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Abstract 

High resolution seismic imaging methods are getting increasing attention in the 

exploration and development industry. Regularized Least Squares Prestack Migration 

(LSPSM) is one of these methods.  

 Of the various methods of seismic migration, due to its low cost and flexibility of 

handling acquisition and topography irregularities, Kirchhoff migration has been the most 

frequently used method of migration in the industry for decades. LSPSM based on 

Kirchhoff migration is an effective method to attenuate acquisition footprint that result 

from sparseness or irregularities of seismic data sampling. 

LSPSM is a costly choice when compared to a conventional Kirchhoff migration. 

As shown in this study, the LSPSM equation cannot be solved efficiently using a 

standard multigrid method as it requires an explicit form of the corresponding Hessian 

matrix which needs to be diagonally dominant. It is shown that the Hessian of the 

LSPSM equation is a very large, dense, and diagonally non-dominant matrix. 

The performance of LSPSM is highly sensitive to the accuracy of the velocity 

model. Without a reasonably accurate velocity model, LSPSM cannot improve the 

quality of the migration image or do proper data reconstruction. This property provides a 

method to quantify the accuracy of the velocity model. Velocity analysis that is based on 

the migration CIGs can be extended to LSPSM CIGs. A coherency spectrum measured 

from LSPSM CIGs provides a velocity model that is accurate enough to give a high 

resolution image using LSPSM, and good data reconstruction in a few iterations.  

In a complementary study, the application of LSPSM in time lapse seismic analyses 

is investigated. Separate and joint LSPSM inversion of time lapse data gives a high 

resolution time lapse image which is less affected by different acquisition geometries of 

the baseline and monitor surveys. Data reconstruction of old and new surveys into a 

consistent new geometry will provide comparable prestack time lapse data sets. 

In conclusion, LSPSM is an effective method for high resolution imaging, with its 

advantages possibly outweighing its high cost. 
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Chapter One: INTRODUCTION  

Seismic reflection techniques are widely used in the exploration, evaluation and 

characterization of shallow to deep hydrocarbon reservoirs. A high resolution image of the 

Earth’s subsurface provided by seismic methods enables us to better assess and recover these 

valuable energy resources. Migration of seismic data is an essential process that is performed to 

obtain an accurate image in areas with complex underground geology. 

 

1.1 Seismic surveying 

Seismic methods are developed based on the propagation of elastic waves through the 

Earth’s materials. An array of seismic sources releases energy into the ground, and a series of 

receivers records the energy reflected back to the surface or directly received at the receiver 

stations. Ignoring any density variations, reflection happens when the velocity changes in the 

seismic ray paths. Receivers convert the arrived mechanical signal into electrical currents. 

Recording instruments digitize and save the data on an appropriate medium to transfer to the 

processing unit. The data are processed, and result in an image of the Earth’s subsurface. 

The common midpoint (CMP) is the main method that is currently used for organizing 

seismic data. The CMP is a point on the Earth located at the middle of source and receiver 

locations. The common depth point (CDP) is the reflection point on the reflector at some depth. 

The distance (or sometimes double distance) between the CMP and the corresponding source or 

receiver is called the offset. Source and receiver positions are designed to have several 

reflections from a CDP point where there is a change in velocity or density. Figure 1.1 shows a 

simple two layer Earth model where the CMP and CDP are at the same location. The signal from 

source S1 is reflected back and is recorded at receiver R1. As the distance between the source 

and receiver increases, the arrival time of the reflected wavelet increases as illustrated in Figure 

1.2a. 

Processing of the recorded seismic data starts with trace editing, attenuation of noise, 

correcting the near surface effects, and removal of unwanted signals. Then, normal moveout 

(NMO) correction is applied to align the wavelets with zero offset time as in Figure 1.2b. All 

traces corresponding to the same CMP are then stacked to increase the signal to noise ratio as in 

Figure 1.2c. All the stacked traces create an initial image of the Earth’s subsurface. Additional 
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processes such as muting, deconvolution, filtering, and multiple attenuation may be required and 

used for enhancing the quality or accuracy of the stacked image. 

 

 

Figure 1.1 CMP seismic acquisition design on an Earth model with two horizontal 
layers. 

 

 

a) b) c) 

Figure 1.2 The data from seismic experiment in Figure 1.1, CMP gather with a) 
before, b) after NMO correction, and c) the stack.  

 

In the CMP design of the seismic reflection method, all reflectors are assumed to be 

horizontal and horizontally homogenous. In the case of dipping layers, or a horizontal variation 
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in acoustic impedance (velocity multiplied by density at each point), reflection points are not 

beneath the CMP positions (Figure 1.3). With the regular processing procedure mentioned 

earlier, the dipping reflectors are not at the CMP location, and have a different dip in the stacked 

image. Another problem is the presence of diffracted energies that result from scattering from 

sharp edges (F1 in Figure 1.3, for example). These kinds of undesired signals remain in the final 

stacked section. The processing step of migration is used to relocate the energy to the correct 

location. 

 

1.2 Migration 

In seismic data processing, migration is a general term for the process that moves the 

dipping reflections to their true locations with correct amplitudes and dip. Migration not only 

moves the dipping events into the correct spatial position, but also collapses the diffracted 

energies into the scatterpoints. Prestack migration eliminates the requirement of NMO correction 

and stacking. Therefore, compared to the other steps in seismic processing, migration is a 

complex and time consuming procedure. The result of a migration is an image which ideally 

shows the Earth’s reflectivity image as a function of time or depth. 

 

 

Figure 1.3 CMP seismic acquisition with dipping layers. 

 

Migration methods have been greatly developed over time. First methods developed on the 

geometrical construction of reflectors using mechanical or optical devices, prior to implementing 
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computers in the seismic industry. Diffraction summation in the time domain, Kirchhoff 

migration, was introduced by Hagedoorn (1954). In the 1970’s, Claerbout and Doherty (1972) 

showed how migration is an approximate solution to the wave equation, and demonstrated their 

work on digital computers. The integral formulation of Kirchhoff migration was derived by 

Schneider (1978). Gazdag (1978) and Stolt (1978) showed how to perform migration using 

properties of the Fourier transform. Reverse time migration, one of the most expensive wavefield 

continuation methods of migration was introduced later (Baysal et al., 1983; Whitmore, 1983; 

McMechan, 1983). Hill (1990) introduced the Gaussian beam migration based on the 

decomposition of data and source function in Gaussian beams. 

Kirchhoff migration works by collapsing all diffracted energies back to the original 

scatterpoint. In the resulting migration image, each dipping reflector is moved to the correct 

location with the true dip and length. Kirchhoff prestack migration is one of the most frequently 

used methods of migration in the oil industry. This is due to its many advantages of being easy to 

program, implement, and computationally fast and cheap to run. It works with non constant 

background velocity, handles converted waves, has output in time or depth, and has the ability to 

work on a part of the image (targeting). It can be applied to a stacked seismic section or to 

prestack data, and works with irregularly sampled or incomplete data. The result is an image 

which ideally shows the Earth’s reflectivity model. Kirchhoff migration is able to reveal the 

subsurface with complex geologic structures and strong lateral velocity variations. It is able to 

handle multipath rays, too.  

In reality, and especially in 3D seismic surveys, it is difficult to have dense, regularly 

sampled seismic data. Human-made obstacles, mountains, rivers, land topography, acquisition 

layout and economical aspects, usually leave some gaps or cause an un-even distribution of 

azimuths (in 3D) and offsets in the acquired seismic data. Also, marine data lack a wide 

distribution of azimuths, and may have gaps due to marine construction (eg. drilling platforms) 

or streamer feathering. Kirchhoff migration is ideal for this type of irregularly sampled data. 

However, coarse data sampling produces acquisition footprint in the final image. Migration 

artifacts caused by the acquisition geometry may be referred to as acquisition footprint (Sheriff, 
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2006). Least squares migration1 is an advanced form of Kirchhoff migration and is the best 

known cure for this type of problem. 

 

1.3 Least squares migration 

Kirchhoff prestack migration can handle incomplete or irregular data. However, 

incomplete data give a blurred image of the Earth’s reflectivity (Ji, 1997; Nemeth et al., 1999). 

Where migration produces a blurred image of the Earth subsurface, least squares migration 

(LSM) helps to avoid this shortcoming. LSM attenuates acquisition footprint by minimizing the 

difference between observed and modeled data in a least squares sense (Ji, 1997; Nemeth et al., 

1999; Duquet et al., 2000). Implementing LSM instead of conventional migration for achieving a 

high resolution seismic image is a costly replacement. Its success depends on the accuracy of the 

velocity model.  

LSM is not limited to the Kirchhoff method. Wave equation migration and the other 

methods that utilize the Fourier domain can also be used in the least squares scheme. However, 

relatively low cost, and the ability of easily handling incomplete and irregular seismic data 

without the requirement of data interpolation, are some advantages that makes Kirchhoff 

migration, a more desirable method for LSM than other migration methods that require regularly 

sampled seismic data. Higher resolution images of the LSM can be used for data reconstruction, 

as a bypass product.  

 

1.4 Scope of this work 

In the research summarised in this dissertation, I undertook three separate tasks. The first 

task was to solve the LSPSM equation with multigrid and multilevel methods in order to speed 

up the process and reduce the computational cost, or to enhance the resolution of image. The 

second task was to benefit from the strong dependency of the method on the accuracy of the 

velocity field and use it as a tool for the evaluation of the velocity model. The final step 

consisted in using the LSPSM method for the inversion of time lapse data. I show how artifacts 

                                                 

 

 
1 As called by geophysicists such as Ji (1997), Nemeth et al. (1999), and Duquet et al. (2000) in last two 

decades.  
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in the time lapse images, due to different acquisition geometries, can be attenuated using 

LSPSM/inversion of time lapse data. 

 

1.5 My contributions 

Different aspects of the implementation of Kirchhoff least squares prestack migration 

(LSPSM) for resolution enhancement and data reconstruction are investigated. My contributions 

to this area of research can be summarized as: 

• Feasibility of using multigrid methods for solving LSPSM is investigated. 

• A method for the construction of migration, modeling, and LSPSM’s Hessian in matrix 

forms, is introduced. It is shown how the method can be extended to create the matrix 

form of the other linear operators. 

• Feasibility and advantages of using Conjugate Gradients (CG) multigrid for solving 

LSPSM is investigated. 

• Multilevel CG with spatial resampling to solve the LSPSM equation is shown. 

• A BiConjugate Gradient Stabilized (BiCGSTAB) algorithm for solving LSPSM is 

derived. 

• The effect of the velocity’s accuracy on image resolution and data reconstruction by 

LSPSM is researched and demonstrated. 

• Effect of velocity accuracy on the offset domain and shot domain Common Image Gather 

(CIG)s is shown. 

• LSPSM resolution enhancement, data reconstruction, and the LSCG convergence rate as 

a method to evaluate the accuracy of the velocity model are introduced. 

• The velocity analysis on migration CIGs is extended to the LSPSM offset domain and 

shot domain CIGs. The advantages and disadvantages of the method are discussed. 

• The effect of regularization on resolution enhancement is shown. 

• The effect of multiples on the convergence of LSPSM with real data is explained. 

• The problem of different data acquisition geometries in prestack and poststack time lapse 

studies is explained and shows how separate and joint LSPSM/Inversion of data can 

attenuate the acquisition footprint. 
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• It is shown how data reconstruction by LSPSM can help with the prestack time lapse 

analysis. 

• An LSCG algorithm for the Joint LSPSM/Inversion of time lapse data is demonstrated. 

 
1.6 Outline of this dissertation 

Chapter Two expresses the LSPSM in more detail. I review the derivation of Kirchhoff 

migration theory and equations. This chapter continues with an introduction to discrete inverse 

theory which is extended to the LSPSM method. Chapter Two ends with some examples of 

resolution enhancement and data reconstruction on synthetic and real data. I show how LSPSM 

can improve the migration image resolution and attenuate data acquisition artifacts. 

In Chapter Three, the idea of using Kirchhoff modeling/migration operators in an explicit 

form is explained. The feasibility of using these matrix forms for solving the LSPSM with the 

standard multigrid methods is investigated. Also, I also inspected the advantages and 

disadvantages of multilevel CG method for solving the LSPSM equation.  

Chapter Four focuses on migration and LSPSM velocity analysis for incompletely sampled 

data. Using synthetic data sets, I show the high sensitivity of LSPSM to the accuracy of the 

model. I suggest the improvement in image resolution and the ability of an acceptable 

reconstruction of data with LSPSM be used as tools to evaluate the accuracy of an imaging 

velocity model. The extension of migration velocity analysis from migration CIGs to LSPSM 

CIGs and its advantages are discussed.  

In Chapter Five I show how separate and joint LSPSM inversion of time lapse data can be 

used to achieve a high resolution image for poststack time lapse investigations. It also shows the 

ability of the method for data reconstruction for use with reliable prestack time lapse studies. 

Chapter Six contains comments and conclusions.  
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Chapter Two: KIRCHHOFF MIGRATION AND LEAST SQUARES INVERSION  

2.1  Introduction 

Kirchhoff migration is one of the simplest migration algorithms to program and for 

performing quality migration. Kirchhoff migration considers all subsurface points to be 

scatterpoints that create diffractions, and collapses the diffraction energies back to the 

scatterpoints. The result is an image of reflectivity with true dip for all events. Kirchhoff prestack 

modeling, on the other hand, spreads the energy from the scatterpoint to the seismic data. 

Kirchhoff has been the favorite method of migration in the industry for decades, due to the low 

cost, its handling of irregular topography, and its ability to use irregularly sampled or spatially 

incomplete data. 

In section 2.2 of this chapter I derive the Kirchhoff migration formula for a constant 

velocity medium. Discrete inverse theory and different types of the inverse problem are 

discussed in section 2.3. Discrete inverse theory is extended to least squares Kirchhoff migration 

in the section 2.4. The ability of least squares Kirchhoff migration for enhancing the image 

resolution and data reconstruction is shown in synthetic and real examples in sections 2.6 to 

section 2.8. 

 

2.2 Kirchhoff migration for a constant velocity medium 

In this section the derivation of the Kirchhoff migration equation for a constant velocity 

(and density) medium is reviewed. I follow the derivation method by Schneider (1978) and 

follow explanations by Scales (1997) and Margrave (2001). 

The source free scalar wave equation for pressure in an inhomogeneous fluid is expressed 

by (Margrave, 2001) 

 ∇ଶܷ(࢘, (ݐ − (∇ ln (࢘)ߩ . ∇U)(࢘, (ݐ = (࢘)݇(࢘)ߩ ߲௧ଶ ܷ ,࢘) 2.1 ,(ݐ

where ܷ is the acoustic pressure, ࢘ is the position vector, ݐ is the time, ∇ଶ (= ∇ . ∇) is the 

Laplacian, ݇(r) is the bulk modulus, and (࢘)ߩ is the density of the medium. Assuming the 

medium has constant density, (࢘)ߩ =  equation 2.1 can be further simplified to the scalar wave ,ߩ

equation for pressure in a homogenous medium 

 ∇ଶܷ(࢘, (ݐ = 1ܿଶ ߲௧ଶ ,࢘)ܷ 2.2 ,(ݐ
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where  ܿ = ට݇ ൗߩ , 
is the speed of acoustic waves. In the presence of an impulse source at position ࢘૙ and time ݐ଴ 

with amplitude ܣ, equation 2.2 can be written as 

 ∇ଶܷ − 1ܿଶ ߲௧ଶ ܷ = ܣ− ࢘)ߜ − ,૙࢘ ݐ − ଴). 2.3ݐ

where ݐ and ࢘ are the measurement time and positions of the receiver, respectively. We try to 

solve this equation using Greens’ theorem. This procedure results in the Kirchhoff migration 

equation given at the end of this section. 

Assume a volume, Ω, enclosed with a smooth boundary, ߲Ω. This volume is considered to 

be inside the Earth, and some of Earth’s surface is a part of the boundary. By putting a seismic 

source on the Earth’s surface, source will be part of the boundary. Hence, the medium is source 

free and homogenous and we can use partial differential equation (PDE) 2.2. To solve the PDE 

2.2, knowledge about the initial values of ܷ and its normal derivative ߲ ܷ ൗ࢔ ߲  in Ω and one of ܷ 

or  ߲ ܷ ൗ࢔ ߲  on the boundary ߲Ω must be specified. Neumann boundary conditions specify the 

value of the derivative of a solution, on the boundary of the domain. The problem of finding the 

solution is known as the Neumann problem (Morse and Feshbach, 1953). Dirichlet boundary 

conditions specify the value of the solution on the boundary of the domain. Dirichlet problem 

involves finding the solution to this kind of problems (Morse and Feshbach, 1953). 

Green’s function is defined as the solution of PDEs, such as the wave equation, to an 

impulse source. Therefore, if ܣ = 1, the Green’s function is the solution to equation 2.3. Without 

any assumption about the boundary condition, Green’s function with the source and receiver 

coordinate and time, Γ(࢘, ;ݐ ,૙࢘  ଴), is considered as the solution to the scalar wave equation 2.3ݐ

(Scales, 1997) 

 ∇ଶΓ − 1ܿଶ ߲௧ଶ Γ = ߨ4− ࢘)ߜ − ݐ)ߜ(૙࢘ − ଴), 2.4ݐ

where (࢘૙,  is the Dirac delta function. Multiplying this ߜ ଴) are source coordinate and time, andݐ

equation by ܷ gives (Scales, 1997) 

 ܷ ∇ଶΓ − ܷ 1ܿଶ ߲௧ଶ Γ = ߨ4− ࢘)ߜ − ݐ)ߜ(૙࢘ − ଴)ܷ. 2.5ݐ

Multiplication of the source free scalar wave equation 2.2 by Γ results in 
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 Γ ∇ଶܷ − Γ 1ܿଶ ߲௧ଶ ܷ = 0. 2.6

Subtracting equation 2.5 from equation 2.6 gives (Scales, 1997) 

࢘)ߜߨ4  − ݐ)ߜ(૙࢘ − ܷ(଴ݐ = Γ∇ଶܷ − ܷ∇ଶΓ + (ܷ ߲௧ଶΓ − Γ߲௧ଶ ܷ)ܿଶ ,  2.7

or  

࢘)ߜߨ4  − ݐ)ߜ(૙࢘ − ܷ(଴ݐ = ∇ . [Γ∇ܷ − ܷ∇Γ] + ߲௧[ܷ ߲௧Γ − Γ߲௧ ܷ]ܿଶ  . 2.8

Equation 2.8 can be integrated over Ω space and all times  න න ࢘)ߜߨ4 − ݐ)ߜ(૙࢘ − ᇱݒܷ݀(଴ݐ ଴ஶݐ݀
ିஶஐ = න න ( ∇ . [Γ∇ܷ − ܷ∇Γ]ஶ

ିஶஐ  2.9

+ ߲௧[ܷ ߲௧Γ − Γ߲௧ ܷ]ܿଶ  .଴ݐᇱ݀ݒ݀(
Using the properties of the Dirac delta we can write 

ߨ4  න න ࢘)ߜ − ݐ)ߜ(૙࢘ − ܷ(଴ݐ ᇱݒ݀ ଴ݐ݀ = ,࢘)ܷ(࢘)ߦ ஐ(ݐ
ஶ

ିஶ , 2.10

 

where  

 

(࢘)ߦ = ൝ ߨ4 if ࢘ is inside Ω2ߨ if ࢘ is on Ω0 otherwise . 
Then equation 2.9 can be expressed by (Scales, 1997) ࢘)ܷ(࢘)ߦ, (ݐ =   න න ∇ . [Γ∇ܷ − ܷ∇Γ]݀ݒᇱ ଴ஐݐ݀

ஶ
ିஶ+ 1ܿଶ  න න ∂୲ [ܷ ∂୲Γ − Γ ∂୲ܷ]݀ݒᇱ ଴ݐ݀ ,ஐ

ஶ
ିஶ ℛଷ. 2.11߳࢘∀

Gauss’ theorem helps to convert the first integral on the right hand side of equation 2.11 to 

a surface integral over ߲Ω 

 න ∇ . [Γ∇ܷ − ܷ∇Γ]݀ݒᇱ ଴ஐݐ݀ = න [Γ∇ܷ − ܷ∇Γ]. ࢔ ݀ܽᇱ݀ݐ଴డஐ , 2.12

where ࢔ is the outward vector normal to the surface. 

Since there is nothing happening before seismic source ignition, ܷ and ߲௧ܷ are zero before ݐ଴ = 0. Therefore, integration over (−∞, +∞) in time can be reduced to integration over 
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[0, +∞). Since Green’s functions are causal, the upper time limit for the second integral is zero, 

too. Therefore, the second integral on the right hand side of equation 2.11 can be ignored 

 න න ∂୲ [ܷ ∂୲Γ − Γ ∂୲ܷ]݀ݒᇱ ଴ஐݐ݀
ஶ

ିஶ = 0. 2.13

This leaves us with the surface integral which is called the Kirchhoff integral theorem 

,࢘)ܷ(࢘)ߦ  (ݐ = න න [Γ∇ܷ − ܷ∇Γ]. ࢔ ݀ܽᇱ݀ݐ଴ ,డஐ
ஶ

଴  2.14

which indicates that ܷ is the solution to the wave equation everywhere in the space, by knowing ܷ and its normal derivatives on the boundary. Since we do not have both simultaneously, we 

solve the equation for ܷ in terms of its derivatives. Assuming ݂ = ܷ|డஐ and ݃ = డ௎డ௡ |డஐ, 
equation 2.14 will be a Neumann equation (Morse and Feshbach, 1953): 

,࢘)݂  (ݐ = ߨ12 න න [Γ݃ − ݂߲௡Γ] ݀ܽᇱ݀ݐ଴డஐ
ஶ

଴ . 2.15

By specifying ݃, the above equation is an integral equation for ݂. The solution to the wave 

equation can then be computed from the Kirchhoff integral with the knowledge of ݂. 

An alternative view is to specify an assumed ݂ and solve for ݃ (Dirichlet problem). Then 

the term with the normal derivative in the Kirchhoff integral is cancelled:  

,࢘)ܷ  (ݐ = ߨ14 න න ,૙࢘)݂ (଴ݐ ߲௡Γ(࢘, ݐ ; ૙࢘ , ଴ .డஐݐ଴)݀ܽᇱ݀ݐ
ஶ

଴  2.16

We are looking for a Green’s function that vanishes on the boundary. Seismic data are measured 

on the Earth’s surface, ݖ = 0. With the assumption of constant velocity and the volume an 

infinite half space bounded by the plane at ݖ = 0, which represents the Earth’s surface, the total 

integral over the boundary ߲Ω reduces to that over the ݖ = 0 plane. Using the method of images, 

two Green’s functions consist a point source at ࢘ and its negative image at ࢘૙ vanish on the ݖ = 0 plane and are the spherically symmetric solutions to the wave equation (Scales, 1997) 

 Γ௥ (࢘, ;ݐ ,૙࢘ (଴ݐ = ݐ)ߜ − ଴ݐ − ܴ ܿ⁄ )ܴ − ݐ)ߜ − ଴ݐ − ܴ′ ܿ⁄ )ܴ′ , 2.17

 

 Γ௔ (࢘, ;ݐ ,૙࢘ (଴ݐ = ݐ)ߜ − ଴ݐ + ܴ ܿ⁄ )ܴ − ݐ)ߜ − ଴ݐ + ܴ′ ܿ⁄ )ܴ′  , 2.18
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where Γ௔ and Γ௥ are for the advanced and retarded Green’s functions, respectively, and  

 ܴ = ඥ(ݔ − ଴)ଶݔ + ݕ) − ଴)ଶݕ + ݖ) − ଴)ଶ, 2.19ݖ

and 

 ܴᇱ = ඥ(ݔ − ଴)ଶݔ + ݕ) − ଴)ଶݕ + ݖ) + ଴)ଶ, 2.20ݖ

are the distances between sources and observer point. Retarded Green’s function is causal and 

propagating outward with increasing ݐ and advanced Green’s function is anticausal, converging 

with increasing time. Since Kirchhoff migration works by collapsing the diffracted energies to 

the original scatterpoints, we are interested in using only the retarded Green’s function, Γ௥ 

(Scales, 1997).  

By inserting Γ௥ into equation 2.16 and considering ܴᇱ (ݖ଴) =   we obtain (଴ݖ−)ܴ

,࢘)ܷ  (ݐ = ߨ12−  න න ,૙࢘)݂ (଴ݐ ߲௭బ ݐ)ߜ − ଴ݐ + ܴ ܿ⁄ )ܴ ݀ܽᇱ݀ݐ଴.௭బୀ଴
ஶ

଴  2.21

Since ݖ may appear only in a (ݖ −  ,଴) combination, equation 2.21 can be written by (Schneiderݖ

1978) 

,࢘)ܷ  (ݐ = ௭߲ ߨ12  න න ,૙࢘)݂ (଴ݐ ݐ)ߜ − ଴ݐ + ܴ ܿ⁄ )ܴ ݀ܽᇱ݀ݐ଴௭బୀ଴
ஶ

଴ . 2.22

Again, the properties of the Dirac delta help to eliminate the integration over time:  

,࢘)ܷ  (ݐ = ߨ12 ௭߲ න ,૙࢘)݂ ݐ + ܴ ܿ)⁄ܴ௭బୀ଴ ݀ܽᇱ. 2.23

Equation 2.23 is the Kirchhoff migration formula which is an integral relation that maps the 

boundary values into a solution for all points in Ω space.  

In the simple case of poststack Kirchhoff migration, ݂ is equal to CMP stacked data, ௦ܷ(࢘૙(= ,ݔ ,ݕ ,(ݖ ݖ and ,ݕ ,ݔ and ,ݐ where ௦ܷ is acoustic pressure measured at time ,(ݐ = 0 are 

the coordinates at the surface. CMP stacked data represent the result of a single zero offset 

seismic experiment at each midpoint location (Scales, 1997). Poststack modeling approximates a 

single exploding reflector model. In an exploding reflector model all source points, which are 

considered everywhere on the reflector, explode simultaneously, and waves only propagate 

upward to the Earth’s surface with the half speed. Therefore CMP stacked data is similar to the 

exploding reflector modeling (ܿ → ܿ/2 and ݐ = 0). The poststack migration can be expressed by 

integration of CMP stacked data over recording surface with the half speed (Scales, 1997) 
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(࢘)ܷ  = ߨ12 ௭߲ න ௦ܷ(࢘૙, 2ܴ ܿ)⁄ܴ௭బୀ଴ ݀ܽᇱ. 2.24

As equation 2.19 shows, ܴ is a function of ݖ. It can be shown that  

 ௭߲ ܴ = ݖܴ = cos 2.25 ,ߠ

where ߠ is the angle between the lines that connect the image point to the receiver and the ݖ-axis 

(Margrave, 2001). Performing the ݖ differentiation using the chain rule, the Kirchhoff migration 

formula is obtained as 

(࢘)ܷ  = න ߨ12 cos ௭బୀ଴ܴܿߠ ቂ߲௧బ ௦ܷ + ܴܿ ௦ܷቃ௧బୀଶோ/௖ ݀ܽᇱ, 2.26

The second term in the bracket is small and can be ignored (Scales, 1997) 

(࢘)ܷ  = ߨ12 න cos ௭బୀ଴ܴܿߠ ൣ߲௧బ ௦ܷ൧௧బୀଶோ/௖ ݀ܽᇱ. 2.27

In equation 2.27, ൣ߲௧బ ௦ܷ൧௧బୀଶோ/௖means that expression in the bracket is evaluated at time  

଴ݐ  = 2ܴܿ = 2 ඥ(ݔ − ଴)ଶݔ + ݕ) − ଴)ଶݕ + ଴ଶܿݖ , 2.28

which is the equation of a zero offset diffraction hyperbola (Margrave, 2001). 

Equation 2.27 states that the poststack Kirchhoff migration in a constant velocity medium 

is the summation of data along the diffraction hyperbola after taken their time derivative and are 

multiplied by cos ߠ ܴܿ⁄ . Coefficient cos  is the obliquity or directivity factor and compensates ߠ

for the angle dependence of the amplitudes at measuring point. The time derivative of data 

before summation is performed by applying a wavelet shaping factor which is a 45° constant 

phase shift plus an amplitude spectrum proportional to the square root of frequency for 2D 

migration and a 90° phase shift and amplitude spectrum proportional to frequency shift for 3D 

migration (Yilmaz, 2008).  

Equation 2.27 is for a constant velocity medium. When velocity changes, the straight-ray 

traveltime, ܴ/ܿ, will be replaced by the traveltime calculated using the ray methods. In a 

medium with only horizontal homogenous layers (when velocity changes vertically), the 

traveltime can be approximated by equation 2.28, if ܿ is replaced by is root mean square (rms) 
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velocity, ௥ܸ௠௦. In such case, the migration time, ݐ௠௜௚, for a prestack Kirchhoff migration is 

calculated by the double-squares-root (DSR) equation (Bancroft, 2007) 

௠௜௚ݐ  = ඨݐ଴ଶ4 + ݔ) + ℎ)ଶ௥ܸ௠௦ଶ + ඨݐ଴ଶ4 + ݔ) − ℎ)ଶ௥ܸ௠௦ଶ , 2.29

where ℎ is half-offset, the half of the horizontal distance between source and receiver, ݔ is the 

horizontal distance between the image point and the scatterpoint, ௥ܸ௠௦ is rms velocity, and ݐ଴ and ݐ௠௜௚ are zero-offset and migration traveltimes, respectively. Methods of migration which handle 

only vertical or very smooth lateral variations in velocity are known as time migrations. 

Mentioned Kirchhoff migration using DSR equation is an example. In contrast, depth migration 

requires special computations to obtain the migration traveltimes, or wave propagation methods 

to properly migrated seismic data in the areas with a complex geology or variation in lateral 

velocity. In Kirchhoff depth migration, migration time can be calculated by raytracing methods 

which are relatively expensive.  

In practical implementations there are other factors that must be considered such as proper 

weighting functions, filtering, interpolation, and dip and aliasing controls with migration of 

seismic data with Kirchhoff method. 

 

2.3 Discrete inverse theory 

In this section the discrete inverse theory and least squares solutions are briefly reviewed. 

The existence and different types of the solution to an inverse problem are discussed. 

Since making quantitative measurements about physical properties of the underground 

materials is a major goal in geophysics, inverse problems are extremely important in this field of 

science. The history of applying inversion methods to geophysical problems such as inversion of 

global earthquake data, traveltime, gravity field, magnetic field, and remote sensing data returns 

date back to the late 60s and 70s (For a list of these attempts, refer to Lines and Treitel, 1984).  

The Earth model with its physical properties can be considered in a mathematical space as 

the model space. The forward problem is the problem of computing the model response, seismic 

data for instance. The mathematical space containing the resulting data is called the data space. 

Inversion is the problem of finding the corresponding model for given (measured) data (Scales 

and Snieder, 2000). Geophysical data are discretely measured in both space and time domains. 
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Therefore, we use matrices and vectors instead of their corresponding continuous functions. 

Discrete inverse theory deals with time and space sampled data and models. 

In all inversion problems, models have many properties or parameters which may be 

continuous functions in space and which may have many degrees of freedom (Scales and 

Snieder, 2000). However, recorded data are limited to a finite set. Mapping from an Earth model, ࢓, to the data space, ࢊ, is unique. However, due to the limitation of measurements, the reverse 

procedure is not unique. Therefore, model estimation problems return the estimated model, ࢓ෝ , 

which is a different form of the true model. In seismic imaging for instance, ࢓ෝ  is a blurred 

version of ࢓ (Nemeth, et al., 1999; Scales and Snieder, 2000). By solving the inverse problem, 

we are looking for the best reasonable ࢓ෝ . An appraisal problem quantifies the uncertainty of the 

model, the difference between ࢓ and ࢓ෝ . Figure 2.1 depicts the relationship between forward, 

estimation, and appraisal problems for a typical inverse problem. 

 

 

Figure 2.1 Schematic design of an inverse problem after Scales and Snieder (2000).  

