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Abstract

Full waveform inversion (FWI) is a powerful tool to build high-resolution velocity models,

from recorded seismic data. However, a major issue with FWI is that it fails to reconstruct

the low-wavenumber components of the velocity model in the absence of low-frequency in-

formation in the data. Generally, for a limited-offset acquisition geometry, deep targets are

only sampled by reflected waves with narrow scattering angles, which makes such failure

inevitable. In this thesis, I point out the limitation of conventional FWI when applied to

reflection data and review, implement and analyze an alternative approach to overcome this

limitation called reflection-based waveform inversion (RWI). The new waveform inversion

formalism relies on decomposing the subsurface model into a background part that I seek

to resolve, and a reflectivity part that is assumed to be known. Separating the decoupled

velocity model into long- and short-wavelength components permits us to extract the con-

tribution of the reflected data to the background part of the velocity model. In this thesis,

I show that RWI retrieves the long-wavelength information from seismic reflections where

FWI fails, and that it is the concept of modeling by seismic demigration that enables this

retrieval. Also, I show that modeling by seismic demigration imposes limitations to RWI,

as it removes any amplitude versus offset (AVO) information and mandates reflections-only

recorded data, which prevents the usage of diving waves, refractions and direct arrivals. I

show that applying source-receiver illumination compensation to the gradient enhances the

contributions of deeper reflections and speeds up the convergence of the inversion. Also, I

show that the choice of having the source function in the wave equation as a forcing term

or as a boundary value problem (BVP) has a major impact on the inversion results and

that the inversion is highly sensitive to the way the source function is treated in the wave

equation. All the tools used in this thesis to generate synthetic data, wavefields, and to carry

the waveform inversion were developed from scratch using Python. The finite-difference en-
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gine was validated by analyzing the AVO response for simple models, by examining reverse

time migration results, and by testing the codes on FWI. The RWI code was validated with

previously established results.
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Chapter 1

Introduction

1.1 Seismic migration

In exploration seismology, raw seismic data is processed to produce an interpretable struc-

tural image of the subsurface. In seismic processing, common-midpoint (CMP) gathers are

created by grouping traces with the same source-receiver midpoint coordinate, and traces

are sorted by source-receiver separation distance. Reflection traveltimes in CMP gathers are

a function of offset. A correction, called normal moveout (NMO), is applied to CMP gathers

to remove the traveltime moveout effect. For further details about seismic data processing,

the reader is referred to Yilmaz (2001). Applying NMO to CMP gathers converts recorded

seismic data into a zero-offset profile, a stacked section. The zero-offset profile is equivalent

to having a seismic survey where each trace is created from a source and receiver placed

at the same position in space. This creates a seismic image, but interpreting it requires an

assumption to be made that recorded events are coming from reflectors directly beneath the

source-receiver position. In reality, this assumption is not correct; however, not knowing the

exact position in the subsurface of seismic events does not provide any other choice. As a

consequence, seismic migration is needed to place recorded events at their correct subsurface

positions, creating an accurate geometrical image of the subsurface. Seismic migration plays

a crucial part in waveform inversion (Margrave et al., 2010). Stolt and Weglein (1985) pro-

vides an introduction to and resources that cover the relationship between seismic migration

and inversion.

Seismic migration can be classified into ray based migration, such as Kirchhoff migration,

and wave-equation or wavefield extrapolation migration (WEM). The WEM methods can be

categorized into two classes: one-way wave-equation migration, and two-way wave-equation
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migration (Hemon, 1978; McMechan, 1983; Whitmore, 1983; Baysal et al., 1983), commonly

known as reverse-time migration (RTM). The WEM abbreviation usually refers to the one-

way wave-equation migration.

The concept of Kirchhoff migration is to broadcast seismic data over semi-circles or to

sum seismic data along diffraction curves (Hagedoorn, 1954; Schneider, 1978). In pre-stack

Kirchhoff migration, the broadcast is along semi-ellipses (Yilmaz, 2001). The theoretical

basis of Kirchhoff migration was presented by Hagedoorn (1954). This method has been the

favorable migration method in the industry for its efficiency, and for its capability to perform

a target-oriented migration, and this is especially attractive for large 3-D data (Gray and

May, 1994).

The early work by Claerbout (1970) led to the wave-equation based migration methods,

as he formulated a finite-difference migration algorithm (Schneider, 1978). The advantage of

wave-equation methods, over Kirchhoff, is their robustness, as they can cope with complex

geological models. In WEM, wavefield extrapolation is carried out in depth (Berkhout, 1981).

The concept of this method is to obtain a new instance of the recorded data, at which the

recording plane is shifted downward in depth (Berkhout, 1981). Then, to form an image of

the subsurface, the newly recorded data at time t = 0, at the level of the shifted recording

plane, is projected to its corresponding depth plane in the image domain (Berkhout, 1981).

In RTM, the process of migrating data is as follows:

1. A source wavefield, which is assumed to match the wavefield producing the

observed data, is generated. It is computed by injecting a source function into

a velocity model and forward propagating in time.

2. Back-propagating observed data to create a receiver wavefield.

3. An imaging condition, according to Claerbout’s imaging principle (Claerbout,

1971), is applied on the modeled wavefields to obtain an image of the subsur-

face (Hemon, 1978; McMechan, 1983; Whitmore, 1983; Baysal et al., 1983).
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1.2 Seismic inversion

Seismic migration aims at creating structural images, placing reflectors at their correct posi-

tions in the subsurface; however, there is no attempt to extract physical properties about the

subsurface from the recorded data (Bleistein et al., 2001). Seismic inversion, on the other

hand, is attempting to predict the physical parameters of the subsurface from seismic data

(Mora, 1987). Inversion is a nonlinear problem, whose solution is attained through solving

a linearized version iteratively (Wang, 2016). Inversion problems tend to be ill-posed, as

in many cases a solution might not exist or might not be unique. Moreover, the inversion

process can be very sensitive to small changes in the input data. Seismic inversion comprises

an estimation problem, in which measured data is used to estimate model parameters, and

an appraisal problem, to evaluate the inversion results’ accuracy (Snieder, 1998). One of the

most widely used and most rapidly developing inversion techniques is full waveform inversion

(FWI).

FWI is an optimization problem that aims at extracting the Earth’s physical parameters,

from recorded seismic data, through an iterative inversion process (Lailly, 1983; Tarantola,

1984; Virieux and Operto, 2009). The rise of FWI as a velocity model building tool is due

to the high-resolution models that it provides (Pan and Innanen, 2015a). The means by

which FWI builds material properties is by iteratively minimizing the difference between

predicted data and observed data through an objective function, usually a least-squares

function. FWI in principle utilizes the full recorded data (e.g., direct waves, pre-critical

reflections, post-critical reflections, multiples) in the inversion process (Virieux and Operto,

2009). The inversion can be carried out in the time domain (Tarantola, 1984; Mora, 1987;

Crase et al., 1990) or in the frequency domain (Pratt and Worthington, 1990; Pratt, 1999;

Pratt and Shipp, 1999).

FWI, although an attractive inversion tool, suffers from some limitations that need to

be resolved. These issues can be divided into four main categories; nonlinearity limitation,
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data acquisition limitation, wave physics assumptions, and noise in recorded data. First, the

nonlinearity of the seismic inverse problem produces an objective function with many local

minima (Bunks et al., 1995). The local minima prevents the iterative inversion method from

converging to the global minimum unless the starting model produces data within half a

cycle from the observed data (Figure 1.4). Becoming trapped in such a local minimum is for

this reason called ”cycle-skipping”. Second, low-frequency and long-offset data, necessary

to avoid cycle-skipping and to reconstruct large-scale Earth model features, are usually

unavailable in acquired data. According to Claerbout (1985), velocity is the low spatial-

frequency part (Figure 1.2) of what is regarded as the ”real velocity” (Figure 1.1) and the

high-frequency component (Figure 1.3) of the ”real velocity” is reflectivity and not velocity.

The reflectivity part of the velocity model is linearly dependent on the data (Jannane et al.,

1989). The low spatial-frequency part of the velocity, the smoothly varying background

velocity, controls the arrival times of seismic events (Jannane et al., 1989; Zhou et al., 2012).

As a consequence, to obtain an accurate velocity model, low-frequency information is vital

(Figure 1.5). To mitigate the nonlinearity of the problem, a multiscale FWI approach is often

taken (Bunks et al., 1995; Sirgue and Pratt, 2004; Virieux and Operto, 2009). Multiscale

FWI is proposed in the time domain (Bunks et al., 1995) and in the frequency domain (Sirgue

and Pratt, 2004). This approach improves the inversion results by decomposing the velocity

model by scale (Bunks et al., 1995). Solving the problem iteratively at long scales get the

solution closer to the neighborhood of the global minimum, as at low frequencies there are

fewer local minima (Bunks et al., 1995). Higher frequencies are inverted at higher iterations

to find the global minimum (Bunks et al., 1995).
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Figure 1.1: ”Real velocity”.

Figure 1.2: Low spatial-frequency component of the ”real velocity”. According to Claerbout

(1985), this component of the subsurface is the velocity.
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Figure 1.3: High spatial-frequency component of the ”real velocity”. According to Claerbout

(1985), this component of the subsurface is the reflectivity.

Figure 1.4: Cycle-skipping problem in FWI. [Figure 7 of (Virieux and Operto, 2009)].
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Third, the wave physics accounted for in the inversion process might not necessarily be rep-

resentative of the actual wave propagation behavior. For instance, inverting seismic data,

which is best described with the elastic wave equation, with an acoustic wave equation (Mora,

1987; Mulder and Plessix, 2008). A multiparameter elastic inversion, in an elastic world, is

necessary to avoid local minima (Mulder and Plessix, 2008). However, multiparameter inver-

sion has its challenges, as it suffers from cross-talk effects and it is computationally expensive

(Prieux et al., 2013; Operto et al., 2013; Pan et al., 2016; Pan and Innanen, 2015b). For this

reason, in this thesis I consider an acoustic, single-parameter inverse problem, recognizing

that doing so will introduce limits on the accuracy of any results. Finally, FWI treats all

recorded data as a signal, including noise unrelated to earth properties and wave propagation

through the earth. Such noise will contaminate the inversion results, as FWI will attempt

to match this noise.

