the known polarization angle of the SV-wave (θSV ) by subtracting

90 to (θSV ) (Tsvankin, 2001). Now, given θ1 and a known source, effective 3C recording
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Dθ1 is computed ⎤⎡ 
1 0 0

Dθ1 =

⎢⎢⎢⎢⎣ 0 cos θ1 sin θ1

⎥⎥⎥⎥⎦ W, (3.25)

0 − sin θ1 cos θ1

where W describes the known source type. Generally, a 3C source wavefield is written

in matrix form as (Ferguson, 2009) ⎤⎡
W =

⎢⎢⎢⎢⎣
S1

S2

⎥⎥⎥ ,⎥⎦ (3.26)

P

where S1, S2 and P are the cross-line, in-line and vertical components of the source

respectively. A vertical source wavefield, for example, is written⎤⎡
W =

⎢⎢⎢⎢⎣
0

0

⎥⎥⎥⎥⎦ . (3.27)

P

Figure 3.2 depicts four 3C geophones positioned at grid points 200 m below a source posi-

tion. In this Figure, 1, 2, 3 and 4 describe the four quadrants of a circle whose periphery

traces the azimuth from 0 to 360◦ and has the in-line and the cross-line directions as

horizontal and vertical axes. Rotation θ1 degrees about the x axis (H1) is anti-clockwise

for geophones to the left of the source and clockwise for geophones to the right. So,

I adopt the convention of a positive angle for anti-clockwise rotation and negative for

clockwise rotation (Neufeld and Clayton, 2000).

Azimuth φ is the angle between one of the horizontal geophone components and the

plane made with the source, and it is calculated from the input parameters of a plane

wave. Following a rotation of θ1 degrees about the x axis, the source waveform is rotated

φ degrees about the vertical axis. A rotation φ about the vertical axis is computed and
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Figure 3.2: Schematic representation of considered model and positioning of 3C geo-
phones at reflecting surface. 1, 2, 3 and 4 describe the four quadrant of a circle whose
periphery trace the azimuth from 0 to 360◦ and has y and x axis as horizontal and vertical
axis, respectively.

is written as ⎤⎡ ⎢⎢⎢⎢⎣
cosφ sinφ 0

− sinφ cosφ 0

⎥⎥⎥⎥⎦Dφ = W, (3.28)

0 0 1

As a single operation, rotation through θ1 and φ is computed as⎤⎡ 
D =

⎢⎢⎢⎢⎣
cosφ sinφ cos θ1 sin θ1 sinφ

− sinφ cosφ cos θ1 cosφ sin θ1

0 − sin θ1 cos θ1

⎥⎥⎥⎥⎦W, (3.29)

whereD is the source wavefield rotated into the orientation of the 3C geophone. Normally

it is written as (Ferguson, 2009) ⎤⎡
D =

⎢⎢⎢⎢⎣
H1

H2

⎥⎥⎥⎥⎦ (3.30).

V
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where H1, H2, and V are the cross-line, in-line and vertical components of the vector

wavefield respectively.

3.5 Examples

Since up to 75% of oil and gas producing sedimentary basins worldwide are comprised

of shales and it is a major contributor to observed seismic anisotropy (Grechka, 2009), a

numerical model of a 700 m thick vertical transverse isotropic (VTI) medium (shale) is

taken into account here. The anisotropic parameters of this shale in Thomsen (Thomsen,

1986a) parameters are α0=3048 m/s, β0 =1490 m/s, f=0.255, δ=-0.27, and γ=0.480.

Now a known impulsive source is extrapolated through the medium using equation 3.21

in the plane wave domain and transformed back into the space and time domain at the

interface. Further, the components of the recorded wavefield on 3C geophones have been

sliced through the inline direction and at any given time. The red dashed line highlighted

in the circle at the top right corner of Figure 3.3 c indicates the direction along which

a vertical slice through the modelled data is taken. The in-line and cross-line directions

are indicated by magenta and blue, respectively.

Figure 3.3a shows a cross-line slice of the recorded P-wave energy on the H1 compo-

nent obtained through the procedure outlined above and can be represented as registered

energy versus offset (REVO). REVO analysis reveals that energy registration increases

with offset and polarity reversal occurs on either side of zero offset on behalf of different

orientations of H1 components with respect to the source on either side. The circle in the

top right corner of Figure 3.3c is the plan view of a recording surface where the source

location is at the center of the origin. REVO analysis of the recorded P-wave energy on

the H2 component is shown in Figure 3.3b. It indicates that energy registration decreases

with offset and the polarity follows the stationary behavior on either side of zero offset
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Figure 3.3: (a) Registered energy versus offset (REVO) analysis of P-wave on H1 com-
ponent illustrate that H1 component is more favorable for energy registration as offset
increases. Polarity reversal appear on the either side of zero offset. (b) (REVO) anal-
ysis of P-wave on H2 component illustrate that H2 component is more favorable for
energy registration near to zero offset. Polarity remains stationary on the either side of
zero offset. (c) Recorded P-wave energy on vertical component demonstrate that energy
registration on vertical component decreases with offset. Polarity follow the stationary
behavior on either side of zero offset.
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due to the same orientation of the H2 components with respect to the source on either

side. Figure 3.3c shows the REVO of P-wave energy on the vertical component and en-

ergy registration decreases with offset. Since the propagation angle increases with offset,

it enforces the polarization angle to be increase towards the H1 component along the

direction in which the slice of recorded data is taken. Thus, it makes the H1 component

more favorable for energy registration at large offsets and endorses the obtained REVO

analysis.

Figure 3.4a, b and c indicate the time slices of the recorded P-wave energy on H1,

H2 and V component , respectively, and reveal the variation of recorded energy versus

azimuth (REVA). The obtained circle in the x-y plane manifests azimuthal isotropy of

the medium as expected. It shows the efficacy of the proposed extrapolation method.

Figure 3.4a demonstrates that no energy is registered on the H1 component in the in-line

direction as expected. Energy registration increases as azimuth increases from 0 to 90

degree. Polarity reversal occurs on either side of a line that bisects the obtained circle

along the in-line direction. Since the H1 components of 3C geophones of quadrant 1, 2

or 3, 4 ( shown in Figure 3.2) contain the same orientation with respect to the source,

they respond to the incident wave field in the same manner. While, the H1 components

of quadrant 1, 4 or 2, 3 possess antipode orientation with respect to the source and re-

spond in an opposite way to the incident wavefield. This makes it possible to endorse the

obtained polarity reversal behavior. REVA analysis of the recorded P wave energy on

the H2 component (shown in Figure 3.4b) indicates that the recorded energy decreases

as azimuth increases from the in-line direction to the cross-line direction. No energy is

registered on the H2 component in the cross-line direction in this case as the H1 compo-

nent is more favorable. Polarity on the H2 component flips from on either side of a line

that bisects the obtained circle along the cross-line direction. The H2 components of 3C
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Figure 3.4: (a) Registered energy versus azimuth( REVA) analysis of P-wave at H1

component indicates that energy registration increases as azimuth increases from 0 to
90. Polarity reversal occur on the either side of a line that bisects the circle along
in-line direction. (b) REVA analysis of P-wave at H2 component indicates that energy
registration decreases as azimuth increases from 0 to 90. Polarity reversal occur on the
either side of a line that bisects the circle along cross-line direction. (c) REVA analysis of
P-wave on vertical component reveal the variation of recorded energy and polarity with
azimuth.



40

geophones of the quadrant 1, 4 or 2, 3 respond to the incident wavefield in the similar

way in behalf of the same orientation of the components with respect to the source. At

the same time, the H2 components of 3C geophones of the quadrant 1, 2 or 3, 4 have the

opposite orientation with respect to the source and respond to the incident wavefield in

a reversal manner. Figure 3.4c shows the variation of the recorded P wave energy with

azimuth on the vertical component. It demonstrates that the recorded P-wave energy

on the vertical component follow the stationary amplitude behavior and polarity. Since,

at a given time the orientation of the vertical component with respect to the incident

wavefield remains constant with azimuth,thus, it reinforces the obtained REVA behavior.

REVO analysis of the recorded SV-wave energy on H1, H2 and the vertical components

are shown in Figure 3.5a, b and c, respectively. This slice demonstrates an interesting

property possessed by SV-waves generated by an SV-source. For anisotropic media, SV-

waves triplicate (exhibit three arrivals) when the thickness of the anisotropic medium is

significant (Ferguson and Sen, 2004), and this is strongly apparent on V and H1 in Fig-

ure 3.5. It is demonstrated by Figure 3.5a that energy registration on the H1 component

decreases with offset and polarity reversal is also occurred on either side of zero offset.

Figure 3.5c shows that the vertical component is more favorable for energy registration

at large offsets. As the offset increases, the P-wave polarization angle increases with

vertical. Thus, the orientation of the polarization angle of the SV-wave, normal to the

P-wave polarization angle, increases in the direction of the vertical component and assign

it as the favorable component for energy registration at large offsets.

To verify the triplication phenomenon, another approach described by Ferguson (Fergu-

son and Sen, 2004) is delineated now. According to this approach wave field extrapolation

can be done using an estimate q̃ of the true vertical slowness q and an estimate of the
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Figure 3.5: (a) REVO of SV-wave on H1 component. The Triplication phenomena occurs
in this case. Registered energy decreases with offset. (b) REVO analysis of SV-wave
on H2 component demonstrate that a minuscule amount of energy is registered on H2

component. (c) REVO analysis of SV-wave on V component indicates that a registered
energy increases with offset. Polarity reversal does not occur on the either side of zero
offset.
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true depth as

−iΔz̃q̃ωϕΔz = ϕ0e (3.31)

These estimated parameters are related to the travel time error parameter, Δτ , via

Δτsv(p) = 2[zq(p)− z̃q̃] (3.32)

From the above equation, it follows that

Δτsv(p)− 2zq(p)−z̃q̃ = (3.33)
2

where Δτsv can be defined in terms of the known vertical slowness and its derivatives with

respect to Thomsen’s parameters. Figure 3.6a shows the in-line slice of the extrapolated

wavefield obtained by following the supporting approach and it is the facsimile of Figure

3.6b. Thus, the authentication of the triplication phenomena is demonstrated. Figure
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Figure 3.6: (a) In-line slice of the extrapolated SV wavefield by following the supportive
approach and it is replica of that obtained by author and shown in (b) part. It shows
the authentication of the triplication phenomena.

3.7 a, b and c reveal the variations of the registered SV-wave energy with azimuth on
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the H1, H2 and vertical components, respectively. More than one concentric circle is

the counterpart of triplication here. Figure 3.7a indicates that no energy is registered

in the in-line direction as expected and the registration increases as azimuth increases.

Further, polarity reversal occurs on the either side of a line that bisects the obtained

circle along the in-line direction due to the different orientation of 3C geophones of the

concerned quadrant with respect to the source. Energy registration on the H2 component

decreases with azimuth and no energy is recorded on the H2 component in the cross-line

direction as shown in Figure 3.7b. Again the polarity reversal occurs on either side of a

line that bisects the obtained circle in the cross-line direction. Figure 3.7c demonstrates

the recorded SV-wave energy on the vertical component at a given time and it follows

the stationary behavior with azimuth. At a given time the orientation of the SV-wave

polarization angle with respect to the vertical remains constant for each azimuth and

ensures the stationary behavior of the recorded energy on the vertical component.

REVO analysis of the recorded SH-wave energy on the H1 component indicates that a

small amount of energy is registered on the H1 component and is shown in Figure 3.8a.

Figure 3.8b shows that SH-wave energy registration on the H2 component decreases with

offset and polarity reversal occurs on either side of zero offset. No energy is registered

on the vertical component since SH-wave is decoupled from other seismic waves.

Time slices of the recorded SH wave energy on the H1, H2 and vertical components are

shown in Figure 3.9a, b and c, respectively. Figure 3.8a reveals the variation of the

recorded SH-wave energy on the H1 component with azimuth and demonstrates that

energy registration decreases with azimuth and no energy is registered in the cross-line

direction. Energy registration on the H2 component increases with azimuth and no

energy is registered in the in-line direction.

The zero offset travel time shown in Figures 3.5a, b, c and 3.8a, b, c indicates that SH-

and SV- waves travel with the same velocity along the symmetry axis. It is also noticed
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Figure 3.7: (a) REVA of SV-wave on H1 component and more than one concentric circle
is the counter part of the triplication. Polarity reversal occur on the either side of a
line that bisects the circle along in-line direction. (b) REVA analysis of SV energy on
H2 component demonstrate that H2 component is more favorable for energy registration
in the in-line direction. (c) REVA analysis of SV-wave on V component indicates that
energy registration on V component follows the stationary behavior. Polarity reversal
occur on the either side of a line that bisects the circle along cross-line direction.
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Figure 3.8: (a) REVO analysis of SH-wave energy on H1 component indicates that a
small amount of energy is registered on H1 component. (b) REVO of SH-wave energy
on H2 component. Energy registration decreases with offset and polarity reversal occur
on either side of zero offset. (c) Recorded energy of SH-wave on Vertical component and
it is null in this case.
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Figure 3.9: (a) REVA analysis of SH-wave energy on H1 component indicates that energy
registration decreases as azimuth increases from 0 to 90. Polarity reversal occur on either
side of a line that bisect the circle along cross-line direction. (b) REVA of SH-wave energy
on H2 component. Energy registration increases with azimuth and polarity reversal occur
on either side of a line that bisect the circle along in-line direction . (c) Recorded energy
of SH-wave on Vertical component and it is null in this case.
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here that at large offsets the arrival time of the SV- and SH- waves differs from each

other. This phenomena is illustrated in more detail through the Figure 3.10. This Figure
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Figure 3.10: The arrival time of the SV- and SH- waves at a geophone located at (a) zero
offset (b) medium offset (c) far offset. At medium offset SV energy is arriving at two
times (expected, unexpected). The unexpected arrival time of SV energy is supported
by the cusps in anisotropic media. The arrival time of the SH-wave is less than that of
SV-wave at far offset.

shows the difference between the arrival time of the SV- and SH-waves at a geophone

located at three different offset locations, such as zero, medium and large offsets. If I

ignore the dynamic behavior of SH- and SV-waves, the favorable component of the energy

registration and am only concerned about travel time information, the observations from

this Figure are followed as:
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• At zero offset both waves arrive at the same time.

