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Abstract 

An exact, analytical solution for PP reflection amplitudes is derived for poroelastic media as a 

result of incorporating the poroelastic parameters of fluid (  , shear modulus ( ), and density ( ) 

into the elastic Zoeppritz equations. This solution contains many terms which may be neglected 

to produce first (linear), second (nonlinear) and third (nonlinear) order approximations. These 

approximations are derived in terms of perturbations (  ,   ,   ) and reflectivities (    ,     , 

    ). These results are expected to extend to dynamic poroelastic models of wave propagation 

and initial groundwork for this extension is reported. When modeling reflection amplitudes of 

media with small poroelastic contrasts (10%), the first order approximation yields 5% error for 

the zero offset reflection amplitude and much less than 1% error for the third order 

approximation. By changing the media properties to replicate large poroelastic contrasts (50%), 

the first order approximation produces 20% error for the zero offset reflection amplitude and less 

than 1% error for the third order approximation. Nonlinear corrective terms of order 2 and 3 are, 

therefore, relevant for poroelastic AVO analysis in geophysically realistic scenarios.  
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Chapter One: Introduction 

1.1 Statement of the problem 

AVO analysis and inversion remain a key part of seismic exploration and monitoring. Extensive 

mathematical analysis of isotropic-elastic AVO equations has been undertaken, in exact forms 

(Zoeppritz, 1919; Aki and Richards, 1980), linear forms (Richards and Frasier, 1976; Wiggins et 

al., 1983; Gray et al., 1999) and nonlinear series expansions (Stovas and Ursin, 2001; Innanen 

2013). This has been extended to anisotropic AVAZ (Mahmoudian, 2013) and anelastic media 

(Innanen, 2011a).  

 

Seismic responses in poroelastic media (Biot, 1941; Gassmann, 1951) have been studied in great 

detail numerically (Carcione et al., 2010; Moradi and Lawton, 2013) and analytically (Gurevich 

et al., 2004; Müller et al., 2010); the poroelastic model appears to capture geological features of 

reservoirs very effectively.  

 

Partly in response to a new range of re-parameterization of the linearized AVO equation 

(Goodway et al., 1997), Russell and Gray formulated linearized poroelastic AVO, through which 

the amplitude responses in reflection seismic experiments could be related to poroelastic 

properties such as the Biot fluid term (Russell et al., 2003, 2011). At present, neither exact, nor 

nonlinear series exist for the Russell and Gray equation; nor is known the importance of AVO 

nonlinearity with respect to Biot’s fluid term. 
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1.2 Concepts, terms and technical overview 

Amplitude variation with offset (AVO) analysis of seismic reflections has become an important 

tool for hydrocarbon prospecting (Foster et al., 2010). Various AVO parameterizations exist, all 

of which involve the sum of three weighted elastic-constant terms (Russell et al., 2011). 

Zoeppritz (1919) has provided a set of equations that accurately calculates the amplitudes for 

reflected and transmitted plane waves. These amplitudes can be calculated for a range of offsets 

in a surface seismic survey.  

 

Various AVO case studies have been investigated in the last several decades. One of the earlier 

case studies involving Koefoed (1955) shows the effects of using differing Poisson ratios and 

their impact on the angle-dependent P-wave reflection coefficient. This caused significant angle-

dependent variation in the P-wave reflection coefficient (Foster et al., 2010). Other types of 

hydrocarbon-related AVO responses are identified by Rutherford and Williams (1989), who 

consider the effects of acoustic-impedance contrasts. They describe the seismic AVO response of 

gas sands, which have a similar or higher acoustic impedance than the encasing shales. Their 

work has led to a classification system for AVO responses that has been universally adopted for 

oil and gas exploration (Foster et al. 2010).  

 

Prior to the wide use of AVO, seismic signals were conventionally viewed as a band-limited 

normal incidence reflection coefficient series with appropriate traveltime and amplitude variation 

due to propagation through an overburden (Castagna and Backus, 1993). Ostrander (1982) 

demonstrated that gas sand reflection coefficients vary in an anomalous fashion with increasing 
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offset and showed how to utilize this anomalous behaviour as a direct hydrocarbon indicator on 

real data (Castagna and Backus, 1993).  

 

The recognition that hydrocarbons affect the acoustic impedance and Poisson’s ratio of reservoir 

sandstones led to the development of seismic attributes to detect these effects (Foster et al. 

2010). Some common AVO attributes are the reflection-coefficient intercept or normal-incidence 

reflection coefficient A; the reflection-coefficient gradient at normal incidence B; P-wave 

normal-incidence reflectivity   , which is equivalent to intercept A; and S-wave normal-

incidence reflectivity   . Most of these attributes originate with Aki and Richards’ (1980) 

approximation for the angle-dependent P-wave reflection coefficient (Foster et al. 2010).  

 

In this chapter, the following topics will be discussed. The first topic will discuss elementary 

wave field behaviour for plane waves and the two modes that exist when traveling in a 

homogenous medium. As plane waves travel in a homogeneous medium and are disturbed by a 

boundary, reflected and transmitted plane waves are formed as a result where the amplitudes of 

these waves can be exactly calculated by what is known as the Zoeppritz equations. This will be 

explained in a brief introduction to how these equations appear in analytical notation as well as 

the numerous associated linearized approximations. One such approximation has been developed 

by Russell et al. (2011) and will be discussed in more detail.  

 

1.2.1 Elementary wave field behaviour 

When a source located on the surface becomes active, a mechanical disturbance begins to 

propagate through the subsurface. This is seen in Figure (1.1) where a source has become active 
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and a series of spherical wave fronts are propagating towards a boundary. For a homogeneous 

medium, the wave fronts remain spherical given that there are no effects such as anisotropy 

distorting the overall character of the wave. After a wave front interacts with the boundary, a 

reflection and a transmission of that wave front will occur. The amplitudes of these wave fronts 

change depending on the relative change in medium properties. If changes are small, the 

amplitudes are also small, while large changes produce large amplitudes.  

 

Once the down-going waves emitted from the source have interacted with the boundary 

separating the two media, a series of reflected and transmitted wave fronts will be generated 

continuously until the energy dissipates. These two waves are shown in Figure (1.2) where some 

of the energy acting as up-going wave fronts in the beige medium travels back towards the 

surface while the rest of the energy continues to travel down. For each down-going wave front 

that interacts with the boundary, an associated up-going and a transmitted wave front are 

produced, which accounts for the total of three wave fronts in this simple geological system. 
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Figure 1.1: A snapshot in time of a source emitting spherical wave fronts.  

 

Figure 1.2: The result of the wave field interacting with the boundary is a reflected wave 

field that is recorded by the receiver and a transmitted wave field that continues to travel 

downward into the subsurface. 

 

In terms of computer modeling, spherical wave modeling as shown in Figures (1.1) and (1.2) can 

be time consuming. Plane wave modeling, and more specifically plane wave amplitude 

Boundary

Source

Receiver

Source

Receiver

Boundary
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modeling, is useful to approximate spherical wave field amplitudes for several linearized P-wave 

amplitude modeling equations, as will be demonstrated later in this chapter. 

In Figure (1.3) a single P-wave ray path is demonstrated. It shows a down-going P-wave which 

strikes the boundary at a particular incidence angle  . The angle   in relation to the reflected and 

transmitted angles is shown by Snell’s law. Another form of a plane wave is the S-wave which is 

also generated by the source if it is given a shear motion. These waves propagate at a velocity 

different than their P- counterparts. As either P- or S-waves interact with a boundary, mode 

conversion occurs which produces both P- and S-waves that propagate as a reflected wave and a 

transmitted wave as illustrated in Figure (1.4). The Zoeppritz equations describe how these 

relationships hold based on conservation of reflection and transmission amplitudes for plane 

waves. More specifically, the Zoeppritz equations are useful in describing the vector orientation 

of the plane wave with its amplitude. For this study, primary interest is in the P-wave amplitude 

signature that the wave field carries as it travels from the source to a reflecting boundary, and to 

a receiver as seen in Figure (1.3).  
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Figure 1.3: This encapsulates all paths that a P-wave may take, which includes the incident, 

reflected, and transmitted wave. The dotted line is perpendicular to the boundary. 

 

The Zoeppritz equations will be used as the starting point for our study. As mentioned 

previously, the incoming P-wave approaches the boundary at a particular angle  . When 

        , a reflected and transmitted P-wave is produced. The direction and the amplitude 

of the reflected and transmitted waves are based on two factors: the elastic contrasts between the 

upper and lower geological layer, and the incident angle  . These factors are explicitly shown in 

the Zoeppritz equations which quantify the amplitudes of these P- and S-waves. More details 

about the Zoeppritz equations will be explained in the subsection. 

 

1.2.2 Reflection at a boundary: AVO and the Zoeppritz equations 

A simple model that is considered for studying reflection amplitudes may consist of two semi-

infinite isotropic homogeneous half-spaces that are welded together at a plane interface or 

boundary. For an incident plane wave traveling within this model, the reflection coefficient 

Source

Receiver

Boundary

P: inc P: refl

P: trans





 

8 

variation with an angle of incidence is given by the Zoeppritz equations (Castagna et al. 1998). 

Due to the complex structure of these equations, approximations (Bortfeld, 1961; Richards and 

Frasier, 1976; Aki and Richards, 1980; Shuey, 1985) have been derived to simplify the 

calculation of the reflection coefficient (Castagna et al. 1998). Before discussing the 

approximations, the Zoeppritz equations will be described in more detail. 

 

A P-wave that strikes a planar interface between two elastic solids gives rise to four other plane 

waves: the reflected vertically polarized shear (SV) wave, the reflected P-wave, the transmitted 

P-wave, and the transmitted SV-wave as shown in Figure (1.4) (Keys, 1989). Since the 

horizontally polarized shear (SH) wave is not calculated in the Zoeppritz equations, the shear 

wave will be referred to as the S-wave. 

 

The amplitudes of these plane waves are related to one another by the requirement that normal 

and tangential components of stress and displacement must be continuous across the reflecting 

interface (Keys, 1989). From these continuity conditions, a set of four equations for the four P-

wave displacement amplitudes can be derived: 

 
 

   

2 2 2 2

PP

2 2 2 2

PS

2 2 2 2 2 2 2 2 2 2 2
PP

2 2
2 2 2 2 2 2 2 2 2 2 PS

1 1

1 1 1

2 1 1 2 2 1 (1 2 ) 2 1

1 21 2 2 1 1 2 2 1

X B X CX D X XR

X BX C X DX R X

TB X X B B X AD X C X AD D X B X X

T B XB X B X B X AC D X AD X D X
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   

     

  



 

                            

 (1.1) 

where     is the amplitude of the reflected P-wave,     is the amplitude of the reflected S-wave, 

    is the amplitude of the transmitted P-wave, and     is the amplitude of the transmitted S-

wave (Keys, 1989). The variable   is      , where    is the angle of incidence.  ,  ,  , and   
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represent ratios of the elastic parameters:        ,          
,      

    
, and   

       , where   ,    
, and    

 are the density, P-wave velocity and S-wave velocity of medium 

 , respectively. Equation (1.1) is equivalent to the Zoeppritz equations used by Levin (1986). 

 

By observing the interaction of a plane wave upon an interface of two semi-infinite half spaces, 

four different energy partitions result from an incident P-wave. These partitions are (1) a 

reflected P-wave, (2) a transmitted P-wave, (3) a reflected S-wave, and (4) a transmitted S-wave 

(Castagna and Backus, 1993). The angles of each partition may be calculated using Snell’s law, 

  

0 1 0 1

0 01 1
sin sinsin sin

P P S S

p
V V V V

  
    , 

where,    
 and    

 are the P-wave velocities in medium 0 and medium 1, respectively;     and 

    are the S-wave velocities in medium 0 and medium 1, respectively;    and    are the incident 

P-wave angle, and the transmitted P-wave angle, respectively;    and    are the reflected S-

wave angle, and the transmitted S-wave angle, respectively; finally   is the ray parameter. This 

is illustrated in Figure (1.4).  
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Figure 1.4: A simplified two-layer geological representation with an incident P-wave 

approaching an interface. As the incident P-wave, P
0
:inc, propagates toward the boundary 

at    , a set of P- and S-waves will reflect off of the boundary and another set of P- and 

S-waves will transmit through the boundary into medium 1. The angles measured from 

normal for the two reflected and the two transmitted waves all obey Snell’s law. 

 

1.3 AVO analysis 

1.3.1 Development of seismic amplitude analysis 

In literature, many studies demonstrate linearized AVO equations that approximate the Zoeppritz 

equations. These linearized equations extract physical information from amplitude data directly 

(Shuey, 1985; Aki and Richards, 2002; Smith and Gidlow, 1987; Rutherford and Williams, 

1989).  

 

The Zoeppritz equations describe the relations of incident, reflected and transmitted longitudinal 

waves (P-waves) and shear waves (S-waves) on both sides of an interface (Smith and Gidlow, 
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1987). These equations are the fundamental mathematical formulae for the amplitudes of 

reflected and transmitted plane waves when an incident P-wave strikes an elastic boundary. 