 

The theory of linear error propagation is developed to formulate the appraisal problems for 

the linear inverse problems. Bayesian inversion is the commonly used tool for the nonlinear 

cases (Scales and Snieder, 2000). Bayesian inversion uses some a priori information about the 

Model, ࢓ Data, ࢊ 

Estimated model, ࢓ෝ  
+ 

Uncertainty

Forward problem 

 Estimation   problem 
 Appraisal    problem 
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model (information about the model before any data gathering) and combines them with 

information in the data to update the a priori information. The updated a priori model is the a 

posteriori model which constrains the resulting model more than the model from a priori 

information (Scales and Tenorio, 2001). Ulrych et al. (2001) provide a useful comprehensive 

tutorial about Bayes inversion. 

 

2.3.1 The least squares method 

The linear equation to be solved has the general form 

࢓ࡳ  = 2.30 ,ࢊ

where ࡳ is forward modeling operator, called the data kernel matrix, ࢓, a column vector of 

length ܯ, is the unknown model, and ࢊ is (prestack) data, a column vector of length ܰ. ࡳ is an ܰ 

by ܯ matrix as in 

 ൦ܩଵଵ ଵଶܩ … ଶଵܩଵெܩ ଶଶܩ … …ଶெܩ … … ேଵܩ… ேଶܩ … ேெ൪ܩ ൦ ݉ଵ݉ଶ…݉ெ൪ = ൦݀ଵ݀ଶ…݀ே൪ . 2.31

Least squares is the simplest effective method to solve equation 2.30 for an estimate of ࢓ෝ . 

This method is based on measuring the size or length of the predicted data, ࢊ෡ = ෝ࢓ࡳ , from 

observed data, ࢊ (Menke, 1984).  

For simplicity, consider an example of fitting a straight line to a series of data points on the ݕݔ-plane. The slope of the desired line, ݉௟, and its intercept, ℎ௟, are the only unknown 

parameters to be estimated. Data are ܰ points with the pairs (ݔ௜,  ௜)௜ୀଵ:ே as the coordinates. Theݕ

least squares method is well-known for finding the best-fitting line. The least squares method 

minimizes the misfit, ݁௜ = ௜ݕ − పෝݕ , where ݕపෝ = ݉௟ݔ௜ + ℎ௟. The best approximate is a line with ݉௟ 
and ℎ௟ such that the total error or Euclidean length of the misfit vector 

ܧ  = ࢋࢀࢋ = ෍ ݁௜ଶே
௜ୀଵ , 2.32

be as small as possible (Menke, 1984).  

Therefore, the least squares method finds a line that minimizes its Euclidean distance from 

the observations. The norm of a vector ࢋ‖ ,ࢋ‖, is a type of measurement of length and generally 

is defined as: 
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݈௡ norm:   ‖ࢋ‖ = ൥෍|݁௜|௡௜ ൩ଵ ௡ൗ . 2.33

The common norms of ݈ଵ, ݈ଶ, and ݈ஶ are frequently used in geophysical inverse problems. 

Higher order norms imply larger weight on the largest elements of the ࢋ vector. Therefore, 

outliers have significant influence in their solution. By using the ݈ଶ norm, the least squares 

method gives an appropriate weight on the data with large prediction errors (Menke, 1984). The 

familiar least squares method for fitting a straight line to scattered data can be generalized to any 

linear inverse problem. 

To minimize the total error, ܧ, for the general linear equation 2.30, we set its derivative 

with respect to a model parameter, ݉௤ for instance, equal to zero (Menke, 1984). Total error in 

the expanded formula can be computed from matrix equation 2.32 as: ܧ = ࢋࢀࢋ = ࢊ) − ࢊ)ࢀ(࢓ࡳ −  (࢓ࡳ

= ෍ ቎݀௜ − ෍ ௜௝ܩ ௝݉ெ
௝ ቏ ൥݀௜ − ෍ ௜௞݉௞ெܩ

௞ ൩ே
௜  

= ෍ ෍ ௝݉݉௞ெ
௞

ெ
௝ ෍ ௜௞ܩ௜௝ܩ − 2 ෍ ௝݉ெ

௝ ෍ ௜௝݀௜ܩ + ෍ ݀௜݀௜ே
௜

ே
௜

ே
௜ . 

Since for any ݅ and ݆,  
߲݉௜߲ ௝݉ = ൜0 ݅ ≠ ݆1 ݅ = ݆ൠ =  ,௜௝ߜ

(Kronecker delta), the derivative of the three terms on the right hand side of the previous 

equation with respect to ݉௤ can be expressed by (Menke, 1984),   ߲߲݉௤ ቎෍  ෍ ௝݉݉௞  ෍ ௜௞ேܩ௜௝ܩ
௜

ெ
௞

ெ
௝ ቏ = ෍ ෍ൣߜ௝௤݉௞ + ௝݉ߜ௞௤൧ெ

௞
ெ
௝  ෍ ௜௞ேܩ௜௝ܩ

௜  

= 2 ෍ ݉௞  ෍ ௜௞,ேܩ௜௤ܩ
௜

ெ
௞  

−2 ߲߲݉௤ ቎෍ ௝݉ெ
௝  ෍ ௜௝݀௜ேܩ

௜ ቏ = −2 ෍ ௝௤ெߜ
௝  ෍ ௜௝ܩ ௝݀ே

௜ = −2 ෍ ௜௤݀௜ ,ேܩ
௜  

and 
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߲߲݉௤ ൥෍ ݀௜݀௜ ே
௜ ൩ = 0. 

Setting the derivative of the total error equal to zero results in (Menke, 1984): 

 
௤߲݉ܧ߲ = 0 = ෍ ݉௞ெ

௞ ෍ ௜௞ேܩ௜௤ܩ
௜ − ෍ ௜௤݀௜ேܩ

௜ , 2.34

or equivalently in matrix form as 

࢓ࡳࢀࡳ  − ࢊࢀࡳ = ૙, 2.35

and ࢙࢒࢓, the least squares solution, can be estimated by finding the inverse of ࡳࢀࡳ: 

࢙࢒࢓  = ଵି(ࡳࢀࡳ) 2.36 .ࢊࢀࡳ

This is the standard least squares solution, also known as ݈ଶ, a Gauss-Newton solution, or an 

unconstrained solution (Lines and Treitel, 1984). Existence of the ࢙࢒࢓ depends on the existence 

of (ࡳࢀࡳ)ିଵ. 

 

2.3.2 Existence of the least squares solution 

The standard least squares problem may or may not have a unique or multiple solution(s). 

Least squares problems can be classified based on the existence of the solution(s) into the 

following four categories.  

2.3.2.1 Evendetermined problems 

When the number of measurements equals to the number of unknowns, ܯ = ܰ in general, 

the problem is evendetermined (Menke, 1984) or strictly determined. In this case, the data 

determine all model parameters precisely. In the problem of fitting a straight line to data, as an 

example, having only two separate points in the data space provides an evendetermined problem 

and all model parameters (slope and intercept of the line) can be exactly determined. 

2.3.2.2 Overdetermined problems 

This happens when the number of rows, ܰ, or measurements, are more than the number of 

columns, ܯ, or unknowns, in data kernel matrix ܯ) ,ࡳ < ܰ), and all columns are linearly 

independent. Least squares returns the best (unique) solution. In the example of fitting a line to 

data, this happens when we have at least three points which are not placed exactly on the same 
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line. If we have more than two data points, (ܯ < ܰ), but all points are on the same line, they are 

linearly dependent and the problem is evendetermined.  

It happens in many geophysical inverse problems that ܯ < ܰ, but due to a poorly 

structured data kernel, some model parameters are not connected with any data. For instance, a 

gap in seismic data acquisition may leave some areas of interest uncovered. These problems 

cannot count as overdetermined problems and may be considered in the underdetermined 

division. This kind of inverse problem will be discussed in more detail in the next two sections. 

2.3.2.3 Underdetermined problems 

When we do not have enough information to uniquely determine all model parameters, or 

the number of unknowns is more than the number of data, ܯ > ܰ, or the columns of the data 

kernel matrix are not linearly independent, there is no unique solution to the problem. In the 

example of line fitting this happens when we have only one data point. Obviously, there are 

infinite number of straight lines that pass through a single point in the ݕݔ-plan. The number of 

possible solutions to these kinds of problems may be limited by adding some constraint to them. 

For example, one may be looking for a line that passes through a given point and is parallel to 

the ݔ-axis.  

Due to the limited number of measuring instruments or limited access to land, geophysical 

acquisition projects may be spatially limited, and the geophysical inverse problem is 

underdetermined. However, as mentioned in the previous section, the definition of 

underdetermined problems based on the comparison between the number of data and unknown 

parameters is not always exact. The classification of inverse problems also strongly depends on 

the structure of the data kernel matrix and acquisition parameters, especially the density and 

regularity of the measurements. 

A problem may be considered underdetermined due to too few available measurements. 

However, there may be some model parameters which do not affect the data, therefore, those 

model parameters are completely unconstrained (Menke, 1984). On the other hand, some model 

parameters may be overdetermined. Since there are not enough data to determine all model 

parameters, these kinds of problems are neither purely overdetermined nor purely 

underdetermined. An exploration seismic experiment is of this kind. Assuming a seismic 

wavefield travels as rays, more than one seismic ray may pass through some grids in the model 
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and a few grids may never be touched by any ray. These kinds of underdetermined problems are 

called mixed-determined or ill-posed problems (Menke, 1984). 

The undetermined problem is called purely underdetermined when all model parameters 

are underdetermined (Menke, 1984). Purely underdetermined problems have an infinite number 

of solutions. Adding a priori information about the model helps to minimize the number of 

possible solutions. In the example of fitting a line to one data point, adding the condition that the 

desired line must be parallel to the x-axis provides a unique solution to this least squares 

problem. 

Constraining purely underdetermined problems with a priori information is not an easy 

task. A priori information needs to be mathematically formulated, which is not always possible 

when combined with least squares problems. An easy and commonly used choice of a priori 

information is that the model be simple (Menke, 1984). A simple solution is a solution whose 

Euclidian length, ܮ = ࢓ࢀ࢓ = ∑ ݉௜ଶ, is as small as possible. With this constraint, the 

corresponding inverse problem includes minimizing ܮ subject to ࢊ =  It can be shown that .࢓ࡳ

the solution to this problem is achieved by solving equation 

௦௜௠௣௟௘࢓  = 2.37 .ࢊ૚ି(ࢀࡳࡳ)ࢀࡳ

Use of the Conjugate Gradients (CG) methods to solve an underdetermined least squares 

problem depends on the initial approximation. If a vector of zeros is used as the initial model, 

CG converges to the least squares solution of the smallest Euclidean norm. 

2.3.2.4 Mixed-determined problems 

 Mixed-determined problems are a type of underdetermined problems that are not purely 

underdetermined. As mentioned in the previous section, seismic imaging problems are generally 

mixed-determined. Some underground model parameter grids are overdetermined by the transit 

of several seismic rays while others are underdetermined. There may also be some 

evendetermined grids in the model.  

One way to overcome this kind of inverse problems is by splitting the model parameters to 

separate overdetermined and purely underdetermined models and solve each individually. The 

purely underdetermined part of a problem is solvable by finding the minimum of the ݈ଶ norm, 

and the overdetermined part of problem is solved by a least squares method. This procedure 
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requires decomposition of the data kernel by the method of singular value decomposition which 

is not effective for large problems such as least squares prestack Kirchhoff migration. 

A second and more effective method of solving a mixed determined inversion problems is 

minimizing an objective function, ܬ, which is some combination of both the prediction error 

(used for least squares solution of overdetermined problems), and the ݈ଶ norm (used in solving 

purely underdetermined problems) in the following form (Menke, 1984): 

(࢓)ܬ  = ܧ + ܮଶߤ = ࢋࢀࢋ + 2.38 ,࢓ࢀ࢓ଶߤ

where ߤଶ is the tradeoff parameter or regularization weight. The trade-off parameter controls the 

priority given to the predication error verses the solution length (simplicity). When ߤ = 0, this is 

equivalent to ignoring the a priori information. Larger ߤs make the a priori information and the 

underdetermined part of the solution more important. Finding the best value for ߤ depends on the 

nature of the problem, and a trial and error method is the simplest method to choose the right 

value. 

Minimizing the (࢓)ܬ gives the damped (Menke, 1984; Lines and Treitel, 1984) or 

Marquardt-Levenberg (Levenberg, 1944; Marquardt, 1963) least squares solution: 

ࡸࡿࡰ࢓  = ࡳࢀࡳ) + 2.39 .ࢊࢀࡳଵି(ࡵଶߤ

When measurements have different precisions, the quadratic norm can be generalized to 

have a weight matrix ࡼ for correlated data of different qualities. Then, the generalized least 

squares solution will be calculated by (Blais, 2010) 

ࡿࡸ࢓  = ଵି(ࡳࡼࢀࡳ) 2.40 .ࢊࡼࢀࡳ

When the unknown model parameters have different relevance or importance, a weight 

matrix ࡽ can be added to generalize the regularized least squares solution, ࢙࢒࢘࢓, to (Blais, 2010) 

ࡿࡸࡾ࢓  = ࡳࡼࢀࡳ) + ଵି(ࡽଶߤ 2.41 .ࢊࡼࢀࡳ

Since acquired seismic data are processed and traces are edited and equalized before any 

migration, we consider that all traces have an equal quality. The goal of the LSPSM is achieving 

a reflectivity image in which all model grids are equally important, too. Therefore, we always 

assume ࡼ = ࡽ =  in this dissertation. These assumptions simplify the generalized least squares ࡵ

equation 2.41 into equation 2.39. 
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2.4 Least squares Kirchhoff migration 

In this section the general discrete inverse theory is being specified for prestack migration 

and particularly for the prestack Kirchhoff least squares migration method. In forward modeling, ࡸ is an operator, such as Kirchhoff, finite-difference, or phase-shift, which approximates the 

continuous wave equation for a velocity or reflectivity model. Defining the real forward 

modeling operator in the Earth by ࢘ࡸ, and the continuous subsurface model by ࢓, the recorded 

seismic data, ࢊ, is a spatially sampled type of the seismic wavefield (Ji, 1997): 

ࢊ  = 2.42 ,࢓࢘ࡸࡿ

where ࡿ is the seismic sampling operator simulating the discretization and aperture limitation of 

the seismic surveys.  

An operator such as ࡸ is called unitary when ࡸࡸ∗ = ࡸ∗ࡸ =  ,ࡸ is the adjoint of ∗ࡸ where ,ࡵ

and ࡵ is an identity matrix. Migration is the adjoint of the forward modeling. Migration should be 

able to back project the recorded wavefield to the real Earth image if it was based on a unitary 

operator. Since our forward modeling operator, ࡸ, is always an approximation to the real forward 

modeling operator, ࢘ࡸ, and also due to the finite aperture and discrete sampling of the seismic 

wavefield, migration is not a unitary operator. By approximating the real forward operator by ࡸࡿ ,ࡸ =   conventional migration can be expressed by ,࢘ࡸࡿ

ෝ࢓  = ࢊ∗ࡿ∗ࡸ = 2.43 ,࢓࢘ࡸࡿ∗ࡿ∗ࡸ

where ࢓ෝ  is the migration image (Ji, 1997). Assuming a dense and long seismic survey, which 

makes ࡿ a unitary operator, ࡿ∗ࡿ =  the migration ,࢘ࡸ and ࡸ then, due to the difference between ,ࡵ

image is still different from the real subsurface image by migration artifacts. Accurate subsurface 

imaging requires both a spatially dense and regular sampling of the seismic wavefield and an 

accurate approximation to the wave equation (Ji, 1997).  

Irregularities, coarseness, and inevitably limited aperture in seismic data sampling, produce 

artifacts in a slant stack image similar to those in the migration image. Kostov (1990) attenuated 

those artifacts and improved the image resolution by formulating a least squares slant stack 

inversion in the frequency domain. Kostov’s least squares matrix was a Toeplitz (or diagonal-

constant) matrix and he used the Levinson recursion method to solve his least squares equation 

for each frequency. 
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Cole and Karrenbach (1997) extended Kostov’s least squares slant stack to a least squares 

poststack Kirchhoff migration for resolution enhancement. Since the summation trajectory of the 

Kirchhoff migration is time variant, they were not able to use a time invariant transform to 

directly perform their least squares migration in the frequency domain. They chose an expensive 

method by transforming 2D seismic data to a 3D cube where the third dimension was a panel 

corresponding to different time invariant moveout corrections where they could implement least 

squares in the frequency domain. They showed an improvement in the resolution of the resulting 

image, and better focusing of the migration. Cole and Karrenbach (1997) implemented a CG 

method for solving their equation and performed 20 CG iterations, equal to 40 migrations or 

modeling matrix-vector multiplication for each frequency to achieve the desired image. 

Ji (1997) performed least squares optimization to attenuate poststack migration artifacts. 

He showed the improvement of image resolution by least squares optimization of zero-offset 

data for Kirchhoff migration in a constant velocity medium, Gazdag migration in (ݖ)ݒ medium, 

and the finite difference method of migration in a ݔ)ݒ,  .model (ݖ

The idea of using least squares migration of zero-offset data for attenuating migration 

artifacts and enhancing image resolution was then extended to prestack least squares 

migration/inversion. Kirchhoff migration was augmented by a generalized inverse as an 

approximation to the exact inverse by Tarantola (1984). This approach is called least squares 

migration/inversion (Nemeth et al., 1999; Duquet et al., 2000; Kuehl and Sacchi, 2001; Kuehl, 

2002; Tang, 2007). My focus in this study is on prestack Kirchhoff Migration, therefore, I 

abbreviated my inversion to LSPSM which from here on stands for Kirchhoff Least-Squares 

Prestack Migration. In the rest of this chapter the mathematical structure of the LSPSM is 

reviewed, and using a synthetic and a real data set, the ability of LSPSM in resolution 

enhancement and data reconstruction is demonstrated. 

Since Kirchhoff seismic modeling with diffractions can be formulated as an algebraic 

linear problem, it can be written in the general form of a linear modeling operator, 

ࢊ  = 2.44 ,࢓ࡳ

where, ࢊ are the observed prestack seismic data, ࢓ is the real Earth reflectivity model, and ࡳ is 

an operator acting on ࢓ in order to produce ࢊ. The inversion process,  

࢓  = 2.45 ,ࢊଵିࡳ
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should be able to recover the Earth model or reflectivity from the seismic data. Matrix ࡳ is a 

large matrix which can have 10ଵଷ entries for a 20 km 2D seismic line with 100,000 traces and 1000 samples per trace, as an example. Due to the enormously large size and generally its non-

square shape1, inverting the ࡳ matrix is generally impossible. As shown by Ji (1997) and 

discussed earlier in this chapter, due to sampling limitations, even if ࡳ can be inverted, the 

resulting image is not the true Earth’s reflectivity. Thus, approximations to the inversion are 

used. The first and most commonly performed approximation uses the mathematical transpose of ࡳ, 

ෝ࢓  = 2.46 ,ࢊࢀࡳ

which is the Kirchhoff migration that sums energy over diffractions (Duquet et al., 2000). In 

equation 2.46, ࢓ෝ  is the migration image and ࢀࡳ is the migration operator. I assumed that the ࡳ 

operator used in the previous three equations is real and exactly simulates the processes that are 

happening during the propagation of seismic waves in the Earth. 

By defining Kirchhoff modeling as the forward process and Kirchhoff migration as its 

adjoint (mathematical transpose) operator, seismic imaging becomes an inversion problem. 

Substitution of ࢊ from equation 2.44 into equation 2.46 gives 

ෝ࢓  = .࢓ࡳࢀࡳ  2.47

For the same reason that Ji (1997) showed for zero-offset data, if the Hessian matrix2, ࡳࢀࡳ, 

were equal to the unity matrix (ࡳࢀࡳ =  then Kirchhoff migration would be able to reconstruct ,(ࡵ

the true model of the subsurface reflectivity from prestack seismic data. However, due to the 

finite seismic sampling aperture, or irregularity and incompleteness of the sampled seismic data, 

and the existence of noise, the Hessian matrix, ࡳࢀࡳ is different from the identity matrix, ࡵ 

(Nemeth et al., 1999). In such cases, Kirchhoff prestack migration produces some artifacts in the 

migrated image. These migration artifacts can be attenuated by least squares migration with the 

same thought that Ji (1997) and Cole and Karrenbach (1997) used for removing migration 

artifacts in zero-offset data. 
                                                 

 

 
1 A detailed explanation on the size and shape of ࡳ matrix is brought in Chapter Three. 
2 As it is called by for instance: Lines and Treitel, 1984; Lambare et al., 1992; Nemeth et al., 1999; and Ayeni 

and  Biondi, 2010. 
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Nemeth et al. (1999) implemented the method on ground penetrating radar data, vertical 

seismic profiling (VSP) data, and 2D seismic data with limited aperture, coarsely sampled data 

and data with gaps in the receiver line. They showed more focusing of geological events and 

better detection of faults in the seismic sections when replacing conventional Kirchhoff 

migration with the least squares Kirchhoff migration. Duquet et al. (2000) performed regularized 

least squares Kirchhoff migration for resolution enhancement of incomplete data with the 

similarity of adjacent common offset image gathers as the a priori information. They also 

created an illumination map to show the density of rays for each image point, which is a useful 

tool for balancing seismic amplitudes, for further AVO analyses. Kuehl and Sacchi (2001) and 

Tang (2007) performed regularized least squares wave equation migration on incomplete 2D 

seismic data. Tang (2007) used sparseness in the subsurface-offset domain as the regularization 

to improve the migration image resolution. 

Least squares prestack migration practically minimizes the difference between observed 

prestack seismic data, ࢊ, and modeled data, ࢓ࡳ, as expressed by the ݈ଶ norm: ‖࢓ࡳ −   .‖ࢊ

In reality, data include noise, and the problem is mixed-determined. Therefore, an attempt 

to find a model to fit the data perfectly using standard least squares, 

࢙࢒࢓  = ૚ି(ࡳࢀࡳ) 2.48 ,ࢊࢀࡳ

is replaced by an attempt to find the minimum or the Euclidian norm which includes searching 

for a model that minimizes the cost function 

(࢓)ଵܬ  = ࢓ࡳ‖ − ଶ‖ࢊ ,  2.49

subject to the model constraint 

(࢓)ଶܬ  = ଶ. 2.50‖࢓‖

Minimization of these two cost functions can be combined to the minimization of a 

general cost function in the form of  

(࢓)ܬ  = (࢓)ଵܬ + (࢓)ଶܬଶߤ = ࢓ࡳ‖ − ଶ‖ࢊ + ଶ.  2.51‖࢓‖ଶߤ

which results in the damped least squares solution as we saw for the solution to the general 

mixed-determined problems 

ࡸࡿࡰ࢓  = ࡳࢀࡳ) + 2.52 .ࢊࢀࡳଵି(ࡵଶߤ
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It is important to mention since all seismic traces and model parameters are equally 

important, equations 2.48 and 2.52 are the specified form of the generalized least squares 

equations 2.40 and 2.41, respectively. 

 

2.5 Regularized least squares migration 

Numerical optimization methods provide the possibility of minimizing complicated 

objective functions. These methods allow easier integration of some model space regularization 

into the least squares solution. Regularization also improves the stability of the least squares 

solution by removing possible singularities in the ࡳࢀࡳ matrix in mixed-determined problems. 

With ࡳ as the Kirchhoff forward modeling operator, different types of a priori information other 

than simplicity of the model are available to be implemented as a part of the least squares 

migration. A general cost function for least squares migration can be expressed by (Nemeth et 

al., 1999): 

(࢓)ܬ  = ࢓ࡳ‖ − ଶ‖ࢊ + ,(࢓)ଶℛߤ  2.53

where ࢊ is the observed data which may be spatially incomplete or irregularly recorded, and ℛ(࢓), the regularization term, is a linear operator acting on ࢓, and is different for each 

application. Regularization terms use some a priori information about the Earth model and serve 

to emphasize or attenuate models with certain geological features. A damped least squares 

solution is an example of regularization, ℛ(࢓) = ଶ‖࢓‖ , which enforces the simplicity of the 

model. The first term in the right hand side of equation 2.53 is called data misfit. The 

minimization of the cost function, (࢓)ܬ, the data misfit term, recovers the model to fit the data as 

much as desired. The parameter μ is a constant regularization weight and controls the amount of 

data fitting verses the model constraint. 

Smoothing in the offset direction (the direction of the hyperbolic trajectories in each shot 

gather) is another constraint which can be performed on the LSPSM. This is accomplished with ℛ(࢓) =  ௛, is an un-smoothing operator, and is the firstࡰ ଶଶ, a quadratic norm, where‖࢓௛ࡰ‖

derivative in the offset direction. Its action is mathematically expressed by the multiplication of 

the following matrix with a model vector 
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௛ࡰ  = ێێێۏ
1−ۍ 1 0 … 00 −1 1 … 00 0 −1 … 0… … … … 10 0 0 0 ۑۑۑے1−

2.54 .ې

The adjoint of un-smoothing operator is  

௛୘ࡰ  = ێێێۏ
1−ۍ 0 0 … 01 −1 0 … 00 1 −1 … 0… … … … 00 0 0 1 ۑۑۑے1−

2.55 .ې

A first derivative operator such as equation 2.54 acts as a high pass filter. Therefore, 

minimization of a cost function with this regularization term is equal to penalizing high 

frequency contents. The solution of an LSPSM problem with smoothing as the regularization is 

the smooth least squares solution, ࡿࡸࡿ࢓: 

ࡿࡸࡿ࢓  = ࡳࢀࡳ) + 2.56 .ࢊࢀࡳ௛)ିଵࡰࢀ௛ࡰଶߣ

The tradeoff parameter, ߣ, controls the amount of regularization or weight of smoothing in 

the model and may be chosen by a trial and error method. I choose a high value, ߣ = 10000 for 

instance, and look at the first three LSCG iterations. If the error norm stays at 100%, I divide ߣ 

by 10. I repeat the procedure until I get an acceptable convergence rate in three LSCG iterations 

which is between 85% and 95% with a real data set and around 70% with a synthetic data set. 

Smoothing and damping regularizations are quadratic regularizations in which model 

parameters are normally distributed (Sacchi, et al., 2004). Least squares inverse problems with 

quadratic regularization are linear. There are other useful regularization functions other than 

damping and smoothing least squares solution. Cauchy and ݈ଵ norms are two non-quadratic 

regularization examples. In these types of regularizations the a priori distributions of the model 

is not Gaussian (Sacchi, et al., 2004). The cost functions resulting from non-quadratic 

regularizations are non-linear. The ݈ଵ norm leads to a sparse solution by defining (Wang, 2005): 

 ℛ(࢓) = ෍ |݉௜|ே௜ୀଵ , 2.57

where ܰ is the model size. The solution of a constrained least squares equation with this 

regularization term is: 

௟భ࢓  = ࡳࢀࡳ) + 2.58 ,ࢊࢀࡳଵି((݉)ࡽଶߣ
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where ࡽ is a diagonal matrix with ܳ௜௜, the diagonal entries, as  

 ܳ௜௜ = ൜|݉௜|ିଵ, for |݉௜| > ߳߳ିଵ, for |݉௜| < ߳ , 2.59

and ߳ is a threshold value.  

The Cauchy norm is defined by (Wang, 2005): 

 ℛ(࢓) = ෍ ln(1 + ݉௜ଶ ⁄௠ଶߪ ),ே௜ୀଵ  2.60

where ܰ is the model vector size, and ߪ is a scale parameter. 

Regularized least squares migration provides a high resolution seismic section and 

attenuates migration artifacts and acquisition footprint. However, there are two issues associated 

with replacing the conventional migration with the LSPSM. The main problem is that the 

convergence of an LSPSM solver to the correct solution strongly depends on the accuracy of the 

background velocity information. LSPSM is more sensitive to the accuracy of the velocity 

information than migration itself (Yousefzadeh and Bancroft, 2012d).  

In addition to the dependency of the method on accurate velocity information, LSPSM is a 

more computer time intensive and memory consuming procedure than the migration alone. 

LSPSM attempts to solve a large system of linear equations. A modified version of the conjugate 

gradient method (CG) (Hestenes and Stiefel, 1952) method, the least squares conjugate gradient 

(LSCG) (Scales, 1987) method, has been widely used as a solver for the LSPSM equation 

(Nemeth et al., 1999; Duquet et al., 2000; Kuehl and Sacchi, 2001; and Yousefzadeh and 

Bancroft, 2010a, and 2010b). However, this is still an expensive method. In solving the equation 

with the LSCG method, each iteration runs more than twice as long as a conventional migration. 

Each Kirchhoff prestack time migration includes calculation and/or application of the 

double square root (DSR) equation, proper migration amplitude weight function, the wavelet 

shaping factor (ߩ filter), antialiasing filter, cross-correlation, and interpolation. In order to have a 

modeling operator which is exactly the adjoint of the migration operator, the adjoint of all these 

steps must be considered in the modeling. This procedure causes the modeling operator to be 

several times more expensive than the migration operator. 

The ability to apply Kirchhoff migration on a small part of the data is a major advantage. 

This is possible by limiting the loops over CMPs and (pseudo) depth to the loop on the desired 

part of the section. An example would be around hydrocarbon traps. This reduces the migration 
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cost significantly. However, this advantage is extendable to only least squares poststack 

migration as performed by Jiang and Schuster (2003). Conventional LSPSM uses the whole data 

set and complete model grids simultaneously. Therefore, it is not possible to overcome only a 

part of the LSPSM cost by target orienting the method to a desired part of the image.  

It is worth mentioning that poststack migration is an overdetermined problem which 

requires only implementation of a standard least squares method. 

At the end of this section it is necessary to distinguish the difference between LSPSM and 

migration deconvolution (Hu et al., 2001; Yu and Schuster, 2003). As shown in equation 2.47, 

migration is a filtered (blurred) version of the Earth’s true reflectivity. By LSPSM we are 

looking to find the inverse of the Hessian as exactly as possible. Ignoring regularization terms, 

the LSPSM image is obtained by multiplication of the inverse with migration image. Defining ࡳࢀࡳ as a blurring filter, (ࡳࢀࡳ)ି૚ is considered as a deblurring filter (Yu and Schuster, 2003) 

and is related to migration and the true model by,  

࢓  = ෝ࢓૚ି(ࡳࢀࡳ) . 2.61

Using migration deconvolution, Hu et al. (2001) and Yu et al. (2006) reduced migration 

artifacts by finding an approximation (instead of finding the exact inverse in LSPSM) to (ࡳࢀࡳ)ି૚ using approximate Green’s functions, and applying that approximation to the migration 

image. In their approximation they assumed that the velocity is varying only with depth where 

they could reduce the Green’s function computational cost significantly (Hu et al., 2001). They 

showed improvement in the migration image after both poststack and prestack migration 

deconvolution at less cost than the LSPSM. Aoki and Schuster (2009) used the deblurring filter 

idea to obtain a relatively accurate a priori model for the constrained least squares migration. 

Also they implemented a deblurring filter as a preconditioner to increase the least squares 

migration convergence rate and reduce the computational cost. 

 

2.6 LSPSM for the resolution of a synthetic example 

I used the LSPSM to enhance the resolution of synthetic seismic data. In order to show the 

advantage of using LSPSM instead of migration, consider acquisition geometry with 16 sources 

and 96 receivers per source. The source interval is 187.5 m, and the receiver interval is kept at 

15.625 m, to keep the fold number at 4 (except at the beginning and end of the survey line), on a 
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3km 2D velocity model. This geometry is shown in Figure 2.2. The temporal sampling rate is 2 

milliseconds. This geometry is considered on an Earth model with horizontal, faulted, dipping, 

and folded layers with the velocity shown in Figure 2.3. The background velocity starts at 2000 

m/s at the top, and with some variations ends at 6000 m/s at the bottom. Figure 2.4 shows the 

reflectivity resulting from this velocity model. 

The synthetic data are prestack migrated (Figure 2.5) and least squares prestack Kirchhoff 

migrated using 20 iterations in the LSCG (Figure 2.6). The LSPSM produced a higher resolution 

image than the migration itself. Note especially the improved resolution of the fault plane. 

 

 

Figure 2.2 The acquisition geometry used in generating synthetic data. Blue and red: 
sources and receivers positions for each seismic trace, positions of the image points are 
shown in green. 
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Figure 2.3 Interval velocity model used to generate synthetic data. 

 

 

Figure 2.4 Reflectivity model corresponding to the velocity model of Figure 2.2.
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Figure 2.5 Migration of synthetic data. Comparing to Figure 2.4, shallow reflectors are 
weak and sinusoidal reflectors are not very well retrieved. 