Figure 1.5: The relationship between seismic data and velocity information. [Figure 1.4-3 of

(Claerbout, 1985)].

1.3 Thesis objectives and overview

The objective of this thesis is to examine the integrity of reflection-based waveform inversion

(RWI) in recovering the background part of the velocity model and to validate the method

by comparing the results to that of FWI. Also, I provide an explanation of how RWI differs
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from FWI in constructing the gradient. Some of the limitations of RWI are illustrated, and

in some cases addressed with algorithm change.

In Chapter 2, I review the wave equation, the absorbing boundary conditions, the finite-

difference scheme, the stability and accuracy of the numerical modeling, the concept of

reverse-time migration, and the concept of modeling by seismic demigration.

In Chapter 3, I explain the theory behind RWI and provide the necessary derivations

to the gradient. I also explain the motivation behind using RWI over FWI. Afterwards, I

explain how the gradient construction in RWI is different from FWI.

In Chapter 4, I apply RWI to a simple model, using a scaled and non-scaled gradient, and

compare the results with that of FWI. Also, I examine the influence of scaling the gradient

on the inversion results.

In Chapter 5, I apply RWI to a small section of the Marmousi model, using a scaled

gradient, and compare the results with that of FWI.

In Chapter 6, I discuss some of the practical issues in RWI and its relationship to mod-

eling by seismic demigration. Also, I examine one possible solution to overcome one of the

limitations.
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Chapter 2

Wave equation and implementation of finite-difference

solutions in Python

2.1 Introduction

Codes for numerical solution of the wave equation provide an environment where physi-

cal phenomena, associated with wave propagation, can be analyzed and studied; as exact

analytical solutions are usually unavailable. In geophysics, wave equation modeling is the

fundamental element of processes such as reverse-time migration, and seismic modeling and

inversion. The finite-difference approximation is the simplest and most widely used method

to solve the wave equation numerically. In this chapter, I review the wave equation and the

tools needed for numerical implementation, reverse-time migration, and modeling by seismic

demigration. A Python code for simulation was developed to illustrate this process. All

examples in this chapter and all simulations in later chapters are carried out using this code

package.

2.2 Wave equation

Forward modeling is an essential part of seismic waveform inversion. It enables us to generate

modeled data and wavefields needed for this inversion process. The modeling process is

governed by the wave equation, which provides the physics that ties the physical parameters

of a model (e.g., velocity and density) to the simulated data. In other words, the wave

equation transforms our information of the subsurface from the model domain to information

about the subsurface in the data domain. In waveform inversion, this relationship is utilized

to invert for the model domain information from the data domain information.
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The 2-D multiparameter acoustic wave equation is given by

∂2u

∂t2
=
κ2

ρ2

[
ρ5 ·

(
1

ρ
5 u

)]
+ f(t), (2.1)

where ρ = ρ(x, z) is the density, κ = κ(x, z) is the bulk modulus, u = u(x, z, t) is the pressure

field, and f(t) is the source function; it expands to

∂2u

∂t2
= v2

[
−1

ρ

(
∂ρ

∂x

∂u

∂x
+
∂ρ

∂z

∂u

∂z

)
+

(
∂2u

∂x2
+
∂2u

∂z2

)]
+ f(t), (2.2)

where v = v(x, z) =
√

κ(x,z)
ρ(x,z)

is the compressional wave velocity. Hereafter, I assume a

constant density model; hence, equation (2.2) reduces to

∂2u

∂t2
= v2

(
∂2u

∂x2
+
∂2u

∂z2

)
+ f(t). (2.3)

2.3 Absorbing boundary conditions

Equation (2.3) defines the wave propagation in an unbounded domain. However, in numerical

modeling we are limited to a finite domain; if no boundary conditions were applied, the model

limits will act as an artificial boundary and will generate artificially reflected waves.

The absorbing boundary conditions (ABC) that I implemented in this project are the

Clayton-Engquist boundary conditions (Clayton and Engquist, 1977). They are based on

the paraxial approximation of the scalar wave equation that separates the wavefield into up-,

down-, right-, and left-going waves (Claerbout, 1985).

To obtain the paraxial approximation, the first step is to Fourier transform the homoge-

neous wave equation

1

v2
∂2u

∂t2
= 52u, (2.4)

which yields the dispersion relation

k2x + k2z =
ω2

v2
. (2.5)
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The dispersion relation enables us to separate the wavefield by solving for the appropriate

wavenumber. For instance, the down-going wavefield is obtained by solving for the positive

values of the wavenumber kz

kz =

√
ω2

v2
− k2x =

ω

v

√
1− v2

ω2
k2x (2.6)

⇒ v

ω
kz =

√
1− v2

ω2
k2x. (2.7)

The paraxial approximation is achieved by expanding the square root
√

1− v2

ω2k2x and trans-

forming the expansion to the space-time domain. Higher order approximations using the

Taylor expansion gives an unstable paraxial approximation (Engquist and Majda, 1977), so

the Padé expansion is more stable and used instead:

aj = 1− (vkx/ω)2

1 + aj−1
, (2.8)

where the jth approximation is given by kz = ω
v

√
1−

(
v
ω
kx
)2 ≈ ω

v
aj, and a1 = 1.

As a result, the first two orders of the paraxial approximation in Fourier domain are

First− order : kz =
ω

v
(2.9a)

Second− order : kz =
ω

v

(
1− 1

2

(
vkx
ω

)2
)
, (2.9b)

and the corresponding paraxial approximations in time-space domain are

First− order :
∂u

∂z
+

1

v

∂u

∂t
= 0 (2.10a)

Second− order :
∂2u

∂z∂t
+

1

v

∂2u

∂t2
− v

2

∂2u

∂x2
= 0. (2.10b)

The first-order approximation, equation (2.10a), is known as the 5◦ wave equation, and the

second-order approximation, equation (2.10b), is known as the 15◦ wave equation (Claerbout,

1985).

The 15◦ wave equation is discretized and solved to apply the ABC for the sides of the

model. In this case, equation (2.10b) is used to create an absorbing boundary along the

bottom side of the model. For the corners, the ABC is implemented by rotating the first-

order approximations by 45◦ (Clayton and Engquist, 1977).
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2.4 Differential operators

The wave equation can be solved numerically in the time domain or the frequency do-

main (Marfurt, 1984; Virieux and Operto, 2009). Finite-difference is the most widely used

method to discretize and solve the wave equation (Virieux, 1986; Virieux and Operto, 2009).

A second-order central finite difference approximation scheme is commonly used in the mod-

eling. The second-order approximation of the first partial derivative is

∂u

∂x
≈ u(x+ h, z, t)− u(x− h, z, t)

2h
, (2.11)

where h is the grid points spacing (dt is used for the time step). Equation (2.11) in the

indices notation is

∂u

∂x
= ux|x=i ≈

uni+1,j − uni−1,j
2h

, (2.12)

where the subscript i is for offset (x), the subscript j is for depth (z), and the superscript n

is for time (t). The second-order approximation of the second partial derivative is

∂2u

∂x2
≈ u(x+ h, z, t)− 2u(x, z, t) + u(x− h, z, t)

h2
. (2.13)

Equation (2.13) in the indices notation is

∂2u

∂x2
= uxx|x=i ≈

uni+1,j − 2uni,j + uni−1,j
h2

. (2.14)

The discretized form of equation (2.4), with the source term, is given by

un+1
i,j − 2uni,j + un−1i,j

dt2
≈ v2i,j

uni+1,j + uni,j+1 − 4uni,j + uni−1,j + uni,j−1
h2

+ fn+1, (2.15)

where we solve for un+1
i,j .

2.5 Stability and grid dispersion

Wave equation discretization causes two issues to the numerical solution; grid dispersion, and

instability in the forward modeling. Grid dispersion causes different frequencies to travel at
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different velocities, whereas instability of the finite-difference process results in accumulation

of errors and failure of the numerical solution. As a result, two necessary criteria need to be

met to limit the consequences of the discretization.

The first criterion relates the grid dispersion to the spatial sampling h. If h is not small

enough, a dispersion will occur. For a second-order finite difference, at least, ten grid points

are required for the upper half-power wavelength of the source (Alford et al., 1974). The

equation that governs the relationship is

h ≤ vmin(x, z)

10f◦
, (2.16)

where f◦ is the upper half-power frequency (Figure 2.1). The second criterion relates the

stability to the temporal sampling dt (Lines et al., 1999). The criterion for a second-order

scheme is

vmax(x, z)dt

h
≤ 1√

2
. (2.17)

Figure 2.1: Power spectrum of source wavelet [Figure 3a of (Alford et al., 1974)].
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2.6 Wave propagation examples

In this section, I show samples of shot gathers and wavefield propagation snapshots created

using the implemented Python code. For this, I use Marmousi model (Figure 2.2). Wavefield

propagation snapshots, for a source at x = 2.35 km, at t = 0.26 s, 0.52 s, and 0.78 s are

shown in Figures (2.3), (2.4) and (2.5), respectively. In Figures (2.6) and (2.7) shot gathers

for sources at x = 2.35 km and at x = 3.85 km are plotted, respectively.

Figure 2.2: Marmousi model.

Figure 2.3: Wavefield snapshot for a source at x = 2.35 km at t = 0.26 s.
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Figure 2.4: Wavefield snapshot for a source at x = 2.35 km at t = 0.52 s.

Figure 2.5: Wavefield snapshot for a source at x = 2.35 km at t = 0.78 s.
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Figure 2.6: Shot gather for a source at x = 2.35 km.
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Figure 2.7: Shot gather for a source at x = 3.85 km.