• At medium offsets SV-wave energy is recognized by the geophone more than one

time as supported by the cusp phenomena in anisotropic media.

• However, at far offsets, the SH wave arrives prior to the SV-wave

. These observations can be endorsed in the reference of the Figure 3.11. This Figure
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Figure 3.11: The velocity variation of the SV- and SH-waves with the group angle. The
velocity curve of the SV-wave shows the cusp phenomena and possesses multiple value
at angle near by 45 degree in this case.

reveals the group velocity behavior with angle. It is observed that the SH-wave velocity

increases monotonically with angle(offset). Although, the SV-wave velocity increases

until the maximum value is attained and then decreases and grasp the minimum value

at far offsets. As it is seen that up to medium offsets, the SH-wave velocity surface

lies below the SV-wave velocity surface, the arrival time of the SV-wave would be less
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than that of the SH-wave arrival time up to medium offsets. At far offsets, the SH-wave

velocity surface attains its maximum value that is greater than the SV-wave velocity at

the same offset and this behavior shows the agreement for the occurred pattern of travel

time of the SV- and SH-waves at far offset. It is also demonstrated that near an angle of

45 degree, the SV-wave velocity surface is multi valued with cusp and reinforced to the

occurred pattern of the unexpected arrival time of the SV-wave at medium offset.

3.6 Conclusions

9C − 3D seismic modeling for VTI has been accomplished in the plane wave domain.

The authentication of the proposed extrapolation method has been demonstrated, kine-

matically. The REVO and REVA analysis of the known source (P, SV, and SH) on the

components of the 3C geophone have been delineated here in order to illustrate favorable

condition of energy registration on different components of the 3C geophone. Polarity

reversal analysis with azimuth and offset has also been exposed. The phenomena of the

triplication occurs in using an in-line source. This is supported by the another approach

too.
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Chapter 4

R and T coefficients in the plane wave domain for VTI media.

4.1 Summary

Presently, I obtain the reflection(R) and transmission (T ) coefficients at the boundary

between two transversely anisotropic media with a vertical axis of symmetry (VTI) in

behalf of their importance for numerical computations. Additionally, these coefficients

are valuable for full elastic wave modelling in anisotropic media. Classical R and T

coefficients have been expressed as a function of the phase angle that can be computed

by using the effective ray parameter. To do this, I compute a normal for each individual

plane wave based on the local velocity that is a function of Thomsen’s parameters of the

medium and the vector cross-product of this normal with the normal to the reflector yields

a ray parameter that is used here to compute the corresponding R and T coefficients for

a given plane wave. Now following Graebner’s approach (Graebner, 1992), I obtain R

and T coefficients in terms of Thomsen’s parameters as these parameters are essential

for understanding the seismic wave’s signatures in the anisotropic media. Moreover,

amplitude versus offset (AVO) is a variation in seismic reflection amplitude with offset and

it is also referred as AVA (amplitude versus angle). Typically, the amplitude decreases

with offset because of geometric spreading, attenuation and other factors while an AVO

anomaly is characterized by the increasing AVO in a sedimentary section and indicates

the probability of the presence of hydrocarbons. As opposed to the isotropic case where

the velocity remains constant for all incident angles, the velocity is a function of the angle

of incidence for anisotropic media and motivates the author to analyze the effect of rock

anisotropy on the R and T coefficients of seismic waves. To achieve this purpose, first
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the SH-wave is considered, due to its simplicity for VTI media. The effect of Thomsen

parameter γ on the R coefficients is delineated presently. In continuing this, the three

models characterized by Class 1, 2 and 3 type of Gas-sand anomalies are considered for

observing the influence of anisotropy on P-wave reflectivity and to test the accuracy of

the plane wave R coefficients. A test of accuracy of the popular Rüger’s approximation

(Rüger, 2001) is also delineated here.

4.2 Introduction

The travel time of a signal from the surface to and from a reflector and the amplitude

of the reflection comprise the seismic response. The reflection coefficient plays an impor-

tant role in order to interpret the field records for lithology, porosity and fluid content

etc (Upadhyay, 2004). Thus, the amplitude of the reflection attains more intension of

Geoscientists. For isotropic media, the amplitude of the reflection is a function of the

density, compressional and shear wave velocities of the two layers that make up the inter-

face and the angle of incidence (Shearer, 1999). The velocity of isotropic media remains

constant during the AVO analysis while velocity of anisotropic media varies with the

angle of incidence and interrupt the AVO analysis (Rüger, 2001). In order to analyze

the effect of anisotropy on the R and T coefficients, a VTI model is taken into account

due to its simplicity among anisotropic media beyond the isotropic media. The thinly

layered media with horizontal interfaces and horizontally stratified shale formations are

characterized by the VTI model (Thomsen, 2002). For VTI media, the wave equation

separates into a coupled pair of equations for the P-SV waves and into a single equation

for the pure SH-wave (Slawinski, 2003). Further, VTI media possess z axis as axis of

symmetry so there is no loss of generality in considering propagation in any plane. First

I discuss the plane wave R and T coefficients of SH-wave for VTI media. Then I consider
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the plane wave R and T coefficients of P- and SV-wave as an extension of preceding

work.

4.3 R and T coefficients of SH wave for VTI media

In the past, R and T coefficients have been obtained in several domains according to

their importance. Further, considering anisotropy in seismic exploration, the R and T

coefficients have been obtained in terms of the phase angle and material properties on

either side of the interface (Daley and Hron, 1977). Presently, I derive the R and T

coefficients in the plane wave domain in behalf of the efficiency in terms of the compu-

tational time for Rayleigh Sommerfeld Modeling(RSM) (Sharma and Ferguson, 2009b).

Along with this, some times R and T coefficients are required for use in reflectivity

programs where integration over the ray parameter is required (Rüger, 2001). For this

case, parameterization by the phase angle can be inconvenient. This inconvenience can

be avoided by deriving the R and T coefficients in terms of the ray parameter. To do

this, I compute the ray parameter using the effective ray parameter approach (Sharma

and Ferguson, 2009b) and is used to compute the corresponding R and T coefficients in

the plane wave domain.

In general, the reflected and transmitted waves are generated by an incident wave when an

interface is encountered. The amplitude of the reflected and transmitted waves depend

on the R and T coefficients (Krebes, 2008). In order to obtain the R and T coeffi-

cients boundary conditions, the continuity of displacement and traction, are considered

at the boundary. After applying the boundary conditions , the R and T coefficients for

anisotropic media are obtained in terms of the effective ray parameter and the elastic

constant and can be written as (Slawinski, 2003)

1 2c44 q1 − c44 q2RSH = , (4.1)
c44
1 q1 + c44

2 q2
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and
12 c44 q1TSH = , (4.2)

c44
1 q1 + c244 q2

1 2where c and c are the elastic constants of the incident and the refracted media.44 44

c44
1 can be related to Thomsen’s parameter as (Thomsen, 2002)

c44
1 = ρ1 (β01)

2, (4.3)

and c44
2 is described as

c44
2 = ρ2 (β02)

2, (4.4)

where ρ and β are the density and the vertical shear wave velocity. In the subscripts

the first digit indicates the shear wave propagation direction with respect to the vertical

and the second digit indicates the medium. The incident and the refracted medium are

characterized by indices 1 and 2, respectively. Following equations 4.3 and 4.4, the

reflection and transmission coefficients can be described as

2 2ρ1 β01 q1 − ρ2 β02 q2
RSH = 2 2 , (4.5)

ρ1 β01 q1 + ρ2 β02 q2

and
2ρ1 β01 q1

TSH = 2 2 2 , (4.6)
ρ1 β01 q1 + ρ2 β02 q2

where q1 is the vertical slowness for SH wave in the incident medium and can be written

as (Ferguson and Margrave, 2008)

q1 = β01
−2 − pI2 (2 γ1 + 1), (4.7)

and the vertical slowness of the refracted medium q2 is described as

q2 = β02
−2 − pI2 (2 γ2 + 1), (4.8)

where γ1 and γ2 are the Thomsen’s parameters of the incident and the refracted medium.

pI is the effective ray parameter and can be computed as

pI = |p̂× â| p1
2 + p2

2 + q2, (4.9)
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where p1, p2 and q are the horizontal components 1, 2 and the vertical component of the

slowness vector, respectively and these are evaluated in the incident medium. The slow-

ness vector p̂ characterizes the direction of the incident wavefield and can be computed

using equation 2.1 while unit normal vector â associated with TTI symmetry plane is

computed according to equation (3.22).

4.4 Reflection and Transmission coefficients for P-SV wave

Historically, the P-SV reflection and transmission coefficients of an isotropic media has

been studied by numerous authors (Aki and Richards, 1980; Kennett, 2001). Further,

Daley and Hron have extended this study for anisotropic media (Daley and Hron, 1977).

Using the zeroth order approximation to an asymptotic ray series they have published

the displacement reflection and transmission coefficients of P-SV waves for VTI media in

terms of the elastic coefficients and the phase angle (Daley and Hron, 1977). Accounting

for the importance of the plane wave reflection and transmission coefficients as delineated

in the previous section, here I also derive plane wave P-SV reflection and transmission

coefficients. Graebner (Graebner, 1992) has published the reflection and transmission

coefficient in terms of the elastic coefficients and the horizontal and the vertical com-

ponents of the slowness vector. Since Thomsen’s parameters for an anisotropic medium

play an important role in order to reduce the non uniqueness of the inverse problem

where it is needed to model the data in a given geologic environment (Grechka, 2009).

Thus, I derive the reflection and transmission coefficients in terms of Thomsen’s param-

eters for seeking the effect of Thomsen’s parameters (δ, f) on these coefficients . To do

this, I develop a relationship between the elastic constants used by Graebner (Graebner,

1992) and Thomsen’s parameters (Thomsen, 1986b). Further, by using the effective ray

parameter I obtain 3D reflection and transmission coefficients for VTI media.
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To obtain the R and T coefficients, the continuity of the displacement and the stress is re-

quired. Consider a P-wave that impinges on the interface and it generates a reflected and

refracted P-and SV-wave at the interface. Then, the stress-strain relationship (τ = cf)

can be expressed as ⎤⎡⎤⎡⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τxx

τyy

τzz

τyz

τzx

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A A− 2N F 0 0 0 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

fxx

fyy

fzz

2 fyz

2 fzx

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.10)

A− 2N A F 0 0 0

F F C 0 0 0

0 0 0 L 0 0

0 0 0 0 L 0

τxy 0 0 0 0 0 N 2 fxy

where fij=2
1( ∂ui/∂xj+∂uj/∂xi), and i, j=x, y, z or 1,2,3. The τij are the stresses, the fij

are the strains, the ui are the components of particle displacement and the A,C, F, L and

N are the elastic constants. Now, the substitution of the plane wave particle displacement

equation into the wave equation yields the eigenvalues (phase velocities) of the P- and SV-

waves. Once the eigenvalues are known, the corresponding eigenvectors can be obtained

as a function of the elastic coefficients and the horizontal and the vertical slownesses. On

being acquainted with the eigenvalues and the eigenvectors of the P- and SV-waves, the

R and T coefficients are obtained after implementation of the boundary conditions at

the interface and can be expressed in matrix form as Sx=b. For this case the matrix S

is given by ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎣

lα1 mβ1 −lα2 −mβ2

mα1 −lβ1 mα2 −lβ2

a1 b1 a2 b2

c1 d1 −c2 −d2

⎥⎥⎥⎥⎥⎥⎥⎦
S = , (4.11)
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where ai=Li(qαi lαi +pImαi ), bi=Li(qβi mβi −pI lβi ), ci=pI lαi Fi+qαi mαi Ci, and di=pImβi Fi−

qβi lβi Ci, and i=1 corresponds to the upper medium and i=2 indicates the lower medium.