 

 

Figure 2.6 LSPSM of the synthetic data. Better presentation of the shallow reflectors 
and improved focusing of deep folding layers compared to migration. 
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The migration artifacts would be more attenuated if we used a regularized LSPSM with 

smoothing in the offset direction. The improvement is not obvious in the synthetic example, but 

it is shown on real data set at the end of this chapter. 

Kirchhoff is probably the best migration method for irregularly sampled data. The 

Kirchhoff algorithm is able to handle irregularities in data sampling. However, sampling data 

more sparsely increases the migration artifacts. LSPSM is able to attenuate the artifacts related to 

data acquisition or spatially decimation of the seismic data. To show these, synthetic data are 

decimated by randomly eliminating 80% of traces. Figure 2.7 shows the geometry of decimated 

data. Figure 2.8 compares the acquisition geometry and geometry of the spatially decimated 

traces, in shot # 7. The migration of the decimated data set is shown in Figure 2.9, and the 

LSPSM in Figure 2.10, in which most of the migration artifacts are attenuated.  

 

Figure 2.7 Acquisition geometry after decimating 80% of traces randomly. Blue and red: 
sources and receivers positions for each seismic trace, positions of the image points are 
shown in green. 
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a) b) 

Figure 2.8 Comparison between the a) complete, and b) decimated acquisition 
geometry for the shot #7. blue: sources, red: receivers. 

 

 

Figure 2.9 Migration of decimated synthetic data, 80% of traces are randomly 
deleted. 
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Figure 2.10 LSPSM of 80% randomly decimated data. 
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a) b) 

c) d) 

e) f) 

Figure 2.11 a) and b) model, c) and d) migration, and e) and f) LSPSM relative amplitudes 
of the complete (left) and decimated (right) synthetic data for the position of 2280 to 2400 
m. 

  

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Model
T

im
e 

(s
)

Relative Amplitude
-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Model

T
im

e 
(s

)

Relative Amplitude

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Migration

T
im

e 
(s

)

Relative Amplitude

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Migration

T
im

e 
(s

)

Relative Amplitude

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

LSPSM

T
im

e 
(s

)

Relative Amplitude
-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

LSPSM

T
im

e 
(s

)

Relative Amplitude



37 

 

 

LSPSM images in Figure 2.6 and Figure 2.10 are calculated with 20 iterations in LSCG. 

The convergence rate in the LSCG method is an appropriate way of measuring the ability of the 

LSPSM to find the best reflectivity image. In this thesis, the convergence rate is the relative 

Euclidean norm of the difference between the original data and the data achieved by forward 

modeling of the LSPSM image after each iteration. Figure 2.12 shows the normalized 

convergence rate when using complete and decimated data. The residuals converge to less than 

4% in 20 iterations in both cases.  

 

Figure 2.12 Convergence rate of LSPSM in 20 iterations with the complete data (solid 
line) and the decimated data (dotted line). Both cases converge to 4% in 20 iterations. 

 

2.7  LSPSM for data reconstruction 

Seismic data interpolation is another benefit of using LSPSM. There are many processes in 

seismic data analysis which require regularly sampled data. Some methods of multiple 

attenuation, and some powerful methods of migration that are mostly being implemented in the 

frequency domain, require regularly sampled data. Replacing missing traces with traces having a 

zero amplitude for all samples introduces some artifacts in the resulting images. Amplitude 
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Verses Offset (AVO) and Amplitude Verses Azimuth (AVAz) studies for the reservoir 

characterization are two more examples. 

Nemeth et al. (1999) suggested data reconstruction and interpolation using LSPSM. Since 

the resulting image of LSPSM is a high resolution image, it can be used for data reconstruction. 

Suppose ࢏ࡳ and ࢏ࢊ show the forward modeling operator for incomplete data, and incomplete data 

itself, respectively. Then the damped least squares image may be calculated by, 

ࡿࡸࡰ࢓  = ்࢏ࡳ) ࢏ࡳ + ்࢏ࡳଵି(ࡵଶߤ 2.62 .࢏ࢊ

Then, complete data, ࢊ, are computed by forward modeling of ࡿࡸࡰ࢓: 

ࢊ  = ࡿࡸࡰ࢓ࡳ = ࡳ ࢏ࡳ܂࢏ࡳ) + 2.63 .࢏ࢊ܂࢏ࡳଵି(ࡵଶߤ

This method of data reconstruction is robust. However, this method is more expensive than 

the other methods of data reconstruction which usually use properties of the Fourier transform 

and works with a small part of data (one shotgather for instance) at each time step (for methods 

see: Spitz, 1991; Porsani, 1999; and Gulunay, 2003). Using LSPSM, the observed data must 

tolerate several migration and modeling runs in the LSCG scheme until the algorithm converges 

to a reasonable model, and then there is the additional cost of forward modeling with the new 

geometry of the sources and receivers. 

Another disadvantage of this method of data reconstruction is its strong dependency on the 

accuracy of background velocity information. A small perturbation from the true velocity 

prevents this method of data reconstruction to work properly even if it gives back a high 

resolution LSPSM image. More details and examples can be found in Yousefzadeh et al. (2011, 

2012). 

To show the ability of data reconstruction with LSPSM, I used the image of LSPSM in 

Figure 2.10 for data reconstruction when 80% of data are decimated irregularly. Results in the 

first 50 traces from shotgather # 7 are shown in Figure 2.13. Panels a, b, c, and d show the 

original, decimated, reconstructed, and residual data, respectively. With having only 20% of the 

data, LSPSM proves itself a powerful method to reconstruct the missing data. 

Figure 2.14 compares the frequency-wavenumber (FK) spectra of the original, decimated, 

and reconstructed data, and their residuals. The decimated data are highly aliased, yet 

reconstruction has removed the aliasing effects and residuals show that the data reconstruction 

procedure is able to retrieve all frequencies and wavenumbers.  
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a) b) 

  

c) d) 

Figure 2.13 Data reconstruction by LSPSM. a) data, b) 80% decimated data, c) 
reconstructed data, d) residuals. The first 50 traces from shotgather # 7 are shown. 
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a) b) 

c) d) 

Figure 2.14 FK spectra of the data in Figure 2.13. Spectrum for a) original data, b) 
decimated data, c) reconstructed data, d) residuals. 
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2.8 Real data considerations and example 

Resolution enhancement and data reconstruction of the synthetic data sets by LSPSM are 

shown in the previous sections. The results of applying the LSPSM method on a real data set 

may not be as good as on synthetic data. Real data must be edited, phase and amplitude 

corrected, static corrected, trace equalized, surface waves and multiple attenuated before using in 

many imaging algorithms including migration and LSPSM. Even with the best methods of 

processing, good quality data, and accurate information about source wavelet and velocity from 

different sources, it is impractical that LSPSM LSCG convergence goes as low as 30%. This is 

mostly due to the fact that migration and modeling algorithms do not use an exact representation 

of the real propagation of seismic waves through the Earth’s layers.  

LSPSM is performed on a real data set acquired in the NE of British Columbia (NEBC), 

Canada. A relatively large, long offset, and wide azimuth 3C/3D data volume was recorded for 

reservoir characterization and to suppress possible acquisition footprint. Irregularities in surface 

topography and the effects of thick organic material at the surface and shallow glacial tills of 

variable thickness make subsurface seismic imaging in this area difficult. However, the analysis 

of near surface velocity irregularities and statics corrections is not the main interest in this 

research. I used a high density P-wave 2D line, acquired for refraction analyses out of the 3D 

volume, which was preprocessed and was ready for velocity analysis, NMO correction and 

stacking or migration. The acquired data are relatively dense and regular. I intentionally 

decimated the data to produce a migration image that suffers from acquisition footprint. The data 

include more than 65000 traces in 220 shots with 10 m receiver spacing and 60 m source 

interval. The sampling rate is 2ms and the recording time is 3s.  

The NEBC data set has strong reflectors at relatively shallow depths which are responsible 

for the presence of some weak interbed multiples. Since conventional Kirchhoff time 

migration/modeling methods are not able to migrate or model multiples, it is necessary that 

multiple-free data be used for Kirchhoff migration and LSPSM. The NEBC data set was multiple 

attenuated using the Radon transform (Hampson, 1986). The residuals move out of the NMO 

corrected CMP gathers using a correct velocity for primary reflections can be approximated by 

parabolas. Radon transform is used to map data into (ݐ ,  is the curvature of ݌ domain, where (݌

the NMO corrected events. Multiples which are separated from primary reflections in the (߬ ,  (݌
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domain can be easily muted. This method is able to remove multiples with the velocities that are 

significantly different from the velocity of primaries at the same depth. 

I used Seismic Unix software to multiple attenuate the NEBC data set using Radon 

transform. NEBC data have some high velocity interbed multiples that cannot be removed by the 

Radon transform multiple attenuation method. I performed migration and LSPSM on the 

multiple attenuated data. Results are shown in Figure 2.15. The horizontal axis in all figures in 

this section shows the distance from the first CMP position. There is a little resolution 

enhancement in the shallower part of the image by using LSPSM instead of the Kirchhoff 

migration. This is due to dense and regular sampling of the data and low level of acquisition 

footprint. There is no improvement in the LSPSM image below 1 s which can be related to the 

presence of the high velocity interbed multiples. I decimated the data by randomly removing 

90% of the traces. Figure 2.16 shows the migration and LSPSM of the decimated data. 

Decimation of data produced many acquisition artifacts in the migration image as expected. 

LSPSM is able to remove these artifacts and return a high resolution image especially at the top 

1 s of the image. 

This image is used for the reconstruction of decimated data. Results of data reconstruction 

are shown in Figure 2.17. Figure 2.17d shows the residuals, the difference between original and 

reconstructed data, which shows the success of data reconstruction. Since the multiples remained 

in data after multiple attenuation using Radon transform have a velocity that is close to the 

velocity of primaries, I assume that Kirchhoff LSPSM was able to reconstruct these multiples as 

well as the primaries. 

Regularized LSPSM with smoothing in the offset direction, with ߣ = 1, is performed on 

the decimated data, and the result is shown in Figure 2.18. Comparison between Figure 2.18 and 

Figure 2.16b shows slight improvement in the LSPSM image. A close-ups of the LSPSM image 

(Figure 2.16b) and regularized LSPSM image (Figure 2.18) are shown in Figure 2.19 for better 

comparison. The reflections seem to be more continuous in the lower part of the regularized 

LSPSM image. 
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a) 

b) 

Figure 2.15 Images resulting from a) migration and b) LSPSM of NEBC data set. 
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a) 

b) 

Figure 2.16 a) migration and b) LSPSM of decimated synthetic data, 90% of traces 
are randomly deleted.  

Distance(m)

T
im

e(
s)

Migration-AGCed

2000 4000 6000 8000 10000 12000

0

0.5

1

1.5

Distance(m)

T
im

e(
s)

Inversion LSCG-AGCed

2000 4000 6000 8000 10000 12000

0

0.5

1

1.5



45 

 

 
a) b) 

c) d) 

Figure 2.17 Data reconstruction by LSPSM. a) data, b) 90% decimated data, c) 
reconstructed data, d) residuals. 
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Figure 2.18 Regularized LSPSM of decimated data. 

 

2.9 Summary and Conclusions 

This chapter begun with a review on the derivation of Kirchhoff migration. Discrete 

inverse theory has been explained in detail. LSPSM as an inverse problem has been described. 

With the help of synthetic and real data I showed how least squares Kirchhoff migration is able 

to attenuate the acquisition footprint and migration artifacts and produce a high resolution image 

that can be used for the construction of missing seismic traces. 

Real data used in this study are from a regularly and densely sampled data set. It is shown 

how LSPSM can be used for the reconstruction of 90% randomly decimated traces. 
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a) 

 

b) 

Figure 2.19 a) LSPSM and b) Regularized LSPSM of the decimated data set.  
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Chapter Three: SOLVING THE LSPSM EQUATION WITH MULTIGRID AND 
MULTILEVEL METHODS  

3.1 Introduction 

As explained in Chapter One, considering each subsurface point as a scatterpoint, 

Kirchhoff prestack migration collapses all diffracted energies to the scatterpoints. Kirchhoff 

prestack modeling, on the other hand, spreads the energy from the scatterpoints to the seismic 

traces. Kirchhoff prestack time modeling and migration use the double square root (DSR) 

equation to calculate the modeling and migration time for each sample in seismic traces. Proper 

migration amplitude weighting functions, filtering, interpolation, dip, and aliasing controls are 

also necessary considerations in Kirchhoff migration to obtain the best focused image. 

Since Kirchhoff modeling and migration are linear operators, they can be expressed in a 

matrix-vector multiplication scheme. A 2D seismic data is a matrix with each trace as a column. 

Earth’s reflectivity model is a matrix which shows the Earth’s layers. These matrices may be 

simply converted to vectors. By defining seismic data by vector ࢊ, Kirchhoff modeling operator 

by matrix ࡳ, and the Earth’s reflectivity model by vector ࢓, the forward modeling procedure is 

expressed by, 

ࢊ  = 3.1 .࢓ࡳ

The modeling matrix, ࡳ, is a multidimensional matrix. It consists of a diffraction hyperbola 

and a wavelet in a matrix for each grid point in the reflectivity model. Therefore, ࡳ is a four 

dimensional matrix for a 2D seismic experiment (and reflectivity model). Using tensor notation 

the forward modeling for a 2D seismic survey is expressed by 

 ݀௜௝ = ௜௝௞௟݉௞௟. 3.2ܩ

Note that ܩ is a 4th-order tensor and ݀ and ݉ are 2nd-order tensors. Multiplication in 

equation 3.1 is possible when ࡳ is properly converted to a 2D matrix. The proper conversion of ࡳ to a 2D matrix is explained in section 3.2. Then the modeling equation 3.1 with the tensor 

notation may be shown by 

 ݀ఈ = ఈఉ݉ఉ. 3.3ܩ

where ܩ became a 2nd-order tensor and ݀ and ݉ became 1st-order tensors.  

The inverse of calculation in equation 3.1 should return the reflectivity. However, calculation of 

the inversion is not always a possible or an easy task. The transpose (adjoint) of ࢀࡳ ,ࡳ, is easier 



49 

 

to calculate than the exact inverse. Migration methods are essentially transpose processes. In the 

case of Kirchhoff modeling, the transpose process is prestack Kirchhoff migration which is 

defined by, 

ෝ࢓  = 3.4 ,ࢊࢀࡳ

Where the matrix ࢓ෝ  is the migrated image and ࢀࡳ is the migration operator. 

In least squares migration, ࢓ is estimated by minimizing the difference between the 

observed data, ࢊ, and the modeled data, ࢓ࡳ෥ , where ࢓෥  is an approximation to ࢓. Solving 

standard least squares Kirchhoff migration, ࡿࡸ࢓, includes finding the inverse of matrix ࡳࢀࡳ, and 

multiplication of the result with the migration image matrix, ࢊ܂ࡳ,  

ࡿࡸ࢓  = 3.5 .ࢊ܂ࡳ૚ି(ࡳ܂ࡳ)

In this chapter the feasibility of using standard multigrid and multilevel methods for 

solving the linear system of LSPSM equations is investigated. I start in section 3.2 with 

introducing a geometric method for construction of the modeling operator, ࡳ, and the migration 

operator, ࢀࡳ, in matrix form, that contain diffractions. I show how ࢀࡳ and ࡳ matrices can be 

calculated inside a Kirchhoff migration algorithm. Once the matrices are constructed, modeling 

and migration can be repeated just by a matrix-vector multiplication. This may be useful in some 

applications that require several migration and modeling runs on data. Least squares migration is 

one of these applications. The shape of the least squares migration matrix, ࡳࢀࡳ, is presented as 

well. Visualizing the ࡳࢀࡳ matrix is useful since we are looking for a faster method to calculate 

its inverse. By the end of section 3.2, I show that ࡳࢀࡳ is a dense and diagonally non-dominant 

matrix which explains why solving the least squares Kirchhoff migration equation is an 

expensive procedure. I then show that the matrix ࡳࢀࡳ is too large to work with. 

In sections 3.3 and 3.4 the feasibility of using standard multigrid and multilevel LSCG 

methods for solving the LSPSM equation in order to speed up the process or enhance the 

resolution of the reflectivity image is investigated.  

The discussion on the CG and multilevel CG methods to solve LSPSM is presented in 

section 3.5.  

Section 3.6 is the summary and conclusion of this chapter. 
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3.2 Kirchhoff prestack modeling and migration operators in matrix form 

To explain my method of creating the modeling and migration matrices, I start with 

constructing the convolution matrix using a simple example in subsection 3.2.1. I then extend my 

construction method to the Kirchhoff modeling and migration matrices in subsections 3.2.2 and 

3.2.3. I show how to change a migration algorithm to create the corresponding migration matrix. 

Examples of modeling and migration matrices are used to show the difficulties of working with 

the matrix forms in subsection 3.2.4. I conclude that working with the explicit forms of the 

modeling and migration is currently impractical. The large size of modeling and migration 

matrices is a reason that the multigrid method is not a feasible solver for LSPSM equation. The 

second problem when using multigrid method to solve LSPSM equation is discussed in the 

sections 3.3 and 3.4. 

 

3.2.1  Explicit form of the wavelet matrix, a starting example 

In equation 3.1, matrix ࡳ is the modeling operator, and ࢓ is the reflectivity model. The 

seismic source does not produce a perfect impulse with zero duration. The real pulse or source 

wavelet always has time duration and is band limited in the frequency domain. Even if the source 

produces a perfect spike, the high frequency content of the pulse will be attenuated rapidly while 

it travels through the Earth’s layers. Consequently, a relatively low frequency pulse penetrates 

down into the ground and reflects back. The seismic wavelet is non-stationary and its shape 

changes with time when traveling through the Earth’s layers by losing more and more high 

frequency content. This effect must be considered in any seismic modeling method, such as 

Kirchhoff or finite difference modeling, by introducing a non-stationary wavelet to the model or 

data. I chose the latter approach. Implementing a non-stationary wavelet is not a very convenient 

procedure since it requires adequate knowledge about frequency dispersion rates of the 

underground layers. For simplicity, the wavelet is assumed to be stationary in this dissertation. A 

time-variant deconvolution before migration or LSPSM might help with the validity of this 

assumption. However, it is not investigated during this research. Therefore, I consider the 
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modeling operator in equation 3.1 as the multiplication of a stationary wavelet matrix1, ࢃ, with 

the Kirchhoff modeling operator without considering the wavelet, ࢍ, 

ࡳ  = 3.6 .ࢍࢃ

Consider the Earth as a non-dispersive and time invariant linear system. The response of 

the Earth’s reflectivity to an assumed stationary wavelet can be expressed as the convolution of 

the wavelet with the reflectivity series. Defining ℎ[݊] as the impulse response of a discrete time 

invariant system, convolution, ∗, describes the system’s response to the input signal ݔ[݊]: 
[݊]ݕ  = [݊]ݔ ∗ ℎ[݊] = ෍ ݊]ݔ − ݇]ℎ[݇]ஶ

௞ୀିஶ , 3.7

where ݕ[݊] is the convolved signal. If ݔ and ℎ are signals with ݊ݔ and ݊ℎ samples, respectively, 

then ݕ consists of ݊ݔ + ݊ℎ − 1 samples. Therefore, considering ܰ௪ as the length of the source 

wavelet and ௧ܰ as the number of seismic trace samples, the resulting convolved trace includes ௧ܰ + ܰ௪ − 1 samples. Consequently, if seismic data include ܯ௧௥௖ traces with ௧ܰ sample per 

trace, the result will be an ௧ܰ + ܰ௪ − 1 by ܯ௧௥௖ matrix. 

Convolution of the seismic source wavelet with data can be performed by either using a 

convolution algorithm (Table 3-1) or multiplication of the convolution matrix, ࢝ (MathWorks, 

2012), or circulant matrix with a data matrix. All three methods are well-known. In order to 

multiply the circulant matrix with a data matrix of size ௧ܰ by ܯ௧௥௖, the data matrix must be zero 

padded to a be a ( ௧ܰ + ݓܰ − 1) by ܯ௧௥௖ matrix, where ܰݓ is the number of wavelet samples. 

Circulant matrix is a ( ௧ܰ + ݓܰ − 1) by ( ௧ܰ + ݓܰ − 1) matrix. The size of the convolved data 

will be ( ௧ܰ + ݓܰ − 1) by ܯ௧௥௖. To construct a circulant matrix, a zero matrix of appropriate size 

is chosen, then wavelet elements replace the first zeros in the first column. Other columns of the 

circulant matrix are each cyclic permutations of the wavelet with an offset equal to the index of 

that column (Wikipedia, 2012).  

In order to multiply the convolution matrix with a data matrix of size ௧ܰ by ܯ௧௥௖, the 

convolution matrix should have a size of ( ௧ܰ + ݓܰ − 1) by ௧ܰ. The size of the convolved data 

                                                 

 

 
1 I use “wavelet matrix” term for ࢃ to differentiate it from the convolution matrix, ࢝.  
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will be ( ௧ܰ + ݓܰ − 1) by ܯ௧௥௖. To construct a convolution matrix, a zero matrix of size of ( ௧ܰ + ݓܰ − 1) by ௧ܰ is chosen, then wavelet elements replace the first zeros in the first column. 

For the ݅௧௛ column, the wavelet replaces the zero elements starting from the ݅௧௛ row. This 

replacement continues for all columns. Multiplication of these matrices is equal to the 

convolution of each data trace with the wavelet. I chose the second approach, multiplication with 

a convolution matrix in this dissertation.  

Consider ࢊ as a 6 by 8 matrix of the form 

ࢊ  = ێێێۏ
0ۍێ 00 0 0 00 1 0 01 0 1 00 00 21 0 0 01 0

1 00 1 0 00 00 00 0 1 00 10 00 0 0 00 0
ۑۑۑے 
ېۑ
. 3.8

If the assumed wavelet vector is given by, 

࢜࢝  = ൥ 12−1൩, 3.9

then the convolution matrix has the following form: 

࢝  =
ێێۏ
ێێێ
ۍێ 1 0 0 0 0 02 1 0 0 0 0−1 2 1 0 0 00 −1 2 1 0 00 0 −1 2 1 00 0 0 −1 2 10 0 0 0 −1 20 0 0 0 0 ۑۑے1−

ۑۑۑ
3.10  .ېۑ

Multiplication of ࢝ and ࢊ returns the convolved data: 

ࢊ࢝  =
ێێۏ
ێێێ
ۍێ 0 0 0 0 1 0 0 00 0 0 1 2 1 0 00 0 1 2 −1 2 1 01 0 2 −1 0 −1 2 12 2 −1 0 0 0 −1 20 4 0 0 0 0 0 −12 −2 2 0 0 0 0 0−1 0 −1 0 0 0 0 0 ۑۑے

ۑۑۑ
3.11 .ېۑ

The convolution algorithm shown in Table 3-1 gives the same result as the multiplication 

of the convolution matrix with the data. However, convolution matrix multiplication is valid only 

for a 2D seismic line. For a 3D seismic sutvey, this multiplication needs to be performed inside a 
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loop over the third dimension. Instead, one can reshape an ݊ܦ seismic data set as a column 

vector and create an appropriate “wavelet matrix” with which to multiply the data. If the data is 

vectorized to a single column by placing trace ݆ + 1 under trace ݆, for all traces, then 

multiplication in equation 3.11 will be replaced by ࢜ࢊࢃ, where ࢃ is the wavelet matrix and ࢜ࢊ 

is the vectorized data. ࢜ࢊࢃ is a vector with ( ௧ܰ + ܰ௪ − 1) × ௧௥௖ܯ is a ࢜ࢊ ௧௥௖ samples andܯ × ௧ܰ vector. 

Multiplication in ࢜ࢊࢃ is valid only when ࢃ is a ( ௧ܰ + ܰ௪ − 1) × ௧௥௖ܯ ௧௥௖ byܯ × ௧ܰ matrix. ࢃ 

is a sparse matrix in which its semi-diagonal entries are ࢝ matrices: 

ࢃ  = ێێۏ
࢝ۍێ ࢝ ࢝ ࢝ ۑۑے࢝

3.12 .ېۑ

Multiplication of ࢃwith ࢜ࢊis possible and gives the convolved data: 

࢜࢝  ∗ ࢊ = ࢜ࢊࢃ = ێێۏ 
࢝ۍێ ࢝ ࢝ ࢝ ۑۑے࢝

ېۑ 3.13 .࢜ࢊ

An algorithm to create ࢃ is shown in Table 3-2. Comparing algorithms in Table 3-1 and 

Table 3-2 gives a general idea for the construction of a matrix whose multiplication with a vector 

is equivalent to performing a computer algorithm. A zero matrix with the appropriate size is 

created, and then the zero elements of the matrix are replaced by the multiplier of the input, in 

the most internal loop of the algorithm. Later in subsection 3.2.2, this idea is used to construct 

the Kirchhoff modeling and migration matrices.  



54 

 

Table 3-1 Convolution algorithm. 

Subroutine:  ݐݑ݌ݐݑ݋ = ݐݑ݌݊݅ ∗  ݓ 

For ݅݁ܿܽݎݐ =  ௧௥௔௖௘                    % loop over tracesܯ ݋ݐ 1

 For ݅ݐ =  ௧ܰ                             % loop over data samples ݋ݐ 1

  For ݅ݓ =  ௪                     % loop over wavelet samplesܰ ݋ݐ 1

  
ݐ݅)ݐݑ݌ݐݑ݋ + ݓ݅ − 1, =            (݁ܿܽݎݐ݅ ݐ݅)ݐݑ݌ݐݑ݋  + ݓ݅ − 1 , (݁ܿܽݎݐ݅ + (ݓ݅)࢜࢝ × ݐ݅)ݐݑ݌݊݅ ,  (݁ܿܽݎݐ݅

  End 

 End 

End 

 

Table 3-2 Wavelet matrix algorithm. 

௧ܰ௪ଵ = ௧ܰ + ܰ௪ − 1 

For ݅݁ܿܽݎݐ =  ௧௥௔௖௘                % loop over tracesܯ ݋ݐ 1

 For ݅ݐ =  ௧ܰ                         % loop over data samples ݋ݐ 1

  For ݅ݓ =  ௪                % loop over wavelet samplesܰ ݋ݐ 1

  
݁ܿܽݎݐ݅)൫ࢃ − 1) × ௧ܰ௪ଵ + ݐ݅ + ݓ݅ − 1, ݁ܿܽݎݐ݅) − 1൯ × ௧ܰ + =        (ݐ݅ ݁ܿܽݎݐ݅)൫ࢃ  − 1) × ௧ܰ௪ଵ + ݐ݅ + ݓ݅ − 1, ݁ܿܽݎݐ݅) − 1൯ × ௧ܰ + (ݐ݅ +  (ݓ݅)࢜࢝

  End 

 End 

End 

 

3.2.2  Construction of the modeling matrix, ࡳ, in explicit form 

Yousefzadeh and Bancroft (2011, 2012a) explained how to construct a Kirchhoff modeling 

matrix using a Kirchhoff migration program. Including the wavelet, Kirchhoff modeling is 

expressed by: 

ࢊ  = 3.14 .࢓ࢍࢃ
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In order to create synthetic seismic data with the Kirchhoff modeling operator  

(equation 3.1 or 3.14), a form of ࢍ in either an implicit or an explicit form is required. In implicit 

form, ࢍ is a computer code, in the explicit form ࢍ is a matrix (without considering the presence 

of the wavelet, or assuming a perfect impulse source). The matrix is multiplied directly to the 

reflectivity model, ࢓, to produce the data, ࢊ. For example, the modeling matrix may be saved in 

memory and multiplied with the model several times when solving a least squares Kirchhoff 

migration by an iterative method.  

In order to create the ࢍ matrix, as I did for the wavelet matrix construction, a proper sized 

zero matrix is created and it’s zero elements are then replaced by the multiplier of the model in 

the most internal loop of the Kirchhoff modeling algorithm as shown in Table 3-3 and Table 3-4. 

 

Table 3-3 A simplified Kirchhoff prestack modeling subroutine showing how to 
create data for the given reflectivity. 

Subroutine: ࡰ = ݈݃݊݅݁݀݋݉ ܿ݅݉ݏ݅݁ݏ ݂݋  ࡹ

For ݅݁ܿܽݎݐ =  ௧௥௔௖௘     % loop over tracesܯ ݋ݐ 1

 For ݅ݖ =  ௭ܰ                     % loop over depth samples ݋ݐ 1

  For ݅ݔ =  ௫ܰ                    % loop over CMPs ݋ݐ 1

݁݉݅ݐ    = from ݊݋݅ݐܽݑݍ݁ ܴܵܦ                 % calculation of modeling time using DSR or ray 

௠௜௚ݓ    = ݁݀ݑݐ݈݅݌݉ܣ ݊݋݅ݐܽݎ݃݅ܯ ݎ݋ ܹ݁݅݃ℎݐ ݊݋݅ݐܿ݊ݑ݂
ݐ݅     =  to calculate the corresponding time sample %                            (ݐ݀/݁݉݅ݐ)ݎ݋݋݈݂

,ݐ݅)ࡰ    (݁ܿܽݎݐ݅ = ,ݐ݅)ࡰ (݁ܿܽݎݐ݅ + ,ݖ݅)ࡹ (ݔ݅ ∗ ௠௜௚ݓ
  End 

 End 

End 
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Table 3-4 Calculation of a prestack modeling matrix. 

Subroutine: ࢍ = ݈݃݊݅݁݀݋݉ ܿ݅݉ݏ݅݁ݏ  ݔ݅ݎݐܽ݉

For ݅݁ܿܽݎݐ =  ௧௥௔௖௘     % loop over tracesܯ ݋ݐ 1

 For ݅ݖ =  ௭ܰ                    % loop over depth samples ݋ݐ 1

  For ݅ݔ =  ௫ܰ                    % loop over CMPs ݋ݐ 1

݁݉݅ݐ    = from ݊݋݅ݐܽݑݍ݁ ܴܵܦ                 % calculation of modeling time using DSR or ray 

௠௜௚ݓ    = ݁݀ݑݐ݈݅݌݉ܣ ݊݋݅ݐܽݎ݃݅ܯ ݎ݋ ܹ݁݅݃ℎݐ ݊݋݅ݐܿ݊ݑ݂
ݐ݅     =  to calculate the corresponding time sample %                            (ݐ݀/݁݉݅ݐ)ݎ݋݋݈݂

   
݁ܿܽݎݐ݅)൫ࢍ − 1) × ݐ݊ + ,ݐ݅ ݔ݅) − 1) × ௭ܰ + =               ൯ݖ݅ ݁ܿܽݎݐ݅)൫ࢍ − 1) × ݐ݊ + ,ݐ݅ ݔ݅) − 1) × ௭ܰ + ൯ݖ݅ +  ௠௜௚ݓ

  End 

 End 

End 

 

To find the proper size and structure for ࢍ, I start with a very simple reflectivity model. 

The construction of the ࢍ matrix assumes a 2D Earth model with scatterpoints throughout the 

subsurface. Our example will consider only one scatterpoint with the amplitude of 1 located at 

the surface. Let’s consider a seismic source right on the top of this scatterpoint and eight 

receivers on both sides of the source, as shown in Figure 3.1.  

 

 

Figure 3.1 A simple model including one source (red triangle) on the top of a 
scatterpoint (blue circle) and eight receivers (green flags) on the surface. 