Although they give precise values of the amplitudes of the reflected and transmitted plane waves, 

they may cause problems. For instance, the effects of parameter changes on the seismic 

amplitudes and the unstable solution that may result from the intrinsic nonlinearity of these 

equations make it less practical than are linearized approximations to them (Zong et al., 2012). 

 

For analysis of P-wave reflections, the requirement is an equation which relates reflected P-wave 

amplitudes to incident P-wave amplitudes as a function of the angle of incidence (Smith and 

Gidlow, 1987). Following Russell et al. (2011), the Aki and Richards approximation is expressed 

as a linearized sum of three terms given by  

    
2 2

2

PP 2 2

sat sat

8sin 4sin
1 tan 1

2 2 2

SP

P S

VV
R

V V

  
 

  

     
       

   
  (1.2) 

where   ,   , and   are the average velocity and density values across the boundary;    ,    , 

and    are the differences of the velocity and density values across the boundary;   is 

interpretable as either the incidence angle or the average of the incident and refracted angles; and 

     (          is the compressional-to-shear-wave velocity ratio for the in situ (saturated) 

rocks (Russell et al. 2011). An assumption is made such that the relative changes of property 

(       ,        ,      ) are sufficiently small that second-order terms can be neglected and 

that   does not approach the critical angle or 90° (Smith and Gidlow, 1987). 

 

Several important algebraic rearrangements of equation (1.2) exist, the most common being 

   2 2 2

PP sin tan sinR A B C        (1.3) 
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where       
 

 
[
   

  
 

  

 
] is a linearized approximation to the zero offset P-wave reflection 

coefficient,   
   

   
 

 

    
 

   

   

 
 

    
 

  

  
, and   

   

   
 (Russell et al., 2011). Equation (1.3) is 

initially derived by Wiggins et al. (1983), and is the basis of much empirical AVO work (Russell 

et al., 2011).  

 

A second rearrangement of equation (1.3), by Gidlow et al. (1992) and Fatti et al. (1994), based 

on an earlier equation by Smith and Gidlow (1987), is given by  

    2 2 2 2

PP P0 S02 2

sat sat

8 4
1 tan sin sin tan DR R R R    

 

   
        

   
  (1.4) 

where     
 

 
[
   

  
 

  

 
] is equal to the A term from equation (1.3),     

 

 
[
   

  
 

  

 
] is the 

linearized approximation to the S-wave impedance reflectivity, and    
  

  
 is the linearized 

density reflectivity term (Russell et al., 2011). More recently, Gray et al. (1999) reformulated 

equation (1.3) for two sets of fundamental constants:  ,  , and   (the first and second Lamé 

parameters and density, respectively), and  ,  , and   (bulk modulus, shear modulus, and 

density respectively) (Russell et al., 2011). Gray et al.’s (1999) two formulations are given as  

 

  2 2 2

PP 2 2

sat sat

2

1 1 1 1
sec sec 2sin

4 2 2

1 1
sec ,

2 4

R
 

   
   






    
      

  

 
  
 

  (1.5) 

and  
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  2 2 2

PP 2 2

sat sat

2

1 1 1 1
sec sec 2sin

4 3 3

1 1
sec .

2 4

K
R

K


   

  






    
      

  

 
  
 

 (1.6) 

 

1.3.2 Fluid discrimination from AVO analysis 

The development of methods to obtain various fluid factors from prestack seismic data has 

pushed the development of technology for reservoir forecasting and fluid discrimination (Smith 

and Gidlow, 2000; Quakenbush et al., 2006; Zong et al., 2012). Traditional AVO and 

petrophysical analysis seeks to identify anomalous variations between seismic compressional 

wave velocity (  ) and shear wave velocity (  ) to indicate changes primarily in pore fluid, as 

well as lithologic properties (Goodway et al., 1997; Gassmann, 1951; Pickett, 1963; Tatham, 

1982; Castagna, 1993). The       parameterization is presented by Goodway et al. (1997) 

that show an alternate way to extract the parameters suggested (Russell et al., 2011). 

 

Gray et al. (1999) derive two formulas which parameterize AVO in terms of constants  ,  , and  

  (Lamé moduli, shear modulus, and density) for the first formula, and  ,  , and   (bulk 

modulus, shear modulus, and density) for the second formula in equations (1.5) and (1.6) 

(Russell et al. 2011). It is the combination of the       technique and Gray’s AVO 

formulations that motivated the linear poroelastic AVO derivation by Russell et al. (2011). 

Russell et al. (2011) refer to this equation as the       equation. An additional linearized 

poroelastic AVO equation is derived by Zong et al. (2012) parameterized in terms of P-wave 

modulus, S-wave modulus, and dry velocity ratio.  
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Interpreted in the context of Biot (1941) and Gassmann (1951) theory, the Russell et al. (2011) 

linearized poroelastic AVO equation accounts for gas-filled pore space contributions. Russell et 

al. (2011) derived the       equation beginning with the linear elastic form in equation 

(1.2). One of our goals will be to re-derive       beginning with a re-parameterization of 

the full Zoeppritz equations. 

 

1.4 Thesis overview 

As mentioned in the statement of the problem, there are no cited investigations that reveal exact 

solutions or nonlinear series solutions in regards to PP reflection modeling of poroelastic 

inclusions in geological settings.  

 

However, the research of exact reflection modeling is available in great detail (Zoeppritz, 1919; 

Keys, 1989; Levin, 1986) and there are also instances found in the literature that portray different 

parameterizations of PP reflection modeling as linearized approximations (Aki and Richards, 

2002; Shuey, 1985) as well as nonlinear series solutions (Innanen, 2013). In regards to 

geological settings that include pore fluids, there is also research by Biot (1941) and Gassmann 

(1951) that illustrate how the introduction of these pore fluids affect an initially dry (or drained) 

porous rock. More recently, a study has been performed in regards to poroelastic media using 

reflection modeling. Russell et al. (2011) show that a derivation of a linearized AVO equation of 

poroelastic environments can be quantitatively measured with three poroelastic parameters; the 

first is known as the fluid term ( ), the second is a saturated shear modulus ( ) and the third, a 

saturated density ( ) term. The contents of this thesis will explain how it is possible to use these 

poroelastic parameters ( ,  ,  ) to derive both exact and nonlinear series solutions using the 
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exact-elastic reflection modeling or Zoeppritz modeling as an extension to the research of 

Russell et al. (2011).  

 

At the beginning of chapters two, three, four, five and six, an overview will state the purpose of 

that chapter in a section by section basis. These chapters will be concluded with a summary that 

will mention the main result or observation and transition to the following chapter. Chapter 

seven is the conclusions chapter and will summarize the thesis in addition to providing the key 

results and the future directions of this work. 

 

 

 

  



 

16 

Chapter Two: Theoretical Background 

2.1 Chapter overview 

The purpose of this chapter is to introduce concepts of AVO theory. In section 2.2 we will 

review two studies using exact AVO modeling followed by an issue that is found using these 

exact AVO equations. The section will conclude with several forms of linearized AVO 

equations. Section 2.3 will introduce poroelasticity using Biot’s fluid term to describe how 

elastic moduli may be written analytically to compensate for the effect of a fluid. This will lead 

into the Russell and Gray AVO approximation that uses Biot’s fluid term as one of its parameters 

in section 2.4. Finally, chapter 2 will be summarized in section 2.5. 

 

2.2 The Zoeppritz equations in a geological setting 

2.2.1 Case study applications of exact solutions 

The P-wave reflection coefficient as a function of incidence angle    (    is defined as the ratio 

of the amplitude of the reflected P-wave to that of the incident P-wave (Castagna and Backus, 

1993). Similarly, the P-wave transmission coefficient    (    is the ratio of the amplitude of the 

transmitted P-wave to that of the incident P-wave. Also,    (    is the ratio of the amplitudes of 

the reflected S-wave and the incident P-wave and    (    is the ratio of the transmitted S-wave 

and incident P-wave amplitudes (Castagna and Backus, 1993). Knott (1899) and Zoeppritz 

(1919) invoked continuity of displacement and stress at the reflecting interface as boundary 

conditions to solve for the reflection and transmission coefficients as a function of the incident 

angle and the media elastic properties (density, bulk modulus and shear modulus) (Castagna and 

Backus, 1993). The result is a set of equations known as the Zoeppritz equations. 
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The Zoeppritz equations are very complex and involve instances of rational expressions that 

yield real and complex valued reflection and transmission coefficients. This kind of complexity 

provides little physical insight (Castagna and Backus, 1993). The coefficients    ,    ,    , and 

    as a function of   , are computed from the P-wave velocity, S-wave velocity, and density of 

each medium. Figure (2.1) provides reflection coefficient values for PP waves for various 

velocities and densities (Castagna and Backus, 1993). These velocities and densities are shown 

in Table (2.1). 

 

Overburden Model    (m/s)    (m/s)   (kg/m3) 

A 1829 914 2020 

B 2521 1260 2120 

C 3048 1524 2200 

D 4267 2133 2380 

E 4877 2438 2470 

F 5486 2743 2560 

Table 2.1: Top layer parameters for six Zoeppritz models from Richards (1961) for 

Paleozoic limestone structures in Western Canada. The parameters for the bottom layer 

are         m/s,         m/s, and        kg/m3.  
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Figure 2.1: Zoeppritz curves of various P- velocities, S- velocities and densities using values 

from Table (2.1). 

 

Figure (2.1) shows the entire range of possible incidence angles, whereas common exploration 

incidence angles are about 30 degrees or less (Castagna and Backus, 1993). For the AVO curves 

in this figure, the following observations have been made (Castagna and Backus, 1993): 

(1) The local maxima for reflected P-wave amplitudes may occur at normal incidence, the 

first critical angle, and possibly near the S-wave critical angle.  

(2) The change of the reflection coefficient with respect to the angle of incidence is small at 

low angles.  

(3) The first critical angle     is given by  

 0

0

1

sin
P

c

P

V

V
   . (2.1) 

A B

  A 

C D E F 
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For elastic layers, the reflected P-wave energy decreases after the first critical angle due 

to increased conversion to reflected and transmitted S-waves. Consequently, there can be 

a second critical angle     given by 

 0

1

1

sin
P

c

S

V

V
   . (2.2) 

Beyond this critical angle there are no transmitted S-waves. From equation (2.1), we can 

see that there is no first critical angle when    
 is greater than    

. When this occurs, P-

waves are always transmitted. In equation (2.2), there is no second critical angle when 

   
 is greater than     implying that converted S-waves are transmitted at all angles 

below 90 . Finally,  

(4) At near normal incidence,     initially decreases very slightly with increasing angle. 

Deviations from this general behaviour can result from changes in       across the 

interface, and form the basis for seismic lithology analysis. 

 

In exploration seismology, the reflection coefficient is typically desired for pre-critical angles. 

Koefoed (1955) was first to point out that AVO analysis may be used to identify       

variations. His research explored conditions such that       variations, where Poisson’s ratio 

measurements are changing across an interface, may be used as an indicator for hydrocarbon 

detection (Castagna and Backus, 1993). The relationship of Poisson’s ratio to       is 
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and 

 

1

2

1

S

P

V

V










.  (2.4) 

Koefoed’s (1955) work is illustrated in Figure (2.2) where varying       ratios and Poisson’s 

ratios are tested. There are several observations that may be made about Figure (2.2) (Castagna 

and Backus, 1993): (1) Figures (2.2a), (2.2b), and (2.2c) illustrate the basic principle exploited 

when AVO is used for hydrocarbon detection; as    decreases (as would occur when gas 

replaces brine); the reflection coefficient becomes more negative with increasing offset. (2) For 

     (Figures (2.2d) and (2.2f)), lowering the average Poisson ratio also causes the reflection 

coefficient to become more negative with increasing offset. (3) Comparison of Figures (2.2b) 

and (2.2e) shows that the effect of lowering    occurs for all    
    

 ratios. (4) If    
    

 is 

varied while density and Poisson’s ratio remain constant, the magnitude of the AVO effect is 

essentially unchanged (the AVO curves are shifted by the normal incidence reflection coefficient 

  ). 
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Figure 2.2: P-wave reflection coefficient versus incident angle for model parameters given 

in Table (2.2). Figures (a) and (b) show a varying Poisson ratio in the second medium, (c) 

and (e) show a varying Poisson ratio in the first medium, (d) shows varying values of 

Poisson’s ratio that are equal in both half-spaces, (f) shows varying values of Poisson’s 

ratio that are equal in both half-spaces, and (g) shows varying values of the P-wave velocity 

contrast (Castagna and Backus, 1993). 
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Model                  
                   

A 1.0 0.58 1.25 0.00 0.25 0.50 

B 1.0 0.58 1.25 0.51 0.25 0.40 

C 1.0 0.58 1.25 0.67 0.25 0.30 

D 1.0 0.58 1.25 0.72 0.25 0.25 

E 1.0 0.58 1.25 0.76 0.25 0.20 

F 1.0 0.58 1.25 0.80 0.25 0.15 

G 1.0 0.58 1.15 0.47 0.25 0.40 

H 1.0 0.58 1.15 0.74 0.25 0.15 

I 1.0 0.41 1.25 0.51 0.40 0.40 

J 1.0 0.58 1.25 0.72 0.25 0.25 

K 1.0 0.64 1.25 0.80 0.15 0.15 

L 1.0 0.41 0.80 0.46 0.40 0.25 

M 1.0 0.64 0.80 0.46 0.15 0.25 

N 1.0 0.41 0.80 0.33 0.40 0.40 

O 1.0 0.64 0.80 0.51 0.15 0.15 

P 0.9 0.58 1.15 0.54 0.25 0.36 

Q 0.9 0.58 1.25 0.58 0.25 0.36 

R 1.0 0.64 1.25 0.72 0.15 0.25 

S 1.0 0.41 1.25 0.72 0.40 0.25 

Table 2.2: Parameters for Zoeppritz models from Figure (2.2). 
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2.2.2 Issue with exact solutions 

Reflection and transmission coefficients can be found by solving the Zoeppritz equations. 