2.7 Reverse time migration

Reverse time migration (RTM) (Hemon, 1978; McMechan, 1983; Whitmore, 1983; Baysal

et al., 1983) is a two-way wave equation migration scheme that is becoming the favored

imaging method in the industry in areas with complex geology. As a consequence of using

the complete wave equation, it can handle different types of waves (reflections, refractions,

multiples, etc.), (Zhang and Sun, 2009). The concept of RTM follows Claerbout’s (1971)

imaging principle: a reflector exists at a point (x, z) when a downgoing (source) wavefield,

G(r, t; rs), and an upgoing (receiver) wavefield, G(r, t; rg), coincide in time at (x, z), where
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G(r, t; rs) and G(r, t; rg) are defined as[
52 −m

∂2

∂t2

]
G(r, t; rs) = f(t), (2.18)

where f(t) is the source function, and
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rg, t; rg) = G(rg, t; rs),

(2.19)

respectively. As a result, one can obtain the reflectivity model by deconvolving the receiver

and source wavefields, equation (2.20).

R(r) =

∫
dω
G(r, ω; rg)

G(r, ω; rs)
(2.20)

This is easily done for the one-way wave equation migration in the frequency domain, as the

deconvolution process in time domain is simply a division in frequency domain (Zhang and

Sun, 2009). Another approach is to apply a cross-correlation imaging condition (Claerbout,

1971)

I(r) = G(r, t; rs)⊗G(r,−t; rg), (2.21)

where ⊗ denotes cross-correlation and I(r) is assumed to be a good representation of the

subsurface.

2.7.1 Laplacian filter

Reverse time migration tends to produce low-frequency artifacts as a consequence of the

conventional cross-correlation imaging condition, equation (2.21). Commonly, migration

artifacts occur at shallow depths and above strong reflectors (Zhang and Sun, 2009), and

they can mask deeper events.

In RTM, cross-correlating a source wavefield with a reversed receiver wavefield results in

energy focusing, or maximum cross-correlation occurring, at reflectors locations. The travel
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time of seismic energy from a source to a subsurface location, ts, and the travel time from

the same subsurface location to a receiver, tr, is the recorded two-way travel time, t.

ts + tr = t (2.22)

The sum of any two segments along the ray path, taken by the seismic energy, will add up to

the recorded two-way travel time; creating a potential location for the subsurface reflector.

As a result, the cross-correlation will create an unrealistic, low-frequency contaminated,

image of the subsurface (Figure 2.8).

Figure 2.8: RTM of Marmousi model contaminated with low-frequency artifacts.

One way to eliminate such artifacts is by applying a Laplacian filter,

∇2I =

(
∂2I

∂x2
+
∂2I

∂z2

)
, (2.23)

to the RTM migrated image, I(x, z). The Laplacian filter will suppress the low-frequency ar-

tifacts and create an interpretable image (Figure 2.9). However, it will remove low-frequency

signal, and will increase the high-frequency noise (Guitton et al., 2006). Also, it introduces

a 180◦ phase-shift to the signal and changes its amplitude.

19



Figure 2.9: RTM of Marmousi model after applying Laplacian filter.

To understand the Laplacian filter, I investigate its behavior in the Fourier domain, where

the Laplacian operator, equation (2.23), becomes

F
{
∇2I

}
= F

{
∂2I

∂x2
+
∂2I

∂z2

}
= −(k2x + k2z)F {I} . (2.24)

The Laplacian scales the Fourier spectrum of the migrated image by (k2x + k2z), and this

attenuates the low-frequency energy and applies a gain to the high-frequency energy.

2.8 Modeling by seismic demigration

Modeling by seismic demigration is an integral part of RWI. The first step towards modeling

by seismic demigration is to generate a reflectivity model of the subsurface from the observed

data. The reflectivity model, I(r), is given by equation (2.21). Then the demigrated data,

equation (2.25), is produced by using the migrated image as a source in depth, in a concept

similar to the exploding reflector model. The source term in the wave equation, used to

generate the demigrated data, is created by correlating the source wavefield with the migrated
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image, equation (2.26).

dcal(rg, t; rs) = δG(rg, t; rs), (2.25)

where δG(rg, rs, t) is given by[
52 −m

∂2

∂t2

]
δG(r, t; rs) = I(r)G(r, t; rs). (2.26)

In modeling by seismic demigration, the necessary wavefields are measured using a smooth

velocity model; hence, the wavefield’s ray paths remain unchanged and the source wavefield,

G(r, t; rs), is mainly downgoing. The demigrated source wavefield, δG(r, t; rs), on the other

hand, is an upgoing and downgoing wavefield that only exists when the source wavefield

encounters sources in depth. Also, the migrated image, I(r), which serves as a source in

depth, is a representation of the zero-offset reflection coefficients. The amplitude versus

offset (AVO) effect, in seismic data, is governed by the Zoeppritz equations, which describes

a non-linear relationship between reflection coefficients and changes in the physical proper-

ties (e.g., P-wave velocity, S-wave velocity and density) of the subsurface (Innanen, 2015).

Additionally, the relationship is closely related to Snell’s law, which is only dependent on

the velocity contrasts in the subsurface. Consequently, modeling by seismic demigration

produces data with no AVO information.

2.9 Conclusion

In this chapter, I reviewed the acoustic wave equation, the Clayton-Engquist absorbing

boundary conditions, and the wave equation discretization. Also, I covered the stability and

dispersion criteria needed to minimize errors in numerical modeling. Afterward, I presented

the concept of reverse-time migration. Finally, I reviewed the process of modeling by seismic

demigration.

21



Chapter 3

Theory of reflection-based waveform inversion

3.1 Introduction

Full waveform inversion (FWI) is an ill-posed data-fitting procedure that aims at reconstruct-

ing the Earth’s physical parameters by iteratively minimizing the least-squares norm of the

difference between the predicted and observed data (Lailly, 1983; Tarantola, 1984; Virieux

and Operto, 2009). The resolution of the FWI reconstruction is related to the diffraction

tomography principle (Devaney, 1982; Miller et al., 1987; Wu and Toksöz, 1987; Brossier

et al., 2015); which relates the recoverable wavenumber k, sampled at a point diffractor

(Figure 3.1), to the local wavelength and aperture angle θ according to equation (3.1).

k =
4π

λ0
cos

(
θ

2

)
n, (3.1)

where λ0 is the local wavelength, and n = qs+qr

‖qs+qr‖ (Figure 3.1).

In a narrow-aperture acquisition geometry, where the depth of investigation is larger than

the offset range, the shallow area of the subsurface is sampled by reflections, refractions, and

direct waves; while only reflections sample the deep section. According to equation (3.1), in

the deep part of the model, due to the small range of θ in narrow-aperture acquisition with

smooth background velocity, only high-wavenumbers will be reconstructed; however, in the

shallow part both low and high wavenumbers will be reconstructed (Brossier et al., 2015);

hence, a successful FWI requires the presence of long-offset data, low frequency data, an

accurate starting model, and a good signal-to-noise ratio in the data.
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Figure 3.1: Illustration of the relationship between the wavenumber k and the acquisition

geometry for a point diffractor. S denotes source, R denotes receiver, θ is the aperture angle,

x is a point diffractor, qs and qr are the slowness vectors, q = qs + qr, ω is the angular

frequency, and k is the recoverable wavenumber.

An alternative approach to the conventional FWI, aiming at retrieving the low-wavenumber

components of the velocity in areas sampled by reflected data only, was proposed by Xu et al.

(2012). It is known as reflection-based waveform inversion (RWI). In this new approach, the

velocity model is decomposed into a background/transmission model that I seek to resolve

and a reflectivity model that is assumed to be known, allowing the emphasis on the trans-

mission wavepaths of the reflected data in the inversion process. There are three main

differences between conventional FWI and RWI. First, the primary goal of RWI is to invert

for the background model, and not to obtain a high-resolution model. Second, FWI uses the

full wavefield in the inversion process, including direct waves, refracted and reflected waves,

while RWI uses only reflected waves. Third, RWI relies on a migration/demigration process

(Zhou et al., 2012).
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3.2 Derivation

I start by defining two equations in an acoustic medium

[
52 + ω2m0

]
G0(rg, ω; rs) = δ(rg − rs), (3.2)

and [
52 + ω2m

]
G(rg, ω; rs) = δ(rg − rs), (3.3)

where m = m0 + δm is the actual subsurface model, m0 is the background model, δm is

the reflectivity model, G0(rg, ω; rs) is the predicted data sampled at rg due to a source at rs,

and G(rg, ω; rs) is the observed data sampled at rg due to a source at rs. It should be noted

that the wave equation is parametrized in terms of the slowness squared, i.e., m = c−2.

I define the misfit function to be the square of the least-squares norm:

E (m0) =
1

2

∑
rs,rg

∫
dω ‖δP(rg, ω; rs)‖2 , (3.4)

where δP(rg, ω; rs) are the data residuals, equation (3.5).

δP(rg, ω; rs) = G(rg, ω; rs)−G0(rg, ω; rs) (3.5)

Taking the derivative of equation (3.4) in the vicinity of the model parameter m0 gives

∂E (m0)

∂m0(r)
= −

∑
rs,rg

∫
dω<

{
∂G0(rg, ω; rs)

∂m0(r)
δP ∗(rg, ω; rs)

}
, (3.6)

where

g(r) =
∂E (m0)

∂m0(r)
, (3.7)

is the gradient, and ∂G0(rg ,ω;rs)

∂m0(r)
is the sensitivity or Fréchet derivative. The sensitivity de-

scribes the changes in the wavefield due to changes in the model parameters.

Substituting m = m0 + δm into equation (3.3) yields

[
52 + ω2m0

]
G(rg, ω; rs) = δ(rg − rs)− ω2δm(rg)G(rg, ω; rs), (3.8)
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and, by the superposition principle, the solution to equation (3.8) is given by

G(rg, ω; rs) =

∫
dr′G0(rg, ω; r′)

[
δ(r′ − rs)− ω2δm(r′)G(r′, ω; rs)

]
, (3.9)

allowing the equation for G to be written in integral form as:

G(rg, ω; rs) = G0(rg, ω; rs)− ω2

∫
dr′G0(rg, ω; r′)δm(r′)G(r′, ω; rs),

δG(rg, ω; rs) = −ω2

∫
dr′G0(rg, ω; r′)δm(r′)G(r′, ω; rs).