 

This model can be presented by a matrix ࢓:  

࢓  = ێێێۏ
0ۍێ 00 0 0 00 0 0 00 0 0 00 00 00 0 0 00 0

1 00 0 0 00 00 00 0 0 00 00 00 0 0 00 0
ۑۑۑے 
3.15 .ېۑ
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The scatterpoint with the amplitude of 1 is located at row #1 and column #5. For simplicity 

I show this model as a 1 by 1 matrix as ࢓෥ ଵ,ହ = [1]. Assuming a constant velocity background 

and ignoring any amplitude changes during wave propagation, the diffraction matrix for a 

scatterpoint at the #1 and column #5 of the model space, ࢍ෥ଵ,ହ, will have a diffraction hyperbola 

in eight traces and six samples per trace with an assumed sampling rate: 

෥ଵ,ହࢍ   = ێێێۏ
0ۍێ 00 0 0 00 1 0 00 0 1 00 00 11 0 0 00 0

1 00 1 0 00 00 00 0 1 00 10 00 0 0 00 0
ۑۑۑے 
3.16 .ېۑ

The data created with this geometry will produce a similar matrix, as illustrated in equation 

3.17: 

ଵ,ହࢊ  = ێێێۏ
0ۍێ 00 0 0 00 1 0 00 0 1 00 00 11 0 0 00 0

1 00 1 0 00 00 00 0 1 00 10 00 0 0 00 0
ۑۑۑے 
3.17 .ېۑ

Matrix ࢊଵ,ହ is the data resulting from only one scatterpoint at row #1 and column # 5. As was 

expected, the data resulting from this geometry have eight traces and six samples per trace. This 

is equal to spreading the amplitude of the scatterpoint along the flanks of a hyperbola. Therefore,  

෥ଵ,ହࢍ  = ଵ,ହࢊ . 3.18

The ࢍ matrix that created ࢊ is a multidimensional matrix which requires one diffraction for 

each scatterpoint. Multiplication of the modeling operator with the model should be 

mathematically possible and creates the data, 

෥ଵ,ହࢍ  ෥࢓ ଵ,ହ = ଵ,ହࢊ . 3.19

However, ࢍ෥ଵ,ହ and ࢊଵ,ହ are matrices of size ௧ܰ by ܯ௧௥௖, where ௧ܰ is the number of samples 

per trace and ܯ௧௥௖ is the number of traces, and ࢓෥ ଵ,ହ is a 1 by 1 matrix. The multiplication in 

equation 3.19 becomes possible by vectorizing the ࢍ෥ଵ,ହ and ࢊଵ,ହ matrices. In order to have ࢍ෥ଵ,ହ (or ࢊଵ,ହ) as a vector, ࢍ෥࢜ଵ,ହ (or ࢜ࢊଵ,ହ), we put column ݅ + 1 of ࢍ෥ଵ,ହ (or ࢊଵ,ହ) matrix below 

column ݅ of that matrix for all columns, 
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ଵ,ହ࢜෥ࢍ  =
ێێۏ
ێێێ
 ۍێێ

000001⋮100
 
ۑۑے
ۑۑۑ
3.20 ,ېۑۑ

and 

ଵ,ହ࢜ࢊ  =
ێێۏ
ێێێ
 ۍێێ

000001⋮100
 
ۑۑے
ۑۑۑ
3.21 .ېۑۑ

Now ࢍ෥࢜ଵ,ହ and ࢜ࢊଵ.ହ are column vectors with ௧ܰ  ×  ௧௥௖ elements and we can rewriteܯ

equation 3.19 as the following valid matrix-vector multiplication:  

෥࢓ ଵ,ହ࢜෥ࢍ  ଵ,ହ =
ێێۏ
ێێێ
 ۍێێ

000001⋮100
 
ۑۑے
ۑۑۑ
[1] ېۑۑ =

ێێۏ
ێێێ
 ۍێێ

000001⋮100
 
ۑۑے
ۑۑۑ
ېۑۑ = ଵ,ହ . 3.22࢜ࢊ

Now suppose that our model, which has ௫ܰ Elements in each row, has other scatterpoints 

in the first row, right below the first receiver as shown in Figure 3.2. 

 

 

Figure 3.2 Model includes one source (red triangle) and eight receivers (green flags), 
and two scatterpoints (blue circles) on the surface. 
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With the mentioned method of vectorization, the reflectivity for the second model with 

both scatterpoints looks like, 

෥࢓  ௩ଵ,: =
ێێۏ
ێێێ
10001000ۍێ

 
ۑۑے
ۑۑۑ
3.23 ,ېۑ

where ࢓෥  ଵ,: stands for the first row and all columns of the reflectivity model, in column࢜

vectorized form. Ignoring the first scatterpoint, which is below the source, the seismic data 

modeled from only the second scatterpoint look like this: 

ଵ,ଵࢊ  = ێێۏ
0ۍێێ 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 01 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 0

ۑۑے 
3.24 .ېۑۑ

Consequently, the modeling operator for the second scatterpoint in row # 1 and column # 

 :෥ଵ,ଵ, will beࢍ ,1

෥ଵ,ଵࢍ  = ێێۏ
0ۍێێ 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 01 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 0

ۑۑے 
3.25 ,ېۑۑ

or in vector form, 

ଵ,ଵ࢜෥ࢍ  =
ێێۏ
ێێێ
 ۍێێ

000100⋮000
 
ۑۑے
ۑۑۑ
3.26 .ېۑۑ

The data resulting from the presence of both scatterpoints in the same experiment is the 

sum of ࢊଵ,ହ (equation 3.17) and ࢊଵ,ଵ(equation 3.24): 
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:,ଵࢊ  = ێێێۏ
0ۍێ 00 0 0 00 1 0 01 0 1 00 00 21 0 0 01 0

1 00 1 0 00 00 00 0 1 00 10 00 0 0 00 0
ۑۑۑے 
3.27 ,ېۑ

where ࢊଵ,: represents data resulting from a seismic experiment on all scatterpoints in the first row 

of the model. To accomplish operator-matrix multiplication, as I did for the case of one 

scatterpoint, we need to do the following multiplication:  

:,෥ଵࢍ  ෥࢓ :,ଵ࢜ = :,ଵ࢜ࢊ , 3.28

where ࢍ෥ଵ,: is the corresponding modeling operator for all scatterpoints in the first row of the 

model, ࢓෥  ෥ଵ,: anࢍ ଵ,:. This is possible by definingࢊ ଵ,: is the vectorized form of࢜ࢊ ଵ,:, and࢜

௧ܰ  ×   :௧௥௖ by ௫ܰ matrix byܯ

:,෥ଵࢍ   = ଵ,ଵ࢜෥ࢍൣ ଵ,ଶ࢜෥ࢍ … ଵ,ହ࢜෥ࢍ … ଵ,୒౔࢜෥ࢍ ൧. 3.29

Then multiplication of ࢍ෥ଵ,: by ࢓෥  ଵ,: gives the data resulting from modeling of all points in࢜

the first row of the reflection matrix in equation 3.28. 

෥࢓ :,෥ଵࢍ  :,ଵ࢜ =
ێێۏ
ێێێ
ێێێ
ۍ
  

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0૚ 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 1 0 0 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮0 0 0 0 1 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 ۑۑے0
ۑۑۑ
ۑۑۑ
ې
 
ێێۏ
ێێێ
10001000ۍێ

 
ۑۑے
ۑۑۑ
ېۑ =

ێێۏ
ێێێ
 ۍێێ

000101⋮100
 
ۑۑے
ۑۑۑ
ېۑۑ = ଵ,: . 3.30࢜ࢊ

This is the result of the seismic experiment for the first row of model. Results of modeling 

other rows in the image domain must be added to the current data. The mentioned procedure can 

be extended to the other rows of the model by defining the modeling matrix for all elements in 

each row, and placing them next to each other, ࢍ = :,෥ଶࢍ :,෥ଵࢍ] … [ :,෥ே೥ࢍ = ଵ,ଵ࢜෥ࢍൣ ଵ,ଶ࢜෥ࢍ … ଵ,୒౔࢜෥ࢍ ଶ,ଵ࢜෥ࢍ ଶ,ଶ࢜෥ࢍ … ୒ౖ,୒౔ ൧, 3.31࢜෥ࢍ

where ௭ܰ is the number of rows in the model matrix.  

The model needs to be vectorized by the same method, 



61 

 

࢜࢓  =
ێێۏ
ۍێێ

෥࢓ ෥࢓:,ଵ࢜ ෥࢓⋮:,ଶ࢜ ۑۑے:,ே೥࢜
3.32 ,ېۑۑ

 is the stack of the data resulting from performing a seismic experiment on each row of the ࢜ࢊ

model: 

ࢊ  = :,ଵ࢜ࢊ + :,ଵ࢜ࢊ + … + :,ே೥࢜ࢊ . 3.33

Each column of the ࢍ represents a point in the migrated image. Therefore, matrix ࢍ 

includes ௧ܰ × ௧௥௖ rows and ௫ܰܯ  × ௭ܰ columns:  

ࢍ  = ௧ܰ×ܯ௧௥௖ ൦ ⋯0 0 0 0 1 0 0 0 0⋯ ൪ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥேೣ × ே೥
. 3.34

The result of multiplication of ࢍ, an ௧ܰ × ௧௥௖ by ௫ܰܯ  × ௭ܰ matrix, with ࢜࢓, an ௫ܰ  × ௭ܰ 

column vector, is ࢜ࢊ, an ௧ܰ ×  :௧௥௖ vectorܯ

࢜࢓ࢍ  = ࢜ࢊ  ⇒ ௧ܰ×ܯ௧௥௖  ቊ ቈ ⋯ ⋯⋯ ⋯⋯ ⋯ ⋯ ⋯⋯ ⋯⋯ ⋯ ቉ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥேೣ × ே೥
     ௫ܰ×ܰ௭ ۔ۖەۖ 

ێێێۏ ۓ
ۑۑۑے⋯⋯ ⋯⋯ۍێ

ېۑ =  ௧ܰ×ܯ௧௥௖  ቊ ቈ⋯⋯⋯቉. 3.35

The resulting ࢜ࢊ vector must be reshaped to show the data in conventional form. In 

MATLAB software, vectorization is done by the “݀ = ݀(: );” command and undone using the 

“reshape” function. In order to call a sample in the vectors ࢜ࢊ and ࢜࢓, it is useful to know that 

the sample number (݆ − 1) × ௜ܰ + ݅ in a vector is equal to sample (݅, ݆) in the corresponding 

matrix form, where ௜ܰ  is the number of rows.  

To calculate matrix ࢍ we must include modeling amplitude weights (instead of having just 

ones) and other parameters. Amplitude weights can be implemented in the ࢍ matrix by replacing 

the ones with proper amplitude weights. As seen in Table 3-3, weights are applied to the data in 

the most inner loop. Consequently, matrix ࢍ can be calculated only by going to the most inner 

loop and replacing the entries of ࢍ matrix by the calculated migration weights as seen in Table 

3-4.  
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3.2.3  Construction of the migration matrix in explicit form 

The transpose of the modeling matrix is the migration matrix, ࢀࢍ, and is explained as 

follows (Yousefzadeh and Bancroft, 2012b). Creating ࢀࢍ in matrix form follows the same rules 

that are used to create the ࢍ matrix, but in reverse order. For simplicity, assume one shotgather 

with one hyperbola in eight traces, each with six samples, as:  

ࢊ  = ێێێۏ
0ۍێ 00 0 0 00 2 0 00 0 2 00 00 22 0 0 00 0

2 00 2 0 00 00 00 0 2 00 20 00 0 0 00 0
ۑۑۑے 
3.36 .ېۑ

In order to perform Kirchhoff migration, all samples on this hyperbola (elements with a 

value of 2) must be added, and the result (8 × 2 = 16) placed on the apex of the hyperbola, in 

the position of row # 1 and column # 5 of the image domain. Let’s ࢍ෥ଵ,ହࢀ  be a transposed version 

of ࢊ, but with ones instead of the nonzero elements as seen in equation 3.37: 

ࢀ෥ଵ,ହࢍ   =  
ێێۏ
ێێێ
 ۍێ

0 00 0 0 00 0 0 11 00 00 1 1 00 0 0 00 01 00 1 0 00 0 0 00 00 00 0 1 00 1 0 00 0
 
ۑۑے
ۑۑۑ
3.37 .ېۑ

Index 1,5 in ࢍ෥ଵ,ହࢀ  means that I am looking for a migration operator for the scatterpoint at 

row # 1 and column # 5 of the model. Then, multiplication of ࢍ෥ଵ,ହࢀ  by ࢊ is possible and returns 

the following matrix: 

ࢀ෥ଵ,ହࢍ  ࢊ  =
ێێۏ
ێێێ
2ۍێ 00 2 0 00 00 00 0 2 00 2

0 00 0 0 00 00 00 2 2 00 0 0 00 0 0 00 20 00 0 2 00 0
2 00 2 0 00 00 00 0 2 00 2

 
ۑۑے
ۑۑۑ
3.38 .ېۑ

Summation of the diagonal elements of the ࡳ෩ଵ,ହࢀ  matrix is equal to the number that must ࢊ 

be entered into row # 1 and column # 5 in the migration image: 
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෥෡࢓  ଵ,ହ = ෍[݀݅ܽ݃(ࢍ෥ଵ,ହࢀ [(ࢊ = [16]. 3.39

This procedure is valid only for one hyperbola in data and one point in the image domain, ࢓෥෡ ଵ,ହ. Practically, we need a matrix to multiply to the whole data to get the desired migration 

image: 

ෝ࢓  ଵ,ହ = ࢀଵ,ହࢍ 3.40 ,ࢊ

where ࢓ෝ ଵ,ହ is the migration image at row #1 and column # 5. The data form a matrix with ܯ௧௥௖ 

traces, each trace in a column, and ௧ܰ samples per column. To do matrix multiplication in 

equation 3.40, ࢊ must be vectorized to ࢜ࢊ. To have the data as a vector, we put column ݅ + 1 of ࢊ below column ݅ for all columns as we did in the previous section: 

࢜ࢊ  =
ێێۏ
ێێێ
 ۍێێ

000002⋮200
 
ۑۑے
ۑۑۑ
3.41 .ېۑۑ

Consequently, ࢍ෥ଵ,ହࢀ , must also be a row vector. If we put all rows of ࢍ෥ଵ,ହࢀ  next to each other, 

the desired row vector is obtained: 

ࢀଵ,ହ࢜෥ࢍ  = [ 0 0 0 0 0 1 … 1 0 0 ]. 3.42

 Now, multiplication of ࢍ෥࢜ଵ,ହࢀ  by ࢜ࢊ, is equal to the summation along the diagonal elements 

of ࢍ෥ଵ,ହࢀ ࢀ෥ଵ,ହࢍ matrix in equation 3.38. Therefore, a calculation of the diagonal elements of the ࢊ  ࢊ

matrix is replaced by the multiplication of the row vector ࢍ෥࢜ଵ,ହࢀ  with the column vector ࢜ࢊ. This 

is equivalent to the summation of amplitudes along the flanks of the diffraction hyperbola: 
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෥෡࢓  ଵ,ହ = ࢀଵ,ହ࢜෥ࢍ ࢜ࢊ = [0 0 0 0     0 1 … 1 0 0]
ێێۏ
ێێێ
 ۍێێ

000002⋮200
 
ۑۑے
ۑۑۑ
ېۑۑ = [16] .  3.43

Vector ࢜ࢊ includes ௧ܰ  × ࢀଵ,ହ࢜෥ࢍ .௧௥௖ entriesܯ  is a vector with the same length. The result, ࢓෥෡ ଵ,ହ, is a number corresponding to one point in the image domain, at the hyperbola’s apex. In 

reality, there are ௫ܰ  × ௭ܰ possibilities for the position of hyperbola apexes. Therefore, if the row 

vector ࢍ෥࢜௜,௝ࢀ  is the migration of one point in the image domain at row # ݅ and column # ݆, then for 

each image point we have to have another row vector for ࢍ෥ࢀ. This is possible by adding 

additional rows to ࢀࢍ.  

If each row in the ࢀࢍ matrix represents a point in the migrated image, then ࢀࢍ will include ௫ܰ  × ௭ܰ rows and ௧ܰ ×  :௧௥௖ columnsܯ

 
܂ࢍ = ݖܰ×ݔܰ ێێێۏ

ۍ ⋯ 0 0 0 0 1 … 0 0 0⋯ ۑۑۑے
ې

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥே೟×ெ೟ೝ೎
. 

3.44

The result of multiplying ࢀࢍ, an ௫ܰ  × ௭ܰ by ௧ܰ  × an ௧ܰ ,࢜ࢊ ௧௥௖ matrix, withܯ  ×  ௧௥௖ܯ

vector, is an ௫ܰ  × ௭ܰ vectorized migration image 

࢜ࢊࢀࢍ  = ෝ࢓ ࢜  ⇒ ௫ܰ×ܰ௭  ቊ ቈ ⋯ ⋯⋯ ⋯⋯ ⋯ ⋯ ⋯⋯ ⋯⋯ ⋯ ቉ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥே೟ × ெ೟ೝ೎
     ௧ܰ×ܯ௧௥௖ ۔ۖەۖ 

ێێێۏ ۓ
ۑۑۑے⋯⋯ ⋯⋯ۍێ

ېۑ =  ௫ܰ×ܰ௭  ቊ ቈ⋯⋯⋯቉. 3.45

This vector must be reshaped as an ௫ܰ by ௭ܰ matrix to form the migrated image on an 

interpretable section. When vectorizing ࢜ࢊ, I put the seismic traces below each other by putting 

the second trace below the first one and the third trace below the second one and so on. If the 

same vectorization for the image, ࢓ෝ  ࢀࢍ is desired, it must be considered when constructing the ,࢜

matrix in advance. Each row in the ࢀࢍ matrix represents one sample in the image vector ࢓ෝ  By .࢜
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putting all rows corresponding to the first column of the image matrix below each other and then 

repeating this procedure for the next column of the image matrix, ࢓ෝ  is vectorized in the same ࢜

manner that ࢜ࢊ is vectorized. 

In the calculation of ࢀࢍ, migration weights and other migration parameters must be 

included. Weight can be added to the ࢀࢍ matrix by replacing ones with the proper amplitude 

scales. As the migration weights are applied to the data in the most inner migration loop, ࢀࢍcan 

be calculated by going to the most inner loop and replacing the ࢀࢍelements by the calculated 

migration weight. If instead of the DSR equation, a ray tracing program is used to calculate the 

migration time for each sample, this technique is extendable to prestack Kirchhoff depth 

modeling and migration. However, to add interpolation and antialiasing to the migration, the 

calculation of ࢍ and ࢀࢍ are more complicated. For example, in the case of adding linear 

interpolation, the calculation of ࢍ needs to be done with dividing the weight functions to two 

different adjacent samples in ࢍ as shown in Table 3-5.  

Table 3-5 Calculation of prestack modeling matrix with linear interpolation. 

Subroutine: ࢍ = ݈݃݊݅݁݀݋݉ ܿ݅݉ݏ݅݁ݏ  ݔ݅ݎݐܽ݉

For ݅݁ܿܽݎݐ =  ௧௥௔௖௘     % loop over tracesܯ ݋ݐ 1

 For ݅ݖ =  ௭ܰ                    % loop over depth samples ݋ݐ 1

  For ݅ݔ =  ௫ܰ                   % loop over CMPs ݋ݐ 1

݁݉݅ݐ    = from ݊݋݅ݐܽݑݍ݁ ܴܵܦ                 % calculation of modeling time using DSR or ray 

௠௜௚ݓ    = ݁݀ݑݐ݈݅݌݉ܣ ݊݋݅ݐܽݎ݃݅ܯ ݎ݋ ܹ݁݅݃ℎݐ ݊݋݅ݐܿ݊ݑ݂
ݐ݅     =  to calculate the corresponding time sample %                            (ݐ݀/݁݉݅ݐ)ݎ݋݋݈݂

   ݀௧ = 1 − ݐ݀݁݉݅ݐ +  ݐ݅

݁ܿܽݎݐ݅)൫ࢍ    − 1) × ݐ݊ + ,ݐ݅ ݔ݅) − 1) × ௭ܰ + ൯ݖ݅ = ݁ܿܽݎݐ݅)൫ࢍ − 1) × ݐ݊ + ,ݐ݅ ݔ݅) − 1)   ݃݅݉ݓ∗ݐ݀+ݖ݅+ݖܰ×

݁ܿܽݎݐ݅)൫ࢍ    − 1) × ݐ݊ + ݐ݅ + 1, ݔ݅) − 1) × ௭ܰ + ൯ݖ݅ = ݁ܿܽݎݐ݅)൫ࢍ − 1) × ݐ݊ + ݐ݅   ݃݅݉ݓ∗ݐ݀−1+ݖ݅+ݖܰ×1−ݔ݅,1+

  End 

 End 

End 
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3.2.4 Example of modeling and migration matrices 

As an example, suppose the assumed geometry includes only two sources, 10 receivers per 

source, 20 CMPs, 150 pseudo depth samples and our data has 250 time samples per trace. This 

geometry is shown in Figure 3.3, it appears to the velocity model shown in Figure 3.4. Modeling 

requires a 5000 by 3000 matrix, a relatively large matrix for such a small geometry and model. 

Non-zero elements of the ࢍ matrix are shown in Figure 3.5a and Figure 3.5b. Figure 3.5c and 

Figure 3.5d show the corresponding ࡳ matrix, modeling, in the presence of a Ricker wavelet. 

 Figure 3.6a and Figure 3.6b show the migration matrix, ࢀࢍ, for the same geometry and 

velocity model which is the transpose of Figure 3.5a and Figure 3.5b, respectively. 

 

 
Figure 3.3 Acquisition geometry defined for construction of the synthetic modeling and 
migration matrices. Geometry includes two sources and 10 receivers per source. Blue and 
red: sources and receivers positions for each seismic trace, positions of the image points are 
shown in green. 
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Figure 3.4 Interval velocity model used to construct the synthetic modeling and 

migration matrices.  
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a) b)

  

c) d)
Figure 3.5 Non-zero elements of a) matrix ࢍ, and c) matrix ࡳ, close-up of the first 500 

rows and 300 columns of b) ࢍ, and d) ࡳ matrices.  
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a) 

 
b) 

Figure 3.6 a) Non-zero elements of matrix ࢀࢍ, b) Close-up of the first 500 rows and 
300 columns. 

Figure 3.7 and Figure 3.8 show the inversion matrices ࢍࢀࢍ and ࡳࢀࡳ. Both matrices are 

large and dense with about 9 million elements for a small geometry and data set. These are the 

matrices that need to be inverted for finding the least squares prestack Kirchhoff migration.  
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a) 

 
b)

Figure 3.7 a) Non-zero elements of the Hessian matrix ࢍࢀࢍ, b) Close-up of the first 
300 rows and columns.   
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a) 

 
b)

Figure 3.8 a) Non-zero elements of matrix ࡳࢀࡳ, b) Close-up of the first 300 rows and 
columns. ࡳࢀࡳ is denser than the ࢍࢀࢍ matrix. 
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Figure 3.9 shows the ࢃࢀࢃ matrix. This is a semi-diagonal matrix. A 30 ݖܪ Ricker 

wavelet with 30 samples is used here. 

 
a) 

 
b) 

Figure 3.9 a) Non-zero elements of the first 500 rows and columns of matrix ࢃࢀࢃ, b) 
Close-up of the first 100 rows and columns. 
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3.2.5  Feasibility of working with the matrix forms 

When ࡳ and ࢀࡳ are available in matrix form, they can be used for solving the least squares 

prestack Kirchhoff migration. It seems easier to use the matrix form when we need to perform 

Kirchhoff migration and modeling several times. It is also more feasible to add some 

regularization to such kinds of inversion. However, ࡳ and ࢀࡳ are very large matrices. The size of ࡳ (or ࢀࡳ) is equal to the number of model grids multiplied by the number of data samples. For a 

10 km 2D seismic line with 75000 traces in 1000 CMPs, and each trace having 1000 samples, 

the size of ࡳ will be 75000 ×  1000 × 1000 ×  1000 = 7.5 × 10ଵଷ samples. This matrix 

needs 600 terabytes of computer memory to be saved in double precision format which is far 

from the memory size of current computers. The difficulty is even more severe if 3D data is 

being used. In addition to the size, the matrix ࡳ is not sparse enough to be saved and 

implemented using sparse techniques. Even considering it as a relatively sparse matrix, the 

Hessian, ࡳࢀࡳ, is a dense matrix.  

Matrix ࡳࢀࡳ is a symmetric matrix. Since entries of the ࡳ matrix are the migration weights, 

all non-zero entries of ࡳࢀࡳ are positive. Consequently, the ࢞ࡳࢀࡳࢀ࢞ matrix is positive for any ࢞ 

vector with positive elements. Therefore, ࡳࢀࡳ is a positive definite matrix. This property is 

important because it makes the LSPSM solvable by the LSCG method (Section 3.5). 

When all the off-diagonal elements of a square matrix are zero, it is called a diagonal 

matrix. A diagonal matrix is easy to invert since its inverse can be achieved by inverting the 

diagonal elements. A matrix is called strictly diagonally dominant if the magnitude of the 

diagonal element in each row is greater than the sum of the magnitudes of all other elements in 

that row: 

 |ܽ௜௜| > ෍หܽ௜௝ห௝ஷ௜ , 3.46

where ܽ௜௝ is the element at row ݅ and column ݆. Diagonally dominant matrices may be effectively 

inverted by Jacobi or Gauss-Seidel methods. In a ࡳࢀࡳ matrix, diagonal elements have relatively 

large magnitudes. However, the high density of the matrix and the presence of many non-

diagonal entries prevent this matrix for being diagonally dominant. Figure 3.10 shows the ratio 

of absolute values of the diagonal elements to the sum of the absolute values of nondiagonal 

entries for each row of the ࡳࢀࡳ matrix in the previous example. This and many other examples 
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show that the ࡳࢀࡳ matrix is a diagonally non-dominant matrix. It can be shown that adding some 

white noise or a reasonably large constant scalar to the diagonal elements of the ࡳࢀࡳ matrix does 

not change it into a diagonally dominant matrix. Size and structure of a ࡳࢀࡳ matrix cause 

solving the least squares Kirchhoff migration equation to be very expensive.  

 

Figure 3.10 The ratio of absolute values of diagonal elements to the sum of absolute values 
of the non-diagonal elements for each row of ࡳࢀࡳ. In a diagonally dominant matrix all 
values must be greater than one. 

 

3.3 Solving the LSPSM equation 

In equation 3.5, ࡳࢀࡳ is a Hessian matrix. For simplicity I may replace ࡳࢀࡳ with ࢊࢀࡳ ,࡭ 

with ࢈, and ࡿࡸ࢓ with ࢓ for ease of notation. Using this notation, equation 3.1 becomes 

࢓࡭  = 3.47 .࢈

Methods to solve equation 3.47 are placed in one of the two following main categories in 

linear algebra (Strang, 2006). Direct methods such as Gaussian elimination, which find the exact 

solution after a finite number of processes, and iterative methods, on the other hand, try to 

improve an initial estimation of ࢓ to obtain the best approximation to the exact solution. In the 

stationary iterations methods, for example Jacobi, convergence steps are applied after each 

iteration, while in the gradient methods, for example the Conjugate Gradient (CG) and Krylove 

methods, changes are applied within the iteration to find the solution faster (Strang, 2006). In the 
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LSPSM equation, the Hessian matrix, ࡳࢀࡳ, is a large matrix and cannot be solved using direct 

methods. The size of the ࡳ matrix equals the number of grid points in the reflectivity model 

multiplied with the number of observations (data samples). The size of ࡳࢀࡳ is the square of the 

number of grid points in the model. Direct methods are not practical or efficient in such cases. 

Iterative methods are applicable to this problem, but they are relatively costly in comparison to 

the migration cost. The following section focuses on reducing the LSPSM cost or improving the 

image resolution by using standard multigrid, multilevel, and different versions of the CG 

methods.  

The multigrid method is a fast and robust tool to solve an equation for finding both the low 

frequency and the high frequency content of the solution. In the multigrid method, an iterative 

solver such as Jacobi or Gauss-Seidel, which produces low frequency signal in residuals, is used 

to find a solution in a few iterations. By a restriction process, the main problem and the residuals 

in being transferred to a coarser grid, where the low frequency components act as a high 

frequency signal. The problem is solved in the coarse grid and then interpolated to a fine grid of 

the initial value for Jacobi iterations on the main problem. This procedure not only recovers the 

low frequency content of the solution more accurately, but also reduces the number of iterations 

on the main grid size and consequently the total computational cost.  

Multigrid method is “often dramatically successful” (Strang, 2006). The multigrid method 

is evaluated for solving the Kirchhoff LSPSM equation. This research showed that the Hessian 

matrix of the Kirchhoff LSPSM was not diagonally dominant, and the standard method of the 

multigrid method, which uses Jacobi and Gauss-Seidel iterations, is not effective. 

The multigrid method does not use CG methods as its iterative solver. I use a “multilevel” 

term when implementing iterative solvers rather than the Jacobi or Gauss-Seidel methods, for 

each grid size. The performance of LSCG (as an iterative solver for multilevel) is examined for 

some synthetic examples and the results are shown. Using the LSCG as an iterative solver for the 

multilevel slightly reduces the number of iterations for the same rate of convergence in the 

LSCG itself. Multilevel LSCG is effective when seismic data are split to chunks of different 

frequency bands where each chunk includes the frequency components of the lower frequency 

chunk. The advantage of using the Bi-Conjugate Gradient Stabilized (BiCGSTAB) method 

instead of LSCG method is also investigated. 
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An explanation of the multigrid method begins with the derivation of the Jacobi and 

Guess-Seidel methods in the rest of the section. Elements of multigrid algorithms are defined, 

and the feasibility of using multigrid methods on solving LSPSM equation is investigated. CG 

and some CG-like methods are reviewed, and the feasibility, advantages, and disadvantages of 

using multilevel LSCG method for solving LSPSM equation are discussed. 

 

3.4 Multigrid methods for solving the LSPSM equation 

The feasibility of using the standard multigrid method to solve LSPSM is explained in this 

section. It will be shown why the standard multigrid methods cannot be used to solve the LSPSM 

equation.  

If a problem is solvable by a multigrid method, it will be solved faster and with better 

recovery of the low frequency content than using the iterative solver only on the main grid. The 

ability of using the multigrid method to solve many types of partial differential equations more 

rapidly than the other iterative methods is demonstrated in Briggs et al. (2000).  

Using multigrid methods for solving seismic problems is neither new nor a common idea. 

Saleck et al. (1993) and Bunks et al. (1995) implemented a multigrid method to perform seismic 

waveform velocity inversion on the Marmousi data set. Their idea was to eliminate the local 

minima of the objective function by solving the problem on a coarser grid in order to guarantee 

convergence to the global minimum and to avoid possible local minima. They showed the 

effectiveness of the method in diminishing the local minima in the coarse grid. They claimed that 

the method is able to reduce the total computational cost of the inversion.  

The multigrid method is used to enhance the resolution of the seismic data by 

deconvolution (Millar and Bancroft, 2004), who also showed better recovery of the reflectivity 

and low frequencies using multigrid instead of the Gauss-Seidel method. However, they 

observed that the success of the method depends on the good estimation of the wavelet and also 

the frequency content of the data.  

Millar and Bancroft (2005, 2006) expressed the surface consistent statics as a matrix 

operation and used a multigrid method for solving the corresponding least squares equation. 

Using multigrid for this problem did not reduce the computational cost significantly. However, it 

improved the recovery of the longer wavelength static corrections in the data. 
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Plessix (2007) studied the effects of using multigrid cycles for the 3D frequency domain 

wave equation migration. He considered the result of using multigrid on the undamped wave 

equation at seismic frequencies as the preconditioner for the BiCGSTAB method. 

Yousefzadeh and Bancroft (2010a, 2010b) investigated the feasibility of using a standard 

multigrid method for solving the Kirchhoff LSPSM equation. They showed the reason which 

prevents the standard multigrid method from being an effective method to solve this inversion 

equation.  

Multigrid methods use one special property of the Jacobi and Gauss-Seidel methods, the 

smoothing property, to converge to the solution quicker, and with better recovery of the low 

frequency content of the solution. To understand the multigrid method, it is necessary to 

understand smoothing as used in the Jacobi and Gauss-Seidel methods.  

 

3.4.1  Methods of Jacobi and Gauss-Seidel 

In equation 3.47, ࢓࡭ =  is the unknown desired exact solution. Direct methods such ࢓ ,࢈

as Gaussian elimination give the exact solution after a finite number of operations. However, 

they are not efficient for systems with a large number of unknowns. Iterative methods start from 

an initial guess, ࢓଴, as an approximation to the solution, and then try to improve the 

approximation by minimizing the residuals, the difference between ࢓࡭௜ and ࢈ vectors, where ࢓௜ is the improved solution at the ݅௧௛ iteration. Jacobi is the simplest iterative method. The 

derivation and algorithm of the Jacobi method is well documented. I used the method and 

notation of Briggs et al. (2000), Saad (2003), and Strang (2006). The last two references are 

freely available on the World Wide Web. 