Depending on the incident plane wave, two sets of Zoeppritz equations may be derived; one for 

P-wave and one for S-wave. As shown by Innanen (2013) for incident P-waves in elastic media, 

an expression in the form of a series is possible for    ,    ,     or     in the Zoeppritz 

equations. Within Innanen (2013), a four-by-four matrix configuration is shown to represent the 

weights that are associated with    ,    ,     and    , in this type of representation of the 

Zoeppritz equations. Either one of    ,    ,     or     may be solved using Cramer’s rule. 

Solving for one of these coefficients using Cramer’s rule would result in a series that is very 

difficult to interpret analytically. Hence, one factor that motivated the development of AVO 

approximations was to not only have a means to analyze parameter changes more easily, but to 

also reduce computational costs.  

 

2.2.3 AVO approximations 

Approximations are extremely useful for practical applications as they more readily reveal the 

information content contained in the amplitude behaviour and provide the basis for certain AVO 

processing techniques (Castagna and Backus, 1993). Bortfeld (1961) linearized the solutions of 

the Zoeppritz equations by assuming small changes in layer properties and obtained 
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.  (2.5) 

The parameters in equation (2.5) are as follows:   ,  , and   are the P-wave velocity, S-wave 

velocity, and density respectively;   is the incidence angle that the plane wave makes with 

respect to normal of the interface; and the subscripts ‘0’ and ‘1’ represent the medium above the 
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interface and the medium below the interface respectively. This approach was also followed by 

Richards and Frasier (1976) and Aki and Richards (1980) who derived a form parameterized in 

terms of the changes in density, P-wave velocity, and S-wave velocity across the interface 

(Castagna and Backus, 1993). The mathematical form of this AVO approximation is shown in 

chapter 1 equation (1.2). Other AVO approximations appear in the form 

   1 0

1 0
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



, (2.6) 

which is referred to as the ‘acoustic’ reflection coefficient. Shuey (1985) also presents an AVO 

approximation that is similar to the Aki and Richards (1980) approximation  
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where,    is the normal incidence reflection coefficient, and    and    are given by 
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and 
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2.3 Poroelasticity 

Exploration geophysicists are interested in the inelastic attenuation and dispersion of plane 

waves resulting from the presence of fluids in the pore space of rocks (Müller et al., 2010). It is 

believed that an understanding of fluid-related dissipation of seismic wave energy in 

hydrocarbon reservoir rocks, combined with improved measurements of attenuation and/or 
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dispersion from recorded seismic data, may be used in the future to estimate the hydraulic 

properties of these rocks (Müller et al., 2010). A major cause of attenuation in porous media is 

wave-induced fluid flow (WIFF), which occurs at different spatial scales – macroscopic, 

mesoscopic, and microscopic (Carcione et al., 2010). WIFF occurs as a passing wave creates 

pressure gradients within the fluid phase and the resulting movement of the fluid relative to the 

solid (fluid flow) is accompanied with internal friction until the pore pressure is equilibrated 

(Müller et al., 2010). WIFF’s classification depends on the length scale of the pressure gradient 

(Müller et al., 2010). If a body wave propagates through a spatially homogeneous, permeable, 

fluid-saturated rock, it will create pressure gradients between peaks and troughs of the wave 

(Müller et al., 2010).  

 

The theories of poroelasticity are essential in many geophysical applications where pore-filling 

materials are of interest, e.g., oil exploration, gas-hydrate detection, seismic monitoring of CO2 

storage, and hydrogeology (Carcione et al., 2010). Modern poroelastic theory was introduced by 

Maurice Biot in the 1950s (e.g., Biot, 1962; Bourbié et al., 1987; Allard, 1993; Carcione, 2007), 

who obtained the dynamic equations for wave propagation in a fully saturated medium (Carcione 

et al., 2010). Since Biot presented his work on poroelastic wave theory in the early 1960s, 

significant research on poroelastic wave propagation has been conducted (Ren et al., 2009).  

These equations predict the effects of movement of the pore fluid relative to the solid skeleton on 

seismic waves propagating through the rock (Gurevich et al., 2004). According to Biot’s theory, 

seismic waves propagating in a homogeneous poroelastic medium are not attenuated 

significantly in the seismic frequency range of 0-200 Hz (Ren et al., 2009).  
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Russell et al. (2011) make use of these fundamental equations due to Biot (1941), which relate 

the dry elastic moduli to saturated moduli where 

 
2

sat dry M    ,  (2.10) 

 
2

sat dryK K M    (2.11) 

and 

 
sat dry  .  (2.12) 

Lamé’s constant  , bulk modulus   and shear modulus   are represented here. These three 

relationships show how  ,  , and   can be compensated when fluid is present. The     term 

that appears in equations (2.10) and (2.11) is the fluid modulus, the dissipative term 

corresponding to viscoelastic effects associated with the squeezing of the fluid in the small, 

crack-like volumes surrounding the areas of contact inside a pore (Biot, 1962). The term   is 

referred to as the Biot coefficient, and is defined as 
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where      is the elastic bulk modulus and    is the bulk modulus of the mineral. The term   is 
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where   is the Biot coefficient,   is the porosity, and     is the bulk modulus of the fluid. 

Equations (2.10) – (2.12) can be inserted into the elastic P-wave and S-wave velocity equations 

in order to account for fluid. For elastic media, expressions for P- and S-wave velocities can be 

written such that  
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According to Russell et al. (2011), by substituting equations (2.10) – (2.12) into (2.15) and 

(2.16), the poroelastic expressions for    and    become 
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Since equation (2.18) does not include the fluid modulus    , the poroelastic S-wave velocity 

remains unchanged.  

 

2.4 The Russell-Gray linear poroelastic AVO model 

Russell and Gray (Russell et al., 2011), using the foregoing framework, proposed a linearized 

poroelastic AVO approximation, building on work reported by Russell et al. (2003). Russell et 

al. (2003) discusses how to obtain fluid from seismic data by showing the lambda-mu-rho 

technique originally discussed by Goodway et al. (1997). Fundamentally, the lambda-mu-rho 

technique can extract    and    from seismic data by taking the squares and differences of the P 

and S impedances. Gray et al. (1999) provides two AVO formulations that model the subsurface 

as either       or      . By combining Gray et al. (1999) and Goodway et al.’s (1997) 

lambda-mu-rho techniques, Russell et al. (2011) were able to derive a generalized expression for 
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poroelastic media. That expression is what we will refer to as the Russell and Gray 

approximation:  

 

   
2 22
dry dry 2 2

PP 2 2 2

sat sat sat

2

sec 2
1 sec sin

4 4

1 sec
,

2 4

RG f
R

f

  
  

   

 



     
        

      

  
  
 

  (2.19) 

where   is the average between the incidence and refracted angle;      (   
    

)
   

 

(       )   
 and       (   

    
)
   

 (       )   
;   ,    and    are the differences in 

fluid, shear modulus, and density across the interface; and  ,   and    are averages. 

 

2.5 Chapter summary 

This chapter concludes with the Russell and Gray approximation in equation (2.19). This 

equation is an approximation of exact AVO that is parameterized in terms of poroelastic 

properties. Although this equation is linear, it is possible to derive a set of equations that is in 

kind with the Zoeppritz equations that use the poroelastic parameters  ,  ,  . Before this is 

shown, the following chapter will produce the Zoeppritz equations for elastic media such that 

exact solutions of    ,    ,     and     can be calculated. 
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Chapter Three: Exact expressions for poroelastic    ,    ,    ,     

3.1 Chapter overview 

In this chapter the Zoeppritz equations will be re-written using the poroelastic parameterization 

of Russell and Gray. The equations take the form of two sets of four equations, one for the plane-

wave displacement reflection and transmission coefficients associated with an incident P-wave, 

and one for those associated with an incident S-wave. The elastic forms are arrived at in section 

3.2, and in sections 3.3-3.4. Each element in these equations is re-expressed in poroelastic terms. 

This chapter will conclude with formal, exact solutions for poroelastic    ,    ,     and     by 

using Cramer’s rule, in section 3.6. 

 

3.2 A convenient formulation of the Zoeppritz equations 

All 16 possible reflection and transmission wave fields are illustrated in Figure (3.1). In order to 

calculate the displacement amplitudes of one of the 16 wave fields, a ratio of the reflected and 

transmitted wave field and the incident wave field is needed. For instance,             will give 

the displacement amplitude ratio of a reflected S-wave and             
  will give the 

displacement amplitude ratio of a transmitted P-wave, and so forth. All of the amplitudes 

displayed in Figure (3.1) can be calculated using the displacement amplitude equations by Aki 

and Richards (2002).  
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Figure 3.1: Illustration of all of the wave fields that are generated from incident plane 

waves. The short arrows indicate particle motion.  

 

These 4 equations are as follows using the notation from Innanen (2011b): 

            0 0 1 1sin cos sin cosI R I R T I T IP P S S P P S S           , (3.1) 

and 

            0 0 1 1cos sin cos sinI R I R T I T IP P S S P P S S           , (3.2) 

and 

 

        

        

0 0

0

0 0
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1
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2

0 0 0 0 02
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2
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2 sin cos 1 2 sin ,
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P P

S S

T I S T I

P P

V V
P P V S S

V V

V V
P P V S S

V V

    

    

 
    

  

 
      

  

 (3.3) 

and 
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        

        

0 0

0

0 0
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1
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2

0 0 0 0 02
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2

1 0 1 0 12

1 2 sin 2 sin cos
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S S

P I R I R

P P

S S

P T I T I

P P

V V
V P P S S

V V

V V
V P P S S

V V

    

    

 
    

  

 
      

  

 (3.4) 

The incident P- and S-wave angles that are measured with respect to the horizontal plane are   

and   respectively;   ,   ,    are the displacement amplitudes for the incident, reflected, and 

transmitted P-waves respectively;   ,   ,    are the displacement amplitudes for the incident, 

reflected, and transmitted S-waves respectively, and     and     indicate displacement amplitudes 

for incident P- and S-waves approaching the boundary from the lower medium respectively.  

 

3.2.1 Case 1 – incident P-wave 

Reflection coefficients are produced by the ratios of the displacement amplitudes of the reflected 

and incident waves. Transmission coefficients are also ratios but of the displacement amplitudes 

of the transmitted and incident waves. For the case of an incident P-wave these ratios are 

 
PP PS PP PS, , ,R R T T

I I I I

P S P S
R R T T

P P P P
    . (3.5) 

These ratios can be found in equations (3.1) – (3.4). By doing so, it is possible to derive the 

Zoeppritz equations in convenient matrix notation. As an example, equation (3.1) will be used to 

demonstrate how to achieve one row of the matrix-notated Zoeppritz equations as shown by 

Keys (1989). The displacement amplitude equation in (3.1) represents the first row of Keys 

(1989). To confirm this statement, two conditions must be applied to equation (3.1): the first is to 

apply   
    

       and the second is to divide the equation by   . Doing so results in 
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          0 1 1

0 0 0

2 2

2 2

0 0 0 0 02 2
sin sin 1 sin sin 1 sin

S P SR R T T

I P I P I P I

V V VP S P S

P V P V P V P
          . 

In equation (3.1) the trigonometric identity               and Snell’s law are used to write 

the expression in terms of   . After application of the trigonometric identity, Snell’s law and 

substitution of equation (3.5), the equation becomes 

                0 1 1

0 0 0

2 2

2 2

0 PP 0 PS 0 PP 0 PS 02 2
sin 1 sin sin 1 sin sin

S P S

P P P

V V V
R R T T

V V V
           . 

This is the first row equation found in Keys (1989). If equations (3.2) – (3.4) undergo the same 

process as shown for (3.1), a matrix representation of these four equations can be derived where 

   ,    ,    , and     form a column vector and the weighting factors in front of these 

coefficients become the elements inside a matrix  . The remaining terms that are not coupled 

with a reflection or a transmission coefficient are then moved to the right hand side of the equal 

sign. In matrix notation, the result is 

 

PP

PS

PP

PS

P

R

R

T

T

 
 
  
 
 
 

P m , (3.6) 

where   contains sixteen elements defined by the elastic parameters   ,   ,  , and   . The 

sixteen elements in matrix   are the weighting factors that are coupled with    ,    ,    ,     

are arranged as   

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

A A A A

A A A A

A A A A

A A A A

 
 
 
 
 
 

P . (3.7) 
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The vector on the right hand side of equation (3.6) is a vector containing 4 elements of  ’s and is 

written as 

 

1

2

3

4

P

a

a

a

a

 
 
 
 
 
 

m . (3.8) 

All of the     elements in the first row of   are defined as 
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, 

the elements of the second row are 

1/2
2

21 01 sinA     , 

0

0

22 0sin
S

P

V
A

V


 
  

 
 

, 

1

0

1/2
2

2

23 02
1 sin

P

P

V
A

V


  
   

    

, 

1

0

24 0sin
S

P

V
A

V


 
  
 
 

, 
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the elements of the third row are 
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and the elements representing the vector    are 
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. 