The lα, mα are the eigenvectors of the P-wave and the lβ, mβ are the eigenvectors of the

SV-wave and can be expressed as 
2 + L'p2I(C ' − 1)qklk = (4.12),

2
I + L'q2k

2
k + L'p2I(A'p − 1) + (C 'q − 1)

and  
2 + L'q2k(A' − 1)pI (4.13)mk = ,

2 2 2 2(A' + L' − 1) + (C ' + L' − 1)p q q pI Ik k

where k=1 characterize the P-wave and the SV is characterized by the k=2 and A'=A/ρ,

L'=L/ρ,C '=C/ρ. Now the vectors, x and b, are given by⎤⎡

x =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rpp

rps

tpp

tps

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.14)

and ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−lα1

mα1

L1 (q1 lα1 + pImα1)

−pI lα1 F1 − qα1 mα1 C1

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b = , (4.15)

In above equations pI is the effective ray parameter and is computed with equation 2.5. qα

and qβ are the vertical slowness of the P- and SV-wave, respectively and can be computed

using equations B.1, B.2, B.3 and B.4. The elastic coefficient matrix for VTI media can
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be expressed as (Tsvankin, 2001) ⎤⎡ 

cV TI =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c11 − 2 c66 c13 0 0 0

c11 − 2 c66 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.16)

The comparison of the elastic stiffness matrix from equation 4.10 with the above equation

yields the relationship

c11 = A, c44 = L, c33 = C, c55 = L,

and

c12 = c11 − 2 c66. (4.17)

Moreover, Thomsen’s parameters are defined as follow: The vertical P-wave velocity

is characterized by

α0 =
c33
ρ
, (4.18)

and S-wave velocity along the vertical axis of symmetry can be defined by

β0 =
c44
ρ
, (4.19)

and anisotropy can be characterized by the dimensionless coefficients

f = 1/2
c11 − c33

, (4.20)
c33

c66 − c44
γ = 1/2 , (4.21)

c44
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and
2 2(c13 + c44) − (c33 − c44)

δ = 1/2 . (4.22)
c33 (c33 − c44)

By considering the equations (4.17 to 4.22), it can be demonstrated that

A = ρα0
2(1 + 2f), C = ρα2

0, L = ρβ0
2, N = ρβ0

2,

and

2 2 2F = ρ α0
2 − β0 (2 δ + 1)α0

2 − β0 − ρ β0 . (4.23)

Once this relationship is built and is used in the above equations, the corresponding R

and T coefficients are obtained in terms of Thomsen’s parameters.

4.5 Example

Now following the equations from 4.1 to 4.9 as discussed above, I obtain the reflection

and transmission coefficients of SH-wave in the plane wave domain for interfaces between

two VTI media. To authenticate the proposed approach, I obtain the reflection and

transmission coefficients for a isotropic medium by employing a constraint on γ (γ = 0)

in equations 4.5 and 4.6 since γ=0 corresponds to the isotropic case. Figure 4.1 shows

the real and imaginary parts of the 3D reflection and transmission coefficients obtained

by applying a constraint γ=0 on the anisotropic algorithm. Figure 4.2 shows the 3D

reflection and transmission coefficients by following the isotropic algorithm as discussed

in Chapter2 and is the facsimile of Figure 4.1. Further, the corroboration is attained

by consider the in-line slices and the cross-line slices of the reflection and transmission

coefficients and are shown in Figure 4.3a, b, c and d. The results obtained by following

the anisotropic and isotropic algorithms are denoted by the red and the green colors,

respectively, and the overlapping of these results ensure the efficacy of the proposed

approach of obtaining R and T coefficients in the plane wave domain.
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Figure 4.1: a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient.
c) Real part of transmission coefficient. d) Imaginary part of transmission coefficient,
obtained from the anisotropic algorithm by applying constraint (γ = 0) on it.
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Figure 4.2: a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient.
c) Real part of transmission coefficient. d) Imaginary part of transmission coefficient,
obtained from the isotropic algorithm.
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Figure 4.3: (a) The in-line (b) The cross-line slices of the SH wave R coefficients. (c)
The in-line (d) The cross-line slices of the SH wave T coefficients. The red line denotes
the coefficients obtained by degenerated anisotropic algorithm and the green line shows
the isotropic coefficients. The overlapping of these curve endorse the efficacy of the
anisotropic algorithm for isotropic media.
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As it is known that AVO analysis considers the amplitude variation for the pre-critical

propagation (Rüger, 2001), I consider this condition in order to analyze the influence of

Thomsen’s parameter on the AVO analysis. To do this, the upper medium is characterized

by the invariant vertical velocity and the variable γ and the lower medium possess the

covariant Thomsen’s parameters. Now two cases for the lower medium : (1) when the

vertical velocity of the lower medium exceeds the vertical velocity of the upper medium.

(2) The reverse to the first case , are considered. Then, four sub-cases (i)γ1=γ2=0

(ii)γ1  > γ1 (iv)γ2 < γ1 have been taken into account. Figure 4.4=0 and γ2=0 (iii)γ2

shows the reflection coefficient curves as a function of the horizontal slowness for the

first case with four sub-cases. It is seen that at zero slowness the reflected wave has

negative amplitude as expected since the velocity of the lower medium is greater than

the velocity of the upper medium. Then iso/iso curve follows the expected behavior.

While, the change between the reflection coefficient values, as well as the change of the

slope of the reflection coefficient, is significant among the individual sub-cases for the first

case. Only for zero slowness (normal incidence) do the curves coincide. The slope of the

reflection coefficients for aniso/iso and anisoγ1/aniso(γ2 < γ1) sub-cases is less than the

slope of the iso/iso. As γ > 0 corresponds to the velocity increment with slowness, for

the aniso/iso situation the velocity of the upper medium increases with slowness while

the lower medium’s velocity remains constant hence the numerator of the equation 4.5

attains the lesser value and the denominator has larger values than the values obtained

for iso/iso situation. Both factors, together, allow us to except the obtained pattern

of the reflection coefficient curve. Further, for the aniso γ1/aniso(γ2 < γ1) scenario, the

obtained reflection coefficient curve lies in between the previous two situations. The

obtained reflection coefficient curve for the fourth sub-case shows more deviation from

the obtained curve of the isotropic-isotropic situation as the velocity of the lower medium

increases more rapidly than the upper medium in this case.
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Figure 4.4: The variation of R coefficient with horizontal slowness for the different inter-
faces illustrates that anisotropy does have a considerable influence on the AVO analysis.
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Figure 4.5: The influence of the Thomsen’s parameter γ on the AVO analysis as shown
in Figure 4.4 for different model.
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Figure 4.5 shows the reflection coefficient curves as a function of the horizontal slow-

ness for the second case with four sub-cases. Again the change between the reflection

coefficient values, as well as the change of the slope of the reflection coefficient, is sig-

nificant among the individual sub-cases. However, as indicated in the above examples,

ignoring the presence of anisotropy in VTI media has the potential of severely distorting

the AVO analysis.

Now following the theory delineated above in the reflection and transmission coefficient

for P-SV section, I implement an algorithm based on equations 4.11 to 4.23 in order to

compute the reflection and transmission coefficients for VTI media. Prior to anisotropy

considerations, I compute the reflection coefficients of the seismic waves for isotropic me-

dia by using the anisotropic algorithm while applying the constraint (δ, f = 0). Moreover,

reflection coefficients are obtained using the isotropic algorithm based on the Zoeppritz

equations in order to substantiate to the anisotropic algorithm (Shearer, 1999). However

a complete set of the reflection and transmission coefficients are required for accomplish-

ing the 3D modeling but only the reflection coefficients of P-P and SV-SV are considered

presently in behalf of the complexity of the reflection and transmission curves for this

case. Figure 4.6a, b show the real and imaginary parts of the reflection coefficients of the

reflected P and SV waves when incident P and SV waves are considered, respectively,

and are obtained by the implementation of degenerated anisotropic and isotropic algo-

rithms. The overlapping of these curves show the feasibility of the anisotropic algorithm

for isotropic media. To obtain these figures, the interface of the two isotropic media has

been considered which follow the condition α1 < α2, β1 < β2 and (β1, β2) < (α1, α2)

where αi and βi are the P and SV waves respectively. i = 1 corresponds to the upper

medium and the lower medium is characterized by i = 2. For this condition, it is known

that when the P-wave encounters the interface for the four cases, namely, pre-critical,

critical1, critical2, post-critical arise in this situation and can be defined on the basis
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Figure 4.6: (a) The real and imaginary part of the R coefficients for (a) P-P (b) S-S cases.
The green line denotes the coefficients obtained by degenerated anisotropic algorithm and
the red line shows the isotropic coefficients. The dotted black and magenta lines indicates
the imaginary part of the R coefficients obtained by the degenerated anisotropic algorithm
and isotropic algorithms, respectively. The overlapping of these curve endorse the efficacy
of the anisotropic algorithm for isotropic media.
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of the maximum slowness possessed by the body waves in the lower medium. However,

reflection and transmission coefficients of the P and SV waves remain real in pre-critical

situations while becoming complex beyond the pre-critical, so I will consider only the

pre-critical scenario for further study. Also it is known that the better quality and lower

cost of acquisition and processing of the compressional wave data than the shear wave

data make the exploration community more sophisticated in the acquisition and process-

ing of the P-wave data. In the following section, I will consider only P-P reflectivity for

seeking the effect of anisotropy.

In order to test the accuracy of the plane wave domain reflection coefficient the three

models characterized by the class 1, 2 and 3 type of Gas-sand anomaly, respectively are

considered. The model parameters used presently are taken from Rüger (Rüger, 2001)

and has been published before also by Kim. Further, a test of the accuracy of the popular

approximation given by Rüger is also considered here. Figure 4.7 shows the P wave

reflectivity with horizontal slowness for a isotropic media. It is indicated from this figure

that curves obtained by the exact algorithms of the isotropic media and VTI media are

analogous to each other while an approximation of Rüger provides a close match to the

exact solutions near the zero horizontal slowness and deviates from the exact solution as

slowness increases. The overlapping of the plane wave reflection coefficients obtained by

the exact isotropic and degenerated anisotropic algorithms establish the accuracy of the

approach followed by the author. Further, the overlap of the obtained exact reflection

coefficient with the reflection coefficient obtained by applying Rüger’s approximation

near to the horizontal slowness can be treated as supportive results in favor of the the

accuracy of the exact plane wave reflection coefficient given by equations4.11, 4.12, 4.13,

4.14 and 4.15. To illustrate the effect of the anisotropy on the P-P reflectivity and the

accuracy of Rüger’s approximation’s, I show the P-wave reflection coefficients for the

same three models as used previously but now the VTI symmetry has been introduced
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Figure 4.7: P wave reflection coefficients computed for three shale/gas-sand interfaces.
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the solutions computed by exact VTI and Rüger’s approximated algorithms for isotropic
medium, respectively.
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Figure 4.8: The reflection coefficients curves of the P wave for the three models shown
in appendix. The thick red line denotes the exact isotropic reflection coefficient, the
dashed green and black lines show the exact and approximated reflection coefficients
after introducing vertical transverse isotropy into the shale overburden with anisotropic
parameters (δ = 0.12, f = 0.133)
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Figure 4.9: In order to seek the influence of the f on the reflection coefficients,the same
reflection coefficient curves of the P wave as the ones shown in Figure 4.8but for a zero
f in the shale layer(δ = 0.12, f = 0)

.
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Figure 4.10: The same P wave reflection coefficient curves as shown previously in
Figures 4.8 and 4.9 but for a VTI medium characterized by anisotropic parameters
(δ = 0.12, f = 0.233)

.
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Figure 4.11: P wave reflection coefficient curves for the same three models but for a
positive value of δ in the shale layer (δ = 0.24, f = 0.133)
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Figure 4.12: In order to seek the influence of the δ on the reflection coefficients, the same
reflection coefficient curves of the P wave as the ones shown in Figure 4.11but for a zero
δ in the shale layer (δ = 0, f = 0.133)

.
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Figure 4.13: The same P-wave reflection coefficient curves as the ones shown in
Figure4.11, but for a negative value of anisotropy(negative δ in the overburden
(δ = −0.24, f = 0.133)
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into the overburden shale by considering the anisotropic parameters (f = 0.133, δ = 0.12).

Figure 4.8 illustrates the effect of the anisotropy on the P-P reflection coefficient and

accuracy of Rüger’s approximation as exact VTI reflection coefficients are compared with

the corresponding isotropic reflection coefficients (f = 0, δ = 0) and VTI approximated

reflection coefficients. This figure shows that the behavior of the reflection coefficient

curve can be changed substantially in the presence of anisotropy. It is also depicted

that the VTI approximation’s results do match perfectly with the exact one at the zero

horizontal slowness and closely near to it. Meanwhile, the deviation of the approximated

reflection coefficient curve from the exact one, as horizontal slowness increases, is also

observed. It’s also noticed that the approximation and the exact reflection curves are

close to each other for the first two models. The accuracy of Rüger’s approximation is

lower for the third model. In this case it is shown that the anisotropy has the largest

influence on the reflection coefficient for higher values of slowness. Further, the examples

are repeated for two different values of anisotropy parameters (f = 0 and f = 0.233)

in Figures 4.9 and 4.10, respectively. By examining these figures it is observed that

the difference between the curves are restricted to the large values of slowness but the

accuracy of the approximation remains unchanged near to and at the horizontal slowness.

Other examples are considered for three different values of anisotropy parameters

(δ = 0.24, δ = 0 and δ = −0.24) with a constant value of f = 0.133 for observing the

influence of delta on the reflection coefficient curves. These examples are shown in the

Figures 4.11, 4.12 and 4.13. A close investigation of these Figures makes it possible to

illustrate that anisotropy influences the P-wave reflection coefficient in a considerable

manner and the difference between the curves near zero horizontal slowness is governed

by the anisotropy parameter δ.