 Considering ࢜ as an approximation to the exact solution, ࢓, the algebraic error ࢋ is the 

difference between two vectors: 

ࢋ  = ࢓ − 3.48 .࢜

We desire to minimize ࢋ. Since ࢓ is unknown, ࢋ is not directly measurable from equation 

3.48. Residuals, an alternative measureable type of the error, may be used instead: 

࢘  = ࢈ − 3.49 .࢜࡭

Replacing ࢈ from equation 3.47 into equation 3.49, residuals can be expressed by:  

࢘  = ࢓࡭ − ࢜࡭ = ࢓)࡭ − (࢜ = 3.50 .ࢋ࡭
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Equation 3.50, ࢘ =  as an ࢜ is called the “residual equation” (Briggs et al., 2000). With ,ࢋ࡭

approximate solution, ࢘ is computed from equations 3.49 and 3.50. Solving the residual equation 

for ࢋ gives a new approximate solution using equation 3.48 in the form ࢓ = ࢜ +  Substitution .ࢋ

of the residual equation into equation 3.48 gives: 

࢓  = ࢜ + 3.51 ,࢘ଵିࡼ

where ࡼ ≅  ,.is a preconditioner matrix. This suggests iterations in the form of (Briggs et al ,࡭

2000):  

௞ାଵ࢜  = ௞࢜ + 3.52 ,࢘ଵିࡼ

where ݇ is the iteration number. In the Jacobi method, preconditioner ࡼ is the diagonal matrix of ࡼ ,࡭ =  and negative of ,ࡰ into a diagonal matrix ࡭ With this in mind, and splitting the matrix .ࡰ

summation of the strictly lower and upper triangular matrices, ࡸ and ࡭ ,ࢁ = ࡰ + ࡸ−) +  ,(ࢁ−

equation 3.47, with ࢜ as an approximation to ࢓, can be expressed as: 

࢜ࡰ  = ࡸ) + ࢜(ࢁ + 3.53 .࢈

Multiplication of both sides with ିࡰଵ leads to the following equation: 

࢜  = ࡸ)ଵିࡰ + ࢜(ࢁ + 3.54 .࢈ଵିࡰ

which suggests Jacobi iterations in the form of:  

௞ାଵ࢜  = ࡸ)ଵିࡰ + (ࢁ ௞࢜ + 3.55 .࢈ଵିࡰ

The advantage of choosing ࡰ, the diagonal matrix of ࡭, as the preconditioner is that the 

diagonal matrices are easily invertible. By definition of the Jacobi iteration matrix, ࡾ௃, as ࡾ௃ = ࡸ)૚ିࡰ +  :the Jacobi method can also be expressed by (Briggs et al., 2000) ,(ࢁ

௞ାଵ࢜  = ௞࢜௃ࡾ + 3.56 .࢈ଵିࡰ

The weighted Jacobi matrix is a modification to the Jacobi method which gives a constant 

weight to the diagonal matrix in the form of (Briggs et al., 2000): 

௞ାଵ࢜  = ((1 − ࡵ(ݓ + (௃ࡾݓ ௞࢜ + ,࢈ଵିࡰݓ 0 < ݓ < 2, 3.57

where ݓ is a real valued: weighting factor. By defining the weighted Jacobi iteration as ࡾ௪ =(1 − ࡵ(ݓ +   ,௃, the Jacobi method can be expressed by eitherࡾݓ

௞ାଵ࢜  = ௞ݒ௪ࡾ + 3.58 ,࢈ଵିࡰݓ

or, 
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௞ାଵ࢜  = ௞࢜ + ௞࢘ଵିࡰݓ . 3

.59

As shown in the next section, the weighted Jacobi method converges to the solution faster 

than the Jacobi method itself. The Jacobi algorithm updates ࢜௜, ݅ = 1,2, … , ܰ, at each iteration 

using the equation 

௜௞ାଵݒ  = 1ܽ௜௜ ۈۉ
௜ܾۇ − ෍ ܽ௜௝ ݒ௝௞ே

௝ୀଵ௝ஷ௜ ۋی
3.60 ,ۊ

(Saad, 2003), where ݅ is the component number of the ࢈ and ࢜ vectors. Starting from an initial 

value for ࢜଴, all components of ࢜௞ାଵare calculated in each iteration, then ࢜௞ is replaced by ࢜௞ାଵ. 

This procedure repeats until the desired convergence is achieved. 

Gauss-Seidel method is an improvement to the Jacobi method in which each component of ࢜ is replaced as soon as it gets updated (Saad, 2003): 

௜௞ାଵݒ  = 1ܽ௜௜ −ۇۉ ෍ ܽ௜௝ ௝௞ାଵ௜ିଵݒ
௝ୀଵ − ෍ ܽ௜௝ ௝௞ேݒ

௝ୀ௜ାଵ − ܾ௜ۊی , ݅ = 1,2, … , ܰ . 3.61

This procedure not only reduces the necessary memory requirement to keep all 

components of ݒ௞ାଵbefore updating, but also decreases the number of iterations for the same 

convergence rate. The speedup of Gauss-Seidel method might depend on the ordering of 

equations. By defining the Gauss-Seidel iteration by, ீࡾ = ࡰ) −  the Gauss-Seidel ,ࢁଵି(ࡸ

method is expressed in matrix form by: 

ࢂ  ← ீࡾ ࢂ + ࡰ) − 3.62 ,࢈ଵି(ࡸ

where “←” shows the replacement of elements.  

 

3.4.2  Jacobi convergence and the smoothing property  

The convergence of the Jacobi (and the Gauss-Seidel) iterations are guaranteed if the 

magnitudes of all eigenvalues of ࡾ௃ are less than 1 (Strang, 2006): 

 หߣ൫ࡾ௃൯ห < 1. 3.63
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The spectral radius of a matrix, ρ, is the maximum amount of its eigenvalues, ߩ൫ࡾ௃ ൯ ௃ ൯ࡾ൫ߩ ௃൯ห. Therefore, the Jacobi and the Gauss-Seidel methods converge whenࡾ൫ߣหݔܽ݉= < 1. 

The speed of convergence depends on the size of ߩ൫ࡾ௃ ൯. Smaller ߩ൫ࡾ௃ ൯ results in faster 

convergence to the solution (Strang, 2006). Equivalently, Jacobi and Gauss-Seidel converge to 

the solution if matrix ࡭ (in equation 3.47) is a diagonally dominant matrix. The fastest 

convergence (in one iteration) happens when ࡭ is a diagonal matrix.  

In order to explain the role of the Jacobi iterations in the multigrid method, consider as an 

example a system of equation 3.47 where ࡭ is the second difference matrix: 

࡭  =
ێێۏ
ۍێێ 2 −1 0−1 2 −1 ⋯0 −1 2⋮ 02 −10 −1 2 ۑۑے

3.64 .ېۑۑ

The Jacobi iteration matrix is: 

௃ࡾ  = 12 ێێۏ
ۍێێ 0 1 01 0 1 ⋯0 1 0⋮ 00 10 1 0 ۑۑے

3.65 .ېۑۑ

The eigenvalues of ࡭ are ߣ௝(࡭) = 2 − 2 ݏ݋ܿ ߠ where ,ߠ݆ = గேାଵ. Thus, ߣ௝൫ࡾ௃൯ ܫ൫ߣ= − 1 2ൗ ൯࡭  = ݏ݋ܿ ߠ݆ < 1 and convergence is guaranteed but it is very slow. For example if ܰ = 4, then ࡾ௃ has four eigenvalues as (Briggs et al., 2000): 

௃൯௝ୀଵ,ଶ,ଷ,ସࡾ൫ߣ  = ݏ݋ܿ 5ߨ , ݏ݋ܿ 5ߨ2 , ݏ݋ܿ 5ߨ3 , ݏ݋ܿ 5ߨ4 ቀ= ݏ݋ܿ− 5ቁ. 3.66ߨ

As observed, ignoring ߣ௝ୀସ, ߣs are larger for smaller angles. It means that the convergence 

is slower for the lower frequencies of the solution. This is a general property of the Jacobi 

iterations. When solving a problem with the Jacobi method, answers with higher frequency 

components are retrieved first. If the program terminates after just a few iterations, the solution 

contains mostly high frequency components of the final solution, and the residuals contain 

mostly low frequency components. 
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 Since some ߣs are close to 1, convergence of Jacobi iterations is relatively slow for this 

example. As seen in equation 3.66, |ߣଵ| =  ே|, which means that the convergences for theseߣ|

two low and high frequencies are equal. This is not very appropriate for a multigrid solver. 

Eigenvalues for the weighted Jacobi methods are 

(௪ࡾ)௝ߣ  = ௝ߣ ቆ(1 − ࡵ(ݓ + ݓ ൬ࡵ − 12 ൰ቇ࡭ = ௝ߣ ቀࡵ − 2ݓ ቁ, 3.67࡭

which can be expressed as: 

(௪ࡾ)௝ߣ  = 1 − ݓ + ݓ cos 3.68 .ߠ݆

Optimal damping for the high frequency content is obtained when ݓ = 2/3, (Strang, 

2006). For instance with ܰ =  ௪ has 4 eigenvalues asࡾ ,4

௝ୀଵ,ଶ,ଷ,ସ(௪ࡾ)ߣ  = 13 + 23 (cos π5 , cos 2π5 , cos 3π5 , cos 4π5  ) 3.69

 ≅ 0.8727, 0.5393, 0.1273, −0.2060.  

Higher values of the ߣs for the low frequency components makes the weighted Jacobi 

method, with ݓ = 2 3⁄ , a good smoother as the multigrid solver. Since weighted Jacobi 

eigenvalues are smaller than the Jacobi eigenvalues, the weighted Jacobi method converge faster 

than the Jacobi method.  

This “smoothing” property is shown in the following example. Consider the system of 

equation 

࢞࡭  = 3.70 ࢈

where ࡭ is the second difference matrix in equation 3.47, and ࢈ = [1 0 0 ⋯ 0 0 1]், with ݊ = 64. The trivial exact solution is ࢞ = [1  1 ⋯ 1  1]். Let’s apply the weighted Jacobi method 

with ݓ = 2/3 to solve this equation with ࢞૙௝ = 1 + ݊݅ݏ ቀ௝௞గ௡ ቁ , 0 ≤ ݆ ≤ ݊, 1 ≤ ݇ ≤ ݊ − 1, the 

Fourier modes with the frequency ݇, plus one, as the initial values.  

Figure 3.11a shows the convergence rate of the weighted Jacobi method for different initial 

values with ݇ = 1, 4, 16, and 64. By choosing an initial guess with higher frequency components 

(larger ݇s) the convergence to the solution is faster. The convergence rate is shown by error 

norm verses iteration number. The norm of the vector ࢋ usually expresses the error. The 

Euclidean norm or L2-norm, ‖ࢋ‖ଶ, of a vector ࢋ with ݊ elements is expressed by: 
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ଶ‖ࢋ‖  = ඩ෍ ௝݁ଶ௡
௝ୀଵ . 3.71

The maximum norm, ‖ࢋ‖ஶ, is defined as the largest absolute value of the vector elements: 

ஶ‖ࢋ‖  = หݔܽ݉ ௝݁ห.  3.72

The solutions corresponding to initial values with different frequency contents (݇s) after 50 

iterations are shown in Figure 3.11b. With higher frequency content in the initial value, the 

solution is closer to the exact solution, ࢞ = [1  1 ⋯ 1  1]். With ݇ = 64, the solution is good 

enough. It can be shown that the weighted Gauss-Seidel method behaves similarly. 

 

a) b) 
Figure 3.11 a) The Euclidean error norm versus the number of iterations for the weighted 
Jacobi iterations with different initial values to solve equation 3.70, b) Solutions after 50 
iterations. 

 

Suppose the initial guess is a superposition of all four Fourier modes, 

૙௝࢞  = 1 + 14 ൤݊݅ݏ ൬݆݊ߨ൰ + ݊݅ݏ ൬4݆݊ߨ൰ + ݊݅ݏ ൬16݆݊ߨ ൰ + ݊݅ݏ ൬64݆݊ߨ ൰൨. 3.73

The convergence rate for the weighted Jacobi iterations starting with this signal as the 

initial guess is shown in Figure 3.12a. The error norm rapidly decreases during the first four 

iterations. From the fifth iteration onwards, the convergence becomes slower. The fast decrease 

corresponds to the presence of the high frequency components in the initial value with the less 

rapid decrease of the error norm is due to the lower frequency components of the initial value 
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(Strang, 2006). Figure 3.12b shows the solution after 50 iterations. While with an initial guess 

with high frequency (Figure 3.11b), the solution comes very close to the exact solution, with an 

initial guess that is a combination of low and high frequencies, an acceptable solution is not 

achieved. Several more iterations are required to achieve a better solution. 

When the weighted Jacobi method solves for the high frequency components of a solution 

in the first few iterations, the residuals consist of mostly low frequency components. It is a 

smoother version of the residuals. For this reason, weighted Jacobi and Guess-Seidel methods 

are called smoothers. 

 

a) b) 
Figure 3.12 a) Convergence rate of the weighted Jacobi method when the initial solution is 
a superposition of both low and high frequencies to solve equation 3.70, b) Solution after 50 
iterations. 

 

3.4.3  Elements of the multigrid method 

The smoothing property of the Jacobi and Gauss-Seidel methods leads to the multigrid 

idea. In the multigrid method, an iterative solver, weighted Jacobi or Gauss-Seidel in general, 

produces a low frequency signal in the residuals after a few iterations of equation 3.47. By a 

restriction process (down sampling), the main problem and residuals are transferred to a coarser 

grid (scale), 2ℎ, where the low frequency components act as high frequency components. When 

a low frequency signal acts as high frequency signal, a solution can be recovered faster by Jacobi 

iterations. Solving the original equation with an initial starting point from both fine and coarse 
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grids in the fine grid ℎ, gives a solution which contains more low frequency components than 

when solving the equation with a vector of zeros as the initial guess (Strang, 2006). 

There are two processes in the multigrid method in order to transfer the problem to the 

coarser (2ℎ) or finer (ℎ) grids (Strang, 2006): multiplying by a restriction matrix, ࡾ௛ଶ௛, which 

transfers the problem from fine grid, ℎ, to the coarse grid, 2ℎ, and multiplying with an 

interpolation (or prolongation) matrix, ࡵଶ௛௛ , which transfers a problem back to the finer grid. 

Many interpolation methods may be used. Linear is the simplest effective method of 

interpolation for the multigrid method. Using any interpolation method, a restriction matrix can 

be obtained by equation (Strang, 2006), 

௛ଶ௛ࡾ  = 12 ଶ௛௛ࡵ) 3.74 .ࢀ(

As an example, a 1D linear interpolation matrix to transfer a vector ࢓ଶ௛ = [݉ଵଶ௛  ݉ଶଶ௛  ݉ଷଶ௛]் to a finer grid size has the following form: 

ଶ௛௛ࡵ  = 12 ێێۏ
ێێێ
1ۍ 0 02 0 01 1 00 2 00 1 10 0 20 0 ۑۑے1

ۑۑۑ
3.75 .ې

 Therefore, Interpolation to a finer grid will be performed as, 

ଶ௛௛ࡵ  ଶ௛࢓ = 12 ێێۏ
ێێێ
1ۍ 0 02 0 01 1 00 2 00 1 10 0 20 0 ۑۑے1

ۑۑۑ
቎݉ଵଶ௛݉ଶଶ௛݉ଷଶ௛቏ ې =

ێێۏ
ێێێ
ۍ ݉ଵ/2݉ଵ(݉ଵ + ݉ଶ)/2݉ଶ(݉ଶ + ݉ଷ)/2݉ଷ݉ଷ/2 ۑۑے

ۑۑۑ
ې

=
ێێۏ
ێێێ
ۑۑےଵ௛݉ଶ௛݉ଷ௛݉ସ௛݉ହ௛݉଺௛݉଻௛݉ۍێ

ۑۑۑ
ېۑ = ௛. 3.76࢓

The corresponding restriction matrix and its operation to transfer from a fine grid to coarse 

grid size are: 



85 

 

௛ଶ௛ࡾ 
ێێۏ
ێێێ
ۑۑےଵ௛݉ଶ௛݉ଷ௛݉ସ௛݉ହ௛݉଺௛݉଻௛݉ۍێ

ۑۑۑ
ېۑ = 14 ൥1 2 1 0 0 0 00 0 1 2 1 0 00 0 0 0 1 2 1൩ 

ێێۏ
ێێێ
ۑۑےଵ௛݉ଶ௛݉ଷ௛݉ସ௛݉ହ௛݉଺௛݉଻௛݉ۍێ

ۑۑۑ
ېۑ =  ቎ ෝ݉ଵଶ௛ෝ݉ଶଶ௛ෝ݉ଷଶ௛቏ = ෝ࢓ ଶ௛. 3.77

Interpolation and restriction processes on a 2D grid follow same roles as in 1D. The 

concept of interpolation and restriction are graphically shown in Figure 3.13. 

 

 

 

 2ℎ  ℎ 

Figure 3.13 Interpolation and restriction processes illustrated schematically on a 2D 
grid. 

 

Different types of multigrid methods are used in the mathematical literature. The v-cycle 

(with a lower case v) multigrid is the simplest. A v-cycle multigrid starts with a few (three for 

instance) iterations on the fine grid, then the error is transferred to a coarse grid by a restriction 

process, and iterations are performed on the coarse grid. Results being interpolated to the fine 

grid. The interpolated results are then used as the starting point in the weighted Jacobi method on 

the fine (main) grid.  

A v-cycle multigrid includes only two grids: a fine grid (with the size of the main problem) 

and a coarse grid (Figure 3.14 and Figure 3.15). Iterations (weighted Jacobi or Gauss-Seidel) 

start with zero as the initial model to solve the equation ࡭௛࢛௛ =  ௛ on the fine grid where ℎ࢈

corresponds to the size of main grid which is finest grid. After a few iterations, residuals to 

equation ࡭௛࢛௛ = ௛࢘ ௛, are calculated by࢈ = ௛࢈ −  ௛. Then, multiplication with the࢛௛࡭

restriction matrix converts ࢘௛ to the coarser grid ࢘ଶ௛, ࢘ଶ௛ =  ௛, where 2ℎ corresponds to the࢘௛ଶ௛ࡾ

Interpolation

Restriction
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first coarser grid with size equal to half of the fine grid size. Solving ࡭ଶ௛ࢋଶ௛ =  ଶ௛ onࢋ ଶ௛ for࢘

the coarse grid requires a few more iterations, and then the solution, ࢋଶ௛, must be interpolated to 

the fine grid as ࢋ௛, ࢋ௛ = ଶ௛௛ࡵ ௛࢛௛࡭ ଶ௛. Finally, iterations to solveࢋ =  ௛ starts with the improved࢈

initial value ࢛௛ +  ௛. A few iterations on this grid size return a solution which includes moreࢋ

low frequency components than would solving the equation with a zero vector as the initial after 

the same number of iterations (Strang, 2006; Briggs et al., 2000). 

 

 

Figure 3.14 Schematic v-cycle multigrid. The main problem is solved on the fine grid, and 
low-frequency residuals are restricted to the coarse grid used to solve equation in the 
coarse grid. Solution in the coarse grid is interpolated to the fine grid and improved the 
initial value for iterations on the main grid. 

  

Solve ࡭௛࢛௛ =  ௛࢛ ௛ to have࢈

Compute  ࢘௛ = ௛࢈ − ௛࢛ ௛ to have࢛௛࡭

Restrict  ࢘ଶ௛ =  ௛࢘௛ଶ௛ࡾ

Solve ࡭ଶ௛ࢋଶ௛ =  ଶ௛ࢋ ଶ௛ to have࢘

Interpolate ࢋ௛ = ଶ௛௛ࡵ  ଶ௛ࢋ

Compute  ࢛௛ = ௛࢛ + ௛ࢋ 

Solve ࡭௛࢛௛ = ௛ as the initial࢛ ௛ with࢈
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 ࢎ

 

 

 

૛ࢎ 

Figure 3.15 A v-cycle multigrid concept is shown on a 2D grid. 

 

The v-cycle is the simplest algorithm in the multigrid methods. Very low frequencies are 

still low in the coarse grid, 2ℎ. It is possible to calculate the residuals in the coarse grid, ࢘ଶ௛ ଶ௛࢘= −  ଶ௛, and restrict them into an even coarser grid 4ℎ and repeat the procedure to a veryࢋଶ௛࡭

coarse grid, ݊ℎ. This algorithm is known as V-cycle (note the capital V) multigrid (Figure 3.16 

and Figure 3.17). Consequently, the W-cycle algorithm performs more iterations on the coarser 

grids (Strang, 2006; Briggs et al., 2000) as seen in Figure 3.16. This method leads to a better 

recovery of the low frequencies than the V-cycle method. In the full multigrid (FMG), iteration 

starts on the coarsest grid, the solution is interpolated and used as the initial value for a grid that 

is one step finer. A v-cycle improves the result. Then, the result will be used for the one degree 

finer grid. A V-cycle improves this result and the process continues to arrive to the finest grid 

which is the size of the initial problem (Strang, 2006; Briggs et al., 2000). 
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Figure 3.16 A comparison between v-cycle, V-cycle, W-cycle, and full multigrid 
methods. 

 

To compare the advantages of using multigrid a method vs. the Jacobi method, consider 

the example in section 3.4.2. Equation 3.69 is solved by the full multigrid method with 25 

iterations on each grid. Figure 3.18a shows the convergence of the full multigrid method after the 

last 25 iterations on the main grid. Compared with the convergence rate in Figure 3.12a, it shows 

the advantage of using multigrid to the Jacobi method. Figure 3.18b compares the result of the 

Jacobi method after 50 iterations with the result of the full multigrid method. After 25 iterations 

in each grid, multigrid resulting a good approximation to the exact solution, ࢞ = 1, where the 

Jacobi method requires more iterations to return a good approximation to the real solution. The 

time spent in the coarse grids is very low in comparison to the time spent in the main problem 

(finest grid). Therefore, multigrid is cheaper than applying many Jacobi iterations to achieve the 

same solution in the main grid size. 

A V-cycle multigrid or full multigrid with 25 iterations on each grid is a little more time 

consuming than performing 50 Jacobi iterations. However, the Jacobi method requires many 

more iterations to arrive at the same solution as the multigrid solution.  
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ૡࢎ 
Figure 3.17 V-cycle multigrid concept shown on a 2D grid. 
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a) b) 

Figure 3.18 a) The residuals error norm versus the number of iterations is plotted for the 
last cycle of the full multigrid method. b) Comparison of the solution of the weighted Jacobi 
after 50 iteration with the solution of the full multigrid after 25 iterations on each grid. 

 

3.4.4  Feasibility of solving the LSPSM equation with standard multigrid  

The multigrid methods use weighted Jacobi or Gauss-Seidel as the smoother solver. In 

both solvers it is necessary to extract the diagonal elements of matrix ࡭ (in equation 3.47) and 

invert it. Therefore, it is necessary to have ࡭ (or ࡳࢀࡳ) in the explicit or matrix form. From this 

point of view, multigrid may increases the speed of convergence, but it significantly increases 

the required memory to load matrix ࡳ and to create matrix ࡳࢀࡳ. 

As shown in section 3.2.4, matrix ࡳࢀࡳ is a symmetric matrix with relatively higher values 

in the diagonal entries than the non-diagonal entries. However, the experience with the explicit 

form of ࡳࢀࡳ matrices for different patterns of seismic data acquisition shows the Hessians to be 

relatively dense matrices. The presence of relatively large entries in each row prevents diagonal 

entries from being dominant (larger than sum of absolute values of the non-zero elements). Since 

the matrix ࡳࢀࡳ is diagonally non-dominant, weighted Jacobi or Gauss-Seidel are not able to 

solve equation 3.1. Therefore, multigrid in its conventional formulation is not viable to solve the 

Kirchhoff LSPSM equation. 

 Many other approaches using multigrid methods in solving LSPSM equation may be 

considered. An alternative experiment applies the restriction operator several times on the matrix ࡳࢀࡳ and converts it to a very coarse matrix. Many synthetic examples show this experiment does 
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not change the diagonally non-dominancy of the matrix. In fact, the restricted matrix is denser 

than the original matrix. Therefore, the idea of transferring the problem from the main grid to a 

coarser grid, performing standard multigrid on the coarse grid, and using the interpolated result 

as the initial value for another iterative method such as CG, is not efficient in, or applicable to, 

these problems. 

Another possibility would be reducing the size of ࡳ (and ࡳࢀࡳ) by solving for each column 

of the reflectivity model at each time (݅ݔ = 1, … ,  ࡳࢀࡳ This procedure reduces the size of .(ݔܰ

from (ܰݔ × ଶ to only (1(ݖܰ ×  are numbers of model grid points in the ݖܰ and ݔܰ ଶ where(ݖܰ

horizontal (usually equal to the number of CMPs) and vertical directions, respectively. By 

inverting for each column separately and putting the resulting inverted columns next to each 

other, the inversion image could be achieved. This separation may only be valid when there are 

only horizontal velocity variations in the subsurface. However, many experiments show that the 

matrix ࢀ࢞࢏ࡳ  is not a diagonally dominant matrix and consequently not solvable by Jacobi or ,࢞࢏ࡳ

Gauss-Seidel methods. 

Therefore, the main precondition for the Kirchhoff LSPSM equation to be solvable by the 

standard solvers of the multigrid method is violated. As a result, at least in its standard definition, 

multigrid is not an effective method for solving the LSPSM problem.  

 

3.5 Feasibility of solving LSPSM with CG and multilevel CG methods 

Jacobi, Gauss-Seidel, and consequently standard multigrid methods are not applicable to 

solve the LSPSM equation. The CG method can handle the LSPSM equation. Since CG is not a 

multigrid solver, I used a multilevel solver for LSPSM equation in different data or model sizes 

with iterative methods other than the Jacobi or Gauss-Seidel solvers. CG methods are developed 

from the steepest descent method.   
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3.5.1  Steepest descent method 

Steepest descent and CG are probably the most efficient methods to solve a large system of 

linear equations of the form  

࢓࡭  = 3.78 ,࢈

where ࡭ is an ݊ by ݊ symmetric positive-definite sparse matrix, ࢓ is the unknown vector to be 

determined, and ࢈ is a known vector. The square matrix ࡭ is called positive-definite if for any 

non-zero column vector ࢓ with all entries real (݉ ∈ ℝ), the following inequality is valid: 

࢓࡭ࢀ࢓  > 0. 3.79

Consider the quadratic function of a vector ࢓ in the following form: 

(࢓)݂  = 1 2ൗ ࢓࡭ࢀ࢓ − ࢓ࢀ࢈ + ܿ, 3.80

where ࢈ is a vector with the same length as ࢓ and ܿ is a constant scalar. Since ࡭ is a positive-

definite matrix, ݂(࢓) has a paraboloid shape with a global minimum (Shewchuk, 1994). ࢓ is a 

vector of ݊ variables, and the gradient of ݂(࢓) is defined by, 

 ݂ᇱ(࢓) = ێێۏ
߲ۍێ ߲݉1ൗ ߲(࢓)݂ ߲݉2ൗ ߲⋮(࢓)݂ ߲݉݊ൗ ۑۑے(࢓)݂

ېۑ = 1 2ൗ ࢓ࢀ࡭ + 1 2ൗ ࢓࡭ − 3.81 .࢈

From linear algebra we know that the first derivative of a function gives the slope of the 

function at a certain point. Hence, ݂(࢓) can be minimized by setting ݂ᇱ(࢓) = 0:  

 1 2ൗ ࢀ࡭) + ࢓(࡭ − ࢈ = ૙. 3.82

Since ࡭ is symmetric, equation 3.82 reduces to ࢓࡭ = ࢓࡭ Therefore, the solution to .࢈ =  where the gradients are zero. Steepest ,(࢓)݂ is equivalent to finding the minimum of ࢈

descent and CG iterations find the solution to equation 3.78 by finding the minimum of the 

corresponding quadratic form. Starting at any arbitrary initial point ࢓௜, the steepest descent 

method chooses the direction opposite to the maximum gradient, – ݂ᇱ(࢓௜) = ࢈ −  decrease most quickly at each iteration (Shewchuk, 1994). Steepest descent algorithms (࢓)݂ ௜, in which࢓࡭

follow this direction until the gradient changes. Then the algorithm changes the direction to a 

direction which is orthogonal to the previous direction to find a new minimum. This procedure 
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repeats until the global minimum of the paraboloid is found. Briefly, steepest descent iterations 

include these three main steps (Shewchuk, 1994): 

Step one: A residual which measures how far the current solution is from the exact answer 

is computed. It also shows the direction of the steepest descent for the current iteration: 

௜࢘  = ࢈ − ௜ 3.83࢓࡭

Step two: Calculate how far the line search has to go in the direction specified in the 

previous step: 

௜ߙ  = ௜. 3.84࢘࡭ࢀ௜࢘௜࢘ࢀ௜࢘

Step three: Update the solution by adding the appropriate distance calculated in the second 

step at the direction specified in step one: 

௜ାଵ࢓  = ௜࢓ + ௜࢘௜ߙ . 3.85

The first two steps include matrix-vector multiplications and are responsible for the high 

cost of the steepest descent algorithm. 

 

3.5.2  CG and LSCG 

CG and steepest descent methods use the same first iteration. In the CG method (Hestenes 

and Stiefel, 1952), which is an improvement over the steepest descent method, the new direction 

is orthogonal to all previous directions. Therefore, the CG method converges to the solution in 

less iterations than the steepest descent method. To avoid returning to one of the previously 

chosen directions, the third step of the steepest descent method is replaced by, 

௜ାଵ࢓  = ௜࢓ + ௜ࢊ௜ߙ . 3.86

where ߙ௜ = ௜࢘ࢀ௜࢘ ⁄௜ࢊ࡭ࢀ௜ࢊ , is the step distance, and ࢊ௜, ݅ = 1, … , ݊, are a set of orthogonal search 

directions which are connected to the residuals by, 

௜ାଵࢊ  = ௜ାଵ࢘ + ௜ࢊ௜ାଵߚ , 3.87

where ߚ௜ = ࢀ௜ାଵ࢘ ௜ାଵ࢘ ⁄௜࢘ࢀ௜࢘ . 

The ratios of the extremal eigenvalues of ࡭ in equation 3.47 determine the convergence 

rate of the steepest descent method. The convergence rate of the CG method depends on the ill-

conditioning of the whole matrix. Convergence is slower for matrices with larger condition 

numbers (more ill-conditioned problems). Ignoring the accumulation of the computer floating 
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points roundoff errors, convergence of the CG method to the exact solution in at most ݊ 

iterations is guaranteed. From this point of view CG may be considered a direct method. 

Similar to the steepest descent method, the CG method requires that ࡭ be a symmetric and 

a positive definite matrix. However, it has most of the properties that an effective solver must 

have. Properties of the CG method include low memory space requirement, fast convergence to 

the solution, and the possibility of having access to the solution after each iteration (Hestenes and 

Stiefel, 1952). The original CG method advanced further to other improved types in order to 

speed up the convergence rate, eliminate the requirement of a positive definite matrix, generalize 

to complex systems, and solve nonlinear equations (for example see: Jacobs, 1986; Sonneveld, 

1989; Van der Vorst, 1992; Hanger and Zhang, 2006; and Vujicic, 2006). The CG method is an 

effective solver for sparse matrices and has been widely used for solving geophysical inversion 

problems (Wang and Treitel, 1973; Koehler and Taner, 1985; Gersztenkorn et al., 1986; Scales, 

1987).  