(3.10)

Using a Born series to eliminate G(r′, ω; rs) yields

δG(rg, ω; rs) = −ω2

∫
dr′G0(rg, ω; r′)δm(r′)G0(r

′, ω; rs)

+ ω4

∫
dr′G0(rg, ω; r′)δm(r′)

∫
dr′′G0(r

′, ω; r′′)δm(r′′)G0(r
′′, ω; rs)

+ . . . .

(3.11)

Next, I localize the perturbation model δm(r) by introducing the delta function so that

δm(r′) = δm δ(r′ − r), (3.12)

which allows us to evaluate the integrals easily. By substituting equation (3.12) into equation

(3.11) to obtain

δG(rg, ω; rs) = −ω2G0(rg, ω; r)δmG0(r, ω; rs)

+ ω4G0(rg, ω; r)δmG0(r, ω; r)δmG0(r, ω; rs) + . . .

= −ω2G0(rg, ω; r)δmG0(r, ω; rs)[1− ω2δmG0(r, ω; r) + . . .].

(3.13)

Noting that the series expansion of 1
1+x

is (1−x+x2− . . .), equation (3.13) can be re-written

as

δG(rg, ω; rs) = −ω
2G0(rg, ω; r)δmG0(r, ω; rs)

1 + ω2δmG0(r, ω; r)

⇒ δG(rg, ω; rs)

δm
= −ω

2G0(rg, ω; r)G0(r, ω; rs)

1 + ω2δmG0(r, ω; r)
.

(3.14)

Taking the limit so that δm vanishes gives the conventional FWI kernel

∂G0(rg, ω; rs)

∂m0(r)
= lim

δm→0

δG(rg, ω; rs)

δm
= −ω2G0(rg, ω; r)G0(r, ω; rs). (3.15)
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In conventional FWI, we tend to resolve and update a velocity model that consists of a back-

ground part and a reflectivity part. In other words, to find an updated model mn+1, we need

to update a current model mn, which is composed of a background part and perturbation

part, by solving for a model update δmn. However, in RWI we are interested in updating

the background part of the velocity model. Taking derivative of equation (3.10) with respect

to the background model m0, to obtain equation (3.16), provides us with the type of update

that we seek.

∂δG(rg, ω; rs)

∂m0(r′′)
= −ω2

∫
dr′

(
∂G0(rg, ω; r′)

∂m0(r′′)
G(r′, ω; rs)

+G0(rg, ω; r′)
∂G(r′, ω; rs)

∂m0(r′′)

)
δm(r′).

(3.16)

But we have that

∂G0(rg, ω; r′)

∂m0(r′′)
= −ω2G0(rg, ω; r′′)G0(r

′′, ω; r′), (3.17)

and

∂G(r′, ω; rs)

∂m0(r′′)
= −ω2G(r′, ω; r′′)G(r′′, ω; rs), (3.18)

so, substituting equations (3.17) and (3.18) into equation (3.16) to obtain

∂δG(rg, ω; rs)

∂m0(r′′)
= ω4

∫
dr′

(
G0(rg, ω; r′′)G0(r

′′, ω; r′)G(r′, ω; rs)

+G0(rg, ω; r′)G(r′, ω; r′′)G(r′′, ω; rs)

)
δm(r′).

(3.19)

By re-writing equation (3.19) as

∂δG(rg, ω; rs)

∂m0(r′′)
= −ω2G0(rg, ω; r′′)

[
− ω2

∫
dr′G0(r

′′, ω; r′)δm(r′)G(r′, ω; rs)

]

− ω2G(r′′, ω; rs)

[
− ω2

∫
dr′G0(rg, ω; r′)δm(r′)G(r′, ω; r′′)

]
,

(3.20)

the expressions within [·] can be replaced by the perturbed wavefield, equation (3.10), giving,

finally

∂δG(rg, ω; rs)

∂m0(r′′)
= −ω2

(
G0(rg, ω; r′′)δG(r′′, ω; rs) + δG(rg, ω; r′′)G(r′′, ω; rs)

)
, (3.21)

26



where ∂δG(rg ,ω;rs)

∂m0(r′′)
is the RWI kernel. In equation (3.21), G(r′′, ω; rs) corresponds to the actual

source wavefield, however, since obtaining the actual source wavefield is not possible, it is

replaced with the modeled source wavefield G0(r
′′, ω; rs). The gradient of the misfit function

with respect to the background model m0 is obtained by substituting equation (3.21) into

equation (3.6) to give

g(r) =
∑
rs,rg

∫
dω ω2

([
δG(r, ω; rs)

]
×
[
G0(r, ω; rg)δP

∗(rg, ω; rs)

]

+

[
G0(r, ω; rs)

]
×
[
δG(r, ω; rg)δP

∗(rg, ω; rs)

])
,

(3.22)

where δG(r, ω; rs) is the demigrated source wavefield, G0(r, ω; rg) is the receiver wavefield,

G0(r, ω; rs) is the source wavefield, δG(r, ω; rg) is the demigrated receiver wavefield, and

δP ∗(rg, ω; rs) is the complex conjugate of the data residual. Equation (3.22) depends on both

the background model and the perturbation model (through δG(r, ω; rs) and δG(r, ω; rg)).

The corresponding equation in time domain to equation (3.22) is given by

g(r) =
∑
rs,rg

∫ T

0

dt

([
δG̈(r, t; rs)

][
G0(r, T − t; rg) ∗ δP (rg, T − t; rs)

]

+

[
G̈0(r, t; rs)

][
δG(r, T − t; rg) ∗ δP (rg, T − t; rs)

])
,

(3.23)

where
[
G0(r, T − t; rg) ∗ δP (rg, T − t; rs)

]
is the back-propagated data residual wavefield,[

δG(r, T − t; rg) ∗ δP (rg, T − t; rs)
]

is the demigrated receiver wavefield, G̈ corresponds to

the second time derivative of G, and ∗ represents convolution. The parametrization of the

gradient (equations 3.22 and 3.23) is in terms of slowness squared
(
m(r) = 1

v(r)2

)
.

3.3 Sensitivity Kernels

To understand the advantage of model decomposition, I investigate the contribution of direct

and reflected waves to the FWI and the RWI sensitivity kernels. The sensitivity kernel

describes the perturbation in the data domain due to a perturbation in the model parameter
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(Chi et al., 2015). Equation (3.15) is the conventional FWI sensitivity kernel in the frequency

domain. The corresponding FWI kernel in the time domain, KFWI , is given by the cross-

correlation of the second time derivative of the source wavefield with the time-reversed

back-propagated receiver wavefield:

KFWI = G̈(r, t; rs)⊗G(r,−t; rg), (3.24)

where G(r, t; rg) satisfies 
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = G(rg, t; rs),

(3.25)

and G(r, t; rs) satisfies [
52 −m

∂2

∂t2

]
G(r, t; rs) = δ(r− rs), (3.26)

and where G(rg, t; rs) is the recorded data. The sensitivity kernel of RWI in the frequency

domain is given by equation (3.21), and the corresponding kernel in time domain, KRWI , is

given by

KRWI = δG̈(r, t; rs)⊗G(r,−t; rg) + G̈(r, t; rs)⊗ δG(r,−t; rg), (3.27)

where δG̈(r, t; rs) is the second time derivative of the demigrated source wavefield, G(r,−t; rg)

is the time reversed receiver wavefield, G̈(r, t; rs) is the second time derivative of the source

wavefield, and δG(r,−t; rg) is the demigrated receiver wavefield.

To construct example FWI and RWI sensitivity kernels, I use a two-layer model, where

the velocity of the first layer is 2000m/s and the velocity of the second layer is 3000m/s,

and the interface is at 0.6 km depth. In this model, a source is placed at (0.33, 0.33) km and

a receiver is placed at (0.66, 0.33) km, (Figure 3.2). In constructing the sensitivity kernels, I

use the full bandwidth by utilizing the time domain form of the kernels.

Analyzing the conventional FWI sensitivity sub-kernels (Figures 3.3a, 3.3b, and 3.3c)

indicates that with a smooth initial model, early iterations will update the low-wavenumber

components in the shallow part of the model (Figure 3.3a), and will update the high-

wavenumber components in the deep part of the model, (Figure 3.3b), (Chi et al., 2015).
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Figure (3.3b) indicates that the high-wavenumber update, in the deep section, will exhibit

a migration-like reconstruction (Brossier et al., 2015).

Figure 3.2: Velocity model used to generated sensitivity kernels. The velocity of the first

layer is 2000m/s and the velocity of the second layer is 3000m/s. S, 9, denotes the source

and R, 5, denotes the receiver.

Such behavior in the inversion process is a result of the absence of reflected waves in the pre-

dicted data at early iterations. As the number of iterations increases, low-wavenumber com-

ponents in the deep part will start to update (Figure 3.3c); however, the high-wavenumber

contribution is stronger; hence, the inversion process will try to match the predicted and ob-

served data by updating the high-wavenumber components (Chi et al., 2015). On the other
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hand, the predicted data in RWI will contain reflected waves, as it is generated through

a migration/demigration process (Zhou et al., 2012). The RWI sensitivity kernel indicates

that the reflected waves contribute towards updating the background model (Figure 3.3d).