75

4.6 Conclusions

I have presented the plane wave reflection coefficient of the SH and P-SV waves for

anisotropic media by following Graebner’s approach and using the effective ray parame-

ter approach in order to accomplish the full elastic wave modeling for anisotropic media

in behalf of its efficiency in the plane wave domain. The authentication of the obtained

plane wave reflection coefficient of P-wave has been described in reference to isotropic re-

flection coefficient and Rüger’s approximated reflection coefficient. Further, it has been

observed that anisotropy influences the solution for the SH-wave reflection coefficient

through the contrast in the anisotropy parameter γ across the boundary. It has been

demonstrated that anisotropy does not have any effect on the reflection coefficient of

the normally incident waves. For the P-P case, the parameter δ governs the pattern

of the reflection coefficient near zero slowness and f is responsible for the behavior of

the obtained reflection coefficient at the large values of the horizontal slowness. These

observation are a manifestation of the well known facts that f governs the influence of

anisotropy on the P waves traveling near horizontally and δ dominates near vertical wave

propagation. If there is no contrast in Thomsen’s parameters (f, δ) across the interface,

the reflection coefficients obtained from the exact anisotropic algorithm by putting a con-

straint (f, δ = 0) on it, coincides with those obtained from the purely isotropic algorithm.

Meanwhile the reflection coefficients obtained from Rügers approximation do match with

the exact one at and near to the zero horizontal slowness. Finally, these analysis of

the effect of anisotropy on the reflectivity of the body waves, indicate that conventional

AVO analysis needs to be modified in the presence of anisotropy on either side of the

interface. Since there is a considerable difference between the reflection coefficient curve

obtained from the exact and approximated algorithms at large values of the horizontal

slowness and this difference may also be noticeable near zero slowness in the presence of
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strong anisotropy, we should deal with the more exact algorithm so that the scanty of

the accuracy could be avoided.

Further, as the dependency of the reflected waves amplitude on offset has proven to

be a valuable exploration tool for direct hydrocarbon detection, I have demonstrated

that anisotropy does have a considerable influence on the R coefficient of seismic waves.

Thus conventional AVO analysis needs to be modified in the presence of the anisotropy

on either side of the reflecting boundary. A test of accuracy of Rüger’s approximation is

also delineated here.
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Chapter 5

Phase shift modelling for HTI media.

5.1 Summary

Fractures play an important role in hydrocarbon production as they determine the path-

ways and volume of crustal fluid movement. A horizontal transverse isotropic (HTI)

medium is the simplest effective model of a formation that contains a single parallel frac-

ture system. By following the same theory as discussed in the previous chapter, I present

phase shift modelling in order to seek the dynamic and kinematic signature of seismic

waves in HTI media as these analysis can be useful for fracture analysis. The only differ-

ence in this case resides on the way of computing the polarization angle of the incident

body waves at each grid point at the interface. Consequently, a layer of infinitesimal

thickness above the HTI media is taken into account for defining the initial wavefield

propagation direction. The incident wavefield propagation direction is governed by the

cross product of the unit normal vector in the direction of propagation with the unit

normal vector associated with the rotational-symmetry axis. This cross-product yields

the effective ray parameter that is the prerequisite for obtaining vertical slowness of the

refracted wave in HTI media. On being acquainted with the effective ray parameter and

the vertical slowness of the refracted wave in HTI media, the unit normal vector in prop-

agation direction in HTI media is computed and used in the cross-product with the unit

normal vector associated with a 3C geophone at a grid location. This cross-product leads

to the computation of the polarization angle of propagating body waves in HTI media at

the interface and nurture to the rotation matrix. Therefore, the rotation matrix, built on

the bases of the polarization angle and azimuth, is applied to the extrapolated wavefield
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in order to model 9C data. It is observed that the amplitude and travel time of seis-

mic waves are affected by HTI media. The presented 9C-3D modelling will contribute

to fracture detection from surface seismic data since the information about the fracture

system can be extracted from the three dimensional behavior of the shear wave splitting.

Subsequently, this modelling will be applicable for VSP and micro-seismicity modelling

in the presence of anisotropy.

5.2 Introduction

In recent years, geo-scientist are supposed to explore the different kind of hydrocarbon

reservoirs in behalf of increasing demand for oil and gas in the world. Many of the

reservoirs, such as carbonates, tight clastic and basement reservoirs, contain a finite

population of natural fractures (Zheng, 2006). Further, fractures control the fluid flow

rate, which depends on the permeability of the reservoir as it is high in the direction

of fractures strike and low across it (Lines, 2004). Consequently, the knowledge of the

distribution of the fracture system to geo-scientist and reservoir engineers is the prerequi-

site for the successful development of these reservoirs. According to geology, a fracture is

characterized by a planar discontinuity in rock due to deformation or physical diagenesis

(Xiang-Yangi, 1997). The pattern of the fractures depends on the present and history of

the stress and it is evident that certain small-scale fractures may be stress aligned and

behave as anisotropic media for seismic waves with sufficiently long wavelengths (Peter

and Crampin, 1990). These fractures, either having been initially open due to the stress

field within Earth at present time or subsequently closed due to mineralization, are im-

portant for fluid flow. Since open fractures can provide storage space and passage for

flow of oil and gas, they are of interest for hydrocarbon exploration . There are two ways:

direct and indirect methods, to measure fractures. Direct measurement is based on the
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well-logging or core sampling and has its limitation as it is applicable around the well

bore. Thus, indirect measurements are required to delineate fractured reservoir and to

optimize the development of the reservoir. Since in most circumstances in depth in-situ

fractures are more or less vertical, the simplest effective model of a formation containing

a single parallel fracture system is transversely isotropic with a horizontal symmetry axis

( HTI) and is considered presently. Figure 5.1 shows the HTI model induced by vertical

fractures where the x axis is the axis of symmetry. The plane which possesses the axis

of symmetry is known as symmetry axis plane and a plane normal to the symmetry axis

plane is characterized by the isotropy plane and both these planes are shown in Figure

5.1. For present day geophysics, the crustal fracture content, distribution and possible

alignment is the important subject despite of the complexity of crustal anisotropy. And

if we are to comprehend the role of fractures and fluids to monitor hydrocarbon reservoirs

for the presence or absence of major fluid pathways, we must understand how seismic

waves interact with the fractures and how this interaction can provide an opportunity

to extract the fracture information from seismic waves by considering the kinematic and

dynamic analysis. In order to accomplish this purpose it is worth while to review wave-

field propagation in the transverse isotropic media and it has been done in chapter 3.

Further, prior to the analysis of the dynamic signature of body waves in the transverse

isotropic media, it is convenient to understand the difference between the group velocity

and the phase velocity.

5.2.1 Group velocity

The group velocity-vector characterizes the direction and speed of energy associated

with the wave motion, therefore, is of primary importance in seismic wave modelling

and inversion methods. In contrast, the phase velocity is the local velocity with which

wavefront propagates in the normal direction to it. For transversely isotropic media, the
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Figure 5.1: Schematic representation of HTI medium induced by vertical fractures where
x axis is the axis of symmetry. The plane which possesses the axis of symmetry is known
as symmetry axis plane and a plane normal to the symmetry axis plane is characterized
by the isotropy plane (Nadri, 2009).
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difference between the group and phase velocity vectors are caused by velocity variation

with angle. As depicted in Figure 5.2 the group angle (Ψ) represents the direction of the

Figure 5.2: Schematic representation of the phase and group angles. The angle is mea-
sured with vertical axis. The group angle depicts the direction of energy propagation
while phase angle determines the direction of wavefront propagation (Tsvankin:2001).

group velocity vector in a homogeneous medium and it is aligned with the source-receiver

direction while the phase angle (θ) is the angle between the wave vector k̃ and the vertical

axis. These angles are different just because of the lack of sphericity of wavefront in the

presence of anisotropy. In contrast to phase velocity which can be obtained from the

Christoffel equation, group velocity can be computed from the phase velocity function

by using this relationship

V = g.n, (5.1)

between the group and the phase velocities. Now to obtain the group velocity from

equation 5.1, the spatial direction of the unit wavefront normal n can be characterized

by two directional angles θ1 and θ2. These angles are known as the polar angle and the

azimuth of n, respectively. So the wavefront normal can be computed as

n = [sin θ1 cos θ2, sin θ1 sin θ2, cos θ1], (5.2)

The differentiation of equation 5.1 leads the expression

∂V ∂n ∂g
= g. + .n(i = 1, 2), (5.3)

∂θi ∂θi ∂θi
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By definition n is the normal to the wavefront, whereas the derivatives ∂g/∂θi are tangent

to it. Hence, the second term on the right -hand side of the above equation vanishes.

Thus

∂V ∂n

∂θi
= g.

∂θi
(i = 1, 2), (5.4)

At this moment considering equations 5.1 and 5.4, the component of the group velocity

vector can be obtained according to expression

∂V ∂n 1 ∂V ∂n
g = V n+ + . (5.5)

∂θ1 ∂θi sin2 θ1 ∂θ2 ∂θ2

This equation leads to the following conclusions

• The magnitude of the group velocity can be defined as

∂V 1 ∂V
g ≡ ||g|| = V 2 + ( )2 + ( )2. (5.6)

∂θ1 sin2 θ1 ∂θ2

Therefore, the inequality V ≤ g is satisfied by the phase and group velocities for

any wavefront normal n.

• As it is known that the ray is the unit vector, r, parallel to the group velocity so it

can be defined as

g
r = . (5.7)

g

• Following equation 5.1 it can be demonstrated that

V
r.n = . (5.8)

g

If r = n, the ray deviates from the wavefront normal towards the phase velocity

increase in accordance with equation 5.5. Figure 5.3 illustrates this geometrically.

From Figure 5.3, it is evident that

V (θ) V (θ)
cos(θ − ψ) = = , (5.9)

V (ψ) g(ψ)
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Now by considering the right triangle whose hypotenuses is g and V , ∂V/∂θ are

the sides and can be illustrated that

tan(θ − ψ) = 1

V (θ)

dV (θ)

dθ
, (5.10)

and the trigonometric identity

tan(x− y) = tanx− tan y
1 + tanx tan y

, (5.11)

leads to the relationship between the group angle and the phase angle as

ψ = tan−1

 
tan θ + 1

V (θ)
dV (θ)
dθ

1− 1
V (θ)

dV (θ)
dθ

θ

 
. (5.12)

According to equation 5.12, the equality ψ=θ occurs only when dV (θ)/dθ=0, that

is, at the extrema of V (θ). At those extrema the ray direction coincides with the

wavefront normal’s direction and the group-and phase velocity surfaces touch each

other as shown in Figure 5.3.

Previously, the group velocity has been obtained in terms of the phase velocity. Fur-

ther, to understand the phenomena of triplication it is worthwhile to understand the

group velocity surface, phase velocity surface and slowness surface.

• Group velocity surface: A surface which is produced by plotting the group

velocities from a common origin along the ray direction.

• Phase velocity surface: Plotting the phase velocity as a function of its direction

form the phase velocity surface.

• Slowness surface: The reciprocal surface of phase velocity surface is the slowness

surface whose radius in any direction is proportional to 1/phase-velocity.

So far it has been shown that the group velocity can be obtained using the phase velocity.

To gain more insight into the geometries of the slowness and group velocity surfaces, we
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Figure 5.3: Schematic representation of the relationship between phase velocity and group
velocity surfaces. The angles ψ and θ are the group and phase angles, respectively and
are measured with horizontal axis. It illustrates that the group velocity surface can be
constructed from the known phase velocity surface. Plane-wave fronts are the normal
drawn from known points of the phase velocity surface to the group velocity surface and
governs the energy distribution for a given direction (Nadri, 2009).

can describe the group velocity in terms of slowness as (Grechka, 2009)

∂p
g. = 0, (i = 1, 2). (5.13)
∂pi

This equation implies that the group-velocity vector g is normal to the slowness surface.

Now, to explain the origin of triplication, refer to Figure 5.4. In this figure the slowness,

phase-velocity and group velocity surfaces of SV-wave are indicated by dashed blue, solid

red and solid black, respectively. The slowness in this figure has both convex and concave

regions. As we know from equation 5.13, the normal to the slowness surface indicates

a ray direction. We plot normals to the slowness surfaces which are shown in Figure

5.4 by light and dark blue arrows. The normals spread away from each other (light

blue) when the slowness surface is convex and due to this the wavefront remains single-

valued. Conversely, the wavefront becomes multivalued when the normals are drawn to

the concave portion of the slowness surfaces because in this case the normals intersect

each other and cause the group-velocity surface to fold onto itself. A close inspection of
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Figure 5.4: Schematic representation of the relationship between phase-velocity (solid
red) and group-velocity (solid black) surfaces and slowness surface (dashed blue). This
figure makes it possible to understand the reason for triplication on the SV wavefront
(Grechka, 2009). The normals to the slowness-surface are shown by light and dark blue
arrows. Red and brown arrows indicate the wavefront normals.

Figure 5.4 makes it possible to conclude that if we draw a radius vector for a particular

direction it will intersect the group velocity surface three times. As the radius vector

corresponds to the magnitude of group velocity, the three arrivals corresponding to the

three ray velocities results in triplication.

So far I have discussed the crucial factors which can be used in order to analyze the

dynamic behavior of the body wave propagation, through the anisotropic media. Travel

times in anisotropic media are accommodated through the plane wave transformation

and phase shift. For accomplishing phase shift modelling, I have implemented the same

theory as discussed in Chapter 3 and CREWES report (Sharma and Ferguson, 2009a).

The only difference is that a layer of infinitesimal thickness above the HTI medium is

taken into account here in order to define the wavefield propagation direction initially.