 

3.2.2 Case 2 – incident S-wave 

The reflection and transmission coefficients for incident S-waves are produced in the same 

manner as shown for case 1. These coefficients are shown as displacement amplitude ratios of 

the reflected or transmitted wave and the incident wave. They are 

 
SS SP SS SP, , ,R R T T

I I I I

S P S P
R R T T

S S S S
    . (3.9) 

From displacement amplitude equations (3.1) – (3.4), deriving a set of S-wave Zoeppritz 

equations is demonstrated by setting   
    

       and dividing by    throughout. The result 

is a set of modified equations that can be written in convenient matrix notation where the result 

is a four-by-four matrix. The matrix   contains the weighting factors for    ,    ,    ,    . Any 

factors that are not coupled with either a reflection coefficient or a transmission coefficient are 

moved to the right hand side of the equal sign. In matrix notation, the result is 
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 
 
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 

S m , (3.10) 

where   contains 16 elements written in terms of elastic parameters   ,   ,  , and  . This matrix 

is written as 
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11 12 13 14
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and the vector    is a vector that is not coupled to a reflection or transmission coefficient and is 

a column vector such that 
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The elements contained in the first row of equation (3.10) are 
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we find in the second row of equation (3.10) 
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Finally, the elements of the vector    are 
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2
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3.3 The transformation from   ,   ,   to  ,  ,   

The equations for the velocities    and    are written as follows 

 2

4

23
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K

V


 

 




  , (3.13) 

and 

 2

SV



 , (3.14) 

where  ,  ,   and   represent bulk modulus, shear modulus, Lamé’s parameter, and density 

respectively. As previously mentioned in chapter 2, Russell et al. (2011) show that a fluid term 

can be integrated into the numerator of the P-wave velocity equation to compensate for fluid-

filled media. This fluid term is written in terms of the Biot coefficient   and modulus   such 

that       where  

 
dry
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1
K

K
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and 
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. (3.16) 
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In these two equations,     ,   ,     are the bulk moduli for the matrix skeleton, mineral, and 

fluid respectively and   represents the porosity. To calculate the P-wave velocity of a medium 

that contains fluid, the P-wave velocity equation becomes 

  
dry dry

dry dry2

sat
sat sat

4
23

P

K f f
V

  

 

   
   , (3.17) 

where the subscripts ‘sat’ refers to media that is saturated in situ and ‘dry’ refers to a medium 

that is drained of fluid. The S-wave velocity equation remains unchanged as it does not include a 

fluid term (Russell et al., 2011). Equation (3.17) is fundamental in transitioning from parameters 

  ,   ,   to  ,  ,    in the Zoeppritz equations. Since   does not need to be substituted in the 

transition and   can be written in terms of    and   from equation (3.14), this leaves the fluid 

term. By using equations (3.17) and (3.14),   can be written in terms of elastic parameters such 

that 

      2 2

drysat satsatPf V    , (3.18) 

where     
  (

  

  
)
   

 

 
    

 
   

    

 
 

 

 
. 

 

3.4 The P-wave and S-wave Zoeppritz equations in poroelastic terms ( ,  ,  ) 

3.4.1 Incident P-wave 

There are ratios that appear in both the P- and S-wave Zoeppritz equations that appear in 

different combinations for velocity and density. For the P-wave Zoeppritz equations, there is a 

single density ratio and three       ratios where    
 appears in the denominator. Using Russell 
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et al. (2011), equation (3.19) shows that the ratios appearing in the P-wave Zoeppritz equations 

can be written in terms of poroelastic parameters  ,  ,  . Those ratios are 
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 
  

 

   
   

  

  
   
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  (3.19) 

where          (     .  By substituting these ratios into the     elements of equation 

(3.6), the resulting elements for the case of an incident P-wave become 

11 0sinA   , 

1/2

20
12 0

0 0

1 sinA
s f




  
    

  
, 

1/2

0 1 1
13 0

1 0 0

sin
s f

A
s f






    
    

   
, 

1/2

20 1
14 0

1 0 0

1 sinA
s f

 




   
     

   
, 

the elements of the second row are 

1/2
2

21 01 sinA     , 

1/2

0
22 0

0 0

sinA
s f




 
  

 
, 
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1/2

20 1 1
23 0

1 0 0

1 sin
s f

A
s f






    
    

   
, 

1/2

0 1
24 0

1 0 0

sinA
s f

 




   
    

   
, 

the elements of the third row are 

1/2
20

31 0 0

0 0

2 sin 1 sinA
s f


 

 
      

, 

1/2

20 0
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0 0 0 0
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s f s f

 


    
     

     
, 

1/2

201 1 1
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s f

A
s f s f
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 
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, 
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, 

the elements of the fourth row are 

20
41 0

0 0
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

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, 

1/2
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, 

1/2
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A
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, 

and the elements representing the vector    are 
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1 0sina  , 

1/2
2

2 01 sina     , 

1/2
20

3 0 0

0 0

2 sin 1 sina
s f


 
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, 

20
4 0
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s f




  
   

  
. 

 

3.4.2 Incident S-wave 

For the S-wave Zoeppritz equations, velocity and density ratios are also found as in equation 

(3.19). These ratios can also be written in terms of the poroelastic parameters used by Russell et 

al. (2011) and are  
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  (3.20) 

These ratios can be substituted into equation (3.10) so that the     elements transform to the 

poroelastic case where the first row of   becomes 

 
1/2

2

11 01 sinB      , 

1/2
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0
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1/2

201
13 0

0 1
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
 
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 , 

and the second row changes to 

 21 0sinB  , 
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 , 

the elements of the third row become 

 2
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1/2
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0
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
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1/2
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B
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, 

the elements of the fourth row become 

 
1/2

2
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  
1/2

20 0
42 0

0

1 2sin
s f

B 


 
  
 

, 

 

1/2
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 

 
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     
      

     
,  

 

1/2

20 01 1 1 1
44 0

0 1 0 0 1

1 2 sin
s f

B
  


    

           
             

           
. 

Finally, the elements of the vector    change to 

 
1/2

2

1 01 sinb     , 

 2 0sinb  , 

 
1/2

2

3 01 2sinb     , 

 
1/2

2

4 0 02sin 1 sinb      . 

 

3.5 Solutions for    ,    ,    ,     

The exact solutions for    ,    ,    , and     can be found by using a technique known as 

Cramer’s rule where a system of linear equations contains an equal number of unknown 

parameters as data points. Each solution is found by taking the determinant of an augmented 

matrix and dividing by the determinant of the un-augmented matrix where  

 PP PS SS SP

det detdet det
, , ,

det det det det

S SP PR R R R   
P SP S

P P S S
. (3.21) 

The augmented matrices    and    are written such that a column is replaced by the vector    

and likewise    and    are written such that a column is replaced by the vector   . These 

matrices are shown as 
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1 12 13 14 11 1 13 14

2 22 23 24 21 2 23 24

3 32 33 34 31 3 33 34

4 42 43 44 41 4 43 44

1 12 13 14 11 1 13 14

2 22 23 24 21 2

3 32 33 34

4 42 43 44

, ,

,

P S

S P

a A A A A a A A

a A A A A a A A

a A A A A a A A

a A A A A a A A

b B B B B b B B

b B B B B b B

b B B B

b B B B

   
   
    
   
   
   

 
 
  
 
 
 

P P

S S
23 24

31 3 33 34

41 4 43 44

.
B

B b B B

B b B B

 
 
 
 
 
 

  (3.22) 

 

3.6 Chapter summary  

Equations (3.21) are exact, though formal, solutions for displacement reflection coefficients in 

terms of poroelastic parameters as used by Russell et al. (2011) in their linearized expression.  

In the following chapters we will investigate series expansions of    , paying particular attention 

to (1) their consistency with the Russell and Gray       equation, and (2) the importance of 

their higher order (nonlinear) terms. 
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Chapter Four: Series solutions for poroelastic     

4.1 Chapter overview 

Leading from the end of chapter 3 which showed the formalism of deriving exact poroelastic 

solutions of    ,    ,     and    , chapter 4 will show how to achieve a series solution for 

poroelastic    . This chapter begins by defining a set of perturbations in  ,  ,   in section 4.2 

that will re-parameterize the P-wave Zoeppritz equations. Section 4.3 will demonstrate the 

application of a Taylor series expansion of each element of the Zoeppritz equations; this will be 

followed by the product of calculating the determinant ratio of the augmented and un-augmented 

  matrix. Section 4.4 will show how to write perturbations in terms of reflectivity and finally 

section 4.5 will discuss the (      
  parameter how this parameter affects the series solution for 

poroelastic    . 

 

4.2 The poroelastic P-wave Zoeppritz equations in perturbative form 

From chapter 3, the poroelastic P-wave Zoeppritz equations are in terms of  ,  ,  . To re-

parameterize the poroelastic P-wave Zoeppritz equations, we will first define a set of 

perturbations for poroelastic media such that 

 0 0 0

1 1 1

1 , 1 , 1f

f
a a a

f
 

 

 
      . (4.1) 

The ratios found in chapter 3 in equation (3.19) can be written in terms of perturbations. 

Substituting equation (4.1) into (3.19) yields 
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  (4.2) 

Of these four ratios, the first ratio is the simplest to write in terms of perturbation. The second 

ratio is the inverse of    

     
  and is written using (     

   to maintain consistent notation with 

Russell et al. (2011). The fourth ratio can be shown to be true by  
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and the third ratio is the most complex where the ratio can be shown by  
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Note that this derivation of    

     

  uses (      
  in place of (      

  in the third line of this 

equation. The parameter that reflects the skeleton framework of the lower medium    should 

contain (      
  as    (      

   . The justification to not use (      
  is the result of the number 

of weighting factors that are found when deriving the linear solution for poroelastic    . There 

are 28 weighting factors coupled with the    term, 28 weighting factors coupled with   , 31 

weighting factors coupled with the    term and an additional 32 weighting factors that are not 

coupled with a perturbation. This will be discussed further in section 4.5. Nevertheless, these 

ratios may be substituted into the poroelastic P-wave Zoeppritz equations.  

 

By substituting the perturbations of equation (4.1) into the poroelastic P-wave Zoeppritz 

equations, the elements in   will change such that the first row becomes 
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a a
A

 




  
   
 
 

, 

the elements of the second row become 

 
1/2

2

21 01 sinA     , 

  22 0 0sat
sinA    , 
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  
 

 
 

 

 
 

1/2
2 2

110 0dry dry 2

23 02 2

0 0sat sat

1 1 1 1 1 sinfA a a a 

 


 


      

                          

, 

 
    

 

1/2
1

24 0

0 sat

1 1
sin

a a
A

 






 
 , 

the elements of the third row become 

  
1/22 2

31 0 0 0sat
2 sin 1 sinA       , 

    
2 2

32 0 0 0sat sat
1 2 sinA     
 

, 

 
   

 

 
 

 
 

 

 
 

1

1

33 02

0 sat

1/2
2 2

110 0dry dry 2

02 2

0 0sat sat

1 1
2 1 sin

1 1 1 1 1 sin ,f

a a
A a

a a a

 



 




 


 







  
  
 
 

      
            
      

       

 

  
   

 

   
 

1/2
1 1

1
2

34 02 2

0 0sat sat

1 1 1 1
1 1 2 sin

a a a a
A a

   

 
 

 


       
       
    

    

, 

the elements of the fourth row become 

  
2 2

41 0 0sat
1 2 sinA     
 

, 
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   
1/2

2 2 2

42 0 0 0 0sat sat
2 sin 1 sinA      

 
,

   
 

 
 

 

 
 

   
 

1/2
2 2

11 10 0dry dry

43 2 2

0 0sat sat

1

2

02

0 sat

1 1 1 1 1

1 1
1 2 sin ,

fA a a a a

a a

  

 

 

 




 



     
            

          

   
   
  

  

 

  
   

 

   
 

1/2
1 1

1
2

44 0 02 2

0 0sat sat

1 1 1 1
2 1 sin 1 sin

a a a a
A a

   

  
 

 


       
      
    

    

, 

and the elements of the vector    become 

 1 0sina  , 

 
1/2

2

2 01 sina     , 

  
1/22 2

3 0 0 0sat
2 sin 1 sina       , 

  
2 2

4 0 0sat
1 2 sina    
 

. 

 

4.3 Series expansion of the solution for     

4.3.1 Expansion of each element of the Zoeppritz matrix 

After having written the     elements in matrix   and    elements in vector    in terms of 

perturbation, the next step involves using Taylor series expansion. The Taylor series expansion 

will be applied to each element in orders of       ,   ,   , and   . 