Since the matrix ࡳ is not square in general, the CG method is not directly applicable to 

solve the equation ࢓ࡳ =  Scales (1987) adapted Hestenes and Stiefel’s CG method to the .ࢊ

least squares conjugate gradient (LSCG) method to be able to solve the normal equation 3.1. The 

LSCG method does not require the explicit form of ࡭ (or equally ࡳࢀࡳ in equation 3.1) and 

directly works with the ࡳ and ࢀࡳ matrices (Scales, 1987). Since there is no decomposition of ࡳ 

or ࢀࡳ in the LSCG algorithm, it is possible to use operators instead of the multiplication of 

explicit forms of ࡳ or ࢀࡳ matrices with the vectors. By replacing the method of CG with LSCG, 

the multiplication of the matrices ࡳ or ࢀࡳ with vectors is replaced with applying forward 

(seismic modeling or de-migration) or adjoint (seismic migration) operators to the model or data, 

respectively. This procedure significantly reduces the required computer memory to load very 

large ࡳ and ࢀࡳ matrices, and also avoids large matrix-vector multiplications. An LSCG 

algorithm to solve ࡿࡸ࢓ࡳࢀࡳ =  .is shown in Table 3-6 ࢊࢀࡳ
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Table 3-6 LSCG algorithm to solve the Kirchhoff LSPSM equation. ࢓଴ = an initial guess or ࢓଴ = ૙  ࢙଴ = ࢊ − ଴࢘ ଴࢓ࡳ = ଴࢖ ଴࢙ࢀࡳ = ଴ࢗ ଴࢘ = ݅ ଴ for࢖ࡳ = 0: iterations limit 
௜ାଵߙ    = . ௜࢘ .௜ࢗ ௜࢘ ௜ࢗ  

௜ାଵ࢓   = ௜࢓ +  ௜࢖௜ାଵߙ
௜ାଵ࢙     = ௜࢙ −  ௜ࢗ௜ାଵߙ
௜ାଵ࢘    =  ↜↝ ௜ାଵ࢙ࢀࡳ

௜ାଵߚ    = . ௜ାଵ࢘ . ௜࢘௜ାଵ࢘ ௜࢘  

௜ାଵ࢖    = ௜ାଵ࢘ +  ௜࢖௜ାଵߚ
௜ାଵࢗ    =  ௜ାଵ ↭ endfor࢖ࡳ

 

There are two multiplications of ࢀࡳ and ࡳ matrices with vectors (lines marked by ↝↜ and ↭ symboles, respectively) at each iteration. Each iteration using LSCG has at least twice the 

computational cost of one migration (or modeling). For example, the time required by 10 

iterations in the LSCG is greater than the time required by 20 migrations. Nemeth et al., 1999, 

Duquet et al., 2000, and Yousefzadeh and Bancroft, 2012d used LSCG for solving the Kirchhoff 

LSPSM. Nemeth et al., 1999 inverted their Kirchhoff least squares migration normal equation 

using a preconditioned linear LSCG. I realized that after 10 to 15 iterations in the LSCG method, 

the resolution of the resulting LSPSM image is high enough for further seismic data analyses and 

data reconstruction. The reflectivity images in Chapter Two were obtained using the LSCG 

method. 

Each Kirchhoff prestack migration includes calculations and the application of the DSR 

equation, proper weight function, rho filter, antialiasing filter, crosscorrelation, and interpolation. 

In order to have a modeling operator which is exactly the adjoint of the migration operator, the 
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adjoint of all these steps must also be considered in the modeling. This procedure causes the 

modeling operator to be even more expensive than the migration operator. For instance, adding a 

triangle antialiasing filter to the migration operator makes the modeling operator twice as 

expensive as the migration operator. 

 

3.5.3  LSCG for solving a regularized LSPSM equation 

Equation 3.1 is the simplest form of the LSPSM since there is no regularization term 

involved. The LSCG algorithm in Table 3-6 can be easily extended to solve a regularized 

LSPSM equation without a requirement of creating large matrices. A minimum or Euclidian 

norm is the simplest form of a regularization function, ℛ(݉) =  ଶ, which make the inversion‖࢓‖

problem stable. It leads to the damped least squares solution, ࢓஽ௌ௅, by solving the following 

equation, 

ࡳࢀࡳ)  + ஽ௌ௅࢓(ࡵଶߤ = 3.88 .ࢊࢀࡳ

The LSCG method to solve equation 3.88 requires the system to be in the augmented 

matrix form: 

 ൤ ൨ࡵߤࡳ ஽ௌ௅࢓ = ቂࢊ૙ቃ. 3.89

Considering ൤ ൨ࡵߤࡳ = ૙ቃࢊෙ and ቂࡳ =  ,ෙ , equation 3.89 can be written asࢊ

஽ௌ௅࢓ෙࡳ  = ෙ. 3.90ࢊ

and solved using the LSCG algorithm as outlined in Appendix A. 

With the smoothing in the offset direction as the regularization term, ℛ(݉) =  ,ଶ‖࢓௛ࡰ‖

equation 

 ൫ࡳࢀࡳ + ௌௌ௅࢓௛൯ࡰࢀ௛ࡰଶߣ = 3.91 .ࢊࢀࡳ

must be augmented to 

 ൤ ௛൨ࡰߣࡳ ௌௌ௅࢓ = ቂࢊ૙ቃ. 3.92

Appendix B shows the LSCG algorithm for solving this equation. 
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3.5.4 BiCG Stabilized method for solving the LSPSM equation 

Since the condition number of the matrix ࡳࢀࡳ is the square of the condition number of the 

matrix ࡳ, the convergence speed of the LSCG method is significantly less than the convergence 

speed of the CG method (Shewchuk, 1994). The BiConjugate Gradient (BiCG) method 

(Appendix C) is an alternative to the LSCG method which does not alter the condition number of 

the matrix and converges to the solution as fast as the CG method does. BiCG was originally 

developed for solving equation 3.47 where ࡭ is not a symmetric matrix. However, BiCG is not 

applicable to LSPSM when we try to avoid using matrix forms of ࡳ and ࢀࡳ. This is due to the 

requirement of a multiplication of ࢀ࡭ with a model vector. Matrix ࡭ in the BiCG algorithm is 

equivalent to matrix ࡳࢀࡳ in equation 3.1. Multiplication of ࡳࢀࡳ with the vector, ࢓, for instance, 

is possible by forward modeling of ࢓ followed by the migration of the resulting data. However, 

since it is not possible to migrate the reflectivity model, ࢓, multiplication of ࢀࡳࡳ with ࢓ is not 

feasible using operator forms of the modeling and migration. 

The Conjugate Gradient Squared (CGS) method (Sonneveld, 1989) is an improved version 

of BiCG in which multiplication by ࢀ࡭ is avoided. Each iteration of CGS includes three 

multiplications of ࡳࢀࡳ with vectors, which means each iteration requires three runs of Kirchhoff 

modeling and three runs of a Kirchhoff migration. I propose the use of another alternative, the 

BiConjugate Gradient Stabilized (BiCGSTAB) method (Van der Vorst, 1992). BiCGSTAB is a 

modified version of CGS for non symmetric matrices and has faster and smoother convergence. 

Each BiCGSTAB iteration includes two multiplications of ࡭ to a vector, but there is no 

requirement of multiplying ࢀ࡭ to any vector (Appendix D). This property makes the BiCGSTAB 

method applicable to solve the LSPSM equation.  

LSPSM of the synthetic example solved by LSCG in Chapter Two is solved by 

BiCGSTAB for complete data. Figure 3.19 compares the convergence rates of the LSCG and 

BiCGSTAB methods for this problem. While the residuals decrease to 10% in 10 iterations in the 

LSCG method, they reach 10% in 4 iterations and as low as 2% in 10 iterations with the 

BiCGSTAB method. Four iterations in BiCGSTAB are roughly enough to achieve a high 

resolution image of the LSPSM. However, 60% fewer iterations with the BiCGSTAB method do 

not make this method 60% faster than the LSCG method. Each iteration in the LSCG method 

requires implementation of one modeling run and one migration run. BiCGSTAB, on other hand, 
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performs two modeling runs and two migration runs during each iteration which makes one 

BiCGSTAB iteration two times more expensive than one LSCG iteration. 

Fortunately, in the BiCGSTAB’s algorithm, each Kirchhoff modeling is instantly followed 

by a Kirchhoff migration on the modeled data. With some effort, it is possible to combine the 

Kirchhoff modeling and migration algorithms into a single combined algorithm which can act as 

the multiplication of ࡳࢀࡳ with the reflectivity model. This combined algorithm is significantly 

faster than applying two algorithms separately since it requires only one time calculation of some 

modeling/migration parameters such as migration times and weights. Considering the combined 

modeling-migration algorithm to be 50% faster than the separate algorithms, the BiCGSTAB 

method is roughly 40% faster than LSCG method to gives the same resolution in the LSPSM 

image. Another important advantage of using the BiCGSTAB method is that it requires less 

memory than the LSCG method. The LSCG method loads two data size, ܯ௧௥௖ × ௧ܰ, variables 

and three model size, ௫ܰ × ௭ܰ, variables simultaneously, into the computer memory. The 

BiCGSTAB method, on the other hand, holds one variable in data size and seven model sized 

variables in a computer memory. In a seismic experiment usually ௫ܰ ≪ ௧௥௖ and ௭ܰܯ ≈ ௧ܰ, 

therefore, the LSCG method occupies almost two times more computer memory than the 

BiCGSTAB method. This is a significant improvement when working with a 3D or a large 2D 

data set. 

 

Figure 3.19 Convergence rate of LSPSM in 20 iterations in the LSCG (solid line) and 
BiCGSTAB (dashed line) methods. 
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3.5.5 Multilevel CG methods versus CG methods 

LSCG and BiCGSTAB are very efficient methods to solve a linear LSPSM equation. After 

performing a few iterations with these methods, a high resolution image of the Earth’s 

subsurface reflectivity is achieved. Multigrid is a general method that solves an equation in 

different grid sizes using an iterative solver. In order to be effective, multigrid requires the 

iterative method to be a smoother when used as the solver. The smoother must be able to find the 

high frequency components of the solution and leave the low frequency components in the 

residuals after a few iterations. When multigrid is not effective using its standard iterative 

smoothers for a LSPSM equation, other iterative methods such as CG-like methods may be 

considered. 

However, the CG methods do not have a smoothing property which is the essential 

criterion for a multigrid method solver. In fact, the steepest descent and all CG-like methods are 

roughers and not smoothers (Shewchuk, 1994, Douglas, et al., 2003). Rougher solvers are able to 

recover the low frequency content of the solution slightly faster than the high frequency content. 

The residuals after the first few iterations consist of mostly high frequency components, a high 

oscillatory signal. The independence or slight roughness property of the convergence in CG 

methods to the frequency content of the solution is shown in the following examples. 

Consider solving equation 3.69 where ࡭ is the second difference matrix (equation 3.64) 

and ࢈ is a vector of random numbers where ܾ௜ ∈ [−1, 1], and ݊ = 64. Assume 0࢞௝ ݊݅ݏ= ቀ௝௞గ௡ ቁ , 0 ≤ ݆ ≤ ݊, 1 ≤ ݇ ≤ ݊ − 1, the Fourier modes with frequency ݇, as the initial value for 

the CG iterations. Since all its eigenvalues are positive (equation 3.66), matrix ࡭ is positive 

definite (see Appendix E for another proof). Therefore, the CG methods are able to solve 

equation 3.69 in at most ݊ iterations. Figure 3.20a shows the convergence in 10 iterations for 

initial values with different frequency content, ݇ = 1,4,8,16, 32,. There is no relationship 

between the rate of convergence and the frequency content of the initial value. Starting with any 

initial value, CG converges to the exact solution after at maximum ݊ iterations. Figure 3.20b 

compares the solutions for ݇ = 1 and ݇ =  32 after ݊ iterations to the true ࢞. Both solutions 

exactly match with the true ࢞. It seems that there is no advantage in using any initial guess other 

than a vector with zero elements for this equation. 
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a) b) 
Figure 3.20 a) The Euclidean norm error versus the number of iterations is plotted for the 
CG iterations with different initial values to solve the linear equation 3.70 with  ࢈ a random 
vector. b) Solutions after ࢔ iterations. 

 

This property is investigated for solving a LSPSM equation. Figure 3.21 shows the 

convergence rate of LSCG for the synthetic model of Figure 3.4, with wavelets having different 

dominant frequencies. There is no improved convergence when the wavelet (and consequently 

the data) has higher frequency content. It seems that the convergence of the CG method for any 

linear problem such as LSPSM does not depend on the frequency content of the data. A similar 

conclusion can be reached by solving LSPSM with smoothing in the offset direction as the 

regularization term.  

 

Figure 3.21 The convergence rate of the CG method for the LSPSM example in 
Chapter Two for data with different dominant frequency wavelets. 
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The roughness property of the CG is slightly visible when solving the LSPSM on the 

complex velocity model of the Marmousi data set. It is necessary to mention that the Kirchhoff 

time migration is not a proper method of migration for this geologically complex model. The 

Marmousi data set requires a depth migration method. However, subsurface imaging of the 

Marmousi data set is not the main goal of this study. Kirchhoff LSPSM on the Marmousi data set 

is used to investigate the roughness property of the CG method. Figure 3.22 shows the LSCG 

convergence rate of the Marmousi data set filtered by different band-pass filters. The 

convergence is not faster when using high frequency data. It seems that there is a slightly faster 

convergence for the very low frequency (less than 15 Hz) band of data which may be related to 

the roughness property of the CG method. 

 

 

Figure 3.22 The convergence rate of the LSCG method used to solve LSPSM for the 
filtered versions of the Marmousi data set. Data are band-limited with a low pass (<૚૞ࢠࡴ), two band pass ( ૚૞ࢠࡴ < ࢌ < ૜૙ࢠࡴ, and ૜૙ࢠࡴ < ࢌ < ૝૞ࢠࡴ), and a high pass 
(૝૞ࢠࡴ <  .filters (ࢌ

 

Since the CG method is a rougher, a multilevel CG method may not be effective in 

speeding up the LSPSM process. However, with the purpose of increasing image resolution, 

different approaches of applying multilevel CG to the LSPSM equation are investigated. There 

are at least three main approaches to applying a multilevel method to an LSPSM equation in the 

time and space domains. Restriction and interpolation of an LSPSM problem in the time and 

space domains can be applied in each, horizontal or distance, vertical or time, or both directions 

of the model in order to transfer a problem to a higher or lower grid size. As seen in the previous 
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section, since there is no change in the convergence rate for the lower frequency components of 

the data, applying multilevel LSCG in the vertical (time) direction does not improve the 

performance of the LSPSM. 

The analysis of using multilevel LSCG with restriction and interpolation in the (horizontal) 

distance direction is investigated by comparison between multilevel LSCG and LSCG methods. 

Restriction to a coarser grid is performed by decimating half of traces (keeping one trace and 

deleting the next) from the migration image in order to move to a coarser grid. Our study showed 

that there will not be any faster convergence or increment in image resolution by using 

multilevel LSCG with interpolation and restriction in the horizontal direction. Figure 3.23 

compares an image from multilevel LSCG with an image from LSCG. The improvement in the 

resolution of the multilevel LSCG image to the LSCG image is negligible.  

 

 

Figure 3.23 Comparison between a) multilevel LSCG and b) LSCG to solve 
regularized LSPSM of the Marmousi data set with 5 iterations on each grid. 

 

Since CG is a rougher, a new method of multigrid, reverse-v (Λ) cycle, may be considered. 

In this method, a problem may be solved in the main grid size and then, results which include 

mostly high frequency content are interpolated to a finer grid where high frequency content now 



103 

 

act as low frequency content. In this new grid size, the problem is solved and a restricted solution 

is added to the solution in the main grid size to be used as the new initial value in the main 

problem. 

However, this method is not effective in solving the LSPSM equation for two reasons: 

firstly, solving LSPSM in a grid finer than the main problem is very costly; secondly, as my 

example showed, the roughness property of CG is not as robust as the smoothness property of 

the Jacobi method. It seems that the convergence of the CG method is a little faster with an 

initial value with very low frequency content in the initial model. For moderate or higher 

frequencies, there is no clear relationship between the rate of convergence and the frequency 

content of the problem, at least for the aforementioned problems. I implement another alternative 

to take advantage of the rougher property of the CG methods by dividing the data to different 

levels of the temporal and spatial frequencies in a 2D frequency domain. 

 

3.5.6 Multilevel LSCG with spatial down-sampling of data 

The possibility of transforming seismic data from the time-space domain into the 

frequency-wavenumber domain and vice versa provides another method of splitting seismic data 

into the smaller grid sizes and applying multilevel LSCG for solving LSPSM equations. Instead 

of only splitting seismic data into the bands of temporal frequencies, Margrave et al. s’ (2006) 

method spatially resamples seismic data into different frequency and wavenumber bands with 

larger trace spacing in the lower temporal frequency bands. They claimed that this method 

increases not only the stability of their forward operator and conjugate inverse (FOCI) method, 

but also increases the total computational speed by decreasing the number of traces in the low 

frequency chunks. The second advantage makes this method of down-sampling attractive in a 

multilevel LSCG method to solve the LSPSM equation.  

Assume seismic data with Δݔ as the spatial sampling rate in the transverse coordinate to be 

band-limited, ߱ ∈ [߱௠௜௡ , ߱௠௔௫]. Data can be divided into ݊, ݊ ≥ 1, chunks of separate 

temporal frequency bands as (Margrave et al., 2006): 

 [߱௠௜௡ , ߱௠௔௫] = [߱௠௜௡ , ߱ଵ) ∪ [߱ଵ , ߱ଶ) ∪ … ∪ [߱௡ିଵ , ߱௠௔௫]. 3.93

Margrave et al. (2006) spatially resampled the trace spacing for the ݅௧௛ chunk, [߱௜ିଵ , ߱௜), 

from Δݔ to Δݔ௜ >   such that ݔ߂
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ே೔݇ ߙ  ≤ ݇௖௥௜௧ ≤ ߚ ݇ே೔ ߙ , < ߚ ∈ [0,1], 3.94

where ݇ே೔ = ߨ Δݔ௜ൗ  is the Nyquist wavenumber and ݇௖௥௜௧ = ߱ ௖௥௜௧ൗݒ , and ݒ௖௥௜௧ is the velocity that 

determines the highest evanescent boundary. Margrave et al. (2006) proposed that the lowest 

velocity is a good choice for ݒ௖௥௜௧.  

In order to avoid spatial aliasing due to incrementing the spatial sample size, an 

antialiasing filter should be applied to data to reject energy in the evanescent region while 

conserving energy in the wavelike regions. This can be implemented by defining a new Nyquist 

wavenumber for each chunk and zeroing data with greater wavenumbers. With ݊ spatial location 

before resampling, and ݉௜ wavenumbers after resampling, equation 

 Δݔ௜ = ݊݉௜ Δ3.95 ,ݔ

provides the spatial sample rate for ݆௧௛ chunk.  

By splitting seismic data into chunks of data with different temporal and spatial frequency 

bands, and using the roughness property of the CG methods, I found a relatively effective 

method for solving LSPSM. In this method, seismic data are separated into chunks of different 

frequency and wavenumber bands. LSPSM is performed on the chunk with the lowest frequency 

content (highest chunk number in this dissertation) and the result is being used as the initial value 

for the LSCG in the chunk with the next higher frequency content. The procedure continues to 

get to the first chunk. LSCG on the data starts with the result of the LSPSM from a high 

frequency chunk as the initial model. This method is not a type of multigrid because it does not 

benefit from the smoothing property of a solver. However, our experiments show better recovery 

of low frequency content of the solution using this method.  

The method is shown with the synthetic example in Chapter Two. With this method, the 

complete synthetic seismic data is spilt into nine frequency bands. Table 3-7 shows the 

specification of each chunk for shot #5. As seen in this table, chunks with lower frequency 

content have a lesser number of traces. Therefore, LSCG iterations are faster for higher chunk 

numbers. Figure 3.24 shows the chunking on the FK spectrum on shotgather number 5.  

I found the method to be effective when each chunk includes the frequency content of the 

next chunk (lower frequency chunk) and the energy of all traces in each chunk is normalized to 

the same level as the energy of the original seismic data before chunking. Therefore, I added the 
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frequency content of the higher chunk to the current chunk when transferring data from 

frequency-wavenumber domain to the time-space domain. Each resulting chunk of seismic data 

contains the frequency from 1.22 ݖܪ to the upper range in that chunk in Table 3-7. The FK 

spectrum and seismic data in chunks 1, 5 and 9 of shot # 5 is shown in Figure 3.25. 

 

Table 3-7 Frequency range, trace spacing, and the number of traces for each 

frequency band for the shot number 5. 

Chunk 
number 

Frequency range (Hz) 
Trace 

spacing (m) 
Number of traces in 

this shotgather Lower Upper 

1 38.3 100 15.6 96 
2 24.9 38.1 22.4 67 
3 16.1 24.7 33.3 45 
4 10.5 15.9 51.7 29 
5 6.84 10.3 71.4 21 
6 4.39 6.59 100 15 
7 2.93 4.15 136 11 
8 1.71 2.70 167 9 
9 1.22 1.46 214 7 
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Figure 3.24 Frequency spectrum of shot number 5 with 9 chunking areas.
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a) b) 

  

c) d) 

Figure 3.25 Frequency spectrum (a, c, and e) and corresponding data (b, d, f) for shot 
number 5 in chunks 1 (a,b), 5 (c,d), and 9 (e,f). Continued at the next page. 
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e) f) 

Figure 3.25. Continued. 

 

LSCG is performed on chunk 9, the very low frequency-wavenumber data, with only three 

iterations. The resulting image is used as the initial model for three LSCG iterations on data in 

chunk 8 (which include lower frequencies from chunk 9). Then the current LSPSM image used 

for the next chunk and procedure continues until chunk 1 includes all lower frequency chunks. 

Finally, the method performs two LSCG iterations on the original seismic data with the image 

from LSPSM of chunk 1 as the starting point. This procedure provides a higher resolution of the 

final image in comparison to LSPSM of data with zero as the initial model with the same number 

of LSCG iterations. 

 As an example, Figure 3.26 compares the LSPSM of data in chunk 2 when, a) the initial 

guess for the LSCG iterations is a zero vector, with b) the result when the initial model resulting 

from the LSPSM of higher chunk numbers. This comparison shows better recovery of the 

reflectivity when LSCG uses the previous chunk as the starting model. Figure 3.27 compares the 

convergence rate in the LSCG iterations with zero models as the starting point and models from 

lower frequency chunks as the starting point. Convergence is faster when LSCG’s starting point 

is not a zero vector. 
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Figure 3.28a shows the resulting image on data in chunk 9 after three LSCG iterations with 

zero as the starting model. Figure 3.28b to Figure 3.28i show the LSPSM of each chunk after 3 

iterations in the LSCG with the LSPSM from the previous chunk as the initial model. Finally, 

Figure 3.28j is the result of two LSCG iterations on data with the result from chunk 1 as the 

starting model. Figure 3.29 shows the LSPSM after eight LSCG iterations with zero as the initial 

model. Alternatively, Figure 3.28j is obtained achieved after only two LSCG iterations and 

shows a slightly higher resolution image than Figure 3.29 which is resulted from eight LSCG 

iterations.  

It is important to mention that the total cost for acquiring Figure 3.28j includes the time 

spent for LSCG on the chunks. Low frequency chunks have fewer traces, and LSCG iterations 

are faster on small data. The average time spent on one LSCG iteration in all chunks is 

approximately twice the time spent on the original data. Therefore, the total cost for the 

multilevel LSCG is eight times the cost of one iteration on data of the same size. It means that 

the total cost of the multilevel LSCG is approximately equal to the cost of LSCG with zero as the 

starting model. Multilevel LSCG’s cost can be lowered by reducing the number of chunks 

without altering the ability of the method in achieving a higher resolution image at the end. 

Images resulting from multilevel LSCG have a better resolution due to having more low 

frequency content from low frequency chunks. However, multilevel LSCG requires more 

computer memory for one to two additional data-size variables. 

The ability to attenuate acquisition footprint resulting from incompleteness or irregularities 

in seismic data sampling is the main advantage of using LSPSM instead of migration. Since in 

the multilevel LSCG division of data to the desired chunks is performed in the frequency 

domain, the method works better for regularly and densely sampled traces. Data irregularities or 

coarse sampling introduce artifacts into chunked data and prevents the method from being 

effective.  

To investigate the effectiveness of the method with coarsely sampled data, synthetic data 

used in this section is decimated by removing 5 6⁄  of the data regularly and an LSPSM on the 

rest of data is run with multilevel LSCG. Figure 3.30 shows the resulting image on chunk1, and 

on data when lower frequency chunks are being used as the initial model in three LSCG 

iterations. The resulting images are noisier than the images resulting after the same number of 

iterations of LSCG with a zero model as the starting point as shown in Figure 3.31. Therefore, 
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multilevel LSCG may not be effective when data sampling is very coarse and irregular. In such 

cases LSCG or BiCGSTAB methods with a zero model as the starting point are more efficient.
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a) 

 
b) 

Figure 3.26 Comparison between an LSPSM image with a) a zero initial model, and b) an 
image resulting from a lower frequency chunk as the initial model, after same number of 
LSCG iterations. 
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a) b) 

c) d) 

e) f) 
 

Figure 3.27 Comparison of convergence rates for the LSCG method when f) the starting 
model is zero, with the result from a higher chunk as the initial value for chunks a) 8, b) 6, 
c) 4, d) 2, and e) 1. 
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a) b)

c) d)
Figure 3.28 LSPSM images after three LSCG iterations, with the image resulting from a lower frequency chunk as the initial 

model. a), b), c), d), e), f), g), h), and i) correspond to chunk 9, 8, 7, 6, 5, 4, 3, 2, and 1, respectively. 
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e) f) 

g) h) 
Figure 3.28. Continued. 
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i) j) 

Figure 3.28. Continued. 

 

Figure 3.29 LSPSM images after eight LSCG iterations with zero as the initial model. 
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a) 

b) 
Figure 3.30 LSPSM images after three LSCG iterations on 84% regularly decimated data, 
a) in chunk 1 with the image resulting from a lower frequency chunk as the initial model, 
b) on data with the image resulting from chunk 1as the initial model. 
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Figure 3.31 LSPSM images after three LSCG iterations on 84% decimated data with 

zero as the initial model. 
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3.6  Summary and Conclusions 

Solving the LSPSM equation requires finding the solution to a large system of linear 

equations in the form of equation 3.1. 

A technique for creating Kirchhoff modeling, migration, and inversion matrices using 

Kirchhoff migration algorithm is shown. Construction of the modeling and migration matrices 

goes to the inner most loop of the Kirchhoff modeling or migration algorithms. Once calculated, 

migration and modeling can be easily repeated by just multiplying the matrix to a data vector. 

However, the migration or modeling matrix is too large, which makes it impractical to be used 

on any real data sets. The method of construction of the matrix form from an algorithm can be 

used to create matrices whose multiplications can replace the execution of the corresponding 

algorithms. 

Multigrid methods with their fast recovery of low frequency components of the solution 

are proven to be very successful in solving many PDEs. Numerical examples show that the 

LSPSM problem is not solvable by Jacobi or Gauss-Seidel iterations. Consequently, the standard 

multigrid method which uses Jacobi or Gauss-Seidel as iterative solvers is not applicable to the 

mentioned problem. The requirement of a large memory is another problem associated with this 

method. 

CG-like methods are effective solvers for this equation. LSCG and BiCGSTAB methods 

have the advantage of using operators instead of matrices. BiCGSTAB provides a faster and 

smoother convergence rate than the LSCG.  

The CG methods do not have a smoothing property. Therefore, using CG as the multigrid 

solver does not increase the convergence speed. Using multilevel LSCG combined with splitting 

seismic data in the frequency domain, slightly reduces the number of iterations for the same rate 

of convergence in comparison to the LSCG by introducing an initial low frequency value. It also 

provides a higher resolution LSPSM image for the same cost. For very irregularly and sparsely 

sampled data, LSCG and BiCGSTAB are appropriate choices. 
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Chapter Four: VELOCITY ANALYSIS OF INCOMPLETE DATA WITH LSPSM  

4.1 Introduction 

Industry moves to exploit smaller hydrocarbon resources in areas with complex geology to 

meet today’s energy demand. Hence, more advanced imaging techniques are required to provide 

a higher resolution of subsurface images. LSPSM is one of these methods. Any advanced 

imaging method requires relatively accurate velocity information. Extracting proper velocity 

information is a main step for proper subsurface imaging. In addition to imaging purposes, 

velocity information may be used for time to depth conversion and noise filtering. It also 

provides a good knowledge of hydrocarbon reservoirs and helps geological interpretations since 

it strongly depends on lithology, porosity, fluid content, temperature, and the degree of 

compaction of the underground rocks. 

 LSPSM creates a high resolution image of the subsurface reflectivity. In order to recover 

the unknown reflectivity, ࢓, in LSPSM, Kirchhoff modeling and migration operators, ࡳ and ࢀࡳ, 

must be defined as accurately as possible. These operators require a good estimation of the rms 

velocity to perform migration and modeling correctly. 

In this chapter, the dependency of the LSPSM method on velocity is investigated. I used a 

synthetic data set to study the effect of using an inaccurate velocity model on an LSPSM image, 

and its usability for data reconstruction. I show that the convergence of the LSPSM method to 

the desired solution depends on the accuracy of the implemented velocity model. It is shown that 

LSPSM is more dependent on the accuracy of the velocity information than conventional 

Kirchhoff migration. This is a major problem when replacing the migration with the LSPSM. 

Without a reasonably accurate background velocity, LSPSM does not converge to the desired 

solution, and is not able to improve the final image resolution.  

The high dependency of the LSPSM method on an accurate velocity model, and low 

sensitivity to incompletely or irregularly sampled data, makes this method effective for the 

velocity analysis of highly irregularly or incompletely sampled seismic data. In this chapter, I 

show how offset and shot domain common image gathers (CIG)s from LSPSM can improve the 

migration velocity analysis of very irregularly sampled data.  
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4.2 Migration velocity analyses 

Proper subsurface velocity information leads to a well-focused migration image whereas an 

inaccurate velocity model distorts the migration image. However, image distortions have some 

useful velocity information that can be used for modifying or updating the velocity model. 

The simplest method of velocity analysis is performed in the data domain. Data are sorted 

into common midpoint (CMP) gathers. Sorted CMP gathers are normal moveout (NMO) 

corrected several times using a plausible range of constant velocities. A correct velocity for an 

event results in flat events at that time. With a lower or higher implemented velocity, events will 

be over- or under-corrected, respectively. Flatness of the events can be used as a tool for finding 

the best velocity measurement at each time. The correct velocity at each time gives the maximum 

coherency at that time. Semblance is the most commonly used type of coherency measurement in 

an NMO corrected CMP gather, which can be calculated by,  

 ܵ = 1ܰ ∑ ൫∑ ܽ௜,௧(௜)ே௜ୀଵ ൯ଶ௧∑ ∑ ܽ௜,௧(௜)ଶே௜ୀଵ௧ , 4.1

where ܵ is the semblance, ܽ௜,௧(௜) is the amplitude of the ݅௧௛ trace in the gather at time ݐ(݅), and ܰ 

is the number of traces that contributes to the measurements. With this equation, semblance is 

the energy of the stack normalized by the energy of the components of the stack (Sheriff, 2006). 

By calculating semblance at each time and for a range of constant velocities, a semblance 

panel is obtained. In this panel, the horizontal axis is the velocity, and the vertical axis represents 

the two way traveltime. By choosing the maximum semblance at each time, the best velocity for 

that time in the corresponding CMP position is achieved. Yilmaz (2008) mentions a complete list 

of other methods of coherency measurements which may be useful in velocity analysis. 

NMO correction and semblance analysis assume having only horizontal reflectors. With 

dipping events, these methods give a higher velocity, referred to as the stacking velocities. 

Stacking velocity is related to the rms velocity by 

 ௦ܸ = ௥ܸ௠௦ܿݏ݋ ߚ , 4.2

where ௦ܸ and ௥ܸ௠௦ are stacking and rms velocities, respectively, and ߚ is the real (geologic) dip 

of the subsurface reflector (Bancroft, 2007). With horizontal reflectors, rms velocity is equal to 

the stacking velocity. Consequently, with the rms velocity, NMO correction is not able to flatten 
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dipping events. Velocity analysis on the image domain instead of the data domain can be used 

with dipping layers to estimate the rms velocity. 

Migration velocity analysis can be implemented by performing migration with a range of 

constant velocities to create many migration images. Then, searching for the best focusing of the 

image, a migration velocity function can be found. In a more efficient method, velocity analysis 

can be performed by measuring coherencies on each migration CIG after migrating data several 

times with a range of constant velocities. 

Prestack Kirchhoff migration of 2D data produces a migrated section with two spatial 

coordinates, horizontal distance, ݔ, and pseudo depth or time, ߬. It is possible to divide the 

integration of Kirchhoff migration into a few subsets of different recording offsets (and azimuths 

in 3D). The result will be a cube (or hypercube, 4D) and each section is a “prestack partial 

image” as it is called after Biondi (2007). A CIG or Common Reflection Point (CRP) refers to a 

part of the image that corresponds to a specific subsurface location. 