I have implemented a constraint on this layer that the velocity possessed by it is the

maximum velocity of the lower HTI media. The incident wavefield propagation direction
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is governed by the cross product of the unit vector normal to the plane wavefront with

unit vector in the direction of axis of symmetry as

2 2 2pI = |p̂× â| p1 + p2 + q , (5.14)

where p1, p2 and q are the horizontal components 1, 2 and the vertical component of

the slowness vector, respectively and these are evaluated in the incident medium. For

ˆHTI media presently, I take the interface characterized by (â=j). Once the effective

ray parameter pI is computed, the vertical slowness qHTI of the incident body wave

in the lower HTI media can be computed in terms of Thomsen’s parameters and the

effective ray parameter known for all the body waves (Sharma and Ferguson, 2009a).

On being acquainted with the effective ray parameter and the vertical slowness of the

incident wavefield in the HTI media, the unit vector normal to the plane wavefront in

the propagation direction can be determined as

ˆ ˆ ˆp1 i+ p2 j+ qHTI k
p̂HTI = P , (5.15)

2 2 2p1 + p2 + qHTI

Now, the cross product of this unit vector with the vertical axis of a 3C geophone

|pHTIˆ × â| . (5.16)

yields the polarization angle at each 3C geophone located at the interface and nurture to

the rotation matrix as the knowledge of the polarization angle is the essential parameter

for obtaining the rotation matrix. Once the rotation matrix is built, it is implemented

on the extrapolated wavefield in order to model 9C-3D data.

5.3 Example

I consider a homogeneous and anisotropic HTI medium of 700 m thickness for a simple

demonstration. The fact that the ratio of fracture size to the seismic wavelength less than
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1 makes the medium to be effectively homogeneous and anisotropic. Further, Thomsen’s

parameters are considered from Vernik’s paper (Vernik and Liu, 1997) for the medium

characterization. Now a known impulsive source is extrapolated through the medium

in the plane wave domain and transformed back into the space and time domain at the

interface. Prior to energy distribution among the three components of the 3C geophones,

I consider the in-line, cross-line and time slices of the known extrapolated wavefield in

order to analyze the kinematic and dynamic behavior of the body waves in HTI media.

Presently, the in-line and cross-line directions are characterized by the fracture strike

direction and normal to it,respectively. Consequently, first a known P wave source is

considered at the earth surface and is extrapolated through the HTI medium. Figure

5.5a shows the in-line slice of the extrapolated wavefield and the cross-line slice is shown

in the Figure 5.5b. Kinematically, these slices lead to the following observations

• The arrival time of the extrapolated wavefield at zero offset is the same in the

in-line slice as well as in the cross-line slice.

• The travel time response of the in-line slice is hyperbolic while it is non-hyperbolic

for the cross-line slice.

• The arrival time of the extrapolated wavefield at far offsets in the in-line slice is

less than registered in the cross-line slice. It is a manifestation of the well known

fact that P-waves travel fastest in the direction of fracture strike and slow in the

direction normal to it.

Figure 5.6a and b show the time slices of the extrapolated wavefield without and with

analytic curve. The obtained ellipse in the x−y plane manifests the azimuthal anisotropy

of the medium as expected. The overlapping of the analytic ellipse with the obtained

one ensures the accuracy of the proposed phase shift modelling kinematically.
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Figure 5.5: (a) In-line (b) Cross-line slice of extrapolated P wavefield through an
anisotropic medium characterized by Thomsen’s parameters shown in appendix. The
considerable difference between these slices is observed kinematically as well as dynami-
cally. Both slices manifest well known fact that P-wave travel fast in direction of strike
with high amplitude.
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Figure 5.6: Time slice of extrapolated P wavefield (a) without (b) with analytic curve.
Obtained ellipse is a manifestation of azimuthal anisotropy as expected. More energy is
observed in fast direction. The overlapping of the analytic curve (shown in red color)
with the obtained ellipse illustrate authentication of proposed phase shift modelling.
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Dynamically, it is noticed that P-wave amplitude increases from the slow direction

to the fast direction. This observation correlates well with equation 5.8 and Figure 5.3

where it is mentioned that the ray deviates towards the high phase velocity direction from

the low velocity direction in the presence of anisotropy. In addition to this, if we draw a

normal from a known point of the phase velocity surface to the group velocity surface, the

point where it makes a contact with the group velocity surface corresponds to the plane

wave drawn tangentially at that point. Then the energy distribution depends on how

close these points are at the group velocity surface and it can be observed from Figure

5.3 that these points are dense in and near the fast velocity direction while sparse in the

low velocity direction and hence the observed amplitude pattern in our analysis. Now,

in order to seek the influence of the anisotropy on the kinematic and dynamic behavior

of the P-wave I am repeating the same procedure as outlined above after introducing

the different anisotropy in the same model as taken previously. Figure 5.7a and b show

the in-line and the cross-line slices of the extrapolated wavefield for the same medium as

before but for a positive value of δ. The time slices of the extrapolated wavefield with

and without the analytic curve are shown in Figure 5.8a and b. In continuation of this

analysis, the in-line and the cross line slices for negative δ are shown in the Figure 5.9a

and b and the time slices are shown in the Figure 5.10a and b. A close examination of

these figures make it possible to illustrate the following observations:

• Kinematically, the different values of δ do not have any effect on the in-line slice’s

response while do have the noticeable effect on that of the cross-line slice. The

authentication of the proposed phase shift modelling is shown in these figures as

analytic ellipse coincides with the obtained ellipse.

• Dynamically, at a given time the energy distribution in the x − y plane depends

on the magnitude of the anisotropic parameter δ. Further, it’s noticed that for



90

x(m)

T
im

e(
s)

In−line slice
a)

−1000−800 −600 −400 −200 0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

y(m)

T
im

e(
s)

Cross−line slice
b)

−1000−800 −600 −400 −200 0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

(a) (b)

Figure 5.7: (a) In-line (b) Cross-line slice of extrapolated P wavefield for same model
as before but for a larger magnitude of anisotropy (higher δ=0.29) in the medium. The
large value of δ does have effect on the cross-line while the in-line slice is not influenced.
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Figure 5.8: Time slice of the extrapolated P wavefield (a) without (b) with analytic
curve. The large value of δ does have influence on the kinematic and dynamic behaviors
of P wave.
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Figure 5.9: (a) In-line (b) Cross-line slice of the extrapolated P wavefield for the same
model as considered for above Figure but for large negative value of δ (δ=-0.2). A
considerable effect, kinematically as well as dynamically, of anisotropy is observed on the
cross-line slice.
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Figure 5.10: Time slice of the extrapolated P wavefield (a) without (b) with analytic curve
for the same medium as considered in Figure 5.9. The authentication of the proposed
modelling is demonstrated here as analytic curve is analogous to the obtained one.
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Figure 5.11: Time slices of the extrapolated P wavefield (a) with (b) without analytic
curve through the medium characterized by Thomsen’s parameters chosen randomly. The
unexpected behavior, kinematically and dynamically, illustrate that choice of Thomsen’s
parameters for a medium characterization can not be random.

negative δ the contrast in the in-line and cross-line’s energy is more than that for

the positive δ.

Moreover, the choice of δ for the figures shown above was limited on behalf of the rela-

tionship between elastic stiffness constants and Thomsen’s parameters as shown in the

appendix D. Thus, the adopted value of δ should make physical sense and can not be

taken randomly and it can be verified in reference to Figure 5.11 . Figure 5.11a and b

show the time slice of the extrapolated wavefield for the delta chosen randomly. It is ob-

served here that the maximum amplitude of the P-wave occurs in the slow direction and

decreases towards the fast direction and there is no overlapping of the analytic and the

obtained ellipses. Thus, the demonstrated dynamic behavior of the propagated P-wave is

just opposite of what we expected and make it necessary that the selection of δ can not be

random. Figure 5.12a and b show in-line and cross-line slices of extrapolated SH-wave
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Figure 5.12: (a)In-line (b) Cross-line slice of extrapolated SH wavefield for same model
as considered in Figure 5.5 with low resolution. The difference, kinematically or dynam-
ically, can not be examined precisely on behalf of these slices.
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Figure 5.13: Time slice of the extrapolated SH wavefield (a) without (b) with analytic
curve for same medium as ones shown in Figure 5.12 and demonstrate that SH wave travel
fast in direction of fracture strike with high amplitude and illustrate the authentication
of the proposed modelling.
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through the same model as considered in Figure 5.5. Both of these slices are plotted with

a high clipped display, otherwise, the difference in between these slices in terms of ampli-

tude and travel time would not be noticeable. Although, it is observed from Figure 5.13a

that SH-wave travel fast in the direction of fracture strike and energy decreases from

the fast direction to the slow direction and follow the same behavior as that of P-waves.

Kinematically, the authentication of the proposed modelling for SH-wave in anisotropic

medium is demonstrated as the analytic curve (shown in magenta color) matches with

the obtained one in Figure 5.13b. Again, to observe the influence of anisotropy on the

kinematic and dynamic behaviors of SH-wave, the same model as considered for Figure

5.12, is taken into account after introducing large anisotropy (higher γ) into the medium

through which SH-wave propagates (γ = 0.34). The in-line and the cross-line slices are

shown in Figure 5.14a and b. The dissimilarity between these two slices is observed here

in terms of travel time and amplitude. However, these analysis can be emphasized in

reference to Figure 5.15a where it is demonstrated that more energy travel in the fast

direction. As this Figure differs from Figure 5.13a it is possible to make a conclusion that

anisotropy does have an effect on kinematic and dynamic behaviors of the SH-wave. So

far, I have discussed the effect of anisotropy on wavefield propagation of seismic waves.

Now following the same theory as outlined above through equation 5.14 to 5.16 I have

obtained 3C data for known P-wave source at the surface after applying the rotation

matrix on the extrapolated wavefield and have taken a slice through the in-line direction

shown in Figure 5.16. The red dashed line highlighted in the circle at the top right corner

of Figure 5.16c indicates the direction along which a vertical slice of the modelled data

is taken. The in-line and cross-line direction are indicated by blue and magenta color,

respectively. Figure 5.16a, b and c show the registered energy versus offset (REVO)

analysis of P wave on H1, H2 and V components while registered energy versus azimuth

(REVA) analysis is shown in Figure 5.17a, b and c, respectively. Moreover, these figures
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Figure 5.14: (a) In-line (b) Cross-line slice of the extrapolated SH wavefield for the same
model as considered above but of large anisotropy (γ = 0.34) and show the effect of
anisotropy on propagation of the SH wavefield.
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Figure 5.15: Time slices of the extrapolated SH wavefield through the same model as
ones shown in Figure 5.14. The authentication of the proposed modelling is shown in (a)
and (b) kinematically and dynamically, respectively.
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follow the expected pattern of registered energy on the different components with offset

and azimuth.

5.3.1 SV-case

Now the same theory as discussed above has been implemented for SV-wave. In order

to analyze the kinematic and dynamic behavior of the SV-wave in HTI media, the same

model as used for P and SH-wave is considered. Figure 5.18a and b show the in-line

and cross-line slices of the extrapolated SV wavefield. It is observed that both of these

slices are very close to each other in terms of the travel time response. Figure 5.19a and

b illustrate time slices of the extrapolated wavefield. The obtained circle indicates that

anisotropy does not have a considerable effect on SV-wave propagation as had on P and

SH-wave propagations for this case. Further, the effect of anisotropy on the SV-wave

propagation has been examined on behalf of considered models shown in the appendix.

Figure 5.20a and b show the time slices of the SV wavefield extrapolated through a

medium characterized by Thomsen’s parameters shown in the appendix and possesses

positive f and δ with the condition (f > δ). In continuation of this, another model pos-

sesses the same condition as outlined previously but with large magnitudes of Thomsen’s

parameters taken into account for observing the effect of anisotropy. By inspecting Fig-

ures 5.20 and 5.21, it can be revealed that as long as Thomsen’s parameters follow the

condition (f > δ) anisotropy does not have a considerable effect on SV wave propagation

either kinematically or dynamically. However, the effect of anisotropy on SV wave prop-

agation can be seen in Figures 5.22, 5.23 and 5.24. Although, the authentication of the

proposed modelling, kinematically, is not demonstrated in these cases as obtained results

are not matching with analytic curves, it is possible to make some remarkable conclusion

as follows

• if (f− δ < 0), the cusps occur in the in-line direction and can be observed in Figure
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Figure 5.16: (a) Registered energy versus offset (REVO) analysis of P-wave on H1 com-
ponent illustrate that H1 component is more favorable for energy registration as offset
increases. Polarity reversal appear on the either side of zero offset. (b) (REVO) anal-
ysis of P-wave on H2 component illustrate that H2 component is more favorable for
energy registration near to zero offset. Polarity remains stationary on the either side of
zero offset. (c) Recorded P-wave energy on vertical component demonstrate that energy
registration on vertical component decreases with offset. Polarity follow the stationary
behavior on either side of zero offset.
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Figure 5.17: (a) Registered energy versus azimuth( REVA) analysis of P-wave at H1
component indicates that energy registration increases as azimuth increases from 0 to
90. Polarity reversal occur on the either side of a line that bisects the circle along
cross-line direction. (b) REVA analysis of P-wave at H2 component indicates that energy
registration decreases as azimuth increases from 0 to 90. Polarity reversal occur on the
either side of a line that bisects the circle along in-line direction. (c) REVA analysis of
P wave on vertical component reveal the variation of recorded energy and polarity with
azimuth.