 

This will result in changes of the first row of   to become 
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 11 0sinA   ,  

  
2

0

2

12 0

1
n

2
si1

sat
A    ,  

 
 

 

 

 

2 2

0 0dry dry

13 0 0 0 02 2

0 0sat sat

1 1
sin sin sin sin ...

2 22 2
fA a a a 

 
   

 

    
           

      
    

,   

 
     

2 2 2

14 0 0 02 2 2

0 0 0sat sat sat

1 1 1
1 sin sin sin ...

2 2
A a a   

  

   
        
   
   

,   

changes in the second row of   to become 

 2

21 0

1
1 sin

2
A   ,  

  22 0 0sat
sinA    ,  

 
 

 

 

 

2 2

0 0dry dry2 2 2 2

23 0 0 0 02 2

0 0sat sat

1 1 1
1 sin 1 sin sin sin ...

2 2 22
fA a a a 

 
   

 

    
            

      
    

,   

 
     

24 0

0 0 0sat sat sat

1 1 1
sin sin ...

2 2
A a a  

  

   
      

   
   

,   

changes in the third row of   to become 

  
2

31 0 0sat
2 sinA   ,   

    
2 2

32 0 0 0sat sat
1 2 sinA     
 

,   

 
   

33 0 02 2

0 0sat sat

2 2
sin sin ...A a 

 

 
   
 
 

,   
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         

     

2 2 2

34 0 0 02 3 2

0 0sat sat0 0 0sat sat sat

2 2

0 03 2

0 sat0 0sat sat

1 2 2 1 2
1 sin sin 1 sin

2

2 1 2
sin 1 sin ...,

2

A a

a





  
   

 
 

     
          

          

  
      

  
  

 

changes in the fourth row   to become 

  
2 2

41 0 0sat
2 sin 1A    ,  

  
2

42 0 0sat
2 sinA   ,   

 
 

 

   

 

       

2

0 dry2 2

43 0 02 2 2

0 0 0sat sat sat

2

0 dry 2 2 2

0 0 02 2 2 2

0 0 0 0sat sat sat sat

2 1 2
1 sin 1 sin

2 2

2 2 1 1
1 sin sin sin ...,

22

fA a

a a 


 

  


  

   

  
      

  
  

     
          

     
     

  

 
   

44 0 02 2

0 0sat sat

2 2
sin sin ...A a 

 

 
   
 
 

.  

Finally, changes in the elements of    to become  

 1 0sina  ,   

 2

2 0

1
1 sin

2
a   ,   

  
2

3 0 0sat
2 sina   ,   

  
2 2

4 0 0sat
1 2 sina    .   
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4.3.2 Expansion of the determinant ratios 

Expanding the ratio of determinants of the four-by-four matrix   required the use of 

mathematical processing software Maple to calculate    . Using compact notation, the solution 

of     is 

 
     1 2 3

PP PP PP PP ...R R R R    , (4.3) 

where the first, second, and third order terms are contained within    
(  

,    
(  

 and    
(  

 

respectively. Equation (4.3) is the symbolic representation of the exact series solution of    . 

For a first order poroelastic AVO approximation,    
(  

,    
(  

 and etc are neglected. This is an 

approximation of the exact solutions and is written as 

 
 1

PP PPR R ,  (4.4) 

the second order approximation includes both first and second order terms which means 

 
   1 2

PP PP PPR R R  ,  (4.5) 

and the third order approximation includes the first, second, and third order terms such that 

 
     1 2 3

PP PP PP PPR R R R   , (4.6) 

and etc. There are three weighting terms found in    
(  

, six in    
(  

, and ten in    
(  

. Explicitly, 

   
(  

 appears as 

 

   
 

 

   

 
 

 

2 22

0 001 dry dry 2 2

PP 0 0 02 2 2

0 0 0sat sat sat

2

0

1 sin 2
1 1 sin sin

4 4

sin1
,

4 4

fR a a

a





 
  

  



    
        
    
    

 
  
 

  (4.7) 
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which has the same number of weighting terms as Russell et al. (2011). Due to equation length, 

the second and third order poroelastic     terms are found in appendix A. 

 

4.4 Transformation from perturbative form to reflectivity form 

Aki and Richards (2002), Shuey (1985), Russell et al. (2011) and others use model parameters 

known as reflectivities to parameterize AVO approximations. Russell et al. (2011) use 

poroelastic model parameters  ,   and   to characterize gas-saturated sands. The reflectivity 

terms are 

 
     1 0 1 0 1 0

1 0 1 0 1 0

2 2 2
, ,

f ff

f f f

    

     

    
  

  
.  (4.8) 

Using the definitions for perturbations in equation (4.1) and the reflectivity definitions in (4.8), 

reflectivity can be written as a series of perturbations. It can also be shown that for small 

property contrasts, when reflectivity is small in value, reflectivity is approximately equal to 

perturbation such that 

 

 

   
1 0 0 1

1 0 0 1

2

2 1 /
2 2

1 / 1 1/ 21 1

1 1
1 ... .

2 2

f f

ff

f f f f

a af f f ff

f f f f f aa

a a a a

 
   

   

    
        

     

  (4.9) 

This shows fluid reflectivity as a fluid perturbation series. By inspection of equation (4.8) and 

(4.9), reflectivities      and      will yield the same symbolic result as (4.9). Using equation 

(4.9), fluid perturbation    may be written in terms of fluid reflectivity      using series 

reversion. This is accomplished by defining an inverse series for    where  

 
1 2

...f f fa a a   . (4.10) 
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By substituting equation (4.10) into (4.9), equating like orders will then produce an expression 

for    such that 

 

2

1
...

2
f

f f
a

f f

  
   

 
. (4.11) 

The symbolic forms for the shear modulus and density perturbations and reflectivities are 

identical therefore the shear modulus and density perturbation inverse series are 

 

2

1
...

2
a

 

 

  
   

 
,  (4.12) 

and 

 

2

1
...

2
a

 

 

  
   

 
. (4.13) 

Using the fluid, shear modulus and density inverse series’ in (4.11) – (4.13), substitutions of 

those into (4.1) will create a set of poroelastic P-wave Zoeppritz solutions that measure relative 

changes in reflectivity terms rather than perturbation. The steps that are applied in order to derive 

an exact series solution for poroelastic     using perturbation contrasts are the same for 

reflectivity. Due to length, the second and third order poroelastic     approximations are left in 

appendix A; however, the first order approximation is 

 

 
 

 

   

 
 

 

2 22

0 00dry dry 2 2

PP 0 0 02 2 2

0 0 0sat sat sat

2

0

1 sin 2
1 1 sin sin

4 4

sin1
,

4 4

f
R

f

  
  

  

 



              
    
    

  
  
 

 (4.14) 

where this solution contains the same weighting coefficients as the approximation in equation 

(4.7).  
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4.5 The (      
  parameter 

As mentioned in section 4.2, use of the (      
  parameter instead of the (      

  parameter in the 

   

     

  ratio produces different analytical series solutions in    . For convenience, the series 

solution containing the (      
  parameter will be the (      

  series solution and the series 

solution containing (      
  will be the (      

  series solution. Numerically, these two series 

solutions are compared with the exact solutions. The result of this comparison shows that for 

small perturbations, the two series solutions are approximately equal as shown in Figure (4.1a). 

As the perturbations increase however, the (      
  series solution begins to diverge more quickly 

from the exact solution than (      
  series solution. In Figure 4.1 the blue curve represents the 

exact solutions, the red curve represents the (      
  solution and the blue curve represents the 

(      
  solution. 
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Figure 4.1: These plots compare the exact series solutions (blue) with the linear     

solution that uses (      
  (red) and the linear     solution that uses (      

  (black). 

 

4.6 Chapter summary 

The approximation shown in equations (4.7) and (4.14) is the result of deriving a series solution 

for     in terms of poroelastic property contrasts. These two equations are different by how each 

equation measures poroelasticity, equation (4.7) is in terms of perturbation and (4.14) is in terms 

of reflectivity. The weighting factors however, are identical and equation (4.14) will be 

compared with the Russell and Gray approximation in the next chapter. Numerical modeling will 

also be explored in the next chapter. 
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Chapter Five: Exact, linear, and nonlinear poroelastic AVO modeling: validation and 

analysis 

5.1 Chapter overview 

The forms for the first, second and third order poroelastic AVO approximations are shown in 

section 5.2. The linear derivation of     will be compared with the Russell and Gray 

approximation for the purpose of showing that they agree with each other in section 5.3. 

Following is a numerical study of the exact, linear and nonlinear approximations in both 

perturbation and reflectivity domains to illustrate the benefit of including low-order nonlinear 

terms. 

 

5.2 Forms for first, second and third order series approximations 

Using the methods shown in chapter 4 illustrate how to apply Cramer’s rule to produce series 

solutions, the exact expression for PP reflection coefficients involves all corrective terms 

   
(      

(  
    

(  
  . The linear approximation involves only the first order corrective term 

   
(  

 and the second and third order approximations include corrective terms    
(      

(  
 and 

   
(      

(  
    

(  
, respectively.  These approximations in the perturbation and reflectivity 

domains create two sets of approximations that bring the total number of approximations to six. 

In the set of approximations that involve perturbations, the first order approximation is  

 
1 2 3PP a f a aR W a W a W a    , (5.1) 

the second order approximation is 

 1 2 3 4 5 6

7 8 9

2 2 2

PP

,

a f a a a f a a

a f a f a

R W a W a W a W a W a W a

W a a W a a W a a

   

   

     

  
 (5.2) 

and the third order approximation is 
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17

18 19

2 2 2

PP

3 3 3

2 2 2 2 2

2 ,

a f a a a f a a

a f a f a a f a a

a f a f a f a a f

a a f

R W a W a W a W a W a W a

W a a W a a W a a W a W a W a

W a a W a a W a a W a a W a a

W a a W a a a

   

     

     

   

     

     

    

 

  (5.3) 

where the weighting factors are represented by   . There are three weighting factors in the first 

order approximation, nine in the second order approximation and nineteen in the third order 

approximation. In the second set of approximations that use reflectivity, the first order 

approximation is 
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the second order approximation is 
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 (5.5) 

and the third order approximation is 
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This set of approximations shows the same number of weighting factors as the perturbation-

based approximations.  

 

5.3 Agreement of first order     with expression of Russell and Gray 

Russell et al. (2011) have presented a linearized poroelastic approximation for PP reflection 

coefficients that resembles forms shown by Aki and Richards (2002), Shuey (1985), Wiggins et 

al. (1983), and Smith and Gidlow (1987). This formulation is able to invert seismic amplitude 

data to predict a fluid parameter. To reiterate from chapter 2, the equation by Russell et al. 

(2011) is 
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 (5.7) 

where   is the average between the incidence and refraction angles,     ,     , and      are 

the reflectivities and      and      represent average       ratios for dry and saturated media 

respectively. From chapter 4, two linear expressions for     are shown, one is written in terms of 

perturbation and the other is written in terms of reflectivity. The first order poroelastic 

approximation for reflectivity contrasts is 
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 (5.8) 

There are similarities between the Russell and Gray approximation and the first order poroelastic 

approximation where the weighting factors are nearly identical. Using a small angle 
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approximation on the first order approximation in equation (5.8) will show that it is consistent 

with Russell and Gray. Applying the small angle approximation on the three        terms, can 

alter them to       . The small angle approximation for        is written such that 

 2 2

0 0sec 1 sin   , (5.9) 

which can be proven by 
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By substituting the small angle approximation (5.9) into (5.8) the equation becomes 
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  (5.10) 

Equation (5.10) is the final result of the first order poroelastic AVO equation derived from the 

elastic Zoeppritz equations. The differences in the Russell and Gray approximation derived by 

Russell et al. (2011) and our first order approximation represented in equation (5.7) and (5.10) 

respectively, are between the parameters   and   ,      and (      , and      and (      . These 

differences in   /   ratios and plane wave angle show that the first order poroelastic AVO 

approximation requires only information from the incident medium while Russell et al.’s (2011) 

poroelastic approximation requires information from both layers. Otherwise, the first order 

poroelastic approximation and the Russell and Gray approximation are consistent. 
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5.4 Importance of low-order nonlinear poroelastic AVO: numerical study 

In the following figures, AVO modeling is performed on scenarios consisting of two 

homogeneous layers separated by a horizontal interface. The top layer contains its own unique 

set of fluid, shear modulus, and density parameters as does the bottom layer. The numerical 

AVO results are calculated such that the poroelastic parameters ( ,  ,  ) are predetermined for 

medium 1 and the poroelastic parameters for the top layer depend on the selected perturbation 

(  ,   ,   ) or reflectivity (    ,     ,     ) values chosen by the user.  

 

For medium 1 the predetermined values are 
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and medium 0 values are calculated using 
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Figure (5.1) shows perturbation-based AVO modeling using equations (5.1) – (5.3) where all 

three perturbation constants are equal as perturbation models increase simultaneously from 

Figures (5.1a) – (5.1d). Figure (5.1a) shows the reflection amplitudes based on small 

perturbation values               . These perturbation values predict exact     

accurately. Figure (5.1b) shows the reflection amplitudes based on a 0.100 increase in 
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perturbation for each perturbation parameter such that               . This increase in 

perturbation also increased the amplitude values across all approximations. An increase in 

perturbation to                shows a significant decrease in accuracy of the first order 

approximation as well as an accuracy decrease for the second order approximation in Figure 

(5.1c). Figure (5.1d) uses perturbation values of                and highlights a drop in 

accuracy of the first order approximation by more than 20% of the zero offset amplitude 

measurement and the third order approximation has a drop in accuracy less than 1% of the zero 

offset amplitude measurement.  