Offset domain CIGs are similar to CMP gathers after NMO correction. However, in CIGs, 

the focused energy is migrated and comes from the area below the CMP position. Hence, CIGs 

are more effective than the data domain CMP gathers for velocity estimation of the dipping 

layers. Velocity analysis based on the semblance method can be extended to the migration 

velocity analysis on the offset domain CIGs.  

There are three common types of CIGs. The offset domain CIG is probably the easiest one 

to produce and to work with. In the offset domain CIG, the horizontal axis is the absolute source-

receiver distance. In the angle domain CIG, the horizontal axis shows the incident angle 

parameter. In the shot domain CIG, the distance between image point and source is the 

horizontal axis. In all CIGs the vertical axis is the two way traveltime. Both, offset domain and 

shot domain CIGs can be easily created using prestack Kirchhoff migration. The focus in this 

thesis is on the offset domain CIGs and shot domain CIGs. I show the effect of inaccuracy in 

velocity information on the migration and LSPSM images and CIGs. Then, the relative 

advantages of using CIGs from LSPSM instead of CIGs from migration for velocity analysis are 

shown. 
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4.3 Effect of the velocity accuracy on the LSPSM 

The high sensitivity of the LSPSM to the accuracy of the velocity model can be used as a 

tool for measuring the accuracy of the velocity (Yousefzadeh and Bancroft, 2012d). With a 

synthetic example I show how a minor inaccuracy in the implemented velocity model leads to a 

poor resolution of the LSPSM image and data reconstruction. Good data reconstruction requires 

an accurate velocity model. The convergence rate of the LSCG is another parameter to determine 

if the estimated velocity is accurate enough. I show that the best velocity model is the model that 

gives the least residuals in data reconstruction and optimal convergence in a few LSCG 

iterations. 

I use a synthetic data set to evaluate the effect of the accuracy of the velocity model on the 

LSPSM method. I compare the resolution enhancement, the ability to reconstruct data, and the 

convergence rate, in the LSCG method for LSPSM by using an exact velocity model and a 

wrong velocity model. Consider the acquisition geometry shown in Figure 4.1, and the velocity 

model shown in Figure 4.2. The geometry assumes having 16 sources and 200 receivers per 

source. The source interval is 250 m and the receiver interval is 5 m. There are 201 image points 

with a 15 m interval on a 3 km 2D line. The velocity model includes both horizontal and dipping 

layers, and a fault. The interval velocity varies between 1600 ݉/ݏ and 4160 ݉/ݏ. After 

producing synthetic data for the model, one percent random noise is added to the data. The data 

are migrated and LSPSM-ed using the exact velocity model. I used the LSCG method with 10 

iterations to solve the inversion equation. I then compare the result of using the exact velocity 

model with the result of using the wrong velocity model. 

 

4.3.1 Effect on the resolution enhancement 

The result of migration and LSPSM using the exact velocity model are shown in Figure 4.3 

and Figure 4.4, respectively. All data are used in these processes and both, migration and 

LSPSM images, are a good depiction of the reflectivity model. LSPSM has higher resolution in 

the shallow part, and the fault is sharper. The result coincides with our expectation from 

implementing an LSPSM. 
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Figure 4.1 Geometry of seismic data modeling, includes 16 sources and 200 receivers per 
source. Blue and red: sources and receivers positions for each seismic trace, positions of the 
image points are shown in green. 

 

Figure 4.2 Interval velocity model used for studying the effect of velocity errors on LSPSM. 
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Figure 4.3 Migration of data with the exact velocity. 

 

 

Figure 4.4 LSPSM image of data with the true velocity. 
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The data are then migrated with a velocity that is 5% higher than the true velocity, and the 

resulting image is shown in Figure 4.5. LSPSM using the same data and a 5% higher velocity is 

shown in Figure 4.6. Comparing these two figures shows that the migration images are less 

affected by the wrong velocity than the LSPSM. LSPSM with inaccurate velocity not only does 

not improve the resolution of the reflectivity image in comparison to migration, but it also seems 

to have introduced more artifacts and noise into the image. 

 

 

Figure 4.5 Migration of data with the 5% higher than the true velocity. 
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section. The resulting LSPSM images have been used for data reconstruction. Figure 4.7 is a test 

example that shows the first 50 traces from the fifth shot. Panels a, b, and c show the original 

data, reconstructed data, and residual, the difference between original and reconstructed data, 

respectively, when the exact velocity model is used. What remained in the residual panel is 

mostly the random noise that I added to the synthetic data, and a ghost of low amplitude 

reflection events. 

Figure 4.8 show data reconstruction when I used a velocity 5% higher than the true 

velocity in LSPSM. The first 50 traces from fifth shot are shown in this figure. Panels a, b, and c 

show the original data, reconstructed data, and the difference between original and reconstructed 

data, respectively. 

 

 

Figure 4.6 LSPSM of data with the 5% higher than the true velocity. 
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a) b) 

 

c) 
Figure 4.7 Reconstruction of data by LSPSM. Complete data are used and the 

velocity model is exact. a) original data, b) reconstructed data, and c) residuals. 
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a) b) 

 

c) 
Figure 4.8 Reconstruction of data by LSPSM. Complete data are used and the velocity is 
5% higher than the true velocity. a) original data, b) reconstructed data, and c) residuals. 
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Panel c in Figure 4.7 indicates a very good reconstruction of data. The error in Figure 4.8c 

shows that the data reconstruction was not successful because of using a velocity 5% higher than 

the true value. This is due to the high sensitivity of LSPSM to the accuracy of the velocity 

information. The same result is achieved when using a velocity which is lower than the true 

velocity. This provides another tool to measure the accuracy of the velocity model used in 

seismic imaging. An acceptable velocity model should be able to reconstruct data with high 

accuracy. 

 

4.3.3 The convergence rate of LSCG 

LSPSM’s resolution enhancement and data reconstruction fails with an inexact velocity 

model as shown in the previous sections. I realized that the wrong velocity also affects the 

convergence rate of the LSCG method. As mentioned in Chapter Two, the convergence rate is 

the relative Euclidean norm of the difference between the observed data and the synthetic data 

obtained after each iteration of an iterative method. 

 Figure 4.9 shows the convergence rate of the LSCG method for the synthetic examples in 

the previous sections. Using the exact velocity, the residual converges to 10% in four iterations. 

However, the convergence will not go down to less than 50% with a 5% higher velocity, and to 

65% with a 10% higher velocity. As the velocity moves farther from the exact velocity, the 

convergence gets slower, and the convergence value gets larger. I define an acceptable velocity 

model when the convergence rate in about 60% in a few iterations with real data. 

Therefore, the improvement in image resolution, the ability of data reconstruction, and the 

quality of the LSCG’s convergence rate are three important factors that can be used to check the 

accuracy of a velocity model. In the reminder of this chapter, I extend the velocity analysis on 

the migration CIGs to the LSPSM CIGs where I expect higher resolution in the LSPSM CIGs 

due to the higher sensitivity of the LSPSM to the velocity. I will show this method to be very 

effective when data are highly decimated. 
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Figure 4.9 Normalized convergence rate of the LSCG method in 10 iterations, with 
true, and a 5% higher velocity model. 

 

4.4 Velocity analysis on LSPSM offset domain CIGs 
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1.58 s). LSPSM CIG is noisier with the implementation of the wrong velocity. The higher 

resolution of the offset domain CIGs from LSPSM, compared to migration, makes them 

attractive for correcting the velocity. 

I extended the idea of using migration CIGs for velocity analysis to the LSPSM CIGs of 

incomplete data. Therefore, instead of performing constant velocity migration, I do constant 

velocity LSPSM on the offset binned data and produce a semblance spectrum for each LSPSM 

CIGs (Yousefzadeh et al., 2011, 2012). 

 

 
a) b)

Figure 4.10 Migration offset domain CIG at ࢞ = ૛૝૛૛ ࢓ with the a) true velocity and 
b) with a 5% higher velocity. 
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a) b)

Figure 4.11 LSPSM offset domain LSPSM CIG at ࢞ = ૛૝૛૛ ࢓, a) with the true 
velocity and b) with a 5% higher velocity. 
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a) b) 

Figure 4.12 Semblance spectrum from CMP gathers at a) ࢞ = ૛૝૛૛ ࢓ and b) ࢞ = ૜ૢ૛૛࢓ using 10% of regularly selected data. 

 

  
a) b) 

Figure 4.13 Migration offset domain CIG semblance spectrum at a) ࢞ = ૛૝૛૛ ࢓, and 
b) ࢞ = ૜ૢ૛૛࢓ with 10% of regularly selected data. 
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a) b) 

Figure 4.14 LSPSM offset domain CIG semblance spectrum at a) ࢞ = ૛૝૛૛ ࢓, and 
b) ࢞ = ૜ૢ૛૛࢓ with 10% of regularly selected data. 
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the number of shot points. The number of sources for a 2D seismic line can be a relatively large 

number, therefore, I limited the number of traces in the shot domain CIGs by binning the 

maximum source to image point distance to a reasonably small number. The number of bins 

depends on the maximum shot to image point distance, source interval, and the complexity of the 

area. The best choice for the number of bins is when there are between two to five shot points 

stacked into one CIG bin. 

For all analyses in this section, the synthetic data is created with the acquisition geometry 

and the velocity model in section 4.3. The geometry includes 16 sources, then 8 is a reasonable 

number for binning the source image point distance. Binnig to the higher number introduces 

some artifacts to the migration of each bin. With this binning, and using the complete data set, 

migration and LSPSM are performed. 

Figure 4.15 shows two migration shot domain CIGs in the surface positions ݔ = 2422݉ 

with the exact velocity implemented (a) and with 10% higher than true velocity (b). Figure 4.16 

shows two LSPSM shot domain CIGs from the same position and when the exact velocity is 

used (a) and with a 10% higher than true velocity (b).  

 

  
a) b) 

Figure 4.15 Migration shot domain CIGs at position ࢞ = ૛૝૛૛ ࢓, a) using the exact 
velocity and b) using a velocity 10% higher than the exact value. 
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a) b) 

Figure 4.16 LSPSM shot domain CIGs at position ࢞ = ૛૝૛૛ ࢓, a) using the exact 
velocity, and b) using a velocity 10% higher than the exact value. 
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a) b) 
Figure 4.17 Migration shot domain CIG semblance spectrum at a) ࢞ = ૛૝૛૛ ࢓, and 

b) ࢞ = ૜ૢ૛૛࢓, with 10% of the data. 

 

a) b) 
Figure 4.18 LSPSM shot domain CIG semblance spectrum at a) ࢞ = ૛૝૛૛ ࢓, and b) ࢞ = ૜ૢ૛૛࢓, with 10% of the data. 
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The achieved semblance panels are noisy, and there is no clear contrast to choose the best 

velocity at each time. This is due to the strong incoherency of shot domain CIGs when the 

incorrect velocity is used. Fortunately, there are other methods of coherency measurements for 

velocity analysis. I found that the unnormalized crosscorrelation sum, (XC), is an effective 

quantity for measuring the coherency in the shot domain migration and LSPSM CIGs. XC is 

defined by, 

ܥܺ  = 12 ෍ ቊ൤෍ ܽ௜,௧(௜)ே௜ୀଵ ൨ଶ − ෍ ܽ௜,௧(௜)ଶே௜ୀଵ ቋ ,௧  4.3

where ܽ௜,௧(௜) is the amplitude of the ݅௧௛ trace at time ݐ(݅) and ܰ is the number of traces that 

contributes to the measurements in a defined window (Yilmaz, 2008). Yilmaz (2008) interprets 

XC as “half the difference between the output energy of the stack and the input energy”. 

Figure 4.18 shows the XC spectrum for the migration shot domain CIG at the surface 

positions ݔ = 24220݉ and ݔ = 3922݉, when 90% of data are regularly decimated. A 

comparison of Figure 4.16 and Figure 4.18 shows the relative effectiveness of using XC instead 

of semblance for velocity analysis on the shot domain CIGs. 

Figure 4.20 shows the XC spectrums for the LSPSM shot domain CIGs at the same 

positions when only 10% of the data are used. The improvement in the XC resolution for 

velocity analysis by using LSPSM shot domain CIGs instead of migration shot domain CIGs is 

noticeable. 

Using the LSPSM shot domain CIGs XC spectra I extracted three velocity functions at the 

left, middle, and right edge of the model as shown in Figure 4.21. These figures show a good 

agreement between the true rms velocity (solid line) and the analyzed rms velocities. Figure 4.22 

compares the true rms velocity with the extracted velocity. The extracted velocity is very close to 

the true velocity. However, it is not possible to reveal the effect of the Fault in the model.  



139 

 

a) b) 
Figure 4.19 Migration shot domain CIG XC spectrum at a) ࢞ = ૛૝૛૛ ࢓, and b) ࢞ = ૜ૢ૛૛࢓, with 10% of the data. 

 

a) b)
Figure 4.20 LSPSM shot domain CIG XC spectrum at a) ࢞ = ૛૝૛૛ ࢓, and b) ࢞ = ૜ૢ૛૛࢓ with 10% of the data. 
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a) b) c) 

Figure 4.21 Comparison between the true and the analyzed velocity function at 3 positions.
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a) 

 

b) 
Figure 4.22 a) RMS velocity model used to generate synthetic data, and b) the 

extracted velocity using the XC method on the LSPSM shot domain CIGs. 
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The decimated data are migrated with the velocity information extracted by this method on 

the 10% of regularly decimated data. Figure 4.23 shows the migration and Figure 4.24 shows the 

LSPSM results. The migration image is blurred, but LSPSM is able to give a high resolution 

image with less blurriness which is comparable with the result in Figure 4.4 which uses all data 

and the exact velocity information.  

The image in Figure 4.24 is used for the reconstruction of the 90% missing data. Figure 

4.25 shows the data reconstruction results based on the first 50 traces from the fifth shot gather. 

The difference between original and reconstructed data is shown in panel d. Comparison between 

residuals in this panel with the residuals in panel d in Figure 4.7 shows that the data 

reconstruction was relatively successful.  

To see the degree of accuracy of the extracted velocity information, it is also useful to 

compare the convergence rate of the LSPSM with the true velocity and when the obtained 

velocity is used. Figure 4.26 shows the convergence rate when true, higher, and extracted 

velocities are used in LSPSM. In one iteration, LSPSM with the extracted velocity converges to 

35% of the original difference where this amount with the true velocity is 29%. Finally, in 10 

iterations, the extracted velocity causes the convergence rate to go down to 5%, only 3% more 

than when the true velocity has been used in the LSPSM method. 
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Figure 4.23 Migration of the decimated data with the extracted velocity model. 

 

 

Figure 4.24 LSPSM of the decimated data with the extracted velocity model. 
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a) b) 

  

c) d) 
Figure 4.25 Reconstruction of data with the extracted velocity; a) original data, b) 

decimated data, c) reconstructed data, and d) residual. 
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Since each iteration in the LSPSM takes twice the time of a migration, this method of 

velocity analysis on LSPSM CIGs seems to be a very costly procedure. However, doing 10 

iterations on LSPSM with 10% of data is only twice as expensive as a velocity analysis on 

migration CIGs using all data.  

 

 

Figure 4.26 Normalized convergence rate of the LSCG method in 10 iteration with 
true, higher, and extracted velocities. 
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4.6 Summary and Conclusion 

Using Kirchhoff LSPSM with proper velocity information gives a higher resolution image 

than the conventional Kirchhoff migration and produces less acquisition footprint. 

The sensitivity of the LSPSM method to the velocity accuracy can be used to evaluate the 

velocity model. I showed the effect of using an inaccurate velocity model on resolution 

enhancement of LSPSM and data reconstruction as well as the convergence rate of the LSCG 

method. The best velocity model is the one that improves the LSPSM image relative to the 

conventional migration image by attenuating acquisition footprint, provides good data 

reconstruction, and gives a good convergence rate in the LSCG. 

 With dipping reflectors, semblance velocity analysis in the data domain fails to give the 

correct rms velocity. The semblance method on the offset domain CIGs, or unnormalized 

crosscorrelation on the shot domain CIGs from migration, can be used instead.  

I showed that velocity analysis with the semblance method on the migration offset domain 

CIGs, which is a robust tool for migration velocity analysis, can be extended to the LSPSM 

offset domain CIGs. This gives better results when the data are highly irregularly or 

incompletely sampled. I showed that the velocity extracted by this method is accurate enough to 

give a high resolution image in LSPSM and works well for data reconstruction. The same result 

is achieved by using an unnormalized crosscorrelation on the shot domain CIGs.  

Replacement of migration CIGs with LSPSM CIGs for velocity analysis is a costly 

procedure. However, it gives better results with incomplete or irregular data.  
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Chapter Five: LSPSM/INVERSION FOR PRE- AND POSTSTACK TIME LAPSE 
STUDIES   

5.1 Introduction 

Time lapse or 4D, (ݔ, ,ݕ ,ݖ  where time is the fourth dimension, is the study of seismic ,(ݐ

data recorded at different times. This study includes recording and analysing a secondary seismic 

survey after a period of time in order to detect subtle differences or changes in the physical 

properties of the hydrocarbon reservoirs or injection sites. These changes can be due to either 

production or injection of a fluid (oil, gas, water, steam, etc. ) from or into the reservoirs, or 

sequestration of ܱܥଶ. Usually, the first seismic survey is called the baseline survey and 

subsequent ones are called monitor surveys. Assuming all acquisition parameters, 

instrumentation, environmental noise, near surface effects, and processing procedures are exactly 

equal, the comparison between two final migrated images may show the effect of fluid 

movement in the reservoir. The effect may be a small difference in the traveltime of an event or a 

change in seismic attributes, such as reflectivity. Time lapse processing is a general name for this 

process. 

One of the first successful time lapse surveys was performed in 1987 in the Holt Fireflood 

reservoir to show the movement of the gas/oil contact (Greaves and Fulp, 1987). More than 100 

time lapse seismic surveys were performed around the world by 2001 (Lumley, 2001). Time 

lapse studies are not restricted to the comparison of poststack images; for example, Vedanti and 

Sen (2009) performed prestack time lapse study by inversion of prestack data for elastic 

parameters to track the thermal front of an in situ combustion project.  

Time lapse methods become more demanding when hydrocarbon reservoirs become 

depleted and go into the phase of tertiary recovery. A tertiary recovery phase may entail gas or 

solvent injection into reservoirs. Solvent injection may greatly change the physical properties of 

the rock. Physical changes must be significant enough to be tractable from their seismic 

responses. In addition to proper data acquisition and processing, a time lapse study is feasible in 

shallow reservoirs with unconsolidated rocks with high porosity and permeability and low net 

pressure. Otherwise, it may be difficult to detect fluid exchange in the seismic data.  

Re-gridding, phase and time shift correction, and match filtering (to match the static time 

shift, phase, and frequency content of two surveys) are the usual processing steps toward a 



 

148 

 

reliable 4D seismic study. We are looking for two seismic sections from the same area where any 

difference between time delays, amplitudes, impedance or any other attribute reflects only the 

changes in the physical properties in the reservoirs. 

In this chapter, I use synthetic examples and real data to show how different acquisition 

geometries between baseline and monitor surveys lead to the different migration artifacts for the 

same model. Dead receivers in permanently planted geophone surveys will leave some artifacts 

in the migration of monitor surveys that are different from baseline survey artifacts. I show how 

LSPSM can attenuate these effects and provide comparable images. 

 

5.2 Separate LSPSM inversion of time lapse data  

Throughout this section, LSPSM is performed separately on both the baseline and monitor 

surveys, where no caveat is introduced. I show how LSPSM of time lapse data sets can help to 

remove the effect of different acquisition geometries or lost receivers, and provide reliable high 

resolution images as shown in the next two subsections. Joint inversion of time lapse seismic 

data is discussed in section 5.3. 

 

5.2.1 Reducing the effect of different acquisition geometries 

Ignoring the effect of different environmental noise, near surface effects, and processing 

procedures, a key point in comparing two seismic surveys is that both, baseline and monitor 

surveys, have identical or similar acquisition geometries. However, this is not always feasible. 

The baseline survey may be an old survey with a limited number of sources and receivers. 

Monitor surveys may use more modern equipment which allow better and denser data 

acquisition planning and gathering. There may be some new surface obstacles that prevent new 

data acquisition from matching the baseline geometry. Changes in acquisition geometries may be 

reduced by placing permanent receivers under the surface. However, some receivers may not 

function properly after a period of time. Lost geophones will leave new artifacts in the migration 

image of the monitor data. 

In marine data acquisition, there is poor control on the positioning of the hydrophones due 

to streamer feathering. The effect of streamer feathering is larger for far offset receivers. The 
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ocean bottom cable (OBC) method of data acquisition can be used instead of a streamer; 

however, it is more expensive and has the same problem as permanently planted geophones. 

Migration is always accompanied by acquisition footprint. The pattern of acquisition 

footprint depends on the acquisition geometry. Different acquisition geometries between old and 

new surveys leave different artifacts in the migrated images of the baseline and monitor surveys. 

Therefore, time lapse artifacts may dominate the changes in the model parameters. 

Consider the baseline survey experiment as 

૙ࢊ  = ૙ࡳ ૙, 5.1࢓

where ࢊ૙, ࡳ૙, and ࢓૙ are the recorded data, forward modeling operator, and reflectivity for the 

baseline survey, respectively.  

 Assume the Earth’s reflectivity changes from ࢓૙ to ࢓૚ after a period of time as: 

૚࢓   = ૙࢓ + ઢ5.2 ,࢓

where ࢓૚ is the reflectivity at the time of the monitor surveying, and ઢ࢓ is the difference in 

reflectivity between two data acquisitions. The monitor survey records data, ࢊ૚, which 

mathematically is expressed by  

૚ࢊ  = ૚ࡳ ૚, 5.3࢓

where ࡳ૚ is the forward modeling operator of the monitor survey. 

 Migration of the two surveys gives: 

૙ෞ࢓  = ࢀ૙ࡳ ૙, 5.4ࢊ

for the baseline survey and  

૚ෞ࢓  = ࢀ૚ࡳ ૚, 5.5ࢊ

for the monitor survey, where ࢓૙ෞ  and ࢓૚ෞ are migration of baseline and monitor surveys, 

respectively. 

Even when model is not changing, ie.  ࢓૚ = ૙ෞ࢓ ,૙࢓   and ࢓૚ෞ  will be different due to different 

acquisition parameters between ࡳ૙ and ࡳ૚. 

 When two acquisition geometries are similar, and change in the velocity of the modeling 

operators is negligible, ࡳ૙~ࡳ૚, and we may write: 

૚ෞ࢓  = ૚ࢊ ࢀ૙ࡳ = ૙ࡳ ࢀ૙ࡳ ૚࢓ = ૙ࡳࢀ૙ࡳ ૙࢓) + ઢ࢓) = ૙ෞ࢓ + 5.6 ,࢓૙ ઢࡳࢀ૙ࡳ

or, 
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૚ෞ࢓  − ૙ෞ࢓ = ૙ࡳࢀ૙ࡳ ઢ5.7 ,࢓

which states that the difference between the baseline and monitor migration images is 

proportional to the changes in the model parameters between the two surveys. However, since ࡳ૙ࡳࢀ૙ is not a unitary operator, the difference in migration images is not exactly equal to the real 

changes in the reflectivity. 

 The migration images ࢓૙ෞ  and ࢓૚ෞ  must be cross-equalized to remove the effect of non-

repeatability of data acquisition and migration artifacts before generating the time lapse image. A 

few cross-equalization methods have been proposed. For example, Rickett and Lumley (2001) 

suggested a cross-equalization flow, including two runs of a match filter application after 

regridding the data for amplitude, phase and bandwidth balancing. 

LSPSM is an effective method to reduce the acquisition artifacts to make the final images 

comparable. Separate damped LSPSM of the baseline and monitor surveys, 

૙ࡸࡿࡰ࢓  = ൫ࡳ૙ࢀ ૙ࡳ + ࢀ૙ࡳ૙൯ିଵࡵ଴ଶߤ ૙, 5.8ࢊ

and 

૚ࡸࡿࡰ࢓  = ൫ࡳ૚ࢀ ૚ࡳ + ࢀ૚ࡳ૚൯ିଵࡵଵଶߤ ૚, 5.9ࢊ

provides images that are less affected by the corresponding acquisition geometries. Therefore, 

they represent the changes in the reflectivity model better than the migration images. This 

implies that, when ࢓૚ =  ૙, then࢓ 

૚, 5.10ࡸࡿࡰ࢓~૙ࡸࡿࡰ࢓ 

even when  ࡳ૙ ≠   .૚ࡳ

In addition to this, the ability of data reconstruction by LSPSM provides another reliable 

domain for the comparison between two surveys, the data domain. Data sets reconstructed from 

two surveys into a new geometry make the prestack time lapse studies more feasible and reliable. 

In this subsection, I compare the differences between migration and LSPSM images from 

the same model but with different acquisition geometries for the baseline and the monitor 

surveys. I follow the methodology in equations 5.8 and 5.9 to compute the LSPSM images of the 

baseline and monitor surveys. Also I show the reconstructed data from the two surveys and 

compare them with the original data. For these purposes, consider the velocity model in Chapter 

Two in Figure 5.1. I now compare the data generated using this model with two different 
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acquisition geometries as the baseline and monitor surveys, without any change in the model 

parameters. 

 

Figure 5.1 Velocity model used for forward modeling and data generation. 
 

5.2.1.1 Case I: both surveys have dense data sampling 

Consider the baseline survey has the acquisition geometry shown in Figure 5.2a. There are 

32 sources and 100 receivers per source (3200 traces). Source spacing is 93.75 m and receiver 

spacing is chosen to be 18.75 m in order to have a fold of 10. Acquisition geometry of the 

monitor survey is shown in Figure 5.2b, and includes 20 sources and 200 receivers per source. 

The source spacing is 150 m and receiver spacing is 15 m to keep the fold at 10. Baseline and 

monitor synthetic data are generated with these geometries and 1% random noise is added to 

both data sets. The source wavelet and the other parameters are equivalent for both experiments. 

These geometries are significantly different; however, due to dense sampling, they should 

produce accurate migration images. Consequently the difference between the two migration 

images should be negligible. In the following subsections, I show that this is not necessarily true. 
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the acquisition footprint of a subsequent dense survey of the same area. It is then shown how 

LSPSM can improve the time lapse imaging. 

a) 

b) 
Figure 5.2 Acquisition geometry for a) baseline, and b) monitor surveys Blue and red: 
sources and receivers positions for each seismic trace, positions of the image points are 
shown in green.  
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5.2.1.1.1 Comparing migration and LSPSM images for poststack time lapse studies 

Migration images from the baseline and monitor surveys are shown in Figure 5.3. All 

migration parameters are identical for both surveys. The exact velocity model is used in the 

migrations and both images have good quality. To perform a comparison between these two 

migrations, the monitor image is subtracted from the baseline image. The difference image is 

shown in Figure 5.4 with the same amplitude scale. The difference should be zero or the 

difference between random noise of the two surveys. However, due to the presence of different 

acquisition footprint, the difference image shows some changes in the model which are not due 

to the physical properties of the model.  

Figure 5.5 shows the LSPSM images for both, baseline and monitor surveys. Both data sets 

produced high resolution images. Figure 5.6 shows the difference between two LSPSM images. 

Comparing Figure 5.4 with Figure 5.6 shows that the LSPSM method has significantly reduced 

the acquisition footprint and returned images that are more reliable than the migration images for 

a time lapse study. It is very important in any time lapse study that both surveys be minimally 

affected by surveying effects.   
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a) 

b) 
Figure 5.3 Migration of data set from a) baseline, and b) monitor survey. 
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Figure 5.4 The difference between two migration images in Figure 5.3 
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a) 

b) 
Figure 5.5 LSPSM images of the data set from a) baseline, and b) monitor surveys. 
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Figure 5.6 The difference between the two LSPSM images in Figure 5.5. 
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Subtracting the two CMP gathers results in the CMP in panel (c) in Figure 5.7, which is not a 

desirable difference. 

Using the LSPSM method with the geometry of the baseline survey, data from both 

surveys are reconstructed. Figure 5.8 shows the reconstructed data from baseline survey, monitor 

survey, and the difference for the CMP at 2000 m. Since there is no change in the model 

parameters, two reconstructed CMP gathers are similar, and the difference panel shows very low 

energy residuals. Therefore, data reconstruction of both, baseline and monitor surveys, makes the 

prestack time lapse study feasible. This is very useful in AVO inversion studies, before and after 

fluid or steam injection, to track the movements of a fluid/gas boundary or changes in the 

reservoir temperature due to steam injection.    
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a) b) c) 

Figure 5.7 CMP gathers from a) baseline and b) monitor surveys and c) their difference. 
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a) b) c) 

Figure 5.8 Reconstructed CMP gathers from a) baseline and b) monitor surveys and c) their difference. 
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5.2.1.2 Case II: both surveys are 80% decimated 

In the example of the previous section, both surveys had very dense and regular data 

sampling. With coarse and irregular data sampling, migration images will have more acquisition 

artifacts, and time lapse studies become unreliable. Prestack data of the two surveys will also 

have very irregular offset spacing in the CMP gathers. In such cases, implementation of an 

imaging method which is less affected by irregular sampling is very important. I show the ability 

of LSPSM to make the time lapse study of very irregularly sampled data possible. 

Consider the same baseline and monitor surveys as in the previous section. I randomly 

removed 80% of traces from both surveys. Figure 5.9 show the resulting acquisition geometries. 

The decimated data from the two surveys are migrated. Figure 5.10a shows the difference 

between the two migration images. Acquisition footprint left many artifacts in this image which 

makes a poststack time lapse study unreliable. However, most of these artifacts are removed by 

the LSPSM method as seen in Figure 5.10b which shows the difference between LSPSM images 

from baseline and monitor survey data sets.  

A prestack time lapse study for this experiment is almost impossible due to the low and 

random numbers of traces in each CMP gather. One solution is to merge adjacent CMP gathers 

to a supergather. Figure 5.11 show two CMP supergathers for the baseline and monitor surveys. 

Five adjacent CMPs are combined to create these gathers. Due to irregularities in the offset 

position of traces, the comparison between the two supergathers is still not practical. Figure 5.12 

shows the reconstructed data which are CMP sorted. LSPSM is used for data reconstruction of 

decimated data from both surveys into the undecimated baseline survey. The residual in panel 

(c), the difference between two reconstructed CMPs, has very low energy signals. Therefore, any 

subtle changes in the physical properties of the reservoir rocks which is detectable by the seismic 

method, would be detectable in the LSPSM reconstructed data.  
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a) 

b) 
Figure 5.9 Acquisition geometry for a) decimated baseline, and b) monitor surveys. Blue 
and red: sources and receivers positions for each seismic trace, positions of the image 
points are shown in green.  
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a) 

b) 
Figure 5.10 The difference between two a) migration, and b) LSPSM images. 
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a) b) 

Figure 5.11 CMP-bin supergathers from a) baseline, and b) monitor surveys. 
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a) b) c) 

Figure 5.12 Reconstructed CMP gathers from a) baseline, and b) monitor surveys, and c) their difference. 
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5.2.2 Reducing the effect of losing receivers 

The ability of the LSPSM for reducing the effects of different acquisition geometries in the 

baseline and monitor surveys was shown in the previous sections. Attempts to mimic baseline 

acquisition geometry in the monitor surveys may be avoided by permanently planting receivers 

in the ground. In marine surveys, streamer acquisition may be replaced by OBC acquisition with 

the cables left at the bottom of the sea for future monitor data acquisitions. Replacing streamers 

with the OBC method is more beneficial since it makes the recording of shear waves possible. In 

both methods, planted geophones or OBC acquisition, the receiver geometry remains unchanged. 

Consequently, similar acquisition artifact patterns will be introduced into the migration images, 

and time lapse studies are feasible. Source locations must also be repeatable. 

After a period of time some receivers may not function properly. Therefore, monitor 

surveys become affected by having a fewer number of receivers as the deployed receiver system 

becomes older. Losing receivers over time produces more artifacts in the monitor survey 

migration images. In order to have the same artifacts in the baseline survey, traces that 

correspond to the dead geophones must be removed from the baseline data. Alternatively, I show 

how this effect can be minimized by replacing migration with the LSPSM method, as separate 

LSPSM of the baseline and decimated data provides images that are less affected by the loss of 

receivers than a migration image. 