(a) (b)

(c) (d)

Figure 3.3: FWI and RWI sensitivity kernels. (a) FWI direct wave sub-kernel. (b) Migration

ellipse. This is the FWI reflected wave sub-kernel when model is smooth and does not contain

reflectivity information. (c) FWI reflected wave sub-kernel. (d) RWI sensitivity kernel. I use

a Ricker wavelet as a source function and the full bandwidth in generating the sensitivity

kernels. The solid line is the interface between the two media.
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3.4 RWI workflow

In this section, I present the RWI workflow. The first step in RWI is to perform an RTM to

generate an image, I(r), of the subsurface, as follows[
52 −m

∂2

∂t2

]
G(r, t; rs) = f(t), (3.28)


[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = G(rg, t; rs),

(3.29)

I(r) = G(r, t; rs)⊗G(r,−t; rg). (3.30)

Next, the migrated image, equation (3.30), and the source wavefield, equation (3.28), are

used to compute the predicted data by modeling by seismic demigration, according to[
52 −m

∂2

∂t2

]
δG(r, t; rs) = I(r)G(r, t; rs). (3.31)

From the observed and predicted data we obtain the data residual

δP (rg, t; rs) = G(rg, t; rs)− δG(rg, t; rs). (3.32)

Afterwards, the data residual wavefield is computed as follows
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = δP (rg, t; rs).

(3.33)

Next, the data residual wavefield is demigrated according to[
52 −m

∂2

∂t2

]
δG(r, t; rg) = I(r)G(r, t; rg). (3.34)

Afterwards, we calculate the source and receiver sides of the gradient as follows

Kg(r) =
∑
rs,rg

δG̈(r, t; rs)⊗G(r,−t; rg), (3.35)

Ks(r) =
∑
rs,rg

G̈(r, t; rs)⊗ δG(r,−t; rg), (3.36)
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where δG̈(r, t; rs) is the second time derivative of the demigrated source wavefield, G(r, t; rg)

is the data residual receiver wavefield, G̈(r, t; rs) is the second time derivative of the source

wavefield, and δG(r, t; rg) is the demigrated data residual receiver wavefield. Finally, the

RWI gradient is obtained by combining Ks(r) and Kg(r), equation (3.37). In Figure (3.4)

the RWI workflow is shown.

g(r) = Ks(r) +Kg(r). (3.37)

Figure 3.4: RWI workflow.

3.5 Understanding the RWI gradient

In this section, I discuss the mechanisms, through which RWI constructs the long-wavelength

components of the velocity model. First, I state the FWI gradient and restate the source

and receiver sides of the RWI gradient, equations (3.35) and (3.36), as follows

KFWI(r) =
∑
rs,rg

G̈s ⊗Gg, (3.38)

Kg(r) =
∑
rs,rg

δG̈s ⊗Gg, (3.39)
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Ks(r) =
∑
rs,rg

G̈s ⊗ δGg, (3.40)

where δG̈s = δG̈(r, t; rs), Gg = G(r,−t; rg), G̈s = G̈(r, t; rs), and δGg = δG(r,−t; rg). To

illustrate how the gradient is formed in RWI, I use a two-layer model, with one source placed

at (x, z) = (0.5, 0.2) km and one receiver placed at (x, z) = (1.5, 0.2) km (Figure 3.5). The

velocity of the first layer is 2000m/s and the velocity of the second layer is 3000m/s. To

calculate the wavefields I use a constant velocity model, where the velocity is 2000m/s.

Figure 3.5: Velocity model used to analysis the RWI gradient. The velocity of the first layer

is 2000m/s and the velocity of the second layer is 3000m/s. S, 9, denotes the source and

R, 5, denotes the receiver.

In FWI, the initial velocity model and the early iterations inverted velocity do not contain

any significant reflectivity information. As a consequence, the computed source, G̈s, and

receiver, Gr, wavefields are strictly downgoing and upgoing wavefields, respectively. Hence,

the FWI kernel, equation (3.38), will produce a migration-like update (Figure 3.6).
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Figure 3.6: FWI kernel. The solid line is the interface between the two media.

Similarly, in RWI, the initial and inverted velocity models are smooth models that do

not generate reflected waves. However, decomposing the velocity model, into a background

part and a reflectivity part, which influences the residuals via seismic demigration, will result

in reflected waves contributing to updating the long-wavelength components of the velocity

model. In RWI, the demigrated wavefields explode when the wavefields encounter sources in

depth.

In Figures (3.7a) and (3.7b) the source and demigrated source wavefields at time t =

0.5 s are plotted, respectively. As stated above, the source wavefield, G̈s, is a downgoing

wavefield (Figure 3.7a); however, the demigrated source wavefield is comprised of upgoing and

downgoing components. The upgoing wavefield forms above reflectors, and the downgoing

wavefield forms below reflectors in the demigrated wavefield. In Figures (3.8a) and (3.8b)

the receiver and the demigrated receiver wavefields at time t = 0.5 s are plotted, respectively.

Similar to the demigrated source wavefield, the demigrated receiver wavefield is comprised

of upgoing and downgoing waves. The source-side kernel (Figure 3.9a) is formed by cross-

correlating the demigrated receiver wavefield with the source wavefield, equation (3.40). The
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long-wavelength component in the kernel forms, as a result of cross-correlating wavefields of

the same type, downgoing wavefields. In Figure (3.9b) the receiver-side of the RWI kernel

is plotted. Similar to the source-side of the kernel, the receiver kernel constructs the long-

wavelength component by cross-correlating wavefields of the same type, upgoing wavefields.

Combining the source- and receiver-side kernels give the RWI kernel (Figure 3.10).

(a) (b)

Figure 3.7: Snapshot at time t = 0.5 s of (a) the source wavefield and (b) the demigrated

source wavefield. The solid line is the interface between the two media.
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(a) (b)

Figure 3.8: Snapshot at time t = 0.5 s of (a) the receiver wavefield and (b) the demigrated

receiver wavefield. The solid line is the interface between the two media.

(a) (b)

Figure 3.9: (a) Source-side and (b) receiver-side of the RWI kernel. The solid line is the

interface between the two media.
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Figure 3.10: RWI kernel. The solid line is the interface between the two media.

3.6 Conclusion

In this chapter, I covered the derivation and basic character of the RWI gradient. I discussed

the advantage of RWI over FWI in retrieving the background part of the velocity model when

recorded data lacks sufficient low-frequency information. Afterward, I presented the RWI

workflow. Finally, I reviewed the process at which RWI constructs the long-wavelength

components, in the gradient, from reflection data.
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Chapter 4

RWI in simple media

4.1 Introduction

Our objective in this chapter is to examine in as simple a manner as possible, the way RWI

retrieves the long wavelength components of the velocity model. Moreover, I explore the

effects of correcting for source-receiver illumination within the gradient, which is equivalent

to applying the diagonal of the Hessian (Plessix and Mulder, 2004; Shin et al., 2001), on the

inversion results. In order to carry out these experiments, RWI codes in Python comple-

menting the finite difference codes were written from scratch. An outcome of this thesis, in

addition to the aspects of RWI I study in detail, is a set of simple codes with which other

questions and issues pertaining to RWI can be addressed.

4.2 Modeling

For this analysis, I use a slightly modified version of the model used by Wang et al. (2013).

It is a three-layer model of dimension 7500m×4500m (Figure 4.1). The model is composed

of a background velocity of 2500m/s with a non-reflective low-velocity Gaussian anomaly.

The center of the anomaly has a velocity of 2200m/s. The first interface is a horizontal

reflector located at 3000m in depth, with a velocity of 2750m/s. The second interface

is a dipping reflector with a velocity of 3000m/s. The second layer varies from 375m to

1125m in thickness. A constant velocity model is used as an initial model with a velocity

of 2500m/s (Figure 4.2). In Figure (4.4) a vertical velocity profile across the center of the

model, at x = 3750m, is plotted for both the true and the initial velocity models.

For the acquisition, fifty shots were used in this experiment, with the first shot at x = 75m
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and the last shot at x = 7425m, with a shot spacing of 150m. There are 500 receivers with

15m spacing. The depth of all sources and receivers is 15m. The recording time is 3.5 s

with a 3.0ms time interval. The source wavelet is a Ricker wavelet with 10Hz dominant

frequency. RWI is formulated such that the inversion is only applicable to reflection-only

data; hence, I mute direct arrivals in the observed data. A sample of the observed data

at x = 3675m is plotted in Figure (4.3), where the effect of the Gaussian anomaly on the

reflected waves can be observed. Table (4.1) summarizes the acquisition geometry and the

model parameters.

Figure 4.1: True velocity model.
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Figure 4.2: Initial velocity model.

(a) (b)

Figure 4.3: Observed data at x = 3675m (a) with direct arrivals and (b) without direct

arrivals.
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Figure 4.4: Vertical velocity profile at x = 3750m for the true and initial velocity models.

41



Acquisition geometry and model parameters

nx 501 nz 301

dx 15.0 m dt 3.0 ms

tmax 3.5 s nt 1166

Source x0 75 m Source xend 7425 m

Receiver x0 15 m Receiver xend 7500 m

Shot spacing 150 m Receiver spacing 15 m

Number of shots 50 Number of receivers 500

Depth of shots 15 m Depth of receiver 15 m

Table 4.1: Acquisition geometry and model parameters.

4.3 Inversion

4.3.1 RWI equations

In this section, I present the set of equations used to generate the source wavefield and the

data residuals receiver wavefield used in the gradient calculation, equations (3.35 and 3.36),

and the source and the receiver wavefields needed to migrate the observed data, equation

(3.30). The equation used to generate the source wavefield, used in the gradient calculation,

is given by [
52 −m

∂2

∂t2

]
G(r, t; rs) = f(t), (4.1)

and the data residuals receiver wavefield equation, used in the gradient calculation, is[
52 −m

∂2

∂t2

]
G(r, t; rg) = δP (r, t; rg). (4.2)

The source wavefield equation used to produce the RTM image is
[
52 −m ∂2

∂t2

]
G(r, t; rs) = 0

G(r, t; rs) =
∫ t
0
dt′f(t′),

(4.3)
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and the equation used to calculate the receiver wavefield needed for the RTM is
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = G(rg, t; rs).