 

Figure (5.2) shows reflectivity-based AVO modeling using equations (5.4) – (5.6) where all three 

reflectivity constants are equal as reflectivity models increase simultaneously, illustrated in 

Figures (5.2a) – (5.2d). These figures illustrate the same numerical approach as Figure (5.1) by 

using 
  

 
 

  

 
 

  

 
       for Figure (5.2a) and etc. In Figure (5.2a), the reflectivity 

parameters are small, 
  

 
 

  

 
 

  

 
      . Reflectivity parameters of this magnitude show 

that the first, second and third order approximations are predicting exact     correctly. This 

remains to be true as reflectivity in fluid, shear modulus, and density is increased from Figure 

(5.2b) – (5.2d). In the next two sets of figures, Figures (5.3) – (5.5) display a side-by-side 

comparison between the perturbation and reflectivity-modeled AVO curves.  

 

Figure (5.3) shows a comparison of the performance of the perturbation based modeling and the 

reflectivity based modeling simultaneously. Figures (5.3a) and (5.3b) use parameter values of 

   
  

 
      ,    

  

 
      , and    

  

 
      . Figures (5.3c) and (5.3d) use 
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parameter values of    
  

 
      ,    

  

 
      , and    

  

 
      . Finally, Figures 

(5.3e) and (5.3f) use parameter values of    
  

 
      ,    

  

 
      , and    

  

 
 

     . Figures (5.3a), (5.3c) and (5.3e) show a decreasing amplitude trend from 0° to 30° 

incidence angle. The AVO curves produced in these figures highlight the effects that fluid, shear 

modulus and density contrasts have on these curves. All three figures show approximately 12% 

error for the first order approximation at zero offset and less than 1% error for the third order 

approximation also at zero offset. Figures (5.3b), (5.3d) and (5.3f) show small errors for first, 

second and third order approximations. The zero offset error is less than 1% for the first and third 

order approximations in all three figures. 

 

Figures (5.4) and (5.5) illustrate the same type of numerical analysis as shown in Figure (5.3) but 

use larger contrasts. The larger contrasts emphasize the effects that fluid, shear modulus and 

density perturbation/reflectivity models have on the AVO curves by the decreasing accuracy of 

the approximations. In Figure (5.4), an increase in the single perturbation/reflectivity constant is 

measured to be 0.600. Doing so significantly affects the accuracy of the first, second and third 

order approximations in the perturbation domain. This is seen in Figures (5.4a), (5.4c), and (5.4e) 

where the zero offset amplitude measurement, compared to the first order approximation loses 

accuracy relative to exact     by 33%, whereas the third order approximation has 9% error for 

the zero offset amplitude measurement. The reflectivity domain based equations however, 

remain largely unaffected. In Figure (5.5), another increase in the single perturbation/reflectivity 

constant is measured at 0.900 where this increase has brought another significant decrease in 

accuracy for first, second and third order approximations in the perturbation domain. The error of 
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the zero offset amplitudes for the first and third order approximations are very large but this is 

not the case for the reflectivity based approximations, where the first and third order 

approximations predict exact     with 20% and 3% error respectively.  

 

Figure (5.6) continues to compare the performance of the perturbation modeling and the 

reflectivity modeling but instead select models that differ from constant medium poroelastic 

property values. In other words, the analysis is performed such that  ,  , and   for both the upper 

and lower media remain constant while   ,   ,    and     ,     ,      are calculated 

accordingly. In Table (5.6), the perturbation values increase by increments of 0.200 from Figure 

(5.6a) – (5.6c) and (5.6c) – (5.6e). The reflectivity values however, increase by 0.278 from 

Figure (5.6b) – (5.6d) and another increase by 0.357 from Figure (5.6d) – (5.6f). Given that the 

values for  ,  , and   are comparatively analyzed in each pair of (5.6a), (5.6b), and (5.6c), 

(5.6d), and (5.6e), (5.6f), it is clear that the reflectivity domain equations are consistently more 

accurate than the perturbation based equations. 
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Figure 5.1: All four panels have a consistent perturbation each in   ,   , and   . Four 

curves are produced in each panel: the blue curve represents the exact solutions while the 

solid, dashed, and dash-dotted black curves represent the 1
st
, 2

nd
, and 3

rd
 order 

approximations respectively. 

 

Figures 

Values for perturbations 

(          ) 

5.1a 0.100 

5.1b 0.200 

5.1c 0.400 

5.1d 0.500 

Table 5.1: Perturbation values from Figure (5.1). 
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Figure 5.2: The four panels use a consistent reflectivity of     ,      , and      in each. 

Four curves are reproduced in each panel: the blue curve represents the exact solutions 

while the solid, dashed, and dash-dotted black curves represent the 1
st
, 2

nd
, and 3

rd
 order 

approximations respectively. 

 

Figures 

Values for reflectivity 

(                

5.2a 0.100 

5.2b 0.200 

5.2c 0.400 

5.2d 0.500 

Table 5.2: Reflectivity values from Figure (5.2). 
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Figure 5.3: Figures (a), (c), and (e) represent the perturbation based poroelastic AVO 

approximations of 1
st
, 2

nd
, and 3

rd
 order, as shown by the solid, dashed, and dash-dotted 

black curves respectively. Figures (b), (d), and (f) represent the reflectivity based 

poroelastic AVO approximations of 1
st
, 2

nd
, and 3

rd
 order, as shown by the solid, dashed, 

and dash-dotted black curves respectively. The exact amplitudes are shown by the blue 

curve. 
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Figure                

5.3b 0.300 0.100 0.100 

5.3d 0.100 0.300 0.100 

5.3f 0.100 0.100 0.300 

Table 5.3: Values for perturbation and reflectivity for Figure (5.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure          

5.3a 0.300 0.100 0.100 

5.3c 0.100 0.300 0.100 

5.3c 0.100 0.100 0.300 
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Figure 5.4: Figures (a), (c), and (e) represent the perturbation based poroelastic AVO 

approximations of 1
st
, 2

nd
, and 3

rd
 order, as shown by the solid, dashed, and dash-dotted 

black curves respectively. Figures (b), (d), and (f) represent the reflectivity based 

poroelastic AVO approximations of 1
st
, 2

nd
, and 3

rd
 order, as shown by the solid, dashed, 

and dash-dotted black curves respectively. The exact amplitudes are shown by the blue 

curve. 
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Figure                

5.4b 0.600 0.100 0.100 

5.4d 0.100 0.600 0.100 

5.4f 0.100 0.100 0.600 

Table 5.4: Values for perturbation and reflectivity for Figure (5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure          

5.4a 0.600 0.100 0.100 

5.4c 0.100 0.600 0.100 

5.4c 0.100 0.100 0.600 
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Figure 5.5: Figures (a), (c), and (e) represent the perturbation based poroelastic AVO 

approximations of 1
st
, 2

nd
, and 3

rd
 order, as shown by the solid, dashed, and dash-dotted 

black curves respectively. Figures (b), (d), and (f) represent the reflectivity based 

poroelastic AVO approximations of 1
st
, 2

nd
, and 3

rd
 order, as shown by the solid, dashed, 

and dash-dotted black curves respectively. The exact amplitudes are shown by the blue 

curve. 
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Figure                

5.5b 0.900 0.100 0.100 

5.5d 0.100 0.900 0.100 

5.5f 0.100 0.100 0.900 

Table 5.5: Values for perturbation and reflectivity for Figure (5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure          

5.5a 0.900 0.100 0.100 

5.5c 0.100 0.900 0.100 

5.5c 0.100 0.100 0.900 
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Figure 5.6: Figures (a), (c), and (e) represent the perturbation based poroelastic AVO 

approximations of 1
st
, 2

nd
, and 3

rd
 order, as shown by the solid, dashed, and dash-dotted 

black curves respectively. Figures (b), (d), and (f) represent the reflectivity based 

poroelastic AVO approximations of 1
st
, 2

nd
, and 3

rd
 order, as shown by the solid, dashed, 

and dash-dotted black curves respectively. The exact amplitudes are shown by the blue 

curve. 
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Figure                

5.6b 0.222 0.222 0.222 

5.6d 0.500 0.500 0.500 

5.6f 0.857 0.857 0.857 

Table 5.6: Values for perturbation and reflectivity for Figure (5.6). 

 

5.5 Chapter summary 

This chapter compares the first order approximation in reflectivity and compares it to Russell and 

Gray’s approximation. The results validate our derivation methods. We then show the numerical 

results using the first, second and third order approximations with exact     in both the 

perturbation and reflectivity domains as a guide to measure the accuracy of the approximations. 

A variety of different numerical values were tested for AVO modeling. The first test shown in 

Figure (5.1) consisted of a constant perturbation value such that         . An increase in 

value for perturbation showed a steady decrease in accuracy for the first order approximation. 

The second test in Figure (5.2) consisted of using a constant reflectivity value such that 
  

 
 

  

 
 

  

 
 where increasing the value for reflectivity showed consistently accurate predictions from 

each of the reflectivity approximations. The numerical results following the first two tests 

compared the results of perturbation approximations against reflectivity approximations using 

various different numerical circumstances. It was consistently shown that the reflectivity models 

provided more accurate results in all orders of approximation relative to the perturbation in AVO 

modeling.  

  

Figure          

5.6a 0.200 0.200 0.200 

5.6c 0.400 0.400 0.400 

5.6e 0.600 0.600 0.600 
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Chapter Six: Towards a more complete picture of poroelasticity 

6.1 Chapter overview 

The purpose of this chapter is to show the final results from the analysis of reflection and 

transmission coefficients in poroelastic media achieved by Gurevich et al. (2004). Background 

information discussed by Gurevich et al. (2004) will be mentioned in section 6.2. This will be 

followed by the study that Gurevich et al. (2004) provided for poroelastic reflection and 

transmission modeling from an incident P-wave in two scenarios; the first in a porous-porous 

medium and the other in a free fluid-porous medium. The equations for each medium will be 

shown in sections 6.3 and 6.4 respectively. Both sections will include the extent of our work 

which consists of re-writing the Gurevich equations using Russell et al. (2011) notation. Finally, 

the chapter will be closed with a summary. 

 

6.2 An introduction to the Gurevich study 

Hydrocarbon reservoirs as well as many other sedimentary rocks are fluid-saturated porous 

materials, with elastic properties that can be described by the theory of poroelasticity (Biot, 

1962). This theory predicts the effects of movement of the pore fluid relative to the solid 

skeleton by seismic waves propagating through the rock (Gurevich et al., 2004). This opens 

potential opportunities to estimate fluid and rock transport properties from measurements of 

seismic waves (Gurevich et al., 2004). However, these opportunities are somewhat limited by the 

fact that, at low frequencies, relative fluid movement becomes negligible and the rock behaves 

like an elastic solid with elastic moduli equivalent to Gassmann’s (1951) equations (Gurevich et 

al., 2004).  
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In particular, the theory of poroelasticity predicts that elastic wave attenuation and dispersion 

only become significant at frequencies comparable to the so-called Biot’s characteristic 

frequency          , where   and   are the porosity and permeability of the rock matrix 

respectively, and   and    are the steady-state shear viscosity and density of the pore fluid, 

respectively (Gurevich et al., 2004). For commonly encountered natural rocks such as sandstones 

or limestones saturated with water, oil or gas,    is usually 0.1 MHz or higher. This is much 

higher than the frequency of waves of surface seismic exploration (20-70 Hz) and well logging 

(5-50 kHz). For frequencies much smaller than   , both attenuation and dispersion are very 

small (Gurevich et al., 2004). However, White (1983) shows that dynamic poroelasticity effects 

may be pronounced at low frequencies when macroscopic heterogeneity is present in porous 

media (Gurevich et al., 2004). In other words, when a plane wave interacts with fluid across an 

interface, a loss of energy from that propagating wave occurs (Gurevich et al., 2004). This loss of 

energy is related to the calculation of the reflection coefficient, which is proportional to the 

square root of frequency in this particular environment. What this suggests is that we may be 

able to monitor fluid effects within porous media using reflection sounding at relatively low 

frequencies (Gurevich et al., 2004). 

 

There are various parameterizations of reflection and transmission coefficients for poroelastic 

media. These expressions are also typically nonlinear. From an inversion perspective, 

nonlinearity causes instability when inverting for desired (predicted) components from the data. 

Therefore, we would like to present a framework of equations following Gurevich et al. (2004), 

namely normal incidence, frequency dependent, reflection/transmission coefficients. A linearized 
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form for these coefficients would provide a computationally faster measure of inverted 

poroelastic parameters. 

 

Gurevich et al. (2004) derives normal incident reflection and transmission coefficients using two 

different geological scenarios. The first is a two-layer model that consists of a solid poroelastic 

medium overlying another solid poroelastic medium. This scenario produces two reflection 

coefficients     and     and two transmission coefficients     and    . The second geologic 

scenario consists of a solid poroelastic medium overlying a free fluid. This scenario produces 

one reflection coefficient     and two transmission coefficients     and    . The subscript ‘1’ 

indicates propagation of a fast P-wave which we understand as   √
    

 
 and subscript ‘2’ 

indicates propagation of the Biot slow P-wave. 