99

x(m)

T
im

e(
s)

In−line slice
a)

−1000−800 −600 −400 −200 0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

y(m)

T
im

e(
s)

Cross−line slice
b)

−1000−800 −600 −400 −200 0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b)

Figure 5.18: (a) In-line (b) Cross-line slice of the extrapolated SV wavefield for the same
model as considered above for P and SH waves. The in-line slice is analogous to the
cross-line slice
.
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Figure 5.19: Time slices of the extrapolated SV wavefield through the same model as
ones shown in Figure 5.18. The authentication of the proposed modelling is shown in (a)
and (b) dynamically and kinematically, respectively. The obtained circle illustrate that
anisotropy does not have a considerable effect on SV wave propagation.
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Figure 5.20: Time slices of the extrapolated SV wavefield through model2 (f > δ) as
ones shown in Table D.2. The authentication of the proposed modelling is shown as
analytic curve overlays with obtained one as shown in (a) and (b). There is no effect of
anisotropy for this model.
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Figure 5.21: Time slices (a) and (b) of the extrapolated SV wavefield through model3
with large magnitude of (f > δ) shown in Table D.2. The authentication of the proposed
modelling is shown in (b),kinematically. Still no effect of anisotropy is observed.
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5.22a and be authenticated by Figure 5.22b.

• if δ is negative and (f− δ > 0) , the cusps occur near 45◦ from the axis of symmetry.

This phenomena is noticed in Figures 5.23 and 5.24.
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Figure 5.22: Time slices of the extrapolated SV wavefield through the model4 (f < δ)
shown in Table D.2. The cusps phenomena is occurred in the in-line direction. The
occurrence of cusps is endorsed by the analytic curve but no overlapping of analytic
curve with obtained one is noticed.

5.4 Conclusions

I have presented multi-component modelling of P-wave in the plane wave domain for HTI

media. The authentication of the proposed phase shift modelling has been demonstrated

kinematically and dynamically. Further, the kinematic and dynamic effect of anisotropy

on seismic waves propagation has been demonstrated and the dependency of this analysis

on the magnitude of Thomsen’s parameters is also illustrated. Since the fractures have

an impact on the amplitude and travel time of seismic waves propagation, the careful

investigation of this impact can be used for fracture detection.
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Figure 5.23: Time slices of the extrapolated SV wavefield through model5 (−δ) shown
in Table D.2. The cusps is observed near to 45◦.
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Figure 5.24: Time slices of the extrapolated SV wavefield through the model possesses
large negative value of δ (model6) as shown in Table D.2.



103

Chapter 6

Phase shift modelling with new proposed approaches.

6.1 Summary

In order to perform phase shift modelling for HTI media, I have implemented a constraint

on a layer of infinitesimal thickness above the HTI media that its velocity is the maximum

velocity of the lower HTI medium. To remove this constraint, I have presented two more

approaches here. According to first approach, I use the relationship between the cosine

of any angle with the horizontal axis and the angle of incidence considered with respect

to vertical and azimuth for obtaining an effective ray parameter for HTI media. Once the

effective ray parameter is known, the vertical slowness is computed using this parameter

and Thomsen’s parameters of equivalent VTI media corresponding to HTI media. The

acquaintance of the vertical slowness make it possible to extrapolate known source wave-

field through anisotropic media using a phase shift operator. In the second approach, I

solve the Christoffel equation for obtaining vertical slowness used to obtain phase shift

operator for anisotropic media. In order to test the proposed approaches, I have per-

formed seismic modelling for orthorhombic media, that has been examined in contrast to

the physical modelling presented by another student of CREWES. Further, taking into

account the second data acquisition geometry for VTI media, multi-component data has

been obtained for P-wave source. For the sake of obtaining the multi-component data

for HTI media, I have computed P-wave R coefficient numerically. The fidelity of the

obtained R coefficient has been illustrated in light of Rüger,s approach.
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6.2 Introduction

Historically, it has been demonstrated that the formulas pertinent to VTI media can

be used for HTI media(Berryman, 2008). In doing so, the physical meaning of angle of

incidence differs from the classically used one. Generally, the angle of incidence is mea-

sured with vertical axis(Rüger, 2001) while in case of HTI media it would be considered

from the horizontal axis. Moreover, the classical analytic expressions for HTI media are

expressed in terms of the angle of incidence that is measured with respect to vertical

axis(Rüger, 1998). Thus, dealing with HTI formulas obtained from VTI formulas intro-

duces the problem when obtained results are examined in contrast to the results obtained

using the classical expressions. To avoid this problem, I use the relationship between the

angle of incidence for VTI and HTI media. The following section describes the whole

procedure. Additionally, using this relationship, I remove the constraint posed on the

layer of infinitesimal thickness above the HTI media in Chapter 5.

6.3 Theory

6.3.1 First approach

To accomplish the phase shift modelling, the phase shift operator that is based on the

vertical slowness is required. Further, the effective ray parameter is a prerequisite for

obtaining the vertical slowness. Following simple geometry shown in Figure 6.1, we can

build the relationship between the cosine of some angle α with the horizontal axis and

the corresponding angle of incidence(θI) and azimuth (φ) as

cosα = sin θI cosφ, (6.1)
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As α is the angle with horizontal axis, the ray parameter for HTI media can be described

as

cosα
= , (6.2)pIHTI v

Now following the theory described in chapter 2, sin θI can be computed using cross

product as

sin θI = |p̂× â| , (6.3)

where p̂ and â can be calculated using equations 2.1 and (3.22), respectively.

cosφ can computed from the input parameters of plane wave as

p1
cosφ = P , (6.4)

2 2p1 + p2

Using equations (6.4) and (6.3) the equation (6.2) can be expressed as

p1 2 2 2pIHTI 
= |p̂× â| P p1 + p2 + q . (6.5)

p1
2 + p22

Once the effective ray parameter is known from equation(6.5), the corresponding verti-

cal slowness can be computed using the relationship given by Ferguson and Margrave

(shown in Appendix B) and can be used for obtaining phase shift operator (Ferguson

and Margrave, 2008). As it is known that there is an equivalent VTI model for HTI me-

dia, Thomsen’s parameters of the equivalent VTI model are used instead of the generic

coefficients for accomplishing the proposed modelling. These parameters can be defined

in the following way(Perez, 2010)

δ − 2f(1 +
f
� )

f(V ) = − f
, δ(V ) = ,

1 + 2f (1 + 2f)(1 + 2
f
�)

and

γ
γ(V ) = − ,

1 + 2γ

where

β0
f ≡ 1− ( )2. (6.6)

α0
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where α0 and β0 have been defined according to equations (4.18) and (4.19), respectively.

The importance of these coefficients depends on the fact that all kinematic signature in

HTI media now can be described using already known VTI equations.

Figure 6.1: Schematic representation of an arbitrary angle α with the horizontal axis,
and its associated angle of incidence(θI) and azimuth(φ)

6.3.2 Second Approach

In second approach, I solve the Christoffel equation for obtaining vertical slowness that is

used to obtain phase shift operator for anisotropic media. Generally, Thomsen’s parame-

ters defined with respect to vertical, are known as these coefficients have been published

before by many authors (Thomsen, 1986b; Vernik and Liu, 1997) and treated as generic

coefficients. For accomplishing this approach, first, I have built a relationship in order

to obtain elastic stiffness coefficients for given Thomsen’s parameters (see Appendix D ).

Given the elastic stiffness coefficients, I obtain the elastic stiffness matrix for VTI media.

Further, using Bond transformation (Upadhyay, 2004) the elastic stiffness matrix for HTI

media is obtained. Now the Christoffel equation(3.5) is solved numerically for the vertical

slowness(Suleiman, 2007). Once it is known, the phase shift operator is computed for

wavefield extrapolation.
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6.4 Example

Following the second approach, I extrapolate the known source wavefield through an

orthorhombic medium. An orthorhombic medium can be defined by nine elastic constants

(Thomsen, 2002). Orthorhombic symmetry, the symmetry of a brick, is most realistic

case for many geophysical problems (Thomsen, 2002). Further, an orthorhombic media

can be characterized by (1) a thin-bed sequence, or a shale, with a single set of vertical

fractures in it; (2) a thin-bed sequence, or a shale, or a massive isotropic sandstone,

with orthogonal sets of vertical fractures in it; (3) an isotropic formation with a single

set of vertical, non-circular fractures in it (Thomsen, 2002). It possesses three mutually

orthogonal planes of mirror symmetry. On consideration the Cartesian coordinate system

associated with the symmetry planes, the matrix of density normalized elastic constants

in Voigt notation is written as ⎤⎡ 

Aαβ =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0

A12 A22 A23 0 0 0

A13 A23 A33 0 0 0

0 0 0 A44 0 0

0 0 0 0 A55 0

0 0 0 0 0 A66

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.7)

where Aij=cij/ρ and ρ is the density of the given medium.

For this study, the orthorhombic model is considered, which has been used for physi-

cal modelling by Mahmoudian (Mahmoudian et al., 2010). The considered model by

Mahmoudian represents a natural fractured layer with an area of 5740m × 5740m and a

thickness of 701m, where the x-z plane is the fracture plane (plane of fast velocities) and

the y-axis is the symmetry axis (slow direction). To perform numerical modelling effi-
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ciently, I use a natural fractured layer of area 5120m × 5120m and a thickness of 701m.

Using the elastic constants matrix as shown in equation E.1 (appendix E), I solve the

Christoffel equation for vertical slowness. Then the known source wavefield is extrapo-

lated through a given orthorhombic medium. The slices of the extrapolated wavefield are

extracted to examine these results in contrast to known slices of the physical modelling.

Figure 6.2(a) and 6.2(b) show the in-line slices of the extrapolated wavefield through the

orthorhombic media obtained by physical modelling and my proposed numerical mod-

elling (second approach), respectively. The cross-line slices of the extrapolated wavefield

obtained by physical modelling and proposed numerical modelling are shown in Figure

6.3(a) and 6.3(b), respectively. As the obtained slices with the proposed modelling are

analogous to the slices obtained by physical modelling, the verification of the proposed

modelling is demonstrated. Wavefield propagation in the 45◦ azimuthal plane occurred

with physical modelling and with proposed numerical modelling as shown in Figure 6.4(a)

and 6.5(b), respectively. Wavefield propagation in the -45◦ azimuthal plane is shown in

Figure 6.5. The match between these slices verify the proposed modelling, kinematically.

Further, in light of the second approach, the first approach is verified since the in-line

and cross-line slices obtained by the second approach match with the in-line and cross-

line slices obtained by following the first approach. These slices are shown in Figure

6.6(a), 6.6(b) and 6.7(a) 6.7(b).

6.5 Surface seismic data

This section summarizes the method for obtaining multi-component data at the surface

using known source wavefield on consideration the surface data acquisition geometry. For

accomplishing this, I extrapolate the source wavefield from the surface to the reflector

using a phase shift operator, multiply with a reflection coefficient and extrapolate back to



109

offset(m)

T
im

e(
s)

Propagation in x−z plane, x profile

 

 

−2000 −1500 −1000 −500 0 500 1000 1500 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 6.2: In-line slice of the extrapolated wavefield (a) obtained by physical modelling.
(b) obtained by proposed numerical modelling(second approach). The analogy of these
slices authenticate the proposed modelling kinematically.

the surface. Following this procedure, Figure 6.8(a) shows the monochromatic extrapo-

lated wavefield at the reflector as a function of the horizontal components of the slowness.

Figure 6.8(b) illustrates the monochromatic R coefficient in the plane wave domain at

the interface of two VTI media shown in Appendix D. The multiplication of these two

results in the reflected wavefield. Once the reflected wavefield is obtained in the plane

wave domain, it is transformed back into the space and time domain at the surface and

is extracted for analysis. The cross-line and in-line slices of the reflected wavefield at the

surface before applying rotation matrix on it are shown in Figure 6.9(a) and 6.9(b). It is

demonstrated presently that the cross-line slice is analogous to the in-line slice which is

the manifestation of the fact that considered media is VTI media, as expected. It is also

illustrated that the recorded energy decreases with offset as expected. Further, in order

to obtain the multi-component data, I build a rotation matrix based on the azimuth

and dip between the grid point and the polarization vector of P-wave source. Now the

implementation of this matrix on the reflected wavefield gives the multi-component data.
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Figure 6.3: Cross-line slice of the extrapolated wavefield (a) obtained by physical mod-
elling. (b) obtained by proposed numerical modelling(second approach). The analogy of
these slices authenticate the proposed modelling, kinematically.

Figure 6.10(a) demonstrates the registered P-wave energy on the H1 component of 3C

geophones laid on the surface. The registered P-wave energy on the H2 component and

the vertical component is shown in Figure 6.10(b) and 6.10(c). The interpretation of

these sub-figures can be described in light of the analysis that has been done in Chapter

3 for Figure 3.4

6.5.1 HTI media

For obtaining the multi-component data at the surface of HTI media, the R coefficient is

required. Solving the Christoffel equation, I obtain the polarization vector that is used

to calculate the displacement vector numerically. Additionally, the displacement vector

is used to compute stress vector. The continuity of the displacement and stress at the in-

terface yields the reflection coefficient(Jilek, 2002). Figure 6.11 demonstrates the P-wave

R coefficient at the interface of two HTI media (shown in Appendix E). The R coef-

ficient corresponding to the symmetry axis plane obtained numerically and by Rüger’s
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Figure 6.4: Data slice of the extrapolated wavefield along 45◦ azimuthal plane (a) ob-
tained by physical modelling. (b) obtained by proposed numerical modelling(second
approach). The analogy of these slices authenticate the proposed modelling, kinemati-
cally.

approach(Rüger, 1998) is illustrated in this Figure by black and green colors, respec-

tively. The analogy of these two curves at the zero slowness and near to it ensures the

authentication of the numerical approach of computing the R coefficient. Further, the R

coefficient, along with the direction normal to the symmetry axis, obtained numerically

and by following Rüger’s approach is illustrated by the blue and red colors. The overlap-

ping of both curves at and near to the zero slowness verifies the numerical approach of

obtaining the R coefficient. However, it is required to obtain the R coefficient for obtain-

ing multi-component data on consideration the surface geometry of data acquisition. We

can use numerically computed R coefficient for accomplishing multi-component seismic

modelling for HTI media.
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Figure 6.5: Data slice of the extrapolated wavefield along -45◦ azimuthal plane (a) ob-
tained by physical modelling. (b) obtained by proposed numerical modelling(second
approach). The analogy of these slices authenticate the proposed modelling, kinemati-
cally.