(4.4)

The equations used to calculate the demigrated source and demigrated receiver wavefields

remain unchanged, equations (3.31) and (3.34). According to Zhang and Sun (2009), equa-

tion (4.3) is the proper choice when calculating the true-amplitude angle domain common

image gathers, when using the cross-correlation imaging condition, equation (3.30). This set

of equations provide the correct results for the model tested in this chapter, keeping in mind

that the solution is known. In a later section, I show that this set of equations is the only

set working for the model presented in this chapter.

4.3.2 Without source-receiver illumination compensation

In this section, I examine the RWI results for gradients with no source-receiver illumination

compensation applied to them. In Figure (4.5) the RTM migrated image using the initial

velocity model (Figure 4.2) is plotted. Due to the inaccuracy of the velocity model, the

horizons are unfocused and false structures are present.

In Figure (4.6) the RWI gradient for the first iteration is plotted. The update information

in the gradient is mainly for the first layer, and updates below that hardly can be seen. Still,

the gradient captures the general characteristics of the true velocity model.
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Figure 4.5: RTM image migrated using the initial velocity.
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Figure 4.6: RWI gradient without source-receiver illumination - (iteration = 1).

Figure 4.7: Updated velocity model using RWI - (iteration = 1).
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Figure 4.8: Vertical velocity profile at x = 3750m for the true and inverted velocity models
- (iteration = 1).
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The updated velocity, after one iteration, is plotted in Figure (4.7). The Gaussian

anomaly starts to form in the inverted velocity at the correct location; however, the bound-

ary of the lens is not entirely resolved. Since RWI aims at recovering the background part

of the velocity model, fully resolving that boundary is not expected, nonetheless, according

to equation (3.21), we anticipate to see a contribution from the high-frequency part of the

velocity model towards the model update. In Figure (4.8) a vertical velocity profile across

the center of the model, at x = 3750m, is plotted for both the true and the inverted velocity

models.

In Figure (4.9) the RTM result produced using the inverted velocity is plotted. The

horizons are well-focused and more coherent than from the RTM image migrated using the

initial velocity (Figure 4.5), and the false structures start to diminish.

Figure 4.9: RTM image migrated using the inverted velocity - (iteration = 1).
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The fifth iteration gradient is plotted in Figure (4.10). In contrast to the gradient of the

first iteration (Figure 4.6), update information below the first interface becomes visible, and

the second reflector starts to emerge. However, the gradient is creating a false structure.

As stated in Section (2.8), predicted data does not contain any AVO information, due to

the nature of modeling by seismic demigration. As a consequence, the false structure is

most likely caused by our attempt to minimize the misfit between ”real” data with AVO

information, and predicted data without AVO information, even though a simple model is

being used. This issue will be further discussed in Chapter (6).

In Figure (4.11) the inverted velocity after five iterations is plotted. The Gaussian lens is

more defined in this model; however, there is an increase in the velocity around the anomaly,

due to the acquisition geometry and the amplitude mismatch. When the wavepath of a

source-receiver pair does not span the lens, that wavepath will contribute to the gradient

with a negative sign; hence, it will update the velocity in the positive direction. In Figure

(4.12) a vertical velocity profile across the center of the model, at x = 3750m, is plotted for

both the true and the inverted velocity models. There is a general increase in the velocity

in the first layer, except at the anomaly. Also, there is a slight increase in the velocity of

the second layer. The convergence rate of the inversion process is plotted in Figure (4.14).

After the second iteration, the inversion converged to a final solution.

The migrated image using this inverted velocity (Figure 4.11) is plotted in Figure (4.13).

Although horizons are more coherent and well-focused, compared to results from before,

major false structures are created with this velocity.
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Figure 4.10: RWI gradient without source-receiver illumination - (iteration = 5).

Figure 4.11: Updated velocity model using RWI - (iteration = 5).
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Figure 4.12: Vertical velocity profile at x = 3750m for the true and inverted velocity models
- (iteration = 5).
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Figure 4.13: RTM image migrated using the inverted velocity - (iteration = 5).

Figure 4.14: Normalized objective function per iteration.
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4.3.3 With source-receiver illumination compensation

In this section, I examine the RWI results when applying source-receiver illumination com-

pensation to the gradient. The conventional RWI gradient, used in the previous section, is

given

g(r) =
∑
rs,rg

[
δG̈(r, t; rs)⊗G(r,−t; rg) + G̈(r, t; rs)⊗ δG(r,−t; rg)

]
, (4.5)

while the new gradient, with source-receiver illumination compensation, is given by

g(r) =

 ∑
rs,rg

(
δG̈(r, t; rs)⊗G(r,−t; rg)

)
(∑

rs
δG̈(r, t; rs)2

)(∑
rg
G(r,−t; rg)2

) +

∑
rs,rg

(
G̈(r, t; rs)⊗ δG(r,−t; rg)

)
(∑

rs
G̈(r, t; rs)2

)(∑
rg
δG(r,−t; rg)2

)
 .

(4.6)

The gradient of the first iteration is plotted in Figure (4.15). Applying source- receiver il-

lumination improves the resolution of the gradient and enhances the contribution from the

deeper parts of the model, otherwise masked by the shallow reflector. Also, the illumina-

tion improves the contribution from the high-frequency components and suppresses artifacts

caused by the imaging condition. However, the illumination introduces artifacts at the sides

of the model.

The updated velocity and the vertical velocity profile, at x = 3750m, after the first

iteration, are plotted in Figures (4.16) and (4.17), respectively. Unlike the results from

the previous section, the interfaces between the layers are more visible, and the velocity

of the Gaussian anomaly is more accurately inverted. There is an increase in the velocity

immediately below the lens, and there is a slight increase in the velocity of the second layer.

The RTM migrated image using the inverted velocity is plotted in Figure (4.17). This

image, compared to the RTM migrated image using the first iteration velocity from the

previous section (Figure 4.9), is more focused and the false structures completely diminished.

This is especially evident for the second reflector.
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Figure 4.15: RWI gradient with source-receiver illumination - (iteration = 1).

Figure 4.16: Updated velocity model using RWI - (iteration = 1).
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Figure 4.17: Vertical velocity profile at x = 3750m for the true and inverted velocity models
- (iteration = 1).
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Figure 4.18: RTM image migrated using the inverted velocity - (iteration = 1).

In Figure (4.19) the gradient computed as a part of the fifth iteration is plotted. The

magnitude of the update is relatively small. However, there are strong artifacts at the upper

corners and the sides of the model. This is caused by limited offsets in the acquisition geom-

etry. The second interface is more defined than the first interface, which indicates that there

is more update information included from the second reflector when using source-receiver

illumination compensation. The updated velocity model associated with this gradient is

plotted in Figure (4.20). There is an increase in the velocity in the inverted model for both

the first and second layers, including the Gaussian anomaly. This is easier visualized in the

velocity profile (Figure 4.21), where I observe that the lens is better inverted after the first

iteration.
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Figure 4.19: RWI gradient with source-receiver illumination - (iteration = 5).

Figure 4.20: Updated velocity model using RWI - (iteration = 5).
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Figure 4.21: Vertical velocity profile at x = 3750m for the true and inverted velocity models
- (iteration = 5).

57



In Figure (4.22) the migrated image using the fifth iteration inverted velocity is plotted.

Again, later iterations produce images with more coherent and well-focused horizons, but

also introduce false structures, due to the velocity increase in the first layer. The curvature

of the structure is larger, I observe, when source-receiver illumination is applied. From the

misfit error per iteration plot (Figure 4.23), I conclude that the illumination compensation

speeds up convergence.

Figure 4.22: RTM image migrated using the inverted velocity - (iteration = 5).
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Figure 4.23: Normalized objective function per iteration.

4.3.4 FWI results

To demonstrate the superiority of RWI over FWI, in the particular task of recovering the

smoothly-varying component of the background velocity, I examine the FWI results. For

meaningful comparisons, I plot the final FWI results (iteration = 5), having also applied

source-receiver illumination to the gradient. In Figure (4.24) the gradient for the fifth itera-

tion is plotted. From the gradient, I observe that the reflectivity part of the velocity model

is highly resolved, however, the gradient lacks any notable contributions towards updating

the background part of the model. As a result, the inverted velocity (Figure 4.25) does not

contain any information about the Gaussian anomaly, and false structures are present. The

vertical velocity profile (Figure 4.26) indicates that the only difference between the initial

and inverted velocity is that the inverted model incorporates high-frequency information.
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Figure 4.24: FWI gradient with source-receiver illumination - (iteration = 5).

Figure 4.25: Updated velocity model using FWI - (iteration = 5).
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Figure 4.26: Vertical velocity profile at x = 3750m for the true and inverted velocity models
for FWI - (iteration = 5).
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4.3.5 RWI equations analysis

In this section, I present different sets of equations than the one in Section (4.3.1) and the

output gradients. Unlike the gradient (Figure 4.15) calculated using the set of equations

in Section (4.3.1), the gradients presented in this section updates the Gaussian anomaly

incorrectly. Treating the source term in the wave equation as a forcing term or as a boundary

value problem (BVP), and using the source in a conventional way or applying an integral to

the source function, as proposed by Zhang and Sun (2009), provides different results.

Set of equations A:

The equation used to generate the source wavefield, used in the gradient calculation, is given

by [
52 −m

∂2

∂t2

]
G(r, t; rs) = f(t), (4.7)

and the data residuals receiver wavefield, used in the gradient calculation, equation is
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = δP (rg, t; rs).

(4.8)

The source wavefield equation used to produce the RTM image is
[
52 −m ∂2

∂t2

]
G(r, t; rs) = 0

G(r, t; rs) =
∫ t
0
dt′f(t′),

(4.9)

and the equation used to calculate receiver wavefield needed for the RTM is
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = G(rg, t; rs).

(4.10)

In Figure (4.27), the gradient calculated using set of equations A is plotted.

62



Figure 4.27: Gradient calculated using set of equations A.

Set of equations B:

This set of equations is to be used intuitively, as the receiver wavefield in RTM and the data

residuals receiver wavefield are treated as a boundary value problem. The equation used to

generate the source wavefield, used in the gradient calculation, is given by[
52 −m

∂2

∂t2

]
G(r, t; rs) = f(t), (4.11)

and the equation to calculate the data residuals receiver wavefield, needed in the gradient

calculation, is 
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = δP (rg, t; rs).