 

6.3 Reflection and transmission coefficients for porous-porous media 

One set of expressions derived by Gurevich et al. (2004) is used to calculate reflection and 

transmission coefficients of an incident P-wave in fluid-saturated media for a two-layer case. As 

a result of the frequency dependent effect of porous media on calculating reflection and 

transmission coefficients, two P-waves are generated from an incident plane wave,     ; a fast P-

wave and a slow P-wave. 

 

Figure (6.1) shows the schematic which Gurevich et al. (2004) uses in deriving the normal 

incidence reflection and transmission coefficients. 
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Figure 6.1: A representation of an incoming P-wave in layer b. The reflection and 

transmission coefficients are for P-waves only and the subscripts indicate a fast P-wave (1) 

and Biot’s slow wave (2).  

 

For a fast P-wave, corresponding reflection and transmission coefficients are produced, labelled 

    and     respectively. The Biot slow P-wave also produces a reflected and transmitted P-

wave labelled     and    . For the fast P-wave, the expressions for the reflection and 

transmission coefficient are shown as  
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and 
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At first glance, by setting    ,     and     are reverted back to their elastic forms. This 

implies that the   term contains all of the implicit poroelastic properties of the media. This   

term will determine poroelastic variations in fluid and shear modulus while the density terms that 
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are outside of   will show the density variations. As shown by Gurevich et al. (2004)   is 

defined as  

  
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where the   term contains moduli that overlap with Russell et al. (2011). Since the research from 

previous chapters of this thesis use notation from Russell et al. (2011), this overlap will allow 

equation (6.3) to be written in terms of perturbations. This step would include substitution of    

and    for       and       ratios respectively.  

 

Other terms such as steady-state shear viscosity of a fluid   or steady-state permeability of a 

solid skeleton  , will be kept in their original notation as provided by Gurevich et al. (2004). The 

constants  ,  , and   are 

 dry

4

3
H K f   ,  (6.4) 

 C M ,  (6.5) 

and 

 
2C C

N
H

  . (6.6) 

In  ,      is the bulk modulus of the skeleton framework,   is the shear modulus, and   is the 

fluid term. The fluid term is also mentioned in chapter 2 where       where   is referred to 

as the Biot coefficient 

 
dry

m

1
K

K
   , 
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and   is the modulus 

 

1
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M
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. 

This then leaves (       and (       which are expressions for wavenumbers corresponding to 

Biot’s slow P-wave and fast P-wave respectively. These variables are left unchanged from 

Gurevich et al. (2004) and are described as  

 slow

i
k

N




 ,  (6.7) 

where   represents steady-state shear viscosity of a pore fluid,   is the steady-state permeability 

of a solid skeleton,       which is the angular frequency and 

 fastk
v


 .  (6.8) 

Substitution of equations (6.4) – (6.8) into (6.3) produces 
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where 
 

√ 
 is written as 
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Equation (6.9) contains instances of nonlinearity. There are squared terms as well as square root 

terms in    and    that can be expanded in series. By substituting this newly formed equation for 

  back into     and    , expressions that are in terms of fluid, shear modulus, and density are 

now available for fast P-waves.  

 

For slow P-waves, the reflection and transmission coefficients are 
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and 
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In these two expressions, the   
  and   

  terms are expressed as  
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After substituting equations (6.4) – (6.5) into (6.13) and (6.14),   
  and   

  become 
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and 
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which both equivalently have    and    dependencies as   does. Finally, expressions for    , 

   ,    ,     are expressed in terms of  ,  , and  . 

 

6.4 Reflection and transmission coefficients for free fluid-porous media 

Shown in the previous geological case of a porous medium overlying a porous medium, similar 

observations of the reflection and transmission coefficient expressions are made again for the 

case of a porous medium overlying a free fluid. For instance, the equation for     is defined by 

impedances of both layers with a (     embedded in the numerator and the denominator to 

allow for fluid compensated effects. When    , the equations for     and     have been 

reduced to their elastic forms and the fluid and shear modulus constants are contained within  .  

 

Figure (6.2) represents the case where the incident P-wave pulse begins its propagation in layer 

b) and travels in the negative depth direction. The only difference between this figure and Figure 

(6.1) is the lack of    . One reason for this difference is the lack of a     amplitude in the 

displacement vectors shown by Gurevich et al. (2004). The expressions for the reflection and 

transmission coefficients for a fast P-wave are similarly constructed in equations (6.1) and (6.2) 

with a key difference is that the modulus contains all of the physical poroelastic information. 

This was expressed as   for a porous-porous medium and is expressed as   for a free fluid-
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porous medium. The reflection and transmission coefficients for fast P-waves in a free fluid-

porous medium are 
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and 
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where   is described as 
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Figure 6.2: A second representation of an incoming P-wave in a free fluid occupying layer 

b. The reflection and transmission coefficients are for P-waves only and the subscripts 

indicate a fast P-wave (1) and Biot’s slow wave (2). 

 

By inspection, equation (6.19) is a reduced form of (6.3). This occurs by replacing the bottom 

layer with a free fluid (        ) and the assumption of infinite permeability (    of the 
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free fluid (Gurevich et al., 2004). Using Russell et al’s (2011) notation  ,  , and   are explicitly 

shown in the poroelastic modulus   to obtain 
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Since only    and    are shown in  , this determines that neither fluid contrasts nor shear 

modulus contrasts will affect     or    . Only one instance of    appears in   which shows that 

there are perturbations of density in     and    . Thus for incidence P-waves traveling in a free 

fluid that interacts with a boundary of a porous medium,     and     contain only a density 

perturbation.  

 

For the Biot slow wave, the transmission coefficient is 
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where the slow P-wave induces a modified poroelastic variable,   , which is a reduced 

expression of   
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Since it appears that    also does not contain any dependence on a fluid or shear modulus 

perturbation,     is also only dependent on a density perturbation. Again, by explicitly replacing 

 ,  , and   into forms that are in terms of   and  ,    becomes 
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6.5 Chapter summary 

This chapter shows how to write the Gurevich reflection and transmission coefficients in terms 

of the Russell et al. (2011) notation. The next step following this Gurevich study will be to 

transition the poroelastic parameters  ,   and   into perturbations. Once they are in 

perturbations, a Taylor series expansion can be applied to     and     such that they are in series 

in orders of   ,    and   .  
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Chapter Seven: Conclusions 

7.1 Summary 

7.1.1 Review of AVO poroelasticity 

Amplitude variation with offset is a useful tool to predict lithological properties using seismic 

signals. Knott (1899) and Zoeppritz (1919) each provide a set of equations that precisely 

calculate plane wave amplitudes. Koefoed (1955) demonstrates several examples using the Knott 

(1899) formulation to show that hydrocarbons may be detected by changes in measurement of 

Poisson’s ratio across an interface. Koefoed (1955) uses a two-layer model using various 

velocity, density, and Poisson’s ratios. Like Koefoed (1955), Richards (1961) performs 

amplitude analysis using the Zoeppritz equations to show several AVO curves that model a 

Paleozoic limestone in Western Canada. During the period that Koefoed and Richards published 

their work, calculation of either the Zoeppritz equations or the Knott equations required much 

time and patience. 

 

The Zoeppritz equations are highly complex to interpret analytically. Linearization of these 

equations resulted from this complexity. There are examples in literature that demonstrate this 

(Fatti et al., 1994; Gray, 1999; Aki and Richards, 2002; Russell et al., 2011). One is the Russell 

and Gray approximation, parameterized in terms of fluid, shear modulus, and density ( ,  ,  ). 

Russell et al. (2011) derived from the Aki and Richards’ approximation, a way to extract three 

poroelastic parameters from PP reflection data by showing how to solve for a linearized     

written in terms of the fluid term ( ), saturated shear modulus ( ), and saturated density ( ). . 

The Russell and Gray approximation, which provides alternative approximations for poroelastic 

AVO modeling, is the motivation behind this thesis. Here the approximations come in the form 
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of first, second and third-ordered corrective terms that measure poroelastic changes across a 

boundary. As opposed to the derivation methods presented by Russell et al. (2011), the methods 

presented in this thesis are shown as a sequence of mathematical processes to manipulate the 

elastic Zoeppritz equations formally produce exact forms of poroelastic PP reflection coefficients 

using poroelastic parameters  ,   and  . 

 

7.1.2 Exact expressions for poroelastic    ,    ,    ,     

Deriving exact expressions for PP, PS, SS and SP poroelastic reflection coefficients begins by 

analysis of the Zoeppritz equations, derived from the displacement amplitude equations. 

After an incident P- or S-wave encounters an interface at an oblique angle  , P and S reflections 

and transmissions are expected as a result of the encounter. One incident P-wave approaching the 

interface generates one PP reflection, one PS reflection, one PP transmission, and one PS 

transmission. One incident S-wave approaching the interface generates one SS reflection, one SP 

reflection, one SS transmission, and one SP transmission. Considering incident plane waves from 

below the boundary doubles the number of these reflections and transmissions. The relationships 

of these waves can be determined with the displacement amplitude equations as shown by Aki 

and Richards (2002). From these equations, a convenient matrix-notated form of the Zoeppritz 

equations may be solved for    ,    ,    , and     for incident P-waves, and    ,    ,    , and 

    for incident S-waves. Since surface seismic experiments observe up-going reflection 

amplitudes, incident plane waves are typically considered approaching the interface above the 

boundary.  
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The contents of this thesis explicitly show the analytical forms for elastic wave displacement 

amplitudes from incident P- and S-waves. These forms are referred to as the P- and S-wave 

Zoeppritz equations. Poroelastic parameters ( ,  ,  ) are substituted for the elastic ones (  ,   , 

 ) in both equations. This gives the poroelastic P- and S-wave Zoeppritz equations 

parameterized in (  ,   ,   ,   ,   ,   ,      ). These equations model poroelastic amplitudes in 

the same way the elastic Zoeppritz equations model elastic amplitudes. 

 

7.1.3 Series solutions for poroelastic     

Although these equations account for poroelastic variations, the nonlinearity of the Zoeppritz 

equations can be an issue. The Russell and Gray approximation is a linearized expression, one of 

many examples that can model AVO and estimate model parameters effectively. Real seismic 

data is subject to nonlinear effects such as a combination of scatter, heat loss and anisotropy. 

Therefore, an extension to Russell et al. (2011) is provided by adding nonlinear terms to the 

Russell and Gray approximation. As previously mentioned above, this will be accomplished by 

re-parameterizing the Zoeppritz equations in terms of poroelastic parameters ( ,  ,  ) and by 

completing a sequence of mathematical processes. In order to achieve series solutions of    , a 

few steps need to be accomplished. Those steps are: 

 

1) Transition from poroelastic Zoeppritz equations by substituting parameters   ,   ,   ,   , 

  , and    with parameters of perturbation   ,   , and   . This is performed by looking 

for instances of poroelastic ratios such as (
  

  
) (

  

  
) and (

  

  
) (

     

     
) that are found in the 

    and    elements in   and    of the poroelastic P-wave Zoeppritz equations. 
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2) Taylor expand     and    elements in in orders of       ,   ,   , and   . This step 

eliminates any perturbation parameters that are nonlinear in those elements. 

3) The final step is to apply Cramer’s rule which solves for     and calculates the 

determinant of ratios of augmented   and un-augmented  .  

 

After the third step, an exact form for     has been determined in the perturbation domain. The 

series solutions for     can similarly be accomplished for reflectivity parameters, which requires 

repeating the three steps shown above but by replacing   ,   ,    with     ,     ,      in the 

first two steps. If the exact form for     has already been determined in perturbation, an 

alternative approach to solving a series solution in reflectivity is possible.  

 

7.1.4 Analytic and numerical validation 

In chapter 5, a comparison is made between the first order poroelastic     with the Russell and 

Gray approximation. The purpose of this comparison is validation. The Russell and Gray 

approximation is derived from the Aki and Richards’s approximation and is solved by using the 

definition for fluid      
      

    
  and the chain rule of   such that    

  

   
    

  

   
    

  

  
  . With these two definitions, Russell and Gray are able to derive an expression 

for PP reflection coefficients.  

 

The approach to derive a first order poroelastic approximation begins by modifying the elastic 

constants   ,   ,   into either poroelastic reflectivity parameters     ,     ,      or 

poroelastic perturbation parameters   ,   ,     in each of the     elements of the Zoeppritz 
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equations. These elements are then expanded in terms of       ,     ,     , and      or 

      ,   ,   , and   . Once complete, Cramer’s rule is applied in order to solve for an exact 

form of    .  

 

A comparison between the Russell and Gray approximation and the first order poroelastic     

approximation ultimately shows that they are equivalent. This validates the technique used for 

deriving the exact poroelastic     equation. A truncation of this expression may provide linear 

or nonlinear approximations of    . These nonlinear terms are investigated for second and third 

order variations in    . First (   (       
(  ), second (   (       

(      
(  

) and third 

(   (       
(      

(  
    

(  
) order approximations are explicitly shown for reflectivity and 

perturbation. Numerical analysis is performed between these two sets of approximations for 

various   ,   , and    values for the first set and     ,     , and      for the second set. It is 

clear that the third order approximation is better at predicting amplitudes than the first and 

second order approximations. Moreover, the reflectivity approximations are able to handle larger 

poroelastic contrasts than the perturbation approximations.  