6.6 Conclusions

I have demonstrated two approaches for the sake of avoiding the problems associated

with proposed modelling in the previous chapter for HTI media. The authentication

of these approaches has been illustrated by juxtaposing the obtained results from the

proposed approaches and physical modelling executed by another student of CREWES.

Further, the multi-component surface data has been obtained for known P-wave source

for VTI media. In regarding HTI media, I have obtained the P-wave R coefficient. The

accuracy of the numerically obtained R coefficient has been tested in consideration of

Rüger’s approach.
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Figure 6.6: The juxtaposition of the in-line slices of the extrapolated wavefield obtained
by (a) second approach (b) first approach manifests the analogy of these slice and endorse
to the first approach in light of the second approach.
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Figure 6.7: The cross-line slices of the extrapolated wavefield using (a) second approach
(b) first approach are analogous to each other and demonstrate the authentication of the
first approach too.
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Figure 6.8: (a) Monochromatic extrapolated wavefield in plane wave domain at the
reflector. (b) Monochromatic reflection coefficient as a function of horizontal slowness
component.
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Figure 6.9: (a) Cross-line slice (b) In-line slice of the extrapolated wavefield at the
surface before rotation matrix is applied on it. Registered energy decreases with offset.
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Figure 6.10: (a) Registered energy versus azimuth( REVA) analysis of P-wave at H1
component of 3C geophones situated at the surface, indicates that energy registration
increases as azimuth increases from 0 to 90. Polarity reversal occur on the either side of
a line that bisects the circle along in-line direction. (b) REVA analysis of P-wave at H2
component indicates that energy registration decreases as azimuth increases from 0 to 90.
Polarity reversal occur on the either side of a line that bisects the circle along cross-line
direction. (c) REVA analysis of P-wave on vertical component reveal the variation of
recorded energy and polarity with azimuth.
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118

Chapter 7

Conclusions

By considering the importance of plane wave domain, I have demonstrated RSM in this

domain. For the sake of simplicity, I have illustrated the R coefficient of SH-wave in

the plane wave domain by considering isotropic media. The problem associated with the

data acquisition geometry has been revealed here. It has been asserted that it is neces-

sary to acquire the data with appropriate geometry for avoiding the wrong interpretation

of the target horizon. The way of building the rotation matrix that is applied on the

extrapolated wavefield for obtaining the multicomponent data has been represented too.

For the case of anisotropy, I have presented 9C-3D seismic modelling for VTI media

using the first data acquisition geometry. The verification of this modelling has been

demonstrated kinematically. I have illustrated the multicomponent surface seismic data

for known P-wave source. For doing so, I have shown the way of computing the R and T

coefficients in plane wave domain. Additionally, the fidelity of the obtained R coefficient

has been illustrated in reference to the R coefficient obtained by using classical methods.

The influence of the anisotropy on AVO analysis has been described which makes it nec-

essary to modify the conventional AVO analysis in the presence of anisotropy. For HTI

media, initially, the first data acquisition geometry has been considered for performing

the proposed modelling that has been verified kinematically and dynamically. Further,

in order to obtain multi-component surface seismic data, P-wave has been taken into

consideration. This choice resides on the fact that exploration community has been com-

fortable with P-wave data acquisition and processing. To execute the proposed modelling

for obtaining the multi-component data, in case of HTI media, P-wave R coefficient has

been calculated numerically and tested in reference to Rüger’s approach. Additionally,
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two more approaches have been proposed for HTI media in order to avoid the limitation

of previously proposed modelling. The fidelity of these approaches has been illustrated

in light of physical modelling.



120

Bibliography

Aki, K., and Richards, P. G., 1980, Quantitative Seismology Theory and Methods:

W.H.Freeman and Co.,San Francisco.

Anderson, N., and Cardimona, S., 1995, Forward seismic modeling:the key to understand-

ing reflection seismic and ground penetrating radar (gpr) techniques.: Department of

Geology and Geophysics, University of Missouri-Rolla, Rolla, MO.

Benxi, K., Zhenping, T., and Zhao, B., 2009, The application of seismic modeling : Case

study from kela 2 gas field in tarim basin, china.: SEG International Exposition and

Seventy-Third Annual Meeting.

Berkhout, A. J., 1982, Seismic Migration: Elesvier.

Berryman, J., G, 2008, Exact seismic velocities for VTI and HTI media and extended

thomson formulas for stronger anisotropies.: Lawrence Berkeley National Laboratory.

Borejko, P., 1996, R and T coefficients for 3d plane wave in elastic media.: Wave Motion,

24.

Cameron, B. W., James, L. B., and Geoffrey, A. K., 1984, Seismic modeling and inver-

sion.: IEEE, 72.

Chopra, S., and Stewart, R., 2010, Introduction to this special section: Multicomponent

seismic: The Leading Edge.

Cooper, J. K., Lawton, D., and Margrave, G. F., 2007, Multiples and multimode events

in a 2D marine zero offset survey: a physical modelling example: CREWES Research

Report, 19.



121

Cooper, J. K., Margrave, G. F., and Maweu, J., 2008, Rayleigh Sommerfeld modelling

with AVO: CREWES Research Report, 20.

Daley, P., and Hron, F., 1977, Reflection and transmission coefficients for transversely

isotropic media.: Bulletin of the Seismological Society of America, 67.

Ersoy, O. K., 2007, Diffraction, Fourier optics, and Imaging: Wiley-Interscience.

Ferguson, R. J., 2009, Geophone rotation analysis by polarity inversion: CREWES Re-

search Report, 21.

Ferguson, R. J., and Margrave, G. F., 2008, 3D anisotropic phase shift operators:

CREWES Research Report, 20, 2–4.

Ferguson, R. J., and Sen, M. K., 2004, Estimating the elastic parameters of anisotropic

media using a joint inversion of p-wave and sv-wave travel time error.: Geophysical

Prospecting.

Graebner, M., 1992, Plane-wave reflection and transmission coefficients for a transversely

isotropic solid.: Geophysics, 57.

Grechka, V., 2009, Application of Seismic Anisotropy in the Oil and Gas Industry.:

EAGE.

Hardage, B. A., 1983, Vertical seismic profiling Part A:Principles, vol. 14A: Geophysical

Press, London-Amsterdam.

Jilek, P., 2002, Modelling and inversion of converted-wave reflection coefficient.: Ph.D.

thesis, Colorado School of Mines.

Kennett, B. L. N., 2001, The Seismic Wavefield: Cambridge.

Krebes, E. S., 2004, Seismic forward modeling: CSEG Recorder.



122

Krebes, E. S., 2008, Seismic Theory and Methods: Course Notes.

Lines, L., 2004, Fundamental of Geophysical Interpretation: Society of exploration geo-

physicists.

Mahmoudian, F., Margrave, G. F., Daley, P. F., Wong, J., and Gallant, E., 2010, De-

termining elastic constants of an orthorhombic material by physical seismic modeling:

CREWES Research Report, 22.

Margrave, G. F., and Cooper, J. K., 2007, Seismic modeling in 3D for migration testing:

CREWES Research Report, 19, 5–10.

Mellmani, G., and Kunzinger, P. A., 1992, Development Geology Reference Manual.:

Methods in Exploration.

Nadri, D., 2009, Non linear estimation of thomson’s parameters in transversely isotropic

media.: CSIRO Petroleum Resources, –.

Neufeld, C., and Clayton, C., 2000, Angle rotation in GLSB: Department of Civil and

Environment Engineering-University of Alberta.

Pao, Y. H., Ziegler, F., and Borejko, Y. S. W., 1984, generalized ray integral representa-

tion of transient sh in a layered half space with dipping structure.: ACTA Mechanica.

Perez, M., 2010, Beyond isotropy-part i:a prestack: CSEG Recorder.

Peter, C., L, and Crampin, S., 1990, Seismic fracture anisotropy in the earth crust: An

overveiw: Journal of Geophysical Research., 95.
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Rüger, A., 2001, Reflection Coefficient and Azimuthal AVO analysis in Anisotropic Me-

dia.: Society of Exploration Geophysicists.

Sayersi, C., and Chopra, S., 2009, Introduction to this special section: Seismic modeling.:

Leading Edge.

Sharma, R. K., and Ferguson, R. J., 2009a, 9C-3D modeling for vti media.: CREWES

Research Report, 22.

Sharma, R. K., and Ferguson, R. J., 2009b, R and T coefficients for SH wave in plane

wave domain: CREWES Research Report, 21.

Shearer, P. M., 1999, Introduction to Seismology: Elesvier.

Slawinski, M. A., 2003, Seismic Waves and Rays in Elastic Media: Pergamon.

Sten, S., and Wysession, M., 2002, An Introduction to Seismology, Earthquakes, And

Earth Structure: Blackwell.

Suleiman, A., 2007, A comparison between numerically calculated and formula based

scattering coefficient for anisotropic media.: Ph.D. thesis, Univ. of Calgary.

Thomsen, L., 1986a, Weak elastic anisotropy: Geophysics, 51, No. 10, 1954–1966, dis-

cussion in GEO-53-04-0558-0560 with reply by author.

Thomsen, L., 1986b, Weak elastic anisotropy: Geophysics, 51, 1954–1966.

Thomsen, L., 2002, Understanding Seismic Anisotropy in Exploration and Exploitation:

Distinguished Instructor Series, No 5.

Tsvankin, I., 2001, Seismic Signatures and Analysis of Reflection data in Anisotropic

Media.: Handbook of Geophysical Exploration Series.



124

Upadhyay, S. K., 2004, Seismic Reflection Processing: Springer.

Vernik, L., and Liu, X., 1997, Velocity anisotropy in shales: A petrophysical study.:

Geophysics, 62.

Xiang-Yangi, L., 1997, Fractured reservoir delineation using multicomponet seismic data.:

Geophysical Prospecting, 45.

Yang, J., 2003, Numerical and physical modelling of P-S converted waves in VTI media.:

Ph.D. thesis, Univ. of Calgary.

Zheng, X., 2006, Seismic azimuthal anisotropy and fracture analysis from p-p reflection

data.: M.Sc. thesis, Univ. of Calgary.



    

125

Appendix A

Chapter2

A.1 To find the value of slowness at which reflected amplitude would be

zero

From equation (2.6) reflection coefficient RSH is zero when

ρ1v1
2q1 = ρ2v2

2q2, (A.1)

Where, in this example, density (ρ) is the same across the interface. Further, constant ρ

simplifies equation (A.1) so that

v1
2q1 = v2

2q2, (A.2)

Using equations (2.10) and (2.11), replace q1 and q2 in equation (A.2) to get

2 2 2 2v1 1− (v1p1) = v2 1− (v2p1) , (A.3)

where we have squared both sides.

Solution p1 for equation (A.3) corresponds to the ray parameter where RSH is zero,

1
p1 = P . (A.4)

v2
2 + v21

A.2 Energy flux for reflected and transmitted waves

Earlier it is seen that the transmission coefficent exceeds 1 at critical slowness. The

energy transported by the traveling wave is considered to see how it occurs because

energy must be conserved. For a harmonic SH plane wave, the flux of energy per unit

wavefront, E, in the direction of propagation is the product of the energy density(energy
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per unit area) and the velocity (Sten and Wysession, 2002)

E = A2ω2ρβ/2, (A.5)

where A is the amplitude of wave and ρ is the density of medium. Since welded contact

of two medium is considered, there is no energy to be accumulated at the interface.

According to law of energy conservation, energy flux of the incident wave would be equal

to the reflected and transmitted waves energy fluxes. Energy fluxes for the constituent

waves are

EI = ω2ρ1β1 cos j1dx/2, (A.6)

for the incident SH wave

ER = RSH
2 ω2ρ1β1 cos j1dx/2, (A.7)

for the reflected wave, and

= T 2ET SHω
2ρ2β2 cos j2dx/2, (A.8)

for the transmitted wave,where an incident wave has unit amplitude, dx is the element

of the interface, j1, j2 are the angle of incidence and transmission, respectively. These

fluxes satisfy the conservation of energy

EI = ER + ET , (A.9)

and this expression can be written in terms of the incident, reflected and transmitted

energy fluxes as

ρ1β1 cos j1 = R2 ρ1β1 cos j1 + T 2 ρ2β2 cos j2, (A.10)SH SH

In terms of the vertical slowness, equation (A.10) is

ρ1β1
2q1 SH 1q1 + T 2 ρ2β

2 (A.11)= R2 ρ1β
2

SH 2q2,
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It is seen from in line and cross line slices of the R and T coefficients (Figure 2.4), at

zero slowness the reflection and transmission coefficients are -0.25 and 0.75, respectively,

while density is the same across the boundary and velocitiesβ1=1500m/s and β2=2500

m/s are used. To verify this result in terms of energy conservation, q1 and q2 are replaced

by 1/β1 and 1/β2,respectively at zero slowness (normal incidence, j1 =0 and j2 =0), and

equation (A.11) becomes

β2
1 = R2

SH . (A.12)SH + T 2

β1

Using the value of variables used in above equation we get 1 = (−0.25)2 + (0.75)2 ∗ 

2500/1500 from equation (A.12) and it reveals that energy is conserved at zero slowness.