(4.12)

The source wavefield equation used to produce the RTM image is[
52 −m

∂2

∂t2

]
G(r, t; rs) = f(t), (4.13)
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and the equation used to calculate receiver wavefield needed for the RTM is
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = G(rg, t; rs).

(4.14)

In Figure (4.28), the gradient calculated using set of equations B is plotted.

Figure 4.28: Gradient calculated using set of equations B.

Set of equations C:

The equation used to generate the source wavefield, used in the gradient calculation, is given

by [
52 −m

∂2

∂t2

]
G(r, t; rs) = f(t), (4.15)

and the data residuals receiver wavefield equation used in the gradient calculation is[
52 −m

∂2

∂t2

]
G(r, t; rg) = δP (rg, t; rs). (4.16)

The source wavefield equation used to produce the RTM image is[
52 −m

∂2

∂t2

]
G(r, t; rs) = f(t), (4.17)
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and the equation used to calculate receiver wavefield needed for the RTM is
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = G(rg, t; rs).

(4.18)

In Figure (4.29), the gradient calculated using set of equations C is plotted.

Figure 4.29: Gradient calculated using set of equations C.

Set of equations D:

The equation used to generate the source wavefield used in the gradient calculation is given

by 
[
52 −m ∂2

∂t2

]
G(r, t; rs) = 0

G(r, t; rs) =
∫ t
0
dt′f(t′),

(4.19)

and the data residuals receiver wavefield equation used in the gradient calculation is[
52 −m

∂2

∂t2

]
G(r, t; rg) = δP (rg, t; rs). (4.20)
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The source wavefield equation used to produce the RTM image is
[
52 −m ∂2

∂t2

]
G(r, t; rs) = 0

G(r, t; rs) =
∫ t
0
dt′f(t′),

(4.21)

and the equation used to calculate receiver wavefield needed for the RTM is
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = G(rg, t; rs).

(4.22)

In Figure (4.30), the gradient calculated using set of equations D is plotted.

Figure 4.30: Gradient calculated using set of equations D.

4.4 Conclusion

In this chapter, I examined simple RWI results with and without source-receiver illumination

applied to the gradient. I observe that applying illumination to the gradient improves the

inversion results in the deep section, and it speeds up the convergence rate of the inversion;
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however, illumination scales up artifacts as well. I interpret the absence of AVO information

in the predicted data as the primary cause, in higher order iterations, of update errors

in the velocity. However, a well-focused RTM image is produced in any focused case. In

contrast, FWI fails at recovering the background part of the velocity model. I showed that

the inversion is highly sensitive to the equations used in the wavefields calculations.
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Chapter 5

RWI in complex media

5.1 Introduction

In the previous chapter, I illustrated how RWI has the advantage of recovering the long

wavelength components of the velocity model. However, I used a simple model in the ex-

amination. In this chapter, I examine the effectiveness of RWI in the case of a complex

model. To achieve our goal, I use a part the Marmousi model. The Marmousi model is a

complex geological model based on a profile through the North Quenguela Trough in the

Cuanza basin in Angola (Versteeg, 1994), that was generated at the Institut Français du

Pétrole (IFP).

5.2 Modeling

The complete and partial Marmousi model that I use are plotted in Figures (5.1) and (5.2).

The model is 1800m× 800m in dimension, with many reflectors, faults, and strong velocity

variations. The model has a 200m water layer, with a velocity of 1470m/s. The velocity of

the model varies from 1045m/s to 4401m/s. The initial model I used is a constant-velocity

water layer overlaying a linearly increasing velocity from 1045.5m/s to 3014m/s (Figure

5.3). In Figure (5.5) a vertical velocity profile across the center of the model, at x = 900m,

is plotted for both the true and the initial velocity models.

For the acquisition, thirty-six shots were used in this experiment, with the first shot at

x = 25m and the last shot at x = 1775m, with a shot spacing of 50m. There are 359

receivers with 5m spacing. The depth of all sources and receivers is 5m. The recording

time is 1.5 s with 0.68ms time interval. The source wavelet is a Ricker wavelet with 20Hz
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dominant frequency. Similar to the previous example (Chapter 4), direct arrivals are muted

in the observed data. A sample of the observed data at x = 275m and x = 775m is

plotted in Figures (5.4a) and (5.4b). Table (5.1) summarizes the acquisition geometry and

the model parameters. In Figure (5.6) the RTM migrated image using the true velocity

model is plotted.

Figure 5.1: Marmousi model (the white box is the testing model).

Figure 5.2: True velocity model.
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Figure 5.3: Initial velocity model.

(a) (b)

Figure 5.4: Observed data, without direct arrivals, at (a) x = 275m and (b) x = 775m.
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Figure 5.5: Vertical velocity profile at x = 900m for the true and initial velocity models.
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Acquisition geometry and model parameters

nx 361 nz 161

dx 5.0 m dt 0.68 ms

tmax 1.5 s nt 2200

xmax 1800 m zmax 800 m

Source x0 25 m Source xend 1775 m

Receiver x0 5 m Receiver xend 1800 m

Shot spacing 50 m Receiver spacing 5 m

Number of shots 36 Number of receivers 359

Depth of shots 5 m Depth of receiver 5 m

Table 5.1: Acquisition geometry and model parameters.

Figure 5.6: RTM image migrated using the true velocity model.
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5.3 Inversion

5.3.1 RWI equations

In this section, I present the set of equations used to generate the source wavefield and the

data residuals receiver wavefield used in the gradient calculation, equations (3.35) and (3.36),

and the source and receiver wavefields needed to migrated the observed data, equation (3.30).

The equation used to generate the source wavefield, used in the gradient calculation, is given

by [
52 −m

∂2

∂t2

]
G(r, t; rs) = f(t), (5.1)

and the equation used to compute the data residuals receiver wavefield, used in the gradient

calculation, is 
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = δP (rg, t; rs).

(5.2)

The source wavefield equation used to produce the RTM image is[
52 −m

∂2

∂t2

]
G(r, t; rs) = f(t), (5.3)

and the equation used to calculate receiver wavefield needed for the RTM is
[
52 −m ∂2

∂t2

]
G(r, t; rg) = 0

G(rs, t; rg) = G(rg, t; rs).

(5.4)

The equations used to calculate the demigrated source and demigrated receiver wavefields

remain unchanged, equations (3.31) and (3.34).

5.3.2 RWI results

The results presented in this chapter are for gradients with source-receiver illumination

compensation being applied. In Figure (5.7) the RTM migrated image using the initial

velocity is plotted. The two red curves on the migrated section are the correct positions
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of two major reflectors in the velocity model. The initial velocity model, in general, has

lower velocity than the true velocity model (Figure 5.5). Therefore, reflectors are shifted

up. The first and second major reflectors are 65m and 85m away from their true positions,

respectively. The correlation coefficient between the migrated image using the initial velocity

(Figure 5.7) and the migrated image using the true velocity (Figure 5.6) is 0.026. For details

about correlation coefficient, the reader is referred to Asuero et al. (2006).

In Figures (5.8) and (5.9) the inverted velocity and the velocity perturbation are plotted.

It is difficult to evaluate the accuracy of the inverted model; hence, the velocity perturbation

(Figure 5.9) provides a more tangible measure. The inverted velocity captured the general

characteristics of the structures of the true model; however, the perturbation is relatively

small, and mainly occurring below the water bottom-layer immediately. In Figure (5.10) a

vertical velocity profile across the center of the model, at x = 3750m, is plotted for both the

true and the inverted velocity models.

Figure 5.7: RTM image migrated using the initial velocity. The red curves are the correct

positions of a two major reflectors in the velocity model.

74



Figure 5.8: Inverted velocity model using RWI.

Figure 5.9: Velocity perturbation.

In Figure (5.11) the RTM migrated image generated using the inverted velocity, with

the true positions of the two major reflectors marked in red, is plotted. The reflectors are

closer to their actual subsurface positions, compared to the RTM image generated using the

initial velocity. The first major reflector is 47m away from its true position and the second
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Figure 5.10: Vertical velocity profile at x = 900m for the initial and inverted velocity models.
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major reflector is 60m away from its true position. Also, shallow horizons are more coherent

and more visible, compared the RTM image migrated using the initial velocity model. The

correlation coefficient between the migrated image using the inverted velocity (Figure 5.11)

and the migrated image using the true velocity (Figure 5.6) is 0.049. There is an increase

in the correlation coefficient between the RTM image produced using the inverted velocity

and the RTM image produced using the true velocity, compared to when using the initial

velocity to migrate the observed data.

The convergence rate of the inversion process is plotted in Figure (5.12). The red line in

the plot is the ratio of the norm of the data residuals squared, when using the true velocity

(Figure 5.2) as an initial model, to the norm of the data residuals squared when using our

original initial model (Figure 5.3). (The true model is only used to generate predicted data,

and not as a starting model for the inversion; hence, the constant error line.) When using

the true velocity, the error is not zero, as normally expected in FWI, when using the same

model and same operator to generate the observed and predicted data; however, a high error

value is obtained. This error is attributed to the fact that predicted data lacks the angle-

dependent information present in the observed data. The change from the initial model is

relatively small, and this can be observed in the model domain (Figure 5.8); however, there

is a significant improvement in the image domain (Figure 5.11).
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Figure 5.11: RTM image migrated using the inverted velocity. The red curves are the correct

positions of a two major reflectors in the velocity model.

Figure 5.12: Normalized objective function per iteration.
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5.3.3 FWI results

In this section, I present the FWI results to benchmark the RWI recovery of the low frequency

information from reflection data. In Figure (5.13) the inverted velocity using FWI is plotted.

I can see that the inverted velocity is more detailed compared to the results from the RWI.