 

7.1.5 Dynamic poroelasticity 

Gurevich et al. (2004) shows how to derive normal incident reflection and transmission 

coefficients in poroelastic media. Dynamic poroelasticity involves a frequency dependence of 

these amplitude coefficients and is highly complex even for the simplest, normal incident case. 

Gurevich et al. (2004) uses two different geological models to model frequency dependent, 

normal incident amplitudes. The first geological model involves a porous solid overlying another 
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porous solid, and the second geological model involves a porous solid overlying a free fluid. 

Plane wave propagation in both models comes from an incident P-wave,     , that begins in the 

lower medium and propagates upwards toward the boundary. In the first model, this creates 

reflection and transmission coefficients    ,    ,    , and     respectively. In the second model, 

reflection and transmission coefficients    ,    , and     are generated. The subscripts of   and 

  indicate the P-wave type. The subscript ‘1’ indicates a fast P-wave written as   √
    

 
 and 

‘2’ is the Biot slow P-wave. 

 

In the first model, the fast P-wave reflection and transmission coefficients take the form 
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and 
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respectively. If     in equations (7.1) and (7.2), they would reduce to the elastic forms under 

normal incidence conditions. Therefore  , which is a function of   and also contains all of the 

poroelastic constituents, is written as 

  

   
   

2

0 0 1 1
1 1 1 1dry fast

0 0 0 1 1 1dry dry

0 0 1 1

0 10 1

4

4 43

3 3

M M
K f k

K f K f

X
N i N i

N N

 


 


 

 

 
  

    
      

 



,   



 

93 

where   and   are the steady-state shear viscosity of a fluid and the steady-state permeability of a 

material skeleton respectively, (      is the bulk modulus of the skeleton framework,   is the 

shear modulus,   is the fluid term, (          ,   is the angular frequency,   is the Biot 

coefficient,   is a poroelastic modulus, and   √  contains poroelastic parameters such that  
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 . 

The Biot slow P-wave reflection and transmission coefficients are  
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where     and     contain the term   
  and   

  respectively.   
  and   

  take the form  
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which contain the   term in the numerator in both equations. One observation concludes that     

and     are more analytically complex than     and    . 

 

In the second geological model, the fast P-wave reflection and transmission coefficients are 
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Similar to equations (7.1) and (7.2),     and     are reduced to their elastic forms if     and 

thus   contains all of the poroelastic elements and is shown as 
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.  

This explicit form for   indicates that perturbation in fluid and shear modulus cannot be written 

as no instances of    nor    constants exist to create poroelastic ratios. There is only a single 

instance that    appears which suggests that a density perturbation    appears in     and     for 

the second model. This shows that, in a circumstance where an incident P-wave is travelling 

through a free fluid and interacts with a boundary of a porous solid, only density contrasts will 

affect the amplitudes at normal incidence.  

 

The Biot slow P-wave transmission coefficient is 
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where    is written as 
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. 

Since    does not contain   ,    and one    constant as      ,    is also dependent only on the 

density perturbation. 

 

7.2 Key outcomes of the study 

One key outcome of this research is the production of linear and nonlinear poroelastic AVO 

approximations for PP reflection models. For the linear case, this equation is validated by 

comparison with the Russell and Gray equation shown by Russell et al. (2011). This validation 

shows that our linear equation is consistent with Russell and Gray. This discovery led to the 

inclusion of nonlinear terms added to the set of linear terms in     such that significant 

improvement of AVO modeling accuracy is found. AVO modeling in terms of perturbation 

contrasts (  ,   ,   ) showed a significant decrease in accuracy of the linear approximation with 

respect to the second and third order approximations when perturbation is large (50%). For small 

perturbations (10%), the linear and nonlinear expressions are stable. Intermediate perturbation 

sizes (10% - 50%) revealed a steady decline in accuracy for all 3 expressions, especially for the 

linear case. In the case for the reflectivity contrasts (    ,     ,     ), the same modeling 
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constraints were applied yet yielded different results. High reflectivity contrast values (50%) 

consistently revealed that the nonlinear expressions are accurate but show a notable decrease in 

accuracy for the linear expression. For small reflectivities (10%), the linear, second, and third 

order expressions predicted correctly with the same level of accuracy, while intermediate 

reflectivity sizes (10% - 50%) showed a steady decline in accuracy for all 3 expressions, 

proportional to the 3 perturbation equations. It is clear that each AVO observation made across 

all perturbation and reflectivity models showed better results in favour of the reflectivity models. 

 

Another key outcome is the framework for dynamic poroelastic amplitude equations. The next 

step requires the expansion of the poroelastic perturbation models (  ,   ,   ) in each    ,    , 

   ,     for the porous-porous case and in each    ,    ,     for the porous-free fluid case. Also, 

substitution of the perturbation models with reflectivity models (    ,     ,     ) is also 

desired. 

 

7.3 Future directions 

7.3.1 Synthetic data 

Peter Manning and Joe Wong of CREWES developed an algorithm that creates synthetic shot 

gathers for horizontal seismic lines. The algorithm is executed with MATLAB and uses a finite-

difference, time-stepping method to simulate elastic wave propagation in spatially, two-

dimensional environments. The elastic wave can be simulated across 1000 m laterally and 2000 

m in depth for an array of nominal receivers with single or multi-shot sources. The source 

parameter may be controlled for its depth, type of source (Ricker, windowed cosine, minimum 

phase), dominant frequency, and type of energy source (shallow explosion, deep explosion, 



 

97 

double-couple, X-monopole, Z-monopole). If desired, the seismic experiment can be 

manipulated to simulate a vertical seismic profile. Other parameters such as the grid size and 

time step increment can also be customized. It is important to note that the amplitudes as well as 

phases of the seismograms produced from this algorithm are not correct therefore the analysis of 

AVO synthetics would be an exercise to simulate the process of analysis of AVO rather than a 

study of the accuracy of AVO modeling. 

 

7.3.2 Physical model data 

CREWES has a three-dimensional positioning system based on high-precision linear electric 

motors, coupled to arrays of multiple transmitting and receiving piezoelectric transducers (Wong 

et al., 2009). For generating and detecting ultrasonic waves, piezoelectric transducers called 

piezopins are used. Piezopins are cylindrical with dimensions approximately 1.0 mm by 0.5 mm 

long. The piezopins are interchangeable on two gantry carriages and can act either as sources or 

as receivers that generate and detect ultrasonic seismic pulses. The maximum range of motion 

for these motors is 1000 mm, 800 mm, and 160 mm in the x, y, and z directions respectively. The 

scale factor is 1:10
4
, so these dimensions represent a real-world volume 10.0 km by 8.0 km by 

1.6 km respectively. The same scaling factor applies to time such that recorded seismic pulses at 

1.0 MHz are scaled down to 100 Hz for real-world values. This system is designed to collect 

thousands of scale-model seismic data traces per hour. There are 8 linear motors in this system 

with digital position encoders and motor drives configured in a two-gantry orthogonal motion 

system and controlled through a controller board installed in a desktop computer. The physical 

model lab in CREWES has performed numerous experiments acquiring data for various different 

environments (Hernandez et al., 2011; Wong and Lines, 2011; Wong et al, 2011; Arthur et al., 
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2012; Al Dulaijan et al., 2013; Isaac et al., 2010). A proposed model that incorporates a solid 

medium that is infused with a fluid could replicate a poroelastic system. The dimensions of this 

physical model would require discussions and planning with CREWES’ physical modeling data 

expert. 

 

7.3.3 Field data 

Field data is ideal in testing the capabilities and limitations of the poroelastic AVO equations. 

Data that is well known and analyzed, and also show an attribute of permeated fluid inside a 

solid medium is preferable. 

 

7.3.4 Generalization to dynamic poroelasticity 

Dynamic poroelasticity shows an additional P-wave generated due to heterogeneity within a 

medium. The P-wave that geophysicists are familiar with for the elastic case is known as the fast 

P-wave and the additional P-wave generated by interaction with porous inclusions is known as 

the slow P-wave or Biot’s slow wave. The Biot slow wave is generated due to heterogeneities in 

the porous medium that cause mode conversion of an incoming wave. The result is a wave that is 

subject to a high degree of attenuation, especially at low frequencies (Gurevich et al., 1998). 

Steps to move forward will determine a set of linear and nonlinear expressions to measure any 

modeling efficacy for amplitudes at varying frequencies.  

 

7.3.5 Generalization to full poroelastic scattering 

Estimating the seismic wave field’s response corresponding to the small model parameters’ 

perturbations is a classical problem in inverse scattering (Pan and Innanen, 2013). Instead of 
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perturbations and reflectivity models, scattering theory uses scattering potentials for the forward 

problem. For the inverse problem, Fréchet derivatives, which are sensitivity matrices, are 

considered as sensitivity kernels in the least squares inverse problem. The research of Pan and 

Innanen (2013) shows that it is possible to derive the poroelastic scattering potential by first 

introducing the poroelastic wave equations as shown by Biot in terms of displacement of the 

solid ( ) and displacement of the fluid relative to the solid ( ). These equations are thus 

    2 2

sat sat2 fC             u w I u F u w ,  (7.8) 

and 

    2

fC M m          u w I f u w w ,  (7.9) 

where     ,  ,  ,  ,     ,   ,  ̃, and   are 8 poroelastic parameters and   is angular frequency. 

We may write equations (7.8) and (7.9) in matrix form such that  

  
 

 

,
,

,
P






   
     

  

u r F
L r

w r f
,  (7.10) 

where   (     is the operator of the scattered wave field in terms of spatial coordinates 

(       ) and frequency ( ). This operator is written as a matrix consisting of 4 sub matrices 

such that  

  
   

   

1 1

2 2

, ,
,

, ,

s f

P s f

 


 

 
   
 

L r L r
L r

L r L r
, (7.11) 

where each sub matrix    ,    ,    , and     contains 9 elements and are implicitly written as 
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  (7.12) 

The complete details of these sub matrices may be found in Pan and Innanen (2013). From the 

wave operator, the scattering potential is simply the difference of the perturbed wave operator    

and the unperturbed wave operator   
  such that 

 0

P P P V L L .  (7.13) 

The scattering potential is thus 
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P s f
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.  (7.14) 

This completes the necessary steps involved in deriving the scattering potential    and will be 

used to derive the poroelastic Fréchet derivative for the inversion case. Referring to equation 

(7.10), the Fréchet derivative may be derived by first writing the solution using integral 

representation as shown by Müller and Gurevich (2005). The equation becomes 
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.  (7.15) 

This shows an integration of Green’s tensor with the field-source tensor that produces the tensors 

for   and  . By combining the field-source term (        (      with the unperturbed 

displacements (       , the scattering equation becomes 
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The perturbed and unperturbed quantities of   and   may be written in terms of Green’s 

functions for an inhomogeneous medium. Equation (7.16) becomes 

 

0 1 0 1 1 11 1 0 1 0 1 1 1

0 2 0 2 2 22 2 0 2 0 2 2 2

s f s fs f s f s f
ij ij jk jkil il il il kl kl
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              

        
 .  (7.17) 

In simpler notation, equation (7.17) may be written as  

 0 0dV


  G G G VG .  (7.18) 

By inspection, the scattering equation can become an infinite series by replacing the perturbed 

Green’s function on the far-right hand side of equation (7.18) with the equation itself. Doing so 

creates an infinite series known as the Born series. This wave field can then be written as 

 
0 0 0 0 0 0    G G G VG G VG VG  . (7.19) 

An approximation may be formed by terminating all nonlinear terms which includes terms that 

are beyond the second term in equation (7.19). Doing so produces the Born approximation. The 

Born approximation assumes weak inhomogeneity and the    term may be subtracted on both 

sides to give 

 0 0dV


 G G VG .  (7.20) 

The wave field    can be described as a volume integral of the unperturbed Green’s function    

and the scattering potential  . Referring back to the scattering equation in equation (7.17), the 

Born approximation assumption of weak inhomogeneity allows the Green’s tensor on the far 

right hand side to become homogeneous, thus the scattered wave field may be written as 
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Finally, the poroelastic Fréchet derivative may be written in terms of the model parameter    

such that 

 

1 11 1

0 1 0 1 0 1 0 1

0 2 0 2 0 2 0 22 2 2 2
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This sensitivity matrix is crucial in perturbation analysis. 
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Appendix A: Poroelastic weighting factors 

The contents of this appendix show the explicit forms of    
(  

,    
(  

, and    
(  

 in both the 

perturbation (  ,   ,   ) and reflectivity (    ,     ,     ) domains.  

 

A.1 First order poroealstic weighting factors for   ,   ,    
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A.2 Second order poroelastic weighting factors for   ,   ,    
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A.3 Third order poroelastic weighting factors for   ,   ,    
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A.4 First order poroelastic weighting factors for     ,     ,      
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A.5 Second order poroelastic weighting factors for     ,     ,      
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