Now we consider the critical slowness case where reflected and transmitted amplitudes

are 1 and 2, respectively. To verify this result the vertical slowness in medium 2, q2, is

zero(j1 = critical and j2 = π/2). Recalling the equation (2.7), the transmission coefficient

goes to 2 as slowness approaches the critical value but according to equation (A.8), the

energy of the transmitted wave vanishes at this slowness because wavefront factor cosj2

is vanished here. Thus, energy is conserved here also.
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Appendix B

Chapter3

Given the effective ray parameter, we obtain the vertical slowness from the analytic

expression(Ferguson and Margrave, 2008) as

qα = 1/2 2 β0
−2 + 2α0

−2 − 4SPI
2 − 4R, (B.1)

and

qβSV = 1/2 2 β0
−2 + 2α0

−2 − 4SPI
2 + 4R, (B.2)

where   
α0

2 δ α0
2

S = 1/2 2 + 1/2 f+ 1− 1/2 2 , (B.3)
β0 β0

and   2   2
1   PI PI 2R = 4PI

4 S2 − 2f− 1 + 4 [2f− S + 1] + 4 [1− S] + β0
−4 + α0

−4 − 2 (α0β0) ,
2 β0 α0

(B.4)

The vertical slowness for SH wave can be computed as

1
= − P 2 [2γ + 1]. (B.5)qβSH Iβ2

0
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Appendix C

Chapter4

Parameters Overburden(Shale) Lower medium(Sand)

Vp(m/s) 3300 4200
Vs(m/s) 1700 2700

Density(gm/cm3) 2.35 2.49

Table C.1: Model parameters for Class 1 AVO

Parameters Overburden(Shale) Lower medium(Sand)

Vp(m/s)
Vs(m/s)

Density(gm/cm3)

2960
1380
2.43

3490
2290
2.14

Table C.2: Model parameters for Class 2 AVO

Parameters Overburden(Shale) Lower medium(Sand)

Vp(m/s)
Vs(m/s)

Density(gm/cm3)

2730
1240
2.35

2020
1230
2.13

Table C.3: Model parameters for Class 3 AVO
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Appendix D

Chapter5

Using the Thomson’s parameters, the following relationship between elastic stiffness con-

stant and Thomson’s parameters can be established as

c11 = ρα0
2(1 + 2f), (D.1)

c33 = ρα0
2, (D.2)

c44 = ρβ0
2, (D.3)

c55 = ρβ0
2, (D.4)

2 2 2c13 = ρ α0
2 − β0 (2 δ + 1)α0

2 − β0 − ρ β0 . (D.5)

For given Thomson’s parameters, the elastic stiffness constant can be obtained using

above equations. As it’s known that the elastic stiffness constant remains real for all

physical situations, the obtained value of the elastic stiffness constant c13 is complex and

violates the physical behavior of the elastic stiffness constants for the large negative value

of δ. Thus, this condition leads to the unexpected behavior of the wavefield kinematically

as well as dynamically.

D.1 Methodology for obtaining analytic curves

In order to obtain an analytic curve we follow the steps
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α0 β0 f δ γ

2950 1990 0.17 0.09 .14

Table D.1: Thomson’s Parameters of a medium considered for P and SH waves propa-
gation.

Model α0 β0 f δ γ

1
2
3
4
5
6

2950
3600
3340
3300
3600
3377

1990
2000
1860
2300
2100
1490

0.17
0.14
0.49
0.58
0.36
0.200

0.09
0.08
0.30
0.84
-0.08
-0.282

.14
0.16
0.59
0.39
0.38
0.510

Table D.2: Thomson’s Parameters of models considered for SV wave propagation.

• First we define phase angles for a model that is characterized in terms of known

Thomson’s parameters.

• For known phase angle, we compute phase velocity and derivative.

• Compute group angles from known phase velocities.

• Now fit group angles and phase angles.

• Compute set of phase angles for given group angles.

• Further, compute phase velocity and derivatives based on new phase angles. Then

compute group velocity again.

• Define a time(t) for a given depth z as (t≥z/α0).

• Obtain radius component of polar co-ordinate system.

• For known radius, we compute Cartesian co-ordinate components and draw the

analytic curve.
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The MATLAB program for obtaining analytic curve is given below

vp=α0; vs = β0; epsilon = f; phi = 0; poly = 2; ia = 1;

Define phase angles

pang = [−pi/2 : 1/180 : pi/2];

[rc] = size(pang);

Make matrices of anisotropic parameters

vp = vp ∗ ones(1, c);

vs = vs ∗ ones(1, c);

f = f ∗ ones(1, c);

δ = δ ∗ ones(1, c);

φ = pi ∗ φ/180;

Compute phase velocity

aa = .5 ∗ (vp.2). ∗ (1− (vs./vp).2);

bb = 4 ∗ delta./(1− (vs./vp).2).2;

cc = 4 ∗ f. ∗ (1− (vs./vp).2 + f)./(1− (vs./vp).2).2;

dd = vp.2;

ee = (vp.2). ∗ f;

tivp = sqrt(dd. ∗ aa. ∗ sqrt(1+ bb. ∗ (sin(pang).2). ∗ (cos(pang).2) + cc. ∗ (sin(pang).4))−

dd. ∗ aa+ dd+ ee. ∗ (sin(pang).2));

D = aa./dd. ∗ (sqrt(1 + bb. ∗ sind(pang).2. ∗ cosd(pang).2 + cc. ∗ sind(pang).4)− 1);

tivs = vs. ∗ sqrt(1 + f. ∗ sind(pang).2. ∗ ((vp./vs).2)− D. ∗ ((vp./vs).2));

Make group angle

dtivs = (vs. ∗ ((2. ∗ f. ∗ vp.2. ∗ cos(pang). ∗ sin(pang))./vs.2 + (vp.2. ∗ (vs.2./(2. ∗ vp.2)− 

1/2). ∗ ((8. ∗ δ. ∗ cos(pang).3. ∗ sin(pang))./(vs.2./vp.2 − 1).2 − (8. ∗ δ. ∗ cos(pang). ∗ 

sin(pang).3)./(vs.2./vp.2 − 1).2 + (16. ∗ f. ∗ cos(pang). ∗ sin(pang).3. ∗ (f − vs.2./vp.2 +

1))./(vs.2./vp.2 − 1).2))./(2. ∗ vs.2. ∗ ((4. ∗ δ. ∗ cos(pang).2. ∗ sin(pang).2)./(vs.2./vp.2 − 
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1).2 + (4. ∗ f. ∗ sin(pang).4. ∗ (f − vs.2./vp.2 + 1))./(vs.2./vp.2 − 1).2 + 1).(1/2))))./(2. ∗ 

((vp.2.∗ (vs.2./(2.∗vp.2)−1/2).∗ (((4.∗δ.∗cos(pang).2.∗ sin(pang).2)./(vs.2./vp.2−1).2+

(4. ∗ f. ∗ sin(pang).4. ∗ (f− vs.2./vp.2 +1))./(vs.2./vp.2 − 1).2 +1).(1/2)− 1))./vs.2 + (f. ∗

vp.2. ∗ sin(pang).2)./vs.2 + 1).(1/2));

gang = atand(real(((tand(pang) + dtivs./tivs)./(1− tand(pang). ∗ (dtivs./tivs)))));

ind = isnan(gang);

gang(ind) = 90;

fori = 1 : length(gang)/2

if(gang(i) == 90)

gang(i) = −90;

end

end

Compute the group velocity

tivg = sqrt(tivs.2 + dtivs.2);

Now fit group angle and phase angle

p = polyfit(gang, pang, poly);

Compute set of phase angles for given group angles

npang = polyval(p, pang);

Compute a new vector of phase velocities and derivatives based on new phase angles

D = aa./dd. ∗ (sqrt(1 + bb. ∗ sind(npang).2. ∗ cosd(npang).2 + cc. ∗ sind(npang).4)− 1);

tivs = vs. ∗ sqrt(1 + epsilon. ∗ sind(npang).2. ∗ ((vp./vs).2)− D. ∗ ((vp./vs).2));

Make group angle

dtivs = (vs. ∗ ((2. ∗ f. ∗ vp.2. ∗ cos(npang). ∗ sin(npang))./vs.2+(vp.2. ∗ (vs.2./(2. ∗ vp.2)− 

1/2). ∗ ((8. ∗ δ. ∗ cos(npang).3. ∗ sin(npang))./(vs.2./vp.2 − 1).2 − (8. ∗ δ. ∗ cos(npang). ∗ 

sin(npang).3)./(vs.2./vp.2− 1).2+(16. ∗ f. ∗ cos(npang). ∗ sin(npang).3. ∗ (f− vs.2./vp.2+

1))./(vs.2./vp.2 − 1).2))./(2. ∗ vs.2. ∗ ((4. ∗ δ. ∗ cos(npang).2. ∗ sin(npang).2)./(vs.2./vp.2 − 
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1).2 + (4. ∗ f. ∗ sin(npang).4. ∗ (f− vs.2./vp.2 + 1))./(vs.2./vp.2 − 1).2 + 1).(1/2))))./(2. ∗ 

((vp.2. ∗ (vs.2./(2. ∗ vp.2)− 1/2). ∗ (((4. ∗ δ. ∗ cos(npang).2. ∗ sin(npang).2)./(vs.2./vp.2 − 

1).2+(4.∗f.∗sin(npang).4.∗(f−vs.2./vp.2+1))./(vs.2./vp.2−1).2+1).(1/2)−1))./vs.2+

(f. ∗ vp.2. ∗ sin(npang).2)./vs.2 + 1).(1/2));

Compute group velocity

tivg = sqrt(tivs.2 + dtivs.2);

Define the depth z1, time t1 and compute

r = (sqrt(tivs.2. ∗ t12 − z12));

x1 = r. ∗ sind(pang);

y1 = r. ∗ cosd(pang);

X = [x1− x1];

Y = [y1− y1];

plot(Y,X,' b',' linewidth', 4)(Impulse response using phase velocity)

r3 = (sqrt(tivg.2. ∗ t21 − z12));

x4 = r3. ∗ sind(gang);

y4 = r3. ∗ cosd(gang);

X3 = [x4− x4];

Y 3 = [y4− y4];

plot(Y 3, X3,'m',' linewidth', 4)(Analytic curve)
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Appendix E

Chapter6

The orthorhombic medium considered in Chapter6 is defined as ⎤⎡ 

Aαβ =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.67 6.13 6.68 0 0 0

6.13 8.7 5.79 0 0 0

6.68 5.79 12.67 0 0 0

0 0 0 2.34 0 0

0 0 0 0 2.89 0

0 0 0 0 0 2.28

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.1)

The two HTI media for obtaining the R coefficient are defined as

Parameters Overburden(Shale) Lower medium(Sand)

α0(m/s)
β0(m/s)

f
δ
γ

5029
2987
0.005
-0.032
0.041

3292
1768
0.195
-0.45
0.10

Table E.1: Model parameters for HTI media
.
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Appendix F

Abbreviation and list of symbols

P-waves: Primary waves known as compressional waves and displace the ground in the

direction of propagation. That’s why P-waves are longitudinal in nature.

Shear-waves: Secondary waves are known as shear waves. These waves follows P-waves

and displace the ground perpendicular to the direction of propagation. If shear waves

move medium’s particles up and down (perpendicular to the direction of propagation),

these are known as SV-waves. SH-waves move medium’s particles side to side, perpen-

dicular to the direction of propagation.

VTI: Vertical Transverse Isotropy.

HTI: Horizontal Transverse Isotropy.

Ψ: Source wave-field.

ω: Angular frequency.

R: Reflection coefficient.

T : Transmission coefficient.

pk: Wavenumber vector.

p̂: Slowness vector.

â: Unit vector normal to the interface.

pn: Unit wavefront normal.

Ψ0: Spectra of source wave-field.

ΨΔz: Source wave-field at depth Δz.

p1 and p2: Horizontal components of slowness vector.

q: Vertical slowness.

V : Phase velocity.
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ρ: Density.

θa and φa: Dip and azimuth of the unit vector normal to the interface.

θ: Propagation or phage angle.

θI : Effective angle of incidence.

φ: Angle between horizontal projection of slowness-vector and y axis.

θ1: Polarization angle.

τ : Stress tensor.

f: Strain tensor.

pu: Displacement vector.

c: Fourth rank stiffness tensor.

pU: Polarization vector.

α0: P-wave velocity along the symmetry axis.

β0: Shear-wave velocity along the symmetry axis.

f,γ and δ: Thomsens’s parameters.

W : Vector source wave-field.

S1: In-line component of a source.

S2: Cross-line component of a source.

P : Vertical component of a source.

D: Recorded vector wave-field.

H1: In-line component of a 3C geophone.

H2: Cross-line component of a 3C geophone.

V : Vertical component of a 3C geophone.

ψ: Group angle.

g: Group-velocity vector.

p: Phase-velocity vector.

fV , δV and γV : Thomsen’s parameters of an equivalent VTI media for HTI media.
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