In the RTM migrated image constructed using the FWI inverted velocity, the two major

reflectors are closer to their correct position; however, they are less coherent than the results

of RWI (Figure 5.11). The average separation between the first major reflector and its true

position is 21m and the average separation between the second major reflector and its true

position is 26m. Also, FWI introduces false structures. The correlation coefficient between

the migrated image using the FWI inverted velocity (Figure 5.13) and the migrated image

using the true velocity (Figure 5.6) is -0.119.

Figure 5.13: Inverted velocity model using FWI.
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Figure 5.14: RTM image migrated using the FWI inverted velocity. The red curves are the

correct positions of a two major reflectors in the velocity model. The blue ellipses are the

false structures.

5.4 Conclusion

In this chapter, I applied RWI to a model with complex media. The RWI inverted velocity

improves the migration results, compared to that when using the initial velocity, as reflectors

are closer to their actual subsurface positions and horizons are well-defined and more coher-

ent. I have shown that FWI gives favorable results, at positioning reflections at their correct

position; however, events are blurred and false structures are created. Also, I have shown

that when using the true velocity model to generate predicted data, we get a relatively high

error value, due to modeling by seismic demigration.
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Chapter 6

Practical obstacles to development of RWI

6.1 Introduction

In this chapter, I discuss two major issues associated with RWI. All of the issues presented

here arise as a result of the demigration process. In our discussion, I start with the conse-

quences of modeling by seismic demigration on the amplitude versus offset (AVO) informa-

tion of the predicted data, and its implication on the objective function. Next, I discuss the

necessity of using reflection-only observed data.

6.2 Seismic demigration and AVO information

AVO refers to the dependency of seismic amplitude on the source-receiver separation dis-

tance; accordingly, it is dependent on the angle of incidence. It is a tool used to analyze

subsurface properties such as velocity, density, lithology, and fluid content. AVO information

plays a major role in multiparameter waveform inversion, as some physical parameters, such

as density and velocity, are indistinguishable at small angles of incidence. Consequently,

measurement differences at large angles of incidence are necessary to retrieve these parame-

ters (Innanen, 2015).

In RWI, predicted data is generated through the process of seismic demigration (equation

2.26). Since the demigration process is not an exact inversion method, there is a loss of

information when applied, especially AVO information. In Figure (6.1) the AVO signature

of observed and predicted data generated using a two layer velocity model, where the velocity

of the first layer is 1911m/s and the velocity of the second layer is 3248.7m/s, is plotted.

The amplitudes in the predicted data are almost invariant with offset in comparison with the
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data generated with complete wave physics included. As a consequence, using a least-squares

objective function (equation 3.4) will result in a highly nonlinear problem. Also, when using

the true velocity as an initial model, unlike with conventional FWI, the objective function

is not zero, as seen in Section (5.3.2).

Figure 6.1: AVO of the observed and predicted data.

To overcome this limitation, I employ cross-correlation objective function (equation 6.1)

instead of the least-squares function (equation 3.4).

E (m0) = −
∑
rs,rg

∫
dω G(rg, ω; rs)G

∗
0(rg, ω; rs). (6.1)

Using a cross-correlation objective function emphasizes the similarities between the observed

and predicted data, rather than the differences, and relaxes on the amplitude constraints

(Liu et al., 2017); hence, it offers a better alternative to the conventional objective function

when AVO information is not available. In Figure (6.1) the inverted velocity using the new
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objective function is plotted. Comparing this result to the previous one (Figure 4.20), the

Gaussian anomaly is more accurately inverted. The significant velocity increase around the

lens is less severe in this result. Although the interfaces between the layers are more visible

and well-defined, the inverted velocity contains less information about the second layer. In

Figure (6.3) the migrated image using the inverted velocity is plotted. The improvements

when using the cross-correlation objective function are apparent. In the previous result

(Figure 4.22), horizons were well-focused and coherent; however, major false structures were

created by the inaccuracy of the inverted velocity. On the other hand, this method offers

a better result, where horizons are even more coherent, in particular on the sides of the

migrated image, and there are no false structures.

Figure 6.2: Inverted model using cross-correlation objective function [Simple model (Chapter

4)].
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Figure 6.3: RTM migrated image using the cross-correlation objective function inverted

velocity [Simple model (Chapter 4)].

6.3 Seismic demigration and reflected waves

In acoustic media, the incident wavefield produces different types of waves (e.g., reflec-

tions, refractions, and diving waves) depending on the angle of incidence and the subsurface

physical properties. These waves have variable contributions to velocity model building in

waveform inversion. For instance, deep reflections contribute towards updating the reflec-

tivity part of the velocity model in FWI, while direct waves contribute towards inverting

the long-wavelength part of the velocity model. In RWI, as stated in Chapter (3), reflected

waves are utilized to invert for the background part of the velocity model by decomposing the

velocity model into a reflectivity part and a background part. This decomposition mandates
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the use of modeling by seismic demigration to generate predicted data and to compute the

gradient for the inversion. The demigration process, as described in Section (2.8), cannot

produce any types of waves other than reflections. The reason for this is similar to that for

why modeling by seismic demigration does not produce data with AVO information. Accord-

ing to the Zoeppritz equations and Snell’s law, the most influential parameter controlling

wave propagation behavior in the subsurface is velocity (diving waves are generated as a

consequence of a velocity gradient). And the concept of the exploding reflector model, as

the name suggests, only produces reflected waves. Therefore, the waves that contribute to

the determination of long-wavelength components of the velocity model are neglected in the

inversion process. These waves must be filtered from the observed data, and the filtering

process is most likely imperfect.

6.4 Conclusion

In this chapter, I presented some of the issues with RWI, caused by the concept of mod-

eling by seismic demigration. I have shown that the conventional objective function is not

well suited for inversions with inaccurate amplitudes; further, I demonstrated that a cross-

correlation objective function is insensitive to the amplitude variations, due to the lack of

AVO information, and is more appropriate for RWI. Also, I have shown that RWI uses

reflection-only data, as modeling by seismic demigration only produces reflected waves. This

issue constrains us to exclude waves that would contribute in updating the long-wavelength

components of the velocity model.
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Chapter 7

Conclusions and future work

7.1 Conclusions

Full waveform inversion (FWI) is an emerging seismic imaging and inversion technique. It is

being used, not just to provide a high-resolution structural image of the subsurface, but also

to provide the subsurface material properties. It suffers from a range of limitations as it is an

ill-posed nonlinear problem. To obtain accurate results, initial models in FWI need to predict

data within a half-cycle from the observed data. Otherwise, cycle-skipping will occur, and

the inversion will converge to local minima. The low-frequency and long-offset data needed

to mitigate this issue are frequently unavailable due to seismic acquisition limitations. In

RWI cycle-skipping can still occur at far offsets (Chi et al., 2015). In this thesis, I presented

and tested a new inversion method based on model decomposition, namely reflection-based

waveform inversion (RWI). The objective of this approach is to recover the background part

of the velocity model, which is the part of model controlling arrival times of seismic data;

hence, providing a better starting model for FWI.

In Chapter 2, I have reviewed the aspects of wave equation modeling, including the

absorbing boundary conditions, the finite-difference scheme, and the stability and accuracy

of the numerical modeling. Also, I reviewed essential concepts in RWI which are the concept

of reverse-time migration, and the concept of modeling by seismic demigration.

In Chapter 3, I presented the theory behind and the formulation of RWI. I explained the

motivation behind using RWI over FWI and indicated that a reflection-dominated data have

limited ability to recover the background velocity. Also, I have shown the methodology at

which RWI construct the gradient and how it is different from FWI gradient.

In Chapter 4, I inverted for a simple model using both FWI and RWI. I have shown
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that RWI has been able to recover the background velocity from reflection-only data, while

FWI failed even while using the full wavefield. Migrating data using RWI inverted velocity

provides a preferable image compared to that when using FWI results. I have shown that

higher order iterations in RWI tend to produce incorrect results. Also, I examined the

consequences of preconditioning the gradient with the source and receiver wavefields, which

is equivalent to applying the diagonal of the Hessian (Plessix and Mulder, 2004; Shin et al.,

2001), on the inversion results. I demonstrated how applying source-receiver illumination

further improve the inversion results, especially in deeper section.

In Chapter 5, I applied RWI to a small section of the Marmousi model, to evaluate

the performance of RWI in complex media. I have shown that the RWI inverted velocity

improved the migration results, compared to that when using the initial velocity. Also, I

have shown that FWI gives comparable results; however, RWI still provided a better image,

especially in areas with limited data. I have shown that when using the true velocity model to

generate predicted data, modeling by seismic demigration fails at reconstructing the observed

data.

In Chapter 6, I discussed some of the practical issues in RWI and its relationship to

modeling by seismic demigration. I have shown that, as a consequence of modeling by seis-

mic demigration, predicted data lacks any AVO information, and that this causes incorrect

inversion results when using the least-squares objective function. I have demonstrated that

a cross-correlation objective function is more suitable for RWI. Also, I have shown that RWI

does not utilize all waves that contribute in updating the long-wavelength components of

the velocity model.

7.2 Future work

While I demonstrated the potential of RWI method, many opportunities exist to explore its

full potential and limits. One can study the applicability of incorporating refractions, direct,
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or diving waves to improve the inversion results. Also, one can examine the results when

using the unstacked migrated shots to perform the demigration and compare to the results

when using the stacked image for the demigration. Using the migrated shots, instead of the

stacked image, does not require any additional computations. Also, using different migration

algorithms is important in understanding the sensitivity of RWI towards the variations in

these methods. Moreover, evaluating the performance of an acoustic and and elastic RWI

with elastic data is important. Also, a multiparameter RWI attempt could motivate an AVO

incorporated demigration process. Additionally, examining different objective functions, and

observed and predicted data normalization methods is necessary. Moreover, examining the

effect of the initial model on the convergence of RWI is important. Also, understanding the

effects of signal-to-noise ratio on the quality of the inversion is necessary. Finally, RWI is a

computationally expensive problem and finding different approaches, to decrease the needed

number of forward-modeling problems, is vital.
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