5.2.2.1 Comparing migration and LSPSM images  

Consider the baseline survey in the previous section. I assume that six monitor seismic 

surveys are performed in this area with permanently planted receivers. Source positions are not 

changing from baseline to monitor survey. However, I assume that a large percentage of 

receivers stop functioning with each new monitor survey. The baseline survey has 3200 traces, 

however, only 50%, 30%, 20%, 10%, 5%, and 2% of traces are functioning in the future monitor 

surveys. The last three cases are very extreme and not realistic. Data from the monitor survey are 

migrated and LSPSM inverted. The left hand side panels of Figure 5.13 shows the difference 

between migration of baseline data and six monitor surveys while the right hand side panels 

show the difference between LSPSM image of baseline data and six monitor surveys. As shown, 

due to increasing acquisition footprint in the monitor surveys as a result of losing more receivers, 

the difference between migration images significantly increases. LSPSM images are less affected 
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by the loss of receivers, and there is no noticeable difference between the baseline LSPSM image 

and the monitor LSPSM images. Since it can produce a high resolution time lapse image, using 

LSPSM to compensate for the difference in acquisition artifacts is a better choice than to ignore 

some receivers from baseline survey to make it similar to the monitor survey.  
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a) 50%, Migration b) 50%, LSPSM 

c) 30%, Migration d) 30%, LSPSM
Figure 5.13 Migration difference (a and c) and LSPSM difference (b and d) with using 50% (a and b) and 30% (c and d) 

of data. 
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e) 20%, Migration f) 20%, LSPSM 

g) 10%, Migration h) 10%, LSPSM
Figure 5.13 Continued: using 20% (e and f) and 10% (g and h) of data. 
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i) 5%, Migration j) 5%, LSPSM 

k) 2%, Migration l) 2%, LSPSM
Figure 5.13 Continued: using 5% (i and j) and 2% (k and l) of data. 
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5.2.2.2 Comparing data and reconstructed data from two surveys  

Figure 5.14 shows the effect of losing receivers in the monitor surveys on a CMP gather at 

the position of 2000 m. Losing more receivers in the newer surveys makes the comparison 

between prestack data sets more difficult or even impossible. Figure 5.15 shows the 

reconstructed CMP gather by LSPSM on the left and the difference between original and 

reconstructed data on the right, for different levels of decimation. The reconstruction after 

decimation is surprisingly successful, even for the extreme cases. 

Therefore, the effect of losing receivers can be compensated by data reconstruction with 

LSPSM. This method helps keeping the fold at the same level as the baseline survey for 

comparing AVO effects of the baseline and monitor surveys.  
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a) b) c) 

Figure 5.14 CMP gathers from monitor surveys after 50%, 30%, 20%, 10%, 5%, and 2% in panels a), b), c), d), e), and 
f) respectively. 
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d) e) f) 

Figure 5.14 Continued. 
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a) 50% b) 50% 

  

c) 30% d) 30% 

Figure 5.15 Reconstructed CMP gathers using LSPSM on the left and the difference from 
baseline data on the right, with (a,b) 50%, (c,d) 30%, (e,f) 20%, (g,h) 10%, (i,j) 5%, and 
(k,l) 2% of data. 
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e) 20% f) 20% 

  

g) 10% h) 10% 

Figure 5.15 Continued. 
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i) 5% j) 5% 

  

k) 2% l) 2% 

Figure 5.15 Continued. 
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5.2.3 High resolution detection of reflectivity changes 

In this section I assume that the baseline and monitor surveys have similar geometries but 

the velocity, and consequently the reflectivity model, changes from baseline to monitor survey. I 

compare changes in the baseline and monitor migration and LSPSM images.  

Consider that the baseline geometry at the beginning of this chapter applies to the monitor 

surveys, too. Assume that the velocity of the dipping layer at 1 s drops by 15% from 4000 m/s to 

3400 m/s before the monitor survey. Figure 5.16 shows the new velocity model used for the 

generation of the synthetic monitor survey data. 

 

 

Figure 5.16 Velocity model used in the monitor survey. 
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models. After adding 1% random noise, the data are migrated. Figure 5.17a shows the difference 
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changes in the model parameters. Figure 5.17b shows the difference between LSPSM images. 

Comparison between the two images shows that the LSPSM time lapse image has a higher 

resolution than the migration time lapse image, and artifacts in the migration time lapse image 

are attenuated in the LSPSM image. 

Figure 5.18 shows the baseline and monitor survey data for a CMP at 2000 m. Figure 5.18c 

shows the difference between baseline and monitor surveys. Events above a time of 1 s are 

cancelled. Due to the time shift below 1 s, the model parameters of events below the time of 

change are not comparable.  

Figure 5.19 shows the reconstructed baseline data, monitor data, and their difference. 

LSPSM with 20 LSCG iterations is used for data reconstruction. However, the velocity model of 

the baseline survey is used in forward modeling and for the reconstruction of monitor survey 

data. The difference panel in Figure 5.19c can be considered as the difference between baseline 

and monitor data (Figure 5.18c) when the effect of the time shift is removed from data below the 

region of the velocity change. 
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a) 

b) 
Figure 5.17 a) Migration and b) LSPSM time lapse images resulting from subtraction 

of baseline and monitor images. 
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a) b) c) 

Figure 5.18 CMP gathers from a) baseline and b) monitor surveys, and c) their difference. 
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a) b) c) 

Figure 5.19 Reconstructed CMP gathers from a) baseline and b) monitor surveys, and c) their difference. 

 

0 500 1000 1500 2000

0

0.5

1

1.5

2

Offset(m)

T
im

e(
s)

0 500 1000 1500 2000

0

0.5

1

1.5

2

Offset(m)

T
im

e(
s)

0 500 1000 1500 2000

0

0.5

1

1.5

2

Offset(m)

T
im

e(
s)

DataCMPSorted



 

182 

 

5.3 Joint inversion of time lapse data by LSPSM 

The advantages of using LSPSM and data reconstruction methods for time lapse studies of 

seismic data was discussed in section 5.2. I performed a separate LSPSM for each baseline and 

monitor data sets, ignoring the presence of the other data set. In this section, I show the 

simultaneous inversion of the baseline and monitor survey data using a joint inversion. 

Ayeni and Biondi (2010) performed least squares joint inversion of time lapse data using 

two related formulations. Their first formulation dealt with the simultaneous inversion of 

multiple images, referred to as the “Regularized Joint inversion of Multiple Images” (RJMI), the 

second formulation dealt with the inversion of the baseline and the difference (time lapse) 

images, referred to as the “Regularized Joint inversion for Image Differences” (RJID). The RJMI 

method returns baseline and monitor images, and the output of the RJID method is the baseline 

image and differences between the baseline and monitor image. Ayeni and Biondi (2010) used 

approximations to the wave equation least squares Hessian matrices to perform their inversion in 

the image domain. Implementing least squares in the image domain enabled them to target-orient 

their equation and reduce the high cost of the wave equation least squares migration.  

In this study, I use Kirchhoff LSPSM for the joint inversion of time lapse data which is 

cheaper than the wave equation least squares inversion. To do so with the same methodology that 

Ayeni and Biondi (2010) implemented, I combine the two cost functions for the separate damped 

LSPSM/inversion of the baseline survey (Yousefzadeh and Bancroft, 2012c) 

(૙࢓)଴ܬ  = ૙࢓૙ࡳ‖ − ૙‖ଶࢊ + ૙‖ଶ, 5.11࢓‖૙ଶߤ

and the monitor survey  

(૚࢓)ଵܬ  = ૚࢓૚ࡳ‖ − ૚‖ଶࢊ + ૚‖ଶ࢓‖૚ଶߤ , 5.12

into the Multiple Image Joint Inversion (MIJI) cost function as 

, ૙࢓)ெூ௃ூܬ  (૚࢓ = ฯ൤ࡳ૙ ૙૙ ૚൨ࡳ ቂ࢓૙࢓૚ቃ − ൤ࢊ૙ࢊ૚൨ฯଶ + ฯ൤μ଴ 00 μଵ൨ ቂ࢓૙࢓૚ቃฯଶ. 5.13

This is similar to RJMI. The time lapse image can be computed by 

 ઢ࢏࢐࢏࢓࢓ = ૚࢏࢐࢏࢓࢓ − ૙, 5.14࢏࢐࢏࢓࢓

where ࢏࢐࢏࢓࢓૙ and ࢏࢐࢏࢓࢓૚are the baseline and monitor survey reflectivity images resulting from 

MIJI, respectively. 
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Alternatively, joint inversion can be performed to obtain a time lapse image, ઢ࢓, directly 

by minimizing the Image Difference Joint Inversion (IDJI) cost function as 

, ૙࢓)ூ஽௃ூܬ  ઢ࢓) = ฯ൤ࡳ૙ ૙ࡳ૚ ૚൨ࡳ ቂ࢓૙ઢ࢓ቃ − ൤ࢊ૙ࢊ૚൨ฯଶ + ฯ൤ߤ଴ 00 ଵ൨ߤ ቂ࢓૙ઢ࢓ቃฯଶ. 5.15

This is similar to the RJID formulation.  

I used LSCG to minimize these cost functions. As an example, ignoring regularization 

terms, ߤ଴ = ଵߤ = 0, a simplified LSCG algorithm to minimize ܬூ஽௃ூis shown in Table 3-6. As 

seen in this table, each iteration in this LSCG algorithm includes performing two migrations and 

two modelings. Therefore, each iteration is at least four times as expensive as one time migration 

of the baseline survey data. Tests showed that the convergence of the above mentioned joint 

inversion algorithms were slower than the convergence of separate LSPSMs in the previous 

section.  

I performed MIJI and IDJI on the synthetic example in section 5.2.3. Results are shown 

after 50 iterations using LSCG in Figure 5.20 and Figure 5.21. The resulting time lapse image 

from MIJI is shown in Figure 5.22. Figure 5.23 and Figure 5.24 show the baseline and time lapse 

images resulting from IDJI, respectively. 

Comparison between Figure 5.22 and Figure 5.24 shows that a higher resolution time lapse 

is achieved by MIJI. This seems to be due to the difference between the structure of the Hessian 

matrices in the MIJI and IDJI. The IDJI forward modeling matrix is 50% denser than the MIJI 

matrix. The MIJI matrix is symmetric where the IDJI matrix is not. Therefore, MIJI is better 

solved by the LSCG method.  

The comparison between a separate LSPSM time lapse image (Figure 5.17a) and MIJI 

(Figure 5.22) shows that the MIJI has slightly less artifacts in the resulting time lapse image than 

the time image from a separate LSPSM. However, it is necessary to mention that a time lapse 

image of MIJI is obtained after 50 LSCG iterations which is equal to the cost of 200 migrations 

while the separate LSPSM image is achieved after 20 iterations on each data sets which is equal 

to the cost of 80 migrations.  
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Table 5.1 LSCG algorithm for solving image difference joint inversion equation. ࢓଴ = an initial guess or ࢓଴ = ૙  ࢓ࢤ = ૙  ࢙଴ = ૙ࢊ − ଵ࢙ ଴࢓૙ࡳ = ૚ࢊ − ଴࢓)૚ࡳ + ଵ࢘ (࢓ࢤ = ଴࢘ ଵ࢙ࢀଵࡳ = ଴࢙ࢀ଴ࡳ + ଴࢖ ૚ܚ = ଵ࢖ ଴࢘ = ଴ࢗ ଵ࢘ = ଵࢗ ଴࢖૙ࡳ = ૙࢖)૚ࡳ + ݅ ૚) for࢖ = 0: iterations limit 
௜ାଵߙ    = . ૙௜࢘ ૙௜࢘ + . ૚௜࢘ .૙௜ࢗ૚௜࢘ ࢏૙ࢗ + .૚௜ࢗ ૚௜ࢗ  

૙௜ାଵ࢓   = ૙௜࢓ + ૙௜࢖௜ାଵߙ
 ઢ࢓௜ାଵ  = ઢ࢓௜ + ૚௜࢖௜ାଵߙ
૙௜ାଵ࢙     = ૙௜࢙ − ૙௜ࢗ௜ାଵߙ
૚௜ାଵ࢙     = ૚௜࢙ − ૚௜ࢗ௜ାଵߙ
૚௜ାଵ࢘    =  ↜↝ ૚௜ାଵ࢙ࢀ૚ࡳ

૙௜ାଵ࢘    = ௜ାଵ࢙ࢀ૙ࡳ +  ↜↝ ૚௜ାଵ࢘

௜ାଵߚ    = . ૙௜ାଵ࢘ ૙௜ାଵ࢘ + ૚௜ାଵ࢘ . . ૚௜࢘૚௜ାଵ࢘ ૚௜࢘  

૙௜ାଵ࢖    = ૙௜ାଵ࢘ + ૙௜࢖௜ାଵߚ
૚௜ାଵ࢖    = ૚௜ାଵ࢘ + ૚௜࢖௜ାଵߚ
૙௜ାଵࢗ    = ↭ ૙௜ାଵ࢖૙ࡳ
૚௜ାଵࢗ    = ૙௜ାଵ࢖)૚ࡳ + (૚௜ାଵ࢖ ↭endfor 
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Figure 5.20 Reflectivity of baseline survey achieved by MIJI. 

 

Figure 5.21 Reflectivity of monitor survey achieved by MIJI. 
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Figure 5.22 Difference between reflectivity of baseline and monitor surveys by MIJI. 

 

Figure 5.23 Reflectivity of baseline survey achieved by IDJI. 
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Figure 5.24 Time lapse image from reflectivity by IDJI. 

 

The formulation for the joint inversion of the baseline and monitor survey data can be 

extended to the joint inversion of a baseline and several monitor surveys. An outline of the 

method follows, however, no data was processed using this method. 

For example, if the subsurface reflectivity model changes from ࢓૚ to ࢓૛ = ૚࢓ + ઢ࢓૚ 

between the two monitor surveys, the second monitor survey data, ࢊ૛, can be expressed by 

૛ࢊ  = ૛࢓ ૛ࡳ = ૚࢓)૛ࡳ + ઢ࢓૚) = ૙࢓)૛ࡳ + ઢ࢓ + ઢ࢓૚), 5.16

where ࡳ૛is the forward modeling operator of the second monitor survey. Then, the 

corresponding joint inversion methods can retrieve the ࢓૙, ࢓૚, and ࢓૛ via MIJI or ࢓૙, ઢ࢓, 

and ઢ࢓૚via IDJI by minimizing the following cost functions, 

, ૙࢓)ெூ௃ூܬ ,૚࢓ (૛࢓ = ะ൥ࡳ૙ ૙ ૙૙ ૚ࡳ ૙૙ ૙ ૛൩ࡳ ൥࢓૙࢓૚࢓૛൩ − ൥ࢊ૙ࢊ૚ࢊ૛൩ะଶ + ะ൥μ଴ 0 00 μଵ 00 0 μଶ൩ ൥࢓૙࢓૚࢓૛൩ะଶ, 5.17

and 
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, ૙࢓)ூ஽௃ூܬ ઢ࢓ , ઢ࢓૚) = ะ൥ࡳ૙ ૙ ૙ࡳ૚ ૚ࡳ ૙ࡳ૛ ૛ࡳ ૛൩ࡳ ൥ ૚൩࢓ઢ࢓૙ઢ࢓ − ൥ࢊ૙ࢊ૚ࢊ૛൩ะଶ + ะ൥μ଴ 0 00 μଵ 00 0 μଶ൩ ൥ .૚൩ะଶ࢓ઢ ࢓૙ઢ࢓ 5.18

Each iteration in the LSCG method to solve equations 5.17 and 5.18 is at least six times 

more expensive than the migration of the baseline data. This means that 20 iterations of LSCG to 

invert a time lapse study with two monitor surveys is 40 times more costly than the migration of 

each data set. 

 

5.4 Real data examples 

The ability of LSPSM to enhance the resolution and to reconstruct the missing data from 

the NEBC real data set is shown in Chapter Two. The NEBC data set is not a time lapse data set. 

However, I consider the two sets of 10% randomly selected data from the NEBC survey as the 

baseline and the monitor data. I found this method to be a useful way to compare the two surveys 

which differ only in their geometry. Since there is no change in the model parameters, the 

resulting time lapse images should have no major reflections. 

The baseline and monitor survey data are migrated. Figure 5.25 shows the migration image 

of the baseline and the monitor data sets. For a better comparison between the time lapse and the 

inversion images, all images in this section are shown without applying any kind of AGC or 

amplitude correction. Figure 5.26 is the migration time lapse image, which shows the difference 

between the baseline and the monitor migration images. Acquisition footprint resulting from 

high decimation of the original data remains in the time lapse image. The baseline and monitor 

surveys are jointly inverted for the baseline and monitor images. Results of the MIJI are shown 

in Figure 5.27 and Figure 5.28. Figure 5.29 is the corresponding time lapse image. Results of 

IDJI for baseline and monitor surveys are shown in Figure 5.30. Results of both MIJI and IDJI 

are obtained after 10 LSCG iterations. Comparison between three time lapse images, migration 

time lapse image in Figure 5.26, MIJI time lapse image in Figure 5.29, and IDJI in Figure 5.30b 

show the ability of the joint inversion methods at improving attenuation of migration time lapse 

artifacts. The best time lapse image is achieved with the MIJI method. The IDJI method requires 

many more LSCG iterations to obtain a time lapse image similar to MIJI time lapse image. 
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a) 

 

b) 
Figure 5.25 Migration of data set from a) baseline, and b) monitor survey selected 

from NEBC data set. 
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Figure 5.26 The difference between two migration images in Figure 5.25.  

 

Figure 5.27 The baseline image obtained from the time lapse joint inversion (MIJI). 
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Figure 5.28 The monitor image obtained from the time lapse joint inversion (MIJI). 

 

Figure 5.29 The difference between reflectivity of baseline and monitor surveys by 
MIJI. 
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a) 

 

b) 
Figure 5.30  Image of a) the baseline survey and b) time lapse obtained by IDJI. 
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5.5 Summary and Conclusion 

The usefulness of separate and joint LSPSM/inversion for time lapse data has been 

investigated in this chapter. 

This analysis assumed that there is no difference in the acquisition instruments, 

environmental noise, near surface effects, processing flows, and parameters, for both baseline 

and monitor surveys. It is the difference in acquisition geometries that leaves different artifacts at 

the migration images. These artifacts may mask the reflectivity in the time lapse image. It was 

shown how LSPSM of both baseline and monitor data sets can attenuate acquisition footprint and 

create reliable time lapse images. The reconstructed data from two surveys make the prestack 

time lapse studies more easily feasible. Formulations of the joint inversion of time lapse data to 

invert for the baseline image and time lapse image by LSCG method are derived.  

It is important to mention that this is an expensive procedure. Each iteration of the joint 

inversion costs more than four times that of performing a single conventional migration. Other 

corrections such as removing the near surface effects and attenuating multiples must be 

performed before inverting the data. 
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Chapter Six: CONCLUSION  

Recorded seismic data are a discrete representation of the acoustic/elastic wavefield 

measured on the ground’s surface. Any imaging algorithm is affected by the incomplete 

sampling of data. Kirchhoff migration is an effective, low cost method of migration which easily 

handles irregularities of seismic data sampling. However, irregular or sparsely sampled data 

produce artifacts in the migration image. Migration artifacts are due to either insufficient 

sampling of data, acquisition footprint, or the inaccuracy of the imaging algorithm, or any 

combination of the above. 

 Artifacts due to sparse or irregular sampling of data may be reduced using LSPSM by 

minimizing a cost function which includes the difference between observed data and modeled 

data, called the misfit function. 

LSPSM significantly reduces the acquisition footprint in the migration image and produces 

a high resolution image. Then, the high resolution image of LSPSM can be used for data 

interpolation and reconstruction. As shown in this study, replacing migration with LSPSM is a 

costly procedure which also requires a good estimation of the subsurface velocity model.  

The feasibility of using standard multigrid methods for reducing the cost of the LSPSM 

method is investigated. I showed how migration, and consequently inversion, can be expressed 

by matrix multiplications. I showed that the standard multigrid method is not a suitable solver for 

the LSPSM equation for at least two reasons: 

1) The LSPSM Hessian is a not a diagonally dominant matrix and consequently is not 

solvable by Jacobi or Gauss-Seidel methods. Therefore, a conventional multigrid 

method is not able to solve the LSPSM equation. 

2) The Hessian matrix is too large. The size of the matrix is equal to the square of the 

number of grid points in the model space. Therefore, it is not possible to work directly 

with the Hessian matrix with presently available computers. 

I showed how multilevel methods can be used to solve the LSPSM equation. The ability of 

the BiCG Stabilized method and multilevel LSCG with spatial downsampling of data is shown in 

this dissertation. 
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 LSPSM is very sensitive to the accuracy of the background velocity model. The 

improvement of an LSPSM image in a few iterations, and the ability of data reconstruction, are 

factors which can be used to evaluate the accuracy of an imaging velocity.  

The high sensitivity of LSPSM to imaging velocity, and its low sensitivity to the 

irregularity of data sampling, make LSPSM a practical choice for velocity analysis of very 

incompletely sampled data. Velocity analysis on the migration CIGs can be extended to the 

LSPSM CIGs. The unnormalized crosscorrelation spectrum of shot domain LSPSM CIGs gives a 

high resolution panel for velocity estimation of very irregularly and sparsely sampled data. This 

can provide an imaging velocity model that is accurate enough to improve the resolution of a 

migration image using LSPSM in a few LSCG iterations, and give an acceptable data 

reconstruction. 

Migration time lapse images always have artifacts due to different acquisition geometries 

of baseline and monitor surveys. The separate and joint LSPSM/inversion of time lapse seismic 

data provides high resolution time lapse images which are more reliable than the migration time 

lapse images. This is very important when it is not possible to have a monitor survey that exactly 

follows the baseline survey. A streamer marine data acquisition survey is an example of an 

unrepeatable acquisition geometry. Data reconstruction of time lapse projects with LSPSM is 

very important for performing a prestack time lapse study.  

In closing, it is necessary to mention that in comparison to a conventional migration, the 

LSPSM method is a very expensive process. The requirement of a good estimate of the velocity 

model is also very important. Since Kirchhoff time migration does not account for multipathing 

of seismic signals, data must be multiple attenuated before LSPSM.   

The LSPSM method is less affected by using an inaccurate wavelet, approximate migration 

weight, or aperture, as long as the modeling operator is the exact transpose of the migration 

operator. Due to the high flexibility of the Kirchhoff method, LSPSM can be extended to 

converted wave or surface microseismic imaging. 
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Appendix A:  LSCG ALGORITHM FOR SOLVING DAMPED LSPSM EQUATION 

The LSCG algorithm shown in table 3.6 can be extended to solve the damped LSPSM 

equation (ࡳࢀࡳ + ஽ௌ௅࢓(ࡵߤ =  ஽ௌ௅ stands for࢓ stands for the identity matrix and ࡵ where ,ࢊࢀࡳ

the damped least square solution. Like the LSCG algorithm in table 3.6, this algorithm performs 

one seismic modeling run and one migration run at each iteration.  ࢓଴ = an initial guess or ࢓଴ = ૙ ࢙଴ = ࢊ − ෤଴࢙ ଴࢓ࡳ = ଴࢘ ଴࢓ࡵ ߤ = ଴࢙ࢀࡳ + ଴࢖ ෤଴࢙ࡵ ߤ = ଴ࢗ ଴࢘ = ෥଴ࢗ ଴࢖ࡳ = ݅ ଴ For࢖ࡵ ߤ = 1: iterations limit 
 ߱଴ =   ௜ିଵ࢘  . ௜ିଵ࢘
ߙ  = ߱଴ࢗ௜ିଵ. ௜ିଵࢗ + ෥௜ିଵࢗ .  ෥௜ିଵࢗ

௜࢓  = ௜ିଵ࢓ +  ௜ିଵ࢖ ߙ

௜࢙  = ௜ିଵ࢙ −  ௜ିଵࢗ ߙ

෤௜࢙  = ෤௜ିଵ࢙ −  ෥௜ିଵࢗ ߙ

௜࢘  = ௜࢙ࢀࡳ +  ෤௜࢙ࡵ ߤ
 ߱ =   ௜࢘  . ௜࢘
ߚ  = ߱߱଴ 

 ߱଴ = ߱ 

௜࢖  = ௜࢘ +  ௜ିଵ࢖ߚ

௜ࢗ  =  ௜࢖ࡳ
෥௜ࢗ  =  ௜ Endfor࢖ࡵ ߤ
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Appendix B: LSCG ALGORITHM FOR SOLVING SMOOTH LSPSM EQUATION 

The LSCG algorithm to solve a regularized LSPSM with smoothing in the offset direction 

as the regularization term, ℛ(݉) = ࡳࢀࡳ ଶ, requires inverting the‖࢓௛ࡰ‖ +  ௛ term in theࡰࢀ௛ࡰଶߣ

equation (ࡳࢀࡳ + ௌௌ௅࢓(௛ࡰࢀ௛ࡰଶߣ =  ௌௌ௅ is the smooth least squares solution. This࢓ where ,ࢊࢀࡳ

algorithm is shown below. Iteration continues until the desired model is obtained, or a predefined 

number of iterations have been executed. Usually more than 10 and less than 20 iterations are 

required to get an acceptable solution. A higher amount of the regularization weight changes the 

matrix condition number and makes the convergence slower.  ࢓଴ = an initial guess or ࢓଴ = ૙ ࢙଴ = ࢊ − ෤଴࢙ ଴࢓ࡳ = ଴࢘ ଴࢓௛ࡰ = ଴࢙ࢀࡳ + ଴࢖ ෤଴࢙ࢀ௛ࡰ ߣ = ଴ࢗ ଴࢘ = ෥଴ࢗ ଴࢖ࡳ = ݅ ଴ For࢖௛ࡰ ߣ = 1: iterations limit 
 ߱଴ =   ௜ିଵ࢘  . ௜ିଵ࢘
ߙ  = ߱଴ࢗ௜ିଵ. ௜ିଵࢗ + .෥௜ିଵࢗ  ෥௜ିଵࢗ

௜࢓  = ௜ିଵ࢓ +  ௜ିଵ࢖ ߙ

௜࢙  = ௜ିଵ࢙ −  ௜ିଵࢗ ߙ

෤௜࢙  = ෤௜ିଵ࢙ −  ෥௜ିଵࢗ ߙ

௜࢘  = ௜࢙ࢀࡳ +  ෤௜࢙ࢀ௛ࡰ ߣ
 ߱ =   ௜࢘  . ௜࢘
ߚ  = ߱߱଴ 

 ߱଴ = ߱ 
௜࢖  = ௜࢘ +  ௜ିଵ࢖ߚ
௜ࢗ  =  ௜࢖ࡳ
෥௜ࢗ  =  ௜ Endfor࢖௛ࡰ ߣ
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Appendix C: BICG ALGORITHM 

The BiConjugate Gradient (BiCG) method was developed for solving non symmetric 

matrices. However, it is numerically unstable. The algorithm is shown here. Each iteration 

requires one matrix vector multiplication of the form (ࢀࡳࡳ) ࢖, where ࢖ is a model vector (in the 

line marked by “⟸”). A difficulty arises in the ࢖ࢀࡳ multiplication: migration of a model vector 

is neither mathematically nor geophysically possible. Therefore, this method is not applicable to 

solve an LSPSM when using only operator forms of the migration and modeling. BiCGSTAB 

does not require this multiplication and is more stable.  ࢓଴ = an initial guess or ࢓଴ = ૙ ࢘଴ = ࢊ ࢊࢀࡳ = ଴࢘ ଴࢓ࡳ = ଴࢘ − ଴ߩ ࢊࢀࡳ = ෤଴࢘ 1 = ݅ ଴ For࢘ = 1: iterations limit 
ߩ  = . ෤௜ିଵ࢘  ௜ିଵ࢘

ߚ  =  ଴ߩߩ

଴ߩ  =  ߩ

௜࢖  = ௜࢘ +  ௜ିଵ࢖ ߚ

෥௜࢖  = ෤௜࢘ + ෥࢖ ߚ ௜ିଵ 

ߪ  = . ෥௜࢖  ௜࢖ࡳࢀࡳ
ߙ  =  ߪߩ

௜࢘  = ௜ିଵ࢘ −  ௜࢖ ࡳࢀࡳ ߙ
෤௜࢘  = ෤௜ିଵ࢘ − ෥௜࢖ ࢀࡳࡳ ߙ ⟸ 

௜࢓  = ௜ିଵ࢓ +  ௜ Endfor࢖ ߙ

  



 

206 

 

Appendix D: BICGSTAB ALGORITHM FOR SOLVING LSPSM 

The BiConjugate Gradient Stabilized (BiCGSTAB) method (Van der Vorst, 1992) is a 

developed method that has the advantages of both, the BiCG method, since it works with non-

symmetric matrices, and the CGS method, since the algorithm does not require the multiplication 

of the transpose matrix (ࢀࡳࡳ) with a vector. ࢓଴ = an initial guess or ࢓଴ = ૙ ࢘଴ = ࢊ ࢊࢀࡳ = ଴࢘ ଴࢓ࡳ = ଴࢘ − ଴߱ ࢊࢀࡳ = ଴ߚ = ߙ = ଴࢖ 1 = ଴ࢗ ଴࢘ = ଴࢜ = ૙ For ݅ = 1: iterations limit 
ߚ  = . ௜ିଵ࢖  ௜ିଵ࢘

 ߱ = ଴ߚߚ × ߱଴ߙ  

଴ߚ  =  ߚ
௜ࢗ  = ௜ିଵ࢘ + ௜ିଵࢗ)߱ − (௜ିଵ࢜ߙ
ࢊ  =  ௜ࢗࡳ
௜࢜  =  ࢊࢀࡳ

 ߱ = .௜࢖ߚ  ௜࢜
 ߱଴ = ω 
௜࢙  = ௜ିଵ࢘ −  ௜࢜߱
ࢊ  =  ௜࢙ࡳ
௜࢚  =  ࢊࢀࡳ

ߙ  = . ௜࢚ . ௜࢚௜࢙ ௜࢚  

௜࢓  = ௜ିଵ࢓ + ௜ࢗ߱ +  ௜࢙ߙ
௜࢘  = ௜࢙ −  ௜ Endfor࢚ߙ
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Appendix E: DEMONSTRATING THE POSITIVE DEFINITENESS OF THE SECOND 

DIFFERENCE MATRIX 

The second difference matrix, ࡭, in equation 3.64 is positive definite if, for any non-zero 

column vector ࢓ with all real entries (݉ ∈ ℝ), ࢓࡭ࢀ࢓ > 0. Consider ࡭ be a 4 by 4 matrix as, 

࡭  = ൦ 2 −1 0 0−1 2 −1 00 −1 2 −10 0 −1 2 ൪,  

and, 

࢓  = ൦݉ଵ݉ଶ݉ଷ݉ସ൪.  

Then, 

࢓࡭ࢀ࢓  = [݉ଵ ݉ଶ ݉ଷ ݉ସ] ൦ 2 −1 0 0−1 2 −1 00 −1 2 −10 0 −1 2 ൪ ൦݉ଵ݉ଶ݉ଷ݉ସ൪  

 = ૛࢓૚૛ − ૛࢓૚࢓ − ૛࢓૚࢓ + ૛࢓૛૛ − ૜࢓૛࢓ − ૜࢓૛࢓ + ૛࢓૜૛ − ૝࢓૜࢓ − ૝࢓૜࢓ + ૛࢓૝૛ = ૚૛࢓ + ૚૛࢓ − ૛࢓૚࢓૛ + ૛૛࢓ + ૛૛࢓ − ૛࢓૛࢓૜ + ૜૛࢓ + ૜૛࢓ − ૛࢓૜࢓૝ + ૝૛࢓ + = ૝૛࢓ ૚૛࢓ + ૚࢓) − ૛)૛࢓ + ૛࢓) − ૜)૛࢓ + ૜࢓) − ૝)૛࢓ +  .૝૛࢓

This is nonnegative and is zero if and only if ݉ଵ = ݉ଶ = ݉ଷ = ݉ସ = 0. Since ࢓ is a 

nonzero vector, ࢓࡭ࢀ࢓ is always positive. Consequently, the second difference is a positive 

definite matrix. Any equation of the form of ࢞࡭ =  .is solvable by the CG method ࢈

 




